WorldWideScience

Sample records for earth iron-rich high

  1. Stability of iron-rich magnesiowüstite in Earth's lower mantle

    Science.gov (United States)

    Ohta, K.; Fujino, K.; Kuwayama, Y.; Kondo, T.; Shimizu, K.; Ohishi, Y.

    2012-12-01

    At ambient conditions, MgO periclase and FeO wüstite form a solid solution (Mg1-xFex)O, named ferropericlase (x ≤ 0.5) and magnesiowüstite (x > 0.5). (Mg1-xFex)O ferropericlase is considered to be a major component of Earth's lower mantle, and may play an important role for its structure and dynamics. Iron-rich magnesiowüstite also needs to be considered because of possible iron enrichment at the core-mantle boundary region [e.g., Nomura et al., 2011]. Recent laser-heated diamond anvil cell experiments on FeO revealed that NaCl-type (B1) structured FeO underwent an insulator-metal transition at about 70 GPa and 1800 K without any structural transformation [Fischer et al., 2011; Ohta et al., 2012]. These results imply that the metallic B1 FeO would require a two-phase field for the MgO-FeO binary system due to different chemical bonding between insulating MgO and metallic FeO. We performed simultaneous electrical conductivity and x-ray diffraction measurements on (Mg0.20Fe0.80)O and (Mg0.05Fe0.95)O magnesiowüstite up to 140 GPa and 2100 K, and then examined recovered samples by using analytical transmission electron microprobe. We obtained some evidences for the dissociation of (Mg0.05Fe0.95)O into lighter and heavier phases than starting material occurring above 70 GPa and 1900 K, which is most likely due to the metallization of FeO component. On the other hand, we did not observe such dissociation and metallization in (Mg0.20Fe0.80)O. Observed dissociation in (Mg0.05Fe0.95)O might contribute to the heterogeneity in seismic wave and electrical conductivity at the Earth's core-mantle boundary region.

  2. Extraction of rare earths from iron-rich rare earth deposits

    OpenAIRE

    Bisaka, K.; Thobadi, I.C.; Pawlik, C.

    2017-01-01

    Rare earth metals are classified as critical metals by the United Nations, as they have found wide application in the fabrication of magnets, particularly those used in green energy technologies which mitigate global warming. Processing of ores containing rare earth elements is complex, and differs according to the nature of each ore. In the conventional process, run of mine (ROM) ores are processed in a physical separation plant to produce a concentrate from which rare earth elements are ext...

  3. Synthesis of magnetite from iron-rich mine water using sodium carbonate

    CSIR Research Space (South Africa)

    Akinwekomi, V

    2017-06-01

    Full Text Available is highly mineralised and technologies are required for the processing of the final sludge for possible industrial application. Conventionally, magnetite is synthesized using iron-rich, industrial grade chemical reagents making magnetite expensive to produce...

  4. Iron-rich (Fe1-x-yNixCoy)88Zr7B4Cu1 nanocrystalline magnetic materials for high temperature applications with minimal magnetostriction

    Science.gov (United States)

    Martone, Anthony; Dong, Bowen; Lan, Song; Willard, Matthew A.

    2018-05-01

    As inductor technology advances, greater efficiency and smaller components demand new core materials. With recent developments of nanocrystalline magnetic materials, soft magnetic properties of these cores can be greatly improved. FeCo-based nanocrystalline magnetic alloys have resulted in good soft magnetic properties and high Curie temperatures; however, magnetoelastic anisotropies persist as a main source of losses. This investigation focuses on the design of a new Fe-based (Fe,Ni,Co)88Zr7B4Cu1 alloy with reduced magnetostriction and potential for operation at elevated temperatures. The alloys have been processed by arc melting, melt spinning, and annealing in a protective atmosphere to produce nanocrystalline ribbons. These ribbons have been analyzed for structure, hysteresis, and magnetostriction using X-Ray diffraction, vibrating sample magnetometry (VSM), and a home-built magnetostriction system, respectively. In addition, Curie temperatures of the amorphous phase were analyzed to determine the best performing, high-temperature material. Our best result was found for a Fe77Ni8.25Co2.75Zr7B4Cu1 alloy with a 12 nm average crystallite size (determined from Scherrer broadening) and a 2.873 Å lattice parameter determined from the Nelson-Riley function. This nanocrystalline alloy possesses a coercivity of 10 A/m, magnetostrictive coefficient of 4.8 ppm, and amorphous phase Curie temperature of 218°C.

  5. Stability and anisotropy of (FexNi1-x)2O under high pressure and implications in Earth's and super-Earths' core.

    Science.gov (United States)

    Huang, Shengxuan; Wu, Xiang; Qin, Shan

    2018-01-10

    Oxygen is thought to be an important light element in Earth's core but the amount of oxygen in Earth's core remains elusive. In addition, iron-rich iron oxides are of great interest and significance in the field of geoscience and condensed matter physics. Here, static calculations based on density functional theory demonstrate that I4/mmm-Fe 2 O is dynamically and mechanically stable and becomes energetically favorable with respect to the assemblage of hcp-Fe and [Formula: see text]-FeO above 270 GPa, which indicates that I4/mmm-Fe 2 O can be a strong candidate phase for stable iron-rich iron oxides at high pressure, perhaps even at high temperature. The elasticity and anisotropy of I4/mmm-(Fe x Ni 1-x ) 2 O at high pressures are also determined. Based on these results, we have derived the upper limit of oxygen to be 4.3 wt% in Earth's lower outer core. On the other hand, I4/mmm-(Fe x Ni 1-x ) 2 O with high AV S is likely to exist in a super-Earth's or an ocean planet's solid core causing the locally seismic heterogeneity. Our results not only give some clues to explore and synthesize novel iron-rich iron oxides but also shed light on the fundamental information of oxygen in the planetary core.

  6. Iron-rich Oxides at the Core-mantle Boundary

    Science.gov (United States)

    Wicks, J. K.; Jackson, J. M.; Sturhahn, W.; Bower, D. J.; Zhuravlev, K. K.; Prakapenka, V.

    2013-12-01

    ULVZ and show that a small amount of iron-rich (Mg,Fe)O can greatly reduce the average sound velocity of an aggregate assemblage. When combined with a geodynamic model of a solid ULVZ (Bower et al., 2011), we can directly correlate inferred sound velocities to mineralogy and predicted ULVZ shapes. In this presentation, our combined geodynamic and mineral physics model of a solid ULVZ will be used to explore the relationship between the observed sound velocities and mineralogy of ULVZs with added insight into ULVZ morphology.

  7. The Pressure-Volume-Temperature Equation of State of Iron-Rich (Mg,Fe)O

    Science.gov (United States)

    Wicks, J. K.; Jackson, J. M.; Zhuravlev, K. K.; Prakapenka, V.

    2012-12-01

    Source, where high pressures and temperatures are achieved in a diamond anvil cell with in-situ laser heating. The sample was mixed with Fe metal buffer/pressure standard with a neon pressure medium, with salt plates on either side as thermal insulator. We will discuss these density measurements and their impact on sound velocities of iron-rich (Mg,Fe)O in the context of a solid ULVZ.

  8. Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region

    International Nuclear Information System (INIS)

    Wicks, J.K.; Jackson, J.M.; Sturhahn, W.

    2010-01-01

    The sound velocities of (Mg .16 Fe .84 )O have been measured to 121 GPa at ambient temperature using nuclear resonant inelastic x-ray scattering. The effect of electronic environment of the iron sites on the sound velocities were tracked in situ using synchrotron Moessbauer spectroscopy. We found the sound velocities of (Mg .16 Fe .84 )O to be much lower than those in other presumed mantle phases at similar conditions, most notably at very high pressures. Conservative estimates of the effect of temperature and dilution on aggregate sound velocities show that only a small amount of iron-rich (Mg,Fe)O can greatly reduce the average sound velocity of an assemblage. We propose that iron-rich (Mg,Fe)O be a source of ultra-low velocity zones. Other properties of this phase, such as enhanced density and dynamic stability, strongly support the presence of iron-rich (Mg,Fe)O in localized patches above the core-mantle boundary.

  9. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.

    Science.gov (United States)

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo

    2015-03-15

    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. ARSENIC ADSORPTION AND REDUCTION IN IRON-RICH SOILS NEARBY LANDFILLS IN NORTHWEST FLORIDA

    Directory of Open Access Journals (Sweden)

    Hongqin Xue

    2016-01-01

    Full Text Available In Florida, soils are mainly composed of Myakka, an acid soil characterized by a subsurface accumulation of humus and Al(III and Fe(III oxides. Downgradient of the landfills in Northwest Florida, elevated levels of iron and arsenic observations had been made in the groundwater from monitoring wells, which was attributed to the geomicrobial iron and arsenic reduction. There is thus an immediate research need for a better understanding of the reduction reactions that are responsible for the mobilization of iron and arsenic in the subsurface soil nearby landfills. Owing to the high Fe(III oxide content, As(V adsorption reactions with Fe(III oxide surfaces are particularly important, which may control As(V reduction. This research focused on the investigation of the biogeochemical processes of the subsurface soil nearby landfills of Northwest Florida. Arsenic and iron reduction was studied in batch reactors and quantified based on Monod-type microbial kinetic growth simulations. As(V adsorption in iron-rich Northwest Floridian soils was further investigated to explain the reduction observations. It was demonstrated in this research that solubilization of arsenic in the subsurface soil nearby landfills in Northwest Florida would likely occur under conditions favoring Fe(III dissimilatory reduction.

  11. Colour, compressive strength and workability of mortars with an iron rich sewage sludge ash

    DEFF Research Database (Denmark)

    Kappel, Annemette; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie

    2017-01-01

    This paper reports a study of the colour, compressive strength and workability of mortar when cement is partly replaced by sewage sludge ash (SSA). In the study, an iron rich SSA was dry milled into six different fractions. The results showed that the colour, compressive strength and workability...

  12. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    Science.gov (United States)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-06-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  13. Crystallization characteristics of iron-rich glass ceramics prepared from nickel slag and blast furnace slag

    Science.gov (United States)

    Wang, Zhong-Jie; Ni, Wen; Li, Ke-Qing; Huang, Xiao-Yan; Zhu, Li-Ping

    2011-08-01

    The crystallization process of iron-rich glass-ceramics prepared from the mixture of nickel slag (NS) and blast furnace slag (BFS) with a small amount of quartz sand was investigated. A modified melting method which was more energy-saving than the traditional methods was used to control the crystallization process. The results show that the iron-rich system has much lower melting temperature, glass transition temperature ( T g), and glass crystallization temperature ( T c), which can result in a further energy-saving process. The results also show that the system has a quick but controllable crystallization process with its peak crystallization temperature at 918°C. The crystallization of augite crystals begins from the edge of the sample and invades into the whole sample. The crystallization process can be completed in a few minutes. A distinct boundary between the crystallized part and the non-crystallized part exists during the process. In the non-crystallized part showing a black colour, some sphere-shaped augite crystals already exist in the glass matrix before samples are heated to T c. In the crystallized part showing a khaki colour, a compact structure is formed by augite crystals.

  14. Models of the earth's core

    Science.gov (United States)

    Stevenson, D. J.

    1981-01-01

    Combined inferences from seismology, high-pressure experiment and theory, geomagnetism, fluid dynamics, and current views of terrestrial planetary evolution lead to models of the earth's core with five basic properties. These are that core formation was contemporaneous with earth accretion; the core is not in chemical equilibrium with the mantle; the outer core is a fluid iron alloy containing significant quantities of lighter elements and is probably almost adiabatic and compositionally uniform; the more iron-rich inner solid core is a consequence of partial freezing of the outer core, and the energy release from this process sustains the earth's magnetic field; and the thermodynamic properties of the core are well constrained by the application of liquid-state theory to seismic and labroatory data.

  15. High contents of rare earth elements (REEs) in stream waters of a Cu-Pb-Zn mining area.

    Science.gov (United States)

    Protano, G; Riccobono, F

    2002-01-01

    Stream waters draining an old mining area present very high rare earth element (REE) contents, reaching 928 microg/l as the maximum total value (sigmaREE). The middle rare earth elements (MREEs) are usually enriched with respect to both the light (LREEs) and heavy (HREEs) elements of this group, producing a characteristic "roof-shaped" pattern of the shale Post-Archean Australian Shales-normalized concentrations. At the Fenice Capanne Mine (FCM), the most important base metal mine of the study area, the REE source coincides with the mine tailings, mostly the oldest ones composed of iron-rich materials. The geochemical history of the REEs released into Noni stream from wastes in the FCM area is strictly determined by the pH, which controls the REE speciation and in-stream processes. The formation of Al-rich and mainly Fe-rich flocs effectively scavenges the REEs, which are readily and drastically removed from the solution when the pH approaches neutrality. Leaching experiments performed on flocs and waste materials demonstrate that Fe-oxides/oxyhydroxides play a key role in the release of lanthanide elements into stream waters. The origin of the "roof-shaped" REE distribution pattern as well as the peculiar geochemical behavior of some lanthanide elements in the aqueous system are discussed.

  16. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates ( Iron Snow )

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S [Friedrich Schiller University Jena, Jena Germany; Chourey, Karuna [ORNL; REICHE, M [Friedrich Schiller University Jena, Jena Germany; Nietzsche, S [Friedrich Schiller University Jena, Jena Germany; Shah, Manesh B [ORNL; Hettich, Robert {Bob} L [ORNL; Kusel, K [Friedrich Schiller University Jena, Jena Germany

    2013-01-01

    Metaproteomics combined with total nucleic acid-based methods aided in deciphering the roles of microorganisms in the formation and transformation of iron-rich macroscopic aggregates (iron snow) formed in the redoxcline of an acidic lignite mine lake. Iron snow had high total bacterial 16S rRNA gene copies, with 2 x 109 copies g (dry wt)-1 in the acidic (pH 3.5) central lake basin and 4 x 1010 copies g (dry wt)-1 in the less acidic (pH 5.5) northern lake basin. Active microbial communities in the central basin were dominated by Alphaproteobacteria (36.6%) and Actinobacteria (21.4%), and by Betaproteobacteria (36.2%) in the northern basin. Microbial Fe-cycling appeared to be the dominant metabolism in the schwertmannite-rich iron snow, because cloning and qPCR assigned up to 61% of active bacteria as Fe-cycling bacteria (FeB). Metaproteomics revealed 70 unique proteins from central basin iron snow and 283 unique proteins from 43 genera from northern basin. Protein identification provided a glimpse into in situ processes, such as primary production, motility, metabolism of acidophilic FeB, and survival strategies of neutrophilic FeB. Expression of carboxysome shell proteins and RubisCO indicated active CO2 fixation by Fe(II) oxidizers. Flagellar proteins from heterotrophs indicated their activity to reach and attach surfaces. Gas vesicle proteins related to CO2-fixing Chlorobium suggested that microbes could influence iron snow sinking. We suggest that iron snow formed by autotrophs in the redoxcline acts as a microbial parachute, since it is colonized by motile heterotrophs during sinking which start to dissolve schwertmannite.

  17. Microstructural characterization of the geopolymer obtained from iron-rich metakaolin

    International Nuclear Information System (INIS)

    Vassalo, Erica Antunes de S.; Aguilar, Maria Teresa P.; Gumieri, Adriana Guerra

    2014-01-01

    Geopolymer is a material derived from precursors rich in SiO_2 and Al_2O_3, activated in an alkaline solution by means of a polymerization process. In this process, units of tetrahedral aluminosilicate structures are organized in repetitions that share oxygen. One of the precursors most commonly used to obtain geopolymer is metakaolin. Recent studies have reported iron enhancement in a partial replacement of the aluminium present in metakaolin. This paper presents the microstructural characterization and analysis of a geopolymer obtained by means of the activation of iron-rich metakaolin with sodium hydroxide at 12, 15 and 18 mol, both at room temperature and in an oven at 85±3°C. The geopolymers obtained were classified and analysed using X-ray fluorescence testing (EDX-720), a scanning electron microscope (SEM) and a Fourier transform infrared spectroscopy (FTIR). The results enabled an assessment of their physical-chemical and microstructural characteristics, as well as their reactive potential. (author)

  18. Phase composition of iron-rich R-Fe-Si (R=Dy, Ho, Er) alloys

    International Nuclear Information System (INIS)

    Ivanova, G.V.; Makarova, G.M.; Shcherbakova, E.V.; Belozerov, E.V.

    2005-01-01

    Phase composition is studied in iron-rich alloys of R-Fe-Si (R=Dy, Ho, Er). In the as-cast state R 2 (Fe, Si) 17 of type Th 2 Ni 17 and R(Fe, Si) 12 compounds are observed; in the alloys of rated composition of R(Fe 0.85 Si 0.15 ) 8.5 (R=Dy, Er) a compound R 2 (Fe, Si) 17 of Th 2 Zn 17 -type is revealed as well. The annealing at 1273 K results in formation of Dy 3 (Fe, Si) 29 and also the compounds with the presumed composition of Dy 4 (Fe, Si) 41 and Ho 4 (Fe, Si) 41 . As this takes place the alloys contain a transition structure as well that represents a set of small-sized areas with various type short-range order in mutual displacement of Fe-Fe(Si) dumpbell chains. The process of phase formation at 1273 K is faced with difficulties. Even the annealing for 1000 h does not result in the state of equilibrium [ru

  19. Dietary Intake of Iron Rich Food and Awareness on Iron Deficiency Anaemia among Female Students in Rawalpindi

    International Nuclear Information System (INIS)

    Siddiqui, F. R.; Usmani, A. Q.; Shahid, A.; Sadiq, T.

    2013-01-01

    Objective: To assess the awareness and intake of iron rich diet amongst college girls with a particular focus on the knowledge about the iron deficiency anaemia. Materials and Methods: A cross sectional survey was conducted in Government College for Women Rawalpindi, during September - December 2010. One hundred and thirty five students of intermediate level aged 17-19 years were selected through convenient sampling technique. The sample size was calculated by WHO-sample size calculator, keeping 95 percent Cl, p<0.05 statistically significant, anticipated population proportion of iron deficiency anaemia 35 percent and absolute precision at 0.08. Results: The awareness about iron rich diet and iron deficiency anaemia was satisfactory (86 percent), while poor intake of iron rich diet amongst adolescent college girls (52 percent) was found. About 65 percent of the participants had knowledge about the causes of iron deficiency anaemia (IDA); while 72 percent and 80 percent knew about the prevention and treatment of IDA respectively. Conclusions: Results indicate the gap between knowledge and practices about IDA; it highlights the need of an effective health promotional programme to raise awareness about the significance of iron in young female diet and to highlight the consequences when it is absent. (author)

  20. Diatoms in acid mine drainage and their role in the formation of iron-rich stromatolites

    Energy Technology Data Exchange (ETDEWEB)

    Brake, S.S.; Hasiotis, S.T.; Dannelly, H.K. [Indiana State University, Terre Haute, IN (United States)

    2004-08-01

    Adverse conditions in the acid mine drainage (AMD) system at the Green Valley mine, Indiana, limit diatom diversity to one species, Nitzschia tubicola. It is present in three distinct microbial consortia: Euglena mutabilis-dominated biofilm, diatom-dominated biofilm, and diatom-exclusive biofilm. E. mutabilis dominates the most extensive biofilm, with lesser numbers of N. tubicola, other eukaryotes, and bacteria. Diatom-dominated biofilm occurs as isolated patches containing N. tubicola with minor fungal hyphae, filamentous algae, E. mutabilis, and bacteria. Diatom-exclusive biofilm is rare, composed entirely of N. tubicola. Diatom distribution is influenced by seasonal and intraseasonal changes in water temperature and chemistry. Diatoms are absent in winter due to cool water temperatures. In summer, isolated patchy communities are present due to warmer water temperatures. In 2001, the diatom community expanded its distribution following a major rainfall that temporarily diluted the effluent, creating hospitable conditions for diatom growth. After several weeks when effluent returned to preexisting conditions, the diatom biofilm retreated to isolated patches, and E. mutabilis biofilm flourished. Iron-rich stromatolites underlie the biofilms and consist of distinct laminae, recording spatial and temporal oscillations in physicochemical conditions and microbial activity. The stromatolites are composed of thin, wavy laminae with partially decayed E. mutabilis biofilm, representing microbial activity and iron precipitation under normal AMD conditions. Alternating with the wavy layers are thicker, porous, spongelike laminae composed of iron precipitated on and incorporated into radiating colonies of diatoms. These layers indicate episodic changes in water chemistry, allowing diatoms to temporarily dominate the system.

  1. Factors influencing As(V) stabilization in the mine soils amended with iron-rich materials.

    Science.gov (United States)

    Kim, Mijin; Kim, Juhee; Kim, Minhee; Kim, Yong-Seong; Nam, Seung Mo; Moon, Deok Hyun; Hyun, Seunghun

    2017-09-04

    Chemical stability of As(V) in amended mine-impacted soils was assessed according to functions of incubation period (0, 1, 2, 4, and 6 months), amendment dose (2.5 and 5%), and application timing (0 and 3rd month). Six soils contaminated with 26-209 mg kg -1 of As(V) were collected from two abandoned mine sites and were treated with two alkaline iron-rich materials (mine discharge sludge (MS) and steel-making slag (SS)). Seventeen to 23% of As(V) in soils was labile. After each designated time, As(V) stability was assessed by the labile fractions determined with sequential extraction procedures (F1-F5). Over 6 months, a reduction (26.9-70.4%) of the two labile fractions (F1 and F2) and a quantitative increase (7.4-29.9%) of As(V) in F3 were observed (r 2  = 0.956). Two recalcitrant fractions (F4 and F5) remained unchanged. Temporal change of As(V) stability in a sample was well described by the two-domain model (k fast , k slow , and F fast ). The stabilization (%) correlated well with the fast-stabilizing domain (F fast ), clay content (%), and Fe oxide content (mg kg -1 ), but correlated poorly with kinetic rate constants (k fast and k slow ). Until the 3rd month, the 2.5%-MS amended sample resulted in lower As(V) stabilization (25-40%) compared to the 5% sample (50-60%). However, the second 2.5% MS addition on the 2.5% sample upon the lapse of the 3rd month led to a substantial reduction (up to 38%) of labile As(V) fraction in the following 4th and 6th months. As a result, an additional 15-25% of As(V) stability was obtained when splitting the amendment dose into 3-month intervals. In conclusion, the As(V) stabilization by Fe-rich amendment is time-dependent and its efficacy can be improved by optimizing the amendment dose and its timing.

  2. Groundwater mixing at fracture intersections triggers massive iron-rich microbial mats

    Science.gov (United States)

    Bochet, O.; Le Borgne, T.; Bethencourt, L.; Aquilina, L.; Dufresne, A.; Pédrot, M.; Farasin, J.; Abbott, B. W.; Labasque, T.; Chatton, E.; Lavenant, N.; Petton, C.

    2017-12-01

    While most freshwater on Earth resides and flows in groundwater systems, these deep subsurface environments are often assumed to have little biogeochemical activity compared to surface environments. Here we report a massive microbial mat of iron-oxidizing bacteria, flourishing 60 meters below the surface, far below the mixing zone where most microbial activity is believed to occur. The abundance of microtubular structures in the mat hinted at the prevalence of of Leptothrix ochracea, but metagenomic analysis revealed a diverse consortium of iron-oxidizing bacteria dominated by unknown members of the Gallionellaceae family. This deep biogeochemical hot spot formed at the intersection of bedrock fractures, which maintain redox gradients by mixing water with different residence times and chemical compositions. Using measured fracture properties and hydrological conditions we developed a quantitative model to simulate the reactive zone where such deep hot spots could occur. While seasonal fluctuations are generally thought to decrease with depth, we found that meter-scale changes in water table level moved the depth of the reactive zone hundreds of meters because the microaerophilic threshold for ironoxidizers is highly sensitive to changes in mixing rates at fracture intersections. These results demonstrate that dynamic microbial communities can be sustained deep below the surface in bedrock fractures. Given the ubiquity of fractures at multiple scales in Earth's subsurface, such deep hot spots may strongly influence global biogeochemical cycles.

  3. Litterfall dynamics in a iron-rich rock outcrop complex in the southeastern portion of the Iron Quadrangle of Brazil

    Directory of Open Access Journals (Sweden)

    Eduardo André Ribeiro Valim

    2013-06-01

    Full Text Available Ecosystems on cangas (duricrust present considerable heterogeneity of habitats due to microtopographic variations, soil accumulation and a variety of plant functional groups. Therefore, spatial and temporal ecosystem processes such as litterfall are to be expected to be large, and the absence of a level of productivity represents all the facets of iron-rich landscapes. We investigated litterfall in a iron-rich rock complex in the Iron Quadrangle of Brazil, with habitats formed on different evolutionary stages of the soil, resulting in a gradient of biomass, canopy cover and community structure. The measurements were made in open field areas, dominated by herb-shrub vegetation and interspersed with islands of dense vegetation in which there were individual trees, as well as in areas of semideciduous forest. The litterfall, especially that of leaf litter, followed the gradient of woody cover and was approximately two times greater in the forest formation. However, the spatial and temporal variations in deposition were greatest in the herb-shrub areas and least in the semideciduous forest area, intermediate values being obtained for the tree island areas. The peaks in litterfall also varied among habitats, occurring in some periods of the rainy season and during the transition from rainy to dry in the herb-shrub and tree island areas, whereas they occurred at the end of the dry season in the semideciduous forest area. The results show significant differences in the patterns of litterfall among different physiognomies within the same iron-rich rock complex, indicating the need for expanded studies, focusing on the flow of matter and energy in such environments.

  4. Four-branched compounds coupled Si and iron-rich intermetallics in near eutectic Al-Si alloys

    International Nuclear Information System (INIS)

    Wu, Yuying; Liu, Xiangfa; Jiang, Binggang; Bian, Xiufang

    2007-01-01

    Many four-branched compounds coupled Si and iron-rich intermetallics were observed in near eutectic Al-Si alloy modified with Al-P master alloy. Such four-branched compounds have never been reported before, but in our case it seems to be commonly observed. In this work the growth characterization of the four-branched compounds are scrutinized with a JXA-8800 electron microprobe (EPMA). More deep study of the formation of four-branched compounds is performed by SEM and TEM analysis. The characterization of the four-branched compounds is that of a primary silicon in the center with four iron-rich intermetallics around. Experimental results also show that the precipitation of primary silicon is the key factor for the formation of four-branched compounds. And WHS-theory explains the growth mechanism of the four-branched compounds. In detail, subsequent twinning within the primary silicon provides four-fold coordination sites on the surface, and then the α-Al(Fe,Mn)-Si phase nucleates on the surface of the primary silicon

  5. High Latitude Dust in the Earth System

    Science.gov (United States)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; hide

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  6. Monazite upgradation and production of high pure rare earths

    International Nuclear Information System (INIS)

    Asnani, C.K.; Mohanty, D.; Kumar, S.S.

    2014-01-01

    Rare earth extraction from monazite and further processing of mixed rare earth chlorides for producing individual high pure rare earths involves a complex flowsheet based on solvent extraction process. Apart from involving multiple extractions, scrubbing and stripping operations, the flowsheet requires optimization of critical parameters such as solvent molarity, solvent saponification level and recycling of product solutions as reflux to ensure preferential upload of required rare earths to generate high purity product. This paper tracks monazite flow from the raw sand feed through to the monazite product and its processing to generate rare earths of internationally acceptable quality

  7. Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area.

    Science.gov (United States)

    Burkhardt, Eva-Maria; Akob, Denise M; Bischoff, Sebastian; Sitte, Jana; Kostka, Joel E; Banerjee, Dipanjan; Scheinost, Andreas C; Küsel, Kirsten

    2010-01-01

    Understanding the dynamics of metals and radionuclides in soil environments is necessary for evaluating risks to pristine sites. An iron-rich creek soil of a former uranium-mining district (Ronneburg, Germany) showed high porewater concentrations of heavy metals and radionuclides. Thus, this study aims to (i) evaluate metal dynamics during terminal electron accepting processes (TEAPs) and (ii) characterize active microbial populations in biostimulated soil microcosms using a stable isotope probing (SIP) approach. In biostimulated soil slurries, concentrations of soluble Co, Ni, Zn, As, and unexpectedly U increased during Fe(III)-reduction. This suggests that there was a release of sorbed metals and As during reductive dissolution of Fe(III)-oxides. Subsequent sulfate-reduction was concurrent with a decrease of U, Co, Ni, and Zn concentrations. The relative contribution of U(IV) in the solid phase changed from 18.5 to 88.7% after incubation. The active Fe(III)-reducing population was dominated by delta-Proteobacteria (Geobacter) in (13)C-ethanol amended microcosms. A more diverse community was present in (13)C-lactate amended microcosms including taxa related to Acidobacteria, Firmicutes, delta-Proteobacteria, and beta-Proteobacteria. Our results suggested that biostimulated Fe(III)-reducing communities facilitated the release of metals including U to groundwater which is in contrast to other studies.

  8. Performance assessment of laboratory and field-scale multi-step passive treatment of iron-rich acid mine drainage for design improvement.

    Science.gov (United States)

    Rakotonimaro, Tsiverihasina V; Neculita, Carmen Mihaela; Bussière, Bruno; Genty, Thomas; Zagury, Gérald J

    2018-04-17

    Multi-step passive systems for the treatment of iron-rich acid mine drainage (Fe-rich AMD) perform satisfactorily at the laboratory scale. However, their field-scale application has revealed dissimilarities in performance, particularly with respect to hydraulic parameters. In this study, the assessment of factors potentially responsible for the variations in performance of laboratory and field-scale multi-step systems was undertaken. Three laboratory multi-step treatment scenarios, involving a combination of dispersed alkaline substrate (DAS) units, anoxic dolomitic drains, and passive biochemical reactors (PBRs), were set up in 10.7-L columns. The field-scale treatment consisted of two PBRs separated by a wood ash (WA) reactor. The parameters identified as possibly influencing the performances of the laboratory and field-scale experiments were the following: AMD chemistry (electrical conductivity and Fe and SO 4 2- concentrations), flow rate (Q), and saturated hydraulic conductivity (k sat ). Based on these findings, the design of an efficient passive multi-step treatment system is suggested to consider the following: (1) Fe pretreatment, using materials with high k sat and low HRT. If a PBR is to be used, the Fe load should be PBR/DAS filled with a mixture with at least 20% of neutralizing agent; (3) include Q and k sat (> 10 -3  cm/s) in the long-term prediction. Finally, mesocosm testing is strongly recommended prior to construction of full-scale systems for the treatment of Fe-rich AMD.

  9. A high-orbit collimating infrared earth simulator

    International Nuclear Information System (INIS)

    Zhang Guoyu; Jiang Huilin; Fang Yang; Yu Huadong; Xu Xiping; Wang, Lingyun; Liu Xuli; Huang Lan; Yue Shixin; Peng Hui

    2007-01-01

    The earth simulator is the most important testing equipment ground-based for the infrared earth sensor, and it is also a key component in the satellite controlling system. for three orbit heights 18000Km, 35786Km and 42000Km, in this paper we adopt a project of collimation and replaceable earth diaphragm and develop a high orbit collimation earth simulator. This simulator can afford three angles 15.19 0 , 17.46 0 and 30.42 0 , resulting simulating the earth on the ground which can be seen in out space by the satellite. In this paper we introduce the components, integer structure, and the earth's field angles testing method of the earth simulator in detail. Germanium collimation lens is the most important component in the earth simulator. According to the optical configuration parameter of Germanium collimation lens, we find the location and size of the earth diaphragm and the hot earth by theoretical analyses and optics calculation, which offer foundation of design in the study of the earth simulator. The earth angle is the index to scale the precision of earth simulator. We test the three angles by experiment and the results indicate that three angles errors are all less than ±0.05 0

  10. Senior High School Earth Sciences and Marine Sciences.

    Science.gov (United States)

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  11. Magnetism and Hyperfine Parameters in Iron Rich Gd_2Fe_{17-x}Si_x Intermetallics

    Science.gov (United States)

    Nouri, K.; Bartoli, T.; Chrobak, A.; Moscovici, J.; Bessais, L.

    2018-04-01

    Gd_2Fe_{17-x}Si_x (x = 0.25 , 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral Th_2Zn_{17} -type structure (space group R\\bar{3}m ). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that Gd_2Fe_{17-x}Si_x exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of R-R, M-M and R-M (R—rare earth, M—transition metal) have been determined from M(T) magnetization curves based on the mean field theory calculation. The magnetic entropy change Δ S_M and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of {T}_C and in an applied field of 1.56 T, Δ S_M reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner-Seitz volume and the isomer-shift evolution of each specific site 6c, 9d, 18f, and 18h of the R\\bar{3} m structure. For all Si concentrations, the magnitude of the hyperfine fields are {H_HF}{6c} > {H_HF}{9d} > {H_HF}{18f} > {H_HF}{18h} . The mean hyperfine field decreases with the Si content.

  12. Matrix effects for calcium and potassium K-X-rays, in fenugreek plants grown in iron rich soils

    International Nuclear Information System (INIS)

    Deep, Kanan; Rao, Preeti; Bansal, Himani; Mittal, Raj

    2014-01-01

    The present work comprises the matrix effects study of the plant system (plant and soil) for macronutrients Ca and K with elevated levels of iron in the soil. The earlier derived matrix effect terms from fundamental relations of intensities of analyte and substrate elements with basic atomic and experimental setup parameters had led to iterative determination of enhanced elements rather than avoiding their enhancement. The relations also facilitated the evaluations of absorption for close Z interfering constituents (like Ca and K) in samples of a lot of particular category with interpolation of matrix terms with elemental amounts. The process has already been employed successfully for potato, radish, rice and maize plants. On similar lines, the observed prominent change in interpolation parameters for the plants in the present experiment serves as a tool to check the toxicity/contamination of the growing medium. - Highlights: • Matrix effects for Ca and K in Fenugreek plant and its soil with elevated iron level. • Fenugreek plants grown in iron rich soil and treated with K/Ca fertilizers. • The matrix terms correlated to analyte and enhancer element amounts. • Interpolation of matrix terms with elemental amounts points to Fe toxicity of soil

  13. Bringing Earth Magnetism Research into the High School Physics Classroom

    Science.gov (United States)

    Smirnov, A. V.; Bluth, G.; Engel, E.; Kurpier, K.; Foucher, M. S.; Anderson, K. L.

    2015-12-01

    We present our work in progress from an NSF CAREER project that aims to integrate paleomagnetic research and secondary school physics education. The research project is aimed at quantifying the strength and geometry of the Precambrian geomagnetic field. Investigation of the geomagnetic field behavior is crucial for understanding the mechanisms of field generation, and the development of the Earth's atmosphere and biosphere, and can serve as a focus for connecting high-level Earth science research with a standard physics curriculum. High school science teachers have participated in each summer field and research component of the project, gaining field and laboratory research experience, sets of rock and mineral samples, and classroom-tested laboratory magnetism activities for secondary school physics and earth science courses. We report on three field seasons of teacher field experiences and two years of classroom testing of paleomagnetic research materials merged into physics instruction on magnetism. Students were surveyed before and after dedicated instruction for both perceptions and attitude towards earth science in general, then more specifically on earth history and earth magnetism. Students were also surveyed before and after instruction on major earth system and magnetic concepts and processes, particularly as they relate to paleomagnetic research. Most students surveyed had a strongly positive viewpoint towards the study of Earth history and the importance of studying Earth Sciences in general, but were significantly less drawn towards more specific topics such as mineralogy and magnetism. Students demonstrated understanding of Earth model and the basics of magnetism, as well as the general timing of life, atmospheric development, and magnetic field development. However, detailed knowledge such as the magnetic dynamo, how the magnetic field has changed over time, and connections between earth magnetism and the development of an atmosphere remained largely

  14. Reactivity of iron-rich phyllosilicates with uranium and chromium through redox transition zones

    International Nuclear Information System (INIS)

    Burgos, William D.

    2016-01-01

    This project performed thermodynamic, kinetic, and mineral structural studies on the reactivity of phyllosilicate Fe(II/III) with metal-reducing bacteria, and with two important poly-valent DOE contaminants (chromium and uranium) that show high mobility in their oxidized state. We focused on Fe-bearing phyllosilicates because these are important components of the reactive, fines fraction of Hanford, Oak Ridge, and Idaho National Laboratory sediments. Iron-bearing phyllosilicates strongly influence the redox state and mobility of Cr and U because of their limited hydraulic conductivity, high specific surface area, and redox reactivity. This was a collaborative project between Penn State (W.D. Burgos - PI), Miami University (H. Dong - Co-PI), and Argonne National Laboratory (K. Kemner and M. Boyanov - Co-PIs). Penn State and Miami University were funded together but separately from ANL. This report summarizes research findings and publications produced by Penn State and Miami University.

  15. Reactivity of iron-rich phyllosilicates with uranium and chromium through redox transition zones

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, William D. [Pennsylvania State Univ., University Park, PA (United States)

    2016-09-01

    This project performed thermodynamic, kinetic, and mineral structural studies on the reactivity of phyllosilicate Fe(II/III) with metal-reducing bacteria, and with two important poly-valent DOE contaminants (chromium and uranium) that show high mobility in their oxidized state. We focused on Fe-bearing phyllosilicates because these are important components of the reactive, fines fraction of Hanford, Oak Ridge, and Idaho National Laboratory sediments. Iron-bearing phyllosilicates strongly influence the redox state and mobility of Cr and U because of their limited hydraulic conductivity, high specific surface area, and redox reactivity. This was a collaborative project between Penn State (W.D. Burgos – PI), Miami University (H. Dong – Co-PI), and Argonne National Laboratory (K. Kemner and M. Boyanov – Co-PIs). Penn State and Miami University were funded together but separately from ANL. This report summarizes research findings and publications produced by Penn State and Miami University.

  16. Biogeochemistry of an iron-rich hypersaline microbial mat (Camargue, France).

    Science.gov (United States)

    Wieland, A; Zopfi, J; Benthien, M; Kühl, M

    2005-01-01

    In situ microsensor measurements were combined with biogeochemical methods to determine oxygen, sulfur, and carbon cycling in microbial mats growing in a solar saltern (Salin-de-Giraud, France). Sulfate reduction rates closely followed the daily temperature changes and were highest during the day at 25 degrees C and lowest during the night at 11 degrees C, most probably fueled by direct substrate interactions between cyanobacteria and sulfate-reducing bacteria. Sulfate reduction was the major mineralization process during the night and the contribution of aerobic respiration to nighttime DIC production decreased. This decrease of aerobic respiration led to an increasing contribution of sulfide (and iron) oxidation to nighttime O2 consumption. A peak of elemental sulfur in a layer of high sulfate reduction at low sulfide concentration underneath the oxic zone indicated anoxygenic photosynthesis and/or sulfide oxidation by iron, which strongly contributed to sulfide consumption. We found a significant internal carbon cycling in the mat, and sulfate reduction directly supplied DIC for photosynthesis. The mats were characterized by a high iron content of 56 micromol Fe cm(-3), and iron cycling strongly controlled the sulfur cycle in the mat. This included sulfide precipitation resulting in high FeS contents with depth, and reactions of iron oxides with sulfide, especially after sunset, leading to a pronounced gap between oxygen and sulfide gradients and an unusual persistence of a pH peak in the uppermost mat layer until midnight.

  17. Replacing critical rare earth materials in high energy density magnets

    Science.gov (United States)

    McCallum, R. William

    2012-02-01

    High energy density permanent magnets are crucial to the design of internal permanent magnet motors (IPM) for hybride and electric vehicles and direct drive wind generators. Current motor designs use rare earth permanent magnets which easily meet the performance goals, however, the rising concerns over cost and foreign control of the current supply of rare earth resources has motivated a search for non-rare earth based permanent magnets alloys with performance metrics which allow the design of permanent magnet motors and generators without rare earth magnets. This talk will discuss the state of non-rare-earth permanent magnets and efforts to both improve the current materials and find new materials. These efforts combine first principles calculations and meso-scale magnetic modeling with advance characterization and synthesis techniques in order to advance the state of the art in non rare earth permanent magnets. The use of genetic algorithms in first principle structural calculations, combinatorial synthesis in the experimental search for materials, atom probe microscopy to characterize grain boundaries on the atomic level, and other state of the art techniques will be discussed. In addition the possibility of replacing critical rare earth elements with the most abundant rare earth Ce will be discussed.

  18. Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system.

    Science.gov (United States)

    Akerman, N H; Price, R E; Pichler, T; Amend, J P

    2011-09-01

    The hydrothermally influenced sediments of Tutum Bay, Ambitle Island, Papua New Guinea, are ideal for investigating the chemolithotrophic activities of micro-organisms involved in arsenic cycling because hydrothermal vents there expel fluids with arsenite (As(III)) concentrations as high as 950 μg L(-1) . These hot (99 °C), slightly acidic (pH ~6), chemically reduced, shallow-sea vent fluids mix with colder, oxidized seawater to create steep gradients in temperature, pH, and concentrations of As, N, Fe, and S redox species. Near the vents, iron oxyhydroxides precipitate with up to 6.2 wt% arsenate (As(V)). Here, chemical analyses of sediment porewaters from 10 sites along a 300-m transect were combined with standard Gibbs energies to evaluate the energy yields (-ΔG(r)) from 19 potential chemolithotrophic metabolisms, including As(V) reduction, As(III) oxidation, Fe(III) reduction, and Fe(II) oxidation reactions. The 19 reactions yielded 2-94 kJ mol(-1) e(-) , with aerobic oxidation of sulphide and arsenite the two most exergonic reactions. Although anaerobic As(V) reduction and Fe(III) reduction were among the least exergonic reactions investigated, they are still potential net metabolisms. Gibbs energies of the arsenic redox reactions generally correlate linearly with pH, increasing with increasing pH for As(III) oxidation and decreasing with increasing pH for As(V) reduction. The calculated exergonic energy yields suggest that micro-organisms could exploit diverse energy sources in Tutum Bay, and examples of micro-organisms known to use these chemolithotrophic metabolic strategies are discussed. Energy modeling of redox reactions can help target sampling sites for future microbial collection and cultivation studies. © 2011 Blackwell Publishing Ltd.

  19. The Paleo-environmental significance of the iron-formations and iron-rich mudstones of the Mesoarchean Witwatersrand-Mozaan Basin, South Africa

    OpenAIRE

    2009-01-01

    M.Sc. The Mesoarchean Witwatersrand and Pongola Supergroups of South Africa are the oldest, well preserved supracratonic successions worldwide. Various banded iron formation (BIF) and iron-rich mudstone units occur within the West Rand Group of the Witwatersrand Supergroup and the Mozaan Group of the Pongola Supergroup. A granular iron formation (GIF) occurs in a single unit in the Nconga Formation of the Mozaan Group. The Witwatersrand Supergroup and Mozaan Group have been lithostratigrap...

  20. Rare earth magnets with high energy products

    International Nuclear Information System (INIS)

    Hirosawa, S.; Kaneko, Y.

    1998-01-01

    High energy-products exceeding 430 kj/m 3 (54 MGOe) have been realized on anisotropic permanent magnets based on the Nd 2 Fe 14 B phase, recently. To produce extremely high-energy-product permanent magnets, special processes have been designed in order to realize the minimum oxygen content, the maximum volume fraction of the hard magnetic Nd 2 Fe 14 B phase, the highest orientation of the easy axis of magnetization, and small and homogeneous crystalline grain sizes in the finished magnets. For the powder metallurgical process, special techniques such as low-oxygen fine powder processing and magnetic alignment using pulsed magnetic fields have been developed. It has been shown that a good control of both homogeneity of distribution of constituent phases and the narrowness of the size distribution in the starting powder have great influences on the magnetic energy products. It is emphasized that the recently developed techniques are applicable in a large-scale production, meaning that extremely high-energy-product magnets are available on commercial basis. (orig.)

  1. Enhancing GIS Capabilities for High Resolution Earth Science Grids

    Science.gov (United States)

    Koziol, B. W.; Oehmke, R.; Li, P.; O'Kuinghttons, R.; Theurich, G.; DeLuca, C.

    2017-12-01

    Applications for high performance GIS will continue to increase as Earth system models pursue more realistic representations of Earth system processes. Finer spatial resolution model input and output, unstructured or irregular modeling grids, data assimilation, and regional coordinate systems present novel challenges for GIS frameworks operating in the Earth system modeling domain. This presentation provides an overview of two GIS-driven applications that combine high performance software with big geospatial datasets to produce value-added tools for the modeling and geoscientific community. First, a large-scale interpolation experiment using National Hydrography Dataset (NHD) catchments, a high resolution rectilinear CONUS grid, and the Earth System Modeling Framework's (ESMF) conservative interpolation capability will be described. ESMF is a parallel, high-performance software toolkit that provides capabilities (e.g. interpolation) for building and coupling Earth science applications. ESMF is developed primarily by the NOAA Environmental Software Infrastructure and Interoperability (NESII) group. The purpose of this experiment was to test and demonstrate the utility of high performance scientific software in traditional GIS domains. Special attention will be paid to the nuanced requirements for dealing with high resolution, unstructured grids in scientific data formats. Second, a chunked interpolation application using ESMF and OpenClimateGIS (OCGIS) will demonstrate how spatial subsetting can virtually remove computing resource ceilings for very high spatial resolution interpolation operations. OCGIS is a NESII-developed Python software package designed for the geospatial manipulation of high-dimensional scientific datasets. An overview of the data processing workflow, why a chunked approach is required, and how the application could be adapted to meet operational requirements will be discussed here. In addition, we'll provide a general overview of OCGIS

  2. Incorporating Earth Science into Other High School Science Classes

    Science.gov (United States)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  3. Sustainability of the effects of medicinal iron and iron rich food supplementation on haemoglobin, intelligence quotient and growth of school aged girls

    Directory of Open Access Journals (Sweden)

    Monika Jain

    2014-12-01

    Full Text Available Anaemia in school aged girls is an important but neglected issue. Since iron supplementation programmes have had little reported success in reducing anaemia, interest is turning to food based approaches that have higher potential for achieving far reaching benefits. The purpose of the study was to observe sustainability of the effect of iron and food supplementation on haemoglobin (Hb, intelligence quotient (IQ and growth of the subjects. At baseline, estimation of haemoglobin (Hb, red cell indices, serum iron, total iron binding capacity, serum transferrin saturation and serum ferritin was done. IQ, weight and height were measured using standard procedures. Anaemic subjectswere divided into three groups, viz., (i twice weekly supplementation of iron folic acid syrup (53 mg iron/week; (ii daily supplementation of 4 niger seed and defatted soyaflour biscuits plus 2 lemons (45 mg iron/week and (iii control. Non anaemic group(NAC was not intervened. Endline data was collected after 120 days. Follow up for Hb, IQ, weight and height was done 4 months after cessation of supplementation. The prevalence of anaemia was 77% in the study population; 46% subjects had mild anaemia and 32% had moderate anaemia. Iron status was lower in anaemic subjects (p<0.001.Iron supplementation was more effective in raising Hb and building iron stores than iron rich food supplementation. Iron supplementation improved IQ but did not bring about catch up of anaemics to non anaemics. Iron rich food supplementation was better than medicinal iron in promoting growth in anaemic girls. The impact of iron rich food supplementation on Hb, IQ and growth sustained for 4 months while that of medicinal iron did not. Effects of food supplementation are sustainable for 4 months, therefore, this strategy holds more potential to control anaemia, in school aged girls.

  4. An accelerating high-latitude jet in Earth's core

    OpenAIRE

    Livermore, PW; Hollerbach, R; Finlay, CC

    2017-01-01

    Observations of the change in Earth's magnetic field—the secular variation—provide information about the motion of liquid metal within the core that is responsible for the magnetic field's generation. High-resolution observations from the European Space Agency's Swarm satellite mission show intense field change at high latitude, localized in a distinctive circular daisy-chain configuration centred on the north geographic pole. Here we show that this feature can be explained by a localized, no...

  5. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications

    Science.gov (United States)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.

    2000-01-01

    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  6. Moessbauer and XRD Comparative Study of Host Rock and Iron Rich Mineral Samples from Paz del Rio Iron Ore Mineral Mine in Colombia

    International Nuclear Information System (INIS)

    Fajardo, M.; Perez Alcazar, G. A.; Moreira, A. M.; Speziali, N. L.

    2004-01-01

    A comparative study between the host rock and the iron rich mineral samples from the Paz del Rio iron ore mineral mine in Colombia was performed using X-ray diffraction and Moessbauer spectroscopy. Diffraction results of the iron rich mineral sample show that goethite, hematite, quartz, kaolinite and siderite are the main phases, and that a small amount of illite is also present. By Moessbauer spectroscopy at room temperature (RT) the presence of all the above mentioned phases was detected except quartz as well as an additional presence of small amount of biotite. The goethite, which appears as four sextets with hyperfine fields of 33.5, 30.5, 27.5 and 18.5 T, respectively, is the majority phase. This result shows the different grades of formation of this oxyhydroxide. The Moessbauer spectrum of this sample at 80 K presents the same phases obtained at RT without any superparamagnetic effect. In this case the goethite appears as two sextets. Diffraction results of the host rock sample show a large amount of quartz and kaolinite and small amounts of illite and biotite, whereas by Moessbauer spectroscopy illite, kaolinite and biotite were detected.

  7. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  8. Comparison of Freshmen's Cognitive Frame about 'Crisis of the Earth' upon Taking the Earth Science 1 in High School

    Science.gov (United States)

    Chung, Duk Ho; Park, Seon Ok

    2016-04-01

    The purpose of this study is to demonstrate if freshmen's cognitive frame about 'Crisis of the Earth' upon taking the Earth science 1I in high school reflects the school curriculum. The data was collected from 67 freshmen who'd graduated high school in formal education. They expressed 'Crisis of the Earth' as a painting with explanation and then we extracted units of meaning from paintings, respectively. We analyzed the words and frame using the Semantic Network Analysis. The result is as follows; First, as every participant forms the cognitive frame for the crisis of the Earth, it is shown that they connect each part which that composes the global environment and realize it as the changing relation with interaction. Secondly, forming a cognitive frame regarding crisis of the Earth, both groups connect it with human endeavor. Especially, it seems that the group of participants who finished Earth Science 1 fully reflects the course of the formal education. It is necessary to make the students recognize it from a universal point of view, not only from the Earth. Also, much effort is required in order to enlighten about the appropriateness regarding problem-solving of the Earth and expand their mind as time changes. Keywords : Earth Science 1, cognitive frame, crisis of the earth, semantic network analysis

  9. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  10. HfO2 - rare earth oxide systems in the region with high content of rare earth oxide

    International Nuclear Information System (INIS)

    Shevchenko, A.V.; Lopato, L.M.

    1982-01-01

    Using the methods of annealing and hardenings (10 2 -10 4 deg/s cooling rate) and differential thermal analysis elements of state diagrams of HfO 2 - rare earth oxide (rare earths-La, Pr, Nd, Sm, Gd, Tb, Dy, Y, Er, Yb, Lu, Sc) systems from 1800 deg C up to melting in the range of 60-100 mol% rare earth oxide concentration were constructed. Regularities of HfQ 2 addition effect on high-temperature polymorphic transformations of rare earth oxides were studied. Results of investigation were discussed from viewpoint of crystal chemistry

  11. The hydro- and multi-isotope geochemistry of iron-rich ground waters emerging at the southern Baltic Sea coast line

    Science.gov (United States)

    Lipka, Marko; Wu, Zijun; Escher, Peter; Struck, Ulrich; Dellwig, Olaf; Schafmeister, Maria; Böttcher*, Michael E.

    2013-04-01

    Iron-rich groundwater springs emerging at the shore zone of the southern Baltic Sea (BS; Site Meschendorf) were examined on a seasonal base for a period of about two years. Besides major, minor, and trace elements, stable isotopes of water (H-2, O-18), dissolved inorganic carbon (DIC; C-13), and sulfate (S-34) were analyzed. The stream bed sediment was extracted for the geochemistry of the newly formed precipitates and further characterized via SEM-EDAX. Subsequently, the hydrogeochemical results were subjected to a thermodynamic analysis via the PHREEQC speciation model. The springs emerge from small pits (about 60 cm diameter; up to 15cm depth). Surrounding sediments are sandy with gravels found at depth and corresponding high permeabilities. The positions of different springs on the shore zone were stable during the investigation period while the shape of the pits and the stream beds may vary due to wind- and wave-driven forces. Selected measurements of spring yield discharges close to 10 L/min. The H-2 and O-18 contents of the spring waters indicate the ground water to originate from relatively young mixed meteoric waters. The hydrochemistry of the springs was similar and showed some variability in between which indicates that the genetic processes for the ground water before reaching the surface may slightly differ. The springs are characterized by dissolved Ca, Mg, Na, DIC and sulfate, mainly reflecting the interaction with soils and bedrocks in the recharge area that is dominated by marly till. The oxygen-free ground water is rich in Fe, P, and DIC. Iron and dissolved sulfate originate from the oxidation of pyrite, as further confirmed by the 34-S signature of sulfate. The carbon isotope signature of DIC indicates a mixture of biogenic CO2 from the soil zone with some water-rock interaction with carbonate minerals. The streams flow towards the BS and, in contact with the atmosphere, outgas carbon dioxide and takes up oxygen. Upon CO2-degassing, C-12 is

  12. Application of iron-rich natural clays in Camlica, Turkey for boron sorption from water and its determination by fluorimetric-azomethine-H method

    International Nuclear Information System (INIS)

    Seyhan, Serap; Seki, Yoldas; Yurdakoc, Mueruevvet; Merdivan, Melek

    2007-01-01

    In this study, iron-rich natural Camlica Bentonites, CB1 and CB2, were used for the sorption of boron in water samples. Boron was determined by newly progressed fluorimetric azomethine-H method. The optimum conditions found using factorial designs are pH 10, 45 deg. C, 0.250 g of clay and 20 mL of sample volume. It was found that 180 min is enough time for the equilibrium state to be reached in boron adsorption. At these conditions, boron sorption percentage was 80% for CB1 and 30% for CB2. The adsorption isotherms are well described by linear Freundlich model. Various geothermal waters in our country were also studied for boron sorption

  13. Iron and cell death in Parkinson's disease: a nuclear microscopic study into iron-rich granules in the parkinsonian substantia nigra of primate models

    Energy Technology Data Exchange (ETDEWEB)

    Thong, P.S.P.; Watt, F. E-mail: phywattf@nus.edu.sg; Ponraj, D.; Leong, S.K.; He, Y.; Lee, T.K.Y

    1999-09-02

    Parkinson's disease is a degenerative brain disease characterised by a loss of cells in the substantia nigra (SN) region of the brain and accompanying biochemical changes such as inhibition of mitochondrial function, increased iron concentrations and decreased glutathione levels in the parkinsonian SN. Though the aetiology of the disease is still unknown, the observed biochemical changes point to the involvement of oxidative stress. In particular, iron is suspected to play a role by promoting free radical production, leading to oxidative stress and cell death. The increase in iron in the parkinsonian SN has been confirmed by several research groups, both in human post-mortem brains and in brain tissue from parkinsonian animal models. However, the question remains as to whether the observed increase in iron is a cause or a consequence of the SN cell death process. Our previous study using unilaterally 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-lesioned monkeys in a time sequence experiment has shown that the increase in bulk iron concentrations follow rather than precede dopaminergic cell death. However, changes in the localised iron concentrations, which may play a more direct role in SN cell death, may not be reflected at the bulk level. Indeed, we have observed iron-rich granules in parkinsonian SNs. From this time sequence study into the iron content of iron-rich granules in the SNs of an untreated control and unilaterally MPTP-lesioned parkinsonian models, we present the following observations: (1) Iron-rich granules are found in both control and parkinsonian SNs and are variable in size and iron content in any one model. (2) These iron-rich granules may be associated with neuromelanin granules found in the SN and are known to accumulate transition metal ions such as iron. (3) The early onset of bulk SN cell loss (35%) was accompanied by a significant elevation of iron in granules found in the MPTP-injected SN compared to the contra-lateral SN

  14. Rare-earth-metal nitridophosphates through high-pressure metathesis

    International Nuclear Information System (INIS)

    Kloss, Simon David; Schnick, Wolfgang

    2015-01-01

    Developing a synthetic method to target an broad spectrum of unknown phases can lead to fascinating discoveries. The preparation of the first rare-earth-metal nitridophosphate LiNdP_4N_8 is reported. High-pressure solid-state metathesis between LiPN_2 and NdF_3 was employed to yield a highly crystalline product. The in situ formed LiF is believed to act both as the thermodynamic driving force and as a flux to aiding single-crystal formation in dimensions suitable for crystal structure analysis. Magnetic properties stemming from Nd"3"+ ions were measured by SQUID magnetometry. LiNdP_4N_8 serves as a model system for the exploration of rare-earth-metal nitridophosphates that may even be expanded to transition metals. High-pressure metathesis enables the systematic study of these uncharted regions of nitride-based materials with unprecedented properties. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. High purity neodymium acetate from mixed rare earth carbonates

    International Nuclear Information System (INIS)

    Queiroz, Carlos A. da Silva; Rocha, Soraya M. Rizzo da; Vasconcellos, Mari E. de; Lobo, Raquel M.; Seneda, Jose A.; Pedreira, Walter dos R.

    2011-01-01

    A simple and economical chemical process for obtaining high purity neodymium acetate is discussed. The raw material in the form rare earth carbonate is produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography technique with a strong cationic resin, proper to water treatment, and without the use of retention ions was used for the fractionating of the rare earth elements (REE). In this way, it was possible to obtain 99.9% pure Nd 2 O 3 in yields greater than or equal 80%, with the elution of the REE using ammonium salt of ethylenediaminetetraacetic acid (EDTA) solution in pH controlled. The complex of EDTA-neodymium was transformed into neodymium oxide, which was subsequently dissolved in acetic acid to obtain the neodymium acetates. Molecular absorption spectrophotometry was used to monitor the neodymium content during the process and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the neodymium acetates. The typical neodymium acetates obtained contain the followings contaminants in μg g -1 : Sc(5.1); Y (0.9); La (1.0); Ce (6.1); Pr (34,4); Sm (12.8); Eu (1.1); Gd (15.4); Tb (29.3); Dy (5.2), Ho(7.4); Er (14.6); Tm (0.3); Yb (2.5); Lu (1.0). The high purity neodymium acetates obtained from this procedure have been applied, replacing the imported product, in research and development area on rare earth catalysts. (author)

  16. Microbial Diversity in Surface Iron-Rich Aqueous Environments: Implications for Seeking Signs of Life on Mars

    Science.gov (United States)

    Brown, I. I.; Allen, C. C.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Garrison, D. H.; McKay, D. S.

