WorldWideScience

Sample records for earth ion conduction

  1. Multivalent ion conducting solids

    Energy Technology Data Exchange (ETDEWEB)

    Imanaka, N. [Osaka Univ., Suita, Osaka (Japan). Dept. of Applied Chemistry

    2008-07-01

    Solid electrolytes possess important characteristics for industrial applications. Only a single ionic species can macroscopically migrate in these solids. This paper described a the new NASICON (M-Zr-Nb-P-O) type system, exhibiting an exceptionally high level of trivalent M3+ ion conductivity on polycrystalline solids. The partial substitution of the smaller higher valent Nb5+ ion for Zr4+ stabilized the NASICON phase and realized the M3+ ion conduction in the NASICON structure. It was concluded that the conductivities of the series are comparable to those of the practically applied solid electrolytes of oxide anion conductors of YSZ and CSZ. 3 refs., 2 figs.

  2. Ion-conducting membranes

    Science.gov (United States)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  3. Fast sodium ion conductivity in supertetrahedral phosphidosilicates.

    Science.gov (United States)

    Johrendt, Dirk; Haffner, Arthur; Hatz, Anna Katharina; Moudrakovski, Igor; Lotsch, Bettina Valeska

    2018-04-03

    Fast sodium ion conductors are key components of sodium-based all-solid-state batteries which hold promise as safe systems for large-scale storage of electrical power. Here, we report the synthesis, crystal structure determination and Na+ ion conductivities of six new sodium ion conductors, the phosphidosilicates Na19Si13P25, Na23Si19P33, Na23Si28P45, Na23Si37P57, LT-NaSi2P3 and HT-NaSi2P3, which are entirely based on earth-abundant elements. The new structures exhibit SiP4 tetrahedra assembling interpenetrating networks of T3 to T5 supertetrahedral clusters which can be hierarchically assigned to sphalerite- or diamond-type structures. 23Na solid-state NMR spectra and geometrical pathway analysis indicate Na+ ion mobility between the supertetrahedral cluster networks. Electrochemical impedance spectroscopy revealed Na+ ion conductivities up to σ (Na+) = 4 ∙ 10-4 Scm-1 with an activation energy of Ea = 0.25 eV in HT-NaSi2P3 at 25 °C. The conductivities increase with the size of the supertetrahedral clusters due to the dilution of Na+ ions as the charge density of the anionic supertetrahedral networks decreases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Multifunctional scanning ion conductance microscopy

    Science.gov (United States)

    Page, Ashley; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science. PMID:28484332

  5. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  6. Ionomers for Ion-Conducting Energy Materials

    Science.gov (United States)

    Colby, Ralph

    For ionic actuators and battery separators, it is vital to utilize single-ion conducting ionomers that avoid the detrimental polarization of other ions. Single-ion conducting ionomers are synthesized based on DFT calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for battery separators that conduct Li+ or Na+. Characterization by X-ray scattering, dielectric spectroscopy, FTIR, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. 7Li NMR diffusion measurements find that diffusion is faster than expected by conductivity using the Nernst-Einstein equation, which means that the majority of Li diffusion occurs by ion pairs moving with the polymer segmental motion. Segmental motion only contributes to ionic conduction in the rare event that one of these ion pairs has an extra Li (a positive triple ion). This leads us to a new metric for ion-conducting soft materials, the product of the cation number density p0 and their diffusion coefficient D; p0D is the diffusive flux of lithium ions. This new metric has a maximum at intermediate ion content that corresponds to the overlap of ion pair polarizability volumes. At higher ion contents, the ion pairs interact strongly and form larger aggregation states that retard segmental motion of both mobile ion pairs and triple ions.

  7. Oxide interfaces with enhanced ion conductivity

    NARCIS (Netherlands)

    Leon, C.; Santamaria, J.; Boukamp, Bernard A.

    2013-01-01

    The new field of nano-ionics is expected to yield large improvements in the performance of oxide-based energy generation and storage devices based on exploiting size effects in ion conducting materials. The search for novel materials with enhanced ionic conductivity for application in energy devices

  8. Relaxation behavior of ion conducting glasses

    International Nuclear Information System (INIS)

    Bunde, A.; Dieterich, W.; Maass, P.; Meyer, M.

    1997-01-01

    We investigate by Monte Carlo simulations the diffusion of ions in an energetically disordered lattice, where the Coulomb interaction between the mobile ions is explicitly taken into account. We show that the combined effect of Coulomb interaction and disorder can account for the ionic ac-conductivity in glasses and the recently discovered non-Arrhenius behavior of the dc-conductivity in glassy fast ionic conductors. Our results suggest that glassy ionic conductors can be optimized by lowering the strength of the energetic disorder but that the ionic interaction effects set an upper bound for the conductivity at high temperatures. (author)

  9. Impulsive ion acceleration in earth's outer magnetosphere

    International Nuclear Information System (INIS)

    Baker, D.N.; Belian, R.D.

    1985-01-01

    Considerable observational evidence is found that ions are accelerated to high energies in the outer magnetosphere during geomagnetic disturbances. The acceleration often appears to be quite impulsive causing temporally brief (10's of seconds), very intense bursts of ions in the distant plasma sheet as well as in the near-tail region. These ion bursts extend in energy from 10's of keV to over 1 MeV and are closely associated with substorm expansive phase onsets. Although the very energetic ions are not of dominant importance for magnetotail plasma dynamics, they serve as an important tracer population. Their absolute intensity and brief temporal appearance bespeaks a strong and rapid acceleration process in the near-tail, very probably involving large induced electric fields substantially greater than those associated with cross-tail potential drops. Subsequent to their impulsive acceleration, these ions are injected into the outer trapping regions forming ion ''drift echo'' events, as well as streaming tailward away from their acceleration site in the near-earth plasma sheet. Most auroral ion acceleration processes occur (or are greatly enhanced) during the time that these global magnetospheric events are occurring in the magnetotail. A qualitative model relating energetic ion populations to near-tail magnetic reconnection at substorm onset followed by global redistribution is quite successful in explaining the primary observational features. Recent measurements of the elemental composition and charge-states have proven valuable for showing the source (solar wind or ionosphere) of the original plasma population from which the ions were accelerated

  10. Structures and ion conduction pathways of amorphous lithium ion conductors

    International Nuclear Information System (INIS)

    Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei

    2014-01-01

    For ( 7 Li 2 S) x (P 2 S 5 ) 100-x glasses (x = 50, 60, and 70) and 7 Li 7 P 3 S 11 metastable crystal, time-of-flight neutron diffraction and synchrotron X-ray diffraction experiments were performed, and three-dimensional structures and conduction pathways of lithium ions were studied using the reverse Monte Carlo (RMC) modeling and the bond valence sum (BVS) approach. The conduction pathways of the lithium ions could be classified into two types: lithium 'stable' and 'metastable' regions, respectively. Moreover, it was found that there is a significant relationship between the activation energy of the electrical conduction and the topology of the conduction pathways of the lithium ions. (author)

  11. Ion heat conduction losses in Extrap

    International Nuclear Information System (INIS)

    Tennfors, E.

    1989-08-01

    The classical ion heat conduction losses in Extrap discharges are calculated using polynomial magnetic field profiles and compared to the power input. For polynomials matched to magnetic field profiles measured in present experiments, these losses are small. By varying the coefficients of the polynomials, a region is found, where the power input can balance the classical heat conduction losses. Each set of coefficients corresponds to values of the parameters F and Θ used in RFP physics. The region determines a region in an F-Θ diagram, including the usual RFP region but extending to higher values of Θ and βΘ

  12. Conductance of Ion Channels - Theory vs. Experiment

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  13. Ion exchange separation of rare earths. I

    International Nuclear Information System (INIS)

    Nghi, Nguyen danh; Matous, K.