    2010-01-01

    The success of selecting future landing sites on Mars to discover extinct and/or extant extraterrestrial life is dependent on the correct approximation of available knowledge about terrestrial paleogeochemistry and life evolution to Martian (paleo) geology and geochemistry. It is well known that both Earth and Mars are Fe rich. This widespread occurrence suggests that Fe may have played a key role in early life forms, where it probably served as a key constituent in early prosthetic moieties in many proteins of ancient microbes on Earth and likely Mars. The second critical idea is the premise that Life on Mars could most likely have developed when Mars experienced tectonic activity [1] which dramatically decreased around 1 bin years after Martian creation. After that Martian life could have gone extinct or hibernated in the deep subsurface, which would be expensive to reach in contrast to the successful work of Martian surface rovers. Here we analyze the diversity of microbes in several terrestrial Fe rich surface environments in conjunction with the phylogeny and molecular timing of emergence of those microbes on Earth. Anticipated results should help evaluate future landing sites on Mars in searches for biosignatures.

  17. High purity samarium oxide from mixed rare earth carbonates

    International Nuclear Information System (INIS)

    Queiroz, Carlos A. da S.; Seneda, Jose A.; Vasconcellos, Mari E. de; Pedreira Filho, Walter dos R.

    2013-01-01

    A simple and economical chemical process for the production of highly pure samarium oxides is discussed. The raw material, which was used in the form of rare earth carbonates was produced industrially from the chemical treatment of Brazilian monazite. Ion exchange chromatography was performed using a strong cationic resin that is typically employed in water treatment processes to fractionate rare earth elements (REE) without the use of retention ions. Under these conditions, 99.9% pure Sm 2 O 3 was eluted using the ammonium salt of ethylenediaminetetraacetic acid (EDTA) at a controlled pH. The EDTA-samarium complex was separated from EDTA and then precipitated as oxalate and fired to samarium oxide. Molecular absorption spectrophotometry was used to monitor the samarium content during the proposed process, and sector field inductively coupled plasma mass spectrometry was used to certify the purity of the samarium oxide. Typical samarium oxide obtained from the proposed procedure contained the following contaminants in micrograms per gram: Sc (20.90); Y (11.80); La (8.4); Ce (4.3); Pr (2.5); Nd (5.1); Eu (94); Gd (114); Tb (3.6); Dy (2.5), Ho (2.3); Er (3.0); Tm (2.3); Yb (38,2); Lu (25.6). The high-purity samarium oxides produced in the present study can be used as an alternative to imported products in research and development applications. (author)

  18. High temperature heat pipe experiments in low earth orbit

    International Nuclear Information System (INIS)

    Woloshun, K.; Merrigan, M.A.; Sena, J.T.; Critchley, E.

    1993-01-01

    Although high temperature, liquid metal heat pipe radiators have become a standard component on most high power space power system designs, there is no experimental data on the operation of these heat pipes in a zero gravity or micro-gravity environment. Experiments to benchmark the transient and steady state performance of prototypical heat pipe space radiator elements are in preparation for testing in low earth orbit. It is anticipated that these heat pipes will be tested aborad the Space Shuttle in 1995. Three heat pipes will be tested in a cargo bay Get Away Special (GAS) canister. The heat pipes are SST/potassium, each with a different wick structure; homogeneous, arterial, and annular gap, the heat pipes have been designed, fabricated, and ground tested. In this paper, the heat pipe designs are specified, and transient and steady-state ground test data are presented

  19. Novel Solar Sail Mission Concepts for High-Latitude Earth and Lunar Observation

    NARCIS (Netherlands)

    Heiligers, M.J.; Parker, Jeffrey S.; Macdonald, Malcolm

    2016-01-01

    This paper proposes the use of solar sail periodic orbits in the Earth-Moon system for ob-servation of the high-latitudes of the Earth and Moon. At the Earth, the high-latitudes will be crucial in answering questions concerning global climate change, monitoring space weather events and ensuring

  20. High Resolution Global Electrical Conductivity Variations in the Earth's Mantle

    Science.gov (United States)

    Kelbert, A.; Sun, J.; Egbert, G. D.

    2013-12-01

    Electrical conductivity of the Earth's mantle is a valuable constraint on the water content and melting processes. In Kelbert et al. (2009), we obtained the first global inverse model of electrical conductivity in the mantle capable of providing constraints on the lateral variations in mantle water content. However, in doing so we had to compromise on the problem complexity by using the historically very primitive ionospheric and magnetospheric source assumptions. In particular, possible model contamination by the auroral current systems had greatly restricted our use of available data. We have now addressed this problem by inverting for the external sources along with the electrical conductivity variations. In this study, we still focus primarily on long period data that are dominated by quasi-zonal source fields. The improved understanding of the ionospheric sources allows us to invert the magnetic fields directly, without a correction for the source and/or the use of transfer functions. It allows us to extend the period range of available data to 1.2 days - 102 days, achieving better sensitivity to the upper mantle and transition zone structures. Finally, once the source effects in the data are accounted for, a much larger subset of observatories may be used in the electrical conductivity inversion. Here, we use full magnetic fields at 207 geomagnetic observatories, which include mid-latitude, equatorial and high latitude data. Observatory hourly means from the years 1958-2010 are employed. The improved quality and spatial distribution of the data set, as well as the high resolution modeling and inversion using degree and order 40 spherical harmonics mapped to a 2x2 degree lateral grid, all contribute to the much improved resolution of our models, representing a conceptual step forward in global electromagnetic sounding. We present a fully three-dimensional, global electrical conductivity model of the Earth's mantle as inferred from ground geomagnetic

  1. High-latitude dust in the Earth system

    Science.gov (United States)

    Bullard, Joanna E; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; NcKenna Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80–100 Tg yr−1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.

  2. Connecting Earth observation to high-throughput biodiversity data

    DEFF Research Database (Denmark)

    Bush, Alex; Sollmann, Rahel; Wilting, Andreas

    2017-01-01

    Understandably, given the fast pace of biodiversity loss, there is much interest in using Earth observation technology to track biodiversity, ecosystem functions and ecosystem services. However, because most biodiversity is invisible to Earth observation, indicators based on Earth observation could...... observation data. This approach is achievable now, offering efficient and near-real-time monitoring of management impacts on biodiversity and its functions and services....

  3. An accelerating high-latitude jet in Earth's core

    Science.gov (United States)

    Livermore, P. W.; Finlay, C. C.; Hollerbach, R.

    2017-12-01

    Observations of the change in Earth's magnetic field, the secular variation, provide information on the motion of liquid metal within the core that is responsible for its generation. The very latest high-resolution observations from ESA's Swarm satellite mission show intense field change at high-latitude localised in a distinctive circular daisy-chain configuration centred on the north geographic pole. Here we explain this feature with a localised, nonaxisymmetric, westwards jet of 420 km width on the tangent cylinder, the cylinder of fluid within the core that is aligned with the rotation axis and tangent to the solid inner core. We find that the jet has increased in magnitude by a factor of three over the period 2000-2016 to about 40 km/yr, and is now much stronger than typical large-scale flows inferred for the core. The current accelerating phase may be a part of a longer term fluctuation of the jet causing both eastwards and westwards movement of magnetic features over historical periods, and may contribute to recent changes in torsional wave activity and the rotation direction of the inner core.

  4. High pressure behaviour of heavy rare earth antimonides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Soni, Pooja; Srivastava, Vipul; Sanyal, S.P.

    2008-01-01

    We have investigated theoretically the high-pressure structural phase transition and cohesive properties of two heavy rare earth mono anyimonides (LnSb; Ln = Dy and Lu) by using two body interionic potential with necessary modifications to include the effect of Coulomb screening by the delocalized 4f electrons of the RE ion. The peculiar properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band. The calculated compression curves and the values of high-pressure behaviour have been discussed and compared with the experimental results. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to CsCl (B 2 ) phase at 23.6 GPa and 25.4 GPa respectively. At phase transition the % volume collapse for both the compounds are little higher than the measured ones. The NaCl phase possesses lower energy than CsCl phase and stable at ambient pressure. The bulk moduli of LnSb compounds are obtained from the P-V curve fitted by the Birch equation of state. We also calculated the Ln-Ln distance as a function of pressure. (author)

  5. Description of highly perturbed bands in rare earth nuclei

    International Nuclear Information System (INIS)

    Joshi, P.C.; Sood, P.C.

    1976-01-01

    Recently some highly perturbed positive parity bands have been populated in odd-mass rare earth nuclei. The energy spacings and sometimes even the spin sequences are drastically different from the usual strong coupling rotational model picture. The levels belonging to 'odd and even' I+1/2 are found to make separate groupings. The levels belonging to odd values of I+1/2 are seen to be very much favoured in comparison to the levels for which I+1/2 is even. In some cases only the favoured levels have been identified. These bands have been studied in the frame-work of rotation aligned coupling scheme in which the odd neutron in the unique parity orbital (in this case the isub(13/2) orbital) is strongly decoupled from the body fixed symmetry axis by the Coriolis force so as to make the projection of its angular momentum α on the rotation axis approximately a good quantum number. A description of the energy levels is suggested by assigning the quantum number α-j to the favoured levels and α-j-1 to the unfavoured levels. The intraband transitions of the favoured and unfavoured bands are examined in comparison with those in the adjacent ground state bands in even-even nuclei. (author)

  6. Virginia Earth Science Collaborative: Developing Highly Qualified Teachers

    Science.gov (United States)

    Cothron, J.

    2007-12-01

    A collaborative of nine institutes of higher education and non-profits and seventy-one school divisions developed and implemented courses that will enable teachers to acquire an Add-On Earth Science endorsement and to improve their skills in teaching Earth Science. For the Earth Science Endorsement, the five courses and associated credits are Physical Geology (4), Geology of Virginia (4), Oceanography (4), Astronomy (3) and Meteorology (3). The courses include rigorous academic content, research-based instructional strategies, laboratory experiences, and intense field experiences. In addition, courses were offered on integrating new technologies into the earth sciences, developing virtual field trips, and teaching special education students. To date, 39 courses have been offered statewide, with over 560 teachers participating. Teachers showed increased conceptual understanding of earth science topics as measured by pre-post tests. Other outcomes include a project website, a collaborative of over 60 IHE and K-12 educators, pilot instruments, and a statewide committee focused on policy in the earth sciences.

  7. Minerals Masquerading As Enzymes: Abiotic Oxidation Of Soil Organic Matter In An Iron-Rich Humid Tropical Forest Soil

    Science.gov (United States)

    Hall, S. J.; Silver, W. L.

    2010-12-01

    Oxidative reactions play an important role in decomposing soil organic matter fractions that resist hydrolytic degradation, and fundamentally affect the cycling of recalcitrant soil carbon across ecosystems. Microbial extracellular oxidative enzymes (e.g. lignin peroxidases and laccases) have been assumed to provide a dominant role in catalyzing soil organic matter oxidation, while other potential oxidative mechanisms remain poorly explored. Here, we show that abiotic reactions mediated by the oxidation of ferrous iron (Fe(II)) could explain high potential oxidation rates in humid tropical forest soils, which often contain high concentrations of Fe(II) and experience rapid redox fluctuations between anaerobic and aerobic conditions. These abiotic reactions could provide an additional mechanism to explain high rates of decomposition in these ecosystems, despite frequent oxygen deficits. We sampled humid tropical forest soils in Puerto Rico, USA from various topographic positions, ranging from well-drained ridges to riparian valleys that experience broad fluctuations in redox potential. We measured oxidative activity by adding the model humic compound L-DOPA to soil slurries, followed by colorimetric measurements of the supernatant solution over time. Dilute hydrogen peroxide was added to a subset of slurries to measure peroxidative activity. We found that oxidative and peroxidative activity correlated positively with soil Fe(II) concentrations, counter to prevailing theory that low redox potential should suppress oxidative enzymes. Boiling or autoclaving sub-samples of soil slurries to denature any enzymes present typically increased peroxidative activity and did not eliminate oxidative activity, further suggesting the importance of an abiotic mechanism. We found substantial differences in the oxidation products of the L-DOPA substrate generated by our soil slurries in comparison with oxidation products generated by a purified enzyme (mushroom tyrosinase

  8. Examining the Features of Earth Science Logical Reasoning and Authentic Scientific Inquiry Demonstrated in a High School Earth Science Curriculum: A Case Study

    Science.gov (United States)

    Park, Do-Yong; Park, Mira

    2013-01-01

    The purpose of this study was to investigate the inquiry features demonstrated in the inquiry tasks of a high school Earth Science curriculum. One of the most widely used curricula, Holt Earth Science, was chosen for this case study to examine how Earth Science logical reasoning and authentic scientific inquiry were related to one another and how…

  9. Deep-Earth Equilibration between Molten Iron and Solid Silicates

    Science.gov (United States)

    Brennan, M.; Zurkowski, C. C.; Chidester, B.; Campbell, A.

    2017-12-01

    Elemental partitioning between iron-rich metals and silicate minerals influences the properties of Earth's deep interior, and is ultimately responsible for the nature of the core-mantle boundary. These interactions between molten iron and solid silicates were influential during planetary accretion, and persist today between the mantle and liquid outer core. Here we report the results of diamond anvil cell experiments at lower mantle conditions (40 GPa, >2500 K) aimed at examining systems containing a mixture of metals (iron or Fe-16Si alloy) and silicates (peridotite). The experiments were conducted at pressure-temperature conditions above the metallic liquidus but below the silicate solidus, and the recovered samples were analyzed by FIB/SEM with EDS to record the compositions of the coexisting phases. Each sample formed a three-phase equilibrium between bridgmanite, Fe-rich metallic melt, and an oxide. In one experiment, using pure Fe, the quenched metal contained 6 weight percent O, and the coexisting oxide was ferropericlase. The second experiment, using Fe-Si alloy, was highly reducing; its metal contained 10 wt% Si, and the coexisting mineral was stishovite. The distinct mineralogies of the two experiments derived from their different starting metals. These results imply that metallic composition is an important factor in determining the products of mixed phase iron-silicate reactions. The properties of deep-Earth interfaces such as the core-mantle boundary could be strongly affected by their metallic components.

  10. Some aspects of ICP-AES analysis of high purity rare earths

    International Nuclear Information System (INIS)

    Murty, P.S.; Biswas, S.S.

    1991-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) is a technique capable of giving high sensitivity in trace elemental analysis. While the technique possesses high sensitivity, it lacks high selectivity. Selectivity is important where substances emitting complex spectra are to be analysed for trace elements. Rare earths emit highly complex spectra in a plasma source and the determination of adjacent rare earths in a high purity rare earth matrix, with high sensitivity, is not possible due to the inadequate selectivity of ICP-AES. One approach that has yielded reasonably good spectral selectivity in the high purity rare earth analysis by ICP-AES is by employing a combination of wavelength modulation techniques and high resolution echelle grating. However, it was found that by using a high resolution monochromator senstitivities either comparable to or better than those reported by the wavelength modulation technique could be obtained. (author). 2 refs., 2 figs., 2 tabs

  11. High coercivity rare earth-transition metal magnets

    International Nuclear Information System (INIS)

    Croat, J.J.

    1982-01-01

    Ferromagnetic compositions having intrinsic magnetic coercivities at room temperature of at least 1,000 Oersteds are formed by the controlled quenching of molten rare earth -transition metal alloys. Hard magnets may be inexpensively formed from the lower atomic weight lanthanide elements and iron. The preferable compositions lie within: at least one of Fe, Ni, Co (20 to 70 atomic percent); and at least one of Ce, Pr, Na, Sm, Eu, Tb, Dy, Ho, Er, Tm, Y (80 to 30 atomic percent). (author)

  12. Gamma rays made on Earth have unexpectedly high energies

    International Nuclear Information System (INIS)

    Miller, Johanna

    2011-01-01

    Terrestrial gamma-ray flashes (TGFs) are the source of the highest-energy nonanthropogenic photons produced on Earth. Associated with thunder-storms - and in fact, with individual lightning discharges - they are presumed to be the bremsstrahlung produced when relativistic electrons, accelerated by the storms' strong electric fields, collide with air molecules some 10-20 km above sea level. The TGFs last up to a few milliseconds and contain photons with energies on the order of MeV.

  13. High coercivity rare earth-transition metal magnets

    International Nuclear Information System (INIS)

    Croat, J.J.

    1982-01-01

    Ferromagnetic compositions having intrinsic magnetic coercivities at room temperature of at least 1,000 Oersteds are formed by the controlled quenching of molten rare earth-transition metal alloys. Hard magnets may be inexpensively formed from the lower atomic weight lanthanide elements and iron. The preferable compositions lie within: at least one of Fe, Ni, Co; 20 - 70 atomic percent: at least one of Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Y; 80 - 30 atomic percent. (author)

  14. The Treatment of Geological Time & the History of Life on Earth in High School Biology Textbooks

    Science.gov (United States)

    Summers, Gerald; Decker, Todd; Barrow, Lloyd

    2007-01-01

    In spite of the importance of geological time in evolutionary biology, misconceptions about historical events in the history of life on Earth are common. Glenn (1990) has documented a decline from 1960 to 1989 in the amount of space devoted to the history of life in high school earth science textbooks, but we are aware of no similar study in…

  15. High performance thermal stress analysis on the earth simulator

    International Nuclear Information System (INIS)

    Noriyuki, Kushida; Hiroshi, Okuda; Genki, Yagawa

    2003-01-01

    In this study, the thermal stress finite element analysis code optimized for the earth simulator was developed. A processor node of which of the earth simulator is the 8-way vector processor, and each processor can communicate using the message passing interface. Thus, there are two ways to parallelize the finite element method on the earth simulator. The first method is to assign one processor for one sub-domain, and the second method is to assign one node (=8 processors) for one sub-domain considering the shared memory type parallelization. Considering that the preconditioned conjugate gradient (PCG) method, which is one of the suitable linear equation solvers for the large-scale parallel finite element methods, shows the better convergence behavior if the number of domains is the smaller, we have determined to employ PCG and the hybrid parallelization, which is based on the shared and distributed memory type parallelization. It has been said that it is hard to obtain the good parallel or vector performance, since the finite element method is based on unstructured grids. In such situation, the reordering is inevitable to improve the computational performance [2]. In this study, we used three reordering methods, i.e. Reverse Cuthil-McKee (RCM), cyclic multicolor (CM) and diagonal jagged descending storage (DJDS)[3]. RCM provides the good convergence of the incomplete lower-upper (ILU) PCG, but causes the load imbalance. On the other hand, CM provides the good load balance, but worsens the convergence of ILU PCG if the vector length is so long. Therefore, we used the combined-method of RCM and CM. DJDS is the method to store the sparse matrices such that longer vector length can be obtained. For attaining the efficient inter-node parallelization, such partitioning methods as the recursive coordinate bisection (RCM) or MeTIS have been used. Computational performance of the practical large-scale engineering problems will be shown at the meeting. (author)

  16. The determination of minor amounts of rare earth elements in high purity earth oxides by HPLC/IDMS

    International Nuclear Information System (INIS)

    Stijfhoorn, D.E.; Stray, H.; Hjelmseth, H.

    1991-05-01

    Since the early seventies isotopic dilution mass spectrometry (IDMS) has been used at Institutt for energiteknikk, Kjeller, Norway for determination and certification of rare earth elements in high purity Y 2 O 3 . These lanthanides have, during the last few decades, become more widely used in highly specialized technology. High purity, quality 4 N (99.99%) or even 5 N materials are needed for phosphors, lasers, optical fibers, X-ray films, and in contrast fluids for magnetic resonance imaging (MRI). However, in a matrix constisting primarily of a single lanthanide, IDMS alone will not be effective due to isobaric interferences from the main elements or the mono-oxides formed in the ion source. On the other hand, high performance liquid chromatography (HPLC) may be used, but the detection limit will be in the order of 5 to 10 ppm/W. In this work a combination of HPLC and IDMS has been used to lower the detection limit to 1 ppm/W, where the sample is spiked before separation by HPLC, followed by IDMS analysis of the HPLC- fractions. In some cases the HPLC-process has to be repeated to remove the main element completly. Results are presented for Dy 2 O 3 and Nd 2 O 3 , but similar separating procedures can be applied for other rare earth oxides. 3 refs., 2 figs. 2 tabs

  17. Rare earth impurities in high purity lanthanum oxide determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Desai, H.B.; Parthasarathy, R.; Gangadharan, S.

    1992-01-01

    Individual rare earth impurities in high purity La 2 O 3 (≥99.9%) have been determined by NAA after pre-separation of the matrix (La). The separation is carried out on an anion exchanger (Dowex 1x8) using different mixtures of methanol/nitric acid as eluants. The rare earth elements from Dy to Lu are eluted quantitatively using a 10% 1M HNO 3 - 90% methanol mixture, while the light rare earths from Ce to Gd are eluted quantitatively using a 10% 0.05M HNO 3 - 90% methanol mixture. La, which is retained on the column, is eluted using 0.1M HNO 3 . The recoveries of the various rare earth elements have been checked using radiotracers and also by spiking the sample with known amount of elements, and the recoveries are found to be quantitative. Results obtained on a typical high purity lanthanum oxide are reported here. (author) 5 refs.; 1 fig

  18. Earth Pressure at rest of Søvind Marl – a highly overconsolidated Eocene clay

    DEFF Research Database (Denmark)

    Grønbech, Gitte Lyng; Ibsen, Lars Bo; Nielsen, Benjaminn Nordahl

    2016-01-01

    The present study evaluated earth pressure at rest, K0, in highly overconsolidated Eocene clay called Søvind Marl, which exhibits extremely high plasticity indices of up to 300%, a highly fissured structure, and preconsolidation stresses up to 6,800 kPa. Continuous Loading Oedometer (CLO) tests...

  19. Manifestations of the rotation and gravity of the Earth in high-energy physics experiments

    Science.gov (United States)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2016-08-01

    The inertial (due to rotation) and gravitational fields of the Earth affect the motion of an elementary particle and its spin dynamics. This influence is not negligible and should be taken into account in high-energy physics experiments. Earth's influence is manifest in perturbations in the particle motion, in an additional precession of the spin, and in a change of the constitutive tensor of the Maxwell electrodynamics. Bigger corrections are oscillatory, and their contributions average to zero. Other corrections due to the inhomogeneity of the inertial field are not oscillatory but they are very small and may be important only for the storage ring electric dipole moment experiments. Earth's gravity causes the Newton-like force, the reaction force provided by a focusing system, and additional torques acting on the spin. However, there are no observable indications of the electromagnetic effects due to Earth's gravity.

  20. High energy neutrinos to see inside the Earth

    International Nuclear Information System (INIS)

    Borriello, E.; De Lellis, G.; Mangano, G.

    2010-01-01

    The new chances offered by elementary particles as probes of the internal structure of our planet are briefly reviewed, by paying particular attention to the case of high energy neutrinos. In particular, the new results concerning the shadow of mountains on ν τ flux at Pierre Auger Observatory is briefly discussed, and moreover the possibility to use the tail of atmospheric neutrinos to probe the core/mantle transition region is just sketched. (author)

  1. High-field magnetization of dilute rare earths in yttrium

    DEFF Research Database (Denmark)

    Touborg, P.; Høg, J.; Cock, G. J.

    1974-01-01

    Magnetization measurements have been performed on single crystals of Y containing small amounts of Tb, Dy, or Er at 4.2 K in fields up to 295 × 105 A/m (370 kOe). Crystal-field and molecular-field parameters obtained from measurements of the initial susceptibility versus temperature give a satisf...... a satisfactory quantitative account of the high-field magnetization. This includes characteristic features due to the crossing and mixing of crystal-field levels....

  2. High resolution atomic spectra of rare earths : progress report

    International Nuclear Information System (INIS)

    Saksena, G.D.; Ahmad, S.A.

    1976-01-01

    High resolution studies of atomic spectra of neodymium and gadolinium are being carried out on a recording Fabry-Perot spectrometer. The present progress report concerns work done on new assignments as well as confirmation of recently assigned electronic configurations and evaluation of isotope shifts of energy levels which have been possible from the isotope shift data obtained for several transitions of NdI, NdII and GdI, GdII respectively. (author)

  3. High-pressure phase transitions of deep earth materials

    International Nuclear Information System (INIS)

    Hirose, Kei

    2009-01-01

    Recent developments in synchrotron XRD measurements combined with laser-heated diamond-anvil cell (LHDAC) techniques have enabled us to search for a novel phase transition at extremely high pressure and temperature. A phase transition from MgSiO 3 perovskite to post-perovskite was discovered through a drastic change in XRD patterns above 120 GPa and 2500 K, corresponding to the condition in the lowermost mantle (Murakami et al., 2004; Oganov and Ono, 2004). A pressure-induced phase transformation from ABO 3 -type perovskite to any denser structures was not known at that time. This new MgSiO 3 polymorph called post-perovskite has an orthorhombic symmetry (space group: Cmcm) with a sheet-stacking structure. The Mg site in post-perovskite is smaller than that in perovskite, which results in a volume reduction by 1.0-1.5% from perovskite structure. The electrical conductivity of post-perovskite is higher by three orders of magnitude than that of perovskite at similar pressure range (Ohta et al., 2008). This is likely due to a shorter Fe-Fe distance in post-perovskite structure, while conduction mechanism is yet to be further examined. Phase transition boundary between perovskite and post-perovskite has been determined in a wide temperature range up to 4400 K at 170 GPa (Tateno et al., 2008). Phase relations of Fe alloys have been also studied at core pressures (>135 GPa), although the generation of high temperature is more difficult at higher pressures. A new high-pressure B2 phase of B2 phase of FeS was recently discovered above 180 GPa (Sata et al., 2008). The Fe-Ni alloys have a wide pressure-temperature stability field of fcc phase at the core pressure range, depending on the Ni content (Kuwayama et al., 2008). (author)

  4. Role of light satellites in the high-resolution Earth observation domain

    Science.gov (United States)

    Fishman, Moshe

    1999-12-01

    Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.

  5. High-temperature superconducting phase in rare earth alloys

    International Nuclear Information System (INIS)

    Vedyaev, A.V.; Molodykh, O.Eh.; Savchenko, M.A.; Stefanovich, A.V.

    1984-01-01

    A possibility of high-temperature superconducting phase existence in rare e arth alloys with aluminium: TbAl-NdAl is predicted. Such a phase is shown t o exist at t approximately 40 k, however its existence is possible only in a nar row temperature range and it might be metastable. A possibility of a supercondu cting phase occurrence in spin glass is studied. It is shown that the first kin d phase transition to superconducting state may first occur under definite condi tions in the system. But the phase in question will be a low-temperature one be cause of rather inefficient elctron-phonon interaction. Further temperature dec rease would lead to an appearance of magnetic order and to disappearance of the superconductivity

  6. Improving sensitivity of residual current transformers to high frequency earth fault currents

    Directory of Open Access Journals (Sweden)

    Czapp Stanislaw

    2017-09-01

    Full Text Available For protection against electric shock in low voltage systems residual current devices are commonly used. However, their proper operation can be interfered when high frequency earth fault current occurs. Serious hazard of electrocution exists then. In order to detect such a current, it is necessary to modify parameters of residual current devices, especially the operating point of their current transformer. The authors proposed the modification in the structure of residual current devices. This modification improves sensitivity of residual current devices when high frequency earth fault current occurs. The test of the modified residual current device proved that the authors’ proposition is appropriate.

  7. Energy spectrum of tau leptons induced by the high energy Earth-skimming neutrinos

    International Nuclear Information System (INIS)

    Tseng, J.-J.; Yeh, T.-W.; Lee, F.-F.; Lin, G.-L.; Athar, H.; Huang, M.A.

    2003-01-01

    We present a semianalytic calculation of the tau-lepton flux emerging from the Earth induced by incident high energy neutrinos interacting inside the Earth for 10 5 ≤E ν /GeV≤10 10 . We obtain results for the energy dependence of the tau-lepton flux coming from the Earth-skimming neutrinos, because of the neutrino-nucleon charged-current scattering as well as the resonant ν(bar sign) e e - scattering. We illustrate our results for several anticipated high energy astrophysical neutrino sources such as the active galactic nuclei, the gamma-ray bursts, and the Greisen-Zatsepin-Kuzmin neutrino fluxes. The tau-lepton fluxes resulting from rock-skimming and ocean-skimming neutrinos are compared. Such comparisons can render useful information about the spectral indices of incident neutrino fluxes

  8. High-performance technology for indexing of high volumes of Earth remote sensing data

    Science.gov (United States)

    Strotov, Valery V.; Taganov, Alexander I.; Kolesenkov, Aleksandr N.; Kostrov, Boris V.

    2017-10-01

    The present paper has suggested a technology for search, indexing, cataloging and distribution of aerospace images on the basis of geo-information approach, cluster and spectral analysis. It has considered information and algorithmic support of the system. Functional circuit of the system and structure of the geographical data base have been developed on the basis of the geographical online portal technology. Taking into account heterogeneity of information obtained from various sources it is reasonable to apply a geoinformation platform that allows analyzing space location of objects and territories and executing complex processing of information. Geoinformation platform is based on cartographic fundamentals with the uniform coordinate system, the geographical data base, a set of algorithms and program modules for execution of various tasks. The technology for adding by particular users and companies of images taken by means of professional and amateur devices and also processed by various software tools to the array system has been suggested. Complex usage of visual and instrumental approaches allows significantly expanding an application area of Earth remote sensing data. Development and implementation of new algorithms based on the complex usage of new methods for processing of structured and unstructured data of high volumes will increase periodicity and rate of data updating. The paper has shown that application of original algorithms for search, indexing and cataloging of aerospace images will provide an easy access to information spread by hundreds of suppliers and allow increasing an access rate to aerospace images up to 5 times in comparison with current analogues.

  9. Spin crossover and Mott—Hubbard transition under high pressure and high temperature in the low mantle of the Earth

    Science.gov (United States)

    Ovchinnikov, S. G.; Ovchinnikova, T. M.; Plotkin, V. V.; Dyad'kov, P. G.

    2015-11-01

    Effect of high pressure induced spin crossover on the magnetic, electronic and structural properties of the minerals forming the Earth's low mantle is discussed. The low temperature P, T phase diagram of ferropericlase has the quantum phase transition point Pc = 56 GPa at T = 0 confirmed recently by the synchrotron Mössbauer spectroscopy. The LDA+GTB calculated phase diagram describes the experimental data. Its extension to the high temperature resulted earlier in prediction of the metallic properties of the Earth's mantle at the depth 1400 km insulator transition and compare them with the experimental seismic and geomagnetic field data.

  10. The two bands model for the high temperature conductivity of the binary rare earth alloys

    International Nuclear Information System (INIS)

    Borgiel, W.

    1983-09-01

    The formula for the high temperature spin disorder resistivity for the concentrated Asub(1-x)Bsub(x)C alloys where A,B is an element of Rare Earth (RE) is determined on the basis of two bands model and the coherent potential approximation (CPA). The conductivity given by the 5d bands coming from the RE compounds has been taken into account

  11. Use of polysulfides of alkali and alkaline-earth metals to obtain highly dispersed sulfur

    International Nuclear Information System (INIS)

    Massalimov, I.A.; Vikhareva, I.N.; Kireeva, M.S.

    2008-01-01

    Possibilities of obtaining polysulfides of alkali and alkaline earth metals (M is Na, K, Ca, Sr, Ba) in aqueous solutions were considered. The composition of the polysulfides and their concentration in solutions were found. The efficiencies of application of highly dispersed sulfur, produced from calcium polysulfide, and colloid sulfur as a fungicide were compared [ru

  12. Assessing Earth and Environmental Science Enrollment Trends in Texas Public High Schools

    Science.gov (United States)

    Sanders, Joan G.

    2012-01-01

    Scope and Method of Study: This study assesses the status of Earth and environmental sciences education in Texas Public High Schools by analyzing enrollment proportions of 11th and 12th grade students in 607 Independent School Districts (ISD) for the 2010-2011 academic school year using a quantitative, non-experimental alpha research design. This…

  13. Precipitation regions on the Earth of high energy electrons, injected by a point source moving along a circular Earth orbit

    Science.gov (United States)

    Kolesnikov, E. K.; Klyushnikov, G. N.

    2018-05-01

    In the paper we continue the study of precipitation regions of high-energy charged particles, carried out by the authors since 2002. In contrast to previous papers, where a stationary source of electrons was considered, it is assumed that the source moves along a low circular near-earth orbit with a constant velocity. The orbit position is set by the inclination angle of the orbital plane to the equatorial plane and the longitude of the ascending node. The total number of injected electrons is determined by the source strength and the number of complete revolutions that the source makes along the circumference. Construction of precipitation regions is produced using the computational algorithm based on solving of the system of ordinary differential equations. The features of the precipitation regions structure for the dipole approximation of the geomagnetic field and the symmetrical arrangement of the orbit relative to the equator are noted. The dependencies of the precipitation regions on different orbital parametres such as the incline angle, the ascending node position and kinetic energy of injected particles have been considered.

  14. Multitemporal analysis of the change of earth covering; high basin Guatiquia River - Low Sector

    International Nuclear Information System (INIS)

    Prieto Gonzalez, Jose Luis

    1999-01-01

    One of the basic functions inside the environmental administration has been the record of the variables of the natural environment. The earth covering corresponds to one of the elements that to the registered being and analyzed, shows with more fidelity the evolution of the environment. At the present time, and from their creation in 1992, the project Guatiquia River - PRG that covers 90.000 approximately has. Located between the Cundinamarca and Meta Departments, it has looked for to obtain the necessary technical elements to achieve a sustainable handling in the area, for it, it intended to be ahead a study that allows to quantify and to analyze the changes of the earth covering, reason for which, it was ahead the present study: multitemporal analysis of the change of earth covering high basin of the Guatiquia River low sector, for a total surface of 13997.64 hectares (corresponding to 15.8% of the area of action of the Project Guatiquia River), and having as basic tools the remote perception and the geographical information systems, it was carried out the prosecution of the information of earth covering in the study area for the years 1993 and 1997 starting from which, were determined and analyzed the changes of earth covering, they were presented in cartographic documents to scale 1:25.000, corresponding to a detailed study

  15. Method for preparing high cure temperature rare earth iron compound magnetic material

    Science.gov (United States)

    Huang, Yuhong; Wei, Qiang; Zheng, Haixing

    2002-01-01

    Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

  16. Status of High Data Rate Intersatellite Laser Communication as an Enabler for Earth and Space Science

    Science.gov (United States)

    Heine, F.; Zech, H.; Motzigemba, M.

    2017-12-01

    Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.

  17. Existence of a component corotating with the earth in high-latitude disturbance magnetic fields

    Science.gov (United States)

    Suzuki, A.; Kim, J. S.; Sugiura, M.

    1982-01-01

    A study of the data from the high-latitude North American IMS network of magnetic stations suggests that there is a component in substorm perturbations that corotates with the earth. It is as yet not certain whether the existence of this component stems from the corotation of a part of the magnetospheric plasma involved in the substorm mechanism or if it is a 'phase change' resulting from the control of the substorm manifestations by the earth's main magnetic field which is not axially symmetric. There are other geophysical phenomena showing a persistence of longitudinal variations corotating with the earth. These phenomena are of significance for a better understanding of ionosphere-magnetosphere coupling.

  18. Complex demodulation in VLBI estimation of high frequency Earth rotation components

    Science.gov (United States)

    Böhm, S.; Brzeziński, A.; Schuh, H.

    2012-12-01

    The spectrum of high frequency Earth rotation variations contains strong harmonic signal components mainly excited by ocean tides along with much weaker non-harmonic fluctuations driven by irregular processes like the diurnal thermal tides in the atmosphere and oceans. In order to properly investigate non-harmonic phenomena a representation in time domain is inevitable. We present a method, operating in time domain, which is easily applicable within Earth rotation estimation from Very Long Baseline Interferometry (VLBI). It enables the determination of diurnal and subdiurnal variations, and is still effective with merely diurnal parameter sampling. The features of complex demodulation are used in an extended parameterization of polar motion and universal time which was implemented into a dedicated version of the Vienna VLBI Software VieVS. The functionality of the approach was evaluated by comparing amplitudes and phases of harmonic variations at tidal periods (diurnal/semidiurnal), derived from demodulated Earth rotation parameters (ERP), estimated from hourly resolved VLBI ERP time series and taken from a recently published VLBI ERP model to the terms of the conventional model for ocean tidal effects in Earth rotation recommended by the International Earth Rotation and Reference System Service (IERS). The three sets of tidal terms derived from VLBI observations extensively agree among each other within the three-sigma level of the demodulation approach, which is below 6 μas for polar motion and universal time. They also coincide in terms of differences to the IERS model, where significant deviations primarily for several major tidal terms are apparent. An additional spectral analysis of the as well estimated demodulated ERP series of the ter- and quarterdiurnal frequency bands did not reveal any significant signal structure. The complex demodulation applied in VLBI parameter estimation could be demonstrated a suitable procedure for the reliable reproduction of

  19. Advances in the hydrometallurgical separation techniques of high purity rare earth elements

    International Nuclear Information System (INIS)

    Vijayalakshmi, R.; Kain, V.

    2017-01-01

    Rare Earths are a series of 15 chemically similar elements that occur together in monazite mineral found in the beach sands of Kerala, Tamil Nadu and Orissa. The rare earth elements (REE) are becoming increasingly strategically important considering their essential role in permanent magnets such as, SmCo_5, Sm_2Co_1_7 and Nd_2Fe_1_4B, phosphors for LED screens and lamps, rechargeable nickel metal hydride batteries and catalysts and other green applications. The increasing popularity of hybrid and electric cars, wind turbines and compact fluorescent lamps is causing an increase in the demand and price of REE. The European Commission considers the REE as the most critical raw materials group, with the highest supply risk. According to the medium-term criticality matrix of the U.S. Department of Energy (DOE), the five most critical REE are neodymium (Nd), europium (Eu), terbium (Tb), dysprosium (Dy) and yttrium (Y). China is presently producing more than 90% of all rare earths, although they possess less than 405 of the proven reserves. Due to large and increasing domestic demands, China tightened its REE export quota from 2012 onwards. These export quotas caused serious problems for REE users outside of China. Fortunately India is blessed with large resources of rare earths in the form of monazite found in the beach sands of Kerala, Tamil Nadu and Orissa. Indian Rare Earths Limited at Aluva near Kochi produces mainly mixed rare earths chloride and till recent past exporting to USA, UK, France, Japan, etc. They have revived their rare earth separation plant to meet the in-house demands of the strategic, defense and nuclear industry. This paper discusses the recent advances made in hydrometallurgical separation techniques based on solvent extraction technique, ion-exchange resins, hollow fibre membrane extractor, solvent encapsulated polymeric beads, etc for the production of high purity rare earth elements from both primary (Monazite, xenotime) and secondary sources

  20. High-resolution nonresonant x-ray Raman scattering study on rare earth phosphate nanoparticles

    NARCIS (Netherlands)

    Huotari, Simo; Suljoti, Edlira; Sahle, Christoph J.; Raedel, Stephanie; Monaco, Giulio; de Groot, Frank M. F.

    2015-01-01

    We report high-resolution x-ray Raman scattering studies of high-order multipole spectra of rare earth 4d -> 4f excitations (the N-4,N-5 absorption edge) in nanoparticles of the phosphates LaPO4, CePO4, PrPO4, and NdPO4. We also present corresponding data for La 5p -> 5d excitations (the O-2,O-3

  1. Comparative study of rare earth hexaborides using high resolution angle-resolved photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Ramankutty, S.V., E-mail: s.v.ramankutty@uva.nl [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Jong, N. de; Huang, Y.K.; Zwartsenberg, B. [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Massee, F. [Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Bay, T.V. [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Golden, M.S., E-mail: m.s.golden@uva.nl [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Frantzeskakis, E., E-mail: e.frantzeskakis@uva.nl [Van der Waals-Zeeman Institute, Institute of Physics (IoP), University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

    2016-04-15

    Highlights: • ARPES electronic structure study of rare-earth (RE) hexaborides SmB{sub 6}, CeB{sub 6} and YbB{sub 6}. • Increasing RE valence Yb[II], Sm[II/III], Ce[III] increases d-band occupancy. • YbB{sub 6} and SmB{sub 6} posses 2D states at E{sub F}, whereas the Fermi surface of CeB{sub 6} is 3D. • ARPES, LEED and STM data prove structural relaxation of the SmB{sub 6}(001) surface. - Abstract: Strong electron correlations in rare earth hexaborides can give rise to a variety of interesting phenomena like ferromagnetism, Kondo hybridization, mixed valence, superconductivity and possibly topological characteristics. The theoretical prediction of topological properties in SmB{sub 6} and YbB{sub 6} has rekindled the scientific interest in the rare earth hexaborides, and high-resolution ARPES has been playing a major role in the debate. The electronic band structure of the hexaborides contains the key to understand the origin of the different phenomena observed, and much can be learned by comparing the experimental data from different rare earth hexaborides. We have performed high-resolution ARPES on the (001) surfaces of YbB{sub 6}, CeB{sub 6} and SmB{sub 6}. On the most basic level, the data show that the differences in the valence of the rare earth element are reflected in the experimental electronic band structure primarily as a rigid shift of the energy position of the metal 5d states with respect to the Fermi level. Although the overall shape of the d-derived Fermi surface contours remains the same, we report differences in the dimensionality of these states between the compounds studied. Moreover, the spectroscopic fingerprint of the 4f states also reveals considerable differences that are related to their coherence and the strength of the d–f hybridization. For the SmB{sub 6} case, we use ARPES in combination with STM imaging and electron diffraction to reveal time dependent changes in the structural symmetry of the highly debated SmB{sub 6

  2. Simulation of statistical γ-spectra of highly excited rare earth nuclei

    International Nuclear Information System (INIS)

    Schiller, A.; Munos, G.; Guttormsen, M.; Bergholt, L.; Melby, E.; Rekstad, J.; Siem, S.; Tveter, T.S.

    1997-05-01

    The statistical γ-spectra of highly excited even-even rare earth nuclei are simulated applying appropriate level density and strength function to a given nucleus. Hindrance effects due to K-conservation are taken into account. Simulations are compared to experimental data from the 163 Dy( 3 He,α) 162 Dy and 173 Yb( 3 He,α) 172 Yb reactions. The influence of the K quantum number at higher energies is discussed. 21 refs., 7 figs., 2 tabs

  3. Magnetostriction of some cubic rare earth-Co2 compounds in high magnetic fields

    International Nuclear Information System (INIS)

    Moral, A. del; Melville, D.

    1975-01-01

    Magnetostriction measurements have been carried out in the cubic Laves phase compounds DyCo 2 , HoCo 2 and ErCo 2 from 10 K to well above their respective Neel temperatures Tsub(N). Pulsed magnetic fields up to 15 T (150kOe) were applied. The observed magnetostrictions are very large (approximately 10 -3 ) being similar to those found in the RFe 2 compounds. The measurements confirm the extremely high anisotropy of these materials. At the highest fields the polycrystalline samples are still undergoing rotational magnetization processes. The expected values of the saturation magnetostriction at O K are similar in sign and magnitude to those found in the corresponding rare earth metals. This fact and the scaling of magnetostriction with rare earth sublattice magnetization indicates that the rare earth ion is the main source of the magnetostriction. The metamagnetic transition above Tsub(N) has been studied, the relation between critical field and temperature being nonlinear for HoCo 2 and ErCo 2 . The compounds are highly anisotropic above Tsub(N) and all the features indicate that the field-induced phases are likely to be ferrimagnetic. (author)

  4. Process for obtaining sintered conglomerates with a high density of rare earth oxides and actinides

    International Nuclear Information System (INIS)

    Pasto, A.E.

    1974-01-01

    The invention concerns a method to produce agglomerates of actinide and rare earth oxides possessing a cubic-monoclinic transformation in order to obtain high densities close to the theoretical density, and the articles produced by the method. The process is based on the use of a rare earth or actinide oxide, in particular Eu 2 O 3 , with a cubic-monoclinic phase transformation, the oxide being sintered by hot compression at a temperature 50 deg C to 100 deg C above the transformation temperature. The sintered agglomerates obtained can have a purity of at least 99.9% and a density of practically 100%. These agglomerates are suitable in particular for the formation of nuclear reactor control rods [fr

  5. High End Computing Technologies for Earth Science Applications: Trends, Challenges, and Innovations

    Science.gov (United States)

    Parks, John (Technical Monitor); Biswas, Rupak; Yan, Jerry C.; Brooks, Walter F.; Sterling, Thomas L.

    2003-01-01

    Earth science applications of the future will stress the capabilities of even the highest performance supercomputers in the areas of raw compute power, mass storage management, and software environments. These NASA mission critical problems demand usable multi-petaflops and exabyte-scale systems to fully realize their science goals. With an exciting vision of the technologies needed, NASA has established a comprehensive program of advanced research in computer architecture, software tools, and device technology to ensure that, in partnership with US industry, it can meet these demanding requirements with reliable, cost effective, and usable ultra-scale systems. NASA will exploit, explore, and influence emerging high end computing architectures and technologies to accelerate the next generation of engineering, operations, and discovery processes for NASA Enterprises. This article captures this vision and describes the concepts, accomplishments, and the potential payoff of the key thrusts that will help meet the computational challenges in Earth science applications.

  6. Cation exchange separation of 16 rare earth metals by microscale high-performance liquid chromatography

    International Nuclear Information System (INIS)

    Ishii, D.; Hirose, A.; Iwasaki, Y.

    1978-01-01

    The separation of rare earth metals has been studied with a microcolumn of 0.5 mm i.d. and 75 mm length, packed with TSK LS-212 high-performance cation exchange resin. A micro-feeder (Model MF-2, from Azumadenki Kogyo) was used to drive carrier and sample solutions through the ion exchange column and detection cell. By combining a 250 μl syringe and a 0.5 mm i.d. sampling tube the micro-feeder, 0.1-1.0 μl rare earth metals were separated within 38 min, using only 304 μl of 0.4M α-hydroxy-isobutyric acid solution adjusted to pH 3.1-6.0 with ammonia solution as gradient carrier solution. The gradient elution was successfully performed by applying a new technique developed for microscale liquid chromatography. (author)

  7. High frequency variations of Earth Rotation Parameters from GPS and GLONASS observations.

    Science.gov (United States)

    Wei, Erhu; Jin, Shuanggen; Wan, Lihua; Liu, Wenjie; Yang, Yali; Hu, Zhenghong

    2015-01-28

    The Earth's rotation undergoes changes with the influence of geophysical factors, such as Earth's surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of Earth Rotation Parameters (ERP) are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations) and their causes. In this paper, the hourly time series of Earth Rotation Parameters are estimated using Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas) in Polar Motion (PM) and 0.5 milli-seconds (ms) in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean tides. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean tide model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM) and hydrological angular momentum (HAM), which needs more detailed analysis with more geophysical data in the future.

  8. High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip

    NARCIS (Netherlands)

    Sefünç, Mustafa; Segerink, Franciscus B.; García Blanco, Sonia Maria

    2015-01-01

    Rare-earth ion doped KY(WO4)2 amplifiers are proposed to be a good candidate for many future applications by benefiting from the excellent gain characteristics of rare-earth ions, namely high bit rate amplification (

  9. Determination of rare earth elements in high purity rare earth oxides by liquid chromatography, thermionic mass spectrometry and combined liquid chromatography/thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Stijfhoorn, D.E.; Stray, H.; Hjelmseth, H.

    1993-01-01

    A high-performance liquid chromatographic (HPLC) method for the determination of rare earth elements in rocks has been modified and used for the determination of rare earth elements (REE) in high purity rare earth oxides. The detection limit was 1-1.5 ng or 2-3 mg/kg when a solution corresponding to 0.5 mg of the rare earth oxide was injected. The REE determination was also carried out by adding a mixture of selected REE isotopes to the sample and analysing the collected HPLC-fractions by mass spectrometry (MS) using a thermionic source. Since the matrix element was not collected, interference from this element during the mass spectrometric analysis was avoided. Detection limits as low as 0.5 mg/kg could then be obtained. Detection limits as low as 0.05 mg/kg were possible by MS without HPLC-pre-separation, but this approach could only be used for those elements that were not affected by the matrix. Commercial samples of high purity Nd 2 O 3 , Gd 2 O 3 and Dy 2 O 3 were analysed in this study, and a comparison of results obtained by HPLC, combined HPLC/MS and direct MS is presented. (Author)

  10. The influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel

    Science.gov (United States)

    Chu, Rensheng; Mu, Shukun; Liu, Jingang; Li, Zhanjun

    2017-09-01

    In the current paper, it is analyzed for the influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel. It is observed for the structure for different heat input of the coarse-grained area. It is finest for the coarse grain with the high heat input of 200 kJ / cm and the coarse grain area with 400 kJ / cm is the largest. The performance with the heat input of 200 kJ / cm for -20 °C V-shaped notch oscillatory power is better than the heat input of 400 kJ / cm. The grain structure is the ferrite and bainite for different holding time. The grain structure for 5s holding time has a grain size of 82.9 μm with heat input of 200 kJ/cm and grain size of 97.9 μm for 10s holding time. For the inclusions for HSLA steel with adding rare earth, they are Al2O3-CaS inclusions in the Al2O3-CaS-CaO ternary phase diagram. At the same time, it can not be found for low melting calcium aluminate inclusions compared to the inclusions for the HSLA steel without rare earth. Most of the size for the inclusions is between 1 ~ 10μm. The overall grain structure is smaller and the welding performance is more excellent for adding rare earth.

  11. Research on manufacturing aluminum - rare earth alloy with a high content of rare earth (> 20% RE) from total rare earth oxides by thermit reduction

    International Nuclear Information System (INIS)

    Ngo Trong Hiep; Dam Van Tien; Tran Duy Hai; Ngo Xuan Hung and Ly Thanh Vu

    2004-01-01

    In this report, several theoretical principles of thermit reduction method used for metal oxides to obtain metals, ferroalloys and ligatua with technical purity are presented. Manufacture of aluminum-rare earth alloys by thermit reduction is also described in the report. Data that are generalized based on thermo-kinetic calculation of the thermit reduction and selection of technological flow-sheet based on thermal effect will partly clarify research results in investigating typical features of the process and identify measures to reduce metal loss in discharged slags. (author)

  12. Comparison of high-energy trapped particle environments at the Earth and Jupiter.

    Science.gov (United States)

    Jun, Insoo; Garrett, Henry B

    2005-01-01

    The 'Van Allen belts' of the trapped energetic particles in the Earth's magnetosphere were discovered by the Explorer I satellite in 1958. In addition, in 1959, it was observed that UHF radio emissions from Jupiter probably had a similar source--the Jovian radiation belts. In this paper, the global characteristics of these two planets' trapped radiation environments and respective magnetospheres are compared and state-of-the-art models used to generate estimates of the high-energy electron (> or = 100 keV) and proton (> or = 1 MeV) populations--the dominant radiation particles in these environments. The models used are the AP8/AE8 series for the Earth and the Divine-Garrett/GIRE model for Jupiter. To illustrate the relative magnitude of radiation effects at each planet, radiation transport calculations were performed to compute the total ionising dose levels at the geosynchronous orbit for the Earth and at Europa (Jupiter's 4th largest moon) for Jupiter. The results show that the dose rates are -0.1 krad(Si) d(-1) at the geosynchronous orbit and -30 krad(Si) d((-1) at Europa for a 2.5 mm spherical shell aluminium shield--a factor of -300 between the two planets.

  13. Comparison of high-energy trapped particle environments at the earth and jupiter

    International Nuclear Information System (INIS)

    Jun, I.; Garrett, H. B.

    2005-01-01

    The 'Van Allen belts' of the trapped energetic particles in the Earth's magnetosphere were discovered by the Explorer I satellite in 1958. In addition, in 1959, it was observed that UHF radio emissions from Jupiter probably had a similar source - The Jovian radiation belts. In this paper, the global characteristics of these two planets' trapped radiation environments and respective magnetospheres are compared and state-of-the-art models used to generate estimates of the high-energy electron (≥100 keV) and proton ≥1 MeV) populations - The dominant radiation particles in these environments. The models used are the AP8/ AE8 series for the Earth and the Divine-Garrett/GIRE model for Jupiter. To illustrate the relative magnitude of radiation effects at each planet, radiation transport calculations were performed to compute the total ionising dose levels at the geosynchronous orbit for the Earth and at Europa (Jupiter's 4. largest moon) for Jupiter. The results show that the dose rates are ∼0.1 krad(Si) d -1 at the geosynchronous orbit and ∼30 krad(Si) d -1 at Europa for a 2.5 mm spherical shell aluminium shield - a factor of ∼300 between the two planets. (authors)

  14. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    Science.gov (United States)

    McCabe, Matthew F.; Houborg, Rasmus; Lucieer, Arko

    2016-10-01

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  15. High-resolution sensing for precision agriculture: from Earth-observing satellites to unmanned aerial vehicles

    KAUST Repository

    McCabe, Matthew

    2016-10-25

    With global population projected to approach 9 billion by 2050, it has been estimated that a 40% increase in cereal production will be required to satisfy the worlds growing nutritional demands. Any such increases in agricultural productivity are likely to occur within a system that has limited room for growth and in a world with a climate that is different from that of today. Fundamental to achieving food and water security, is the capacity to monitor the health and condition of agricultural systems. While space-Agency based satellites have provided the backbone for earth observation over the last few decades, many developments in the field of high-resolution earth observation have been advanced by the commercial sector. These advances relate not just to technological developments in the use of unmanned aerial vehicles (UAVs), but also the advent of nano-satellite constellations that offer a radical shift in the way earth observations are now being retrieved. Such technologies present opportunities for improving our description of the water, energy and carbon cycles. Efforts towards developing new observational techniques and interpretative frameworks are required to provide the tools and information needed to improve the management and security of agricultural and related sectors. These developments are one of the surest ways to better manage, protect and preserve national food and water resources. Here we review the capabilities of recently deployed satellite systems and UAVs and examine their potential for application in precision agriculture.

  16. Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit

    Science.gov (United States)

    Parker, Joel J. K.; Valdez, Jennifer E.; Bauer, Frank H.; Moreau, Michael C.

    2016-01-01

    GPS (Global Positioning System) Space Service Volume (SSV) signal environment is from 3,000-36,000 kilometers altitude. Current SSV specifications only capture performance provided by signals transmitted within 23.5(L1) or 26(L2-L5) off-nadir angle. Recent on-orbit data lessons learned show significant PNT (Positioning, Navigation and Timing) performance improvements when the full aggregate signal is used. Numerous military civil operational missions in High Geosynchronous Earth Orbit (HEOGEO) utilize the full signal to enhance vehicle PNT performance

  17. Highly fractionated rare-earth elements in ferromagnesian chondrules from the Felix (CO3) meteorite

    International Nuclear Information System (INIS)

    Misawa, Keiji; Nakamura, Noboru

    1988-01-01

    Here we describe two ferromagnesian chondrules from the Felix (Ornans-subtype) carbonaceous chondrite which carry a marker signature of REE (rare earth element) fractionation in the nebula. Both show positive Ce and Yb anomalies and one exhibits a light/heavy REE fractionation. On the basis of the REE characteristics of these chondrules, as well as those of the authors' work on Allende (CV) [N Geochim. Cosmochim. Acta. in press], we suggest that one of the precursor materials of chondrules in CO-CV carbonaceous chondrites is a high-temperature condensate from the nebular gas. (author)

  18. X-ray fluorescence analysis of high purity rare earth oxides for common trace rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Dixit, R.M.; Khanna, P.P.; Deshpande, S.S.; Machado, I.J.; Kapoor, S.K.

    1990-01-01

    Methods for the determination of individual trace common rare earth (RE) elements have been developed for fifteen RE oxide matrices viz. La 2 O 3 to Lu 2 O 3 and Y 2 O 3 . In general, for each matrix, two or three neighbouring elements on both sides of the matrix element are determined. The minimum determination limit (MDL) achieved is 0.002% for most of the elements. Special efforts were made to use a small amount of sample (as low as 400 mg) for the analysis by the use of double layer pellet technique and critical thickness studies. Practical experiences with 15 RE matrices, most of which are investigated for the first time, are discussed. Details of selection of instrumental parameters and analysis lines, precision and accuracy and preparation of samples and synthetic standards are given. Theoretical minimum detection limit (TMDL) for each analyte element is calculated in all the 15 matrices. (author). 50 tabs., 2 figs

  19. Viscosity measurements on metal melts at high pressure and viscosity calculations for the earth's core

    International Nuclear Information System (INIS)

    Mineev, Vladimir N; Funtikov, Aleksandr I

    2004-01-01

    A review is given of experimental and calculated data on the viscosity of iron-based melts on the melting curve. The interest in these data originates in the division of opinion on whether viscosity increases rather moderately or considerably in the high-pressure range. This disagreement is especially pronounced in the interpretation of the values of molten iron and its compounds in the environment of the earth's outer core. The conclusion on a substantial rise in viscosity mostly follows from the universal law, proposed by Brazhkin and Lyapin [1], of viscosity changing along the metal melting curve in the high-pressure range. The review analyzes available experimental and computational data, including the most recent ones. Data on viscosity of metals under shock wave compression in the megabar pressure range are also discussed. It is shown that data on viscosity of metal melts point to a small increase of viscosity on the melting curve. Specifics are discussed of the phase diagram of iron made more complex by the presence of several phase transitions and by the uncertainty in the position of the melting curve in the high-pressure range. Inaccuracies that arise in extrapolating the results of viscosity measurements to the pressure range corresponding to the earth's core environment are pointed out. (reviews of topical problems)

  20. A method for detection and location of high resistance earth faults

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, S; Lehtonen, M [VTT Energy, Espoo (Finland); Antila, E [ABB Transmit Oy (Finland)

    1998-08-01

    In the first part of this presentation, the theory of earth faults in unearthed and compensated power systems is briefly presented. The main factors affecting the high resistance fault detection are outlined and common practices for earth fault protection in present systems are summarized. The algorithms of the new method for high resistance fault detection and location are then presented. These are based on the change of neutral voltage and zero sequence currents, measured at the high voltage / medium voltage substation and also at the distribution line locations. The performance of the method is analyzed, and the possible error sources discussed. Among these are, for instance, switching actions, thunder storms and heavy snow fall. The feasibility of the method is then verified by an analysis based both on simulated data, which was derived using an EMTP-ATP simulator, and by real system data recorded during field tests at three substations. For the error source analysis, some real case data recorded during natural power system events, is also used

  1. NCI's High Performance Computing (HPC) and High Performance Data (HPD) Computing Platform for Environmental and Earth System Data Science

    Science.gov (United States)

    Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2015-04-01

    The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially

  2. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  3. High-latitude ocean ventilation and its role in Earth's climate transitions.

    Science.gov (United States)

    Naveira Garabato, Alberto C; MacGilchrist, Graeme A; Brown, Peter J; Evans, D Gwyn; Meijers, Andrew J S; Zika, Jan D

    2017-09-13

    The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Authors.

  4. High-pressure metallization of FeO and implications for the earth's core

    Science.gov (United States)

    Knittle, Elise; Jeanloz, Raymond

    1986-01-01

    The phase diagram of FeO has been experimentally determined to pressures of 155 GPa and temperatures of 4000 K using shock-wave and diamond-cell techniques. A metallic phase of FeO is observed at pressures greater than 70 GPa and temperatures exceeding 1000 K. The metallization of FeO at high pressures implies that oxygen can be present as the light alloying element of the earth's outer core, in accord with the geochemical predictions of Ringwood (1977 and 1979). The high pressures necessary for this metallization suggest that the core has acquired its composition well after the initial stages of the earth's accretion. Direct experimental observations at elevated pressures and temperatures indicate that core-forming alloy can react chemically with oxides such as those forming the mantle. The core and mantle may never have reached complete chemical equilibrium, however. If this is the case, the core-mantle boundary is likely to be a zone of active chemical reactions.

  5. High pressure {mu}SR studies: rare earths and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Kalvius, G.M., E-mail: kalvius@ph.tum.de; Schreier, E. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Ekstroem, M.; Hartmann, O. [Uppsala University, Physics Department (Sweden); Henneberger, S., E-mail: kalvius@ph.tum.de; Kratzer, A. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Waeppling, R. [Uppsala University, Physics Department (Sweden); Martin, E., E-mail: kalvius@ph.tum.de; Burghart, F.J. [Technical University Munich, Physics Department (Germany)], E-mail: kalvius@ph.tum.de; Ballou, R.; Deportes, J. [CNRS, Laboratoire Louis Neel (France); Niedermayer, Ch. [University of Constance, Faculty of Physics (Germany)

    2000-11-15

    After a short introduction to {mu}SR with respect to the study of magnetic properties, followed by a brief outline of the principle of the high pressure-low temperature {mu}SR spectrometer installed at the Paul Scherrer Institute, we discuss some measurements on rare earth materials employing this instrument. They are concerned with: (1) The pressure dependence of the spin turning process in ferromagnetic Gd. (2) The volume dependence of the internal magnetic field in the heavy rare earth metals Gd, Dy, and Ho in their ordered magnetic states. (3) The response of the (first order) magnetic transition in the frustrated antiferromagnets of type RMn{sub 2} (R = Y,Gd) to pressure. (4) The variation of magnetic parameters with pressure in La{sub 2}CuO{sub 4} (powder sample), the antiferromagnetic parent compound of the high T{sub C} superconductors of type La{sub 2-x}(Sr, Ba){sub x}CuO{sub 4}. In conclusion a short outlook on further developments is given.

  6. Ground Radar Polarimetric Observations of High-Frequency Earth-Space Communication Links

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.; Benjamin, Andrew

    2002-01-01

    Strategic roadmaps for NASA's Human Exploration and Development of Space (REDS) enterprise support near-term high-frequency communication systems that provide moderate to high data rates with dependable service. Near-earth and human planetary exploration will baseline Ka-Band, but may ultimately require the use of even higher frequencies. Increased commercial demand on low-frequency earth-space bands has also led to increased interest in the use of higher frequencies in regions like K u - and K,- band. Data is taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), which operates at 13.8 GHz, and the true radar reflectivity profile is determined along the PR beam via low-frequency ground based polarimetric observations. The specific differential phase (Kdp) is measured along the beam and a theoretical model is used to determine the expected specific attenuation (k). This technique, called the k-Kdp method, uses a Fuzzy-Logic model to determine the hydrometeor type along the PR beam from which the appropriate k-Kdp relationship is used to determine k and, ultimately, the total path-integrated attenuation (PIA) on PR measurements. Measurements from PR and the NCAR S-POL radar were made during the TEFLUN-B experiment that took place near Melbourne, FL in 1998, and the TRMM-LBA campaign near Ji-Parana, Brazil in 1999.

  7. Geo-oculus: high resolution multi-spectral earth imaging mission from geostationary orbit

    Science.gov (United States)

    Vaillon, L.; Schull, U.; Knigge, T.; Bevillon, C.

    2017-11-01

    Geo-Oculus is a GEO-based Earth observation mission studied by Astrium for ESA in 2008-2009 to complement the Sentinel missions, the space component of the GMES (Global Monitoring for Environment & Security). Indeed Earth imaging from geostationary orbit offers new functionalities not covered by existing LEO observation missions, like real-time monitoring and fast revisit capability of any location within the huge area in visibility of the satellite. This high revisit capability is exploited by the Meteosat meteorogical satellites, but with a spatial resolution (500 m nadir for the third generation) far from most of GMES needs (10 to 100 m). To reach such ground resolution from GEO orbit with adequate image quality, large aperture instruments (> 1 m) and high pointing stability (challenges of such missions. To address the requirements from the GMES user community, the Geo-Oculus mission is a combination of routine observations (daily systematic coverage of European coastal waters) with "on-demand" observation for event monitoring (e.g. disasters, fires and oil slicks). The instrument is a large aperture imaging telescope (1.5 m diameter) offering a nadir spatial sampling of 10.5 m (21 m worst case over Europe, below 52.5°N) in a PAN visible channel used for disaster monitoring. The 22 multi-spectral channels have resolutions over Europe ranging from 40 m in UV/VNIR (0.3 to 1 μm) to 750 m in TIR (10-12 μm).

  8. Simultaneous determination of dysprosium, holmium and erbium in high purity rare earth oxides by second order derivative spectrophotometry

    International Nuclear Information System (INIS)

    Anbu, M.; Prasada Rao, T.; Iyer, C. S. P.; Damodaran, A. D.

    1996-01-01

    High purity individual rare earth oxides are increasingly used as major components in lasers (Y 2 O 3 ), phosphors (YVO 3 , Eu 2 O 3 ), magnetic bubble memory films (Gd 2 O 3 ) and refractive-index lenses and fibre optics (La 2 O 3 ). The determination of individual lanthanides in high purity rare earth oxides is a more important and difficult task. This paper reports the utilization of higher order derivative spectrophotometry for the simultaneous determination of dysprosium, holmium and erbium in high purity rare earth oxides. The developed procedure is simple, reliable and allows the determination of 0.001 to 0.2% of dysprosium, holmium and erbium in several rare earth. (author). 9 refs, 2 figs, 2 tabs

  9. Megapixel Longwave Infrared SLS FPAs for High Spatial Resolution Earth Observing Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth observing missions like NASA's LANDSAT Data Continuity Mission - Thermal Infrared Sensor (LDCM-TIRS) require greater spatial resolution of the earth than the ~...

  10. Megapixel Longwave Infrared SLS FPAs for High Spatial Resolution Earth Observing Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth observing missions like NASA's LANDSAT Data Continuity Mission - Thermal Infrared Sensor (LDCM-TIRS) require greater spatial resolution of the earth than the ~...

  11. Design of the high resolution optical instrument for the Pleiades HR Earth observation satellites

    Science.gov (United States)

    Lamard, Jean-Luc; Gaudin-Delrieu, Catherine; Valentini, David; Renard, Christophe; Tournier, Thierry; Laherrere, Jean-Marc

    2017-11-01

    As part of its contribution to Earth observation from space, ALCATEL SPACE designed, built and tested the High Resolution cameras for the European intelligence satellites HELIOS I and II. Through these programmes, ALCATEL SPACE enjoys an international reputation. Its capability and experience in High Resolution instrumentation is recognised by the most customers. Coming after the SPOT program, it was decided to go ahead with the PLEIADES HR program. PLEIADES HR is the optical high resolution component of a larger optical and radar multi-sensors system : ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. ALCATEL SPACE has been entrusted by CNES with the development of the high resolution camera of the Earth observation satellites PLEIADES HR. The first optical satellite of the PLEIADES HR constellation will be launched in mid-2008, the second will follow in 2009. To minimize the development costs, a mini satellite approach has been selected, leading to a compact concept for the camera design. The paper describes the design and performance budgets of this novel high resolution and large field of view optical instrument with emphasis on the technological features. This new generation of camera represents a breakthrough in comparison with the previous SPOT cameras owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. Recent advances in detector technology, optical fabrication and electronics make it possible for the PLEIADES HR camera to achieve their image quality performance goals while staying within weight and size restrictions normally considered suitable only for much lower performance systems. This camera design delivers superior performance using an innovative low power, low mass, scalable architecture, which provides a versatile approach for a variety of imaging requirements and allows for a wide number of possibilities of accommodation with a mini

  12. Origin of middle rare earth element enrichments in acid waters of a Canadian high Arctic lake.

    Science.gov (United States)

    Johannesson, Kevin H.; Zhou, Xiaoping

    1999-01-01

    -Middle rare earth element (MREE) enriched rock-normalized rare earth element (REE) patterns of a dilute acidic lake (Colour Lake) in the Canadian High Arctic, were investigated by quantifying whole-rock REE concentrations of rock samples collected from the catchment basin, as well as determining the acid leachable REE fraction of these rocks. An aliquot of each rock sample was leached with 1 N HNO 3 to examine the readily leachable REE fraction of each rock, and an additional aliquot was leached with a 0.04 M NH 2OH · HCl in 25% (v/v) CH 3COOH solution, designed specifically to reduce Fe-Mn oxides/oxyhydroxides. Rare earth elements associated with the leachates that reacted with clastic sedimentary rock samples containing petrographically identifiable Fe-Mn oxide/oxyhydroxide cements and/or minerals/amorphous phases, exhibited whole-rock-normalized REE patterns similar to the lake waters, whereas whole-rock-normalized leachates from mafic igneous rocks and other clastic sedimentary rocks from the catchment basin differed substantially from the lake waters. The whole-rock, leachates, and lake water REE data support acid leaching or dissolution of MREE enriched Fe-Mn oxides/oxyhydroxides contained and identified within some of the catchment basin sedimentary rocks as the likely source of the unique lake water REE patterns. Solution complexation modelling of the REEs in the inflow streams and lake waters indicate that free metal ions (e.g., Ln 3+, where Ln = any REE) and sulfate complexes (LnSO 4+) are the dominant forms of dissolved REEs. Consequently, solution complexation reactions involving the REEs during weathering, transport to the lake, or within the lake, cannot be invoked to explain the MREE enrichments observed in the lake waters.

  13. Iron-Rich Carbonates as the Potential Source of Evolved CO2 Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater

    Science.gov (United States)

    Sutter, B.; Heil, E.; Rampe, E. B.; Morris, R. V.; Ming, D. W.; Archer, P. D.; Eigenbrode, J. L.; Franz, H. B.; Glavin, D. P.; McAdam, A. C.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument detected at least 4 distinct CO2 release during the pyrolysis of a sample scooped from the Rocknest (RN) eolian deposit. The highest peak CO2 release temperature (478-502 C) has been attributed to either a Fe-rich carbonate or nano-phase Mg-carbonate. The objective of this experimental study was to evaluate the thermal evolved gas analysis (T/EGA) characteristics of a series of terrestrial Fe-rich carbonates under analog SAM operating conditions to compare with the RN CO2 releases. Natural Fe-rich carbonates (<53 microns) with varying Fe amounts (Fe(0.66)X(0.34)- to Fe(0.99)X(0.01)-CO3, where X refers to Mg and/or Mn) were selected for T/EGA. The carbonates were heated from 25 to 715 C (35 C/min) and evolved CO2 was measured as a function of temperature. The highest Fe containing carbonates (e.g., Fe(0.99)X(0.01)-CO3) yielded CO2 peak temperatures between 466-487 C, which is consistent with the high temperature RN CO2 release. The lower Fe-bearing carbonates (e.g., Fe(0.66)X(0.34)CO3) did not have peak CO2 release temperatures that matched the RN peak CO2 temperatures; however, their entire CO2 releases did occur within RN temperature range of the high temperature CO2 release. Results from this laboratory analog analysis demonstrate that the high temperature RN CO2 release is consistent with Fe-rich carbonate (approx.0.7 to 1 wt.% FeCO3). The similar RN geochemistry with other materials in Gale Crater and elsewhere on Mars (e.g., Gusev Crater, Meridiani) suggests that up to 1 wt. % Fe-rich carbonate may occur throughout the Gale Crater region and could be widespread on Mars. The Rocknest Fe-carbonate may have formed from the interaction of reduced Fe phases (e.g., Fe2+ bearing olivine) with atmospheric CO2 and transient water. Alternatively, the Rocknest Fe-carbonate could be derived by eolian processes that have eroded distally exposed deep crustal material that possesses Fe-carbonate that may have formed through

  14. Shapes and alignments at high spin in some rare-earth nuclei

    International Nuclear Information System (INIS)

    Deleplanque, M.A.; Diamond, R.M.; Stephens, F.S.; Macchiavelli, A.O.; Doessing, T.; Draper, J.E.; Dines, E.L.

    1985-01-01

    The structure of nuclei at high spins is dominated by an interplay between deformation and alignment effects. Cranking models predict various shapes but at the highest spins, there is a tendency towards large triaxial deformations and sometimes towards very large prolate deformations (superdeformations). Directly involved in the shape changes are aligned orbitals which come down to the Fermi level as the nucleus rotates more rapidly. At a certain frequency, they become populated and cause large alignments. The mechanism of these changes has been explored by looking at a series of rare earth quasirotational nuclei from Dy to W in the transition region around N = 90 neutrons. The continuum spectra, corrected for incomplete population (feeding) of the high spins, are directly proportional to dynamic effective moments of inertia which describe how much spin is generated at each rotational frequency

  15. High-energy charged particle bursts in the near-Earth space as earthquake precursors

    Directory of Open Access Journals (Sweden)

    S. Yu. Aleksandrin

    2003-02-01

    Full Text Available The experimental data on high-energy charged particle fluxes, obtained in various near-Earth space experiments (MIR orbital station, METEOR-3, GAMMA and SAMPEX satellites were processed and analyzed with the goal to search for particle bursts. Particle bursts have been selected in every experiment considered. It was shown that the significant part of high-energy charged particle bursts correlates with seismic activity. Moreover, the particle bursts are observed several hours before strong earthquakes; L-shells of particle bursts and corresponding earthquakes are practically the same. Some features of a seismo-magnetosphere connection model, based on the interaction of electromagnetic emission of seismic origin and radiation belt particles, were considered. Key words. Ionospheric physics (energetic particles, trapped; energetic particles, precipitating; magnetosphere-ionosphere interactions

  16. The high resolution optical instruments for the Pleiades HR Earth observation satellites

    Science.gov (United States)

    Gaudin-Delrieu, Catherine; Lamard, Jean-Luc; Cheroutre, Philippe; Bailly, Bruno; Dhuicq, Pierre; Puig, Olivier

    2017-11-01

    Coming after the SPOT satellites series, PLEIADESHR is a CNES optical high resolution satellite dedicated to Earth observation, part of a larger optical and radar multi-sensors system, ORFEO, which is developed in cooperation between France and Italy for dual Civilian and Defense use. The development of the two PLEIADES-HR cameras was entrusted by CNES to Thales Alenia Space. This new generation of instrument represents a breakthrough in comparison with the previous SPOT instruments owing to a significant step in on-ground resolution, which approaches the capabilities of aerial photography. The PLEIADES-HR instrument program benefits from Thales Alenia Space long and successful heritage in Earth observation from space. The proposed solution benefits from an extensive use of existing products, Cannes Space Optics Centre facilities, unique in Europe, dedicated to High Resolution instruments. The optical camera provides wide field panchromatic images supplemented by 4 multispectral channels with narrow spectral bands. The optical concept is based on a four mirrors Korsch telescope. Crucial improvements in detector technology, optical fabrication and electronics make it possible for the PLEIADES-HR instrument to achieve the image quality requirements while respecting the drastic limitations of mass and volume imposed by the satellite agility needs and small launchers compatibility. The two flight telescopes were integrated, aligned and tested. After the integration phase, the alignment, mainly based on interferometric measurements in vacuum chamber, was successfully achieved within high accuracy requirements. The wave front measurements show outstanding performances, confirmed, after the integration of the PFM Detection Unit, by MTF measurements on the Proto-Flight Model Instrument. Delivery of the proto flight model occurred mi-2008. The FM2 Instrument delivery is planned Q2-2009. The first optical satellite launch of the PLEIADES-HR constellation is foreseen

  17. Decay properties of rare earth nuclei at high excitation and low spin

    International Nuclear Information System (INIS)

    Atac, A.

    1989-01-01

    The purpose of this study was to examine the decay pattern of highly excited rare earth nuclei for which the decay process is expected to be governed by statistical laws. The aim was to investigate how good the statistical model describes the nuclear system and to search for possible deviation from it. It is shown that the gamma decay spectra following both the ( 3 He,α) pick-up reactions and the inelastic ( 3 He, 3 He') reactions reveal similar type of bumps. This leads to the conclusion that the bump structures are not a result of a particular reaction mechanism, but that they have a more general origin. The study is mainly devoted to an examination of the nature of the bumps. 22 refs

  18. High Frequency Variations of Earth Rotation Parameters from GPS and GLONASS Observations

    Directory of Open Access Journals (Sweden)

    Erhu Wei

    2015-01-01

    Full Text Available The Earth’s rotation undergoes changes with the influence of geophysical factors, such as Earth’s surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of Earth Rotation Parameters (ERP are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations and their causes. In this paper, the hourly time series of Earth Rotation Parameters are estimated using Global Positioning System (GPS, Global Navigation Satellite System (GLONASS, and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas in Polar Motion (PM and 0.5 milli-seconds (ms in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean tides. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean tide model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM and hydrological angular momentum (HAM, which needs more detailed analysis with more geophysical data in the future.

  19. On the effects of magnetic bonding in rare earth transition metal intermetallics

    International Nuclear Information System (INIS)

    Kumar, R.; Bentley, J.; Yelon, W.B.

    1990-01-01

    Neutron diffraction experiments on rare-earth transition metal magnetic alloys Er 2 Fe 14 B and Er 2 Fe 17 have been carried out at temperature above and below the ordering temperature (T c ). An anomalously large magnetic moment is observed at the crystallographic j 2 site in Er 2 Fe 14 B which is the intersection point of the major ligand lines in the crystal structure. The interatomic Fe-Fe distances are in the range of strong ferromagnetic bonds (≥ 2.66 angstrom). The analogous f site in Er 2 Fe 17 does not develop as large a magnetic moment. In addition, the same sites show strong preference for Fe atoms in the respective substituted compounds. Due to poor phase stability of Er 2 (Co x Fe 1 -x ) 14 B compounds, iron substitution has been studied in detail in Er 2 (Co x Fe 1 -x ) 17 alloys for site specific order an lattice distortion effects. However, a nonlinear change in the c lattice parameter observed in the neutron diffraction results cannot be explained on the basis of site preference alone. The neutron refinement results indicate iron rich compositions in Er 2 (Co x Fe 1 -x ) 17 materials, which is related to random substitution of Fe dumbbell pairs in the rare earth sites in the lattice. However, extensive electron microscopy (selected area electron diffraction and high resolution imaging) of Er 2 Fe 17 and Er 2 (Co .40 Fe .60 ) 17 failed to reveal any microscopic inhomogeneity. 12 refs., 5 figs., 2 tabs

  20. Semi-Automatic Science Workflow Synthesis for High-End Computing on the NASA Earth Exchange

    Data.gov (United States)

    National Aeronautics and Space Administration — Enhance capabilities for collaborative data analysis and modeling in Earth sciences. Develop components for automatic workflow capture, archiving and management....

  1. Development of in situ Brillouin spectroscopy at high pressure and high temperature with synchrotron radiation and infrared laser heating system: Application to the Earth's deep interior

    Science.gov (United States)

    Murakami, Motohiko; Asahara, Yuki; Ohishi, Yasuo; Hirao, Naohisa; Hirose, Kei

    2009-05-01

    Seismic wave velocity profiles in the Earth provide one of the strongest constraints on structure, mineralogy and elastic properties of the Earth's deep interior. Accurate sound velocity data of deep Earth materials under relevant high-pressure and high-temperature conditions, therefore, are essential for interpretation of seismic data. Such information can be directly obtained from Brillouin scattering measurement. Here we describe an in situ Brillouin scattering system for measurements at high pressure and high temperature using a laser heated diamond anvil cell and synchrotron radiation for sample characterization. The system has been used with single-crystal and polycrystalline materials, and with glass and fluid phase. It provided high quality sound velocity and elastic data with X-ray diffraction data at high pressure and/or high temperature. Those combined techniques can potentially offer the essential information for resolving many remaining issues in mineral physics.

  2. THE DESIGN OF A HIGH PERFORMANCE EARTH IMAGERY AND RASTER DATA MANAGEMENT AND PROCESSING PLATFORM

    Directory of Open Access Journals (Sweden)

    Q. Xie

    2016-06-01

    Full Text Available This paper summarizes the general requirements and specific characteristics of both geospatial raster database management system and raster data processing platform from a domain-specific perspective as well as from a computing point of view. It also discusses the need of tight integration between the database system and the processing system. These requirements resulted in Oracle Spatial GeoRaster, a global scale and high performance earth imagery and raster data management and processing platform. The rationale, design, implementation, and benefits of Oracle Spatial GeoRaster are described. Basically, as a database management system, GeoRaster defines an integrated raster data model, supports image compression, data manipulation, general and spatial indices, content and context based queries and updates, versioning, concurrency, security, replication, standby, backup and recovery, multitenancy, and ETL. It provides high scalability using computer and storage clustering. As a raster data processing platform, GeoRaster provides basic operations, image processing, raster analytics, and data distribution featuring high performance computing (HPC. Specifically, HPC features include locality computing, concurrent processing, parallel processing, and in-memory computing. In addition, the APIs and the plug-in architecture are discussed.

  3. The Design of a High Performance Earth Imagery and Raster Data Management and Processing Platform

    Science.gov (United States)

    Xie, Qingyun

    2016-06-01

    This paper summarizes the general requirements and specific characteristics of both geospatial raster database management system and raster data processing platform from a domain-specific perspective as well as from a computing point of view. It also discusses the need of tight integration between the database system and the processing system. These requirements resulted in Oracle Spatial GeoRaster, a global scale and high performance earth imagery and raster data management and processing platform. The rationale, design, implementation, and benefits of Oracle Spatial GeoRaster are described. Basically, as a database management system, GeoRaster defines an integrated raster data model, supports image compression, data manipulation, general and spatial indices, content and context based queries and updates, versioning, concurrency, security, replication, standby, backup and recovery, multitenancy, and ETL. It provides high scalability using computer and storage clustering. As a raster data processing platform, GeoRaster provides basic operations, image processing, raster analytics, and data distribution featuring high performance computing (HPC). Specifically, HPC features include locality computing, concurrent processing, parallel processing, and in-memory computing. In addition, the APIs and the plug-in architecture are discussed.

  4. Study of Various Techniques for Improving Weak and Compressible Clay Soil under a High Earth Embankment

    Directory of Open Access Journals (Sweden)

    Zein A.K. M.

    2014-04-01

    Full Text Available This paper investigates the suitability of three soil improvement techniques for the construction of a high earth embankment on thick weak and highly compressible clay soil. The eastern approach embankment of Alhalfaya Bridge on the River Nile linking Khartoum North and Omdurman cities was chosen as a case study and a comprehensive site investigation program was carried out to determine the properties the subsurface soils. The study results showed that unless the subsurface soils have been improved they may fail or undergo excessively large settlements due to the embankment construction. Three ground improvement techniques based on the principles of the “staged construction method, SCM”, “vertical sand drain, VSD” and “sand compaction piles, SCP” of embankment foundation soil treatment are discussed and evaluated. Embankment design options based on applications of the above methods have been proposed for foundation treatment to adequately support embankment loads. A method performance evaluation based on the improvement of soil properties achieved; the time required for construction and compared estimated costs criteria was made to assess the effectiveness and expected overall performance. Adoption of any of the soil improvement techniques considered depends mainly on the most critical and decisive factor governing the embankment design. Based on the overall performance for the embankment case studied, the sand drains is considered as the most appropriate improvement method followed by the sand compaction piles technique whereas the staged construction method showed the poorest overall performance.

  5. Application of rare-earth magnets in high-performance electric machines

    International Nuclear Information System (INIS)

    Ramsden, V.S.

    1998-01-01

    Some state of the art developments of high-performance machines using rare-earth magnets are reviewed with particular examples drawn from a number of novel machine designs developed jointly by the Faculty of Engineering, University of Technology, Sydney (UTS) and CSIRO Telecommunications and Industrial Physics. These designs include an 1800 W, 1060 rev/min, 98% efficient solar car in-wheel motor using a Halbach magnet array, axial flux, and ironless winding; a 1200 W, 3000 rev/min, 91% efficient solar-powered, water-filled, submersible, bore-hole pump motor using a surface magnet rotor; a 500 W, 10000 rev/min, 87% efficient, oil-filled, oil-well tractor motor using a 2-pole cylindrical magnet rotor and slotless winding; a 75 kW, 48000 rev/min, 97% efficient, high-speed compressor drive with 2-pole cylindrical magnet rotor, slotted stator, and refrigerant cooling; and a 20 kW, 211 rev/min, 87% efficient, direct-drive generator for wind turbines with very low starting torque using an outer rotor with surface magnets and a slotted stator. (orig.)

  6. Activation analysis of trace amounts of rare earth in high purity tantalum

    International Nuclear Information System (INIS)

    Ishibashi, Wataru; Saito, Shinichi; Hirayama, Tooru.

    1975-01-01

    It is necessary to separate rare earth from tantalum by rapid methods in order to remove effects of a strong radioactivity and a short half-life. Tantalum is extracted with 10%N-lauryl (trialkylmethyl) amino-benzene pre-equilibrated with a solution of 9 M hydrochloric and 0.15 M hydrofluoric acid. A non-radioactive rare earth element is added to this aqueous solution, a precipitate of trace amounts of radioactive rare earth in aqueous solution is formed by this addition of rare earth. Some factors in the determination are: 1) the effect of the irradiation position of the sample in the atomic reactor, 2) the effect on the extraction with 10%N-lauryl (trialkylmethyl) amino-benzene for the radioactive rare earth, 3) the effect of the concentration of hydrofluoric acid, ammonia water and nitric acid on co-precipitation. As a result of the investigation we obtained the following satisfactory results: 1) Rare earth was not effected by the extraction of tantalum with 10%N-lauryl (trialkylmethyl) amino-benzene. 2) The recovery of rare earth by co-precipitation increases when an ammonium ion coexists, and when the concentration of hydrofluoric acid decreases, but the recovery decreases with the increase of nitric acid concentration. 3) The time required for the extraction is 9 hours. In case of determination for dysprosium, tantalum extracted with 10%N-lauryl (trialkylmethyl) amino-benzene before activation and the time for separation is 2 hours. (auth.)

  7. Physical modeling and high-performance GPU computing for characterization, interception, and disruption of hazardous near-Earth objects

    Science.gov (United States)

    Kaplinger, Brian Douglas

    For the past few decades, both the scientific community and the general public have been becoming more aware that the Earth lives in a shooting gallery of small objects. We classify all of these asteroids and comets, known or unknown, that cross Earth's orbit as near-Earth objects (NEOs). A look at our geologic history tells us that NEOs have collided with Earth in the past, and we expect that they will continue to do so. With thousands of known NEOs crossing the orbit of Earth, there has been significant scientific interest in developing the capability to deflect an NEO from an impacting trajectory. This thesis applies the ideas of Smoothed Particle Hydrodynamics (SPH) theory to the NEO disruption problem. A simulation package was designed that allows efficacy simulation to be integrated into the mission planning and design process. This is done by applying ideas in high-performance computing (HPC) on the computer graphics processing unit (GPU). Rather than prove a concept through large standalone simulations on a supercomputer, a highly parallel structure allows for flexible, target dependent questions to be resolved. Built around nonclassified data and analysis, this computer package will allow academic institutions to better tackle the issue of NEO mitigation effectiveness.

  8. High energy-intensity atomic oxygen beam source for low earth orbit materials degradation studies

    International Nuclear Information System (INIS)

    Cross, J.B.; Blais, N.C.

    1988-01-01

    A high intensity (10 19 O-atoms/s-sr) high energy (5 eV) source of oxygen atoms has been developed that produces a total fluence of 10 22 O-atoms/cm 2 in less than 100 hours of continuous operation at a distance of 15 cm from the source. The source employs a CW CO 2 laser sustained discharge to form a high temperature (15,000 K) plasma in the throat of a 0.3-mm diameter nozzle using 3--8 atmospheres of rare gas/O 2 mixtures. Visible and infrared photon flux levels of 1 watt/cm 2 have been measured 15 cm downstream of the source while vacuum UV (VUV) fluxes are comparable to that measured in low earth orbit. The reactions of atomic oxygen with kapton, Teflon, silver, and various coatings have been studied. The oxidation of kapton (reaction efficiency = 3 /times/ 10/sup /minus/24/ cm /+-/ 50%) has an activation energy of 0.8 Kcal/mole over the temperature range of 25/degree/C to 100/degree/C at a beam energy of 1.5 eV and produces low molecular weight gas phase reaction products (H 2 O, NO, CO 2 ). Teflon reacts with ∼0.1--0.2 efficiency to that of kapton at 25/degree/C and both surfaces show a rug-like texture after exposure to the O-atom beam. Angular scattering distribution measurements of O-atoms show a near cosine distribution from reactive surfaces indicating complete accommodation of the translational energy with the surface while a nonreactive surface (nickel oxide) shows specular-like scattering with 50% accommodation of the translational energy with the surface. A technique for simple on orbit chemical experiments using resistance measurements of coated silver strips is described. 9 figs

  9. Electron spin transition causing structure transformations of earth's interiors under high pressure

    Science.gov (United States)

    Yamanaka, T.; Kyono, A.; Kharlamova, S.; Alp, E.; Bi, W.; Mao, H.

    2012-12-01

    To elucidate the correlation between structure transitions and spin state is one of the crucial problems for understanding the geophysical properties of earth interiors under high pressure. High-pressure studies of iron bearing spinels attract extensive attention in order to understand strong electronic correlation such as the charge transfer, electron hopping, electron high-low spin transition, Jahn-Teller distortion and charge disproponation in the lower mantle or subduction zone [1]. Experiment Structure transitions of Fe3-xSixO4, Fe3-xTixO4 Fe3-xCrxO4 spinel solid solution have been investigated at high pressure up to 60 GPa by single crystal and powder diffraction studies using synchrotron radiation with diamond anvil cell. X-ray emission experiment (XES) at high pressure proved the spin transition of Fe-Kβ from high spin (HS) to intermediate spin state (IS) or low spin state (LS). Mössbauer experiment and Raman spectra study have been also conducted for deformation analysis of Fe site and confirmation of the configuration change of Fe atoms. Jahn-Teller effect A cubic-to-tetragonal transition under pressure was induced by Jahn-Teller effect of IVFe2+ (3d6) in the tetrahedral site of Fe2TiO4 and FeCr2O4, providing the transformation from 43m (Td) to 42m (D2d). Tetragonal phase is formed by the degeneracy of e orbital of Fe2+ ion. Their c/a ratios are c/adisordered in the M2 site. At pressures above 53 GPa, Fe2TiO4 structure further transforms to Pmma. This structure change results in the order-disorder transition [2]. New structure of Fe2SiO4 The spin transition exerts an influence to Fe2SiO4 spinel structure and triggers two distinct curves of the lattice constant in the spinel phase. The reversible structure transition from cubic to pseudo-rhombohedral phase was observed at about 45 GPa. This transition is induced by the 20% shrinkage of ionic radius of VIFe2+at the low sin state. Laser heating experiment at 1500 K has confirmed the decomposition from the

  10. High-resolution laser spectroscopy of rare-earth doped insulators: a personal perspective

    International Nuclear Information System (INIS)

    Macfarlane, Roger M.

    2002-01-01

    I offer some reflections on the past three decades of high-resolution spectroscopy of rare-earth ions in solids which was ushered in by the development of tunable lasers in the mid 1970s. A brief review is given of some of the accomplishments in the area of spectral hole-burning and coherent transient spectroscopy, emphasizing work with which the author has been associated. Spectral hole-burning has been characterized by a richness of mechanisms. These include population storage in nuclear-spin and electron-spin Zeeman sub-levels, hyperfine and superhyperfine levels and metastable optical levels with corresponding hole lifetimes from many hours to microseconds. In addition, persistent hole-burning has been seen in disordered materials and in those showing photo-ionization or photo-chemistry following excitation into zero-phonon lines. This has made hole-burning a generally useful technique for the measurement of magnetic and electric dipole moments, hyperfine interactions, spin relaxation and thermally induced line-broadening. Photon-echoes have proven to be the prime source of coherence-time information and coherence times as long as several milliseconds corresponding to optical resonance widths of less than 100 Hz have been reported. Tables summarizing these results and providing references to original work are included

  11. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis

    Science.gov (United States)

    Hinuma, Yoyo; Hatakeyama, Taisuke; Kumagai, Yu; Burton, Lee A.; Sato, Hikaru; Muraba, Yoshinori; Iimura, Soshi; Hiramatsu, Hidenori; Tanaka, Isao; Hosono, Hideo; Oba, Fumiyasu

    2016-01-01

    Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications. PMID:27325228

  12. High Accuracy Ground-based near-Earth-asteroid Astrometry using Synthetic Tracking

    Science.gov (United States)

    Zhai, Chengxing; Shao, Michael; Saini, Navtej; Sandhu, Jagmit; Werne, Thomas; Choi, Philip; Ely, Todd A.; Jacobs, Chirstopher S.; Lazio, Joseph; Martin-Mur, Tomas J.; Owen, William M.; Preston, Robert; Turyshev, Slava; Michell, Adam; Nazli, Kutay; Cui, Isaac; Monchama, Rachel

    2018-01-01

    Accurate astrometry is crucial for determining the orbits of near-Earth-asteroids (NEAs). Further, the future of deep space high data rate communications is likely to be optical communications, such as the Deep Space Optical Communications package that is part of the baseline payload for the planned Psyche Discovery mission to the Psyche asteroid. We have recently upgraded our instrument on the Pomona College 1 m telescope, at JPL's Table Mountain Facility, for conducting synthetic tracking by taking many short exposure images. These images can be then combined in post-processing to track both asteroid and reference stars to yield accurate astrometry. Utilizing the precision of the current and future Gaia data releases, the JPL-Pomona College effort is now demonstrating precision astrometry on NEAs, which is likely to be of considerable value for cataloging NEAs. Further, treating NEAs as proxies of future spacecraft that carry optical communication lasers, our results serve as a measure of the astrometric accuracy that could be achieved for future plane-of-sky optical navigation.

  13. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, M.; Boutorabi, S.M.A.; Azadi, M.; Nikravan, M.

    2013-01-01

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al 11 RE 3 intermetallic particles which is associated to the reduction of β-(Mg 17 Al 12 ) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10 5 cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy

  14. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, M., E-mail: mehdi-mokhtari@hotmail.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Boutorabi, S.M.A. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, M.; Nikravan, M. [Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of)

    2013-12-10

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al{sub 11}RE{sub 3} intermetallic particles which is associated to the reduction of β-(Mg{sub 17}Al{sub 12}) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10{sup 5} cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy.

  15. High precision predictions for near-Earth asteroids: the strange case of (3908) Nyx

    Science.gov (United States)

    Farnocchia, D.; Chesley, S. R.; Tholen, D. J.; Micheli, M.

    2014-08-01

    In November 2004 radar delay measurements of near-Earth asteroid (3908) Nyx obtained at the Arecibo radio telescope turned out to be away from the orbital prediction. We prove that this discrepancy was caused by a poor astrometric treatment and an incomplete dynamical model, which did not account for nongravitational perturbations. To improve the astrometric treatment, we remove known star catalog biases, apply suitable weights to the observations, and use an aggressive outlier rejection scheme. The main issue related to the dynamical model is having not accounted for the Yarkovsky effect. Including the Yarkovsky perturbation in the model makes the orbital prediction and the radar measurements statistically consistent by both reducing the offset and increasing the prediction uncertainty to a more realistic level. This analysis shows the sensitivity of high precision predictions to the astrometric treatment and the Yarkovsky effect. By using the full observational dataset we obtain a detection of the Yarkovsky effect acting on Nyx corresponding to an orbital drift m/year. In turn, we derive constraints on thermal inertia and bulk density. In particular, we find that the bulk density of Nyx is around 1 g/cm, possibly less. To make sure that our results are not corrupted by an asteroid impact or a close approach with a perturbing asteroid not included in our dynamical model, we show that the astrometry provides no convincing evidence of an impulsive variation of Nyx's velocity while crossing the main belt region.

  16. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots

    Science.gov (United States)

    Meinardi, Francesco; Ehrenberg, Samantha; Dhamo, Lorena; Carulli, Francesco; Mauri, Michele; Bruni, Francesco; Simonutti, Roberto; Kortshagen, Uwe; Brovelli, Sergio

    2017-02-01

    Building-integrated photovoltaics is gaining consensus as a renewable energy technology for producing electricity at the point of use. Luminescent solar concentrators (LSCs) could extend architectural integration to the urban environment by realizing electrode-less photovoltaic windows. Crucial for large-area LSCs is the suppression of reabsorption losses, which requires emitters with negligible overlap between their absorption and emission spectra. Here, we demonstrate the use of indirect-bandgap semiconductor nanostructures such as highly emissive silicon quantum dots. Silicon is non-toxic, low-cost and ultra-earth-abundant, which avoids the limitations to the industrial scaling of quantum dots composed of low-abundance elements. Suppressed reabsorption and scattering losses lead to nearly ideal LSCs with an optical efficiency of η = 2.85%, matching state-of-the-art semi-transparent LSCs. Monte Carlo simulations indicate that optimized silicon quantum dot LSCs have a clear path to η > 5% for 1 m2 devices. We are finally able to realize flexible LSCs with performances comparable to those of flat concentrators, which opens the way to a new design freedom for building-integrated photovoltaics elements.

  17. High-Performance Data Analysis Tools for Sun-Earth Connection Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Interactive Data Language (IDL) is a standard tool used by many researchers in observational fields. Present day Sun-Earth Connection missions like SOHO, or...

  18. Rare-earth doping of high T/sub c/ superconducting perovskites

    International Nuclear Information System (INIS)

    Mc Kinnon, W.R.; Tarascon, J.M.; Greene, L.H.; Hull, G.W.

    1987-01-01

    In most superconductors, the magnetic moments of rare-earth (Re) ions interact with the conduction electrons and break the Cooper pairs, supressing or destroying superconductivity. But in the perovskite-based superconductors discovered recently, the rare-earth ions are separated from the copper and oxygen where the superconducting electrons are believed to be located. The authors study the effects of rare-earth doping in both the 40K La/sub 2-x/Sr/sub x/CuO/sub 4-y/ system and 90K YBa/sub 2/Cu/sub 3/O/sub 7-x/ system. In these materials, the RE ions only weakly affect superconductivity, and the effects we do see are more strongly correlated with changes in the volume of the crystal than with the magnetism of the rare earths

  19. Structure and Stability of High-Pressure Dolomite with Implications for the Earth's Deep Carbon Cycle

    Science.gov (United States)

    Solomatova, N. V.; Asimow, P. D.

    2014-12-01

    Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze. The fate of these carbonates in subduction zones is not well understood. End-member CaMg(CO3)2 dolomite typically breaks down into two carbonates at 2-7 GPa, which may further decompose to oxides and CO2-bearing fluid. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize dolomite I to high pressures, allowing the transformation to dolomite II at 17 GPa and subsequently to dolomite III at 35 GPa [1][2]. Such phases may be a principal host for deeply subducted carbon. The structure and equation of state of these high-pressure phases is debated and the effect of varying concentrations of iron is unknown, creating a need for theoretical calculations. Here we compare calculated dolomite structures to experimentally observed phases. Using the Vienna ab-initio simulation package (VASP) interfaced with a genetic algorithm that predicts crystal structures (USPEX), a monoclinic phase with space group 5 ("dolomite sg5") was found for pure end-member dolomite. Dolomite sg5 has a lower energy than reported dolomite structures and an equation of state that resembles that of dolomite III. It is possible that dolomite sg5 is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. Due to the complex energy landscape for candidate high-pressure dolomite structures, it is likely that several competing polymorphs exist. Determining the behavior of high-pressure Ca-Mg-Fe(-Mn) dolomite phases in subduction environments is critical for our understanding of the Earth's deep carbon cycle and supercell calculations with Fe substitution are in progress. [1] Mao, Z., Armentrout, M., Rainey, E., Manning, C. E., Dera, P., Prakapenka, V. B., and Kavner, A

  20. Analysis the configuration of earthing system based on high-low and low-high soil structure

    International Nuclear Information System (INIS)

    Ramani, A. N.; Ahmad, Abdul Rahman; Sulaima, M. F.; Nasir, M. N. M.; Ahmad, Arfah

    2015-01-01

    Each TNB transmission tower requires a tower footing resistance (TFR) with a lower grounding resistance value that depends on the transmission line voltage. For 132kV and 275kV tower, the TFR must less than 10Ω and 500kV tower must less than 5Ω. The TFR is changeable with variable factors such as soil resistivity. Low TFR provides essential protection to the fault such as lightning strike that may occur at any time. The fault current flow to the lowest resistance path and easily disperses to earth. Back flashover voltage across the insulator of transmission lines may occur when the TFR is high. The TFR is influenced by soil resistivity. There are three parameters affecting the soil resistivity; moisture content, salt content and temperature of the soil. High moisture content in soil will reduce the soil resistivity and resultant low TFR. Small scale moisture control by using Micro Reservoir (MR) irrigation with semi-permeable membranes have the power to offer the stable moisture in soil. By using osmosis concept, it is the process of net movement of water molecules from high potential water to lower potential water though a semi permeable membrane. The MR can withstand for 3 to 5 days without continuous water supply. The MR installed in the centre of the tower that contains a multiple parallel of electrode rods. The concentrated of electrode rods grounding configuration with a combination of MR will improve the TFR even at multilayer soil. As a result, MR gives a little improvement to TFR. The MR in area of concentrated electrode rod configuration to ensure the soil always wet and moist at all times. The changes in soil affect the tower-footing-resistance. The tower-footing-resistance measurement at afternoon is higher than at evening because of the temperature and moisture content in soil is change due to sun radiation

  1. High-altitude cosmic ray neutrons: probable source for the high-energy protons of the earth's radiation belts

    International Nuclear Information System (INIS)

    Hajnal, F.; Wilson, J.

    1992-01-01

    'Full Text:' Several High-altitude cosmic-ray neutron measurements were performed by the NASA Ames Laboratory in the mid-to late-1970s using airplanes flying at about 13km altitude along constant geomagnetic latitudes of 20, 44 and 51 degrees north. Bonner spheres and manganese, gold and aluminium foils were used in the measurements. In addition, large moderated BF-3 counters served as normalizing instruments. Data analyses performed at that time did not provide complete and unambiguous spectral information and field intensities. Recently, using our new unfolding methods and codes, and Bonner-sphere response function extensions for higher energies, 'new' neutron spectral intensities were obtained, which show progressive hardening of neutron spectra as a function of increasing geomagnetic latitude, with substantial increases in the energy region iron, 1 0 MeV to 10 GeV. For example, we found that the total neutron fluences at 20 and 51 degrees magnetic north are in the ratio of 1 to 5.2 and the 10 MeV to 10 GeV fluence ratio is 1 to 18. The magnitude of these ratios is quite remarkable. From the new results, the derived absolute neutron energy distribution is of the correct strength and shape for the albedo neutrons to be the main source of the high-energy protons trapped in the Earth's inner radiation belt. In addition, the results, depending on the extrapolation scheme used, indicate that the neutron dose equivalent rate may be as high as 0.1 mSv/h near the geomagnetic north pole and thus a significant contributor to the radiation exposures of pilots, flight attendants and the general public. (author)

  2. Analysis the configuration of earthing system based on high-low and low-high soil structure

    Energy Technology Data Exchange (ETDEWEB)

    Ramani, A. N.; Ahmad, Abdul Rahman; Sulaima, M. F.; Nasir, M. N. M.; Ahmad, Arfah [Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia)

    2015-05-15

    Each TNB transmission tower requires a tower footing resistance (TFR) with a lower grounding resistance value that depends on the transmission line voltage. For 132kV and 275kV tower, the TFR must less than 10Ω and 500kV tower must less than 5Ω. The TFR is changeable with variable factors such as soil resistivity. Low TFR provides essential protection to the fault such as lightning strike that may occur at any time. The fault current flow to the lowest resistance path and easily disperses to earth. Back flashover voltage across the insulator of transmission lines may occur when the TFR is high. The TFR is influenced by soil resistivity. There are three parameters affecting the soil resistivity; moisture content, salt content and temperature of the soil. High moisture content in soil will reduce the soil resistivity and resultant low TFR. Small scale moisture control by using Micro Reservoir (MR) irrigation with semi-permeable membranes have the power to offer the stable moisture in soil. By using osmosis concept, it is the process of net movement of water molecules from high potential water to lower potential water though a semi permeable membrane. The MR can withstand for 3 to 5 days without continuous water supply. The MR installed in the centre of the tower that contains a multiple parallel of electrode rods. The concentrated of electrode rods grounding configuration with a combination of MR will improve the TFR even at multilayer soil. As a result, MR gives a little improvement to TFR. The MR in area of concentrated electrode rod configuration to ensure the soil always wet and moist at all times. The changes in soil affect the tower-footing-resistance. The tower-footing-resistance measurement at afternoon is higher than at evening because of the temperature and moisture content in soil is change due to sun radiation.

  3. The melting curve of iron to 250 gigapascals - A constraint on the temperature at earth's center

    Science.gov (United States)

    Williams, Quentin; Jeanloz, Raymond; Bass, Jay; Svendsen, Bob; Ahrens, Thomas J.

    1987-01-01

    The melting curve of iron, the primary constituent of earth's core, has been measured to pressures of 250 gigapascals with a combination of static and dynamic techniques. The melting temperature of iron at the pressure of the core-mantle boundary (136 GPa) is 4800 + or - 200 K, whereas at the inner core-outer core boundary (330 GPa), it is 7600 + or - 500 K. A melting temperature for iron-rich alloy of 6600 K at the inner core-outer core boundary and a maximum temperature of 6900 K at earth's center are inferred. This latter value is the first experimental upper bound on the temperature at earth's center, and these results imply that the temperature of the lower mantle is significantly less than that of the outer core.

  4. Rare-earth-free high energy product manganese-based magnetic materials.

    Science.gov (United States)

    Patel, Ketan; Zhang, Jingming; Ren, Shenqiang

    2018-06-14

    The constant drive to replace rare-earth metal magnets has initiated great interest in an alternative. Manganese (Mn) has emerged to be a potential candidate as a key element in rare-earth-free magnets. Its five unpaired valence electrons give it a large magnetocrystalline energy and the ability to form several intermetallic compounds. These factors have led Mn-based magnets to be a potential replacement for rare-earth permanent magnets for several applications, such as efficient power electronics, energy generators, magnetic recording and tunneling applications, and spintronics. For past few decades, Mn-based magnets have been explored in many different forms, such as bulk magnets, thin films, and nanoparticles. Here, we review the recent progress in the synthesis and structure-magnetic property relationships of Mn-based rare-earth-free magnets (MnBi, MnAl and MnGa). Furthermore, we discuss their potential to replace rare-earth magnetic materials through the control of their structure and composition to achieve the theoretically predicted magnetic properties.

  5. Constraints on High Northern Photosynthesis Increase Using Earth System Models and a Set of Independent Observations

    Science.gov (United States)

    Winkler, A. J.; Brovkin, V.; Myneni, R.; Alexandrov, G.

    2017-12-01

    Plant growth in the northern high latitudes benefits from increasing temperature (radiative effect) and CO2 fertilization as a consequence of rising atmospheric CO2 concentration. This enhanced gross primary production (GPP) is evident in large scale increase in summer time greening over the 36-year record of satellite observations. In this time period also various global ecosystem models simulate a greening trend in terms of increasing leaf area index (LAI). We also found a persistent greening trend analyzing historical simulations of Earth system models (ESM) participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). However, these models span a large range in strength of the LAI trend, expressed as sensitivity to both key environmental factors, temperature and CO2 concentration. There is also a wide spread in magnitude of the associated increase of terrestrial GPP among the ESMs, which contributes to pronounced uncertainties in projections of future climate change. Here we demonstrate that there is a linear relationship across the CMIP5 model ensemble between projected GPP changes and historical LAI sensitivity, which allows using the observed LAI sensitivity as an "emerging constraint" on GPP estimation at future CO2 concentration. This constrained estimate of future GPP is substantially higher than the traditional multi-model mean suggesting that the majority of current ESMs may be significantly underestimating carbon fixation by vegetation in NHL. We provide three independent lines of evidence in analyzing observed and simulated CO2 amplitude as well as atmospheric CO2 inversion products to arrive at the same conclusion.

  6. Influence of strain and polycrystalline ordering on magnetic properties of high moment rare earth metals and alloys

    International Nuclear Information System (INIS)

    Scheunert, G; Ward, C; Hendren, W R; Bowman, R M; Lapicki, A A; Hardeman, R; Mooney, M; Gubbins, M

    2014-01-01

    Despite being the most suitable candidates for solenoid pole pieces in state-of-the-art superconductor-based electromagnets, the intrinsic magnetic properties of heavy rare earth metals and their alloys have gained comparatively little attention. With the potential of integration in micro and nanoscale devices, thin films of Gd, Dy, Tb, DyGd and DyTb were plasma-sputtered and investigated for their in-plane magnetic properties, with an emphasis on magnetization versus temperature profiles. Based on crystal structure analysis of the polycrystalline rare earth films, which consist of a low magnetic moment fcc layer at the seed interface topped with a higher moment hcp layer, an experimental protocol is introduced which allows the direct magnetic analysis of the individual layers. In line with the general trend of heavy lanthanides, the saturation magnetization was found to drop with increasing unit cell size. In situ annealed rare earth films exceeded the saturation magnetization of a high-moment Fe 65 Co 35 reference film in the cryogenic temperature regime, proving their potential for pole piece applications; however as-deposited rare earth films were found completely unsuitable. In agreement with theoretical predictions, sufficiently strained crystal phases of Tb and Dy did not exhibit an incommensurate magnetic order, unlike their single-crystal counterparts which have a helical phase. DyGd and DyTb alloys followed the trends of the elemental rare earth metals in terms of crystal structure and magnetic properties. Inter-rare-earth alloys hence present a desirable blend of saturation magnetization and operating temperature. (paper)

  7. Elastic, thermal and high pressure structural properties of heavy rare earth antimonides

    International Nuclear Information System (INIS)

    Soni, P.; Pagare, G.; Sanyal, S.P.

    2009-01-01

    Pressure induced structural phase transition of two heavy rare earth antimonides (RESb; RE=Ho, Er) have been studied theoretically by using an inter-ionic potential theory. This method has been found quite satisfactory in the case of pnictides of rare earth and describes the crystal properties in the framework of rigid-ion modal. The long-range Coulomb interaction, short-range repulsive interaction and van der Waals (vdW) interactions are properly incorporated in this theory. These compounds exhibit first order crystallographic phase transition from their NaCl-type structure to CsCl-type structure at 27 GPa and 33.2 GPa, respectively. The bulk moduli of RESb compounds are compared with the experimental values of elastic constants. We have also calculated the Debye temperature by incorporating the elastic constants for both the rare earth antimonides. (author)

  8. High Temporal and Spatial Resolution Coverage of Earth from Commercial AVSTAR Systems in Geostationary Orbit

    Science.gov (United States)

    Lecompte, M. A.; Heaps, J. F.; Williams, F. H.

    Imaging the earth from Geostationary Earth Orbit (GEO) allows frequent updates of environmental conditions within an observable hemisphere at time and spatial scales appropriate to the most transient observable terrestrial phenomena. Coverage provided by current GEO Meteorological Satellites (METSATS) fails to fully exploit this advantage due primarily to obsolescent technology and also institutional inertia. With the full benefit of GEO based imaging unrealized, rapidly evolving phenomena, occurring at the smallest spatial and temporal scales that frequently have significant environmental impact remain unobserved. These phenomena may be precursors for the most destructive natural processes that adversely effect society. Timely distribution of information derived from "real-time" observations thus may provide opportunities to mitigate much of the damage to life and property that would otherwise occur. AstroVision International's AVStar Earth monitoring system is designed to overcome the current limitations if GEO Earth coverage and to provide real time monitoring of changes to the Earth's complete atmospheric, land and marine surface environments including fires, volcanic events, lightning and meteoritic events on a "live," true color, and multispectral basis. The understanding of severe storm dynamics and its coupling to the earth's electro-sphere will be greatly enhanced by observations at unprecedented sampling frequencies and spatial resolution. Better understanding of these natural phenomena and AVStar operational real-time coverage may also benefit society through improvements in severe weather prediction and warning. AstroVision's AVStar system, designed to provide this capability with the first of a constellation of GEO- based commercial environmental monitoring satellites to be launched in late 2003 will be discussed, including spatial and temporal resolution, spectral coverage with applications and an inventory of the potential benefits to society

  9. Separation method for rare-earths using high-voltage electrophoresis on paper strip

    International Nuclear Information System (INIS)

    Clarence, J.

    1966-01-01

    The equipment includes an electrophoresis set running at 3 000 V and 20 mA. Two cooling plates are used as heat exchanger, and a pneumatic pressure device to insure an uniform pressure on the paper strip laid flat. The mobilities and the separations of the rare earths in lactic, and, α hydroxy-isobutyric acid solutions are investigated on cellulose acetate strip. Better results are obtained with α hydroxy-isobutyric acid. The method is rapid and allows a fine fractionation of rare earth elements within less than an hour. A complete separation of a Ce - Pr - Nd - Pm - Eu mixture, and a Y - Tb mixture is obtained. (author) [fr

  10. A Search for Water in a Super-Earth Atmosphere: High-resolution Optical Spectroscopy of 55Cancri e

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, Lisa J. [Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); De Mooij, Ernst J. W.; Watson, Chris [Astrophysics Research Centre, School of Mathematics and Physics, Queens University, Belfast (United Kingdom); Jayawardhana, Ray [Physics and Astronomy, York University, Toronto, Ontario L3T 3R1 (Canada); De Kok, Remco, E-mail: esteves@astro.utoronto.ca, E-mail: ernst.demooij@dcu.ie, E-mail: c.a.watson@qub.ac.uk, E-mail: rayjay@yorku.ca, E-mail: r.j.de.kok@sron.nl [Leiden Observatory, Leiden University, Postbus 9513, 2300 RA, Leiden (Netherlands)

    2017-06-01

    We present the analysis of high-resolution optical spectra of four transits of 55Cnc e, a low-density super-Earth that orbits a nearby Sun-like star in under 18 hr. The inferred bulk density of the planet implies a substantial envelope, which, according to mass–radius relationships, could be either a low-mass extended or a high-mass compact atmosphere. Our observations investigate the latter scenario, with water as the dominant species. We take advantage of the Doppler cross-correlation technique, high-spectral resolution, and the large wavelength coverage of our observations to search for the signature of thousands of optical water absorption lines. Using our observations with HDS on the Subaru telescope and ESPaDOnS on the Canada–France–Hawaii Telescope, we are able to place a 3 σ lower limit of 10 g mol{sup −1} on the mean-molecular weight of 55Cnc e’s water-rich (volume mixing ratio >10%), optically thin atmosphere, which corresponds to an atmospheric scale-height of ∼80 km. Our study marks the first high-spectral resolution search for water in a super-Earth atmosphere, and demonstrates that it is possible to recover known water-vapor absorption signals in a nearby super-Earth atmosphere, using high-resolution transit spectroscopy with current ground-based instruments.

  11. Earth elevation map production and high resolution sensing camera imaging analysis

    Science.gov (United States)

    Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai

    2010-11-01

    The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.

  12. Guided-wave high-performance spectrometers for the MEOS miniature earth observation satellite

    Science.gov (United States)

    Kruzelecky, Roman V.; Wong, Brian; Zou, Jing; Jamroz, Wes; Sloan, James; Cloutis, Edward

    2017-11-01

    The MEOS Miniature Earth Observing Satellite is a low-cost mission being developed for the Canadian Space Agency with international collaborations that will innovatively combine remote correlated atmospheric/land-cover measurements with the corresponding atmospheric and ecosystem modelling in near real-time to obtain simultaneous variations in lower tropospheric GHG mixing ratios and the resulting responses of the surface ecosystems. MEOS will provide lower tropospheric CO2, CH4, CO, N2O, H2O and aerosol mixing ratios over natural sources and sinks using two kinds of synergistic observations; a forward limb measurement and a follow-on nadir measurement over the same geographical tangent point. The measurements will be accomplished using separate limb and nadir suites of innovative miniature line-imaging spectrometers and will be spatially coordinated such that the same air mass is observed in both views within a few minutes. The limb data will consist of 16-pixel vertical spectral line imaging to provide 1-km vertical resolution, while the corresponding nadir measurements will view sixteen 5 by 10 km2 ground pixels with a 160-km East-West swath width. To facilitate the mission accommodation on a low-cost microsat with a net payload mass under 22 kg, groundbreaking miniature guided-wave spectrometers with advanced optical filtering and coding technologies will be employed based on MPBC's patented IOSPEC technologies. The data synergy requirements for each view will be innovatively met using two complementary miniature line-imaging spectrometers to provide broad-band measurements from 1200 to 2450 nm at about 1.2 nm/pixel bandwidth using a multislit binary-coded MEMS-IOSPEC and simultaneous high-resolution multiple microchannels at 0.03 nm FWHM using the revolutionary FP-IOSPEC Fabry-Perot guided-wave spectrometer concept. The guided-wave spectrometer integration provides an order of magnitude reduction in the mass and volume relative to traditional bulk

  13. Horizontal Positional Accuracy of Google Earth’s High-Resolution Imagery Archive

    Directory of Open Access Journals (Sweden)

    David Potere

    2008-12-01

    Full Text Available Google Earth now hosts high-resolution imagery that spans twenty percent of the Earth’s landmass and more than a third of the human population. This contemporary highresolution archive represents a significant, rapidly expanding, cost-free and largely unexploited resource for scientific inquiry. To increase the scientific utility of this archive, we address horizontal positional accuracy (georegistration by comparing Google Earth with Landsat GeoCover scenes over a global sample of 436 control points located in 109 cities worldwide. Landsat GeoCover is an orthorectified product with known absolute positional accuracy of less than 50 meters root-mean-squared error (RMSE. Relative to Landsat GeoCover, the 436 Google Earth control points have a positional accuracy of 39.7 meters RMSE (error magnitudes range from 0.4 to 171.6 meters. The control points derived from satellite imagery have an accuracy of 22.8 meters RMSE, which is significantly more accurate than the 48 control-points based on aerial photography (41.3 meters RMSE; t-test p-value < 0.01. The accuracy of control points in more-developed countries is 24.1 meters RMSE, which is significantly more accurate than the control points in developing countries (44.4 meters RMSE; t-test p-value < 0.01. These findings indicate that Google Earth highresolution imagery has a horizontal positional accuracy that is sufficient for assessing moderate-resolution remote sensing products across most of the world’s peri-urban areas.