    1977-01-01

    The optimal conditions of separating selected rare earths by two ion exchange chromatography using Ostion KS cation exchange resin were studied. The effect of acetic acid concentration in the sorption solution was investigated. The elution process was studied in dependence on the concentration of Na 2 H 2 EDTA, on the total concentration of EDTA 4- ion, on elution agent flow, and on temperature. The optimal conditions were determined by evaluating integral elution curves and changes in acid concentration for systems Y-Pr, La-Pr, Er-Pr, Eu-Pr as follows: The sorption solution requires the presence of Na 2 H 2 EDTA of 0.03M in concentration. The basic elution solution was prepared in the following way: 0.183M Na 2 Mg 2 EDTA, 9.6x10 -3 M Na 2 H 2 EDTA, 3.84x10 -3 M CH 3 COOH, 2.30x10 -2 M CH 3 COONH 4 , 2.30x10 -2 M (NH 4 ) 2 SO 4 . Approximate pH 5.7 to 6.0. The optimal elution solution was prepared by diluting the basic solution so that the total concentration of EDTA 4- equalled 0.075M. The optimal flow was determined to be 0.86 ml.cm -2 .min -1 at a temperature of 55 degC. (author)

  14. Silicon-conductive nanopaper for Li-ion batteries

    KAUST Repository

    Hu, Liangbing

    2013-01-01

    There is an increasing interest in the development of thin, flexible energy storage devices for new applications. For large scale and low cost devices, structures with the use of earth abundant materials are attractive. In this study, we fabricated flexible and conductive nanopaper aerogels with incorporated carbon nanotubes (CNT). Such conductive nanopaper is made from aqueous dispersions with dispersed CNT and cellulose nanofibers. Such aerogels are highly porous with open channels that allow the deposition of a thin-layer of silicon through a plasma-enhanced CVD (PECVD) method. Meanwhile, the open channels also allow for an excellent ion accessibility to the surface of silicon. We demonstrated that such lightweight and flexible Si-conductive nanopaper structure performs well as Li-ion battery anodes. A stable capacity of 1200. mA. h/g for 100 cycles in half-cells is achieved. Such flexible anodes based on earth abundant materials and aqueous dispersions could potentially open new opportunities for low-cost energy devices, and potentially can be applied for large-scale energy storage. © 2012 Elsevier Ltd.

  15. Scanning Ion Conductance Microscopy of Live Keratinocytes

    International Nuclear Information System (INIS)

    Hegde, V; Mason, A; Saliev, T; Smith, F J D; McLean, W H I; Campbell, P A

    2012-01-01

    Scanning ion conductance microscopy (SICM) is perhaps the least well known technique from the scanning probe microscopy (SPM) family of instruments. As with its more familiar counterpart, atomic force microscopy (AFM), the technique provides high-resolution topographic imaging, with the caveat that target structures must be immersed in a conducting solution so that a controllable ion current may be utilised as the basis for feedback. In operation, this non-contact characteristic of SICM makes it ideal for the study of delicate structures, such as live cells. Moreover, the intrinsic architecture of the instrument, incorporating as it does, a scanned micropipette, lends itself to combination approaches with complementary techniques such as patch-clamp electrophysiology: SICM therefore boasts the capability for both structural and functional imaging. For the present observations, an ICnano S system (Ionscope Ltd., Melbourn, UK) operating in 'hopping mode' was used, with the objective of assessing the instrument's utility for imaging live keratinocytes under physiological buffers. In scans employing cultured HaCaT cells (spontaneously immortalised, human keratinocytes), we compared the qualitative differences of live cells imaged with SICM and AFM, and also with their respective counterparts after chemical fixation in 4% paraformaldehyde. Characteristic surface microvilli were particularly prominent in live cell imaging by SICM. Moreover, time lapse SICM imaging on live cells revealed that changes in the pattern of microvilli could be tracked over time. By comparison, AFM imaging on live cells, even at very low contact forces (< nN), could not routinely image microvilli: rather, an apparently convolved image of the underlying cytoskeleton was instead prevalent. We note that the present incarnation of the commercial instrument falls some way behind the market leading SPMs in terms of technical prowess and scanning speed, however, the intrinsic non-obtrusive nature of

  16. Mixed-conducting polyaniline-Fuller's Earth nanocomposites prepared by stepwise intercalation

    Energy Technology Data Exchange (ETDEWEB)

    Rajapakse, R.M.G. [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka)]. E-mail: rmgr@pdn.ac.lk; Krishantha, D.M.M. [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka); Tennakoon, D.T.B. [Department of Chemistry, University of Peradeniya, Peradeniya (Sri Lanka); Dias, H.V.R. [Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065 (United States)

    2006-02-25

    A series of polyaniline-Fuller's Earth (PANI-FE) nanocomposites were prepared by the successive intercalation of anilinium ions followed by polymerisation within the interlayer spaces of Fuller's Earth (a type of calcium montmorillonite). The first member in the series is prepared by exchanging the calcium ions in Fuller's Earth for ammonium ions and subsequently for anilinium ions and polymerising the latter using an externally introduced oxidant. The emeraldine salt form of polyaniline formed is then neutralised with ammonium hydroxide and more anilinium ions are exchanged for ammonium ions and polymerised to get the second member. In this manner, by making use the unique chemistry of clay and polyniline, four members of PANI-FE are prepared. In the last member, the negative layer charges of Fuller's Earth is completely neutralised by the positive charges of the polymer. The extent of polymer loading in each stage, the effect polymer has on the host structure and the electronic and ionic components of the conductivities of the new PANI-FE nanocomposites are investigated. The Fe(III) sites in FE are capable of spontaneously polymerising aniline within its intergalleries. The extent of spontaneous polymerisation is limited by the amount of Fe(III) present in the FE. The deliberate polymerisation of remaining anilinium ions by externally introduced oxidant results in highly conductive emeraldine salt-FE (EMS-FE) nanocomposites. The FE host accommodates higher amount of emeraldine salt and the repetitive insertions of the polymer could be done four times for complete layer charge neutralisation whereas with Bentonite the layer charge saturation takes place with three successive insertions. The new EMS-FE nanocomposites exhibit more than order of magnitude greater tuneable ionic and electronic conductivities compared to those of the same polymer incorporated in Bentonite.

  17. Mixed-conducting polyaniline-Fuller's Earth nanocomposites prepared by stepwise intercalation

    International Nuclear Information System (INIS)

    Rajapakse, R.M.G.; Krishantha, D.M.M.; Tennakoon, D.T.B.; Dias, H.V.R.

    2006-01-01

    A series of polyaniline-Fuller's Earth (PANI-FE) nanocomposites were prepared by the successive intercalation of anilinium ions followed by polymerisation within the interlayer spaces of Fuller's Earth (a type of calcium montmorillonite). The first member in the series is prepared by exchanging the calcium ions in Fuller's Earth for ammonium ions and subsequently for anilinium ions and polymerising the latter using an externally introduced oxidant. The emeraldine salt form of polyaniline formed is then neutralised with ammonium hydroxide and more anilinium ions are exchanged for ammonium ions and polymerised to get the second member. In this manner, by making use the unique chemistry of clay and polyniline, four members of PANI-FE are prepared. In the last member, the negative layer charges of Fuller's Earth is completely neutralised by the positive charges of the polymer. The extent of polymer loading in each stage, the effect polymer has on the host structure and the electronic and ionic components of the conductivities of the new PANI-FE nanocomposites are investigated. The Fe(III) sites in FE are capable of spontaneously polymerising aniline within its intergalleries. The extent of spontaneous polymerisation is limited by the amount of Fe(III) present in the FE. The deliberate polymerisation of remaining anilinium ions by externally introduced oxidant results in highly conductive emeraldine salt-FE (EMS-FE) nanocomposites. The FE host accommodates higher amount of emeraldine salt and the repetitive insertions of the polymer could be done four times for complete layer charge neutralisation whereas with Bentonite the layer charge saturation takes place with three successive insertions. The new EMS-FE nanocomposites exhibit more than order of magnitude greater tuneable ionic and electronic conductivities compared to those of the same polymer incorporated in Bentonite

  18. Magnetomigration of rare-earth ions in inhomogeneous magnetic fields.

    Science.gov (United States)

    Franczak, Agnieszka; Binnemans, Koen; Jan Fransaer

    2016-10-05

    The effects of external inhomogenous (gradient) magnetic fields on the movement of the rare-earth ions: Dy 3+ , Gd 3+ and Y 3+ , in initially homogeneous aqueous solutions have been investigated. Differences in the migration of rare-earth ions in gradient magnetic fields were observed, depending on the magnetic character of the ions: paramagnetic ions of Dy 3+ and Gd 3+ move towards regions of the sample where the magnetic field gradient is the strongest, while diamagnetic ions of Y 3+ move in the opposite direction. It has been showed that the low magnetic field gradients, such the ones generated by permanent magnets, are sufficient to observe the magnetomigration effects of the ions in solution. The present work clearly establishes the behavior of magnetically different ions in initially homogeneous aqueous solutions exposed to magnetic field gradients. To this avail, a methodology for measuring the local concentration differences of metal ions in liquid samples was developed.

  19. Magnetic form factors of rare earth ions

    International Nuclear Information System (INIS)

    Deckman, H.W.

    1976-01-01

    The magnetic scattering of neutrons by atoms has been investigated by exploiting its similarity to the radiation problem in spectroscopy. Expressions for the magnetic scattering amplitude were developed for cases in whcih an atom in the l/sup n/ electronic configuration is described either by a relativistic or nonrelativistic Hamiltonian. For each of these cases, it has been shown that the magnetic scattering amplitude can be expressed in terms of relativistic or nonrelativistic matrix elements of magnetic and electric multipole operators. For a nonrelativistic atom, the calculation of these matrix elements has been separated into evaluating radial matrix elements and matrix elements of Racah tensors W/(sup 0,k)k/ and W/(sup 1,k')k/. For a relativistic atom the effective operator approach has been used to define effective multipole operators so that a relativistic result is obtained by taking matrix elements of these effective operators between nonrelativistic states of the atom. The calculation of matrix elements of these effective operators has been reduced to evaluating relativistic radial integrals and matrix elements of the Racah tensors taken between nonrelativistic states of the atom. It is shown tha for the case of elastic scattering by either a relativistic or nonrelativistic atom in single Russel-Saunders state, the magnetic scattering amplitude can be written in the conventional form p(vector q)vector q/sub m/.vector sigma. General expressions for p(vector q) as well as elastic magnetic form factorshave been obtained. The formalism has been illustrated throughout by applying it to the case of scattering by rare earth ions

  20. Energy landscapes for mobile ions in ion conducting solids

    Indian Academy of Sciences (India)

    molecular dynamics (MD) simulations yields quantitative predictions of the ion transport characteristics. As ... Solid electrolytes; bond valence analysis; ion transport in glasses. 1. .... clusters are considered to contribute only to a.c. conduc-.

  1. Testing Conducted for Lithium-Ion Cell and Battery Verification

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.

    2004-01-01

    The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.

  2. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  3. Adsorption of fluoride ions onto naturally occurring earth materials ...

    African Journals Online (AJOL)

    Batch sorption system using two naturally occurring earth materials (EM) as adsorbents was investigated to remove fluoride ions from aqueous solution. The system variables studied include initial concentration of the sorbate, agitation time, adsorbent dose, pH, co-ions and temperature. The experimental data fitted well to ...

  4. Fluorine-ion conductivity of different technological forms of solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (LaF{sub 3} Type ) (M = Ca, Sr, Ba; R Are Rare Earth Elements)

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, N. I., E-mail: nsorokin1@yandex.ru; Sobolev, B. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2016-05-15

    We have investigated the conductivity of some representatives of different technological forms of fluoride-conducting solid electrolytes R{sub 1–y}M{sub y}F{sub 3–y} (M = Ca, Sr, Ba; R are rare earth elements) with an LaF{sub 3} structure: single crystals, cold- and hot-pressing ceramics based on a charge prepared in different ways (mechanochemical synthesis, solid-phase synthesis, and fragmentation of single crystals), polycrystalline alloys, etc. It is shown (by impedance spectroscopy), that different technological forms of identical chemical composition (R, M, y) exhibit different electrical characteristics. The maximum conductivity is observed for the single-crystal form of R{sub 1–y}M{sub y}F{sub 3–y} tysonite phases, which provides (in contrast to other technological forms) the formation of true volume ion-conducting characteristics.

  5. Earth Glint Observations Conducted During the Deep Impact Spacecraft Flyby

    Science.gov (United States)

    Barry, R. K.; Deming, L. D.; Robinson, T.; Hewagama, T.

    2010-01-01

    We describe observations of Earth conducted using the High Resolution Instrument (HRI) - a 0.3 m f/35 telescope - on the Deep Impact (DI) spacecraft during its recent flybys. Earth was observed on five occasions: 2008-Mar-18 18:18 UT, 2008-May-28 20:05 UT, 2008-Jun-4 16:57 UT, 2009-Mar-27 16:19 and 2009-Oct-4 09:37 UT. Each set of observations was conducted over a full 24-hour rotation of Earth and a total of thirteen NIR spectra were taken on two-hour intervals during each observing period. Photometry in the 450, SSO, 650 and 8S0 nm filters was taken every fifteen minutes and every hour for the 350, 750 and 950 nm filters. The spacecraft was located over the equator for the three sets of observations in 2008, while the 2009- Mar and 2009-Oct were taken over the north and south Polar Regions, respectively. Observations of calibrator stars Canopus and Achernar were conducted on multiple occasions through all filters. The observations detected a strong specular glint not necessarily associated with a body of water. We describe spectroscopic characterization of the glint and evidence for the possibility of detection of reflection from high cirrus clouds. We describe implications for observations of extrasolar planets.

  6. Ion Concentration- and Voltage-Dependent Push and Pull Mechanisms of Potassium Channel Ion Conduction.

    Directory of Open Access Journals (Sweden)

    Kota Kasahara

    Full Text Available The mechanism of ion conduction by potassium channels is one of the central issues in physiology. In particular, it is still unclear how the ion concentration and the membrane voltage drive ion conduction. We have investigated the dynamics of the ion conduction processes in the Kv1.2 pore domain, by molecular dynamics (MD simulations with several different voltages and ion concentrations. By focusing on the detailed ion movements through the pore including selectivity filter (SF and cavity, we found two major conduction mechanisms, called the III-IV-III and III-II-III mechanisms, and the balance between the ion concentration and the voltage determines the mechanism preference. In the III-IV-III mechanism, the outermost ion in the pore is pushed out by a new ion coming from the intracellular fluid, and four-ion states were transiently observed. In the III-II-III mechanism, the outermost ion is pulled out first, without pushing by incoming ions. Increases in the ion concentration and voltage accelerated ion conductions, but their mechanisms were different. The increase in the ion concentrations facilitated the III-IV-III conductions, while the higher voltages increased the III-II-III conductions, indicating that the pore domain of potassium channels permeates ions by using two different driving forces: a push by intracellular ions and a pull by voltage.

  7. Conducting swift heavy ion track networks

    Czech Academy of Sciences Publication Activity Database

    Fink, Dietmar; Kiv, A.; Fuks, D.; Vacík, Jiří; Hnatowicz, Vladimír; Chandra, A.; Saad, A.

    2010-01-01

    Roč. 165, č. 3 (2010), s. 227-244 ISSN 1042-0150 R&D Projects: GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : ion tracks * negative differential resistance * neural networks Subject RIV: JJ - Other Materials Impact factor: 0.660, year: 2010

  8. Characteristics of solar and heliospheric ion populations observed near earth

    International Nuclear Information System (INIS)

    Gloeckler, G.