  14. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    Science.gov (United States)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    Analyzed optical DTE (direct to earth) and lunar relay satellite link analyses, greater than 200 Mbps downlink to 1-m Earth receiver and greater than 1 Mbps uplink achieved with mobile 5-cm lunar transceiver, greater than 1Gbps downlink and greater than 10 Mpbs uplink achieved with 10-cm stationary lunar transceiver, MITLL (MIT Lincoln Laboratory) 2013 LLCD (Lunar Laser Communications Demonstration) plans to demonstrate 622 Mbps downlink with 20 Mbps uplink between lunar orbiter and ground station; Identified top five technology challenges to deploying lunar optical network, Performed preliminary experiments on two of challenges: (i) lunar dust removal and (ii)DTN over optical carrier, Exploring opportunities to evaluate DTN (delay-tolerant networking) over optical link in a multi-node network e.g. Desert RATS.

  15. Direct qualitative and quantitative determination of rare earths after separation by high pressure liquid chromatography (HPLC)

    International Nuclear Information System (INIS)

    Weuster, W.; Specker, H.

    1980-01-01

    The rare earths from lanthanum to erbium can be separated by means of HPLC in an eluent system containing di-isopropylether/tetrahydrofuran/nitric acid (100:30:3), and they are determined qualitatively and quantitatively after calibration. Fluorescence quenching of THF at break-through of the single elements serves as indication method. This quenching is proportional to the concentration. The calibration curve is linear within 0.2 to 0.02 moles input. Standards, ores (monazites, cerite earths, yttriae) and technical products were analysed qualitatively and quantitatively. The results obtained are in good agreement with analytical values from different methods. The relative standard deviation is 1.8-3% (N = 10). The procedure takes 50 min from dissolution of the analytical sample. (orig.) [de

  16. A method to detect ultra high energy electrons using earth's magnetic field as a radiator

    Science.gov (United States)

    Stephens, S. A.; Balasubrahmanyan, V. K.

    1983-01-01

    It is pointed out that the detection of electrons with energies exceeding a few TeV, which lose energy rapidly through synchrotron and inverse Compton processes, would provide valuable information on the distribution of sources and on the propagation of cosmic rays in the solar neighborhood. However, it would not be possible to measure the energy spectrum beyond a few TeV with any of the existing experimental techniques. The present investigation is, therefore concerned with the possibility of detecting electrons with energies exceeding a few TeV on the basis of the photons emitted through synchrotron radiation in the earth's magnetic field. Attention is given to the synchrotron radiation of electrons in the earth's magnetic field, detector response and energy estimation, and the characteristics of an ideal detector, capable of detecting photons with energies equal to or greater than 20 keV.

  17. High-efficiency solar cell with earth-abundant liquid-processed absorber

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Teodor K; Reuter, Kathleen B; Mitzi, David B [IBM T. J. Watson Research Center, Yorktown Heights, NY (United States)

    2010-05-25

    A composite liquid deposition approach merging the concepts of solution and particle-based coating for multinary chalcogenide materials is demonstrated. Photovoltaic absorbers based on earth-abundant Cu-Zn-Sn-S-Se kesterites show exceptional phase purity and are incorporated into solar cells with power conversion efficiency above 9.6%, bringing the state of the art of kesterite photovoltaic materials to a level suitable for possible commercialization. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Anisotropy and Microstructure of High Coercivity Rare Earth Iron Permanent Magnets, List of Papers Published

    Science.gov (United States)

    1989-01-01

    hardly influences both the pared by three different production technologies, absolute value of HA and its temperature dependence. The permanent magnets...ing reverse domains [2]. pared from 99.5% pure cast material supplied by The application of these magnets has been Rare Earth Products. The...the c/ re 3b Fig.. E ncrographs showingthe celular precipitation structure of precipitation hardened SmCo 2:17 magnets (a). In low coercivity magnets

  19. Evolution of the Oxidation State of the Earth's Mantle: Challenges of High Pressure Quenching

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, R.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3+ at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. Experiments of more mafic compositions and at higher pressures commonly form a polyphase quench intergrowth composed primarily of pyroxenes, with interstitial glass which hosts nearly all of the more volatile minor elements. In our previous experiments on shergottite compositions, variable fO2, T, and P is less than 4 GPa, Fe3+/TotFe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3+/TotFe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3+. Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Experiments with Knippa basalt as the starting composition were conducted at 1-8 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products from 7-8 GPa quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal Fe3+/2+. A number of different approaches have been employed to produce glassy samples that can be measured by EELS and XANES. A more intermediate andesite was used in one experiment, and decompression during quenching was attempted after, but both resulted in a finer grained polyphase texture. Experiments are currently underway to test different capsule materials may affect quench texture. A preliminary experiment using liquid nitrogen to greatly enhance the rate of cooling of the assembly has also been attempted and this technique will be

  20. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  1. An High Resolution Near-Earth Objects Population Enabling Next-Generation Search Strategies

    Science.gov (United States)

    Tricaico, Pasquale; Beshore, E. C.; Larson, S. M.; Boattini, A.; Williams, G. V.

    2010-01-01

    Over the past decade, the dedicated search for kilometer-size near-Earth objects (NEOs), potentially hazardous objects (PHOs), and potential Earth impactors has led to a boost in the rate of discoveries of these objects. The catalog of known NEOs is the fundamental ingredient used to develop a model for the NEOs population, either by assessing and correcting for the observational bias (Jedicke et al., 2002), or by evaluating the migration rates from the NEOs source regions (Bottke et al., 2002). The modeled NEOs population is a necessary tool used to track the progress in the search of large NEOs (Jedicke et al., 2003) and to try to predict the distribution of the ones still undiscovered, as well as to study the sky distribution of potential Earth impactors (Chesley & Spahr, 2004). We present a method to model the NEOs population in all six orbital elements, on a finely grained grid, allowing us the design and test of targeted and optimized search strategies. This method relies on the observational data routinely reported to the Minor Planet Center (MPC) by the Catalina Sky Survey (CSS) and by other active NEO surveys over the past decade, to determine on a nightly basis the efficiency in detecting moving objects as a function of observable quantities including apparent magnitude, rate of motion, airmass, and galactic latitude. The cumulative detection probability is then be computed for objects within a small range in orbital elements and absolute magnitude, and the comparison with the number of know NEOs within the same range allows us to model the population. When propagated to the present epoch and projected on the sky plane, this provides the distribution of the missing large NEOs, PHOs, and potential impactors.

  2. The problem of iron partition between Earth and Moon during simultaneous formation as a double planet system

    Science.gov (United States)

    Cassidy, W. A.

    1984-01-01

    A planetary model is described which requires fractional vapor/liquid condensation, planet accumulation during condensation, a late start for accumulation of the Moon, and volatile accretion to the surfaces of each planet only near the end of the accumulation process. In the model, initial accumulation of small objects is helped if the agglomerating particles are somewhat sticky. Assuming that growth proceeds through this range, agglomeration continues. If the reservoir of vapor is being preferentially depleted in iron by fractional condensation, an iron-rich planetary core forms. As the temperature decreases, condensing material becomes progressively richer in silicates and poorer in iron, forming the silicate-rich mantle of an already differentiated Earth. A second center of agglomeration successfully forms near the growing Earth after most of the iron in the reservoir has been used up. The bulk composition of the Moon then is similar to the outer mantle of the accumulating Earth.

  3. Experimental Investigations into U/TRU Recovery using a Liquid Cadmium Cathode and Salt Containing High Rare Earth Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Shelly X. Li; Steven D. Herrmann; Michael F. Simpson

    2009-09-01

    Experimental Investigations into U/TRU Recovery using a Liquid Cadmium Cathode and Salt Containing High Rare Earth Concentrations Shelly X. Li, Steven D. Herrmann, and Michael F. Simpson Pyroprocessing Technology Department Idaho National Laboratory P.O. Box 1625, Idaho Falls, ID 83415 USA Abstract - A series of six bench-scale liquid cadmium cathode (LCC) tests was performed to obtain basic separation data with focus on the behavior of rare earth elements. The electrolyte used for the tests was a mixed salt from the Mk-IV and Mk-V electrorefiners, in which spent metal fuels from Experimental Breeder Reactor-II (EBR-II) had been processed. Rare earth (RE) chlorides, such as NdCl3, CeCl3, LaCl3, PrCl3, SmCl3, and YCl3, were spiked into the salt prior to the first test to create an extreme case for investigating rare earth contamination of the actinides collected by a LCC. For the first two LCC tests, an alloy with the nominal composition of 41U-30Pu-5Am-3Np-20Zr-1RE was loaded into the anode baskets as the feed material. The anode feed material for Runs 3 to 6 was spent ternary fuel (U-19Pu-10Zr). The Pu/U ratio in the salt varied from 0.6 to 1.3. Chemical and radiochemical analytical results confirmed that U and transuranics can be collected into the LCC as a group under the given run conditions. The RE contamination level in the LCC product was up to 6.7 wt% of the total metal collected. The detailed data for partitioning of actinides and REs in the salt and Cd phases are reported in the paper.

  4. Analysis on three-sublattice model of magnetic properties in rare-earth iron garnets under high magnetic fields

    International Nuclear Information System (INIS)

    Wang Wei; Chen Ri; Qi Xin

    2012-01-01

    Highlights: ► An improved three-sublattice model is provided. ► The magnetic properties of the rare-earth ions show great importance to the magnetic behaviors of rare-earth iron garnets. ► The coefficients α i associated with λ and χ are the functions of H e and T. ► The changes of M with H e at different temperatures are revealed. - Abstract: In this paper, based on the molecular field theory, a new and improved three-sublattice model on studying the magnetic properties of ferrimagnetic rare-earth iron garnet in high magnetic fields is introduced. Here, the effective exchange field is described as H i = λM = λχH e , where λ is the coefficient associated with the molecular field, χ is the effective magnetic susceptibility, and H e is external magnetic fields. As is known, the magnetic sublattices in rare-earth iron garnets can be classified three kinds labeled as a, c and d, in our calculations, whose magnetizations are defined as M a , M c and M d , respectively. Then, using this model, the temperature and field dependences of the total magnetization in Dy 3 Fe 5 O 12 (DyIG) are discussed. Meanwhile, the magnetizations of the three kinds of magnetic sublattices are analyzed. Furthermore, our theory suggests that the coefficients α i associated with λ and χ in DyIG show obvious anisotropic, temperature-dependence and field-dependence characteristics. And, the theoretical calculations exactly fit the experimental data.

  5. Determination of rare earth elements in water ore and grass sample around monazite dressing plant by high performance liquid chromatography

    International Nuclear Information System (INIS)

    Laoharojanaphand, S.

    1993-01-01

    High performance liquid chromatography technique for the analysis of rare earth elements; yttrium, cerium and lanthanum, was developed. A comparison of two mobile phases between α-hydroxy isobutyric acid and mandelic acid was carried out using C 1 8 column for separation and the amount of the rare earth elements were detected by post column complex formation with Arsenazo III. It was found that α-hydroxy isobutyric acid had higher efficiency in separation of the rare earth elements than mandelic acid when 1-octanesulfonic acid was used as an organic modifier. The optimum conditions of the mobile phase were comprised of the p H of 3.65, a flow rate of 1 ml/min which resulted in the values of resolution to be 13.62 between yttrium and cerium and 3.49 between cerium and lanthanum. Standard curves of yttrium and lanthanum yielded linear range of 0.1-45 and 1-60 ppm whereas the cerium curve was in the range of 1-100 ppm. The analyses of water, ore and grass samples collected around the monazite dressing plants from Prachuap Khiri Khan and Phuket showed that none of the rare earth elements was detected in all samples from Prachuap Khiri Khan. But 0.5 ppm of yttrium and 1.5 ppm of lanthanum were found in the water samples from Phuket while in the grass samples contained yttrium and cerium in the amounts of 2 ppm and 14 ppm whereas none was detected in the ore samples by this technique under the previous conditions

  6. Nitrogen solubility in the deep mantle and the origin of Earth's primordial nitrogen budget

    Science.gov (United States)

    Yoshioka, Takahiro; Wiedenbeck, Michael; Shcheka, Svyatoslav; Keppler, Hans

    2018-04-01

    The solubility of nitrogen in the major minerals of the Earth's transition zone and lower mantle (wadsleyite, ringwoodite, bridgmanite, and Ca-silicate perovskite) coexisting with a reduced, nitrogen-rich fluid phase was measured. Experiments were carried out in multi-anvil presses at 14 to 24 GPa and 1100 to 1800 °C close to the Fe-FeO buffer. Starting materials were enriched in 15N and the nitrogen concentrations in run products were measured by secondary ion mass spectrometry. Observed nitrogen (15N) solubilities in wadsleyite and ringwoodite typically range from 10 to 250 μg/g and strongly increase with temperature. Nitrogen solubility in bridgmanite is about 20 μg/g, while Ca-silicate perovskite incorporates about 30 μg/g under comparable conditions. Partition coefficients of nitrogen derived from coexisting phases are DNwadsleyite/olivine = 5.1 ± 2.1, DNringwoodite/wadsleyite = 0.49 ± 0.29, and DNbridgmanite/ringwoodite = 0.24 (+ 0.30 / - 0.19). Nitrogen solubility in the solid, iron-rich metal phase coexisting with the silicates was also measured and reached a maximum of nearly 1 wt.% 15N at 23 GPa and 1400 °C. These data yield a partition coefficient of nitrogen between iron metal and bridgmanite of DNmetal/bridgmanite ∼ 98, implying that in a lower mantle containing about 1% of iron metal, about half of the nitrogen still resides in the silicates. The high nitrogen solubility in wadsleyite and ringwoodite may be responsible for the low nitrogen concentrations often observed in ultradeep diamonds from the transition zone. Overall, the solubility data suggest that the transition zone and the lower mantle have the capacity to store at least 33 times the mass of nitrogen presently residing in the atmosphere. By combining the nitrogen solubility data in minerals with data on nitrogen solubility in silicate melts, mineral/melt partition coefficients of nitrogen can be estimated, from which the behavior of nitrogen during magma ocean crystallization can

  7. High-pressure densified solid solutions of alkaline earth hexaborides (Ca/Sr, Ca/Ba, Sr/Ba) and their high-temperature thermoelectric properties

    International Nuclear Information System (INIS)

    Gürsoy, M.; Takeda, M.; Albert, B.

    2015-01-01

    Solid solutions of alkaline earth hexaborides were synthesized and densified by spark plasma sintering at 100 MPa. The high-temperature thermoelectric properties (Seebeck coefficients, electrical and thermal diffusivities, heat capacities) were measured between room temperature and 1073 K. CaB 6 , SrB 6 , BaB 6 and the ternary hexaborides Ca x Sr 1−x B 6 , Ca x Ba 1−x B 6 , Sr x Ba 1−x B 6 (x = 0.25, 0.5, 0.75) are n-type conducting compounds over the whole compositional and thermal ranges. The values of the figure of merit ZT for CaB 6 (ca. 0.3 at 1073 K) were found to be significantly increased compared to earlier investigations which is attributed to the densification process. - Highlights: • Solid solutions of alkaline earth hexaborides were synthesized. • High-temperature thermoelectric properties of mixed calcium borides are excellent. • Spark plasma source densification results in high ZT values. • Borides are rare-earth free and refractory materials

  8. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY

    International Nuclear Information System (INIS)

    FENG, H.; JONES, K.W.; MCGUIGAN, M.; SMITH, G.J.; SPILETIC, J.

    2001-01-01

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data

  9. HIGH-PERFORMANCE COMPUTING FOR THE STUDY OF EARTH AND ENVIRONMENTAL SCIENCE MATERIALS USING SYNCHROTRON X-RAY COMPUTED MICROTOMOGRAPHY.

    Energy Technology Data Exchange (ETDEWEB)

    FENG,H.; JONES,K.W.; MCGUIGAN,M.; SMITH,G.J.; SPILETIC,J.

    2001-10-12

    Synchrotron x-ray computed microtomography (CMT) is a non-destructive method for examination of rock, soil, and other types of samples studied in the earth and environmental sciences. The high x-ray intensities of the synchrotron source make possible the acquisition of tomographic volumes at a high rate that requires the application of high-performance computing techniques for data reconstruction to produce the three-dimensional volumes, for their visualization, and for data analysis. These problems are exacerbated by the need to share information between collaborators at widely separated locations over both local and tide-area networks. A summary of the CMT technique and examples of applications are given here together with a discussion of the applications of high-performance computing methods to improve the experimental techniques and analysis of the data.

  10. High modulus rare earth and beryllium containing silicate glass compositions. [for glass reinforcing fibers

    Science.gov (United States)

    Bacon, J. F. (Inventor)

    1976-01-01

    Glass compositions having a Young's modulus of at least 16 million psi and a specific modulus of at least 110 million inches consisting essentially of approximately, by weight, 20 to 43% SiO2, 8 to 21% Al2O3, 4 to 10% BeO, 27 to 58% of at least one oxide selected from a first group consisting of Y2O3, La2O3, Nd2O3, Ce2O3, Ce2O3, and the mixed rare earth oxides, and 3 to 12% of at least one oxide selected from a second group consisting of MgO, ZrO2, ZnO and CaO are described. The molar ratio of BeO to the total content of the first group oxides is from 1.0 to 3.0.

  11. Backthinned TDI CCD image sensor design and performance for the Pleiades high resolution Earth observation satellites

    Science.gov (United States)

    Materne, A.; Bardoux, A.; Geoffray, H.; Tournier, T.; Kubik, P.; Morris, D.; Wallace, I.; Renard, C.

    2017-11-01

    The PLEIADES-HR Earth observing satellites, under CNES development, combine a 0.7m resolution panchromatic channel, and a multispectral channel allowing a 2.8 m resolution, in 4 spectral bands. The 2 satellites will be placed on a sun-synchronous orbit at an altitude of 695 km. The camera operates in push broom mode, providing images across a 20 km swath. This paper focuses on the specifications, design and performance of the TDI detectors developed by e2v technologies under CNES contract for the panchromatic channel. Design drivers, derived from the mission and satellite requirements, architecture of the sensor and measurement results for key performances of the first prototypes are presented.

  12. Observation of high magnetocrystalline anisotropy on Co doping in rare earth free Fe2P magnetic material

    Science.gov (United States)

    Thakur, Jyoti; Singh, Om Pal; Tomar, Monika; Gupta, Vinay; Kashyap, Manish K.

    2018-04-01

    ab-initio investigation of magnetocrystalline anisotropy energy (MAE) for Fe2P and CoFeP using density functional theory based full-potential linear augmented plane wave (FPLAPW) is reported. CoFeP alloy exhibits large magnetic moment 13.28 µB and enhanced anisotropy energy reaching as high as 1326 µeV/f.u. This energy is nearly doubled as compared to its parent Fe2P alloy, making this system a promising candidate for a rare earth free permanent magnet. Substituitng Co at Fe-3f site in Fe2P helps in stabilizing the new structure and further improves the magnetic properties.

  13. Prediction of geological and mechanical processes while disposing of high-level waste (HLW) into the earth crust

    International Nuclear Information System (INIS)

    Kedrovsky, O.L.; Morozov, V.N.

    1992-01-01

    Prediction of geological and mechanical processes while disposing of high-level waste of atomic industry into the earth crust is the fundamental base for ecological risk assessment (possible consequences) while developing repository designs. The subject of this paper is the analytical estimate of possibilities of rock fracturing mechanisms to predict isolation properties loss by massif beginning from crystal lattice of minerals up to large fracture disturbances under conditions of long-term influence of pressure, temperature, and radiation. To solve the problem possibilities of kinetic

  14. Success of the International Year of the Planet Earth through Targeted High-impact Programs at the American Geological Institute

    Science.gov (United States)

    Leahy, P.

    2007-12-01

    on the 2007 Earth Science Week web site, and AGI staff is participating as "first bloggers" for the IYPE Earthlearningidea online investigations. A major AGI contribution to IYPE will be an assessment of the geoscience workforce in the United States. This effort will involve analyzing supply and demand statistics for workforce and working with academia to provide material aimed at ensuring both an adequate and high-quality supply of geoscientists for the future. Such an assessment can be used in collaboratively building a global assessment of the geoscience profession.

  15. Versatile Rare Earth Hexanuclear Clusters for the Design and Synthesis of Highly-connected ftw-MOFs

    KAUST Repository

    Eddaoudi, Mohamed

    2015-04-15

    A series of highly porous MOFs were deliberately targeted to contain a 12-connected rare earth hexanuclear cluster and quadrangular tetracarboxylate ligands. The resultant MOFs have an underlying topology of ftw, (4, 12)-c ftw-MOFs. This targeted RE ftw-MOF platform offers potential to assess the effect of pore functionality and size, via ligand functionalization and/or expansion, on adsorption properties of relevant gases. Examination of gas adsorption properties of these compounds showed that the ftw-MOF-2 analogues, constructed from rigid ligands having a phenyl, a naphthyl or an anthracene core, exhibited a relatively high degree of porosity. The specific surface areas and pore volumes of these analogs are amongst the highest reported for rare earth based MOFs. Further studies reveal that Y-ftw-MOF-2 shows promising attributes as a storage media for methane (CH4) at high pressures. Furthermore, Y-ftw-MOF-2 shows potential as a separation agent for the selective removal of normal butane (n-C4H10) and propane (C3H8) from natural gas (NG) as well as interesting properties for the selective separation of n-C4H10 from C3H8 or isobutane (iso-C4H10).

  16. The Deep Space Gateway Lightning Mapper (DLM) — Monitoring Global Change and Thunderstorm Processes through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    Science.gov (United States)

    Lang, T. J.; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; Tatum, P. F.

    2018-02-01

    We propose the Deep Space Gateway Lightning Mapper (DLM) instrument. The primary goal of the DLM is to optically monitor Earth's high-latitude (50° and poleward) total lightning not observed by current and planned spaceborne lightning mappers.

  17. Development of a High-Resolution Climate Model for Future Climate Change Projection on the Earth Simulator

    Science.gov (United States)

    Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.

    2002-12-01

    The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).

  18. A Model for Undergraduate and High School Student Research in Earth and Space Sciences: The New York City Research Initiative

    Science.gov (United States)

    Scalzo, F.; Johnson, L.; Marchese, P.

    2006-05-01

    The New York City Research Initiative (NYCRI) is a research and academic program that involves high school students, undergraduate and graduate students, and high school teachers in research teams that are led by college/university principal investigators of NASA funded projects and/or NASA scientists. The principal investigators are at 12 colleges/universities within a 50-mile radius of New York City (NYC and surrounding counties, Southern Connecticut and Northern New Jersey), as well as the NASA Goddard Institute of Space Studies (GISS). This program has a summer research institute component in Earth Science and Space Science, and an academic year component that includes the formulation and implementation NASA research based learning units in existing STEM courses by high school and college faculty. NYCRI is a revision and expansion of the Institute on Climate and Planets at GISS and is funded by NASA MURED and the Goddard Space Flight Center's Education Office.

  19. Using rare earth doped thiosilicate phosphors in white light emitting LEDs: Towards low colour temperature and high colour rendering

    International Nuclear Information System (INIS)

    Smet, P.F.; Korthout, K.; Haecke, J.E. van; Poelman, D.

    2008-01-01

    Rare earth doped thiosilicates are promising materials for use in phosphor converted light emitting diodes (pcLEDs). These phosphors (including the hosts Ca 2 SiS 4 , BaSi 2 S 5 and Ba 2 SiS 4 in combination with Ce 3+ and/or Eu 2+ doping) cover the entire visible part of the spectrum, as the emission colour can be changed from deep blue to red. The photoluminescence emission spectrum and the overlap of the excitation spectrum with the emission of pumping LEDs is evaluated. The trade-off between high colour rendering and high electrical-to-optical power efficiency is discussed by simulation with both blue and UV emitting LEDs. Finally, a phosphor combination with low colour temperature (3000 K) and high colour rendering (CRI = 93) is proposed

  20. Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations

    Science.gov (United States)

    Schneider, Tapio; Lan, Shiwei; Stuart, Andrew; Teixeira, João.

    2017-12-01

    Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.

  1. A Highly Scalable Data Service (HSDS) using Cloud-based Storage Technologies for Earth Science Data

    Science.gov (United States)

    Michaelis, A.; Readey, J.; Votava, P.; Henderson, J.; Willmore, F.

    2017-12-01

    Cloud based infrastructure may offer several key benefits of scalability, built in redundancy, security mechanisms and reduced total cost of ownership as compared with a traditional data center approach. However, most of the tools and legacy software systems developed for online data repositories within the federal government were not developed with a cloud based infrastructure in mind and do not fully take advantage of commonly available cloud-based technologies. Moreover, services bases on object storage are well established and provided through all the leading cloud service providers (Amazon Web Service, Microsoft Azure, Google Cloud, etc…) of which can often provide unmatched "scale-out" capabilities and data availability to a large and growing consumer base at a price point unachievable from in-house solutions. We describe a system that utilizes object storage rather than traditional file system based storage to vend earth science data. The system described is not only cost effective, but shows a performance advantage for running many different analytics tasks in the cloud. To enable compatibility with existing tools and applications, we outline client libraries that are API compatible with existing libraries for HDF5 and NetCDF4. Performance of the system is demonstrated using clouds services running on Amazon Web Services.

  2. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-12-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  3. Application of high-precision two-way ranging to Galileo Earth-1 encounter navigation

    Science.gov (United States)

    Pollmeier, V. M.; Thurman, S. W.

    1992-01-01

    The application of precision two-way ranging to orbit determination with relatively short data arcs is investigated for the Galileo spacecraft's approach to its first Earth encounter (December 8, 1990). Analysis of previous S-band (2.3-GHz) ranging data acquired from Galileo indicated that under good signal conditions submeter precision and 10-m ranging accuracy were achieved. It is shown that ranging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. A range data filtering technique, in which explicit modeling of range measurement bias parameters for each station pass is utilized, is shown to largely remove the systematic ground system calibration errors and transmission media effects from the Galileo range measurements, which would otherwise corrupt the angle-finding capabilities of the data. The accuracy of the Galileo orbit solutions obtained with S-band Doppler and precision ranging were found to be consistent with simple theoretical calculations, which predicted that angular accuracies of 0.26-0.34 microrad were achievable. In addition, the navigation accuracy achieved with precision ranging was marginally better than that obtained using delta-differenced one-way range (delta DOR), the principal data type that was previously used to obtain spacecraft angular position measurements operationally.

  4. High-temperature corrosion of metals in the salt and metallic melts containing rare earths

    Science.gov (United States)

    Karpov, V. V.; Abramov, A. V.; Zhilyakov, A. Yu.; Belikov, S. V.; Volkovich, V. A.; Polovov, I. B.; Rebrin, O. I.

    2016-09-01

    A complex of independent methods was employed to study the corrosion resistance of molybdenum, zirconium, tantalum and tungsten in chloride, chloride-fluoride and fluoride-oxide melts based on LiCl, CaCl2, NaCl- KCl, LiF, and containing rare earths. Tests were conducted for 30 h at 750-1050 °C. The metals showed excellent corrosion resistance in fused chlorides (the corrosion rates were below 0.0005 g/(m2 h). Despite the presence of chemically active fluoride ions in the chloride-fluoride melts, the metals studied also showed very low corrosion rates, except molybdenum, for which the rate of corrosion was 0,8 g/(m2 h). The corrosion resistance of tantalum was considerably reduced in the fluoride-oxide melts; the corrosion rate was over 1 g/(m2 h) corresponding to the 8-th grade of stability and placing tantalum to the group of "low stability" materials.

  5. X-ray absorption experiments on rare earth and uranium compounds under high pressure

    International Nuclear Information System (INIS)

    Schmiester, G.

    1987-01-01

    After an introduction into the phenomenon of the mixed valency and the method of measuring the microstructures by X-ray absorption spectroscopy in the area of the L edges under pressure, the results of investigations at selected substitutes of the chalcogenides and puictides of the rare earths and the uranium were given. Thus, pressure-induced valency transitions in YbS and YbTe, instabilities in valency and structural phase transitions in EUS and SmTe as well as the change in the electron structure in USb under pressure were investigated in order to answer questions of solid state physics (e.g. semiconductor-metal transitions, correlation between valency and structural phase transitions). Hybridization effects in L III spectra of formally tetravalent Ca are analyzed at CeF 4 and CeO 2 (insulators) and the role of final state effects in the L III spectra are analyzed at EuP 2 P 2 and TmSe-TmTe (semiconductor systems). (RB) [de

  6. A high-fidelity N-body ephemeris generator for satellites in Earth orbit

    Science.gov (United States)

    Simmons, David R.

    1991-10-01

    A program is currently used for mission planning called the Analytic Satellite Ephemeris Program (ASEP), which produces projected data for orbits that remain fairly close to Earth. Lunar and solar perturbations are taken into account in another program called GRAVE. This project is a revision of GRAVE which incorporates more flexible means of input for initial data, provides additional kinds of output information, and makes use of structured programming techniques to make the program more understandable and reliable. The computer program ORBIT was tested against tracking data for the first 313 days of operation of the CRRES satellite. A sample graph is given comparing the semi-major axis calculated by the program with the values supplied by NORAD. When calculated for points at which CRRES passes through the ascending node, the argument of perigee, the right ascension of the ascending node, and the mean anomaly all stay within about a degree of the corresponding values from NORAD; the inclination of the orbital plane is much closer. The program value of the eccentricity is in error by no more than 0.0002.

  7. High Power High Thrust Ion Thruster (HPHTion): 50 CM Ion Thruster for Near-Earth Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in high power, photovoltaic technology has enabled the possibility of reasonably sized, high specific power, high power, solar arrays. New thin film solar...

  8. High coercivity in rare-earth lean nanocomposite magnets by grain boundary infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Madugundo, Rajasekhar, E-mail: mraja@udel.edu [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Salazar-Jaramillo, Daniel [BCMaterials, Bizkaia Science and Technology Park, E-48160 Derio (Spain); Manuel Barandiaran, Jose [BCMaterials, Bizkaia Science and Technology Park, E-48160 Derio (Spain); Department of Electricity & Electronics, University of the Basque Country (UPV/EHU), E-48080 Bilbao (Spain); Hadjipanayis, George C., E-mail: hadji@udel.edu [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2016-02-15

    A significant enhancement in coercivity was achieved by grain boundary modification through low temperature infiltration of Pr{sub 75}(Cu{sub 0.25}Co{sub 0.75}){sub 25} eutectic alloy in rare-earth lean (Pr/Nd)–Fe–B/α-Fe nanocomposite magnets. The infiltration procedure was carried out on ribbons and hot-deformed magnets at 600–650 °C for different time durations. In Nd{sub 2}Fe{sub 14}B/α-Fe ribbons, the coercivity increased from 5.3 to 23.8 kOe on infiltration for 4 h. The Pr{sub 2}Fe{sub 14}B/α-Fe hot-deformed magnet shows an increase in coercivity from 5.4 to 22 kOe on infiltration for 6 h. The increase in the coercivity comes at the expense of remnant magnetization. X-ray diffraction studies confirm the presence of both the hard Nd{sub 2}Fe{sub 14}B and soft α-Fe phases. A decrease in the soft α-Fe phase content was observed after infiltration. - Highlights: • Enhancement in coercivity was achieved by grain boundary modification. • Coercivity increased from 5.3 to 23.8 kOe in Nd{sub 2}Fe{sub 14}B/α-Fe on infiltration. • Pr{sub 2}Fe{sub 14}B/α-Fe deformed magnet shows an increase in coercivity from 5.4 to 22 kOe. • The increase in the coercivity comes at the expense of remnant magnetization. • A decrease in the soft α-Fe phase content was observed after infiltration.

  9. High-dispersion spectroscopy of extrasolar planets: from CO in hot Jupiters to O2 in exo-Earths.

    Science.gov (United States)

    Snellen, Ignas

    2014-04-28

    Ground-based high-dispersion spectroscopy could reveal molecular oxygen as a biomarker gas in the atmospheres of twin-Earths transiting red dwarf stars within the next 25 years. The required contrasts are only a factor of 3 lower than that already achieved for carbon monoxide in hot Jupiter atmospheres today but will need much larger telescopes because the target stars will be orders of magnitude fainter. If extraterrestrial life is very common and can therefore be found on planets around the most nearby red dwarf stars, it may be detectable via transmission spectroscopy with the next-generation extremely large telescopes. However, it is likely that significantly more collecting area is required for this. This can be achieved through the development of low-cost flux collector technology, which combines a large collecting area with a low but sufficient image quality for high-dispersion spectroscopy of bright stars.

  10. High-Performance Data Analysis Tools for Sun-Earth Connection Missions

    Science.gov (United States)

    Messmer, Peter

    2011-01-01

    The data analysis tool of choice for many Sun-Earth Connection missions is the Interactive Data Language (IDL) by ITT VIS. The increasing amount of data produced by these missions and the increasing complexity of image processing algorithms requires access to higher computing power. Parallel computing is a cost-effective way to increase the speed of computation, but algorithms oftentimes have to be modified to take advantage of parallel systems. Enhancing IDL to work on clusters gives scientists access to increased performance in a familiar programming environment. The goal of this project was to enable IDL applications to benefit from both computing clusters as well as graphics processing units (GPUs) for accelerating data analysis tasks. The tool suite developed in this project enables scientists now to solve demanding data analysis problems in IDL that previously required specialized software, and it allows them to be solved orders of magnitude faster than on conventional PCs. The tool suite consists of three components: (1) TaskDL, a software tool that simplifies the creation and management of task farms, collections of tasks that can be processed independently and require only small amounts of data communication; (2) mpiDL, a tool that allows IDL developers to use the Message Passing Interface (MPI) inside IDL for problems that require large amounts of data to be exchanged among multiple processors; and (3) GPULib, a tool that simplifies the use of GPUs as mathematical coprocessors from within IDL. mpiDL is unique in its support for the full MPI standard and its support of a broad range of MPI implementations. GPULib is unique in enabling users to take advantage of an inexpensive piece of hardware, possibly already installed in their computer, and achieve orders of magnitude faster execution time for numerically complex algorithms. TaskDL enables the simple setup and management of task farms on compute clusters. The products developed in this project have the

  11. High-Precision Global Geodetic Systems: Revolution And Revelation In Fluid And 'Solid' Earth Tracking (Invited)

    Science.gov (United States)

    Minster, J. H.; Altamimi, Z.; Blewitt, G.; Carter, W. E.; Cazenave, A. A.; Davis, J. L.; Dragert, H.; Feary, D. A.; Herring, T.; Larson, K. M.; Ries, J. C.; Sandwell, D. T.; Wahr, J. M.

    2009-12-01

    Over the past half-century, space geodetic technologies have changed profoundly the way we look at the planet, not only in the matter of details and accuracy, but also in the matter of how the entire planet changes with time, even on “human” time scales. The advent of space geodesy has provided exquisite images of the ever-changing land and ocean topography and global gravity field of the planet. We now enjoy an International Terrestrial Reference System with a time-dependent geocenter position accurate to a few millimeters. We can image small and large tectonic deformations of the surface before, during, and after earthquakes and volcanic eruptions. We measure both the past subtle changes as well as the recent dramatic changes in the ice sheets, and track global and regional sea-level change to a precision of a millimeter per year or better. The remarkable achievements of Earth observing missions over the past two decades, and the success of future international missions described in the Decadal Survey depend both implicitly and explicitly on the continued availability and enhancement of a reliable and resilient global infrastructure for precise geodesy, and on ongoing advances in geodetic science that are linked to it. This allows us to deal with global scientific, technological and social issues such as climate change and natural hazards, but the impact of the global precise geodetic infrastructure also permeates our everyday lives. Nowadays drivers, aviators, and sailors can determine their positions inexpensively to meter precision in real time, anywhere on the planet. In the foreseeable future, not only will we be able to know a vehicle’s position to centimeter accuracy in real time, but also to control that position, and thus introduce autonomous navigation systems for many tasks which are beyond the reach of “manual” navigation capabilities. This vision will only be realized with sustained international support of the precise global geodetic

  12. Microfluidic active mixers employing ultra-high aspect-ratio rare-earth magnetic nano-composite polymer artificial cilia

    International Nuclear Information System (INIS)

    Rahbar, Mona; Gray, Bonnie L; Shannon, Lesley

    2014-01-01

    We present a new micromixer based on highly magnetic, flexible, high aspect-ratio, artificial cilia that are fabricated as individual micromixer elements or in arrays for improved mixing performance. These new cilia enable high efficiency, fast mixing in a microchamber, and are controlled by small electromagnetic fields. The artificial cilia are fabricated using a new micromolding process for nano-composite polymers. Cilia fibers with aspect-ratios as high as 8:0.13 demonstrate the fabrication technique's capability in creating ultra-high aspect-ratio microstructures. Cilia, which are realized in polydimethylsiloxane doped with rare-earth magnetic powder, are magnetized to produce permanent magnetic structures with bidirectional deflection capabilities, making them highly suitable as mixers controlled by electromagnetic fields. Due to the high magnetization level of the polarized nano-composite polymer, we are able to use miniature electromagnets providing relatively small magnetic fields of 1.1 to 7 mT to actuate the cilia microstructures over a very wide motion range. Mixing performances of a single cilium, as well as different arrays of multiple cilia ranging from 2 to 8 per reaction chamber, are characterized and compared with passive diffusion mixing performance. The mixer cilia are actuated at different amplitudes and frequencies to optimize mixing performance. We demonstrate that more than 85% of the total volume of the reaction chamber is fully mixed after 3.5 min using a single cilium mixer at 7 mT compared with only 20% of the total volume mixed with passive diffusion. The time to achieve over 85% mixing is further reduced to 70 s using an array of eight cilia microstructures. The novel microfabrication technique and use of rare-earth permanently-magnetizable nano-composite polymers in mixer applications has not been reported elsewhere by other researchers. We further demonstrate improved mixing over other cilia micromixers as enabled by the high

  13. Earth Science Principles Pertinent to the General Education Programs in Junior High Schools

    Science.gov (United States)

    Henson, Kenneth Tyrone

    1970-01-01

    Presents the procedures, and findings of a study designed to identify principles in astronomy, geology, meterology, oceanography and physical geography pertinent to general education programs in junior high schools. (LC)

  14. Depth Probing Soft X-ray Microprobe (DPSXRM) for High Resolution Probing of Earth's Microstructural Samples

    Science.gov (United States)

    Dikedi, P. N.

    2015-12-01

    The Cambrian explosion; occurrence of landslides in very dry weather conditions; rockslides; dead, shriveled-up and crumbled leaves possessing fossil records with the semblance of well preserved, flat leaves; abundance of trilobite tracks in lower and higher rock layers; and sailing stones are enigmas demanding demystifications. These enigmas could be elucidated when data on soil structure, texture and strength are provided by some device with submicrometre accuracy; for these and other reasons, the design of a Depth Probing Soft X-ray Microprobe (DPSXRM), is being proposed; it is expected to deliver soft X-rays, at spatial resolution, ϛ≥600nm and to probe at the depth of 0.5m in 17s. The microprobe is portable compared to a synchrotron radiation facility (Diamond Light Source has land size of 43,300m2); spatial resolution,ϛ , of the DPSXRM surpasses those of the X-ray Fluorescence microanalysis (10µm), electron microprobe (1-3µm) and ion microprobe (5->30µm); the DPSXRM has allowance for multiple targets. Vanadium and Manganese membranes are proposed owing to respective 4.952KeV VKα1 and 5.899KeV MnKα1 X-rays emitted, which best suits micro-probing of Earth's microstructural samples. Compound systems like the Kirk-Patrick and Baez and Wolter optics, aspheric mirrors like elliptical and parabolic optics, small apertures and Abbe sine condition are employed to reduce or remove astigmatism, obliquity, comatic and spherical aberrations—leading to good image quality. Results show that 5.899KeV MnKα1 and 4.952KeV VKα1 soft X-rays will travel a distance of 2.75mm to form circular patches of radii 2.2mm and 2.95mm respectively. Zone plate with nth zone radius of 1.5mm must be positioned 1.5mm and 2mm from the electron gun if circular patches must be formed from 4.952KeV VKα1 and 5.899KeV MnKα1 soft X-rays respectively. The focal lengths of 0.25μm≤ƒ≤1.50μm and 0.04μm≤ƒ≤0.2μm covered by 4.952KeV VKα1 and 5.899KeV Mn Kα1 soft X-Rays, will

  15. Ice911: Developing an Effective Response to Climate Change in Earth's Cryosphere using High Albedo Materials

    Science.gov (United States)

    Field, L. A.; Wadhams, P.; Root, T.; Chetty, S.; Kammen, D. M.; Venkatesh, S.; van der Heide, D.; Baum, E.

    2012-12-01

    material and deployment approach. Small deployments were once again made on a California mountain lake, using granular biodegradable food-grade materials or glass-based materials placed in large-mesh containers. The deployments successfully shielded underlying snow and ice from melting, and remained stable in the face of the strong winds in the area. It may also be possible to select materials that are readily incorporated in new ice as it forms in the winter season. Young, or thin, ice tends to have a relatively low albedo, and the higher albedo of ice so formed with these materials incorporated could be advantageous in retaining young or thin ice. We speculate that once a critical amount of ice (or snow, permafrost, etc.) is preserved, the balance may be tipped back sufficiently to slow the overall melting rate of the cryosphere, and further intervention may not be required. Localized albedo modification options such as the one being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes, enhance the preservation of threatened species, ensure more predictable availability of drinking water, and perhaps bring about a reduction in the Ice-Albedo Feedback Effect, thus slowing some of the effects of climate change in the earth's icy regions and beyond.

  16. Highly Sideophile Element Abundance Constraints on the Nature of the Late Accretionary Histories of Earth, Moon and Mars

    Science.gov (United States)

    Walker, R. J.; Puchtel, I. S.; Brandon, A. D.; Horan, M. F.; James, O. B.

    2007-01-01

    The highly siderophile elements (HSE) include Re, Os, Ir, Ru, Pt and Pd. These elements are initially nearly-quantitatively stripped from planetary silicate mantles during core segregation. They then may be re-enriched in mantles via continued accretion sans continued core segregation. This suite of elements and its included long-lived radiogenic isotopes systems (Re-187 (right arrow) Os-187; Pt-190 (right arrow) Os-186) can potentially be used to fingerprint the characteristics of late accreted materials. The fingerprints may ultimately be useful to constrain the prior nebular history of the dominant late accreted materials, and to compare the proportion and genesis of late accretionary materials added to the inner planets. The past ten years have seen considerable accumulation of isotopic and compositional data for HSE present in the Earth's mantle, lunar mantle and impact melt breccias, and Martian meteorites. Here we review some of these data and consider the broader implications of the compiled data.

  17. System for beaming power from earth to a high altitude platform

    Science.gov (United States)

    Friedman, Herbert W.; Porter, Terry J.

    2002-01-01

    Power is transmitted to a high altitude platform by an array of diode pumped solid state lasers each operated at a single range of laser wavelengths outside of infrared and without using adaptive optics. Each laser produces a beam with a desired arrival spot size. An aircraft avoidance system uses a radar system for automatic control of the shutters of the lasers.

  18. Leveraging High Resolution Topography for Education and Outreach: Updates to OpenTopography to make EarthScope and Other Lidar Datasets more Prominent in Geoscience Education

    Science.gov (United States)

    Kleber, E.; Crosby, C. J.; Arrowsmith, R.; Robinson, S.; Haddad, D. E.

    2013-12-01

    The use of Light Detection and Ranging (lidar) derived topography has become an indispensable tool in Earth science research. The collection of high-resolution lidar topography from an airborne or terrestrial platform allows landscapes and landforms to be represented at sub-meter resolution and in three dimensions. In addition to its high value for scientific research, lidar derived topography has tremendous potential as a tool for Earth science education. Recent science education initiatives and a community call for access to research-level data make the time ripe to expose lidar data and derived data products as a teaching tool. High resolution topographic data fosters several Disciplinary Core Ideas (DCIs) of the Next Generation Science Standards (NGS, 2013), presents respective Big Ideas of the new community-driven Earth Science Literacy Initiative (ESLI, 2009), teaches to a number National Science Education Standards (NSES, 1996), and Benchmarks for Science Literacy (AAAS, 1993) for science education for undergraduate physical and environmental earth science classes. The spatial context of lidar data complements concepts like visualization, place-based learning, inquiry based teaching and active learning essential to teaching in the geosciences. As official host to EarthScope lidar datasets for tectonically active areas in the western United States, the NSF-funded OpenTopography facility provides user-friendly access to a wealth of data that is easily incorporated into Earth science educational materials. OpenTopography (www.opentopography.org), in collaboration with EarthScope, has developed education and outreach activities to foster teacher, student and researcher utilization of lidar data. These educational resources use lidar data coupled with free tools such as Google Earth to provide a means for students and the interested public to visualize and explore Earth's surface in an interactive manner not possible with most other remotely sensed imagery. The

  19. The Deep Space Gateway Lightning Mapper (DLM) - Monitoring Global Change and Thunderstorm Processes Through Observations of Earth's High-Latitude Lightning from Cis-Lunar Orbit

    Science.gov (United States)

    Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; hide

    2018-01-01

    Function: Monitor global change and thunderstorm processes through observations of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term observations of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (Deep Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).

  20. Formation of the high-energy ion population in the earth's magnetotail: spacecraft observations and theoretical models

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2014-10-01

    Full Text Available We investigate the formation of the high-energy (E ∈ [20,600] keV ion population in the earth's magnetotail. We collect statistics of 4 years of Interball / Tail observations (1995–1998 in the vicinity of the neutral plane in the magnetotail region (X RE, |Y| ≤ 20 RE in geocentric solar magnetospheric (GSM system. We study the dependence of high-energy ion spectra on the thermal-plasma parameters (the temperature Ti and the amplitude of bulk velocity vi and on the magnetic-field component Bz. The ion population in the energy range E ∈ [20,600] keV can be separated in the thermal core and the power-law tail with the slope (index ~ −4.5. Fluxes of the high-energy ion population increase with the growth of Bz, vi and especially Ti, but spectrum index seems to be independent on these parameters. We have suggested that the high-energy ion population is generated by small scale transient processes, rather than by the global reconfiguration of the magnetotail. We have proposed the relatively simple and general model of ion acceleration by transient bursts of the electric field. This model describes the power-law energy spectra and predicts typical energies of accelerated ions.

  1. Radiation budget studies using collocated observations from advanced Very High Resolution Radiometer, High-Resolution Infrared Sounder/2, and Earth Radiation Budget Experiment instruments

    Science.gov (United States)

    Ackerman, Steven A.; Frey, Richard A.; Smith, William L.

    1992-01-01

    Collocated observations from the Advanced Very High Resolution Radiometer (AVHRR), High-Resolution Infrared Sounder/2 (HIRS/2), and Earth Radiation Budget Experiment (ERBE) instruments onboard the NOAA 9 satellite are combined to describe the broadband and spectral radiative properties of the earth-atmosphere system. Broadband radiative properties are determined from the ERBE observations, while spectral properties are determined from the HIRS/2 and AVHRR observations. The presence of clouds, their areal coverage, and cloud top pressure are determined from a combination of the HIRS/2 and the AVHRR observations. The CO2 slicing method is applied to the HIRS/2 to determine the presence of upper level clouds and their effective emissivity. The AVHRR data collocated within the HIRS/2 field of view are utilized to determine the uniformity of the scene and retrieve sea surface temperature. Changes in the top of the atmosphere longwave and shortwave radiative energy budgets, and the spectral distribution of longwave radiation are presented as a function of cloud amount and cloud top pressure. The radiative characteristics of clear sky conditions over oceans are presented as a function of sea surface temperature and atmospheric water vapor structure.

  2. High time resolution characteristics of intermediate ion distributions upstream of the earth's bow shock

    Science.gov (United States)

    Potter, D. W.

    1985-01-01

    High time resolution particle data upstream of the bow shock during time intervals that have been identified as having intermediate ion distributions often show high amplitude oscillations in the ion fluxes of energy 2 and 6 keV. These ion oscillations, observed with the particle instruments of the University of California, Berkeley, on the ISEE 1 and 2 spacecraft, are at the same frequency (about 0.04 Hz) as the magnetic field oscillations. Typically, the 6-keV ion flux increases then the 2-keV flux increases followed by a decrease in the 2-keV flux and then the 6-keV flux decreases. This process repeats many times. Although there is no entirely satisfactory explanation, the presence of these ion flux oscillations suggests that distributions often are misidentified as intermediate ion distributions.

  3. Effects of high altitude clouds on the earth's infrared radiation flux

    Science.gov (United States)

    Wang, W.-C.; Kaplan, L. D.

    1983-01-01

    Attention is given to the results of a study of cirrus cloud properties which employed the Goddard Laboratory for Atmospheric Sciences' general circulation model and concentrated on the effects of the nonblackness of high clouds on the IR radiation flux. Although the thermal radiation flux is very sensitive to the treatment of cirrus optical properties in the IR, a more realistic assessment will depend on better parameterizations for cirrus cloud formation, persistence, and dissipation.

  4. Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    Science.gov (United States)

    Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.

    2015-01-01

    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.

  5. Classroom management at the university level: lessons from a former high school earth science teacher

    Science.gov (United States)

    Lazar, C.

    2009-12-01

    Just a few days before my career as a fledgling science teacher began in a large public high school in New York City, a mentor suggested I might get some ideas about how to run a classroom from a book called The First Days Of School by Harry Wong. Although the book seemed to concentrate more on elementary students, I found that many of the principles in the book worked well for high school students. Even as I have begun to teach at the university level, many of Wong’s themes have persisted in my teaching style. Wong’s central thesis is that for learning to occur, a teacher must create the proper environment. In education jargon, a good climate for learning is generated via classroom management, an array of methods used by elementary and secondary school teachers to provide structure and routine to a class period via a seamless flow of complementary activities. Many college professors would likely consider classroom management to be chiefly a set of rules to maintain discipline and order among an otherwise unruly herd of schoolchildren, and therefore not a useful concept for mature university students. However, classroom management is much deeper than mere rules for behavior; it is an approach to instructional design that considers the classroom experience holistically. A typical professorial management style is to lecture for an hour or so and ask students to demonstrate learning via examinations several times in a semester. In contrast, a good high school teacher will manage a class from bell-to-bell to create a natural order and flow to a given lesson. In this presentation, I will argue for an approach to college lesson design similar to the classroom management style commonly employed by high school and elementary school teachers. I will suggest some simple, practical techniques learned during my high school experience that work just as well in college: warm-up and practice problems, time management, group activities, bulletin boards, learning environment

  6. Quest for Highly-connected MOF Platforms: Rare-Earth Polynuclear Clusters Versatility Meets Net Topology Needs.

    KAUST Repository

    Alezi, Dalal

    2015-04-07

    Gaining control over the assembly of highly porous rare-earth (RE) based metal-organic frameworks (MOFs) remains challenging. Here we report the latest discoveries on our continuous quest for highly-connected nets. The topological exploration based on the non-compatibility of 12-connected RE polynuclear carboxylate-based cluster, points of extension matching the 12 vertices of the cuboctahedron (cuo), with 3-connected organic ligands led to the discovery of two fascinating and highly-connected minimal edge-transitive nets, pek and aea. The reduced symmetry of the employed triangular tricarboxylate ligand, as compared to the prototype highly symmetrical 1,3,5-benzene(tris)benzoic acid guided the concurrent occurrence of nonanuclear [RE9(μ3-OH)12(μ3-O)2(O2C–)12] and hexanuclear [RE6(OH)8(O2C–)8] carboxylate-based clusters as 12-connected and 8-connected molecular building blocks in the structure of a 3-periodic pek-MOF based on a novel (3,8,12)-c trinodal net. The use of a tricarboxylate ligand with modified angles between carboxylate moieties led to the formation of a second MOF containing solely nonanuclear clusters and exhibiting once more a novel and a highly-connected (3,12,12)-c trinodal net with aea topology. Notably, it is the first time that RE-MOFs with double six-membered ring (d6R) secondary building units are isolated, representing therefore a critical step forward toward the design of novel and highly coordinated materials using the supermolecular building layer approach while considering the d6Rs as building pillars. Lastly, the potential of these new MOFs for gas separation/storage was investigated by performing gas adsorption studies of various probe gas molecules over a wide range of pressures. Noticeably, pek-MOF-1 showed excellent volumetric CO2 and CH4 uptakes at high pressures.

  7. High-field magnetization of rare-earth ions in scandium

    DEFF Research Database (Denmark)

    Roeland, L. W.; Touborg, P.

    1978-01-01

    The magnetic moments of Tb, Dy, or Er ions in dilute Sc single-crystal alloys have been measured in fields up to 280 × 105 A/m (350 kOe). The Zeeman energies in this high field are comparable to the total crystal-field splittings. This gives rise to characteristic features in the magnetization cu...... curves. The crystal-field parameters obtained previously from experiments in low fields and the Zeeman interaction give a satisfactory quantitative acount of the experimental results....

  8. A new cell for high temperature EXAFS measurements in molten rare earth fluorides

    International Nuclear Information System (INIS)

    Rollet, Anne-Laure; Bessada, Catherine; Auger, Yannick; Melin, Philippe; Gailhanou, Marc; Thiaudiere, Dominique

    2004-01-01

    A new cell with simple design has been developed for high temperature X-rays absorption measurements in both solid and molten lanthanide fluorides. Two plates of pyrolitic boron nitride are fixed hermetically together around the samples in order to avoid any evaporation and atmosphere interaction. EXAFS spectra of molten mixtures of LiF-LaF 3 measured at the La L III absorption edge are reported up to 900 deg C, and show the ability of this cell to keep the salt and to perform long time acquisition improving the signal to noise ratio

  9. High Energy Radical Chemistry Formation of HCN- rich Atmospheres on early Earth

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Kubelík, Petr; Knížek, Antonín; Pastorek, Adam; Sutherland, J.D.; Civiš, Svatopluk

    2017-01-01

    Roč. 7, č. 1 (2017), č. článku 6275. ISSN 2045-2322 R&D Projects: GA ČR GA17-05076S; GA MŠk(CZ) LM2015083; GA MŠk LG15013 Grant - others:Akademie věd - GA AV ČR(CZ) R200401521 Institutional support: RVO:61388955 Keywords : high-power laser * transform emission-spectroscopy * induced dielectric-breakdown * prebiotic organic-synthesis * nucleobase formation Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.259, year: 2016

  10. Earth Experiments in a Virtual World: Introducing Climate & Coding to High School Girls

    Science.gov (United States)

    Singh, H. A.; Twedt, J. R.

    2017-12-01

    In our increasingly technologically-driven and information-saturated world, literacy in STEM fields can be crucial for career advancement. Nevertheless, both systemic and interpersonal barriers can prevent individuals, particularly members of under-represented groups, from engaging in these fields. Here, we present a high school-level workshop developed to foster basic understanding of climate science while exposing students to the Python programming language. For the past four years, the workshop has been a part of the annual Expanding Your Horizons conference for high school girls, whose mission is to spark interest in STEM fields. Moving through current events in the realm of global climate policy, the fundamentals of climate, and the mathematical representation of planetary energy balance, the workshop culminates in an under-the-hood exploration of a basic climate model coded in the Python programming language. Students interact directly with the underlying code to run `virtual world' experiments that explore the impact of solar insolation, planetary albedo, the greenhouse effect, and meridional energy transport on global temperatures. Engagement with Python is through the Jupyter Notebook interface, which permits direct interaction with the code but is more user-friendly for beginners than a command-line approach. We conclude with further ideas for providing online access to workshop materials for educators, and additional venues for presenting such workshops to under-represented groups in STEM.

  11. High-resolution simulations of the final assembly of Earth-like planets. 2. Water delivery and planetary habitability.

    Science.gov (United States)

    Raymond, Sean N; Quinn, Thomas; Lunine, Jonathan I

    2007-02-01

    The water content and habitability of terrestrial planets are determined during their final assembly, from perhaps 100 1,000-km "planetary embryos " and a swarm of billions of 1-10-km "planetesimals. " During this process, we assume that water-rich material is accreted by terrestrial planets via impacts of water-rich bodies that originate in the outer asteroid region. We present analysis of water delivery and planetary habitability in five high-resolution simulations containing about 10 times more particles than in previous simulations. These simulations formed 15 terrestrial planets from 0.4 to 2.6 Earth masses, including five planets in the habitable zone. Every planet from each simulation accreted at least the Earth's current water budget; most accreted several times that amount (assuming no impact depletion). Each planet accreted at least five water-rich embryos and planetesimals from the past 2.5 astronomical units; most accreted 10-20 water-rich bodies. We present a new model for water delivery to terrestrial planets in dynamically calm systems, with low-eccentricity or low-mass giant planets-such systems may be very common in the Galaxy. We suggest that water is accreted in comparable amounts from a few planetary embryos in a " hit or miss " way and from millions of planetesimals in a statistically robust process. Variations in water content are likely to be caused by fluctuations in the number of water-rich embryos accreted, as well as from systematic effects, such as planetary mass and location, and giant planet properties.

  12. High Efficiency, 100 mJ per pulse, Nd:YAG Oscillator Optimized for Space-Based Earth and Planetary Remote Sensing

    Science.gov (United States)

    Coyle, D. Barry; Stysley, Paul R.; Poulios, Demetrios; Fredrickson, Robert M.; Kay, Richard B.; Cory, Kenneth C.

    2014-01-01

    We report on a newly solid state laser transmitter, designed and packaged for Earth and planetary space-based remote sensing applications for high efficiency, low part count, high pulse energy scalability/stability, and long life. Finally, we have completed a long term operational test which surpassed 2 Billion pulses with no measured decay in pulse energy.

  13. Professionality of Junior High School (SMP) Science Teacher in Preparing Instructional Design of Earth and Space Sciences (IPBA)

    Science.gov (United States)

    Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.

    2017-02-01

    The teacher is one important factor in the provision of education in schools. Therefore, improving the quality of education means we need to enhance the quality and the professionalism of teachers. We offer a solution through education and training of junior high school science teachers in developing the instructional design of Earth and Space Sciences (IPBA). IPBA is part of the science subjects which is given to students from elementary school to college. This research is a preliminary study of junior high school science teacher professionalism in creating instructional design IPBA. Mixed method design is used to design the research. Preliminary studies conducted on junior high school science teacher in one MGMPs in South Sumatera, and the respondent are 18 teachers from 13 schools. The educational background of science teachers who teach IPBA not only from physical education but also biology and agriculture. The result of preliminary study showed that the ratio of teachers who teach IPBA are 56% from physic education, 39% from biology, and 5% from agriculture. The subjects of IPBA that considered difficult by teachers are the distribution of sun, moon, and satellite motion; specific processes in lithosphere and atmosphere; and the correlation between lithosphere and atmosphere with the environment. The teachers also face difficulty in preparing media, choosing the right methods in teaching IPBA.