    1984-01-01

    The composition and spectra of ions in solar-energetic-particle and energetic-storm-particle events, of diffuse ions upstream of the earth bow shock, and of ions in deep-geomagnetic-tail plasmoids are characterized in a summary of in situ observations. Data are presented in graphs and tables, and remarkable similarities are noted in the distribution functions of the heliospheric ion populations. The solar wind, acting through acceleration mechanisms associated with shocks and turbulence, is identified as the major plasma source of suprathermal and energetic particles. 33 references

  9. Electromagnetic ion beam instability upstream of the earth's bow shock

    International Nuclear Information System (INIS)

    Gary, S.P.; Gosling, J.T.; Forslund, D.W.

    1981-01-01

    The linear theory of the electromagnetic ion beam instability for arbitrary angles of propagation has been studied. The parameters considered in the theory are typical of the solar wind upstream of the earth's bow shock when a 'reflected' proton beam is present. Maximum growth occurs for propagation parallel to the ambient field B, but this instability also displays significant growth at wave-vectors oblique to B, Oblique, unstable modes seem to be the likely source of the compressive magnetic fluctuations recently observed in conjunction with 'diffuse' ion population. An energetic ion beam does not directly give rise to linear growth of either ion acoustic or whistler mode instabilities

  10. Solution thermodynamics of rare-earth metal ions - physicochemical study-

    Energy Technology Data Exchange (ETDEWEB)

    Amerkhanova, Sh K; Shlyapov, R M; Uali, A S [Buketov Karaganda state university, University str., 28, Karaganda, 100028 (Kazakhstan)], E-mail: amerkhanova_sh@mail.ru

    2009-02-01

    The results of the studying of interactions in multicomponent systems 'polyvinyl alcohol (PVA) - rare-earth element ion - nitrate of sodium - water' are represented. It is established that for rubidium (I) ions temperature and ionic strength is render destroying action, and for yttrium (III) ions the influence of these factors has return character which is connected with features of an electronic structure of metal ion. It is revealed that a dominating role of non-electrostatic formation composed, hence, the formation of donor-acceptor connection of 'metal - ligand' occurs through atom of oxygen.

  11. Ion thermal conductivity and ion distribution function in the banana regime

    International Nuclear Information System (INIS)

    Taguchi, Masayoshi

    1988-01-01

    A method for calculating the ion thermal conductivity and the ion distribution function in the banana regime is formulated for an axisymmetric toroidal plasma of arbitrary aspect ratio. A simple expression for this conductivity is also derived. (author)

  12. Yttrium and rare earths separation by ion exchange resin

    International Nuclear Information System (INIS)

    Pinatti, D.G.; Ayres, M.J.G.; Ribeiro, S.; Silva, G.L.J.P.; Silva, M.L.C.P.; Martins, A.H.

    1988-01-01

    The experimental results of yttrium and rare earths separation from Brazilian xenotime are presented. The research consist in five stage: 1) Preparation of yttrium, erbium and lutetium standard solutions, from solubilization of pure oxides 2) yttrium and rare earths separation by ion exchange chromatrography 3) Separation and recovery of EDTA 4) Precipitation and calcination and 4) Analytical control of process. (C.G.C.) [pt

  13. Hopping models for ion conduction in noncrystals

    DEFF Research Database (Denmark)

    Dyre, Jeppe; Schrøder, Thomas

    2007-01-01

    semiconductors). These universalities are subject of much current interest, for instance interpreted in the context of simple hopping models. In the present paper we first discuss the temperature dependence of the dc conductivity in hopping models and the importance of the percolation phenomenon. Next......, the experimental (quasi)universality of the ac conductivity is discussed. It is shown that hopping models are able to reproduce the experimental finding that the response obeys time-temperature superposition, while at the same time a broad range of activation energies is involved in the conduction process. Again...

  14. Aspirated capacitor measurements of air conductivity and ion mobility spectra

    International Nuclear Information System (INIS)

    Aplin, K.L.

    2005-01-01

    Measurements of ions in atmospheric air are used to investigate atmospheric electricity and particulate pollution. Commonly studied ion parameters are (1) air conductivity, related to the total ion number concentration, and (2) the ion mobility spectrum, which varies with atmospheric composition. The physical principles of air ion instrumentation are long established. A recent development is the computerized aspirated capacitor, which measures ions from (a) the current of charged particles at a sensing electrode, and (b) the rate of charge exchange with an electrode at a known initial potential, relaxing to a lower potential. As the voltage decays, only ions of higher and higher mobility are collected by the central electrode and contribute to the further decay of the voltage. This enables extension of the classical theory to calculate ion mobility spectra by inverting voltage decay time series. In indoor air, ion mobility spectra determined from both the voltage decay inversion, and an established voltage switching technique, were compared and shown to be of similar shape. Air conductivities calculated by integration were: 5.3±2.5 and 2.7±1.1 fSm -1 , respectively, with conductivity determined to be 3 fSm -1 by direct measurement at a constant voltage. Applications of the relaxation potential inversion method include air ion mobility spectrum retrieval from historical data, and computation of ion mobility spectra in planetary atmospheres

  15. High Resolution Global Electrical Conductivity Variations in the Earth's Mantle

    Science.gov (United States)

    Kelbert, A.; Sun, J.; Egbert, G. D.

    2013-12-01

    Electrical conductivity of the Earth's mantle is a valuable constraint on the water content and melting processes. In Kelbert et al. (2009), we obtained the first global inverse model of electrical conductivity in the mantle capable of providing constraints on the lateral variations in mantle water content. However, in doing so we had to compromise on the problem complexity by using the historically very primitive ionospheric and magnetospheric source assumptions. In particular, possible model contamination by the auroral current systems had greatly restricted our use of available data. We have now addressed this problem by inverting for the external sources along with the electrical conductivity variations. In this study, we still focus primarily on long period data that are dominated by quasi-zonal source fields. The improved understanding of the ionospheric sources allows us to invert the magnetic fields directly, without a correction for the source and/or the use of transfer functions. It allows us to extend the period range of available data to 1.2 days - 102 days, achieving better sensitivity to the upper mantle and transition zone structures. Finally, once the source effects in the data are accounted for, a much larger subset of observatories may be used in the electrical conductivity inversion. Here, we use full magnetic fields at 207 geomagnetic observatories, which include mid-latitude, equatorial and high latitude data. Observatory hourly means from the years 1958-2010 are employed. The improved quality and spatial distribution of the data set, as well as the high resolution modeling and inversion using degree and order 40 spherical harmonics mapped to a 2x2 degree lateral grid, all contribute to the much improved resolution of our models, representing a conceptual step forward in global electromagnetic sounding. We present a fully three-dimensional, global electrical conductivity model of the Earth's mantle as inferred from ground geomagnetic

  16. Thermal Stability and Proton Conductivity of Rare Earth Orthophosphate Hydrates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    as the rhabdophane structure is preserved. The bound hydrate water is accommodated in the rhabdophane structure and is stable at temperatures of up to 650 oC. The thermal stability of the hydrate water and the phosphate structure are of significance for the proton conductivity. The LaPO4·0.6H2O and NdPO4•0.5H2O......Hydrated orthophosphate powders of three rare earth metals, lanthanum, neodymium and gadolinium, were prepared and studied as potential proton conducting materials for intermediate temperature electrochemical applications. The phosphates undergo a transformation from the rhabdophane structure...... to the monazite structure upon dehydration. The thermal stability of the hydrate is studied and found to contain water of two types, physically adsorbed and structurally bound hydrate water. The adsorbed water is correlated to the specific surface area and can be reversibly recovered when dehydrated as long...

  17. Rare earth ion controlled crystallization of mica glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Garai, Mrinmoy; Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in

    2016-09-05

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO{sub 2}, Nd{sub 2}O{sub 3}, Sm{sub 2}O{sub 3} and Gd{sub 2}O{sub 3} doped K{sub 2}O−MgO−B{sub 2}O{sub 3}−Al{sub 2}O{sub 3}−SiO{sub 2}−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm{sup −3}) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T{sub g}) and crystallization temperature (T{sub c}). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg{sub 3}(AlSi{sub 3}O{sub 10})F{sub 2} by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10{sup −6}/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque

  18. Rare earth ion controlled crystallization of mica glass-ceramics

    International Nuclear Information System (INIS)

    Garai, Mrinmoy; Karmakar, Basudeb

    2016-01-01

    In understanding the effects of rare earth ions to control the crystallization and microstructure of alkaline boroaluminosilicate system, the CeO_2, Nd_2O_3, Sm_2O_3 and Gd_2O_3 doped K_2O−MgO−B_2O_3−Al_2O_3−SiO_2−F glasses were synthesized by melt-quenching at 1550 °C. Higher density (2.82–3.06 g cm"−"3) and thermal stability (glass phase) is experiential on addition of rare earth content, which also affects in increasing the glass transition temperature (T_g) and crystallization temperature (T_c). Decrease of thermal expansion in glasses with rare earth ion content is maintained by the stabilization of glass matrix owing to their large cationic field strength. A significant change in the non-isothermal DSC thermogram observed at 750–1050 °C is attributed to fluorophlogopite crystallization. Opaque glass-ceramics were prepared from such glasses by single step heat-treatment at 1050 °C; and the predominant crystalline phases are identified as fluorophlogopite mica, KMg_3(AlSi_3O_1_0)F_2 by XRD and EDX analysis. The compact glass-ceramic microstructure by the agglomeration of fluorophlogopite mica crystallites (crystal size ∼ 100–500 nm, FESEM) is achieved in attendance of rare earth ion; and such microstructure controlled the variation of density, thermal expansion and microhardness value. Higher thermal expansion (11.11–14.08 × 10"−"6/K at 50–800 °C and 50–900 °C) of such glass-ceramics approve that these rare earth containing glasses can be useful for high temperature vacuum sealing application with metal or solid electrolyte. The increase of Vickers microhardness (5.27–5.61 GPa) in attendance of rare earth ions is attributed to the compact crystallinity of fluorophlogopite mica glass-ceramic microstructure. - Highlights: • Synthesis of rare earth oxide doped alkaline boroaluminosilicate glasses. • Development of opaque fluorophlogopite mica glass-ceramics by single-step heat treatment. • Nanocrystalline glass

  19. Bistable luminescence of trivalent rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Sole, Jose Garcia; Ramirez O, Maria de la; Rodenas, Airan; Jaque, Daniel; Bausa, Luisa; Bettinelli, Marco; Speghini, Adolfo; Cavalli, Enrico; Ivleva, Lioudmila

    2006-01-01

    In this work, we have examined three new bistable systems based on the luminescence of three different crystals activated with trivalent rare earth ions. We have focussed our attention on Yb 3+ ions activators, for which the most relevant results are obtained. The first crystal, Sr 0.6 Ba 0.4 Nb 2 O 6 , is a ferroelectric material with a relatively low phase transition temperature (∼370 K), which provides bistability in the luminescence of Yb 3+ ions due to the thermal hysteresis associated with phase transition. The second crystal, LiNbO 3 , provides an intrinsic bistability in the luminescence of Yb 3+ ions, which is driven by changes in the excitation intensity. In the third crystal, NdPO 4 , a new mechanism of excitation intensity driven bistability is obtained when activated with Yb 3+ ions, due to a interplay between the Nd 3+ ↔Yb 3+ energy transfer and back transfer processes

  20. Ion-/proton-conducting apparatus and method

    Science.gov (United States)

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2011-05-17

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  1. Neoclassical electron heat conduction in tokamaks performed by the ions

    International Nuclear Information System (INIS)

    Ware, A.A.

    1987-07-01

    The increment to neoclassical ion heat conduction caused by electron collisions is shown to act like electron heat conduction since the energy is taken from and given back to the electrons at each diffusion step length. It can exceed electron neoclassical heat conduction by an order of magnitude

  2. Enhancement of electrical conductivity of ion-implanted polymer films

    International Nuclear Information System (INIS)

    Brock, S.

    1985-01-01

    The electrical conductivity of ion-implanted films of Nylon 66, Polypropylene (PP), Poly(tetrafluoroethylene) (Teflon) and mainly Poly (ethylene terephthalate) (PET) was determined by DC measurements at voltages up to 4500 V and compared with the corresponding values of pristine films. Measurements were made at 21 0 C +/- 1 0 C and 65 +/- 2% RH. The electrical conductivity of PET films implanted with F + , Ar + , or As + ions at energies of 50 keV increases by seven orders of magnitude as the fluence increases from 1 x 10 18 to 1 x 10 20 ions/m 2 . The conductivity of films implanted with As + was approximately one order greater than those implanted with Ar + , which in turn was approximately one-half order greater than those implanted with F + . The conductivity of the most conductive film ∼1 S/m) was almost 14 orders of magnitude greater than the pristine PET film. Except for the three PET samples implanted at fluences near 1 x 10 20 ions/m 2 with F + , Ar + , and As + ions, all implanted films were ohmic up to an electric field strength of 600 kV/m. The temperature dependence of the conductivity of the three PET films implanted near a fluence of 1 x 10 20 ions/m 2 was measured over the range of 80 K < T < 300 K

  3. Iterative electromagnetic Born inversion applied to earth conductivity imaging

    Science.gov (United States)

    Alumbaugh, D. L.

    1993-08-01

    This thesis investigates the use of a fast imaging technique to deduce the spatial conductivity distribution in the earth from low frequency (less than 1 MHz), cross well electromagnetic (EM) measurements. The theory embodied in this work is the extension of previous strategies and is based on the Born series approximation to solve both the forward and inverse problem. Nonlinear integral equations are employed to derive the series expansion which accounts for the scattered magnetic fields that are generated by inhomogeneities embedded in either a homogenous or a layered earth. A sinusoidally oscillating, vertically oriented magnetic dipole is employed as a source, and it is assumed that the scattering bodies are azimuthally symmetric about the source dipole axis. The use of this model geometry reduces the 3-D vector problem to a more manageable 2-D scalar form. The validity of the cross well EM method is tested by applying the imaging scheme to two sets of field data. Images of the data collected at the Devine, Texas test site show excellent correlation with the well logs. Unfortunately there is a drift error present in the data that limits the accuracy of the results. A more complete set of data collected at the Richmond field station in Richmond, California demonstrates that cross well EM can be successfully employed to monitor the position of an injected mass of salt water. Both the data and the resulting images clearly indicate the plume migrates toward the north-northwest. The plausibility of these conclusions is verified by applying the imaging code to synthetic data generated by a 3-D sheet model.

  4. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath

    Science.gov (United States)

    Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  5. Polytropic index of ions in the Earth magnetosheath

    Science.gov (United States)

    Pang, X.; Cao, J.; Deng, Z.

    2017-12-01

    Useing the data of Cluster from 2001 to 2009, the polytropic index of the magnetosheath ions are calculated by the method of homogeneous MHD Bernoulli integral (MBI). The spatial distribution of ion polytropic index and modulation by low frequency MHD disturbances (4-18 mHz) are studied. The main results are as follows: The magnetosheath is a turbulent system in which the polytropic index of ions ranges from -2 to 3. The distribution of ion polytropic index is dependent on the electromagnetic energy flux perpendicular to the streamline. The median polytropic index of ions in the magnetosheath is 0.960, 0.965, and 0.974 for perpendicular electromagnetic energy ratio δE×Belectromagnetic energy between neighboring streamflow tubes, the magnetosheath ions are isothermal. However, when δE×B increases, the isobaric polytropic process starts to emerge. The median polytropic indexes of ions in the GSE X-Y plane of the equatorial magnetosheath decreases from the magnetopause to the bow shock. The magnetosheath ions are basically between isothermal and adiabatic in the inner magnetosheath (near the magnetopause), around isothermal in the middle magnetosheath, and between isothermal and isobaric in the outer magnetosheath. The spatial distributions of the correlation coefficient between the perturbed ion number density and parallel magnetic field CC_δnδB|| have a good correlation with the distribution of polytropic index. The quasi-perpendicular disturbances are basically mirror-like modes (DrEarth line. The polytropic indexes in the inner and middle magnetosheath modulated by mirror-like mode disturbances (CC_δnδB||<0) are between 0.9 and 1.2. The quasi-parallel propagating low frequency disturbances are predominantly slow modes in the inner magnetosheath and Alfvén modes in the middle and outer magnetosheath. For the samples with quasi-perpendicular propagating disturbances, the polytropic process is basically between isothermal and isobaric except near the