  14. Sister Earth, Our Common Home: Toward a Sustainable, Planet Friendly Approach to Dialysis, a Paradigm of High Technology Medicine.

    Science.gov (United States)

    Piccoli, Giorgina Barbara; Mery, David

    2017-11-01

    In our high-technology, highly polluted world, medicine plays an important role balancing saving lives with the expenses of growing amounts of waste products, not only biologically dangerous (the potentially "contaminated" or "hazardous" waste) but also potentially harmful for the planet (nonrecyclable, plastic waste). Dialysis, the prototype of high-technology medicine, is central to these problems, as the present treatment of about 2 million patients produces an enormous quantity of waste (considering hazardous waste only about 2 kg per session, with 160 sessions per year, that is 320 kg per patient, or about 640,000 tons of hazardous waste per year for 2 million patients, roughly corresponding to 6 nuclear aircraft carriers). Furthermore, obsolete dialysis machines, and water treatments are discharged, adding to the "technological waste." Water produced by the reverse osmosis is also discharged; this is the only nonhazardous, nonpolluting waste, but in particular in dry areas, wasting water is a great ecologic concern. The present review is aimed at discussing strategies already in place and to be further implemented for reducing this particular "uremic toxin" for the earth: dialysis waste, including dialysis disposables, water, and dialysis machines. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  15. High energy proton induced radiation damage of rare earth permanent magnet quadrupoles

    Science.gov (United States)

    Schanz, M.; Endres, M.; Löwe, K.; Lienig, T.; Deppert, O.; Lang, P. M.; Varentsov, D.; Hoffmann, D. H. H.; Gutfleisch, O.

    2017-12-01

    Permanent magnet quadrupoles (PMQs) are an alternative to common electromagnetic quadrupoles especially for fixed rigidity beam transport scenarios at particle accelerators. Using those magnets for experimental setups can result in certain scenarios, in which a PMQ itself may be exposed to a large amount of primary and secondary particles with a broad energy spectrum, interacting with the magnetic material and affecting its magnetic properties. One specific scenario is proton microscopy, where a proton beam traverses an object and a collimator in which a part of the beam is scattered and deflected into PMQs used as part of a diagnostic system. During the commissioning of the PRIOR (Proton Microscope for Facility for Antiproton and Ion Research) high energy proton microscope facility prototype at Gesellschaft für Schwerionenforschung in 2014, a significant reduction of the image quality was observed which was partially attributed to the demagnetization of the used PMQ lenses and the corresponding decrease of the field quality. In order to study this phenomenon, Monte Carlo simulations were carried out and spare units manufactured from the same magnetic material—single wedges and a fully assembled PMQ module—were deliberately irradiated by a 3.6 GeV intense proton beam. The performed investigations have shown that in proton radiography applications the above described scattering may result in a high irradiation dose in the PMQ magnets. This did not only decrease the overall magnetic strength of the PMQs but also caused a significant degradation of the field quality of an assembled PMQ module by increasing the parasitic multipole field harmonics which effectively makes PMQs impractical for proton radiography applications or similar scenarios.

  16. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth.

    Science.gov (United States)

    Karouia, Fathi; Peyvan, Kianoosh; Pohorille, Andrew

    2017-11-15

    Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis. Published by Elsevier Inc.

  17. Study of the earth's deep interior and crystallography. X-ray and neutron diffraction experiments under high pressures

    International Nuclear Information System (INIS)

    Yagi, Takehiko

    2014-01-01

    History of the study of the Earth's deep interior was reviewed. In order to understand Earth's deep interior from the view point of materials science, X-ray diffraction under high pressure and high temperature played very important role. Use of synchrotron radiation dramatically advanced this experimental technique and it is now possible to make precise X-ray study under the P-T conditions corresponding even to the center of the Earth. In order to clarify the behavior of light elements such as hydrogen, however, studies using neutron diffraction are also required. A new neutron beam line dedicated for high-pressure science is constructed at J-PARC and is now ready for use. (author)

  18. Approaches for Improving Earth System Science Education in Middle Schools and High Schools in the United States (Invited)

    Science.gov (United States)

    Adams, P. E.

    2009-12-01

    Earth system science is an often neglected subject in the US science curriculum. The state of Kansas State Department of Education, for example, has provided teachers with a curriculum guide for incorporating earth system science as an ancillary topic within the subjects of physics, chemistry, and the biological sciences. While this does provide a means to have earth system science within the curriculum, it relegates earth system science topics to a secondary status. In practice, earth system science topics are considered optional or only taught if there is time within an already an overly crowded curriculum. Given the importance of developing an educated citizenry that is capable of understanding, coping, and deciding how to live in a world where climate change is a reality requires a deeper understanding of earth system science. The de-emphasis of earth system science in favor of other science disciplines makes it imperative to seek opportunities to provide teachers, whose primary subject is not earth system science, with professional development opportunities to develop content knowledge understanding of earth system science, and pedagogical content knowledge (i.e. effective strategies for teaching earth system science). This is a noble goal, but there is no single method. At Fort Hays State University we have developed multiple strategies from face-to-face workshops, on-line coursework, and academic year virtual and face-to-face consultations with in-service and pre-service teachers. A review of the techniques and measures of effectiveness (based on teacher and student performance), and strengths and limitations of each method will be presented as an aid to other institutions and programs seeking to improve the teaching and learning of earth system science in their region.

  19. Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature

    International Nuclear Information System (INIS)

    Hidalgo-Manrique, P.; Herrera-Solaz, V.; Segurado, J.; Llorca, J.; Gálvez, F.; Ruano, O.A.; Yi, S.B.; Pérez-Prado, M.T.

    2015-01-01

    The mechanical behaviour in tension and compression of an extruded Mg–1 wt.% Mn–1 wt.% Nd (MN11) alloy was studied along the extrusion direction in the temperature range −175 °C to 300 °C at both quasi-static and dynamic strain rates. Microstructural analysis revealed that the as-extruded bar presents a recrystallized microstructure and a weak texture that remain stable in the whole temperature range. A remarkable reversed yield stress asymmetry was observed above 150 °C, with the compressive yield stress being significantly higher than the tensile yield stress. The origin of this anomalous reversed yield stress asymmetry, which to date remains unknown, was investigated through the analysis of the macro and microtexture development during deformation, as well as by means of crystal plasticity finite element simulations of a representative volume element of the polycrystal. The critical resolved shear stresses of slip and twining for simulated single crystals were obtained as a function of the temperature by means of an inverse optimisation strategy. Experimental and simulation results suggest that the reversed yield asymmetry may be primarily attributed to the non-Schmid behaviour of pyramidal 〈c + a〉 slip, which is the dominant deformation mechanism at high temperatures. It is proposed, furthermore, that the asymmetry is enhanced at quasi-static strain rates by the stronger interaction of 〈c + a〉 dislocations with the diffusing solute atoms and particles in compression than in tension

  20. High Resolution 3D Earth Observation Data Analysis for Safeguards Activities

    International Nuclear Information System (INIS)

    D'Angelo, P.; Eineder, M.; Rossi, C.

    2015-01-01

    This paper provides an overview of the investigations performed in the last three years at DLR and highlights the application of SAR and optical data for 3D analysis in the context of Safeguards. The Research Center Juelich and the adjacent open cut mines were used as main test site, and a comprehensive stack of ascending and descending TerraSAR data was acquired over two years. TerraSAR data acquisition was performed, and various ways to visualize stacks of radar images were evaluated. Building height estimation was performed using a combination of ascending-descending radar images, as well as height-form-shadow, height-from-layover. A tutorial on building signatures from SAR images highlighted the sensor specific imaging characteristics. These topics were particularly relevant in safeguards activity with a ''small-budget'' as only a single image - or a couple - were employed. Interferometric coherence map interpretation allows the detection of used dirt roads. Digital surface models (DSM) were generated from TanDEM-X interferometric data and from optical VHR data. Sub-meterWorldview-2 and GeoEye-1 data was processed into highly detailed DSM with a grid spacing of 1 m, showing building structures. 3D change and volume detection was performed with both optical and radar DSMs. The TanDEM-X DSMs proved useful for volume change detection and computation in mining areas, and down to building level with optical data. Virtual fly-through were found to be a good tool to provide an intuitive understanding of site structure and might be useful for inspector briefing. Tools for most of the above mentioned tasks have been developed for the ENVI environment and can be used by IAEA internally. (author)

  1. Sensitive method for the determination of rare earth elements by radioisotope-excited XRF employing a high purity germanium detector in optimized geometry

    International Nuclear Information System (INIS)

    Lal, M.; Joseph, D.; Patra, P.K.; Bajpal, H.N.

    1993-01-01

    A close-coupled side-source geometrical configuration is proposed for obtaining a high detection sensitivity for rare earth elements (57 ≤ Z ≤ 69) by radioisotope-excited energy-dispersive x-ray fluorescence spectrometry. In this configuration a disc source of 241 Am (100 mCi), a high-purity germanium detector and thin samples of rare earth elements on a Mylar backing are employed in an optimized geometry to achieve detection limits in the range 20-50 ng for these elements in a counting time of 1 h. (author)

  2. High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete.

    Science.gov (United States)

    Keulen, A; van Zomeren, A; Harpe, P; Aarnink, W; Simons, H A E; Brouwers, H J H

    2016-03-01

    Municipal solid waste incineration bottom ash was treated with specially designed dry and wet treatment processes, obtaining high quality bottom ash granulate fractions (BGF) suitable for up to 100% replacement of natural gravel in concrete. The wet treatment (using only water for separating and washing) significantly lowers the leaching of e.g. chloride and sulfate, heavy metals (antimony, molybdenum and copper) and dissolved organic carbon (DOC). Two potential bottom ash granulate fractions, both in compliance with the standard EN 12620 (aggregates for concrete), were added into earth-moist concrete mixtures. The fresh and hardened concrete physical performances (e.g. workability, strength and freeze-thaw) of high strength concrete mixtures were maintained or improved compared with the reference mixtures, even after replacing up to 100% of the initial natural gravel. Final element leaching of monolithic and crushed granular state BGF containing concretes, showed no differences with the gravel references. Leaching of all mixtures did not exceed the limit values set by the Dutch Soil Quality Degree. In addition, multiple-life-phase emission (pH static test) for the critical elements of input bottom ash, bottom ash granulate (BGF) and crushed BGF containing concrete were assessed. Simulation pH lowering or potential carbonation processes indicated that metal (antimony, barium, chrome and copper) and sulfate element leaching behavior are mainly pH dominated and controlled, although differ in mechanism and related mineral abundance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Improving the critical thinking skills of junior high school students on Earth and Space Science (ESS) materials

    Science.gov (United States)

    Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.

    2018-05-01

    Critical thinking skills need to be developed in students. With critical thinking skills, students will be able to understand the concept with more depth easily, be sensitive with problems that occur, understand and solve problems that occur in their surroundings, and apply the concepts in different situations. Earth and Space Science (ESS) material is part of the science subjects given from elementary school to college. This research is a test of research program with quantitative method. This study aims to investigate the improvement of critical thinking skills of students through training of science teachers in junior high school in designing learning media for teaching ESS. With samples of 24 science teachers and 32 students of grade 7th in junior high school which are chosen by purposive sampling in a school in Ogan Ilir District, South Sumatra, obtained average pre-test and post-test scores of students’ critical thinking skills are 52.26 and 67.06 with an average N-gain of 0.31. A survey and critical thinking skills based-test were conducted to get the data. The results show positive impact and an increase in students’ critical thinking skills on the ESS material.

  4. Prototyping global Earth System Models at high resolution: Representation of climate, ecosystems, and acidification in Eastern Boundary Currents

    Science.gov (United States)

    Dunne, J. P.; John, J. G.; Stock, C. A.

    2013-12-01

    The world's major Eastern Boundary Currents (EBC) such as the California Current Large Marine Ecosystem (CCLME) are critically important areas for global fisheries. Computational limitations have divided past EBC modeling into two types: high resolution regional approaches that resolve the strong meso-scale structures involved, and coarse global approaches that represent the large scale context for EBCs, but only crudely resolve only the largest scales of their manifestation. These latter global studies have illustrated the complex mechanisms involved in the climate change and acidification response in these regions, with the CCLME response dominated not by local adjustments but large scale reorganization of ocean circulation through remote forcing of water-mass supply pathways. While qualitatively illustrating the limitations of regional high resolution studies in long term projection, these studies lack the ability to robustly quantify change because of the inability of these models to represent the baseline meso-scale structures of EBCs. In the present work, we compare current generation coarse resolution (one degree) and a prototype next generation high resolution (1/10 degree) Earth System Models (ESMs) from NOAA's Geophysical Fluid Dynamics Laboratory in representing the four major EBCs. We review the long-known temperature biases that the coarse models suffer in being unable to represent the timing and intensity of upwelling-favorable winds, along with lack of representation of the observed high chlorophyll and biological productivity resulting from this upwelling. In promising contrast, we show that the high resolution prototype is capable of representing not only the overall meso-scale structure in physical and biogeochemical fields, but also the appropriate offshore extent of temperature anomalies and other EBC characteristics. Results for chlorophyll were mixed; while high resolution chlorophyll in EBCs were strongly enhanced over the coarse resolution

  5. High-Efficiency K-Band Space Traveling-Wave Tube Amplifier for Near-Earth High Data Rate Communications

    Science.gov (United States)

    Simons, Rainee N.; Force, Dale A.; Spitsen, Paul C.; Menninger, William L.; Robbins, Neal R.; Dibb, Daniel R.; Todd, Phillip C.

    2010-01-01

    The RF performance of a new K-Band helix conduction cooled traveling-wave tube amplifier (TWTA), is presented in this paper. A total of three such units were manufactured, tested and delivered. The first unit is currently flying onboard NASA's Lunar Reconnaissance Orbiter (LRO) spacecraft and has flawlessly completed over 2000 orbits around the Moon. The second unit is a proto-flight model. The third unit will fly onboard NASA's International Space Station (ISS) as a very compact and lightweight transmitter package for the Communications, Navigation and Networking Reconfigurable Testbed (CoNNeCT), which is scheduled for launch in 2011. These TWTAs were characterized over the frequencies 25.5 to 25.8 GHz. The saturated RF output power is greater than 40 W and the saturated RF gain is greater than 46 dB. The saturated AM-to-PM conversion is 3.5 /dB and the small signal gain ripple is 0.46 dB peak-to-peak. The overall efficiency of the TWTA, including that of the electronic power conditioner (EPC) is as high as 45%.

  6. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  7. Mineralizer-assisted high-pressure high-temperature synthesis and characterization of novel phosphorus nitride imides and luminescent alkaline earth metal (oxo)nitridophosphates

    International Nuclear Information System (INIS)

    Marchuk, Alexey

    2016-01-01

    The main objectives of this thesis were the synthesis, identification and structural characterization of new alkaline earth metal (oxo)nitridophopshates and phosphorus nitrides. Furthermore, luminescence properties of the resulting materials should be investigated and a connection between these properties and the respective structures should be established. For this purpose, a range of synthesis strategies was employed, including conventional solid-state syntheses in silica ampoules and high-pressure high-temperature syntheses using the multianvil technique. The emphasis of the synthetic part of this thesis lies on the development of new synthetic strategies in order to increase crystallinity of alkaline earth metal (oxo)nitridophosphates and thus accelerate their structure determination. This involves the selection of a suitable mineralizer and the investigation of its interaction with the respective starting materials. In addition, the analytical methods applied in this thesis in order to identify and characterize the compounds are just as essential as the synthesis strategies. X-ray diffraction on single crystals and on powders was carried out as the main analytical method while being supported by quantitative and qualitative 1 H and 31 P solid-state NMR measurements, FTIR and energy-dispersive X-ray (EDX) spectroscopy, as well as electron microscopy methods including both imaging and diffraction techniques. Implied by the large number of novel structures investigated, theoretical studies including topological analysis, calculations of lattice energies and bond-valence sums also played a major role in this thesis. Optical analysis methods such as reflectance spectroscopy, luminescence microscopy and photoluminescence measurements helped to determine the luminescence properties of some of the presented compounds.

  8. Corrosion Resistance of Murataite-Based Ceramics Containing Simulated Actinide/Rare Earth Fraction of High Level Waste

    International Nuclear Information System (INIS)

    Stefanovsky, S.V.; Varlakova, G.A.; Burlaka, O.A.; Stefanovsky, O.I.; Nikonov, B.S.; Yudintsev, S.V.

    2009-01-01

    Two samples of murataite-based ceramics containing simulated Actinide/Rare Earth (An/RE) fraction of high level waste (HLW) produced by a cold crucible inductive melting (CCIM) were tested using a single-pass-flow-through (SPFT) procedure. As-prepared and leached samples were examined by X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive system (SEM/EDS). The as-prepared ceramics were composed of murataite, perovskite and crichtonite as well as minor zirconolite and rutile (in one sample). Elemental concentrations at pH=2 and T=90 deg. C were measured and leach rates were calculated. Perovskite concentrating Ca and Ce-group REs (La, Ce, Pr, Nd) was found to be the lowest durable phase. Leach rates of Ca and Ce-group REs (Ce, Nd) from the sample with higher perovskite content were found to be higher than those of U and Zr by one to three orders of magnitude. Elemental leach rates from the ceramic with lower perovskite content are lower by up to 10 times. (authors)

  9. Application of high precision two-way S-band ranging to the navigation of the Galileo Earth encounters

    Science.gov (United States)

    Pollmeier, Vincent M.; Kallemeyn, Pieter H.; Thurman, Sam W.

    1993-01-01

    The application of high-accuracy S/S-band (2.1 GHz uplink/2.3 GHz downlink) ranging to orbit determination with relatively short data arcs is investigated for the approach phase of each of the Galileo spacecraft's two Earth encounters (8 December 1990 and 8 December 1992). Analysis of S-band ranging data from Galileo indicated that under favorable signal levels, meter-level precision was attainable. It is shown that ranginging data of sufficient accuracy, when acquired from multiple stations, can sense the geocentric angular position of a distant spacecraft. Explicit modeling of ranging bias parameters for each station pass is used to largely remove systematic ground system calibration errors and transmission media effects from the Galileo range measurements, which would otherwise corrupt the angle finding capabilities of the data. The accuracy achieved using the precision range filtering strategy proved markedly better when compared to post-flyby reconstructions than did solutions utilizing a traditional Doppler/range filter strategy. In addition, the navigation accuracy achieved with precision ranging was comparable to that obtained using delta-Differenced One-Way Range, an interferometric measurement of spacecraft angular position relative to a natural radio source, which was also used operationally.

  10. Synthesis and magnetic properties of rare-earth free MnBi alloy: A high-energy hard magnetic material

    Science.gov (United States)

    Sharma, Sanjeev Kumar; Prakash, H. R.; Ram, S.; Pradhan, D.

    2018-04-01

    MnBi is a rare-earth free high-energy magnetic material useful for the permanent magnet based devices. In a simple method, a MnBi alloy was prepared by arc melting method using Mn and Bi metals in 60:40 atomic ratio. In terms of the X-ray diffraction, a crystalline MnBi phase is formed with Bi as impurity phase of the as-prepared alloy. FESEM image of chemically etched sample shows small grains throughout the alloy. SEAD pattern and lattice image were studied to understand the internal microstructure of the alloy. The thermomagnetic curves measured in ZFC-FC cycles over 5-380 K temperatures at 500 Oe field, shows the induced magnetization of 5-25 % in the sample. The coercivity values, 7.455 kOe (13.07 emu/g magnetization) at 380 K, and 5.185k Oe (14.75 emu/g magnetization) at 300 K, are observed in the M-H hysteresis loops. A decreased value 0.181kOe (18.05 emu/g magnetization) appears at 100 K due to the change in the magnetocrystalline anisotropy. The results are useful to fabricate small MnBi magnets for different permanent magnets based devices.

  11. Bell Test over Extremely High-Loss Channels: Towards Distributing Entangled Photon Pairs between Earth and the Moon

    Science.gov (United States)

    Cao, Yuan; Li, Yu-Huai; Zou, Wen-Jie; Li, Zheng-Ping; Shen, Qi; Liao, Sheng-Kai; Ren, Ji-Gang; Yin, Juan; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2018-04-01

    Quantum entanglement was termed "spooky action at a distance" in the well-known paper by Einstein, Podolsky, and Rosen. Entanglement is expected to be distributed over longer and longer distances in both practical applications and fundamental research into the principles of nature. Here, we present a proposal for distributing entangled photon pairs between Earth and the Moon using a Lagrangian point at a distance of 1.28 light seconds. One of the most fascinating features in this long-distance distribution of entanglement is as follows. One can perform the Bell test with human supplying the random measurement settings and recording the results while still maintaining spacelike intervals. To realize a proof-of-principle experiment, we develop an entangled photon source with 1 GHz generation rate, about 2 orders of magnitude higher than previous results. Violation of Bell's inequality was observed under a total simulated loss of 103 dB with measurement settings chosen by two experimenters. This demonstrates the feasibility of such long-distance Bell test over extremely high-loss channels, paving the way for one of the ultimate tests of the foundations of quantum mechanics.

  12. Line-scanning confocal microscopy for high-resolution imaging of upconverting rare-earth-based contrast agents

    Science.gov (United States)

    Higgins, Laura M.; Zevon, Margot; Ganapathy, Vidya; Sheng, Yang; Tan, Mei Chee; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-01-01

    Abstract. Rare-earth (RE) doped nanocomposites emit visible luminescence when illuminated with continuous wave near-infrared light, making them appealing candidates for use as contrast agents in biomedical imaging. However, the emission lifetime of these materials is much longer than the pixel dwell times used in scanning intravital microscopy. To overcome this limitation, we have developed a line-scanning confocal microscope for high-resolution, optically sectioned imaging of samples labeled with RE-based nanomaterials. Instrument performance is quantified using calibrated test objects. NaYF4:Er,Yb nanocomposites are imaged in vitro, and in ex vivo tissue specimens, with direct comparison to point-scanning confocal microscopy. We demonstrate that the extended pixel dwell time of line-scanning confocal microscopy enables subcellular-level imaging of these nanomaterials while maintaining optical sectioning. The line-scanning approach thus enables microscopic imaging of this emerging class of contrast agents for preclinical studies, with the potential to be adapted for real-time in vivo imaging in the clinic. PMID:26603495

  13. Toward server-side, high performance climate change data analytics in the Earth System Grid Federation (ESGF) eco-system

    Science.gov (United States)

    Fiore, Sandro; Williams, Dean; Aloisio, Giovanni

    2016-04-01

    In many scientific domains such as climate, data is often n-dimensional and requires tools that support specialized data types and primitives to be properly stored, accessed, analysed and visualized. Moreover, new challenges arise in large-scale scenarios and eco-systems where petabytes (PB) of data can be available and data can be distributed and/or replicated (e.g., the Earth System Grid Federation (ESGF) serving the Coupled Model Intercomparison Project, Phase 5 (CMIP5) experiment, providing access to 2.5PB of data for the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Most of the tools currently available for scientific data analysis in the climate domain fail at large scale since they: (1) are desktop based and need the data locally; (2) are sequential, so do not benefit from available multicore/parallel machines; (3) do not provide declarative languages to express scientific data analysis tasks; (4) are domain-specific, which ties their adoption to a specific domain; and (5) do not provide a workflow support, to enable the definition of complex "experiments". The Ophidia project aims at facing most of the challenges highlighted above by providing a big data analytics framework for eScience. Ophidia provides declarative, server-side, and parallel data analysis, jointly with an internal storage model able to efficiently deal with multidimensional data and a hierarchical data organization to manage large data volumes ("datacubes"). The project relies on a strong background of high performance database management and OLAP systems to manage large scientific data sets. It also provides a native workflow management support, to define processing chains and workflows with tens to hundreds of data analytics operators to build real scientific use cases. With regard to interoperability aspects, the talk will present the contribution provided both to the RDA Working Group on Array Databases, and the Earth System Grid Federation (ESGF

  14. Grid Technology as a Cyberinfrastructure for Delivering High-End Services to the Earth and Space Science Community

    Science.gov (United States)

    Hinke, Thomas H.

    2004-01-01

    Grid technology consists of middleware that permits distributed computations, data and sensors to be seamlessly integrated into a secure, single-sign-on processing environment. In &is environment, a user has to identify and authenticate himself once to the grid middleware, and then can utilize any of the distributed resources to which he has been,panted access. Grid technology allows resources that exist in enterprises that are under different administrative control to be securely integrated into a single processing environment The grid community has adopted commercial web services technology as a means for implementing persistent, re-usable grid services that sit on top of the basic distributed processing environment that grids provide. These grid services can then form building blocks for even more complex grid services. Each grid service is characterized using the Web Service Description Language, which provides a description of the interface and how other applications can access it. The emerging Semantic grid work seeks to associates sufficient semantic information with each grid service such that applications wii1 he able to automatically select, compose and if necessary substitute available equivalent services in order to assemble collections of services that are most appropriate for a particular application. Grid technology has been used to provide limited support to various Earth and space science applications. Looking to the future, this emerging grid service technology can provide a cyberinfrastructures for both the Earth and space science communities. Groups within these communities could transform those applications that have community-wide applicability into persistent grid services that are made widely available to their respective communities. In concert with grid-enabled data archives, users could easily create complex workflows that extract desired data from one or more archives and process it though an appropriate set of widely distributed grid

  15. Detection of actinides and rare earths in natural matrices with the AGLAE new, high sensitivity detection set-up

    Science.gov (United States)

    Zucchiatti, Alessandro; Alonso, Ursula; Lemasson, Quentin; Missana, Tiziana; Moignard, Brice; Pacheco, Claire; Pichon, Laurent; Camarena de la Mora, Sandra

    2014-08-01

    tolerated.This kind of set-up should be advantageous for the detection of elements that are present in a geological, archaeological or artistic samples to the level of a few tens ppm. This is true in particular for the rare earths which are relevant to the provenance attribution of various classes of cultural heritage objects (clays, glasses, …) and the actinides which are relevant in very specific and highly impacting dating problems and, more generally, critical environmental elements with special reference to the radionuclide mobility in deep geological formations hosting radioactive waste [2]. Geological materials are highly heterogeneous and consequently their retention of contaminants is heterogeneous as well. In this frame, the capabilities of the AGLAE set-up would allow an improved characterization of natural heterogeneous rock, detecting the presence of the elements of interest (actinides and rare earth) at concentration levels of tens of ppm. This provides a better definition of the initial system, avoiding biased interpretation of the retention properties of the material for the analysis of possible contamination. Additionally, if lower detection limits were achieved, new perspectives to evaluate retention of low solubility contaminants in a wider range of geochemical conditions would be opened.A glass standard and a series of reference granite samples (Grimsel and Äspö), either enriched by sorption with natU and La or kept natural, have been scanned by PIXE at the New-AGLAE detection system, to test measurement protocols and assess the MDL's allowed by the five detectors system.

  16. The Effects of Earth Science Textbook Contents on High School Students' Knowledge of, Attitude toward, and Behavior of Energy Saving and Carbon Reduction

    Science.gov (United States)

    Chao, Yu-Long; Chou, Ying-Chyi; Yen, Hsin-Yi; Chen, Shr-Jya

    2017-01-01

    As science textbooks are considered as one of the major source of climate change information of students, this study aims to examine the differences in energy saving and carbon reduction knowledge, attitude, and behavior between two groups of Taiwan's high school students using earth science textbooks of two different publishers. Some items of…

  17. A Case of Fragmented High School Earth and Space Science Education in the Great Plains: Tracing Teacher Certification Policy to Students' Access

    Science.gov (United States)

    Lewis, Elizabeth; Lu, Jia

    2017-01-01

    Although U.S. high school students' access to Earth and space science (ESS) varies widely from state to state, nationally, ESS content is the most neglected area of science education and scientific literacy. States have been considering whether they will formally adopt, or less formally adapt, the new national science education standards, the Next…

  18. Mass separation of rare-earth elements by a high-temperature thermal ion source coupled with a He-jet system

    International Nuclear Information System (INIS)

    Kawase, Y.; Okano, K.; Aoki, K.

    1987-01-01

    By using a high-temperature thermal ion source coupled to a He-jet system, neutron-rich isotopes of rare-earth elements such as cerium, praseodymium, neodymium and promethium produced by the thermal-neutron fission of /sup 235/U were ionized and successfully separated. The temperature dependence of the ionization efficiency has been measured and found to be explained qualitatively by the vapour pressure of the relevant elements. The characteristic temperature dependence of the ionization efficiency has been utilized for Z-identification of several isobars of rare-earth elements. The heaviest isotopes of neodymium and promethium, /sup 155/Nd and /sup 156/Pm, have recently been identified

  19. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering.

    Science.gov (United States)

    Castle, Elinor; Sheridan, Richard; Zhou, Wei; Grasso, Salvatore; Walton, Allan; Reece, Michael J

    2017-09-11

    In the drive to reduce the critical Heavy Rare Earth (HRE) content of magnets for green technologies, HRE-free Nd-Fe-B has become an attractive option. HRE is added to Nd-Fe-B to enhance the high temperature performance of the magnets. To produce similar high temperature properties without HRE, a crystallographically textured nanoscale grain structure is ideal; and this conventionally requires expensive "die upset" processing routes. Here, a Flash Spark Plasma Sintering (FSPS) process has been applied to a Dy-free Nd 30.0 Fe 61.8 Co 5.8 Ga 0.6 Al 0.1 B 0.9 melt spun powder (MQU-F, neo Magnequench). Rapid sinter-forging of a green compact to near theoretical density was achieved during the 10 s process, and therefore represents a quick and efficient means of producing die-upset Nd-Fe-B material. The microstructure of the FSPS samples was investigated by SEM and TEM imaging, and the observations were used to guide the optimisation of the process. The most optimal sample is compared directly to commercially die-upset forged (MQIII-F) material made from the same MQU-F powder. It is shown that the grain size of the FSPS material is halved in comparison to the MQIII-F material, leading to a 14% increase in coercivity (1438 kA m -1 ) and matched remanence (1.16 T) giving a BH max of 230 kJ m -3 .

  20. Building Nationally-Focussed, Globally Federated, High Performance Earth Science Platforms to Solve Next Generation Social and Economic Issues.

    Science.gov (United States)

    Wyborn, Lesley; Evans, Ben; Foster, Clinton; Pugh, Timothy; Uhlherr, Alfred

    2015-04-01

    Digital geoscience data and information are integral to informing decisions on the social, economic and environmental management of natural resources. Traditionally, such decisions were focused on regional or national viewpoints only, but it is increasingly being recognised that global perspectives are required to meet new challenges such as predicting impacts of climate change; sustainably exploiting scarce water, mineral and energy resources; and protecting our communities through better prediction of the behaviour of natural hazards. In recent years, technical advances in scientific instruments have resulted in a surge in data volumes, with data now being collected at unprecedented rates and at ever increasing resolutions. The size of many earth science data sets now exceed the computational capacity of many government and academic organisations to locally store and dynamically access the data sets; to internally process and analyse them to high resolutions; and then to deliver them online to clients, partners and stakeholders. Fortunately, at the same time, computational capacities have commensurately increased (both cloud and HPC): these can now provide the capability to effectively access the ever-growing data assets within realistic time frames. However, to achieve this, data and computing need to be co-located: bandwidth limits the capacity to move the large data sets; the data transfers are too slow; and latencies to access them are too high. These scenarios are driving the move towards more centralised High Performance (HP) Infrastructures. The rapidly increasing scale of data, the growing complexity of software and hardware environments, combined with the energy costs of running such infrastructures is creating a compelling economic argument for just having one or two major national (or continental) HP facilities that can be federated internationally to enable earth and environmental issues to be tackled at global scales. But at the same time, if

  1. Design, fabrication and characterization of an arrayable all-polymer microfluidic valve employing highly magnetic rare-earth composite polymer

    International Nuclear Information System (INIS)

    Rahbar, Mona; Gray, Bonnie L; Shannon, Lesley

    2016-01-01

    We present a new magnetically actuated microfluidic valve that employs a highly magnetic composite polymer (M-CP) containing rare-earth hard-magnetic powder for its actuating element and for its valve seat. The M-CP offers much higher magnetization compared to the soft-magnetic, ferrite-based composite polymers typically used in microfluidic applications. Each valve consists of a permanently magnetized M-CP flap and valve seat mounted on a microfluidic channel system fabricated in poly(dimethylsiloxane) (PDMS). Each valve is actuated under a relatively small external magnetic field of 80 mT provided by a small permanent magnet mounted on a miniature linear actuator. The performance of the valve with different flap thicknesses is characterized. In addition, the effect of the magnetic valve seat on the valve’s performance is also characterized. It is experimentally shown that a valve with a 2.3 mm flap thickness, actuated under an 80 mT magnetic field, is capable of completely blocking liquid flow at a flow rate of 1 ml min −1 for pressures up to 9.65 kPa in microfluidic channels 200 μ m wide and 200 μ m deep. The valve can also be fabricated into an array for flow switching between multiple microfluidic channels under continuous flow conditions. The performance of arrays of valves for flow routing is demonstrated for flow rates up to 5 ml min −1 with larger microfluidic channels of up to 1 mm wide and 500 μ m deep. The design of the valves is compatible with other commonly used polymeric microfluidic components, as well as other components that use the same novel permanently magnetic composite polymer, such as our previously reported cilia-based mixing devices. (paper)

  2. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants.

    Science.gov (United States)

    Gwenzi, Willis; Mangori, Lynda; Danha, Concilia; Chaukura, Nhamo; Dunjana, Nothando; Sanganyado, Edmond

    2018-04-26

    Recent studies show that high-technology rare earth elements (REEs) of anthropogenic origin occur in the environment including in aquatic systems, suggesting REEs are contaminants of emerging concern. However, compared to organic contaminants, there is a lack of comprehensive reviews on the anthropogenic sources, environmental behaviour, and public and ecological health risks of REEs. The current review aims to: (1) identify anthropogenic sources, transfer mechanisms, and environmental behaviour of REEs; (2) highlight the human and ecological health risks of REEs and propose mitigation measures; and (3) identify knowledge gaps and future research directions. Out of the 17 REEs, La, Gd, Ce and Eu are the most studied. The main sources of anthropogenic REE include; medical facilities, petroleum refining, mining and technology industries, fertilizers, livestock feeds, and electronic wastes and recycling plants. REEs are mobilized and transported in the environment by hydrological and wind-driven processes. Ecotoxicological effects include reduced plant growth, function and nutritional quality, genotoxicity and neurotoxicity in animals, trophic bioaccumulation, chronic and acute toxicities in soil organisms. Human exposure to REEs occurs via ingestion of contaminated water and food, inhalation, and direct intake during medical administration. REEs have been detected in human hair, nails, and biofluids. In humans, REEs cause nephrogenic systemic fibrosis and severe damage to nephrological systems associated with Gd-based contrast agents, dysfunctional neurological disorder, fibrotic tissue injury, oxidative stress, pneumoconiosis, cytotoxicity, anti-testicular effects, and male sterility. Barring REEs in medical devices, epidemiological evidence directly linking REEs in the environment to human health conditions remains weak. To minimize health risks, a conceptual framework and possible mitigation measures are highlighted. Future research is needed to better understand

  3. Methodology Measuring Rare Earth Elements in High TDS Reservoir Brines Application as Natural Tracers in CCUS Studies

    Science.gov (United States)

    Smith, W.; Mcling, T. L.; Smith, R. W.; Neupane, H.

    2013-12-01

    In recent years rare earth elements (REE) have been demonstrated to be useful natural tracers for geochemical processes in aqueous environments. The application of REE's to carbon dioxide utilization and storage (CCUS) could provide researchers with a sensitive, inexpensive tool for tracking the movement of CO2 and displaced formation brines. By definition, geologic reservoirs that have been deemed suitable for carbon capture and storage contain formation brine with total dissolved solids (TDS) greater than 10,000 ppm and often these formation brines exceed 75,000 ppm TDS. This high TDS water makes it very difficult to measure REE, which typically occur at part per trillion concentrations. Critical to the use of REE for CCUS studies is the development of a procedure, which allows for the pre-concentration of REE's across a wide range of water quality. Additionally, due to the large number of samples that will need analysis, any developed procedure must be inexpensive, reproducible, and quick to implement. As part of the Big Sky Carbon Sequestration Project the INL's Center for Advance Energy Studies is developing REE pre-concentration procedures based on methods reported in the literature. While there are many REE pre-concentration procedures in the literature, our tests have shown these methods have difficulty at TDS greater than seawater (roughly 35,000 ppm TDS). Therefore, the ability to quantitatively measure REE's in formation brines with very high TDS has required the modification of an already developed procedure. After careful consideration and testing we selected methods modified after those described by Kingston et al., 1978 and Strachan et al., 1989 utilizing chelating media for very high TDS waters and ion-exchange media as detailed by Crock et al., 1984; Robinson et al., 1985; and Stetzenbach et al., 1994 for low TDS (tested in our laboratory and have proven effective in greatly reducing interfering monovalent and divalent cation concentrations (e

  4. Technology development for recovery of individual rare earth elements at high purity from Dong-Pao rare earth concentrated ore of Vietnam

    International Nuclear Information System (INIS)

    Hoang Nhuan; Le Ba Thuan; Luu Xuan Dinh; Tran Hoang Mai; Tran Thi Hong Thai; Yoshiuyki Aiba; Hiroaki Nishimura

    2015-01-01

    In this work, the research results on RE processing process at laboratory scale and pilot scale was reported and discussed. Experimental research on thermal decomposition and sulfate process of bastnaesite ore with sulfuric acid in electric furnace was carried out, the different roasting conditions, mass transfer rate, reactions and RE and/or non-RE behaviors during roasting and leaching were investigated. The roasting temperatures were 450"oC and 550"oC. With higher roasting temperature and longer roasting time, the RE recovery yield reduced. The RE recovery yield reached the highest (over 94%) at roasting temperature of 550"oC for 2 hrs. The different extracting conditions for separation of REEs were investigated in laboratory scale as well as pilot scale. At pilot scale, the separation of REEs was performed on 120-stage extraction system produced by Japan, using PC88A solvent dissolved in IP2028. The volume of each stage was 20 L. The results showed that REEs were separated from RE resource of Vietnam and individual RE elements such as La, Ce, Pr, and Nd were obtained at high purity. The parameters for each extraction stage were reported in this work. The results indicated that in order to obtain highly purified Nd (>99%), it needs to use an extraction system with higher stage number, about 200 stages. The extraction data at pilot scale of this investigation was used as basic data for calculating parameters for extraction system in industrial scale. (author)

  5. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  6. PuBr3-type as high pressure modification of rare earth trihalides LnX3 (X = Cl, Br, I)

    International Nuclear Information System (INIS)

    Beck, H.P.; Gladrow, E.

    1983-01-01

    High pressure experiments in a belt-type apparatus were performed on rare earth trichlorides, -bromides and -iodides. The results underline the importance of the PuBr 3 -type arrangement. The range of existence of this structure type is considerably increased under pressure. X-ray high temperature investigations at ambient pressure on the quenched high pressure phases show a marked correlation between the transformation pressures, which rise with smaller cations, and the temperatures at which the high pressure phases are reconverted to the thermodynamically stable ones. (author)

  7. Carbon stocks and fluxes in the high latitudes: using site-levelbreak data to evaluate Earth system models

    DEFF Research Database (Denmark)

    Chadburn, S. E.; Krinner, G.; Porada, P.

    2017-01-01

    from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which...

  8. HIGH PERCENTAGE OF RARE EARTH ELEMENT CONNECTION WITH THE ACCUMULATION SEDIMENT AS RESPONSE LONGSHORE CURRENTS IN THE BELITUNG WATERS

    Directory of Open Access Journals (Sweden)

    Delyuzar Ilahude

    2017-07-01

    Full Text Available The study area is geographically located in the West coast of Belitung island at coordinates 105o48'00" - 106o06' 00" E and 06o46'00" - 06o50' 00" S. The beach and coastal area is influenced by wave energy from the West and North directions The purpose of this study is to analyze the relationship between the zone of sediment accumulation of empirical approaches on oceanography parameter containing rare earth elements. The approach used is to predict the shore wave energy using wave prediction curve deep waters to obtain the energy flux of the wave at each point of reference. Sediments containing rare earth elements tend to lead to the south as a result of the movement of longshore currents. Regional coastal area of the western part of the island of Belitung, especially in the southern part of the estuary of the river Tanjung Pandan is estimated to be a zone of sediment accumulation. The movement of sediment caused by wave energy from the north led to sedimentation evolved significantly in the south which is thought to contain rare earths minerals derived from land. This sedimentation process takes place on a seasonal basis, which allegedly took place in the west. The movement of sediment to the south of the mouth of the Cerucuk River it is predicted that rare earth elements were supplied from these rivers tend to settle in the southern part of the estuary Cerucuk throughout the year.

  9. The "Life at the Poles" Study Unit: Developing Junior High School Students' Ability to Recognize the Relations between Earth Systems

    Science.gov (United States)

    Assaraf, Orit Ben-Zvi; Orpaz, Idit

    2010-01-01

    Understanding of Earth's systems, including the crucial role of human beings within them, is an important part of citizens' ability to think intelligently and critically about the environment, pollution, sustainability and other socio-economic and scientific issues central to life in the modern world. Part of this understanding involves seeing the…

  10. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  11. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths

    Science.gov (United States)

    Kameyama, Masanori; Yamamoto, Mayumi

    2018-01-01

    We conduct a series of numerical experiments of thermal convection of highly compressible fluids in a two-dimensional rectangular box, in order to study the mantle convection on super-Earths. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. From our experiments we identified a distinct regime of convecting flow patterns induced by the interplay between the adiabatic temperature change and the spatial variations in viscosity and thermal conductivity. That is, for the cases with strong temperature-dependent viscosity and depth-dependent thermal conductivity, a "deep stratosphere" of stable thermal stratification is formed at the base of the mantle, in addition to thick stagnant lids at their top surfaces. In the "deep stratosphere", the fluid motion is insignificant particularly in the vertical direction in spite of smallest viscosity owing to its strong dependence on temperature. Our finding may further imply that some of super-Earths which are lacking in mobile tectonic plates on their top surfaces may have "deep stratospheres" at the base of their mantles.

  12. Quantification of trace amounts of rare earth elements in high purity gadolinium oxide by sector field inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Pedreira, W.R.; Silva Queiroz, C.A. da; Abrao, A.; Pimentel, M.M.

    2004-01-01

    In recent years, rare earth elements (REEs) have received much attention in the fields of geochemistry and industry. Gadolinium oxide is used for many different high technology applications such as infrared absorbing automotive glass, petroleum cracking catalyst, gadolinium-yttrium garnets, microwave applications, and color TV tube phosphors. It can also be used in optical glass manufacturing and in the electronic industry. Rapid and accurate determinations of the rare earth elements are increasingly required as industrial demands expand. In general, the inductively coupled plasma mass spectrometry (ICP-MS) presents some advantages for trace element analysis, due to high sensitivity and resolution, when compared with other analytical techniques. In this work, sector field inductively coupled plasma mass spectrometry was used. Sixteen elements (Sc, Y, and 14 lanthanides) were determined selectively with the ICP-MS system using a concentration gradient method. The detection limits with the ICP-MS system were about 0.2-8 pg ml -1 . The recovery percentage ranged from 95 to 100% for different rare earth elements. The %R.S.D. of the methods varying between 1.5 and 2.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two high pure gadolinium oxides samples (IPEN and JMC) was performed. IPEN's material is highly pure (>99.99%) and was successfully analyzed without spectral interference

  13. Education and Outreach Programs Offered by the Center for High Pressure Research and the Consortium for Materials Properties Research in Earth Sciences

    Science.gov (United States)

    Richard, G. A.

    2003-12-01

    Major research facilities and organizations provide an effective venue for developing partnerships with educational organizations in order to offer a wide variety of educational programs, because they constitute a base where the culture of scientific investigation can flourish. The Consortium for Materials Properties Research in Earth Sciences (COMPRES) conducts education and outreach programs through the Earth Science Educational Resource Center (ESERC), in partnership with other groups that offer research and education programs. ESERC initiated its development of education programs in 1994 under the administration of the Center for High Pressure Research (CHiPR), which was funded as a National Science Foundation Science and Technology Center from 1991 to 2002. Programs developed during ESERC's association with CHiPR and COMPRES have targeted a wide range of audiences, including pre-K, K-12 students and teachers, undergraduates, and graduate students. Since 1995, ESERC has offered inquiry-based programs to Project WISE (Women in Science and Engineering) students at a high school and undergraduate level. Activities have included projects that investigated earthquakes, high pressure mineral physics, and local geology. Through a practicum known as Project Java, undergraduate computer science students have developed interactive instructional tools for several of these activities. For K-12 teachers, a course on Long Island geology is offered each fall, which includes an examination of the role that processes in the Earth's interior have played in the geologic history of the region. ESERC has worked with Stony Brook's Department of Geosciences faculty to offer courses on natural hazards, computer modeling, and field geology to undergraduate students, and on computer programming for graduate students. Each summer, a four-week residential college-level environmental geology course is offered to rising tenth graders from the Brentwood, New York schools in partnership with

  14. Determination of trace elements in high pure rare earth oxide by double focusing inductively coupled plasma mass spectrometry (HR ICP-MS) and high performance liquid chromatography (HPLC) techniques

    International Nuclear Information System (INIS)

    Pedreira Filho, Walter dos Reis

    2000-01-01

    Rare earth oxides are used in several technological fields whose applications can be observed in several areas of modern technology, among which are included: lasers, semiconductors semi, high purity materials and metallic alloys. The field of applications of the rare earth elements is quite wide. Several important industrial applications are ceramics, catalysts and metallurgical as well as research areas and high technology sectors. Such applications have been presenting an accentuated growth in the last years. Chemical characterization of rare earth oxides of high purity has been constituting one of the major challenges of analytical chemistry. Several analytical techniques were used for chemical characterization of high purity rare earth the oxides. Even so, those techniques present limitations when one needs to characterize materials of a high level of purity, as in the case of rare earth oxides. Some of those limitations are associated, for example, to spectral interference. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a powerful analytical tool for quantitative analysis of metal impurities in high purity materials. The Instituto de Pesquisas Energeticas e Nucleares (IPEN) has an unit of production and purification of rare earth oxides, with above 99,9% level of purity. In this work, the rare earth impurities were characterized in samples (La 2 O 3 ; CeO 2 ; Pr 6 O 11 ; Nd 2 O 3 ; Sm 2 O 3 ; Gd 2 O 3 ; Y 2 O 3 ) produced at the IPEN and certified standard materials produced by Johnson Matthey Chemical (JMC). The technique of high performance liquid chromatography (HPLC) was used in the separation of the impurities. Quantification of metallic impurities was carried out as inductively coupled plasma mass spectrometer (HR-ICP MS). In this work it is presented a new analytical methodology in the chemical characterization of metallic impurities in rare earth oxides of high purity (> 99,9%) with and without separation of the matrix. Analyses of standard

  15. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1978-01-01

    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  16. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models

    Science.gov (United States)

    Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W.; Peng, Shushi; Van Huissteden, Ko; Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J.

    2017-11-01

    It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that

  17. High pressure studies of magnetic, electronic, and local structure properties in the rare-earth orthoferrites RFeO3 (R = Nd, Lu)

    International Nuclear Information System (INIS)

    Gavriliuk, A.G.; Stepanov, G.N.; Lyubutin, I.S.; Stepin, A.S.; Trojan, I.A.; Sidorov, V.A.

    2000-01-01

    The high pressure modification of the electronic structure, magnetic properties, and local crystal structure have been studied in the rare-earth RFeO 3 (R=Nd, Lu) orthoferrites in both pure single crystals and polycrystalline samples doped with Sn. The pressure dependences of the unit cell parameters, Neel temperatures, supertransferred hyperfine magnetic fields at tin nuclei H Sn , and the optical absorption edge have been obtained. The relations of the obtained values with the geometry of exchange interactions were analyzed

  18. Investigating the Role of Biogeochemical Processes in the Northern High Latitudes on Global Climate Feedbacks Using an Efficient Scalable Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Atul K. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-09-14

    The overall objectives of this DOE funded project is to combine scientific and computational challenges in climate modeling by expanding our understanding of the biogeophysical-biogeochemical processes and their interactions in the northern high latitudes (NHLs) using an earth system modeling (ESM) approach, and by adopting an adaptive parallel runtime system in an ESM to achieve efficient and scalable climate simulations through improved load balancing algorithms.

  19. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh [Purdue Univ., West Lafayette, IN (United States)

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterized by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical

  20. Empirical model of the high-latitude boundary of the Earth's outer radiation belt at altitudes of up to 1000 km

    Science.gov (United States)

    Kalegaev, V. V.; Barinova, W. O.; Myagkova, I. N.; Eremeev, V. E.; Parunakyan, D. A.; Nguyen, M. D.; Barinov, O. G.

    2018-01-01

    An empirical model of the high-latitude boundary of the outer Earth's radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth's magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014-2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.

  1. Development and Evaluation of the Interferometric Monitor for Greenhouse Gases: a High-throughput Fourier-transform Infrared Radiometer for Nadir Earth Observation

    Science.gov (United States)

    Kobayashi, Hirokazu; Shimota, Akiro; Kondo, Kayoko; Okumura, Eisuke; Kameda, Yoshihiko; Shimoda, Haruhisa; Ogawa, Toshihiro

    1999-11-01

    The interferometric monitor for greenhouse gases (IMG) was the precursor of the high-resolution Fourier-transform infrared radiometer (FTIR) onboard a satellite for observation of the Earth. The IMG endured the stress of a rocket launch, demonstrating that the high-resolution, high-throughput spectrometer is indeed feasible for use onboard a satellite. The IMG adopted a newly developed lubricant-free magnetic suspension mechanism and a dynamic alignment system for the moving mirror with a maximum traveling distance of 10 cm. We present the instrumentation of the IMG, characteristics of the movable mirror drive system, and the evaluation results of sensor specifications during space operation.

  2. A Mercury-like component of early Earth yields uranium in the core and high mantle (142)Nd.

    Science.gov (United States)

    Wohlers, Anke; Wood, Bernard J

    2015-04-16

    Recent (142)Nd isotope data indicate that the silicate Earth (its crust plus the mantle) has a samarium to neodymium elemental ratio (Sm/Nd) that is greater than that of the supposed chondritic building blocks of the planet. This elevated Sm/Nd has been ascribed either to a 'hidden' reservoir in the Earth or to loss of an early-formed terrestrial crust by impact ablation. Since removal of crust by ablation would also remove the heat-producing elements--potassium, uranium and thorium--such removal would make it extremely difficult to balance terrestrial heat production with the observed heat flow. In the 'hidden' reservoir alternative, a complementary low-Sm/Nd layer is usually considered to reside unobserved in the silicate lower mantle. We have previously shown, however, that the core is a likely reservoir for some lithophile elements such as niobium. We therefore address the question of whether core formation could have fractionated Nd from Sm and also acted as a sink for heat-producing elements. We show here that addition of a reduced Mercury-like body (or, alternatively, an enstatite-chondrite-like body) rich in sulfur to the early Earth would generate a superchondritic Sm/Nd in the mantle and an (142)Nd/(144)Nd anomaly of approximately +14 parts per million relative to chondrite. In addition, the sulfur-rich core would partition uranium strongly and thorium slightly, supplying a substantial part of the 'missing' heat source for the geodynamo.

  3. Phosphate binding by natural iron-rich colloids in streams

    NARCIS (Netherlands)

    Baken, S.; Moens, C.; Griffioen, J.J.; Smolders, E.

    2016-01-01

    Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 μm size range) in 47 Belgian streams to the

  4. The American Indian Summer Institute in Earth System Science (AISESS) at UC Irvine: A Two-Week Residential Summer Program for High School Students

    Science.gov (United States)

    Johnson, K. R.; Polequaptewa, N.; Leon, Y.

    2012-12-01

    Native Americans remain severely underrepresented in the geosciences, despite a clear need for qualified geoscience professionals within Tribal communities to address critical issues such as natural resource and land management, water and air pollution, and climate change. In addition to the need for geoscience professionals within Tribal communities, increased participation of Native Americans in the geosciences would enhance the overall diversity of perspectives represented within the Earth science community and lead to improved Earth science literacy within Native communities. To address this need, the Department of Earth System Science and the American Indian Resource Program at the University California have organized a two-week residential American Indian Summer Institute in Earth System Science (AISESS) for high-school students (grades 9-12) from throughout the nation. The format of the AISESS program is based on the highly-successful framework of a previous NSF Funded American Indian Summer Institute in Computer Science (AISICS) at UC Irvine and involves key senior personnel from the AISICS program. The AISESS program, however, incorporates a week of camping on the La Jolla Band of Luiseño Indians reservation in Northern San Diego County, California. Following the week of camping and field projects, the students spend a week on the campus of UC Irvine participating in Earth System Science lectures, laboratory activities, and tours. The science curriculum is closely woven together with cultural activities, native studies, and communication skills programs The program culminates with a closing ceremony during which students present poster projects on environmental issues relevant to their tribal communities. The inaugural AISESS program took place from July 15th-28th, 2012. We received over 100 applications from Native American high school students from across the nation. We accepted 40 students for the first year, of which 34 attended the program. The

  5. Rare earths as a future resource

    International Nuclear Information System (INIS)

    Cornell, D.H.

    1988-01-01

    The fourteen rare earth or lanthanide elements have recently emerged as an important natural resource because of the rapidly growing demand in the electronic, chemical and metallurgical industries. The Symposium on rare earth elements as a future resource presented a multidisciplinary review of rare earth chemistry, geology, beneficiation, industrial applications and marketing. Papers by experts in many fields were presented on the following topics: chemical properties of the rare earth elements; the analysis of rare earth elements and minerals; beneficiation and extraction of rare earth elements; economic geochemistry and mineralogy of rare earths; present industrial uses of rare earth elements; the role of rare earth elements in high-temperature superconductors; the technical application of high-temperature superconductors; supply and demand for rare earth products - now and in the future, and the geology of rare earth deposits

  6. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...... and accepted. The European Space Agency mission Gaia is a proposed space observatory, designed to perform a highly accurate census of our galaxy, the Milky Way, and beyond. Through accurate measurement of star positions, Gaia is expected to discover thousands of extra-solar planets and follow the bending...... of starlight by the Sun, and therefore directly observe the structure of space-time. This thesis explores several aspects of the observation of NEOs with Gaia, emphasising detection of NEOs and the quality of orbits computed from Gaia observations. The main contribution is the work on motion detection...

  7. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development

    Science.gov (United States)

    Ouma, Yashon O.

    2016-01-01

    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of ;Big Data; in Earth observation. Because of the ;Big Data; issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  8. The Earth's passage of the April 11, 1997 coronal ejecta: geomagnetic field fluctuations at high and low latitude during northward interplanetary magnetic field conditions

    Directory of Open Access Journals (Sweden)

    S. Lepidi

    1999-10-01

    Full Text Available An analysis of the low frequency geomagnetic field fluctuations at an Antarctic (Terra Nova Bay and a low latitude (L'Aquila, Italy station during the Earth's passage of a coronal ejecta on April 11, 1997 shows that major solar wind pressure variations were followed at both stations by a high fluctuation level. During northward interplanetary magnetic field conditions and when Terra Nova Bay is close to the local geomagnetic noon, coherent fluctuations, at the same frequency (3.6 mHz and with polarization characteristics indicating an antisunward propagation, were observed simultaneously at the two stations. An analysis of simultaneous measurements from geosynchronous satellites shows evidence for pulsations at approximately the same frequencies also in the magnetospheric field. The observed waves might then be interpreted as oscillation modes, triggered by an external stimulation, extending to a major portion of the Earth's magnetosphere. Key words. Magnetospheric physics (MHD waves and instabilities; solar wind-magnetosphere interactions

  9. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models

    Directory of Open Access Journals (Sweden)

    S. E. Chadburn

    2017-11-01

    Full Text Available It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France. We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI, the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our

  10. Advanced approach for determination of earthing characteristics of high voltage substations in terms of their optimal protection from lightning strike

    International Nuclear Information System (INIS)

    Talevski, Vladimir

    2012-01-01

    At the beginning of this PhD thesis, retrospective history is given concerning the evolution of the methods for lightning protection. The conventional methods are presented concerning lighting protection, with a comparation with the newest achievement on this field. The process of thundercloud formation is presented. The foundation of the conventional method for lightning protection is given, using data from standard IEC 62305, made according Berger research documents [10], [47], [53].The basic of the 'charge transfer system' is presented, developed by Carpenter, and in addition to this theory is the recently published theory of Rizk and his conditions of not initiating an upward leader for an object that is protected by lightning strike. Also it is high-voltage substation according to [52] and [54]. In this PhD thesis, a method for computation of additional positive charge is established for protection against direct lightning strike by the charge transfer system, which is generated over spherical electrode (ionizator) in order to get 'ultra-corona' mode, condition in which the corona current over the ionizator is not generating an upward leader. The ionizator in this computation is concerned with constant radius of curvature. The influence of the voltage increase in a very small time interval is computed and this influence is concerned in the computation of the additional space charge on the object to be protected, according to Rizk [1]. The model of the electrical thundercloud is concerned with all the electrical charge in it with its corresponding heights above ground. At the end , the condition of having minimal electrostatic field at earth is used to get the result for the additional positive charge. The computation is established by special function in Matlab, which are programmed in order to simulate a large number of values for: the electrical model of the thundercloud (positive and negative charges in thundercloud and their respective height above ground

  11. Muon Excess at Sea Level during the Progress of a Geomagnetic Storm and High-Speed Stream Impact Near the Time of Earth's Heliospheric Sheet Crossing

    Science.gov (United States)

    Augusto, C. R. A.; Navia, C. E.; de Oliveira, M. N.; Nepomuceno, A. A.; Kopenkin, V.; Sinzi, T.

    2017-08-01

    In this article we present results of studying the association between the muon flux variation at ground level, registered by the New-Tupi muon telescopes (22° 53'00'' S, 43° 06'13' W; 3 m above sea level), and the geomagnetic storm on 25 - 29 August 2015 that has raged for several days as a result of a coronal mass ejection (CME) impact on Earth's magnetosphere. A sequence of events started with an M3.5 X-ray class flare on 22 August 2015 at 21:19 UTC. The New-Tupi muon telescopes observed a Forbush decrease (FD) triggered by this geomagnetic storm, which began on 26 August 2015. After Earth crossed the heliospheric current sheet (HCS), an increase in particle flux was observed on 28 August 2015 by spacecraft and ground-level detectors. The observed peak was in temporal coincidence with the impact of a high-speed stream (HSS). We study this increase, which has been observed with a significance above 1.5% by ground-level detectors in different rigidity regimes. We also estimate the lower limit of the energy fluence injected on Earth. In addition, we consider the origin of this increase, such as acceleration of particles by shock waves at the front of the HSS and the focusing effect of the HCS crossing. Our results show possible evidence of a prolonged energetic (up to GeV energies) particle injection within the Earth atmosphere system, driven by the HSS. In most cases, these injected particles are directed to the polar regions. However, the particles from the high-energy tail of the spectrum can reach mid-latitudes, and this could have consequences for the atmospheric chemistry. For instance, the creation of NOx species may be enhanced, and this can lead to increased ozone depletion. This topic requires further study.

  12. Rare earth permanent-magnet alloys’ high temperature phase transformation in situ and dynamic observation and its application in material design

    CERN Document Server

    Pan, Shuming

    2013-01-01

    The process of high temperature phase transition of rare earth permanent-magnet alloys is revealed by photographs taken by high voltage TEM. The relationship between the formation of nanocrystal and magnetic properties is discussed in detail, which effects alloys composition and preparation process. The experiment results verified some presumptions, and were valuable for subsequent scientific research and creating new permanent-magnet alloys. The publication is intended for researchers, engineers and managers in the field of material science, metallurgy, and physics. Prof. Shuming Pan is senior engineer of Beijing General Research Institute of Non-ferrous Metal.

  13. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  14. Earth thermics

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, M

    1960-01-01

    The thermodynamics of the Earth are described, including terrestrial heat flow, internal temperatures and thermal history. The value of the geothermal gradient has been considered to be 3/sup 0/C/100 m but measured values are slightly different. The values of terrestrial heat flow are relatively constant and are calculated be about 2.3 x 10 to the minus 6 cal/cm/sup 2/ sec (2.3 HFU). The Earth's internal temperature can be calculated from the adiabatic temperature gradient of adiabatic expansion. Using Simon's equation No. 9, a value of 2100-2500/sup 0/C is obtained, this is much lower than it was previously thought to be. The value of 2.3 HFU can easily be obtained from this internal temperature figure.

  15. The high-pressure phase diagram of Fe(0.94)O - A possible constituent of the earth's core

    Science.gov (United States)

    Knittle, Elise; Jeanloz, Raymond

    1991-01-01

    Electrical resistivity measurements to pressures of 83 GPa and temperatures ranging from 300 K to 4300 K confirm the presence of both crystalline and liquid metallic phases of FeO at pressures above 60-70 GPa and temperatures above 1000 K. By experimentally determinig the melting temperature of FeO to 100 GPa and of a model-core composition at 83 GPa, it is found that the solid-melt equilibria can be described by complete solid solution across the Fe-FeO system at pressures above 70 GPa. The results indicate that oxygen is a viable and likely candidate for the major light alloying element of the earth's liquid outer core. The data suggest that the temperature at the core-mantle boundary is close to 4800 K and that heat lost out of the core accounts for more than 20 percent of the heat flux observed at the surface.

  16. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (130N)

    International Nuclear Information System (INIS)

    Michard, A.; Albarede, F.; Michard, G.; Minster, J.F.; Charlou, J.L.

    1983-01-01

    The mobility of rare-earth elements (REE) and U during hydrothermal alteration of the basalts at spreading centres has long been a matter of concern because of its bearing on the evolution and recycling of the oceanic crust. Previous approaches to this problem have been indirect, through studies on altered dredged basalts or ophiolites. Sampling of hydrothermal vent waters from the East Pacific Rise (EPR) at 13 0 N is reported. It provides the first direct evidence of REE-enriched solutions which, however, leave the budget of these elements in the crust and the ocean rather unmodified. In constrast, uranium, like magnesium, is quantitatively taken up from the seawater during the hydrothermal process. (author)

  17. Preparation of high crystalline nanoparticles of rare-earth based complex pervoskites and comparison of their structural and magnetic properties with bulk counterparts

    DEFF Research Database (Denmark)

    Basith, M. A.; Islam, M. A.; Ahmmad, Bashir

    2017-01-01

    of crystalline and amorphous phases. FESEM images demonstrate the formation of nanoparticles with average particle size in the range of 50–100 nm for both ultrasonication and 4 h (h) of ball milling. The bulk materials and nanoparticles synthesized by both ultrasonication and 4 h ball milling exhibit...... of the nanoparticles due to ball milling particularly for milling time exceeding 8 h. This investigation demonstrates the potential of ultrasonication as a simple route to prepare high crystalline rare-earth based manganite nanoparticles with improved control compared to the traditional ball milling technique....

  18. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  19. On the prospects to detect superheavy elements (SHE) in the earth's crust using the high energy synchrotron radiation and the mass spectrometry

    International Nuclear Information System (INIS)

    Schnier, C.

    2001-01-01

    There are many indications for the existence of superheavy elements (SHE) in the Earth's crust. The appropriate detection methods are X-ray fluorescence (XRF) using the high energy synchrotron radiation and the mass spectrometry. The characteristic X-rays of each element up to Z >120 (corresponding binding energy of the K-electrons E b >230 keV) can be precisely excited with synchrotron XRF. Up to now, the XRF with high energy photons has never been applied to the quest for SHE. New methods of mass spectrometry eg using resonance ionization (RIMS) are promising to detect unambiguously atomic masses about 300 in solid matrices. It is proposed to restart the quest for SHE in the nature. Finding a SHE in the Earth's crust would be very important, because of what it will tell us about the origin of the elements eg about the nucleosynthesis during a super nova explosion, the structure of the atomic nuclei and the site of SHE in the periodic table of elements. (orig.) [de

  20. Component-Customizable Porous Rare-Earth-Based Colloidal Spheres towards Highly Effective Catalysts and Bioimaging Applications.

    Science.gov (United States)

    Li, Cheng Chao; Rui, Xianhong; Wei, Weifeng; Chen, Libao; Yu, Yan

    2017-11-16

    Multicomponent porous colloidal spheres are of interest because they not only show a combination of the properties associated with all different components, but also usually present synergy effects. However, a combination of different components in a single porous sphere is still greatly challenged due to the different precipitation behaviors of each component. In this work, we have developed a general synthetic route to prepare several categories of porous monodisperse rare-earth (RE)-based colloidal spheres with customizable elemental compositions and a uniform element distribution. The two-step synthetic strategy is based on the integration of coordination chemistry precipitation of RE ions and a subsequent ion-exchange process, which steers clear of obstacles, such as differences in solubility product constant, that are to be found in traditional co-precipitation methods. Our approach provides a new mixing mechanism to realize homogeneous distribution of each element within the porous spheres. An array of binary, ternary, and even senary RE colloidal porous spheres with diameters of 500 nm to 700 nm has been successfully synthesized. Taking advantage of their good dispersibility, porosity, and customizable components, these porous RE oxide spheres show excellent catalytic activity for the reduction of 4-nitrophenol, and promising application in single-phase multifunctional bioprobes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effect of rare earth elements yttrium and lanthanum on high temperature oxidation resistance of Mo-Si-B alloys

    International Nuclear Information System (INIS)

    Majumdar, Sanjib

    2014-01-01

    In the present investigation, 0.2 to 2 at% Y and La alloyed Mo-9Si-8B were consolidated using mechanical alloying followed by spark plasma sintering. Isothermal oxidation studies were conducted in a wide temperature range from 650 to 1300℃. Detailed characterization studies of the oxide scale using SEM, EDS, FIB, TEM reveal the formation of Y x Mo 18 O 32 and 3La 2 O 3 ·MoO 3 oxide phases, respectively, for Y and La-containing alloys reduce the evaporation of MoO 3 . The growth rate of protective silica scale is also enhanced due to faster formation of Y and La rich oxide particles which probably act as nucleation sites for silica. At higher temperatures (at 1100℃), the oxidation behavior of unalloyed and RE-alloyed Mo-9Si-8B are comparable. A transient weight loss followed by a steady state is reached due to protective amorphous silica-rich scale formation beyond 1100℃. Therefore, alloying with rare earth elements provides a broader application temperature window for silicide based materials starting from 750℃ to 1300℃

  2. Feasibility of modifying the high resolution infrared radiation sounder (HIRS/2) for measuring spectral components of Earth radiation budget

    Science.gov (United States)

    Koenig, E. W.; Holman, K. A.

    1980-01-01

    The concept of adding four spectral channels to the 20 channel HIRS/2 instrument for the purpose of determining the origin and profile of radiant existence from the Earth's atmosphere is considered. Methods of addition of three channels at 0.5, 1.0 and 1.6 micron m to the present 0.7 micron m visible channel and an 18-25 micron m channel to the present 19 channels spaced from 3.7 micron m to 15 micron m are addressed. Optical components and physical positions were found that permit inclusion of these added channels with negligible effect on the performance of the present 20 channels. Data format changes permit inclusion of the ERB data in the 288 bits allocated to HIRS for each scan element. A lamp and collimating optic assembly may replace one of the on board radiometric black bodies to provide a reference source for the albedo channels. Some increase in instrument dimensions, weight and power will be required to accommodate the modifications.

  3. Isostructural crystal hydrates of rare-earth metal oxalates at high pressure. From strain anisotropy to dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Boris A.; Matvienko, Alexander A. [Russian Academy of Ssciences, Novosibirsk (Russian Federation). Inst. of Solid State Chemistry and Mechanochemistry; Novosibirsk State Univ. (Russian Federation); Gribov, Pavel A.; Boldyreva, Elena V. [Russian Academy of Ssciences, Novosibirsk (Russian Federation). Inst. of Solid State Chemistry and Mechanochemistry

    2017-07-01

    The crystal structures of a series of isostructural rare-earth metal oxalates, (REE){sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O (REE=Sm, Y) and a 1:1 YSm(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O solid solution, have been studied in situ by single-crystal X-ray diffraction and optical microscopy. The structures were followed from ambient pressure to 6 GPa in a DAC with paraffin as the hydrostatic fluid. Bulk compressibilities, anisotropic lattice strain on hydrostatic compression and the corresponding changes in the atomic coordinates were followed. Discontinuities/sharp changes in the slopes of the pressure dependences of volume and selected cell parameters have been observed for yttrium-containing salts at ∝3.5 GPa. This may be related to the re-distribution of water molecules within the crystal structure. Y{sub 2}(C{sub 2}O{sub 4}){sub 3}.10H{sub 2}O undergoes a partial dehydration at 1 GPa, forming monoclinic Y{sub 2}(C{sub 2}O{sub 4}){sub 3}.6H{sub 2}O as single-crystalline inclusions in the original phase.

  4. A museum-based urban teacher residency program's approach to strengthening the STEM pipeline: Channeling highly qualified Earth Science teachers into high needs schools

    Science.gov (United States)

    Ustunisik, G. K.; Zirakparvar, N. A.

    2015-12-01

    Channeling better prepared Earth Science teachers into secondary schools with low achievement rates in STEM subjects is essential to ensuring that the students attending these schools are ultimately afforded the opportunity to take advantage of projected growth in the global geoscience workforce. Here, a museum-based urban teacher residency (UTR) program's approach to building subject specific content knowledge and research experience in Earth Science teacher candidates is described. In the museum-based program, graduate-level science courses and research experiences are designed and implemented specifically for the UTR by active Earth and Space research scientists that account for almost half of the program's faculty. Because these courses and research experiences are designed specifically for the teacher candidates, they are different than many science courses and research experiences available to pre-service teachers in a university setting. At the same time, the museum-based program is the only UTR to incorporate such a rigorous science curriculum, and some possible advantages and disadvantages of the program's approach are also considered here. While the impact of the program's approach on student achievement rates has yet to be evaluated, there is promise in the well documented links between a teacher's own experience with the practice of science and that teacher's ability to leverage effective pedagogical content knowledge in the teaching of science. Because the museum-based program's science curriculum is balanced against the educational coursework and teaching residencies that necessarily form the program's backbone, the museum's approach to strengthening the teacher candidate's science background may also inform the faculty and administration of other UTRs in cases where one of their program goals is to further expand their teacher candidate's content knowledge and practical subject matter experience.

  5. Radium, thorium, and the light rare earth elements in soils and vegetables grown in an area of high natural radioactivity

    International Nuclear Information System (INIS)

    Linsalata, P.; Franca, E.P.; Sachett, I.

    1987-01-01

    A study is in progress in Brazil to assess the soil-to-plant concentration ratios (CR) of the naturally occurring radionuclides 226 Ra, 228 Ra, 232 Th, 230 Th, and 228 Th and the light rare earth elements (REE) La, Ce, and Nd. Thorium serves as an analog for Pu(IV) and La or Nd as analogs for Am and Cm(III). A near-surface deposit of Th (∼30,000 tons) and REE (>100,000 tons) exists at the center of the plateau near the summit of a small hill. No trends have been observed between farm soil concentrations and proximity to the ore body, substantiating earlier conclusions of the relative immobility of these elements from the deposit. New analytical procedures are presented for the sequential determination of isotopic thorium and the light REE in large biological samples. Typical radiochemical yields are 50 to 70% for Th and 80 to 100% for the REE. Preliminary analyses of seven vegetable types indicate that concentrations of Th, La, Nd, Ce, and Sm are quite variable between and among species. Average concentrations in plant tissues generally reflect soil abundances as: Ce > La > Nd > Sm ∼ Th. Mean CRs are 604, 270, 24, 17, 8 and 1 for 228 Ra, 226 Ra, La, Nd, Ce, and Th, respectively. Plant uptake of elements with stable oxidation states of II, III, and IV decreases as Ra(II) > REE(III) > Th(IV), which may reflect the availability of these elements in soil. 33 references, 4 figures, 4 tables

  6. Spatial representation of organic carbon and active-layer thickness of high latitude soils in CMIP5 earth system models

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Umakant; Drewniak, Beth; Jastrow, Julie D.; Matamala, Roser M.; Vitharana, U. W. A.

    2017-08-01

    Soil properties such as soil organic carbon (SOC) stocks and active-layer thickness are used in earth system models (F.SMs) to predict anthropogenic and climatic impacts on soil carbon dynamics, future changes in atmospheric greenhouse gas concentrations, and associated climate changes in the permafrost regions. Accurate representation of spatial and vertical distribution of these soil properties in ESMs is a prerequisite for redudng existing uncertainty in predicting carbon-climate feedbacks. We compared the spatial representation of SOC stocks and active-layer thicknesses predicted by the coupled Modellntercomparison Project Phase 5 { CMIP5) ESMs with those predicted from geospatial predictions, based on observation data for the state of Alaska, USA. For the geospatial modeling. we used soil profile observations {585 for SOC stocks and 153 for active-layer thickness) and environmental variables (climate, topography, land cover, and surficial geology types) and generated fine-resolution (50-m spatial resolution) predictions of SOC stocks (to 1-m depth) and active-layer thickness across Alaska. We found large inter-quartile range (2.5-5.5 m) in predicted active-layer thickness of CMIP5 modeled results and small inter-quartile range (11.5-22 kg m-2) in predicted SOC stocks. The spatial coefficient of variability of active-layer thickness and SOC stocks were lower in CMIP5 predictions compared to our geospatial estimates when gridded at similar spatial resolutions (24.7 compared to 30% and 29 compared to 38%, respectively). However, prediction errors. when calculated for independent validation sites, were several times larger in ESM predictions compared to geospatial predictions. Primaly factors leading to observed differences were ( 1) lack of spatial heterogeneity in ESM predictions, (2) differences in assumptions concerning environmental controls, and (3) the absence of pedogenic processes in ESM model structures. Our results suggest that efforts to incorporate

  7. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    The alkaline earth borate glasses containing heavy metal oxides show good solubility of rare-earth ions. Glasses containing PbO exhibit low glass transition temperature (Tg) and high ..... These oxygen ions carry a partial negative charge and.

  8. A high-resolution atlas of the infrared spectrum of the Sun and the Earth atmosphere from space. Volume 3: Key to identification of solar features

    Science.gov (United States)

    Geller, Murray

    1992-01-01

    During the period April 29 through May 2, 1985, the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment was operated as part of the Spacelab-3 (SL-3) payload on the shuttle Challenger. The instrument, a Fourier transform spectrometer, recorded over 2000 infrared solar spectra from an altitude of 360 km. Although the majority of the spectra were taken through the limb of the Earth's atmosphere in order to better understand its composition, several hundred of the 'high-sun' spectra were completely free from telluric absorption. These high-sun spectra recorded from space are, at the present time, the only high-resolution infrared spectra ever taken of the Sun free from absorptions due to constituents in the Earth's atmosphere. Volumes 1 and 2 of this series provide a compilation of these spectra arranged in a format suitable for quick-look reference purposes and are the first record of the continuous high-resolution infrared spectrum of the Sun and the Earth's atmosphere from space. In the Table of Identifications, which constitutes the main body of this volume, each block of eight wavenumbers is given a separate heading and corresponds to a page of two panels in Volume 1 of this series. In addition, three separate blocks of data available from ATMOS from 622-630 cm(exp -1), 630-638 cm(exp -1) and 638-646 cm(exp -1), excluded from Volume 1 because of the low signal-to-noise ratio, have been included due to the certain identification of several OH and NH transitions. In the first column of the table, the corrected frequency is given. The second column identifies the molecular species. The third and fourth columns represent the assigned transition. The fifth column gives the depth of the molecular line in millimeters. Also included in this column is a notation to indicate whether the line is a blend or lies on the shoulder(s) of another line(s). The final column repeats a question mark if the line is unidentified.

  9. Comparison between Duncan and Chang’s EB Model and the Generalized Plasticity Model in the Analysis of a High Earth-Rockfill Dam

    Directory of Open Access Journals (Sweden)

    Weixin Dong

    2013-01-01

    Full Text Available Nonlinear elastic model and elastoplastic model are two main kinds of constitutive models of soil, which are widely used in the numerical analyses of soil structure. In this study, Duncan and Chang's EB model and the generalized plasticity model proposed by Pastor, Zienkiewicz, and Chan was discussed and applied to describe the stress-strain relationship of rockfill materials. The two models were validated using the results of triaxial shear tests under different confining pressures. The comparisons between the fittings of models and test data showed that the modified generalized plasticity model is capable of simulating the mechanical behaviours of rockfill materials. The modified generalized plasticity model was implemented into a finite element code to carry out static analyses of a high earth-rockfill dam in China. Nonlinear elastic analyses were also performed with Duncan and Chang's EB model in the same program framework. The comparisons of FEM results and in situ monitoring data showed that the modified PZ-III model can give a better description of deformation of the earth-rockfill dam than Duncan and Chang’s EB model.

  10. Vegetation and land carbon feedbacks in the high-resolution transient Holocene simulations using the MPI Earth system model

    Science.gov (United States)

    Brovkin, Victor; Lorenz, Stephan; Raddatz, Thomas

    2017-04-01

    Plants influence climate through changes in the land surface biophysics (albedo, transpiration) and concentrations of the atmospheric greenhouse gases. One of the interesting periods to investigate a climatic role of terrestrial biosphere is the Holocene, when, despite of the relatively steady global climate, the atmospheric CO2 grew by about 20 ppm from 7 kyr BP to pre-industrial. We use a new setup of the Max Planck Institute Earth System Model MPI-ESM1 consisting of the latest version of the atmospheric model ECHAM6, including the land surface model JSBACH3 with carbon cycle and vegetation dynamics, coupled to the ocean circulation model MPI-OM, which includes the HAMOCC model of ocean biogeochemistry. The model has been run for several simulations over the Holocene period of the last 8000 years under the forcing data sets of orbital insolation, atmospheric greenhouse gases, volcanic aerosols, solar irradiance and stratospheric ozone, as well as land-use changes. In response to this forcing, the land carbon storage increased by about 60 PgC between 8 and 4 kyr BP, stayed relatively constant until 2 kyr BP, and decreased by about 90 PgC by 1850 AD due to land use changes. Vegetation and soil carbon changes significantly affected atmospheric CO2 during the periods of strong volcanic eruptions. In response to the eruption-caused cooling, the land initially stores more carbon as respiration decreases, but then it releases even more carbon due to productivity decrease. This decadal- scale variability helps to quantify the vegetation and land carbon feedbacks during the past periods when the temporal resolution of the ice-core CO2 record is not sufficient to capture fast CO2 variations. From a set of Holocene simulations with prescribed or interactive atmospheric CO2, we get estimates of climate-carbon feedback useful for future climate studies. Members of the Hamburg Holocene Team: Jürgen Bader1, Sebastian Bathiany2, Victor Brovkin1, Martin Claussen1,3, Traute Cr

  11. Vegetation and Carbon Cycle Dynamics in the High-Resolution Transient Holocene Simulations Using the MPI Earth System Model

    Science.gov (United States)

    Brovkin, V.; Lorenz, S.; Raddatz, T.; Claussen, M.; Dallmeyer, A.

    2017-12-01

    One of the interesting periods to investigate a climatic role of terrestrial biosphere is the Holocene, when, despite of the relatively steady global climate, the atmospheric CO2 grew by about 20 ppm from 7 kyr BP to pre-industrial. We use a new setup of the Max Planck Institute Earth System Model MPI-ESM1 consisting of the latest version of the atmospheric model ECHAM6, including the land surface model JSBACH3 with carbon cycle and vegetation dynamics, coupled to the ocean circulation model MPI-OM, which includes the HAMOCC model of ocean biogeochemistry. The model has been run for several simulations over the Holocene period of the last 8000 years under the forcing data sets of orbital insolation, atmospheric greenhouse gases, volcanic aerosols, solar irradiance and stratospheric ozone, as well as land-use changes. In response to this forcing, the land carbon storage increased by about 60 PgC between 8 and 4 kyr BP, stayed relatively constant until 2 kyr BP, and decreased by about 90 PgC by 1850 AD due to land use changes. At 8 kyr BP, vegetation cover was much denser in Africa, mainly due to increased rainfall in response to the orbital forcing. Boreal forests moved northward in both, North America and Eurasia. The boreal forest expansion in North America is much less pronounced than in Eurasia. Simulated physical ocean fields, including surface temperatures and meridional overturning, do not change substantially in the Holocene. Carbonate ion concentration in deep ocean decreases in both, prescribed and interactive CO2simulations. Comparison with available proxies for terrestrial vegetation and for the ocean carbonate chemistry will be presented. Vegetation and soil carbon changes significantly affected atmospheric CO2 during the periods of strong volcanic eruptions. In response to the eruption-caused cooling, the land initially stores more carbon as respiration decreases, but then it releases even more carbon die to productivity decrease. This decadal

  12. Quest for Highly-connected MOF Platforms: Rare-Earth Polynuclear Clusters Versatility Meets Net Topology Needs.

    KAUST Repository

    Alezi, Dalal; Peedikakkal, Abdul Malik P.; Weselinski, Lukasz Jan; Guillerm, Vincent; Belmabkhout, Youssef; Cairns, Amy; Chen, Zhijie; Wojtas, Lukasz; Eddaoudi, Mohamed

    2015-01-01

    that RE-MOFs with double six-membered ring (d6R) secondary building units are isolated, representing therefore a critical step forward toward the design of novel and highly coordinated materials using the supermolecular building layer approach while

  13. The Concept Mastery in the Perspective of Gender of Junior High School Students on Eclipse Theme in Multiple Intelligences-based of Integrated Earth and Space Science Learning

    Science.gov (United States)

    Liliawati, W.; Utama, J. A.; Mursydah, L. S.

    2017-03-01

    The purpose of this study is to identify gender-based concept mastery differences of junior high school students after the implementation of multiple intelligences-based integrated earth and space science learning. Pretest-posttest group design was employed to two different classes at one of junior high school on eclipse theme in Tasikmalaya West Java: one class for boys (14 students) and one class of girls (18 students). The two-class received same treatment. The instrument of concepts mastery used in this study was open-ended eight essay questions. Reliability test result of this instrument was 0.9 (category: high) while for validity test results were high and very high category. We used instruments of multiple intelligences identification and learning activity observation sheet for our analysis. The results showed that normalized N-gain of concept mastery for boys and girls were improved, respectively 0.39 and 0.65. Concept mastery for both classes differs significantly. The dominant multiple intelligences for boys were in kinesthetic while girls dominated in the rest of multiple intelligences. Therefor we concluded that the concept mastery was influenced by gender and student’s multiple intelligences. Based on this finding we suggested to considering the factor of gender and students’ multiple intelligences given in the learning activity.

  14. A Spitzer search for transits of radial velocity detected super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Kammer, J. A.; Knutson, H. A.; Desert, J.-M. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Howard, A. W. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Laughlin, G. P.; Fortney, J. J. [Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Deming, D. [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Todorov, K. O. [Institute for Astronomy, ETH Zürich, CH-8093 Zürich (Switzerland); Agol, E. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Burrows, A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Showman, A. P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Lewis, N. K., E-mail: jkammer@caltech.edu [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-02-01

    Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past 4 yr, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable mass estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to host super-Earth sized bodies detected using the radial velocity (RV) technique. Here we present results from a Spitzer program to observe six of the most favorable RV-detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 μm flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by the Microvariability and Oscillations of Stars space telescope.

  15. Application of the Instrumental Neutron Activation Analysis and High Performance Liquid Chromatography (HPLC) in the rare earth elements determination in reference geological materials

    International Nuclear Information System (INIS)

    Figueiredo, Ana M.G.; Moraes, Noemia M.P. de; Shihomatsu, Helena M.

    1997-01-01

    Instrumental Neutron Activation Analysis (INAA) and High Performance Liquid Chromatography (HPLC) were applied to the determination of rare earth elements (REE) in the geological reference materials AGV-1, G-2 and GSP-1 (USGS). Results obtained by both techniques showed good agreement with certified values, giving relative errors less than 10%. The La, Ce, Nd, Sm, Eu, Tb, Yb and Lu REE elements were determined. All the REE except Dy and Y were determined by HPLC. The reference material G94, employed in the International Proficiency Test for Analytical Geochemistry Laboratories (GeoTP1) was analysed. The results obtained are a contribution to REE contents in this sample. The INAA and HPLC application to the determination of REE in this kind of matrix is also discussed. (author). 10 refs., 1 fig., 5 tabs

  16. Stability of the high pressure phase Fe3S2 up to Earth's core pressures in the Fe-S-O and the Fe-S-Si systems

    Science.gov (United States)

    Zurkowski, C. C.; Chidester, B.; Davis, A.; Brauser, N.; Greenberg, E.; Prakapenka, V. B.; Campbell, A.

    2017-12-01

    Earth's core is comprised of an iron-nickel alloy that contains 5-15% of a light element component. The abundance and alloying capability of sulfur, silicon and oxygen in the bulk Earth make them important core alloy candidates; therefore, the high-pressure phase equilibria of the Fe-S-O and Fe-S-Si systems are relevant for understanding the possible chemistry of Earth's core. Previously, a Fe3S2 phase was recognized as a low-pressure intermediate phase in the Fe-FeS system that is stable from 14-21 GPa, but the structure of this phase has not been resolved. We report in-situ XRD and chemical analysis of recovered samples to further examine the stability and structure of Fe3S2 as it coexists with other phases in the Fe-S-O and Fe-S-Si systems. In situ high P-T synchrotron XRD experiments were conducted in the laser-heated diamond anvil cell to determine the equilibrium phases in Fe75S7O18 and Fe80S5Si15 compositions between 30 and 174 GPa and up to 3000 K. In the S,O-rich samples, an orthorhombic Fe3S2 phase coexists with hcp-Fe, Fe3S and FeO and undergoes two monoclinic distortions between 60 and 174 GPa. In the S,Si-rich samples, the orthorhombic Fe3S2 phase was observed up to 115 GPa. With increasing pressure, the Fe3S2 phase becomes stable to higher temperatures in both compositions, suggesting possible Fe3(S,O)2 or Fe3(S,Si)2 solid solutions. SEM analysis of a laser heated Fe75S7O18 sample recovered from 40 GPa and 1450 K confirms a Fe3(S,O)2 phase with O dissolved into the structure. Based on the current melting data in the Fe-S-O and Fe-S-Si systems, the Fe3(S,O)2 stability field intersects the solidus in the outer core and could be a possible liquidus phase in Fe,S,O-rich planetary cores, whereas Fe3S is the stable sulfide at outer core pressures in Fe,S,Si-rich systems.

  17. Design of a High-Power White Light Source with Colloidal Quantum Dots and Non-Rare-Earth Phosphors

    Science.gov (United States)

    Bicanic, Kristopher T.

    This thesis describes the design process of a high-power white light source, using novel phosphor and colloidal quantum dot materials. To incorporate multiple light emitters, we generalized and extended a down-converting layer model. We employed a phosphor mixture comprising of YAG:Ce and K2TiF 6:Mn4+ powders to illustrate the effectiveness of the model. By incorporating experimental photophysical results from the phosphors and colloidal quantum dots, we modeled our system and chose the design suitable for high-power applications. We report a reduction in the correlated color temperature by 600K for phosphor and quantum dot systems, enabling the creation of a warm white light emission at power densities up to 5 kW/cm 2. Furthermore, at this high-power, their emission achieves the digital cinema initiative (DCI) requirements with a luminescence efficacy improvement up to 32% over the stand-alone ceramic YAG:Ce phosphor.

  18. Self-consistent field description of high spin states in rare earth nuclei. [Hartree-Fock-Bogolyubov Theory

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, A L [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1976-07-12

    The Hartree-Fock-Bogolyubov cranking equations are solved for /sup 168/ /sup 170/Yb and /sup 174/Hf. Deformation and pairing properties are both obtained with a G-matrix derived from the Reid soft-core potential. The high spin anomalies are attributed to the disappearance of the neutron pair gap in /sup 168/Yb, the realignment of an isub(13/2) neutron pair in /sup 170/Yb, and a combination of these two mechanisms in /sup 174/Hf. Two bands intersecting at high spin are found for /sup 174/Hf.

  19. 186Os and 187Os enrichments and high-3He/4He sources in the Earth's mantle

    DEFF Research Database (Denmark)

    Brandon, A.D.; Graham, D.W.; Waight, Tod Earle

    2007-01-01

    at present remains core-mantle interaction. While some plumes with high 3He/4He, such as Hawaii, appear to have been subjected to detectable addition of Os (and possibly He) from the outer core, others such as Iceland do not. A positive correlation between 187Os/188Os and 3He/4He from 9.6 to 19 Ra in Iceland...

  20. High-resolution records of non-dipole variations in the intensity of the Earth's magnetic field

    NARCIS (Netherlands)

    de Groot, L.V.

    2013-01-01

    Our understanding of the short-term behavior of the Earth’s magnetic field is currently mainly hampered by a lack of high-resolution records of geomagnetic intensity variations that are well distributed over the globe and cover the same timespan. Over the past decades many efforts have been made to

  1. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  2. Rare earths: occurrence, production and applications

    International Nuclear Information System (INIS)

    Murthy, T.K.S.; Mukherjee, T.K.

    2002-01-01

    The mining and processing of rare earth minerals, particularly of monazite, began in a modest way in 1880s for commercialized production of mantle for gas lighting. For all major applications up to mid-twentieth century- production of lighter flints, misch metal as a metallurgical alloying agent, colouring, decolourizing and polishing agents for glass, petroleum cracking catalysts and arc-carbons, unseparated or partially separated rare earths were adequate. These applications continue till today. With the development and industrial application of powerful techniques like ion exchange and solvent extraction for the separation of rare earths, the decades after 1960 saw increasing utilization of the specific properties of the individual rare earths. Some of these advanced technological applications include: special glass for optical systems including camera lenses, phosphors for colour television, cathode ray tubes and fluorescent lighting, X-ray intensification screens, high intensity permanent magnets, electro optical devices, lasers, hydrogen storage materials, hydride rechargeable batteries, photomagnetic data storage systems, autoexhaust catalysts, special ceramics of unusual toughness, artificial diamonds and nonpoisonous plastic colorants. The topics covered in the book include rare earths: their story identity, rare earth resources, processing of ores and recovery of mixed rare earths products, separation and purification of rare earths, nonmetallic applications of rare earths, rare earth metals: production and applications, rare earth alloys and their applications, analysis of rare earth, processing of rare earth resources in India by Indian Rare Earth Ltd. and availability and market conditions

  3. The Mercereau effect as a guide to the theory of high-Tc superconductivity in rare earth oxide ceramics

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Martin, P.; Rodriguez-Nunez, J.

    1988-08-01

    We emphasize the importance of performing definite experiments on quantum interferometers, basing our work on a phenomenological theory of high-T c superconductivity co-existing with antiferromagnetism. The theory satisfies all the general requirements of previous models, including minimal gauge invariant coupling terms. Yet, since no doping-dependent displacements are implied in the Mercereau diffraction pattern, this phenomenological approach underlines the urgency of performing new experiments in order to guide the theory. (author). 21 refs, 1 fig

  4. A Study on the Dependable and Secure Relaying Scheme under High Resistance Earth Faults on HV, EHV Line

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.D.; Han, K.N. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    This report contains following items for the purpose of investigating and analyzing characteristics of high impedance ground faults. - Reason and characteristics identification of HIF - Modeling of power system - Testing of protective relays using RTD(Real Time Digital Simulator) - Staged ground faults test - Development of new algorithm to detect HIF - Protective coordination schemes between different types of relays - HIF monitoring and relaying scheme and H/W prototyping. (author). 22 refs., 28 figs., 21 tabs.

  5. Measurements of incoherent light and background structure at exo-Earth detection levels in the High Contrast Imaging Testbed

    Science.gov (United States)

    Cady, Eric; Shaklan, Stuart

    2014-08-01

    A major component of the estimation and correction of starlight at very high contrasts is the creation of a dark hole: a region in the vicinity of the core of the stellar point spread function (PSF) where speckles in the PSF wings have been greatly attenuated, up to a factor of 1010 for the imaging of terrestrial exoplanets. At these very high contrasts, removing these speckles requires distinguishing between light from the stellar PSF scattered by instrument imperfections, which may be partially corrected across a broad band using deformable mirrors in the system, from light from other sources which generally may not. These other sources may be external or internal to the instrument (e.g. planets, exozodiacal light), but in either case, their distinguishing characteristic is their inability to interfere coherently with the PSF. In the following we discuss the estimation, structure, and expected origin of this incoherent" signal, primarily in the context of a series of experiments made with a linear band-limited mask in Jan-Mar 2013. We find that the incoherent" signal at moderate contrasts is largely estimation error of the coherent signal, while at very high contrasts it represents a true floor which is stable over week-timescales.

  6. Toward detection of supernova event near the earth based on high-resolution analysis of cosmogenic nuclide 10Be in marine sediments

    Science.gov (United States)

    Takiguchi, S.; Suganuma, Y.; Kataoka, R.; Yamaguchi, K. E.

    2017-12-01

    Cosmic rays react with substances in the Earth's atmosphere and form cosmogenic nuclides. The flux would abruptly increase with nearby supernova or terrestrial magnetic events such as reversal or excursion of terrestrial magnetism. The Earth must have been exposed to cosmic ray radiation for as long as 10 Ma, if any, by nearby supernova activities (Kataoka et al., 2014). Increased and prolonged activity of cosmic rays would affect Earth's climate through forming greenhouse gases and biosphere through damaging DNA. Therefore, interests have been growing as to whether and how past supernova events have ever left any fingerprints on them. However, detection of nearby supernova is still under debate (e.g., Knie et al., 2004) To detect long-term record of past supernova activities, we utilize cosmogenic nuclide 10Be because of its short residence time (1-2yr) in the atmosphere, simple transport process, and adequate half-life (1.36 kyr) which is nearly equivalent to the duration of present-day deep water circulation. Sediment samples collected from the equatorial western Pacific (706-825 kyr in age) were finely powdered and decomposed by mixed acids (HNO3, HF, and HClO4). Authigenic phase was also separated from bulk powders by leaching with a weak acid. Because quantitative separation of Be from samples is essential toward high-quality 10Be analysis, both Be-bearing fractions were applied to optimized anion exchange chromatography for Be separation, and Be abundance was measured by atomic absorption spectrometry. The 10Be abundance (10Be/9Be ratios) were measured by accelerator mass spectrometry. The authigenic phase showed temporal curve that is similar to that of bulk samples (Suganuma et al., 2012), reflecting the influence of relative paleo-intensity and utility of authigenic method. Increased data set in terms of sampling interval (density) and total age range would allow us to judge whether it could detect past supernova activities and how it appears when

  7. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  8. Metallothermic reduction of rare earth oxides

    International Nuclear Information System (INIS)

    Sharma, R.A.

    1986-01-01

    Rare earth oxides can be reduced to rare earth metals by a novel, high yield, metallothermic process. The oxides are dispersed in a suitable, molten, calcium chloride bath along with sodium metal. The sodium reacts with the calcium chloride to produce calcium metal which reduces the rare earth oxides to rare earth metals. The metals are collected in a discrete layer in the reaction vessel

  9. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth.

    Science.gov (United States)

    Pasek, Matthew A; Lauretta, Dante S

    2005-08-01

    We present the results of an experimental study of aqueous corrosion of Fe-phosphide under conditions relevant to the early Earth. The results strongly suggest that iron meteorites were an important source of reactive phosphorus (P), a requirement for the formation of P-based life. We further demonstrate that iron meteorites were an abundant source of phosphide minerals early in Earth history. Phosphide corrosion was studied in five different solutions: deionized water, deionized water buffered with sodium bicarbonate, deionized water with dissolved magnesium and calcium chlorides, deionized water containing ethanol and acetic acid, and deionized water containing the chlorides, ethanol, and acetic acid. Experiments were performed in the presence of both air and pure Ar gas to evaluate the effect of atmospheric chemistry. Phosphide corrosion in deionized water results in a metastable mixture of mixed-valence, P-bearing ions including pyrophosphate and triphosphate, key components for metabolism in modern life. In a pH-buffered solution of NaHCO(3), the condensed and reduced species diphosphonate is an abundant corrosion product. Corrosion in ethanol- and acetic acid-containing solutions yields additional P-bearing organic molecules, including acetyl phosphonate and a cyclic triphosphorus molecule. Phosphonate is a major corrosion product of all experiments and is the only P-bearing molecule that persists in solutions with high concentrations of magnesium and calcium chlorides, which suggests that phosphonate may have been a primitive oceanic source of P. The stability and reactivity of phosphonate and hypophosphite in solution were investigated to elucidate reaction mechanisms and the role of mineral catalysts on P-solution chemistry. Phosphonate oxidation is rapid in the presence of Fe metal but negligible in the presence of magnetite and in the control sample. The rate of hypophosphite oxidation is independent of reaction substrate.

  10. Possible Outcomes of Coplanar High-eccentricity Migration: Hot Jupiters, Close-in Super-Earths, and Counter-orbiting Planets

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yuxin; Masuda, Kento; Suto, Yasushi, E-mail: yuxin@utap.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2017-02-01

    We investigate the formation of close-in planets in near-coplanar eccentric hierarchical triple systems via the secular interaction between an inner planet and an outer perturber (Coplanar High-eccentricity Migration; CHEM). We generalize the previous work on the analytical condition for successful CHEM for point masses interacting only through gravity by taking into account the finite mass effect of the inner planet. We find that efficient CHEM requires that the systems should have m {sub 1}≪m {sub 0} and m {sub 1} ≪ m {sub 2}. In addition to the gravity for point masses, we examine the importance of the short-range forces, and provide an analytical estimate of the migration timescale. We perform a series of numerical simulations in CHEM for systems consisting of a Sun-like central star, giant gas inner planet, and planetary outer perturber, including the short-range forces and stellar and planetary dissipative tides. We find that most of such systems end up with a tidal disruption; a small fraction of the systems produce prograde hot Jupiters (HJs), but no retrograde HJ. In addition, we extend CHEM to super-Earth mass range, and show that the formation of close-in super-Earths in prograde orbits is also possible. Finally, we carry out CHEM simulation for the observed hierarchical triple and counter-orbiting HJ systems. We find that CHEM can explain a part of the former systems, but it is generally very difficult to reproduce counter-orbiting HJ systems.

  11. The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium

    Energy Technology Data Exchange (ETDEWEB)

    Ketelaer, Jens

    2010-06-14

    The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium: Nuclear masses are an important quantity to study nuclear structure since they reflect the sum of all nucleonic interactions. Many experimental possibilities exist to precisely measure masses, out of which the Penning trap is the tool to reach the highest precision. Moreover, absolute mass measurements can be performed using carbon, the atomic-mass standard, as a reference. The new double-Penning trap mass spectrometer TRIGA-TRAP has been installed and commissioned within this thesis work, which is the very first experimental setup of this kind located at a nuclear reactor. New technical developments have been carried out such as a reliable non-resonant laser ablation ion source for the production of carbon cluster ions and are still continued, like a non-destructive ion detection technique for single-ion measurements. Neutron-rich fission products will be available by the reactor that are important for nuclear astrophysics, especially the r-process. Prior to the on-line coupling to the reactor, TRIGA-TRAP already performed off-line mass measurements on stable and long-lived isotopes and will continue this program. The main focus within this thesis was on certain rare-earth nuclides in the well-established region of deformation around N {proportional_to} 90. Another field of interest are mass measurements on actinoids to test mass models and to provide direct links to the mass standard. Within this thesis, the mass of {sup 241}Am could be measured directly for the first time. (orig.)

  12. The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium

    International Nuclear Information System (INIS)

    Ketelaer, Jens

    2010-01-01

    The construction of TRIGA-TRAP and direct high-precision Penning trap mass measurements on rare-earth elements and americium: Nuclear masses are an important quantity to study nuclear structure since they reflect the sum of all nucleonic interactions. Many experimental possibilities exist to precisely measure masses, out of which the Penning trap is the tool to reach the highest precision. Moreover, absolute mass measurements can be performed using carbon, the atomic-mass standard, as a reference. The new double-Penning trap mass spectrometer TRIGA-TRAP has been installed and commissioned within this thesis work, which is the very first experimental setup of this kind located at a nuclear reactor. New technical developments have been carried out such as a reliable non-resonant laser ablation ion source for the production of carbon cluster ions and are still continued, like a non-destructive ion detection technique for single-ion measurements. Neutron-rich fission products will be available by the reactor that are important for nuclear astrophysics, especially the r-process. Prior to the on-line coupling to the reactor, TRIGA-TRAP already performed off-line mass measurements on stable and long-lived isotopes and will continue this program. The main focus within this thesis was on certain rare-earth nuclides in the well-established region of deformation around N ∝ 90. Another field of interest are mass measurements on actinoids to test mass models and to provide direct links to the mass standard. Within this thesis, the mass of 241 Am could be measured directly for the first time. (orig.)

  13. The Trembling Earth Before Wenchuan Earthquake: Recognition of Precursory Anomalies through High Frequency Sampling Data of Groundwater

    Science.gov (United States)

    Huang, F.

    2017-12-01

    With a magnitude of MS8.0, the 2008 Wenchuan earthquake is classified as one of the "great earthquakes", which are potentially the most destructive, since it occurred at shallow depth close to a highly populated area without prediction, due to no confirmative precursors which were detected from a large amount of newly carried out digital observation data. Scientists who specilize in prediction routine work had been condemned and self-condemned for a long time then. After the pain of defeat passed, scientists have been some thinking to analyze the old observation data in new perspectives from longer temporal process, multiple-disciplinaries, and in different frequency. This presentation will show the preliminary results from groundwater level and temperature observed in 3 wells which distribute along the boundaries of tectonic blocks nearby and far from Wenchuan earthquake rupture.

  14. Using the Eclipse Parallel Tools Platform to Assist Earth Science Model Development and Optimization on High Performance Computers

    Science.gov (United States)

    Alameda, J. C.

    2011-12-01

    Development and optimization of computational science models, particularly on high performance computers, and with the advent of ubiquitous multicore processor systems, practically on every system, has been accomplished with basic software tools, typically, command-line based compilers, debuggers, performance tools that have not changed substantially from the days of serial and early vector computers. However, model complexity, including the complexity added by modern message passing libraries such as MPI, and the need for hybrid code models (such as openMP and MPI) to be able to take full advantage of high performance computers with an increasing core count per shared memory node, has made development and optimization of such codes an increasingly arduous task. Additional architectural developments, such as many-core processors, only complicate the situation further. In this paper, we describe how our NSF-funded project, "SI2-SSI: A Productive and Accessible Development Workbench for HPC Applications Using the Eclipse Parallel Tools Platform" (WHPC) seeks to improve the Eclipse Parallel Tools Platform, an environment designed to support scientific code development targeted at a diverse set of high performance computing systems. Our WHPC project to improve Eclipse PTP takes an application-centric view to improve PTP. We are using a set of scientific applications, each with a variety of challenges, and using PTP to drive further improvements to both the scientific application, as well as to understand shortcomings in Eclipse PTP from an application developer perspective, to drive our list of improvements we seek to make. We are also partnering with performance tool providers, to drive higher quality performance tool integration. We have partnered with the Cactus group at Louisiana State University to improve Eclipse's ability to work with computational frameworks and extremely complex build systems, as well as to develop educational materials to incorporate into

  15. Effects of high spatial and temporal resolution Earth observations on simulated hydrometeorological variables in a cropland (southwestern France

    Directory of Open Access Journals (Sweden)

    J. Etchanchu

    2017-11-01

    Full Text Available Agricultural landscapes are often constituted by a patchwork of crop fields whose seasonal evolution is dependent on specific crop rotation patterns and phenologies. This temporal and spatial heterogeneity affects surface hydrometeorological processes and must be taken into account in simulations of land surface and distributed hydrological models. The Sentinel-2 mission allows for the monitoring of land cover and vegetation dynamics at unprecedented spatial resolutions and revisit frequencies (20 m and 5 days, respectively that are fully compatible with such heterogeneous agricultural landscapes. Here, we evaluate the impact of Sentinel-2-like remote sensing data on the simulation of surface water and energy fluxes via the Interactions between the Surface Biosphere Atmosphere (ISBA land surface model included in the EXternalized SURface (SURFEX modeling platform. The study focuses on the effect of the leaf area index (LAI spatial and temporal variability on these fluxes. We compare the use of the LAI climatology from ECOCLIMAP-II, used by default in SURFEX-ISBA, and time series of LAI derived from the high-resolution Formosat-2 satellite data (8 m. The study area is an agricultural zone in southwestern France covering 576 km2 (24 km  ×  24 km. An innovative plot-scale approach is used, in which each computational unit has a homogeneous vegetation type. Evaluation of the simulations quality is done by comparing model outputs with in situ eddy covariance measurements of latent heat flux (LE. Our results show that the use of LAI derived from high-resolution remote sensing significantly improves simulated evapotranspiration with respect to ECOCLIMAP-II, especially when the surface is covered with summer crops. The comparison with in situ measurements shows an improvement of roughly 0.3 in the correlation coefficient and a decrease of around 30 % of the root mean square error (RMSE in the simulated evapotranspiration. This

  16. Effect of the nature of alkali and alkaline-earth oxides on the structure and crystallization of an alumino-borosilicate glass developed to immobilize highly concentrated nuclear waste solutions

    International Nuclear Information System (INIS)

    Quintas, A.; Caurant, D.; Majerus, O.; Charpentier, T.; Dussossoy, J.L.

    2008-01-01

    A complex rare-earth rich alumino-borosilicate glass has been proved to be a good candidate for the immobilization of new high level radioactive wastes. A simplified seven-oxides composition of this glass was selected for this study. In this system, sodium and calcium cations were supposed in other works to simulate respectively all the other alkali (R + = Li + , Rb + , Cs + ) and alkaline-earth (R 2+ = Sr 2+ , Ba 2+ ) cations present in the complex glass composition. Moreover, neodymium or lanthanum are used here to simulate all the rare-earths and actinides occurring in waste solutions. In order to study the impact of the nature of R + and R 2+ cations on both glass structure and melt crystallization tendency during cooling, two glass series were prepared by replacing either Na + or Ca 2+ cations in the simplified glass by respectively (Li + , K + , Rb + , Cs + ) or (Mg 2+ , Sr 2+ , Ba 2+ ) cations. From these substitutions, it was established that alkali ions are preferentially involved in the charge compensation of (AlO 4 ) - entities in the glass network comparatively to alkaline-earth ions. The glass compositions containing calcium give way to the crystallization of an apatite silicate phase bearing calcium and rare-earth ions. The melt crystallization tendency during cooling strongly varies with the nature of the alkaline-earth. (authors)

  17. High temperature properties of rare-earth tungstates RE{sub 2}W{sub 2}O{sub 9}

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-López, D., E-mail: damarre@uma.es [Dpto. de Física Aplicada I, Universidad de Málaga, 29071-Málaga (Spain); Canales-Vázquez, J. [Renewable Energy Research Institute, University of Castilla-La Mancha, 02071-Albacete (Spain); Ruiz-Morales, J.C.; Núñez, P. [Dpto. de Química, U.D. Química Inorgánica, Universidad de la Laguna, 38206-Tenerife (Spain)

    2015-02-15

    Highlights: • RE{sub 2}W{sub 2}O{sub 9} (RE = Nd, Pr, Sm, Eu and Gd) are prepared by freeze-drying precursor. • The samples crystallize in the monoclinic s.g. P2{sub 1}/c. • A first order phase transition was detected between 330 and 590 °C. • These materials exhibit low ionic conductivity of 10{sup -5} S cm{sup -1} at 800 °C. - Abstract: RE{sub 2}W{sub 2}O{sub 9} (RE = Ce, Nd, Pr, Sm, Eu, Gd and Tb) compounds have been prepared by a freeze-drying precursor method in order to explore their high temperature thermal properties by different techniques. Samples with Nd, Pr, Sm, Eu and Gd crystallize in the same monoclinic structure with space group P2{sub 1}/c. The thermal, X-ray diffraction, and electrical analysis reveal the existence of a reversible first order phase transition, which is accompanied by a sudden decrease of the unit cell volume and conductivity. A large thermal hysteresis of about 250 °C is also observed during the heating and cooling processes. These materials exhibit low electrical conductivity of the order of 10{sup -5} S cm{sup -1} at 800 °C.

  18. Integrating heterogeneous earth observation data for assessment of high-resolution inundation boundaries generated during flood emergencies.

    Science.gov (United States)

    Sava, E.; Cervone, G.; Kalyanapu, A. J.; Sampson, K. M.

    2017-12-01

    The increasing trend in flooding events, paired with rapid urbanization and an aging infrastructure is projected to enhance the risk of catastrophic losses and increase the frequency of both flash and large area floods. During such events, it is critical for decision makers and emergency responders to have access to timely actionable knowledge regarding preparedness, emergency response, and recovery before, during and after a disaster. Large volumes of data sets derived from sophisticated sensors, mobile phones, and social media feeds are increasingly being used to improve citizen services and provide clues to the best way to respond to emergencies through the use of visualization and GIS mapping. Such data, coupled with recent advancements in data fusion techniques of remote sensing with near real time heterogeneous datasets have allowed decision makers to more efficiently extract precise and relevant knowledge and better understand how damage caused by disasters have real time effects on urban population. This research assesses the feasibility of integrating multiple sources of contributed data into hydrodynamic models for flood inundation simulation and estimating damage assessment. It integrates multiple sources of high-resolution physiographic data such as satellite remote sensing imagery coupled with non-authoritative data such as Civil Air Patrol (CAP) and `during-event' social media observations of flood inundation in order to improve the identification of flood mapping. The goal is to augment remote sensing imagery with new open-source datasets to generate flood extend maps at higher temporal and spatial resolution. The proposed methodology is applied on two test cases, relative to the 2013 Boulder Colorado flood and the 2015 floods in Texas.

  19. Effects of low earth orbit on the optical performance of multi-layer enhanced high reflectance mirrors

    Science.gov (United States)

    Donovan, Terence; Johnson, Linda; Klemm, Karl; Scheri, Rick; Bennett, Jean; Erickson, Jon; Dibrozolo, Filippo

    1995-01-01

    Two mirror designs developed for space applications were flown along with a standard mid-infrared design on the leading and trailing edges of the Long Duration Exposure Facility (LDEF). Preliminary observations of induced changes in optical performance of ZnS-coated mirrors and impact-related microstructural and microchemical effects are described in the proceedings of the First LDEF Post-Retrieval Symposium. In this paper, effects of the induced environment and meteoroid/debris impacts on mirror performance are described in more detail. Also, an analysis of reflectance spectra using the results of Auger and secondary ion mass spectroscopy (SIMS) profiling measurements are used to identify an optical-degradation mechanism for the ZnS-coated mirrors. Structural damage associated with a high-velocity impact on a (Si/Al2O3)-coated mirror was imaged optically and with scanning electron and atomic force microscopy (SEM and AFM). Scanning Auger and SIMS analysis provided chemical mapping of selected impact sites. The impact data suggest design and fabrication modifications for obtaining improved mechanical performance using a design variation identified in preflight laboratory simulations. Auger surface profile and SIMS imaging data verified the conclusion that secondary impacts are the source of contamination associated with the dendrites grown on the leading-edge ZnS-coated test samples. It was also found that dendrites can be grown in the laboratory by irradiating contaminated sites on a trailing-edge ZnS-coated sample with a rastered electron beam. These results suggest a mechanism for dendrite growth.

  20. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  1. Tolerance of the High Energy X-ray Imaging Technology ASIC to potentially destructive radiation processes in Earth-orbit-equivalent environments

    Science.gov (United States)

    Ryan, D. F.; Baumgartner, W. H.; Wilson, M.; Benmoussa, A.; Campola, M.; Christe, S. D.; Gissot, S.; Jones, L.; Newport, J.; Prydderch, M.; Richards, S.; Seller, P.; Shih, A. Y.; Thomas, S.

    2018-02-01

    The High Energy X-ray Imaging Technology (HEXITEC) ASIC is designed on a 0.35 μm CMOS process to read out CdTe or CZT detectors and hence provide fine-pixellated spectroscopic imaging in the range 2-200 keV. In this paper, we examine the tolerance of HEXITEC to both potentially destructive cumulative and single event radiation effects. Bare ASICs are irradiated with X-rays up to a total ionising dose (TID) of 1 Mrad (SiO2) and bombarded with heavy ions with linear energy transfer (LET) up to 88.3 MeV mg-1 cm-2. HEXITEC is shown to operate reliably below a TID of 150 krad, have immunity to fatal single event latchup (SEL) and have high tolerance to non-fatal SEL up to LETs of at least 88.3 MeV mg-1 cm-2. The results are compared to predictions of TID and SELs for various Earth-orbits and aluminium shielding thicknesses. It is found that HEXITEC's radiation tolerance to both potentially destructive cumulative and single event effects is sufficient to reliably operate in these environments with moderate shielding.

  2. High hydrogen loading of thin palladium wires through alkaline earth carbonates' precipitation on the cathodic surface - evidence of a new phase in the Pd-H system

    International Nuclear Information System (INIS)

    Celani, F.; Spallone, A.; Di Gioacchino, D.; Marini, P.; Di Stefano, V.; Nakamura, M.; Pace, S.; Vecchione, A.; Tripodi, P.

    2000-01-01

    A new protocol for the electrolytic loading of hydrogen (H) in thin palladium (Pd) wires has been developed. In order to increase the cathodic overvoltage, which is known to be the main parameter capable to enhance the electrolytic H loading of Pd, the catalytic action of the Pd surface versus H-H recombination has been strongly reduced by precipitation of a thin layer of alkaline-earth carbonates on the cathode. A set of electrolytes has been employed, containing small amounts of hydrochloric or sulfuric acid and strontium or calcium ions. The H loading has been continuously evaluated through ac measurements of the Pd wire resistance. Uncommonly low resistivity values, leading to an estimate of exceptionally high H loading, have been observed. Evidence of the existence of a new phase in the very high H content region of the Pd-H system has been inferred on the basis of the determination of the temperature coefficient of the electrical resistivity. Mainly for this purpose a thin layer of Hg was galvanically deposed on the cathodic surface, in order to prevent any H deloading during the measurements. The results have been fully reproduced in other 2 well equipped and experienced Laboratories (Italy, USA)

  3. Theoretical and experimental study of high-magnetic-field XMCD spectra at the L2,3 absorption edges of mixed-valence rare-earth compounds

    International Nuclear Information System (INIS)

    Kotani, Akio; Matsuda, Yasuhiro H; Nojiri, Hiroyuki

    2009-01-01

    X-ray magnetic circular dichroism(XMCD) spectra at the L 2,3 edges of mixed-valence rare-earth compounds in high magnetic fields are studied both theoretically and experimentally. The theoretical study is based on a new framework proposed recently by Kotani. The Zeeman splitting of 4f states, the mixed-valence character of 4f states, and the 4f-5d exchange interaction are incorporated into a single impurity Anderson model. New XMCD experiments in high magnetic fields up to 40 T are carried out for the mixed-valence compounds EuNi 2 (Si 0.18 Ge 0.82 ) 2 and YbInCu 4 by using a miniature pulsed magnet, which was developed recently by Matsuda et al. The XMCD data are taken at 5 K by transmission measurements for incident X-rays with ± helicities at BL39XU in SPring-8. After giving a survey on recent developments in the theory of XMCD spectra for mixed-valence Ce and Yb compounds, we calculate the XMCD spectra of YbInCu 4 at the field-induced valence transition around 32 T by applying the recent theoretical framework and by newly introducing at 32 T a discontinuous change in the Yb 4f level and that in the hybridization strength between the Yb 4f and conduction electrons. The calculated results are compared with the experimental ones.

  4. High magnetic field study of HoBaCo2O5.5 and GdBaCo2O5.5 layered cobaltites: the effect of rare-earth size

    International Nuclear Information System (INIS)

    Frontera, C.; Respaud, M.; Garcia-Munoz, J.L.; Llobet, A.; Carrillo, A.E.; Caneiro, A.; Broto, J.M.