  6. NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth

    Science.gov (United States)

    (NASA) and University College London (UCL) for a cutting-edge study on lithium-ion (Li-ion) battery and in Space | News | NREL NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth and in Space NREL, NASA, and UCL Team Up to Make Lithium-Ion Batteries Safer on Earth and in Space

  7. Single-ion conducting diblock terpolymers for lithium-ion batteries

    Science.gov (United States)

    Morris, Melody; Epps, Thomas H., III

    Block polymer (BP) electrolytes provide an attractive route to overcome the competing constraints of high conductivity and mechanical/thermal stability in lithium-ion batteries through nanoscale self-assembly. For example, macromolecules can be engineered such that one domain conducts lithium ions and the other prevents lithium dendrite formation. Herein, we report on the behavior of a single-ion conducting BP electrolyte that was designed to facilitate the transport of lithium ions. These polymers differ from traditional salt-doped BP electrolytes, which require the addition of a lithium salt to bestow conductivity and typically suffer from substantial counterion motion that reduces efficiency. New single-ion BPs were synthesized, and the nanoscale morphologies were determined using small angle X-ray scattering and transmission electron microscopy. Electrolyte performance was measured using AC impedance spectroscopy and DC polarization, and the results were correlated to nanoscale morphology and ion content. Enhanced physical understanding of single-ion BPs was gained by connecting the ion mobility to the chemistry, chain structure, and ion content of the single-ion BP. These studies can be applied to other charged-neutral block polymers to elucidate the effects of ion content on self-assembly and macroscopic properties.

  8. Energetic ion beam in the earth's magnetotail lobe

    International Nuclear Information System (INIS)

    Lui, A.T.Y.; Krimigis, S.M.

    1983-01-01

    Occurrence of a prominent peak in the ion energy spectrum at energies of 0.1 to 0.7 MeV is observed by the IMP-8 spacecraft during an energetic particle burst in a plasma ''dropout'' interval at about 37 R/sub e/ in the earth's magnetotail. This unusual characteristic in the spectrum is detected for about 2 minutes. By fitting the observed ion spectra to a drifting Kappa distribution, it is found that the ion population can be described as a hot beam with number densities 4 x 10 -7 to 5 x 10 -4 cm -3 and temperatures 15 to 45 keV, jetting tailward at speeds of 3500 to 7000 km/s. The energy flux density associated with the beam can be as high as 8 x 10 -2 ergs cm -2 sec -1

  9. Ion thermal conductivity for a pure tokamak plasma

    International Nuclear Information System (INIS)

    Bolton, C.W. III.

    1981-06-01

    The ion thermal conductivity is calculated for a wide range of aspect ratios and collision frequencies. The calculation is done by solving the drift kinetic equation, with a model collision operator, using a finite element method, and then calculating the energy weighted friction force to determine the heat flux. The thermal conductivity, determined from the heat flux, is then curve fitted to analytic formulas. These formulas allow the conductivity to be calculated at all collision frequencies and aspect ratios down to about 3

  10. Conduction Mechanisms and Structure of Ionomeric Single-Ion Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Ralph H. [Pennsylvania State Univ., University Park, PA (United States); Maranas, Janna K. [Pennsylvania State Univ., University Park, PA (United States); Mueller, Karl T. [Pennsylvania State Univ., University Park, PA (United States); Runt, James [Pennsylvania State Univ., University Park, PA (United States); Winey, Karen I. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-03-01

    Our team has designed using DFT (Gaussian) and synthesized low glass transition temperature single-ion conductors that are either polyanions that conduct small cations Li+, Na+, Cs+ or polycations that conduct small anions F-, OH-, Br-. We utilize a wide range of complimentary experimental materials characterization tools to understand ion transport; differential scanning calorimetry, dielectric relaxation spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, linear viscoelasticity, X-ray scattering and molecular dynamics simulations. The glass transition temperature Tg needs to be as low as possible to facilitate ion transport, so the nonionic parts of the polymer need to be polar, flexible and have strong solvation interactions with the ions. The lowest Tg we have managed for polyanions conducting Li+ is -60 °C. In contrast, polysiloxanes with PEO side chains and tetrabutylphosphonium cationic side groups have Tg ≈ -75 °C that barely increases with ion content, as anticipated by DFT. A survey of all polyanions in the literature suggests that Tg < -80 °C is needed to achieve the 10-4 S/cm conductivity needed for battery separators.

  11. Conductivity change of defective graphene by helium ion beams

    Directory of Open Access Journals (Sweden)

    Yuichi Naitou

    2017-04-01

    Full Text Available Applying a recently developed helium ion microscope, we demonstrated direct nano-patterning and Anderson localization of single-layer graphene (SLG on SiO2/Si substrates. In this study, we clarified the spatial-resolution-limitation factor of direct nano-patterning of SLG. Analysis of scanning capacitance microscopy measurements reveals that the conductivity of helium ion (H+-irradiated SLG nanostructures depends on their geometrical size, i.e., the smaller the H+-irradiated SLG region, the higher its conductivity becomes. This finding can be explained by the hopping carrier transport across strongly localized states of defective SLG.

  12. Electrical conductivity enhancement of polyethersulfone (PES) by ion implantation

    International Nuclear Information System (INIS)

    Bridwell, L.B.; Giedd, R.E.; Wang Yongqiang; Mohite, S.S.; Jahnke, T.; Brown, I.M.

    1991-01-01

    Amorphous polyethersulfone (PES) films have been implanted with a variety of ions (He, B, C, N and As) at a bombarding energy of 50 keV in the dose range 10 16 -10 17 ions/cm 2 . Surface resistance as a function of dose indicates a saturation effect with a significant difference between He and the other ions used. ESR line shapes in the He implanted samples changed from a mixed Gaussian/Lorentzian to a pure Lorentzian and narrowed with increasing dose. Temperature dependent resistivity indicates an electron hopping mechanism for conduction. Infrared results indicate cross-linking or self-cyclization occurred for all implanted ions with further destruction in the case of As. (orig.)

  13. Electrical studies on silver based fast ion conducting glassy materials

    International Nuclear Information System (INIS)

    Rao, B. Appa; Kumar, E. Ramesh; Kumari, K. Rajani; Bhikshamaiah, G.

    2014-01-01

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag 2 O−[(1−x)B 2 O 3 −xTeO 2 ] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO 2 as well as with temperature. The conductivity of the present glass system is found to be of the order of 10 −2 S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries

  14. Ion current rectification, limiting and overlimiting conductances in nanopores.

    Directory of Open Access Journals (Sweden)

    Liesbeth van Oeffelen

    Full Text Available Previous reports on Poisson-Nernst-Planck (PNP simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be.

  15. Ion conduction in crystalline superionic solids and its applications

    Science.gov (United States)

    Chandra, Angesh

    2014-06-01

    Superionic solids an area of multidisciplinary research activity, incorporates to study the physical, chemical and technological aspects of rapid ion movements within the bulk of the special class of ionic materials. It is an emerging area of materials science, as these solids show tremendous technological scopes to develop wide variety of solid state electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, electrochromic displays (ECDs), memories, etc. These devices have wide range of applicabilities viz. power sources for IC microchips to transport vehicles, novel sensors for controlling atmospheric pollution, new kind of memories for computers, smart windows/display panels, etc. The field grew with a rapid pace since then, especially with regards to designing new materials as well as to explore their device potentialities. Amongst the known superionic solids, fast Ag+ ion conducting crystalline solid electrolytes are attracted special attention due to their relatively higher room temperature conductivity as well as ease of materials handling/synthesis. Ion conduction in these electrolytes is very much interesting part of today. In the present review article, the ion conducting phenomenon and some device applications of crystalline/polycrystalline superionic solid electrolytes have been reviewed in brief. Synthesis and characterization tools have also been discussed in the present review article.