    2004-01-01

    By means of high-pulsed magnetic field up to μ 0 H=32 T we have studied HoBaCo 2 O 5+δ (δ=0.52(1)). The high-field M(H) integrated curves evidence a magnetic field-induced phase transition visible from about T=75 to 275 K. The obtained results are compared with the field-induced transition found for GdBaCo 2 O 5+δ (with δ=0.54(2)). The jump of the magnetization at the field-induced transition is independent of the rare earth at this level of oxygen content. In contrast, we have observed larger values of the critical field, and that the transition persists up to higher temperature, when reducing the rare-earth size. This indicates that the low-temperature antiferromagnetic phase becomes more stable when the size of the rare earth is reduced

  5. MOA-2011-BLG-262Lb: A sub-Earth-mass moon orbiting a gas giant primary or a high velocity planetary system in the galactic Bulge

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, D. P. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Batista, V. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bond, I. A.; Ling, C. H. [Institute of Natural and Mathematical Sciences, Massey University, Auckland 0745 (New Zealand); Bennett, C. S. [Department of Physics, Massachussets Institute of Technology, Cambridge, MA 02139 (United States); Suzuki, D.; Koshimoto, N. [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Beaulieu, J.-P. [UPMC-CNRS, UMR 7095, Institut d' Astrophysique de Paris, 98bis Boulevard Arago, F-75014 Paris (France); Udalski, A. [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Donatowicz, J. [Technische Universität Wien, Wieder Hauptst. 8-10, A-1040 Vienna (Austria); Bozza, V. [Dipartimento di Fisica, Università di Salerno, Via Ponte Don Melillo 132, I-84084 Fisciano (Italy); Abe, F.; Fukunaga, D.; Itow, Y.; Masuda, K.; Matsubara, Y.; Muraki, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Botzler, C. S.; Freeman, M. [Department of Physics, University of Auckland, Private Bag 92-019, Auckland 1001 (New Zealand); Fukui, A., E-mail: bennett@nd.edu [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Okayama 719-0232 (Japan); Collaboration: MOA Collaboration; PLANET Collaboration; μFUN Collaboration; OGLE Collaboration; RoboNet Collaboration; and others

    2014-04-20

    We present the first microlensing candidate for a free-floating exoplanet-exomoon system, MOA-2011-BLG-262, with a primary lens mass of M {sub host} ∼ 4 Jupiter masses hosting a sub-Earth mass moon. The argument for an exomoon hinges on the system being relatively close to the Sun. The data constrain the product M{sub L} π{sub rel} where M{sub L} is the lens system mass and π{sub rel} is the lens-source relative parallax. If the lens system is nearby (large π{sub rel}), then M{sub L} is small (a few Jupiter masses) and the companion is a sub-Earth-mass exomoon. The best-fit solution has a large lens-source relative proper motion, μ{sub rel} = 19.6 ± 1.6 mas yr{sup –1}, which would rule out a distant lens system unless the source star has an unusually high proper motion. However, data from the OGLE collaboration nearly rule out a high source proper motion, so the exoplanet+exomoon model is the favored interpretation for the best fit model. However, there is an alternate solution that has a lower proper motion and fits the data almost as well. This solution is compatible with a distant (so stellar) host. A Bayesian analysis does not favor the exoplanet+exomoon interpretation, so Occam's razor favors a lens system in the bulge with host and companion masses of M{sub host}=0.12{sub −0.06}{sup +0.19} M{sub ⊙} and m{sub comp}=18{sub −10}{sup +28} M{sub ⊕}, at a projected separation of a{sub ⊥}=0.84{sub −0.14}{sup +0.25} AU. The existence of this degeneracy is an unlucky accident, so current microlensing experiments are in principle sensitive to exomoons. In some circumstances, it will be possible to definitively establish the mass of such lens systems through the microlensing parallax effect. Future experiments will be sensitive to less extreme exomoons.

  6. The New York City Research Initiative: A Model for Undergraduate and High School Student Research in Earth and Space Sciences and Space Technology

    Science.gov (United States)

    Scalzo, F.; Frost, J.; Carlson, B. E.; Marchese, P.; Rosenzweig, C.; Austin, S. A.; Peteet, D. M.; Druyan, L.; Fulakeza, M.; Gaffin, S.; Baruh, H.; Decker, S.; Thangam, S.; Miles, J.; Moshary, F.; Rossow, W.; Greenbaum, S.; Cheung, T. K.; Johnson, L. P.

    2010-12-01

    1 Frank Scalzo, 1 Barbara Carlson, 2 Leon Johnson, 3 Paul Marchese, 1 Cynthia Rosenzweig, 2 Shermane Austin, 1 Dorothy Peteet, 1 Len Druyan, 1 Matthew Fulakeza, 1 Stuart Gaffin, 4 Haim Baruh, 4 Steven Decker, 5 Siva Thangam, 5 Joe Miles, 6 James Frost, 7 Fred Moshary, 7 William Rossow, 7 Samir Ahmed, 8 Steven Greenbaum and 3 Tak Cheung 1 NASA Goddard Institute for Space Studies, USA 2 Physical, Environmental and Computer Sciences, Medgar Evers College, CUNY, Brooklyn, NY, USA 3 Physics, Queensborough Community College, CUNY, Queens, NY, USA 4 Rutgers University, Newark, NJ, USA 5 Stevens Institute of Technology, Hoboken, NJ, USA 6 Physics, LaGuardia Community College, CUNY, Queens, NY, USA 7 Electrical Engineering, City College of New York, CUNY, USA 8 Physics, Hunter College, CUNY, USA The New York City Research Initiative (NYCRI) is a research and academic program that involves high school, undergraduate and graduate students, and high school teachers in research teams under the mentorship of college/university principal investigator of NASA funded projects and/or NASA scientists. The principal investigators are at 7 colleges/universities within a 20-mile radius of New York City (NYC and Northern New Jersey), as well as the NASA Goddard Institute of Space Studies. The program supports research in Earth Science, Space Science, and Space Technology. Research investigations include: Sea Surface Temperature and Precipitation in the West African Monsoon, Urban Heat Island: Sun and Rain Effects, Decadal Changes in Aerosol and Asthma, Variations in Salinity and River Discharge in the Hudson River Estuary, Environmental Change in the Hudson Estuary Wetlands, Verification of Winter Storm Scale Developed for Nor’easters, Solar Weather and Tropical Cyclone Activity, Tropospheric and Stratospheric Ozone Investigation in Metropolitan NYC, Aerosol Optical Depth through use of a MFRSR, Detection of Concentration in the Atmosphere Using a Quantum Cascade Laser System

  7. Measurements of soil, surface water, and groundwater CO2 concentration variability within Earth's critical zone: low-cost, long-term, high-temporal resolution monitoring

    Science.gov (United States)

    Blackstock, J. M.; Covington, M. D.; Williams, S. G. W.; Myre, J. M.; Rodriguez, J.

    2017-12-01

    Variability in CO2 fluxes within Earth's Critical zone occurs over a wide range of timescales. Resolving this and its drivers requires high-temporal resolution monitoring of CO2 both in the soil and aquatic environments. High-cost (> 1,000 USD) gas analyzers and data loggers present cost-barriers for investigations with limited budgets, particularly if high spatial resolution is desired. To overcome high-costs, we developed an Arduino based CO2 measuring platform (i.e. gas analyzer and data logger). The platform was deployed at multiple sites within the Critical Zone overlying the Springfield Plateau aquifer in Northwest Arkansas, USA. The CO2 gas analyzer used in this study was a relatively low-cost SenseAir K30. The analyzer's optical housing was covered by a PTFE semi-permeable membrane allowing for gas exchange between the analyzer and environment. Total approximate cost of the monitoring platform was 200 USD (2% detection limit) to 300 USD (10% detection limit) depending on the K30 model used. For testing purposes, we deployed the Arduino based platform alongside a commercial monitoring platform. CO2 concentration time series were nearly identical. Notably, CO2 cycles at the surface water site, which operated from January to April 2017, displayed a systematic increase in daily CO2 amplitude. Preliminary interpretation suggests key observation of seasonally increasing stream metabolic function. Other interpretations of observed cyclical and event-based behavior are out of the scope of the study; however, the presented method describes an accurate near-hourly characterization of CO2 variability. The new platform has been shown to be operational for several months, and we infer reliable operation for much longer deployments (> 1 year) given adequate environmental protection and power supply. Considering cost-savings, this platform is an attractive option for continuous, accurate, low-power, and low-cost CO2 monitoring for remote locations, globally.

  8. Rare earth elements: end use and recyclability

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  9. EarthFinder: A Precise Radial Velocity Survey Probe Mission of our Nearest Stellar Neighbors for Earth-Mass Habitable Zone Analogs Using High-Resolution UV-Vis-NIR Echelle Spectroscopy on a Space Platform

    Science.gov (United States)

    Plavchan, Peter; EarthFinder Team

    2018-01-01

    We are investigating the science case for a 1.0-1.4 meter space telescope to survey the closest, brightest FGKM main sequence stars to search for Habitable Zone (HZ) Earth analogs using the precise radial velocity (PRV) technique at a precision of 1-10 cm/s. Our baseline instrument concept uses two diffraction-limited spectrographs operating in the 0.4-1.0 microns and 1.0-2.4 microns spectral regions each with a spectral resolution of R=150,000~200,000, with the possibility of a third UV arm. Because the instrument utilizes a diffraction-limited input beam, the spectrograph would be extremely compact, less than 50 cm on a side, and illumination can be stabilized with the coupling of starlight into single mode fibers. With two octaves of wavelength coverage and a cadence unimpeded by any diurnal, seasonal, and atmospheric effects, EarthFinder will offer a unique platform for recovering stellar activity signals from starspots, plages, granulation, etc. to detect exoplanets at velocity semi-amplitudes currently not obtainable from the ground. Variable telluric absorption and emission lines may potentially preclude achieving PRV measurements at or below 10 cm/s in the visible and advantage compared to an annual ~3-6 month observing season from the ground for mitigating stellar activity and detecting the orbital periods of HZ Earth-mass analogs (e.g. ~6-months to ~2 years). Finally, we are compiling a list of ancillary science cases for the observatory, ranging from asteroseismology to the direct measurement of the expansion of the Universe.

  10. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  11. Estimating Sediment Delivery to The Rio Maranon, Peru Prior to Large-Scale Hydropower Developments Using High Resolution Imagery from Google Earth and a DJI Phantom 3 Drone

    Science.gov (United States)

    Goode, J. R.; Candelaria, T.; Kramer, N. R.; Hill, A. F.

    2016-12-01

    As global energy demands increase, generating hydroelectric power by constructing dams and reservoirs on large river systems is increasingly seen as a renewable alternative to fossil fuels, especially in emerging economies. Many large-scale hydropower projects are located in steep mountainous terrain, where environmental factors have the potential to conspire against the sustainability and success of such projects. As reservoir storage capacity decreases when sediment builds up behind dams, high sediment yields can limit project life expectancy and overall hydropower viability. In addition, episodically delivered sediment from landslides can make quantifying sediment loads difficult. These factors, combined with remote access, limit the critical data needed to effectively evaluate development decisions. In the summer of 2015, we conducted a basic survey to characterize the geomorphology, hydrology and ecology of 620 km of the Rio Maranon, Peru - a major tributary to the Amazon River, which flows north from the semi-arid Peruvian Andes - prior to its dissection by several large hydropower dams. Here we present one component of this larger study: a first order analysis of potential sediment inputs to the Rio Maranon, Peru. To evaluate sediment delivery and storage in this system, we used high resolution Google Earth imagery to delineate landslides, combined with high resolution imagery from a DJI Phantom 3 Drone, flown at alluvial fan inputs to the river in the field. Because hillslope-derived sediment inputs from headwater tributaries are important to overall ecosystem health in large river systems, our study has the potential to contribute to the understanding the impacts of large Andean dams on sediment connectivity to the Amazon basin.

  12. Why Earth Science?

    Science.gov (United States)

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  13. Afganistan and rare earths

    Directory of Open Access Journals (Sweden)

    Emilian M. Dobrescu

    2013-05-01

    Full Text Available On our planet, over a quarter of new technologies for the economic production of industrial goods, are using rare earths, which are also called critical minerals and industries that rely on these precious items being worth of an estimated nearly five trillion dollars, or 5 percent of world gross domestic product. In the near future, competition will increase for the control of rare earth minerals embedded in high-tech products. Rare minerals are in the twenty-first century what oil accounted for in the twentieth century and coal in the nineteenth century: the engine of a new industrial revolution. Future energy will be produced increasingly by more sophisticated technological equipment based not just on steel and concrete, but incorporating significant quantities of metals and rare earths. Widespread application of these technologies will result in an exponential increase in demand for such minerals, and what is worrying is that minerals of this type are almost nowhere to be found in Europe and in other industrialized countries in the world, such as U.S. and Japan, but only in some Asian countries, like China and Afghanistan.

  14. Improvement of the thermal and thermo-oxidative stability of high-density polyethylene by free radical trapping of rare earth compound

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Shiya; Zhao, Li; Han, Ligang [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China); Guo, Zhenghong, E-mail: guozhenghong@nit.zju.edu.cn [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); Fang, Zhengping [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China)

    2015-07-20

    Highlights: • Polyethylene filled with ytterbium trifluoromethanesulfonate was prepared. • A low Yb loading improved thermal stability of PE obviously by radical trapping. • Yb(OTf){sub 3} is expected to be an efficient thermal stabilizer for the polymer. - Abstract: A kind of rare earth compound, ytterbium trifluoromethanesulfonate (Yb(OTf){sub 3}), was introduced into high-density polyethylene (HDPE) by melt compounding to investigate the effect of Yb(OTf){sub 3} on the thermal and thermo-oxidative stability of HDPE. The results of thermogravimetric (TG) and differential scanning calorimetry (DSC) showed that the addition of Yb(OTf){sub 3} made the thermal degradation temperatures dramatically increased, the oxidative induction time (OIT) extended, and the enthalpy (ΔH{sub d}) reduced. Very low Yb(OTf){sub 3} loading (0.5 wt%) in HDPE could increase the onset degradation temperature in air from 334 to 407 °C, delay the OIT from 11.0 to 24.3 min, and decrease the ΔH{sub d} from 61.0 to 13.0 J/g remarkably. Electron spin resonance spectra (ESR), thermogravimetric analysis coupled to Fourier transform infrared spectroscopy (TGA-FTIR), rheological investigation and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) indicated that the free radicals-trapping ability of Yb(OTf){sub 3} was responsible for the improved thermal and thermo-oxidative stability.

  15. Giants' earth

    International Nuclear Information System (INIS)

    2001-01-01

    Cusiana was one of the six bigger discoveries of petroleum in the world during the ninety. Cupiagua was among the scarce 19 discoveries with reserves between 500 and 1.000 million barrels. Colombia also had one of the twelve bigger fields of gas and the Piedemonte llanero; it was classified as one of the 10 more attractive basins of the planet. High potential and low exploration is the key

  16. Large-scale, high-performance and cloud-enabled multi-model analytics experiments in the context of the Earth System Grid Federation

    Science.gov (United States)

    Fiore, S.; Płóciennik, M.; Doutriaux, C.; Blanquer, I.; Barbera, R.; Williams, D. N.; Anantharaj, V. G.; Evans, B. J. K.; Salomoni, D.; Aloisio, G.

    2017-12-01

    The increased models resolution in the development of comprehensive Earth System Models is rapidly leading to very large climate simulations output that pose significant scientific data management challenges in terms of data sharing, processing, analysis, visualization, preservation, curation, and archiving.Large scale global experiments for Climate Model Intercomparison Projects (CMIP) have led to the development of the Earth System Grid Federation (ESGF), a federated data infrastructure which has been serving the CMIP5 experiment, providing access to 2PB of data for the IPCC Assessment Reports. In such a context, running a multi-model data analysis experiment is very challenging, as it requires the availability of a large amount of data related to multiple climate models simulations and scientific data management tools for large-scale data analytics. To address these challenges, a case study on climate models intercomparison data analysis has been defined and implemented in the context of the EU H2020 INDIGO-DataCloud project. The case study has been tested and validated on CMIP5 datasets, in the context of a large scale, international testbed involving several ESGF sites (LLNL, ORNL and CMCC), one orchestrator site (PSNC) and one more hosting INDIGO PaaS services (UPV). Additional ESGF sites, such as NCI (Australia) and a couple more in Europe, are also joining the testbed. The added value of the proposed solution is summarized in the following: it implements a server-side paradigm which limits data movement; it relies on a High-Performance Data Analytics (HPDA) stack to address performance; it exploits the INDIGO PaaS layer to support flexible, dynamic and automated deployment of software components; it provides user-friendly web access based on the INDIGO Future Gateway; and finally it integrates, complements and extends the support currently available through ESGF. Overall it provides a new "tool" for climate scientists to run multi-model experiments. At the

  17. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems.

    Science.gov (United States)

    Wullschleger, Stan D; Epstein, Howard E; Box, Elgene O; Euskirchen, Eugénie S; Goswami, Santonu; Iversen, Colleen M; Kattge, Jens; Norby, Richard J; van Bodegom, Peter M; Xu, Xiaofeng

    2014-07-01

    Earth system models describe the physical, chemical and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the biogeochemical and biophysical dynamics of the Earth system. There is much debate, however, as to how plant diversity and function should be represented in these models. Plant functional types (PFTs) have been adopted by modellers to represent broad groupings of plant species that share similar characteristics (e.g. growth form) and roles (e.g. photosynthetic pathway) in ecosystem function. In this review, the PFT concept is traced from its origin in the early 1800s to its current use in regional and global dynamic vegetation models (DVMs). Special attention is given to the representation and parameterization of PFTs and to validation and benchmarking of predicted patterns of vegetation distribution in high-latitude ecosystems. These ecosystems are sensitive to changing climate and thus provide a useful test case for model-based simulations of past, current and future distribution of vegetation. Models that incorporate the PFT concept predict many of the emerging patterns of vegetation change in tundra and boreal forests, given known processes of tree mortality, treeline migration and shrub expansion. However, representation of above- and especially below-ground traits for specific PFTs continues to be problematic. Potential solutions include developing trait databases and replacing fixed parameters for PFTs with formulations based on trait co-variance and empirical trait-environment relationships. Surprisingly, despite being important to land-atmosphere interactions of carbon, water and energy, PFTs such as moss and lichen are largely absent from DVMs. Close collaboration among those involved in modelling with the disciplines of taxonomy, biogeography, ecology and remote sensing will be

  18. Results of high-temperature processing of high-carbon materials from the lower cambrian period of the Earth's history

    International Nuclear Information System (INIS)

    Maslov, O.D.

    2016-01-01

    The paper reports on the observation of spontaneous fission of nuclides, concentrated in fly ash during the combustion of high-carbon (graphite) material, chemogenic siliceous-carbonaceous rocks and carbonaceous shale in the mixture with brown coal. In the samples obtained, the spontaneous fission was measured by track method. The zones of precipitation of spontaneous fission of nuclides and their lighter homologues on thermochromatographic column were determined. A nuclide with a half-life of 62 d was detected in the alkaline trap. The chemical treatment procedure included co-precipitation with iron hydroxide, dissolution in NH 4 OH + H 2 O 2 solution and distillation by heating up to 100°C followed by AgI co-precipitation. Based on the chemical behavior it can be concluded that the detected radionuclide belongs to the halides. The content of the parent nuclide in high-carbon (graphite) material and chemogenic siliceous-carbonaceous rock corresponds to 10 -14 g/g. [ru

  19. Earth current monitoring circuit for inductive loads

    CERN Document Server

    Montabonnet, V; Thurel, Y; Cussac, P

    2010-01-01

    The search for higher magnetic fields in particle accelerators increasingly demands the use of superconducting magnets. This magnet technology has a large amount of magnetic energy storage during operation at relatively high currents. As such, many monitoring and protection systems are required to safely operate the magnet, including the monitoring of any leakage of current to earth in the superconducting magnet that indicates a failure of the insulation to earth. At low amplitude, the earth leakage current affects the magnetic field precision. At a higher level, the earth leakage current can additionally generate local losses which may definitively damage the magnet or its instrumentation. This paper presents an active earth fault current monitoring circuit, widely deployed in the converters for the CERN Large Hadron Collider (LHC) superconducting magnets. The circuit allows the detection of earth faults before energising the circuit as well as limiting any eventual earth fault current. The electrical stress...

  20. X-ray Raman scattering study of MgSiO₃ glass at high pressure: Implication for triclustered MgSiO₃ melt in Earth's mantle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Keun; Lin, Jung-Fu; Cai, Yong Q.; Hiraoka, Nozomu; Eng, Peter J.; Okuchi, Takuo; Mao, Ho-kwang; Meng, Yue; Hu, Michael Y.; Chow, Paul; Shu, Jinfu; Li, Baosheng; Fukui, Hiroshi; Lee, Bum Han; Kim, Hyun Na; Yoo, Choong-Shik [SNU; (LLNL); (NSRRC); (Okayama); (UC); (CIW); (Wash State U); (Nagoya); (SBU)

    2015-02-09

    Silicate melts at the top of the transition zone and the core-mantle boundary have significant influences on the dynamics and properties of Earth's interior. MgSiO3-rich silicate melts were among the primary components of the magma ocean and thus played essential roles in the chemical differentiation of the early Earth. Diverse macroscopic properties of silicate melts in Earth's interior, such as density, viscosity, and crystal-melt partitioning, depend on their electronic and short-range local structures at high pressures and temperatures. Despite essential roles of silicate melts in many geophysical and geodynamic problems, little is known about their nature under the conditions of Earth's interior, including the densification mechanisms and the atomistic origins of the macroscopic properties at high pressures. Here, we have probed local electronic structures of MgSiO3 glass (as a precursor to Mg-silicate melts), using high-pressure x-ray Raman spectroscopy up to 39 GPa, in which high-pressure oxygen K-edge features suggest the formation of tricluster oxygens (oxygen coordinated with three Si frameworks; [3]O) between 12 and 20 GPa. Our results indicate that the densification in MgSiO3 melt is thus likely to be accompanied with the formation of triculster, in addition to a reduction in nonbridging oxygens. The pressure-induced increase in the fraction of oxygen triclusters >20 GPa would result in enhanced density, viscosity, and crystal-melt partitioning, and reduced element diffusivity in the MgSiO3 melt toward deeper part of the Earth's lower mantle.

  1. Stovetop Earth Pecan Pie

    Science.gov (United States)

    Robin, C. M.

    2005-12-01

    Many fluid mechanical experiments with direct applications to Earth Science are performed with sugary syrups using conceptually straightforward procedures. Corn syrup has indeed proven to be a godsend for those studying convection and related non-linear phenomena. In addition, however, it gives experimentalists a deep physical intuition for the interior workings of hot planets. The basic concepts behind plate tectonics and mantle convection are not difficult; indeed, although they may not be aware of it, most students probably have a basic intuitive understanding of fluid mechanics gained in their daily life. However, the large size and long time scale of geophysical processes may be quite intimidating to young students. Even a simple geophysical experiment requires a complicated array of coolers, heaters and measuring and recording equipment. It is of interest to introduce students to the geodynamical concepts that can be visualized in a high-tech lab using familiar processes and equipment. Using a homemade apparatus and grocery store supplies, I propose using a 'Stove-top Earth pecan pie' to introduce simple geodynamic concepts to middle- and high-school students. The initially cold syrup heats up and the pecans begin to float (continent formation), the syrup begins to convect (mantle convection), and convection slows down after the heat is removed (secular cooling). Even Wilson cycles can be simulated by moving the pan to one side or the other of the stovetop or heating element. The activity formally introduces students to convection and its application to the earth, and makes them think about plate motion, heat transfer, scaling, and experimental procedures. As an added bonus, they can eat their experiments after recess!

  2. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  3. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  4. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  5. Microstructure and property evaluation of high-pressure die-cast Mg–La–rare earth (Nd, Y or Gd) alloys

    International Nuclear Information System (INIS)

    Gavras, Serge; Easton, Mark A.; Gibson, Mark A.; Zhu, Suming; Nie, Jian-Feng

    2014-01-01

    Highlights: • Different rare earth elements have remarkably different effects on Mg castability. • For the addition of each RE element, the alloy castability follows a unique pattern. • The effects of RE elements on the castability can be modelled. - Abstract: Microstructure, castability and tensile properties were investigated in high-pressure die-cast Mg–La–Nd, Mg–La–Y and Mg–La–Gd alloy series, with a constant La concentration at approximately 2.5 wt.% and the concentrations of Nd, Y or Gd were varied. All three alloy series had a dendritic microstructure with a Mg–La-rich eutectic with increasing Nd, Y or Gd content and containing a Mg 12 RE intermetallic phase. The morphology of the eutectic at ternary alloying additions of equal to or less than 1.0 wt.% was lamellar but became increasingly divorced at higher ternary concentrations. This was however more obvious in Mg–La–Y and Mg–La–Gd than Mg–La–Nd alloys. The hot tearing susceptibility in all three alloy series increased markedly with even micro-alloying additions of Nd, Y or Gd, and began to decrease again in alloys with more than 0.5 wt.% Y or 1.0 wt.% Gd, but did not decrease significantly for Mg–La–Nd. A model using the temperature–fraction solid curves as input parameters was used to estimate hot tearing susceptibility for Mg–La–Nd alloys. Tensile testing at room temperature showed that Mg–La–Nd alloy series had higher 0.2% proof stress and lower elongation to failure than either the Mg–La–Y or the Mg–La–Gd alloy series for Nd concentrations greater than 1 wt.% due to a greater effectiveness of grain boundary reinforcement

  6. Method validation for high resolution sector field inductively coupled plasma mass spectrometry determination of the emerging contaminants in the open ocean: Rare earth elements as a case study

    Science.gov (United States)

    Wysocka, Irena; Vassileva, Emilia

    2017-02-01

    Analytical procedure for the determination of fourteen rare earth elements (REEs) in the seawater samples has been developed and validated. The elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) at ultra-trace level were measured by high resolution sector field inductively coupled plasma mass spectrometry (HR ICP-SFMS) after off-line analytes pre-concentration and matrix separation. The sample pre-treatment was carried out by commercially available automated system seaFAST-pico™, which is a low-pressure ion chromatography technique, based on solid phase extraction principles. Efficient elimination of seawater matrix and up to 50-fold pre-concentration of REEs enabled their accurate and precise quantification at ng L- 1 level. A validation approach in line with the requirements of ISO/IEC 17025 standard and Eurachem guidelines were followed. With this in mind, selectivity, working range, linearity, recovery (from 92% to 102%), repeatability (1%-4%), intermediate precision (2%-6%), limits of detection (0.001-0.08 ng L- 1) were systematically assessed. The total uncertainty associated to each result was estimated and the main sources of uncertainty sorted out. All major contributions to the combined uncertainty of the obtained results were identified and propagated together, following the ISO/GUM guidelines. The relative expanded uncertainty was estimated at range from 10.4% to 11.6% (k = 2). Demonstration of traceability of measurement results was also presented. Due to the low limits of detection, this method enables the determination of ultra-low levels of REEs in the open seawater as well as small variations in their concentrations. The potential of the proposed analytical procedure, based on combination of seaFAST-pico™ for sample preparation and HR ICP-SFMS, was demonstrated by direct analysis of seawater form different regions of the world.

  7. Rare earth industries: Downstream business

    International Nuclear Information System (INIS)

    2011-01-01

    The value chain of the rare earths business involves mining, extraction, processing, refining and the manufacture of an extensive range of downstream products which find wide applications in such industries including aerospace, consumer electronics, medical, military, automotive, renewable wind and solar energy and telecommunications. In fact the entire gamut of the high-tech industries depends on a sustainable supply of rare earths elements. The explosive demand in mobile phones is an excellent illustration of the massive potential that the rare earths business offers. In a matter of less than 20 years, the number of cell phones worldwide has reached a staggering 5 billion. Soon, going by the report of their growth in sales, the world demand for cell phones may even exceed the global population. Admittedly, the rare earths business does pose certain risks. Top among the risks are the health and safety risks. The mining, extraction and refining of rare earths produce residues and wastes which carry health and safety risks. The residues from the extraction and refining are radioactive, while their effluent waste streams do pose pollution risks to the receiving rivers and waterways. But, as clearly elaborated in a recent report by IAEA experts, there are technologies and systems available to efficiently mitigate such risks. The risks are Rare Earth manageable. However, it is crucial that the risk and waste management procedures are strictly followed and adhered to. This is where effective monitoring and surveillance throughout the life of all such rare earths facilities is crucial. Fortunately, Malaysia's regulatory standards on rare earths follow international standards. In some areas, Malaysia's regulatory regime is even more stringent than the international guidelines. (author)

  8. Determination of trace amounts of rare-earth elements in highly pure neodymium oxide by sector field inductively coupled plasma mass spectrometry (ICP-SFMS) and high-performance liquid chromatography (HPLC) techniques

    Science.gov (United States)

    Pedreira, W. R.; Sarkis, J. E. S.; da Silva Queiroz, C. A.; Rodrigues, C.; Tomiyoshi, I. A.; Abrão, A.

    2003-02-01

    Recently rare-earth elements (REE) have received much attention in fields of geochemistry and industry. Rapid and accurate determinations of them are increasingly required as industrial demands expand. Sector field inductively coupled plasma mass spectrometry (ICP-SFMS) with high-performance liquid chromatography (HPLC) has been applied to the determination of REE. HR ICP-MS was used as an element-selective detector for HPLC in highly pure materials. The separation of REE with HPLC helped to avoid erroneous analytical results due to spectral interferences. Sixteen elements (Sc, Y and 14 lanthanides) were determined selectively with the HPLC/ICP-SFMS system using a concentration gradient methods. The detection limits with the HPLC/ICP-SFMS system were about 0.5-10 pg mL-1. The percentage recovery ranged from 90% to 100% for different REE. The %RSD of the methods varying between 2.5% and 4.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two highly pure neodymium oxides samples (IPEN and Johnson Matthey Company) were performed. In short, the IPEN's materials which are highly pure (>99.9%) were successfully analyzed without spectral interferences.

  9. Determination of trace amounts of rare-earth elements in highly pure neodymium oxide by sector field inductively coupled plasma mass spectrometry (ICP-SFMS) and high-performance liquid chromatography (HPLC) techniques

    International Nuclear Information System (INIS)

    Pedreira, W.R.; Sarkis, J.E.S.; Silva Queiroz, C.A. da; Rodrigues, C.; Tomiyoshi, I.A.; Abrao, A.

    2003-01-01

    Recently rare-earth elements (REE) have received much attention in fields of geochemistry and industry. Rapid and accurate determinations of them are increasingly required as industrial demands expand. Sector field inductively coupled plasma mass spectrometry (ICP-SFMS) with high-performance liquid chromatography (HPLC) has been applied to the determination of REE. HR ICP-MS was used as an element-selective detector for HPLC in highly pure materials. The separation of REE with HPLC helped to avoid erroneous analytical results due to spectral interferences. Sixteen elements (Sc, Y and 14 lanthanides) were determined selectively with the HPLC/ICP-SFMS system using a concentration gradient methods. The detection limits with the HPLC/ICP-SFMS system were about 0.5-10 pg mL -1 . The percentage recovery ranged from 90% to 100% for different REE. The %RSD of the methods varying between 2.5% and 4.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two highly pure neodymium oxides samples (IPEN and Johnson Matthey Company) were performed. In short, the IPEN's materials which are highly pure (>99.9%) were successfully analyzed without spectral interferences

  10. Transport and transformation of riverine neodymium isotope and rare earth element signatures in high latitude estuaries: A case study from the Laptev Sea

    Science.gov (United States)

    Laukert, Georgi; Frank, Martin; Bauch, Dorothea; Hathorne, Ed C.; Gutjahr, Marcus; Janout, Markus; Hölemann, Jens

    2017-11-01

    Marine neodymium (Nd) isotope and rare earth element (REE) compositions are valuable tracers for present and past ocean circulation and continental inputs. Yet their supply via high latitude estuaries is largely unknown. Here we present a comprehensive dissolved Nd isotope (expressed as εNd values) and REE data set together with seawater stable oxygen isotope (δ18O) compositions of samples from the Laptev Sea recovered in two Arctic summers and one winter. The Laptev Sea is a shallow Siberian Shelf sea characterized by extensive river-runoff, sea-ice production and ice transport into the Arctic Ocean. The large variability in εNd (-6 to -17), REE concentrations (16 to 600 pmol/kg for Nd) and REE patterns is controlled by freshwater supply from distinct riverine sources and open ocean Arctic Atlantic Water. Strikingly and contrary to expectations, except for cerium no evidence for significant release of REEs from particulate phases is found, which is attributed to low amounts of suspended particulate matter and high dissolved organic carbon concentrations present in the contributing rivers. Essentially all shelf waters are depleted in light (L)REEs, while the distribution of the heavy REEs shows a deficiency at the surface and a pronounced excess in the bottom layer. This distribution is consistent with REE removal through coagulation of riverine nanoparticles and colloids starting at salinities near 10 and resulting in a drop of all REE concentrations by ∼30%. With increasing salinity preferential LREE removal is observable reaching ∼75% for Nd at a salinity of 34. Although the delayed onset of dissolved REE removal contrasts with most previous observations from other estuarine environments, it agrees remarkably well with results from recent experiments simulating estuarine mixing of seawater with organic-rich river waters. In addition, melting and formation of sea ice leads to further REE depletion at the surface and strong REE enrichment near the shelf

  11. High-time resolution measurements of upstream magnetic field and plasma conditions during flux transfer events at the Earth's dayside magnetopause

    International Nuclear Information System (INIS)

    Jacob, J.D.; Cattell, C.

    1993-01-01

    This paper presents preliminary analysis of six flux transfer events which were observed simultaneously by IRM and CCE. IRM was able to measure magnetic fields and pressures far from the earth, while CCE made observations at the earth's magnetopause. The objective is to better understand the coupling of energy and momentum into the earth's magnetosphere, by in this case trying to better understand the processes active in flux transfer events. For three of the events the observations were made on common field lines, and IRM observed fluctuations in B z large enough to cause a south to north swing in the interplanetary magnetic field (IMF). Pressure pulses were observed during two of these events. For the other three events there was no such consistent behavior of IMF direction or pressure pulses

  12. Clinical comparison of high-speed rare-earth screen and par-speed screen for diagnostic efficacy and radiation dosage

    International Nuclear Information System (INIS)

    Robinson, T.; Becker, J.A.; Olson, A.P.

    1982-01-01

    One hundred patients underwent excretory urography and a comparison was made of ten-minute, well-collimated images that were obtained with both par-speed and rare-earth screens, the latter being 6.5 times faster than the par-speed calcium tungstate screens. Radiation dose was greatly reduced with the rare-earth screens. There were fewer inferior examinations, even though fine detail was imaged poorly, and there was a slightly increased quantum mottle, which was only a minor problem at this low 65 kVp. Since quantum mottle increases with kVp, however, our results are not applicable to higher kVp examinations. Despite reduced detail and increased mottle, the overall image quality obtained with the rare-earth screen was superior to the image quality obtained with the par-speed screen

  13. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  14. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  15. The New world of ';Big Data' Analytics and High Performance Data: A Paradigm shift in the way we interact with very large Earth Observation datasets (Invited)

    Science.gov (United States)

    Purss, M. B.; Lewis, A.; Ip, A.; Evans, B.

    2013-12-01

    The next decade promises an exponential increase in volumes of open data from Earth observing satellites. The ESA Sentinels, the Japan Meteorological Agency's Himawari 8/9 geostationary satellites, various NASA missions, and of course the many EO satellites planned from China, will produce petabyte scale datasets of national and global significance. It is vital that we develop new ways of managing, accessing and using this ';big-data' from satellites, to produce value added information within realistic timeframes. A paradigm shift is required away from traditional ';scene based' (and labour intensive) approaches with data storage and delivery for processing at local sites, to emerging High Performance Data (HPD) models where the data are organised and co-located with High Performance Computational (HPC) infrastructures in a way that enables users to bring themselves, their algorithms and the HPC processing power to the data. Automated workflows, that allow the entire archive of data to be rapidly reprocessed from raw data to fully calibrated products, are a crucial requirement for the effective stewardship of these datasets. New concepts such as arranging and viewing data as ';data objects' which underpin the delivery of ';information as a service' are also integral to realising the transition into HPD analytics. As Australia's national remote sensing and geoscience agency, Geoscience Australia faces a pressing need to solve the problems of ';big-data', in particular around the 25-year archive of calibrated Landsat data. The challenge is to ensure standardised information can be extracted from the entire archive and applied to nationally significant problems in hazards, water management, land management, resource development and the environment. Ultimately, these uses justify government investment in these unique systems. A key challenge was how best to organise the archive of calibrated Landsat data (estimated to grow to almost 1 PB by the end of 2014) in a way

  16. Simulating the 2012 High Plains Drought Using Three Single Column Model Versions of the Community Earth System Model (SCM-CESM)

    Science.gov (United States)

    Medina, I. D.; Denning, S.

    2014-12-01

    The impact of changes in the frequency and severity of drought on fresh water sustainability is a great concern for many regions of the world. One such location is the High Plains, where the local economy is primarily driven by fresh water withdrawals from the Ogallala Aquifer, which accounts for approximately 30% of total irrigation withdrawals from all U.S. aquifers combined. Modeling studies that focus on the feedback mechanisms that control the climate and eco-hydrology during times of drought are limited in the sense that they use conventional General Circulation Models (GCMs) with grid length scales ranging from one hundred to several hundred kilometers. Additionally, these models utilize crude statistical parameterizations of cloud processes for estimating sub-grid fluxes of heat and moisture and have a poor representation of land surface heterogeneity. For this research, we focus on the 2012 High Plains drought, and will perform numerical simulations using three single column model versions of the Community Earth System Model (SCM-CESM) at multiple sites overlying the Ogallala Aquifer for the 2010-2012 period. In the first version of SCM-CESM, CESM will be used in standard mode (Community Atmospheric Model (CAM) coupled to a single instance of the Community Land Model (CLM)), secondly, CESM will be used in Super-Parameterized mode (SP-CESM), where a cloud resolving model (CRM consists of 32 atmospheric columns) replaces the standard CAM atmospheric parameterization and is coupled to a single instance of CLM, and thirdly, CESM is used in "Multi Instance" SP-CESM mode, where an instance of CLM is coupled to each CRM column of SP-CESM (32 CRM columns coupled to 32 instances of CLM). To assess the physical realism of the land-atmosphere feedbacks simulated at each site by all versions of SCM-CESM, differences in simulated energy and moisture fluxes will be computed between years for the 2010-2012 period, and will be compared to differences calculated using

  17. Rare earth - no case for government intervention

    OpenAIRE

    Georg Zachmann

    2010-01-01

    China has officially restricted exports of rare earth for several years and announced this year it will further tighten exports. Rare earth is a group of 17 different metals, usually found clustered together. These metals have hundreds of different industry applications. For example, they are used in certain high capacity magnets, batteries and lasers. As the rare earth elements are used in sectors that are assumed to have an over-proportionate growth potential (eg. green-technology), policy ...

  18. Rare earth industry in India

    International Nuclear Information System (INIS)

    Singh, D.S.

    2016-01-01

    Rare Earths (RE) comprises of 17 elements i.e. elements from atomic No. 57-71 (lanthanide series) along with yttrium (atomic No. 39) and scandium (atomic No. 21). They exhibit special electronic, magnetic, optical and catalytic properties. The first 7 elements in the lanthanide series from atomic Nos. 57 to 63 (La to Eu) are called Light Rare Earths (LRE), while the remaining elements from atomic Nos. 64 to 71 (Gd to Lu) are grouped as Heavy Rare Earths (HRE). Scandium and Yttrium have properties similar to HRE. The concentration of the REs in the earth's crust is as high as some other elements including that of copper. The only difference is that REs do not occur as separate minerals amenable for easy exploration and mining and are widely distributed across the earth's surface, hence they are called as REs. Resources In India, monazite has been the principal source of RE. It occurs in association with other heavy minerals, such as ilmenite, rutile, zircon etc. in the beach sands and inland placer deposits. The monazite content in this assemblage varies from negligible quantity to as high as 5%. As per AMD resource estimation, the reported resource of monazite in India is about 11.93 million tons which corresponds with about 6.9 million tons of RE oxides. Although India possesses large deposits of monazite, the heavier RE are not present in sufficient quantities in this mineral. (author)

  19. A high resolution cross section transmission electron microscopy study of epitaxial rare earth fluoride/GaAs(111) interfaces prepared by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chien, C.J.; Bravman, J.C.

    1990-01-01

    The authors report the HRXTEM study of epitaxial rare earth fluoride/GaAs(111) interfaces. Such interfaces are of interest because they are the starting point for growth of buried epitaxial rare earth/rare earth fluoride sandwich structures which exhibit interesting and non bulk-like magnetic properties. Also, the optical transitions in ultrathin epitaxial NdF 3 films may be influenced by strain and defects in the NdF 3 film and the nature of the interface to GaAs. The authors find that the rare earth fluoride/GaAs interfaces are semi-coherent but chemically abrupt with the transition taking place within 3 Angstrom. However, the interface is physically rough and multiple monolayer steps in the GaAs surface tend to tilt boundaries in the fluoride. The origin of these steps is believed to be thermal etching of the GaAs during the heat- cleaning stage prior to epitaxy. The surface of the fluoride film is much smoother than the initial GaAs surface indicating planarization during epitaxy

  20. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems

    NARCIS (Netherlands)

    Wullschleger, S.D.; Epstein, H.E.; Box, E.O.; Euskirchen, E.S.; Goswami, S.; Iversen, C.M.; Kattge, J.; Norby, R.J.; van Bodegom, P.M.; Xu, X.

    2014-01-01

    Background Earth system models describe the physical, chemical and biological processes that govern our global climate. While it is difficult to single out one component as being more important than another in these sophisticated models, terrestrial vegetation is a critical player in the

  1. Rare earth industries: Strategies for Malaysia

    International Nuclear Information System (INIS)

    2011-01-01

    Evidently, many reports cite Malaysia as having reasonably substantial amounts of rare earths elements. In fact, based on the rare earths found in the residual tin deposits alone, Malaysia has about 30,000 tonnes. This does not take into account unmapped deposits which experts believe may offer more tonnages of rare earths. Brazil which is reported to have about 48,000 tonnes has announced plans to invest aggressively in the rare earths business. China has on record the largest reserves with about 36 million tonnes. This explains why China has invested heavily in the entire value chain of the rare earths business. Chinas committed investment in rare earths started many years ago when the country's foremost leaders proclaimed the strategic position of rare earths in the world economy. That forecast is now a reality where the rise in the green high-tech economy is seen driving global demand for rare earths in a big way. Malaysia needs to discover and venture into new economic growth areas. This will help fuel the country's drive to achieve a high income status by 2020 as articulated in the New Economic Model (NEM) and the many supporting Economic Transformation Plans that the Government has recently launched. Rare earths may be the new growth area for Malaysia. However, the business opportunities should not just be confined to the mining, extraction and production of rare earths elements alone if Malaysia is to maximise benefits from this industry. The industry's gold mine is in the downstream products. This is also the sector that China wants to expand. Japan which now controls about 50 % of the global market for downstream rare earths-based high-tech components is desperately looking for partners to grow their stake in the business. Malaysia needs to embark on the right strategies in order to build the rare earths industry in the country. What are the strategies? (author)

  2. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  3. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  4. Facile synthesis of highly biocompatible folic acid-functionalised SiO2 nanoparticles encapsulating rare-earth metal complexes, and their application in targeted drug delivery.

    Science.gov (United States)

    Xu, Xiuling; Hu, Fan; Shuai, Qi

    2017-11-14

    Mesoporous silica core-shell nanospheres encapsulating a rare-earth metal complex (RC) were first synthesised through a facile W/O (water in oil) inverse microemulsion method. In order to achieve targeted complex delivery, folic acid (FA) was used as the targeting component due to its high affinity for over-expressed folate receptors (FRs) in cancer cells. The RC 2 @SiO 2 -FA nanospheres were characterised via ultraviolet-visible light absorption spectroscopy (UV-vis spectroscopy), dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A microwave method was used to synthesise five RC cores based on 4-chlorophenoxyacetic acid, and their crystal structures were further confirmed using X-ray diffraction. The five RC cores have the following chemical formulae: [Er 2 (p-CPA) 6 (H 2 O) 6 ] RC 1 , [Ho 2 (p-CPA) 6 (H 2 O) 6 ] RC 2 , [Sm(p-CPA) 3 (H 2 O)] RC 3 , [Pr(p-CPA) 3 (H 2 O)]·3H 2 O RC 4 and [Ce(p-CPA) 3 (H 2 O) 2 ]·2H 2 O RC 5 . The carboxyl groups showed two kinds of coordination modes, namely μ 2 -η 1 :η 1 and μ 2 -η 1 :η 2 , among RC 1 -RC 5 . The flexible -OCH 2 COO- spacer group, which can undergo rotation of its C-O and C-C bonds, offered great potential for structural diversity. In vivo experiments revealed that the nanospheres exhibited no obvious cytotoxicity on HepG2 cells and 293 T cells, even at concentrations of up to 80 μg mL -1 . Nevertheless, all of the RC cores showed a certain degree of anti-tumour efficacy; in particular, RC 2 showed the strongest cytotoxicity against HepG2 cells. Interestingly, the cytotoxicity of all of the RC 2 @SiO 2 -FA nanospheres was higher than that of lone RC 2 . These types of FA-targeted mesoporous silica nanocarriers can be used for the delivery of anti-tumour RC, and provide a basis for the further study of affordable non-platinum-based complexes.

  5. Separation of the rare earths by high pressure liquid chromatography and the fission yield on sup(148m)Pm and sup(148g)Pm using thermal neutron induced fission of 233U and 239Pu

    International Nuclear Information System (INIS)

    Zwicky, H.U.

    1979-03-01

    This report is in two parts: in the first part, the method of high pressure liquid chromatography is described with particular reference to rare earth nuclei produced in nuclear reactions; in the second part, the results of a study of the fission yield of sup(148m)Pm and sup(148g)Pm from the thermal fission of 233 U and 239 Pu are presented. (G.T.H.)

  6. Baltic Earth - Earth System Science for the Baltic Sea Region

    Science.gov (United States)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  7. Mechanism of the high transition temperature for the 1111-type iron-based superconductors R FeAsO (R =rare earth ): Synergistic effects of local structures and 4 f electrons

    Science.gov (United States)

    Zhang, Lifang; Meng, Junling; Liu, Xiaojuan; Yao, Fen; Meng, Jian; Zhang, Hongjie

    2017-07-01

    Among the iron-based superconductors, the 1111-type Fe-As-based superconductors REFeAs O1 -xFx (RE = rare earth) exhibit high transition temperatures (Tc) above 40 K. We perform first-principles calculations based on density functional theory with the consideration of both electronic correlations and spin-orbit couplings on rare earths and Fe ions to study the underlying mechanism as the microscopic structural distortions in REFeAsO tuned by both lanthanide contraction and external strain. The electronic structures evolve similarly in both cases. It is found that there exist an optimal structural regime that will not only initialize but also optimize the orbital fluctuations due to the competing Fe-As and Fe-Fe crystal fields. We also find that the key structural features in REFeAsO, such as As-Fe-As bond angle, intrinsically induce the modification of the Fermi surface and dynamic spin fluctuation. These results suggest that the superconductivity is mediated by antiferromagnetic spin fluctuations. Simultaneously, we show that the rare-earth 4 f electrons play important roles on the high transition temperature whose behavior might be analogous to that of the heavy-fermion superconductors. The superconductivity of these 1111-type iron-based superconductors with high-Tc is considered to originate from the synergistic effects of local structures and 4 f electrons.

  8. RoboEarth: connecting robots worldwide

    NARCIS (Netherlands)

    Zweigle, O.; Molengraft, van de M.J.G.; D'Andrea, R.; Häussermann, K.

    2009-01-01

    In this paper, we present the core concept and the benefits of an approach called RoboEarth which will be highly beneficial for future robotic applications in science and industry. RoboEarth is a world-wide platform which robots can use to exchange position and map information as well as

  9. Towards Big Earth Data Analytics: The EarthServer Approach

    Science.gov (United States)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  10. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 7 ... to good protective capacity rating as can be seen from the high longitudinal conductance ... School of Environment and Earth Sciences, North Maharashtra University, ...

  11. Theory of Earth

    Science.gov (United States)

    Anderson, D. L.

    2014-12-01

    Earth is an isolated, cooling planet that obeys the 2nd law. Interior dynamics is driven from the top, by cold sinking slabs. High-resolution broad-band seismology and geodesy has confirmed that mantle flow is characterized by narrow downwellings and ~20 broad slowly rising updrafts. The low-velocity zone (LVZ) consists of a hot melange of sheared peridotite intruded with aligned melt-rich lamellae that are tapped by intraplate volcanoes. The high temperature is a simple consequence of the thermal overshoot common in large bodies of convecting fluids. The transition zone consists of ancient eclogite layers that are displaced upwards by slabs to become broad passive, and cool, ridge feeding updrafts of ambient mantle. The physics that is overlooked in canonical models of mantle dynamics and geochemistry includes; the 2nd law, convective overshoots, subadiabaticity, wave-melt interactions, Archimedes' principle, and kinetics (rapid transitions allow stress-waves to interact with melting and phase changes, creating LVZs; sluggish transitions in cold slabs keep eclogite in the TZ where it warms up by extracting heat from mantle below 650 km, creating the appearance of slab penetration). Canonical chemical geodynamic models are the exact opposite of physics and thermodynamic based models and of the real Earth. A model that results from inverting the assumptions regarding initial and boundary conditions (hot origin, secular cooling, no external power sources, cooling internal boundaries, broad passive upwellings, adiabaticity and whole-mantle convection not imposed, layering and self-organization allowed) results in a thick refractory-yet-fertile surface layer, with ancient xenoliths and cratons at the top and a hot overshoot at the base, and a thin mobile D" layer that is an unlikely plume generation zone. Accounting for the physics that is overlooked, or violated (2nd law), in canonical models, plus modern seismology, undermines the assumptions and conclusions of these

  12. School, Earth and Imagination

    Science.gov (United States)

    Merlini, Anna; Grieco, Giovanni; Oneta, Cristina

    2015-04-01

    Geology needs to be explained and narrated to the people, focusing on the goal of making that big change of mindset that will allow individuals and the entire community to tune into the timing and the ways in which the Earth evolves. In order to achieve these important goals it is necessary to educate children from an early age so that they learn to live an environmentally friendly life. With the project "School, Earth and imagination" we introduce, with a fun and new way, notions and topics in geological and environmental sciences in schools at all levels with the final goal of improving both knowledge and sensibility for these topics into the community. Through this project we start from the children (kindergarten and primary school, ages between 3 and 8 years) because they are the foundation of our society, and without foundations nothing can be built. The "School, Earth and imagination" project wants to give the children a real opportunity to approach reality and in general the surrounding environment, for the first time even before the traditional scholastic experience, with a scientific point of view, experimenting some basic physical concepts like temperature, weight, hardness and so on directly through their body. The project is structured and developed in modules that provide a high flexibility in order to meet needs and requirements of different schools in different situations. Each module is part of the journey of Mariolino, a character that represents a very curious child who introduces basic concepts associating them to geological processes. The Journey of Mariolino, as each module, follows an insistent scheme that starts from the presentation of the problem, follows with its discussion through direct questions and ends with experimentation of the hypotheses that children have proposed to validate the solution of the problem. Each module is independent and never ends without giving children a solution and is always structured with a practical activity

  13. Digital Earth – A sustainable Earth

    International Nuclear Information System (INIS)

    Mahavir

    2014-01-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth

  14. Mammography with rare earth intensifying screens

    International Nuclear Information System (INIS)

    Maurer, H.J.; Goos, F.

    1987-01-01

    Screens basing on rare earth phosphors with suitable films green or blue sensitive may be used in mammography with grids without diagnostic losses. Highest definition will be obtained with medium densities on film. High-speed screens may reduce dose, but definition is poor. Best compromise between speed and high definition may be reached with relative low thickness of phosphor layers. A system of high definition films (Medichrome) and special rare earth screens give best results. (orig.) [de

  15. CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: Possible host structures for carbon in the Earth's mantle

    Science.gov (United States)

    Merlini, M.; Hanfland, M.; Crichton, W. A.

    2012-06-01

    time, Mg and Fe solubility in aragonite is hindered energetically in the 9-fold coordination site. Above 15 GPa, and up to the maximum pressure investigated (40 GPa), we observe the high-pressure polymorph CaCO3-VI, triclinic [a=3.3187(12) Å, b=4.8828(14) Å, c=5.5904(14) Å, α=103.30(2)°, β=94.73(2)°, γ=89.21(2)°, V=87.86(20) Å3 at 30.4 GPa] with 10 atoms in the unit cell. It is characterised by coplanar CO3 groups but the structure is no longer layered, as in the lower pressure polymorphs. The density of the CaCO3-VI structure (3.78 g/cm3 at 30.4 GPa) is higher than aragonite. For this reason it could be supposed that a region may exist where this polymorph replaces aragonite in the Earth's intermediate mantle. The lower coordination number for the Ca site [7+2] instead of [9] in aragonite suggests that this structure could be easily adopted by an extended solid-solution range from calcite towards the dolomite [CaMg(CO3)2]-ankerite [CaFe(CO3)2] compositional join. The transitions from calcite to CaCO3-III, CaCO3-IIIb and CaCO3-VI are perfectly reversible and after pressure release we always observe the calcite structure, with the sample recovered as a single-crystal. Indeed, it is highly unlikely that these structures can be observed in samples recovered from high-pressure environments.

  16. Crustal movement and plate motion as observed by GPS baseline ranging - trial to make teaching materials for middle- and high-school earth science education by teachers

    Science.gov (United States)

    Matsumoto, T.

    2009-12-01

    Japanese government established the system for renewing educational personnel certificates in 2007 and mandated the adoption of it in April 2009 (cf. “2007 White Paper on Education, Culture, Sports, Science and Technology”, available at http://www.mext.go.jp/english/). The new system shows that the valid period for each regular certificate after the renewal system adoption (April 1, 2009) is until the end of the fiscal year after ten years from satisfying the qualifications required for the certificate. Only persons who have attended over 30 hours and passed the examination in the certificate renewal courses before the expiration of the valid period can renew their certificate which is valid for next ten years. The purpose of this system is for teachers to acquire the latest knowledge and skills. Certificate renewal courses authorized by Ministry of Education, Culture, Sports, Science and Technology of Japan are offered by universities. Attendees will choose based on their specialty and awareness of issues from the various courses with education curriculums and. To renew their certificates, they should include (1) items regarding the latest trends and issues in education (12 hours) and (2) items regarding their speciality and other educational enhancement (three 6-hours course: total 18 hours). In 2008, before the adoption, provisional certificate renewal courses were offered for trial by more than 100 universities. The author offered a 6-hour course titled by “Development of teaching materials for school pupils to make understand the dynamic motion of the earth - utilising the results of the GPS ranging”. This course was targeted mainly for science teachers of middle- and high-schools. The goal of this course was for the attendees to understand the role of GPS ranging for the direct observation of the crustal movement and plate motion, and to produce the teaching materials possibly used in the classrooms. The offering of this course is aiming finally at

  17. Applicability of neutrino beams to Earth exploration

    International Nuclear Information System (INIS)

    Dolgoshein, B.A.; Kalinovskij, A.N.

    1985-01-01

    The projects on applicability of neutrino beams from high energy accelerators for geological exploration and study of the Earth structure are discussed. The GENIUS (Geological Exploration by Neutrino Induced Underground Sound) project is among them. It covers detecting and studying space-time characteristics of acoustic signal arising in case of neutrino interaction with Earth depth rocks discussed. The GEMINI (Geological Exploration with Muons Induced by neutrino interactions) project represents one more possibility for using geotron neutrino beam for the purpose of geological exploration. The GEOSCAN project represents the possibility for applying high energy neutrino beams for the purpose of the Earth translusence to determine the changes in the density of internal part of the Earth. The necessity of detailed investigations of the problem of applicability of neutrino beams in the field of the Earth exploration is pointed out

  18. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  19. Geomagnetic field of earth

    International Nuclear Information System (INIS)

    Delipetrev, Marjan; Delipetrev, Blagoj; Panovska, Sanja

    2008-01-01

    In this paper is introduced the theory of geomagnetic field of the Earth. A homogenous and isotropic sphere is taken for a model of Earth with a bar magnet at its center as a magnetic potential. The understanding of the real origin of geomagnetic field produced from differential rotation of inner core with respect to the outer core of Earth is here presented. Special attention is given to the latest observed data of the established net of geomagnetic repeat stations in the Republic of Macedonia. Finally, the maps of elements of geomagnetic field and the equation for calculation of normal magnetic field of Earth are provided. (Author)

  20. Rare earth octacyanomolybdates(4)

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Sergeeva, A.N.; Pisak, Yu.V.

    1980-01-01

    Optimal conditions for synthesis of rare-earth octacyanomolybdates(4) of the Ln 4 [Mo(CN) 8 ] 3 xnH 2 O composition (where Ln is a rare-earth element, other than Pr, Pm, Lu, Tb) have been worked out. The synthesis has been accomplished by neutralization with octacianomolybdic acid with rare-earth carbonates. The composition and structure of the compounds synthesized have been studied by infrared-spectroscopy. It has been established that rare-earth octacyanomolybdates(4) form three isostructural groups

  1. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  2. Observations of the Earth's magnetic field from the Space Station: Measurement at high and extremely low altitude using Space Station-controlled free-flyers

    Science.gov (United States)

    Webster, W., Jr.; Frawley, J. J.; Stefanik, M.

    1984-01-01

    Simulation studies established that the main (core), crustal and electrojet components of the Earth's magnetic field can be observed with greater resolution or over a longer time-base than is presently possible by using the capabilities provided by the space station. Two systems are studied. The first, a large lifetime, magnetic monitor would observe the main field and its time variation. The second, a remotely-piloted, magnetic probe would observe the crustal field at low altitude and the electrojet field in situ. The system design and the scientific performance of these systems is assessed. The advantages of the space station are reviewed.

  3. Behavior of new complexes of tetrakis(4-methoxylphenyl)porphyrin with heavy rare earth elements in reversed-phase high performance liquid chromatography.

    Science.gov (United States)

    Zhang, Jun-Feng; Wang, Hong; Hou, An-Xin; Wang, Chang-Fa; Zhang, Hua-Shan

    2004-08-01

    An HPLC method has been developed for the separation of new complexes of tetrakis(4-methoxylphenyl)porphyrin (TMOPP) with four heavy rare earth elements (RE = Y, Er, Tm, and Yb). The function of amine and acid in the mobile phase has been investigated and a reasonable explanation is presented. Successful separation of the RE-TMOPP-Cl complexes is accomplished in 10 min with a mobile phase consisting of methanol-water-acetic acid-triethanolamine. The detection limits (S/N= 3) for the four complexes are 0.01 microg/mL. This method is rapid, sensitive, and simple.

  4. Creating high-resolution bare-earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated deciduous forest using combinations of procedures designed for lidar point cloud filtering

    Science.gov (United States)

    DeWitt, Jessica D.; Warner, Timothy A.; Chirico, Peter G.; Bergstresser, Sarah E.

    2017-01-01

    For areas of the world that do not have access to lidar, fine-scale digital elevation models (DEMs) can be photogrammetrically created using globally available high-spatial resolution stereo satellite imagery. The resultant DEM is best termed a digital surface model (DSM) because it includes heights of surface features. In densely vegetated conditions, this inclusion can limit its usefulness in applications requiring a bare-earth DEM. This study explores the use of techniques designed for filtering lidar point clouds to mitigate the elevation artifacts caused by above ground features, within the context of a case study of Prince William Forest Park, Virginia, USA. The influences of land cover and leaf-on vs. leaf-off conditions are investigated, and the accuracy of the raw photogrammetric DSM extracted from leaf-on imagery was between that of a lidar bare-earth DEM and the Shuttle Radar Topography Mission DEM. Although the filtered leaf-on photogrammetric DEM retains some artifacts of the vegetation canopy and may not be useful for some applications, filtering procedures significantly improved the accuracy of the modeled terrain. The accuracy of the DSM extracted in leaf-off conditions was comparable in most areas to the lidar bare-earth DEM and filtering procedures resulted in accuracy comparable of that to the lidar DEM.

  5. A practical approach to the disposal of highly toxic and long-lived spent nuclear fuel waste between Venus and Earth

    International Nuclear Information System (INIS)

    Ehricke, K.A.

    1983-01-01

    Extraterrestrial disposal, while not the only alternative, nevertheless assures definite and irreversible removal of the most toxic and long-lived waste from the biosphere. The disposal 'site' should lie at minimum safe transfer energy level. Primary candidate is the space between Venus and Earth. The number of propulsion phases should be a minimum, preferably only one. Lunar gravity assist can be helpful to achieve higher inclination of the heliocentric orbit relative to the ecliptic. Solidified spent fuel isotopes and actinides, sufficient to reduce the residual terrestrial waste to the radiation level of natural uranium deposits after 30 to 40 yr instead of 1000 to 1500 yr, is deposited into heliocentric orbits. Transportation systems, requirements, costs and the associated socio-economic benefit potentials of an environmentally more benign and a more vigorous nuclear power generation program are presented. Prior to solidification, an interim storage of 10 yr, following removal from the reactor, may be required. The Shuttle, with one Orbiter modified as Nuclear Waste Carrying Orbiter and an out of near-Earth orbit booster, provides a safe and economic transportation system at disposal mission costs from surface to disposal orbit of less than 0.5 cents/kWhe or <= 0.1 cent/kWhe depending on level of orbital operations. Details are discussed. (author)

  6. Seepage safety monitoring model for an earth rock dam under influence of high-impact typhoons based on particle swarm optimization algorithm

    Directory of Open Access Journals (Sweden)

    Yan Xiang

    2017-01-01

    Full Text Available Extreme hydrological events induced by typhoons in reservoir areas have presented severe challenges to the safe operation of hydraulic structures. Based on analysis of the seepage characteristics of an earth rock dam, a novel seepage safety monitoring model was constructed in this study. The nonlinear influence processes of the antecedent reservoir water level and rainfall were assumed to follow normal distributions. The particle swarm optimization (PSO algorithm was used to optimize the model parameters so as to raise the fitting accuracy. In addition, a mutation factor was introduced to simulate the sudden increase in the piezometric level induced by short-duration heavy rainfall and the possible historical extreme reservoir water level during a typhoon. In order to verify the efficacy of this model, the earth rock dam of the Siminghu Reservoir was used as an example. The piezometric level at the SW1-2 measuring point during Typhoon Fitow in 2013 was fitted with the present model, and a corresponding theoretical expression was established. Comparison of fitting results of the piezometric level obtained from the present statistical model and traditional statistical model with monitored values during the typhoon shows that the present model has a higher fitting accuracy and can simulate the uprush feature of the seepage pressure during the typhoon perfectly.

  7. The EarthScope Array Network Facility: application-driven low-latency web-based tools for accessing high-resolution multi-channel waveform data

    Science.gov (United States)

    Newman, R. L.; Lindquist, K. G.; Clemesha, A.; Vernon, F. L.

    2008-12-01

    Since April 2004 the EarthScope USArray seismic network has grown to over 400 broadband stations that stream multi-channel data in near real-time to the Array Network Facility in San Diego. Providing secure, yet open, access to real-time and archived data for a broad range of audiences is best served by a series of platform agnostic low-latency web-based applications. We present a framework of tools that interface between the world wide web and Boulder Real Time Technologies Antelope Environmental Monitoring System data acquisition and archival software. These tools provide audiences ranging from network operators and geoscience researchers, to funding agencies and the general public, with comprehensive information about the experiment. This ranges from network-wide to station-specific metadata, state-of-health metrics, event detection rates, archival data and dynamic report generation over a stations two year life span. Leveraging open source web-site development frameworks for both the server side (Perl, Python and PHP) and client-side (Flickr, Google Maps/Earth and jQuery) facilitates the development of a robust extensible architecture that can be tailored on a per-user basis, with rapid prototyping and development that adheres to web-standards.

  8. High-precision, systematic study of hyperfine structure in the 4f/sup N/6s2 configuration of the neutral rare earths

    International Nuclear Information System (INIS)

    Childs, W.J.; Goodman, L.S.; Pfeufer, V.

    1983-01-01

    Although the hyperfine structure (hfs) of many-electron atoms has been studied intensively in recent years, it is still difficult to distinguish between the competing effects of relativity and configuration interaction. The 4f/sup N/6s 2 configuration of the neutral rare earths is of particular interest because (a) the low-lying terms are relatively free of configuration interaction, and (b) trends can be examined systematically as one proceeds through the long 4f-shell. The procedure is to deduce, from the measured hfs constants of low levels, the underlying hyperfine radial integrals for comparison with ab initio predictions. Since some of these integrals are extremely sensitive to any configuration interaction and others are not, it is possible to determine both the extent and type of configuration interaction present in some cases. Prior to the start of the present research no precise hfs information existed for the entire second half of the 4f shell of the rare earths. The present measurements were designed both to provide such data and to make possible a systematic study of the hfs throughout the 4f shell. The atomic-beam, laser-rf, double-resonance method was used for the measurements. With this technique, the occurrence of a radiofrequency transition between atomic hfs levels is detected by noting an increase in the laser-induced fluorescence

  9. Separation method for rare-earths using high-voltage electrophoresis on paper strip; Methode de separation des terres rares par electrophorese a haute tension sur papier - support

    Energy Technology Data Exchange (ETDEWEB)

    Clarence, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    The equipment includes an electrophoresis set running at 3 000 V and 20 mA. Two cooling plates are used as heat exchanger, and a pneumatic pressure device to insure an uniform pressure on the paper strip laid flat. The mobilities and the separations of the rare earths in lactic, and, {alpha} hydroxy-isobutyric acid solutions are investigated on cellulose acetate strip. Better results are obtained with {alpha} hydroxy-isobutyric acid. The method is rapid and allows a fine fractionation of rare earth elements within less than an hour. A complete separation of a Ce - Pr - Nd - Pm - Eu mixture, and a Y - Tb mixture is obtained. (author) [French] L'equipement comporte un appareil d'electrophorese fonctionnant sous 3000 V a 20 mA. Deux plaques refrigerantes absorbent la chaleur dissipee, et un coussin pneumatique assure une pression uniforme sur le papier support. Les mobilites et les separations des terres rares sont etudiees en milieux lactiques et {alpha} hydroxyisobutyriques sur papier d'acetate de cellulose. De meilleurs resultats sont obtenus avec l'acide {alpha} hydroxyisobutyrique. La methode est tres rapide et permet de separer un melange de terres rares radioactives en moins d'une heure. Des separations fines d'un melange Ce, Pr, Nd, Pm, Eu, et d'un melange Y, Tb sont egalement obtenues. (auteur)

  10. EARTH FROM SPACE

    Indian Academy of Sciences (India)

    Table of contents. EARTH FROM SPACE · Slide 2 · Earth System · Slide 4 · Global water cycle · Slide 6 · Slide 7 · Direct Observations of Recent Climate Change · Slide 9 · Slide 10 · Snow cover and Arctic sea ice are decreasing · Polar Melting & Global Heat Transport · Antarctica: Melting and Thickening · Slide 14 · Slide 15.

  11. Earth and Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kosygin, Yu A

    1986-12-01

    Rocks, the age of which according to certain data exceeds considerably the recognized age of the Earth and approximates the age of the Universe, have been detected on the Earth. There is a necessity to coordinate the geological data with cosmological structures.

  12. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  13. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  14. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  15. A journey through Earth climates

    International Nuclear Information System (INIS)

    Ramstein, Gilles; Brunet, Michel

    2015-01-01

    The author proposes a history of climates all along Earth's history, describes how cold and warm periods have been alternating during these billions of years. He also tries to highlight lessons learned from this long evolution of climate in order to better understand the current global warming. He discusses whether this disruption is unique in Earth's history, and how it threatens our environment and therefore our survival. The chapters describe how Earth could escape a global glaciation, the thermal regulation by greenhouse effect gases in a world without oxygen, the empowerment of oxygen and the first thermal accident, a new oxygenated and warm world, the second accident or how Earth entered and escaped from periods of total glaciation, the possible stabilisation, the succession of deregulations, crisis and extinctions, the slow way down to the cold, the various paleo-indicators during the Quaternary, the high frequency oscillations of climate during the last million of years, and the uncertain projections

  16. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  17. Rare earths refining by vacuum sublimation method

    International Nuclear Information System (INIS)

    Rytus, N.N.

    1983-01-01

    The process of rare earths refining by the sUblimation; method in high and superhigh oil-free vacuum, is investigated. The method is effective for rare earths obtaining and permits to prepare metal samples with a high value of electric resistance ratio γ=RsUb(298 K)/Rsub(4.2 K). The estimation of general purity is performed for Sm, Eu, Yb, Tm, Dy, Ho, Er and Se

  18. Rare Earth Metals: Resourcefulness and Recovery

    Science.gov (United States)

    Wang, Shijie

    2013-10-01

    When we appreciate the digital revolution carried over from the twentieth century with mobile communication and the Internet, and when we enjoy our high-tech lifestyle filled with iDevices, hybrid cars, wind turbines, and solar cells in this new century, we should also appreciate that all of these advanced products depend on rare earth metals to function. Although there are only 136,000 tons of annual worldwide demand, (Cho, Rare Earth Metals, Will We Have Enough?)1 rare earth metals are becoming such hot commodities on international markets, due to not only to their increasing uses, including in most critical military hardware, but also to Chinese growth, which accounts for 95% of global rare earth metal production. Hence, the 2013 technical calendar topic, planned by the TMS/Hydrometallurgy and Electrometallurgy Committee, is particularly relevant, with four articles (including this commentary) contributed to the JOM October Issue discussing rare earth metals' resourcefulness and recovery.

  19. Super computer displays future of the earth

    International Nuclear Information System (INIS)

    Yokokawa, Mitsuo; Tani, Keiji

    2000-01-01

    Science and Technology Agency has promoted a project of estimation of the earth environment fluctuation since Fiscal 1997. As one of series, it is developing a very high speed parallel computer 'the earth 'simulator' with 5TFLOPS of effective performance (40TFLOPS of peak performance). Abstract of the hardware, basic software and application software is explained. Hardware is constructed by a distributed memory type parallel computer and single-stage crossbars network. Main storage capacity is 10 TB. The basic software consisted of hierarchical structure with operating system, compiler, operation and management software. In the earth simulator, 640 nodes are connected by magnetic disk units, so that input/output of calculation is parallel processor, the most important development item. The earth simulator project is developing a software, NJR (NASDA-JAMSTEC-RIST) program, which is atmosphere and ocean large circulation joint model library system. An example of analysis showed a global distribution of rain a day in the earth. (S.Y.)

  20. Rare earth elements materials production from apatite ores

    International Nuclear Information System (INIS)

    Anufrieva, A V; Buynovskiy, A S; Makaseev, Y N; Mazov, I N; Nefedov, R A; Sachkov, V I; Valkov, A V; Andrienko, O S; Stepanova, O B

    2016-01-01

    The paper deals with the study of processing apatite ores with nitric acid and extraction of the rare earth elements. The rare earth elements can be successfully separated and recovered by extraction from the nitrate- phosphate solution, being an tributyl phosphate as extraction agent. The developed scheme of the processing apatite concentrate provides obtaining rare earth concentrates with high qualitative characteristics. (paper)

  1. Regional framework and geology of iron oxide-apatite-rare earth element and iron oxide-copper-gold deposits of the Mesoproterozoic St. Francois Mountains Terrane, southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Slack, John F.; Ayuso, Robert A.; Seeger, Cheryl M.

    2016-01-01

    This paper provides an overview on the genesis of Mesoproterozoic igneous rocks and associated iron oxide ± apatite (IOA) ± rare earth element, iron oxide-copper-gold (IOCG), and iron-rich sedimentary deposits in the St. Francois Mountains terrane of southeast Missouri, USA. The St. Francois Mountains terrane lies along the southeastern margin of Laurentia as part of the eastern granite-rhyolite province. The province formed during two major pulses of igneous activity: (1) an older early Mesoproterozoic (ca. 1.50–1.44 Ga) episode of volcanism and granite plutonism, and (2) a younger middle Mesoproterozoic (ca. 1.33–1.30 Ga) episode of bimodal gabbro and granite plutonism. The volcanic rocks are predominantly high-silica rhyolite pyroclastic flows, volcanogenic breccias, and associated volcanogenic sediments with lesser amounts of basaltic to andesitic volcanic and associated subvolcanic intrusive rocks. The iron oxide deposits are all hosted in the early Mesoproterozoic volcanic and volcaniclastic sequences. Previous studies have characterized the St. Francois Mountains terrane as a classic, A-type within-plate granitic terrane. However, our new whole-rock geochemical data indicate that the felsic volcanic rocks are effusive derivatives from multicomponent source types, having compositional similarities to A-type within-plate granites as well as to S- and I-type granites generated in an arc setting. In addition, the volcanic-hosted IOA and IOCG deposits occur within bimodal volcanic sequences, some of which have volcanic arc geochemical affinities, suggesting an extensional tectonic setting during volcanism prior to emplacement of the ore-forming systems.The Missouri iron orebodies are magmatic-related hydrothermal deposits that, when considered in aggregate, display a vertical zonation from high-temperature, magmatic ± hydrothermal IOA deposits emplaced at moderate depths (~1–2 km), to magnetite-dominant IOA veins and IOCG deposits emplaced at shallow

  2. Accounting of fundamental components of the rotation parameters of the Earth in the formation of a high-accuracy orbit of navigation satellites

    Science.gov (United States)

    Markov, Yu. G.; Mikhailov, M. V.; Pochukaev, V. N.

    2012-07-01

    An analysis of perturbing factors influencing the motion of a navigation satellite (NS) is carried out, and the degree of influence of each factor on the GLONASS orbit is estimated. It is found that fundamental components of the Earth's rotation parameters (ERP) are one substantial factor commensurable with maximum perturbations. Algorithms for the calculation of orbital perturbations caused by these parameters are given; these algorithms can be implemented in a consumer's equipment. The daily prediction of NS coordinates is performed on the basis of real GLONASS satellite ephemerides transmitted to a consumer, using the developed prediction algorithms taking the ERP into account. The obtained accuracy of the daily prediction of GLONASS ephemerides exceeds by tens of times the accuracy of the daily prediction performed using algorithms recommended in interface control documents.

  3. Chemical analysis of rare earth elements

    International Nuclear Information System (INIS)

    Tsukahara, Ryoichi; Sakoh, Takefumi; Nagai, Iwao

    1994-01-01

    Recently attention has been paid to ICP-AES or ICP-MS, and the reports on the analysis of rare earth elements by utilizing these methods continue to increase. These reports have become to take about 30% of the reports on rare earth analysis, and this is because these methods are highly sensitive to rare earth elements, and also these methods have spread widely. In ICP-AES and ICP-MS, mostly solution samples are measured, therefore, solids must be made into solution. At the time of quantitatively determining the rare earth elements of low concentration, separation and concentration are necessary. Referring to the literatures reported partially in 1990 and from 1991 to 1993, the progress of ICP-AES and ICP-MS is reported. Rare earth oxides and the alloys containing rare earth elements are easily decomposed with acids, but the decomposition of rocks is difficult, and its method is discussed. The separation of the rare earth elements from others in geochemical samples, cation exchange process is frequently utilized. Also solvent extraction process has been studied. For the separation of rare earth elements mutually, chromatography is used. The spectral interference in spectral analysis was studied. The comparison of these methods with other methods is reported. (K.I)

  4. Venus tectonics: another Earth or another Mars

    International Nuclear Information System (INIS)

    McGill, G.E.

    1979-01-01

    The presence of presumably primordial large craters has led to the suggestion that Venus may have a thick lithosphere like that of Mars despite its similarities to Earth in size and density. However, crust and upper mantle temperatures on Venus are very likely higher than on Earth so that a dry Venus could have a lithosphere with a thickness similar to that of Earth. If a trace of volatiles is present in the mantle, the lithosphere of Venus could be thinner. Due to the absence of liquid water, erosion and deposition will be much slower on Venus than on Earth, favoring retention of primordial cratered surfaces on portions of the crust that have not been destroyed or buried by tectonic and volcanic activity. Geochemical models of solar system origin and petrological considerations suggest that K is about as abundant in Venus as in Earth. The abundance of 40 Ar in the atmosphere of Venus lies somewhere between the Earth value and one-tenth of the Earth value. Because erosional liberation of 40 Ar on Venus will be relatively inefficient, this range for 40 Ar abundance at least permits an active tectonic history, and if the 40 Ar abundance is towards the high end of the range, it may well require an active tectonic history. Thus we are not constrained to a Mars-like model of Venus tectonics by craters and possible mantle dryness; an Earth-like model is equally probable

  5. Rare Earth Garnet Selective Emitter

    Science.gov (United States)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  6. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  7. Building a Dashboard of the Planet with Google Earth and Earth Engine

    Science.gov (United States)

    Moore, R. T.; Hancher, M.

    2016-12-01

    In 2005 Google Earth, a popular 3-D virtual globe, was first released. Scientists immediately recognized how it could be used to tell stories about the Earth. From 2006 to 2009, the "Virtual Globes" sessions of AGU included innovative examples of scientists and educators using Google Earth, and since that time it has become a commonplace tool for communicating scientific results. In 2009 Google Earth Engine, a cloud-based platform for planetary-scale geospatial analysis, was first announced. Earth Engine was initially used to extract information about the world's forests from raw Landsat data. Since then, the platform has proven highly effective for general analysis of georeferenced data, and users have expanded the list of use cases to include high-impact societal issues such as conservation, drought, disease, food security, water management, climate change and environmental monitoring. To support these use cases, the platform has continuously evolved with new datasets, analysis functions, and user interface tools. This talk will give an overview of the latest Google Earth and Earth Engine functionality that allow partners to understand, monitor and tell stories about of our living, breathing Earth. https://earth.google.com https://earthengine.google.com

  8. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  9. Behaviour of Rare Earth Elements during the Earth's core formation

    Science.gov (United States)

    Faure, Pierre; Bouhifd, Mohamed Ali; Boyet, Maud; Hammouda, Tahar; Manthilake, Geeth

    2017-04-01

    Rare Earth Elements (REE) are classified in the refractory group, which means that they have a high temperature condensation and their volatility-controlled fractionation is limited to high-temperature processes. Anomalies have been measured for Eu, Yb and Sm, which are the REE with the lowest condensation temperatures in CAIs and chondrules (e.g. [1]). REE are particularly abundant in the sulfides of enstatite chondrites, 100 to 1000 times the CI value [e.g. 2,3], proving that these elements are not strictly lithophile under extremely reducing conditions. However by investigating experimentally the impact of Earth's core formation on the behavior of Sm and Nd, we have shown the absence of fractionation between Sm and Nd during the segregation of the metallic phase [4]. Recently, Wohlers and Wood [5] proposed that Nd and Sm could be fractionated in presence of a S-rich alloy phase. However, their results were obtained at pressure and temperature conditions below the plausible conditions of the Earth's core formation. Clearly, large pressure range needs to be covered before well-constrained model can be expected. Furthermore, our preliminary metal-silicate partitioning results show that Ce and Eu have higher metal/silicate partition coefficients than their neighboring elements, and that the presence of sulphur enhances the relative difference between partition coefficients. In this presentation, we will present and discuss new metal-silicate partition coefficients of all REE at a deep magma ocean at pressures ranging from those of the uppermost upper mantle ( 5 GPa) to a maximum pressure expected in the range of 20 GPa, temperatures ranging from 2500 to about 3000 K, and oxygen fugacities within IW-1 to IW-5 (1 to 5 orders of magnitude lower than the iron-wüstite buffer). We will discuss the effect of S, as well as the effect of H2O on the behaviour of REE during the Earth's core formation: recent models suggest that contrary to currently accepted beliefs, the

  10. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  11. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  12. Earth formation porosity log

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1977-01-01

    A method for determining the porosity of earth formations in the vicinity of a cased well borehole is described, comprising the steps of: irradiating the earth formations in the vicinity of the cased well borehole with fast neutrons from a source of fast neutrons passed into the borehole; and generating a signal representative of the fast neutron population present in the well borehole at a location in the borehole, the signal is functionally related to the porosity of the earth formations in the vicinity of the borehole

  13. Earth before life.

    Science.gov (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  14. The Teach for America RockCorps, Year 2: Using Authentic Research Experiences in Geophysics for STEM Teachers to Inspire Earth Science-Themed Lessons in High School Classrooms

    Science.gov (United States)

    Parsons, B.; Kassimu, R.; Borjas, C. N.; Griffith, W. A.

    2016-12-01

    Brooke Parsons1, Rahmatu Kassimu2, Christopher Borjas3, and W. Ashley Griffith31Uplift Hampton Preparatory High School, Dallas, TX, 75232 2H. Grady Spruce High School, Dallas, TX, 75217 3Department of Earth and Environmental Sciences, University of Texas Arlington, Arlington, TX, 76019 As Earth Science courses appear in fewer high school curricula, we seek to find creative ways to integrate Earth Science themes as contextual examples into other K-12 STEM courses in order to develop (A) Earth Science literacy, and (B) a pipeline of young talent into our field. This presentation details the efforts of the 2nd year Teach for America (TFA) Rock Corps, a five year NSF-sponsored partnership between TFA and the University of Texas at Arlington designed to provide STEM teachers with genuine research opportunities using components that can be extrapolated to develop dynamic Geophysics-themed lesson plans and materials for their classrooms. Two teachers were selected from the Dallas-Fort Worth region of TFA to participate in original research modeling off-fault damage that occurs during earthquakes in a lab setting using a Split-Hopkinson-Pressure Bar (SHPB). In particular, we simulate a coseismic transient stress perturbation in a fault damage zone by combining traditional SHPB with a traveling harmonic oscillator: Two striker bars attached by an elastic spring are launched with a gas gun allowing us to create the double stress pulse expected during an earthquake rupture. This research affords teachers inspiration to implement Geophysics-themed lesson plans for their courses, Physics/Pre-AP Physics and Chemistry. The physics course will adopt principles of seismic wave propagation to teach concepts of impulse, momentum, conservation of energy, harmonic motion, wave velocity, wave propagation, and real world applications of waves. The chemistry course will implement geochemistry themed techniques into applying the scientific method, density, isotopic composition, p

  15. Venus and the Archean Earth: Thermal considerations

    International Nuclear Information System (INIS)

    Sleep, N.H.

    1989-01-01

    The Archean Era of the Earth is not a direct analog of the present tectonics of Venus. In this regard, it is useful to review the state of the Archean Earth. Most significantly, the temperature of the adiabatic interior of the Earth was 200 to 300 C hotter than the current temperature. Preservation biases limit what can be learned from the Archean record. Archean oceanic crust, most of the planetary surface at any one time, has been nearly all subducted. More speculatively, the core of the Earth has probably cooled more slowly than the mantle. Thus the temperature contrast above the core-mantle boundary and the vigor of mantle plumes has increased with time on the Earth. The most obvious difference between Venus and the present Earth is the high surface temperature and hence a low effective viscosity of the lithosphere. In addition, the temperature contrast between the adiabatic interior and the surface, which drives convection, is less on Venus than on the Earth. It appears that the hot lithosphere enhanced tectonics on the early Venus significantly enough that its interior cooled faster than the Earth's. The best evidence for a cool interior of Venus comes from long wavelength gravity anomalies. The low interior temperatures retard seafloor spreading on Venus. The high surface temperatures on Venus enhance crustal deformation. That is, the lower crust may become ductile enough to permit significant flow between the upper crust and the mantle. There is thus some analogy to modern and ancient areas of high heat flow on the Earth. Archean crustal blocks typically remained stable for long intervals and thus overall are not good analogies to the deformation style on Venus

  16. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  17. Earth study from space

    Science.gov (United States)

    Sidorenko, A. V.

    1981-01-01

    The significance that space studies are making to all Earth sciences in the areas of geography, geodesy, cartography, geology, meteorology, oceanology, agronomy, and ecology is discussed. It is predicted that cosmonautics will result in a revolution in science and technology.

  18. Near Earth Asteroid Scout

    Data.gov (United States)

    National Aeronautics and Space Administration — Near-Earth Asteroid Scout, or NEA Scout, is a 6U CubeSat developed jointly between NASA’s Marshall Space Flight Center and the Jet Propulsion Laboratory. NASA...

  19. Gambling with the earth

    CERN Multimedia

    Muir, H

    2000-01-01

    The probability that dangerous Earth-devouring particles will be born at a new accelerator in the US may be tiny, but scientists have played down the devastating potential costs in their risk assessments according to a physicist (1 page).

  20. Jupiter and planet Earth

    International Nuclear Information System (INIS)

    1975-01-01

    The evolution of Jupiter and Earth are discussed along with their atmospheres, the radiation belts around both planets, natural satellites, the evolution of life, and the Pioneer 10. Educational study projects are also included

  1. Earth retaining structures manual

    Science.gov (United States)

    2009-10-29

    The objectives of this policy are to obtain statewide uniformity, establish standard : procedures and delineate responsibility for the preparation and review of plans, : design and construction control of earth retaining structures. In addition, it i...

  2. Earliest life on earth

    CERN Document Server

    Golding, Suzanne D

    2010-01-01

    This volume integrates the latest findings on earliest life forms, identified and characterized in some of the oldest rocks on Earth. It places emphasis on the integration of analytical methods with observational techniques and experimental simulations.

  3. Lead-free/rare earth-free Green-light-emitting crystal based on organic-inorganic hybrid [(C10H16N)2][MnBr4] with high emissive quantum yields and large crystal size

    Science.gov (United States)

    Cai, Xing-Wei; Zhao, Yu-Yuan; Li, Hong; Huang, Cui-Ping; Zhou, Zhen

    2018-06-01

    With the flourishing development of emitting materials, tremendous technological progress has been accomplished. However, they still face great challenges in convenient economical environmental-friendly large-scale commercial production. Herein we designed this organic-inorganic hybrid lead-free compound, an emerging class of high-efficiency emitting materials, [(C10H16N)2][MnBr4] (1), which emits intense greenish photoluminescence with a high emissive quantum yields of 72.26%, was prepared through the convenient economical solution method. What's more, compared with rare earth fluorescent materials (especially green-emitting Tb), Mn material is rich in natural resources and low commercial cost, which would possess an increasingly predominant advantage in the preparation of luminescent materials. Additionally, the exceptional thermal stability as well as the low-cost/convenient preparation process makes crystal 1 with the large size of more than 1 cm to be an ideal technologically important green-emitting material and it would open up a new route towards the commercialization process of lead-free/rare earth-free hybrid emitting materials in display and sensing.

  4. High Precision with the Whole Earth Telescope: Lessons and Some Results from XCov20 for the roAp Star HR 1217

    Directory of Open Access Journals (Sweden)

    Kurtz D. W.

    2003-03-01

    Full Text Available HR1217 is a prototypical rapidly oscillating Ap star that has presented a test to the theory of nonradial stellar pulsation. Prior observations showed a clear pattern of five modes with alternating frequency spacings of 33.3 μHz and 34.6 μHz, with a sixth mode at a problematic spacing of 50.0 μHz (which equals 1.5 × 33.3 μHz to the highfrequency side. Asymptotic pulsation theory allowed for a frequency spacing of 34 μHz, but hipparcos observations rule out such a spacing. Theoretical calculations of magnetoacoustic modes in Ap stars by Cunha (2001 predicted that there should be a previously undetected mode 34 μHz higher than the main group, with a smaller spacing between it and the highest one. The 20th extended coverage campaign of the Whole Earth Telescope (XCov20 has discovered this frequency as predicted by Cunha (2001. Amplitude modulation of several of the pulsation modes between the 1986 and 2000 data sets has also been discovered, while important parameters for modelling the geometry of the pulsation modes have been shown to be unchanged. With stringent selection of the best data from the WET network the amplitude spectrum shows highest peaks at only 50 μmag and formal errors on the determined amplitudes are 14 μmag. Some lessons for future use of WET for the highest precision photometry on bright stars are discussed.

  5. A grid portal for Earth Observation community

    International Nuclear Information System (INIS)

    Aloisio, G.; Cafaro, M.; Carteni, G.; Epicoco, I.; Quarta, G.

    2005-01-01

    Earth Observation techniques offer many powerful instruments far Earth planet study, urban development planning, military intelligence helping and so on. Tera bytes of EO and geo spatial data about lands, oceans, glaciers, cities, etc. are continuously downloaded through remote-sensing infrastructures and stored into heterogeneous, distributed repositories usually belonging to different virtual organizations. A problem-solving environment can be a viable solution to handle, coordinate and share heterogeneous and distributed resources. Moreover, grid computing is an emerging technology to salve large-scale problems in dynamic, multi-institutional Virtual Organizations coordinated by sharing resources such as high-performance computers, observation devices, data and databases aver high-speed networks, etc. In this paper we present the Italian Grid far Earth Observation (I-GEO) project, a pervasive environment based on grid technology to help the integration and processing of Earth Observation data, providing a tool to share and access data, applications and computational resources among several organizations

  6. Optimal Safety EarthingEarth Electrode Sizing Using A ...

    African Journals Online (AJOL)

    In this paper a deterministic approach in the sizing of earth electrode using the permissible touch voltage criteria is presented. The deterministic approach is effectively applied in the sizing of the length of earth rod required for the safe earthing of residential and facility buildings. This approach ensures that the earthing ...

  7. NASA'S Earth Science Data Stewardship Activities

    Science.gov (United States)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  8. Rare earth elements and permanent magnets (invited)

    Science.gov (United States)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  9. Rare earth niobate coordination polymers

    Science.gov (United States)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May

    2018-03-01

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.

  10. The Sun and Earth

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  11. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  12. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  13. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  14. The Earth System Model

    Science.gov (United States)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  15. Rare earths and actinides

    International Nuclear Information System (INIS)

    Coqblin, B.

    1982-01-01

    This paper reviews the different properties of rare-earths and actinides, either as pure metals or as in alloys or compounds. Three different cases are considered: (i) First, in the case of 'normal' rare-earths which are characterized by a valence of 3, we discuss essentially the magnetic ordering, the coexistence between superconductivity and magnetism and the properties of amorphous rare-earth systems. (ii) Second, in the case of 'anomalous' rare-earths, we distinguish between either 'intermediate-valence' systems or 'Kondo' systems. Special emphasis is given to the problems of the 'Kondo lattice' (for compounds such as CeAl 2 ,CeAl 3 or CeB 6 ) or the 'Anderson lattice' (for compounds such as TmSe). The problem of neutron diffraction in these systems is also discussed. (iii) Third, in the case of actinides, we can separate between the d-f hybridized and almost magnetic metals at the beginning of the series and the rare-earth like the metals after americium. (orig.)

  16. Earth's Trojan asteroid.

    Science.gov (United States)

    Connors, Martin; Wiegert, Paul; Veillet, Christian

    2011-07-27

    It was realized in 1772 that small bodies can stably share the same orbit as a planet if they remain near 'triangular points' 60° ahead of or behind it in the orbit. Such 'Trojan asteroids' have been found co-orbiting with Jupiter, Mars and Neptune. They have not hitherto been found associated with Earth, where the viewing geometry poses difficulties for their detection, although other kinds of co-orbital asteroid (horseshoe orbiters and quasi-satellites) have been observed. Here we report an archival search of infrared data for possible Earth Trojans, producing the candidate 2010 TK(7). We subsequently made optical observations which established that 2010 TK(7) is a Trojan companion of Earth, librating around the leading Lagrange triangular point, L(4). Its orbit is stable over at least ten thousand years.

  17. How Big is Earth?

    Science.gov (United States)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  18. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Science.gov (United States)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  19. Teaching earth science

    Science.gov (United States)

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  20. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  1. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  2. The Earth's Plasmasphere

    Science.gov (United States)

    Gallagher, D. L.

    2015-01-01

    The Earth's plasmasphere is an inner part of the magneteosphere. It is located just outside the upper ionosphere located in Earth's atmosphere. It is a region of dense, cold plasma that surrounds the Earth. Although plasma is found throughout the magnetosphere, the plasmasphere usually contains the coldest plasma. Here's how it works: The upper reaches of our planet's atmosphere are exposed to ultraviolet light from the Sun, and they are ionized with electrons that are freed from neutral atmospheric particles. The results are electrically charged negative and positive particles. The negative particles are electrons, and the positive particles are now called ions (formerly atoms and molecules). If the density of these particles is low enough, this electrically charged gas behaves differently than it would if it were neutral. Now this gas is called plasma. The atmospheric gas density becomes low enough to support the conditions for a plasma around earth at about 90 kilometers above Earth's surface. The electrons in plasma gain more energy, and they are very low in mass. They move along Earth's magnetic field lines and their increased energy is enough to escape Earth's gravity. Because electrons are very light, they don't have to gain too much kinetic energy from the Sun's ultraviolet light before gravity loses its grip on them. Gravity is not all that holds them back, however. As more and more electrons begin to escape outward, they leave behind a growing net positive electric charge in the ionosphere and create a growing net negative electric charge above the ionosphere; an electric field begins to develop (the Pannekoek-Rosseland E-field). Thus, these different interacting charges result in a positively charged ionosphere and negatively charged region of space above it. Very quickly this resulting electric field opposed upward movement of the electrons out of the ionosphere. The electrons still have this increased energy, however, so the electric field doesn't just

  3. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    Science.gov (United States)

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  4. Emerging industrial processes for low grade rare earth mineral concentrates

    International Nuclear Information System (INIS)

    Soldenhoff, Karin; Ho, Elizabeth

    2015-01-01

    Historically rare earth recovery has mainly been derived from the processing of monazite, bastnasite and xenotime containing ores amenable to beneficiation, yielding high grade mineral concentrates. A notable exception is the recovery of heavy rare earths from ionic clays in Southern China. Recently, projects are being proposed to treat a range of mineral concentrates which tend to be lower grade with wide ranging modal mineralogy for rare earths and associated gangue minerals. This has a significant impact on processing routes. This paper discusses processes proposed for emerging rare earth producers and how different projects have responded to particular challenges including: Control of phosphorous due to the presence of xenotime or monazite type minerals; Control of phosphorous due to the presence of rare earth containing apatite; Rare earth recovery from polymetallic ores; Control of radionuclides in rare earth processing, etc.

  5. "Galileo Calling Earth..."

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  6. Bones of the Earth

    Science.gov (United States)

    Correa, Jose Miguel

    2014-01-01

    The film "Bones of the Earth" (Riglin, Cunninham & Correa, 2014) is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective…

  7. Our bubbling Earth

    NARCIS (Netherlands)

    Schuiling, R.D.

    2005-01-01

    In several places on earth large volumes of gas are seen to escape. These gases are usually dominated by CO2. The emissions are associated with volcanic activity, and are attributed to magma degassing. It will be shown that in the case of Milos this explanation is unacceptable for quantitative

  8. Cosmic rays on earth

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted. (GSCH)

  9. Earth as art 4

    Science.gov (United States)

    ,

    2016-03-29

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  10. Google Earth Science

    Science.gov (United States)

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  11. How life shaped Earth.

    Science.gov (United States)

    Gross, Michael

    2015-10-05

    Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet.

  12. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  13. Understanding Earth's Albedo Effect

    Science.gov (United States)

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  14. Earth Science Misconceptions.

    Science.gov (United States)

    Philips, William C.

    1991-01-01

    Presented is a list of over 50 commonly held misconceptions based on a literature review found in students and adults. The list covers earth science topics such as space, the lithosphere, the biosphere, the atmosphere, the hydrosphere, and the cryosphere. (KR)

  15. The earths innermost core

    International Nuclear Information System (INIS)

    Nanda, J.N.

    1989-01-01

    A new earth model is advanced with a solid innermost core at the centre of the Earth where elements heavier than iron, over and above what can be retained in solution in the iron core, are collected. The innermost core is separated from the solid iron-nickel core by a shell of liquid copper. The innermost core has a natural vibration measured on the earth's surface as the long period 26 seconds microseisms. The earth was formed initially as a liquid sphere with a relatively thin solid crust above the Byerly discontinuity. The trace elements that entered the innermost core amounted to only 0.925 ppm of the molten mass. Gravitational differentiation must have led to the separation of an explosive thickness of pure 235 U causing a fission explosion that could expel beyond the Roche limit a crustal scab which would form the centre piece of the moon. A reservoir of helium floats on the liquid copper. A small proportion of helium-3, a relic of the ancient fission explosion present there will spell the exciting magnetic field. The field is stable for thousands of years because of the presence of large quantity of helium-4 which accounts for most of the gaseous collisions that will not disturb the atomic spin of helium-3 atoms. This field is prone to sudden reversals after long periods of stability. (author). 14 refs

  16. The radioactive earth

    International Nuclear Information System (INIS)

    Plant, J.A.; Saunders, A.D.

    1996-01-01

    Uranium, thorium and potassium are the main elements contributing to natural terrestrial radioactivity. The isotopes 238 U, 235 U, 232 Th and 40 K decay with half-lives so long that significant amounts remain in the earth, providing a continuing source of heat. The slow decay of these isotopes also provides the basis for radiometric age dating and isotopic modelling of the evolution of the earth and its crust. There is a complex interplay between their heat production and the processes involved in crust formation. Phenomena such as volcanism, earthquakes, and large-scale hydrothermal activity associated with ore deposition reflect the dissipation of heat energy from the earth, much of which is derived from natural radioactivity. The higher levels of radioactive elements during the early history of the earth resulted in higher heat flow. All three of the radioactive elements are strongly partitioned into the continental crust, but within the crust their distribution is determined by their different chemical properties. The behaviour of U, which has two commonly occurring oxidation states, is more complex than that of Th and K. Uranium deposits are diverse, and are mostly associated with granites, acid volcanics, or detrital sedimentary rocks. The most important U deposits economically are unconformity-type ores of Proterozoic age, in which U is enriched by up to 5 x 10 6 with respect to bulk earth values. In some cases natural radioactivity can be of environmental concern. The most significant risk is posed by accumulations of radon, the gaseous daughter product of U. (author)

  17. The Earth's Biosphere

    Science.gov (United States)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  18. P-CSI v1.0, an accelerated barotropic solver for the high-resolution ocean model component in the Community Earth System Model v2.0

    Directory of Open Access Journals (Sweden)

    X. Huang

    2016-11-01

    Full Text Available In the Community Earth System Model (CESM, the ocean model is computationally expensive for high-resolution grids and is often the least scalable component for high-resolution production experiments. The major bottleneck is that the barotropic solver scales poorly at high core counts. We design a new barotropic solver to accelerate the high-resolution ocean simulation. The novel solver adopts a Chebyshev-type iterative method to reduce the global communication cost in conjunction with an effective block preconditioner to further reduce the iterations. The algorithm and its computational complexity are theoretically analyzed and compared with other existing methods. We confirm the significant reduction of the global communication time with a competitive convergence rate using a series of idealized tests. Numerical experiments using the CESM 0.1° global ocean model show that the proposed approach results in a factor of 1.7 speed-up over the original method with no loss of accuracy, achieving 10.5 simulated years per wall-clock day on 16 875 cores.

  19. Rare earths production and marketing opportunities

    International Nuclear Information System (INIS)

    Falconnet, P.G.

    1988-01-01

    The rare earths (RE) market is relatively small. The total production during 1968 was only 10000 tons (REO) which rose to 27000 tons (REO) during 1985. The three major areas of application, which are volume market for ceric rare earths are catalysts, glass ceramics and metallurgy. Among the other uses of rare earths, the permanent magnets, lamp phosphors and fine ceramics have registered significant growth in RE consumption. Monazite and bastnasite are the main natural source for rare earths and processing of these for one of the rare earths in high demand leads to over production of some others not in demand, thus creating a balance problem. The growth in RE market has always been influenced by the technology shifts and product substitution. For example, the RE consumption during 1974/76 for desulfurization of steel had substantially decreased due to the usage of calcium. Similarly, 1985 had witnessed a drastic cut in the use of REs in fluid cracking due to the introduction of stabilized zeolites which contain less REO. Thus, the overall compound growth rate of demand was only 3.9 % per year during the period 1970-1985. At present, 37 % of the rare earths production goes to the glass/ceramics industry, 33 % for catalyst and 25 % to metallurgy. The price of REs constantly shows a downward trend. This trend coupled with the rapid changes taking place in the various technological fields, demands greater flexibility and high marketing skills from the RE producers. The key factor for future expansion of RE market will be the development of 'high volume' application of ceric rare earths. (author) 2 figs., 8 tabs

  20. S-band low noise amplifier and 40 kW high power amplifier subsystems of Japanese Deep Space Earth Station

    Science.gov (United States)

    Honma, K.; Handa, K.; Akinaga, W.; Doi, M.; Matsuzaki, O.

    This paper describes the design and the performance of the S-band low noise amplifier and the S-band high power amplifier that have been developed for the Usuda Deep Space Station of the Institute of Space and Astronautical Science (ISAS), Japan. The S-band low noise amplifier consists of a helium gas-cooled parametric amplifier followed by three-stage FET amplifiers and has a noise temperature of 8 K. The high power amplifier is composed of two 28 kW klystrons, capable of transmitting 40 kW continuously when two klystrons are combined. Both subsystems are operating quite satisfactorily in the tracking of Sakigake and Suisei, the Japanese interplanetary probes for Halley's comet exploration, launched by ISAS in 1985.

  1. Simulating Large Area, High Intensity AM0 Illumination on Earth- Representative Testing at Elevated Temperatures for the BepiColombo and SolO Missions

    Science.gov (United States)

    Oberhuttinger, C.; Quabis, D.; Zimmermann, C. G.

    2014-08-01

    During both the BepiColombo and the Solar Orbiter (SolO) mission, severe environmental conditions with sun intensities up to 10.6 solar constants (SCs) resp. 12.8 SCs will be encountered. Therefore, a special cell design was developed which can withstand these environmental loads. To verify the solar cells under representative conditions, a set of specific tests is conducted. The key qualification test for these high intensity, high temperature (HIHT) missions is a combined test, which exposes a large number of cells simultaneously to the complete AM0 spectrum at the required irradiance and temperature. Such a test was set up in the VTC1.5 chamber located at ESTEC. This paper provides an overview of the challenges in designing a setup capable of achieving this HIHT simulation. The solutions that were developed will be presented. Also the performance of the setup will be illustrated by actual test results.

  2. Achieving excellent thermal stability and very high activation energy in an ultrafine-grained magnesium silver rare earth alloy prepared by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Khan MD, F. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Panigrahi, S.K., E-mail: skpanigrahi@iitm.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-10-15

    Ultrafine-grained microstructure of a QE22 alloy prepared by Friction Stir processing (FSP) is isochronally annealed to study the thermal stability and grain growth kinetics. The FSPed microstructure of QE22 alloy is thermally stable under ultrafine-grained regime up to 300 °C and the activation energy required for grain growth is found to be exceptionally high as compared to conventional ultrafine-grained magnesium alloys. The high thermal stability and activation energy of the FSPed QE22 alloy is due to Zener pinning effect from thermally stable eutectic Mg{sub 12}Nd and fine precipitates Mg{sub 12}Nd{sub 2}Ag and solute drag effect from segregation of Neodymium (Nd) solute atoms at grain boundaries.

  3. High-Precision In Situ 87Sr/86Sr Analyses through Microsampling on Solid Samples: Applications to Earth and Life Sciences

    Directory of Open Access Journals (Sweden)

    Sara Di Salvo

    2018-01-01

    Full Text Available An analytical protocol for high-precision, in situ microscale isotopic investigations is presented here, which combines the use of a high-performing mechanical microsampling device and high-precision TIMS measurements on micro-Sr samples, allowing for excellent results both in accuracy and precision. The present paper is a detailed methodological description of the whole analytical procedure from sampling to elemental purification and Sr-isotope measurements. The method offers the potential to attain isotope data at the microscale on a wide range of solid materials with the use of minimally invasive sampling. In addition, we present three significant case studies for geological and life sciences, as examples of the various applications of microscale 87Sr/86Sr isotope ratios, concerning (i the pre-eruptive mechanisms triggering recent eruptions at Nisyros volcano (Greece, (ii the dynamics involved with the initial magma ascent during Eyjafjallajökull volcano’s (Iceland 2010 eruption, which are usually related to the precursory signals of the eruption, and (iii the environmental context of a MIS 3 cave bear, Ursus spelaeus. The studied cases show the robustness of the methods, which can be also be applied in other areas, such as cultural heritage, archaeology, petrology, and forensic sciences.

  4. Visualizing Earth Materials

    Science.gov (United States)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  5. Towards earth AntineutRino TomograpHy (EARTH)

    NARCIS (Netherlands)

    De Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Wortche, H. J.; Mantovani, F.

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection.

  6. Inaugeral lecture - Meteorite impacts on Earth and on the Earth ...

    African Journals Online (AJOL)

    There is some controversial evidence for the theory that the first life on Earth itself may have been transported here on meteorites from Mars. The possibility of a major meteorite impact on Earth in the near future emphasizes the dramatic nature of these recent discoveries, which are having deep impacts in the Earth sciences ...

  7. Earth and Space Science Electronic Theater: State-of-the-Art Visualization from the Latest Remote Sensing Observations. High Definition Television on the SMM IMAX Screen with Ultra High Performance Projector

    Science.gov (United States)

    Hasler, A. F.; Starr, David (Technical Monitor)

    2001-01-01

    Fritz Hasler (NASA/Goddard) will demonstrate the latest Blue Marble Digital Earth technology. We will fly in from space through Terra, Landsat 7, to 1 m Ikonos "Spy Satellite" data to Washington, NYC, Chicago, and LA. You will see animations using the new 1 km global datasets from the EOS Terra satellite. Spectacular new animations from Terra, Landsat 7, and SeaWiFS will be presented. See the latest animations of the super hurricanes like, Floyd, Luis, and Mitch, from GOES & TRMM. See movies assembled using new low cost HDTV nonlinear editing equipment that is revolutionizing the way we communicate scientific results. See climate change in action with Global Land & Ocean productivity changes over the last 20 years. Remote sensing observations of ocean SST, height, winds, color, and El Nino from GOES, AVHRR, SSMI & SeaWiFS are put in context with atmospheric and ocean simulations. Compare symmetrical equatorial eddies observed by GOES with the simulations.

  8. Anomalous density and elastic properties of basalt at high pressure: Reevaluating of the effect of melt fraction on seismic velocity in the Earth's crust and upper mantle

    Science.gov (United States)

    Clark, Alisha N.; Lesher, Charles E.; Jacobsen, Steven D.; Wang, Yanbin

    2016-06-01

    Independent measurements of the volumetric and elastic properties of Columbia River basalt glass were made up to 5.5 GPa by high-pressure X-ray microtomography and GHz-ultrasonic interferometry, respectively. The Columbia River basalt displays P and S wave velocity minima at 4.5 and 5 GPa, respectively, violating Birch's law. These data constrain the pressure dependence of the density and elastic moduli at high pressure, which cannot be modeled through usual equations of state nor determined by stepwise integrating the bulk sound velocity as is common practice. We propose a systematic variation in compression behavior of silicate glasses that is dependent on the degree of polymerization and arises from the flexibility of the aluminosilicate network. This behavior likely persists into the liquid state for basaltic melts resulting in weak pressure dependence for P wave velocities perhaps to depths of the transition zone. Modeling the effect of partial melt on P wave velocity reductions suggests that melt fraction determined by seismic velocity variations may be significantly overestimated in the crust and upper mantle.

  9. STABILITY: AN INVESTIGATION OF AS(III)/AS(V) STABILITY IN IRON RICH DRINKING WATER MATRICES

    Science.gov (United States)

    Arsenic in drinking water is predominantly inorganic arsenic. The two oxidation states of inorganic arsenic are As(III)(pKa=9.3) and As(V)(pKa2=6.9). The distribution of As(III) and AS(V) in a water is dependent on the redox potential of the water. The actual distribution can ...

  10. Intermetallic phases in the iron-rich region of the Zr-Fe phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, M.S. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Materiales; Arias, D. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. de Materiales

    1996-04-01

    Intermetallic phases in the Fe-rich region of the Zr-Fe system are studied by X-ray diffraction and optical and electron microscopy. The chemical composition of each phase has been quantitatively measured in a electron microprobe. The stable phases found in this region are ZrFe{sub 2}, Zr{sub 6}Fe{sub 23} and ({alpha}Fe). ZrFe{sub 2} is identified as a cubic Laves type phase (C15) and the ZrFe{sub 2}/ZrFe{sub 2}+Zr{sub 6}Fe{sub 23} boundary composition is 73{+-}1 at.% Fe. Zr{sub 6}Fe{sub 23} is a cubic phase of the Th{sub 6}Mn{sub 23} type and its composition is 80.0{+-}1.5 at.% Fe. The eutectic L{r_reversible}Zr{sub 6}Fe{sub 23}+{tau}-Fe transformation temperature and composition are 1325 C and 91{+-}1 at.% Fe, respectively. The solubility of Zr in {tau}-Fe at 1012 C is 500{+-}50 appm and 1000{+-}100 appm close to the eutectic temperature. (orig.).

  11. Intermetallic phases in the iron-rich region of the Zr-Fe phase diagram

    International Nuclear Information System (INIS)

    Granovsky, M.S.; Arias, D.

    1996-01-01

    Intermetallic phases in the Fe-rich region of the Zr-Fe system are studied by X-ray diffraction and optical and electron microscopy. The chemical composition of each phase has been quantitatively measured in a electron microprobe. The stable phases found in this region are ZrFe 2 , Zr 6 Fe 23 and (αFe). ZrFe 2 is identified as a cubic Laves type phase (C15) and the ZrFe 2 /ZrFe 2 +Zr 6 Fe 23 boundary composition is 73±1 at.% Fe. Zr 6 Fe 23 is a cubic phase of the Th 6 Mn 23 type and its composition is 80.0±1.5 at.% Fe. The eutectic L↔Zr 6 Fe 23 +τ-Fe transformation temperature and composition are 1325 C and 91±1 at.% Fe, respectively. The solubility of Zr in τ-Fe at 1012 C is 500±50 appm and 1000±100 appm close to the eutectic temperature. (orig.)

  12. Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean.

    Science.gov (United States)

    Gao, Haichun; Obraztova, Anna; Stewart, Nathan; Popa, Radu; Fredrickson, James K; Tiedje, James M; Nealson, Kenneth H; Zhou, Jizhong

    2006-08-01

    A novel marine bacterial strain, PV-4(T), isolated from a microbial mat located at a hydrothermal vent of Loihi Seamount in the Pacific Ocean, has been characterized. This micro-organism is orangey in colour, Gram-negative, polarly flagellated, facultatively anaerobic and psychrotolerant (temperature range, 0-42 degrees C). No growth was observed with nitrate, nitrite, DMSO or thiosulfate as the electron acceptor and lactate as the electron donor. The major fatty acid detected in strain PV-4(T) was iso-C(15 : 0). Strain PV-4(T) had ubiquinones consisting mainly of Q-7 and Q-8, and possessed menaquinone MK-7. The DNA G+C content of the strain was 53.8 mol% and the genome size was about 4.5 Mbp. Phylogenetic analyses based on 16S rRNA gene sequences placed PV-4(T) within the genus Shewanella. PV-4(T) exhibited 16S rRNA gene sequence similarity levels of 99.6 and 97.5 %, respectively, with respect to the type strains of Shewanella aquimarina and Shewanella marisflavi. DNA from strain PV-4(T) showed low mean levels of relatedness to the DNAs of S. aquimarina (50.5 %) and S. marisflavi (8.5 %). On the basis of phylogenetic and phenotypic characteristics, the bacterium was classified in the genus Shewanella within a distinct novel species, for which the name Shewanella loihica sp. nov. is proposed. The type strain is PV-4(T) (=ATCC BAA-1088(T)=DSM 17748(T)).

  13. Composition, structure, and properties of iron-rich nontronites of different origins

    Energy Technology Data Exchange (ETDEWEB)

    Palchik, N. A., E-mail: nadezhda@igm.nsc.ru; Grigorieva, T. N.; Moroz, T. N. [Russian Academy of Sciences, Sobolev Institute of Geology and Mineralogy, Siberian Branch (Russian Federation)

    2013-03-15

    The composition, structure, and properties of smectites of different origins have been studied by X-ray diffraction, IR spectroscopy, scanning electron microscopy, and microprobe analysis. The results showed that nontronites of different origins differ in composition, properties, morphology, and IR spectroscopic characteristics. Depending on the degree of structural order and the negative charge of iron-silicate layers in nontronites, the shift of the 001 reflection to smaller angles as a result of impregnation with ethylene glycol (this shift is characteristic of the smectite group) occurs differently. The calculated values of the parameter b (from 9.11 to 9.14A) are valid for the extreme terms of dioctahedral smectite representatives: nontronites.

  14. Neutron scattering study of the magnetic correlations of iron rich Fe-Zr glasses

    International Nuclear Information System (INIS)

    Fernandez-Baca, J.A.; Rhyne, J.J.; Erwin, R.W.; Fish, G.E.

    1988-01-01

    Small angle neutron scattering (SANS) and polarized-beam spin rotation measurements show that amorphous Fe/sub 80/Zr/sub 10/ does not exhibit conventional long range ferromagnetic order below T/sub C/. The SANS measurements show the existence of two characteristic length scales; one provides evidence of relatively large spin clusters, while the other is characteristic of the spin dynamics. 4 refs., 3 figs

  15. Bioremediation of an iron-rich mine effluent by Lemna minor.

    Science.gov (United States)

    Teixeira, S; Vieira, M N; Espinha Marques, J; Pereira, R

    2014-01-01

    Contamination of water resources by mine effluents is a serious environmental problem. In a old coal mine, in the north of Portugal (São Pedro da Cova, Gondoma),forty years after the activity has ended, a neutral mine drainage, rich in iron (FE) it stills being produced and it is continuously released in local streams (Ribeiro de Murta e Rio Ferreira) and in surrounding lands. The species Lemna minor has been shown to be a good model for ecotoxicological studies and it also has the capacity to bioaccumulate metals. The work aimed test the potential of the species L. minor to remediate this mine effluent, through the bioaccumulation of Fe, under greenhouse experiments and, at the same time, evaluate the time required to the maximum removal of Fe. The results have shown that L. minor was able to grow and develop in the Fe-rich effluent and bioaccumulating this element. Throughout the 21 days of testing it was found that there was a meaningful increase in the biomass of L. minor both in the contaminated and in the non-contaminated waters. It was also found that bioaccumulation of Fe (iron) occurred mainly during the first 7 days of testing. It was found that L. minor has potential for the bioremediation of effluents rich in iron.

  16. Density and temperature of energetic electrons in the Earth's magnetotail derived from high-latitude GPS observations during the declining phase of the solar cycle

    Directory of Open Access Journals (Sweden)

    M. H. Denton

    2011-10-01

    Full Text Available Single relativistic-Maxwellian fits are made to high-latitude GPS-satellite observations of energetic electrons for the period January 2006–November 2010; a constellation of 12 GPS space vehicles provides the observations. The derived fit parameters (for energies ~0.1–1.0 MeV, in combination with field-line mapping on the nightside of the magnetosphere, provide a survey of the energetic electron density and temperature distribution in the magnetotail between McIlwain L-values of L=6 and L=22. Analysis reveals the characteristics of the density-temperature distribution of energetic electrons and its variation as a function of solar wind speed and the Kp index. The density-temperature characteristics of the magnetotail energetic electrons are very similar to those found in the outer electron radiation belt as measured at geosynchronous orbit. The energetic electron density in the magnetotail is much greater during increased geomagnetic activity and during fast solar wind. The total electron density in the magnetotail is found to be strongly correlated with solar wind speed and is at least a factor of two greater for high-speed solar wind (VSW=500–1000 km s−1 compared to low-speed solar wind (VSW=100–400 km s−1. These results have important implications for understanding (a how the solar wind may modulate entry into the magnetosphere during fast and slow solar wind, and (b if the magnetotail is a source or a sink for the outer electron radiation belt.

  17. Physics of the Earth

    Science.gov (United States)

    Stacey, Frank D.; Davis, Paul M.

    he fourth edition of Physics of the Earth maintains the original philosophy of this classic graduate textbook on fundamental solid earth geophysics, while being completely revised, updated, and restructured into a more modular format to make individual topics even more accessible. Building on the success of previous editions, which have served generations of students and researchers for nearly forty years, this new edition will be an invaluable resource for graduate students looking for the necessary physical and mathematical foundations to embark on their own research careers in geophysics. Several completely new chapters have been added and a series of appendices, presenting fundamental data and advanced mathematical concepts, and an extensive reference list, are provided as tools to aid readers wishing to pursue topics beyond the level of the book. Over 140 student exercises of varying levels of difficulty are also included, and full solutions are available online at www.cambridge.org/9780521873628.

  18. Alkaline earth metals

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    The beryllium ion has a relatively small ionic radius. As a consequence of this small size, its hydrolysis reactions begin to occur at a relatively low pH. To determine the stability and solubility constants, however, the Gibbs energy of the beryllium ion is required. In aqueous solution calcium, like the other alkaline earth metals, only exists as a divalent cation. The size of the alkaline earth cations increases with increasing atomic number, and the calcium ion is bigger than the magnesium ion. The hydrolysis of barium(II) is weaker than that of strontium(II) and also occurs in quite alkaline pH solutions, and similarly, only the species barium hydroxide has been detected. There is only a single experimental study on the hydrolysis of radium. As with the stability constant trend, it would be expected that the enthalpy of radium would be lower than that of barium due to the larger ionic radius.

  19. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  20. Utah's Mobile Earth Science Outreach Vehicle

    Science.gov (United States)

    Schoessow, F. S.; Christian, L.

    2016-12-01

    Students at Utah State University's College of Natural Resources have engineered the first mobile Earth Science outreach platform capable of delivering high-tech and interactive solar-powered educational resources to the traditionally-underserved, remote communities of rural Utah. By retrofitting and modifying an industrial box-truck, this project effectively created a highly mobile and energy independent "school in a box" which seeks to help change the way that Earth science is communicated, eliminate traditional barriers, and increase science accessibility - both physically and conceptually. The project's education platform is focused on developing a more effective, sustainable, and engaging platform for presenting Earth science outreach curricula to community members of all ages in an engaging fashion. Furthermore, this project affords university students the opportunity to demonstrate innovative science communication techniques, translating vital university research into educational outreach operations aimed at doing real, measurable good for local communities.