  16. Structure and size of ions electrochemically doped in conducting polymer

    Science.gov (United States)

    Kaneto, Keiichi; Hata, Fumito; Uto, Sadahito

    2018-05-01

    Among electroactive polymers (EAPs) for softactuators, conducting polymers have been intensively studied because of the large strain and stress caused by a low voltage operation. A larger deformation is desirable to extend their cycle life by reducing the operation voltage, and this is advantageous for their potential use in wider applications. The deformation is generated by the insertion of ions by electrochemical oxidation; hence, the magnitude of the strain depends on the bulkiness of the ions in the electrolytes. It is important, therefore, to clarify the structure and size of the ions during the electrochemical cycle, in order to achieve better performance of actuation. Anion and cation sizes (radii) in polypyrrole (PPy) film have been estimated using the precise measurement of strain against the amount of charge injected during the electrochemical cycles, assuming isotropic deformation of the film. The anion size was estimated using an anion-drive film, which was electrodeposited in TBABF4/methyl benzoate. The film was electrochemically cycled in sodium electrolytes, and the strain was measured simultaneously using a laser displacement meter. The cation size was obtained using a cation-drive film, being electropolymerized in aqueous dodecylbenzene sulfonic (DBS) acid. The cation-drive film was cycled in chloride electrolytes and measured the strain. The Cl-, Br-, NO3- , BF4- , and ClO4- radii were found to be approximately 235, 245, 250, 270 and 290 pm, respectively. The radii of K+, Na+ and Li+ were approximately 230, 237 and 274 pm, respectively. The results were discussed and took the crystalline ion radius and hydrated ion radius (Stokes radius) into consideration. It was found that the structure and size of the anions were slightly larger than the crystalline ion radius. Contrary to the anions, the cation radii were close to the hydrated ion radius, being larger than the crystalline ion radius.

  17. Ion implantation induced conducting nano-cluster formation in PPO

    International Nuclear Information System (INIS)

    Das, A.; Patnaik, A.; Ghosh, G.; Dhara, S.

    1997-01-01

    Conversion of polymers and non-polymeric organic molecules from insulating to semiconducting materials as an effect of energetic ion implantation is an established fact. Formation of nano-clusters enriched with carbonaceous materials are made responsible for the insulator-semiconductor transition. Conduction in these implanted materials is observed to follow variable range hopping (VRH) mechanism. Poly(2,6-dimethyl phenylene oxide) [PPO] compatible in various proportion with polystyrene is used as a high thermal resistant insulating polymer. PPO has been used for the first time in the ion implantation study

  18. Enhanced electrical conductivity in Xe ion irradiated CNT based transparent conducting electrode on PET substrate

    Science.gov (United States)

    Surbhi; Sharma, Vikas; Singh, Satyavir; Garg, Priyanka; Asokan, K.; Sachdev, Kanupriya

    2018-02-01

    An investigation of MWCNT-based hybrid electrode films with improved electrical conductivity after Xe ion irradiation is reported. A multilayer hybrid structure of Ag-MWCNT layer embedded in between two ZnO layers was fabricated and evaluated, pre and post 100 keV Xe ion irradiation, for their performance as Transparent Conducting Electrode in terms of their optical and electrical properties. X-ray diffraction pattern exhibits highly c-axis oriented ZnO films with a small variation in lattice parameters with an increase in ion fluence. There is no significant change in the surface roughness of these films. Raman spectra were used to confirm the presence of CNT. The pristine multilayer films exhibit an average transmittance of ˜70% in the entire visible region and the transmittance increases with Xe ion fluence. A significant enhancement in electrical conductivity post-Xe ion irradiation viz from 1.14 × 10-7 Ω-1 cm-1 (pristine) to 7.04 × 103 Ω-1 cm-1 is seen which is due to the high connectivity in the top layer with Ag-CNT hybrid layer facilitating the smooth transfer of electrons.

  19. Separation of strontium ions from other alkaline earth metal ions using masking reagent

    International Nuclear Information System (INIS)

    Komatsu, Y.

    1996-01-01

    Cs + and Sr 2+ have been well known as serious elements in high level radioactive waste. Separation of Cs + has already been successful when using an ion-exchange method from solution in the presence of other alkali metal ions. The separation of Sr 2+ is, however, not so easy by any known separation method such as solvent-extraction and ion-exchange methods. This is because Sr 2+ is in the middle of the selectivity series, which is Mg 2+ > Ca 2+ > Sr 2+ > Ba 2+ for the solvent-extraction method and Ba 2+ > Sr 2+ > Ca 2+ > Mg 2+ for the ion- exchange method. In the present study, separation of strontium from other alkaline earth metal ions was studied by a combined use of three types of separation methods at 298 K: the solvent-extraction method was applied for the first separation, in which thenoyltrifluoroacetone (TTA, extractant) and trioctylphosphine oxide ( TOPO, adduct forming ligand) were used for the organic phase of the system. The separation factors for each combination of four alkaline earth metal ions were determined by the values of the distribution ratio. The Mg 2+ was well separated from Sr 2+ by the TTA-TOPO system. However, the separation of the combinations of Ca 2+ -Sr 2+ and Sr 2+ -Ba 2+ was not complete by the above solvent-extraction system. The second separation method, an ion-exchange method was applied using dihydrogen tetratitanate hydrate fibers (H 2 Ti 4 O 9 nH 2 O) as an ion exchanger to separate Sr 2+ and Ba 2+ . The separation factors for each combination of four alkaline earth metal ions were calculated by the values of the distribution coefficients. Ba 2+ was well separated from Sr 2+ by the ion-exchange method. To separate Ca 2+ and Sr 2+ , however, a modified solvent-extraction method was finally used in which H 2 Ti 4 O 9 nH 2 O was used as a masking reagent of Sr 2+ . After the dihydrogen tetratitanate hydrate fibers were contacted with the aqueous solution containing Ca 2+ and Sr 2+ , the organic solution containing TTA and TOPO

  20. Mixed oxygen ion/electron-conducting ceramics for oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, J.W.; Armstrong, T.R.; Armstrong, B.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Mixed oxygen ion and electron-conducting ceramics are unique materials that can passively separate high purity oxygen from air. Oxygen ions move through a fully dense ceramic in response to an oxygen concentration gradient, charge-compensated by an electron flux in the opposite direction. Compositions in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, perovskites where M=Sr, Ca, and Ba, and N=Mn, Ni, Cu, Ti, and Al, have been prepared and their electrical, oxygen permeation, oxygen vacancy equilibria, and catalytic properties evaluated. Tubular forms, disks, and asymmetric membrane structures, a thin dense layer on a porous support of the same composition, have been fabricated for testing purposes. In an oxygen partial gradient, the passive oxygen flux through fully dense structures was highly dependent on composition. An increase in oxygen permeation with increased temperature is attributed to both enhanced oxygen vacancy mobility and higher vacancy populations. Highly acceptor-doped compositions resulted in oxygen ion mobilities more than an order of magnitude higher than yttria-stabilized zirconia. The mixed conducting ceramics have been utilized in a membrane reactor configuration to upgrade methane to ethane and ethylene. Conditions were established to balance selectivity and throughput in a catalytic membrane reactor constructed from mixed conducting ceramics.

  1. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    Science.gov (United States)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle

  2. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  3. Study on rare earths complexes separation by means of different type of ion exchangers

    International Nuclear Information System (INIS)

    Hubicka, H.

    1990-01-01

    The applicability of different types of ion exchangers for purification and separation of rare earths complexes has been examined. The experimental work has been carried out on 14 chelating ion exchangers. The investigation results proved the great usefulness chelating ion exchangers especially of amino acid and phosphorus-type. Application of that type ion exchangers in column chromatographic process gave the excellent rare earths separation as well as enabled to obtain their preparates of high purity. 218 refs, 21 figs, 27 tabs

  4. Comparative study of ion conducting pathways in borate glasses

    International Nuclear Information System (INIS)

    Hall, Andreas; Swenson, Jan; Adams, Stefan

    2006-01-01

    The conduction pathways in metal-halide doped silver, lithium, and sodium diborate glasses have been examined by bond valence analysis of reverse Monte Carlo (RMC) produced structural models of the glasses. Although all glass compositions have basically the same short-range structure of the boron-oxygen network, it is evident that the intermediate-range structure is strongly dependent on the type of mobile ion. The topography of the pathways and the coordination of the pathway sites differ distinctly between the three glass systems. The mobile silver ions in the AgI-doped glass tend to be mainly iodine-coordinated and travel in homogeneously distributed pathways located in salt-rich channels of the borate network. In the NaCl-doped glass, there is an inhomogeneous spatial distribution of pathways that reflects the inhomogeneous introduction of salt ions into the glass. However, since the salt clusters are not connected, no long-range conduction pathways are formed without including also oxygen-rich regions. The pathways in the LiCl-doped glass are slightly more evenly distributed compared to the NaCl-doped glass (but not as ordered as in the AgI-doped glass), and the regions of mainly oxygen-coordinated pathway sites are of higher importance for the long-range migration. In order to more accurately investigate how these differences in the intermediate-range order of the glasses affect the ionic conductivity, we have compared the realistic structure models to more or less randomized structures. An important conclusion from this comparison is that we find no evidence that a pronounced intermediate-range order in the atomic structure or in the network of conduction pathways, as in the AgI-doped glass, is beneficial for the dc conductivity

  5. Study of amorphous semiconductors doped with rare earths (Gd and Er) and conducting polymers by EPR techniques and magnetic susceptibility

    International Nuclear Information System (INIS)

    Sercheli, Mauricio da Silva

    1999-01-01

    This thesis involves the study of amorphous semiconductors and conducting polymers, which have been characterized by EPR and magnetic susceptibility measurements, and to a lesser extent by Raman spectroscopy and RBS. The semiconductors were studied using thin films of silicon doped with rare earth metals, e.g. erbium and gadolinium, which had their magnetic properties studied. Using these studies we could determine the state of valence of the rare earths as well as their concentrations in the silicon matrix. According to our results, the valence of the rare earth metal ions is 3+, and we were able to conclude that 4f electronic shells could not be used for the calculation of the conducting band in this system. Furthermore, the analysis of the data on the magnetic susceptibility of the Er 3+ ion with cubic crystalline acting field, gave us the opportunity to estimate the overall splitting of their electronic states for the first time. The conducting polymers were studied using samples of poly(3-methylthiophene) doped with ClO 4 - , which show a phase transition in the range of 230 K to 130 K. The electron paramagnetic resonance also gives important information on the crystallization, doping level and the presence of polarons or bipolarons in conducting polymers. (author)

  6. Scanning Ion Conductance Microscopy for Studying Biological Samples

    Directory of Open Access Journals (Sweden)

    Irmgard D. Dietzel

    2012-11-01

    Full Text Available Scanning ion conductance microscopy (SICM is a scanning probe technique that utilizes the increase in access resistance that occurs if an electrolyte filled glass micro-pipette is approached towards a poorly conducting surface. Since an increase in resistance can be monitored before the physical contact between scanning probe tip and sample, this technique is particularly useful to investigate the topography of delicate samples such as living cells. SICM has shown its potential in various applications such as high resolution and long-time imaging of living cells or the determination of local changes in cellular volume. Furthermore, SICM has been combined with various techniques such as fluorescence microscopy or patch clamping to reveal localized information about proteins or protein functions. This review details the various advantages and pitfalls of SICM and provides an overview of the recent developments and applications of SICM in biological imaging. Furthermore, we show that in principle, a combination of SICM and ion selective micro-electrodes enables one to monitor the local ion activity surrounding a living cell.

  7. Phase modulation mode of scanning ion conductance microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Zhang, Changlin [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Liu, Lianqing, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu; Wang, Yuechao; Yang, Yang [State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Guangyong, E-mail: lqliu@sia.cn, E-mail: gli@engr.pitt.edu [Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-08-04

    This Letter reports a phase modulation (PM) mode of scanning ion conductance microscopy. In this mode, an AC current is directly generated by an AC voltage between the electrodes. The portion of the AC current in phase with the AC voltage, which is the current through the resistance path, is modulated by the tip-sample distance. It can be used as the input of feedback control to drive the scanner in Z direction. The PM mode, taking the advantages of both DC mode and traditional AC mode, is less prone to electronic noise and DC drift but maintains high scanning speed. The effectiveness of the PM mode has been proven by experiments.

  8. New lithium-ion conducting perovskite oxides related to (Li, La)TiO3

    Indian Academy of Sciences (India)

    Unknown

    We describe the synthesis and lithium-ion conductivity of new perovskite-related oxides ... work on lithium-ion conducting perovskite oxides containing d0 cations. Keywords. ..... On the other hand, Nb/Ta compounds show a higher conductivity.

  9. Effect of the kind of alkaline and rare earth ions on the structure of a glass rich in earth

    International Nuclear Information System (INIS)

    Quintas, Arnaud; Caurant, Daniel; Majerus, Odile; Lenoir, Marion; Dussossoy, Jean-Luc; Charpentier, Thibault; Neuville, Daniel R.; Gervais, C.

    2006-01-01

    In the framework of a structural study of a nuclear wastes containment glass of type alumino borosilicate and rich in rare earths, the influence of the kind of alkaline or rare earth ions is analyzed. For that, two glasses series have been prepared in which the Na + ion (respectively Ca 2+ ions) present in the standard composition is totally substituted by another alkaline ion Li + , K + , Rb + or Cs + (respectively another rare earth ion Mg 2+ , Sr 2+ or Ba 2+ ). These glasses, analyzed by optical absorption, Raman and 27 Al or 11 B NMR spectroscopies have revealed the strong impact of the kind of the modifying ion as well as the structure of the vitreous lattice (variation of the ratio BO 3 /BO 4 and local variations of the polymerization degree) than the local surroundings of the rare earth (decrease of the covalency degree of the bond Nd-O with the increase of the field force of the modifying ion). (O.M.)

  10. Investigation of the lithium ion mobility in cyclic model compounds and their ion conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, Joerg

    2011-07-27

    In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. Steps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of immobilizing ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with propylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length. All model compounds were fully characterized, pure and thermally stable up to at least 235 C, covering the requested broad range of glass transition temperatures from -78.1 C up to +6.2 C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity {sigma}{sub dc} and thus indicating comparable salt dissociation and rather independent motion of cations and ions. In general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in

  11. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  12. Electronically conductive polymer binder for lithium-ion battery electrode

    Science.gov (United States)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  13. Production of rare-earth atomic negative ion beams in a cesium-sputter-type negative ion source

    International Nuclear Information System (INIS)

    Davis, V.T.; Covington, A.M.; Duvvuri, S.S.; Kraus, R.G.; Emmons, E.D.; Kvale, T.J.; Thompson, J.S.

    2007-01-01

    The desire to study negative ion structure and negative ion-photon interactions has spurred the development of ion sources for use in research and industry. The many different types of negative ion sources available today differ in their characteristics and abilities to produce anions of various species. Thus the importance of choosing the correct type of negative ion source for a particular research or industrial application is clear. In this study, the results of an investigation on the production of beams composed of negatively-charged rare-earth ions from a cylindrical-cathode-geometry, cesium-sputter-type negative ion source are presented. Beams of atomic anions have been observed for most of the first-row rare-earth elements, with typical currents ranging from hundreds of picoamps to several nanoamps

  14. Studies on the determination of trace amounts of nitrogen along with alkali and alkaline earth elements in uranium based samples by ion-chromatography (IC)

    International Nuclear Information System (INIS)

    Verma, Poonam; Rastogi, R.K.; Ramakumar, K.L.

    2006-12-01

    Present report describes an ion chromatography (IC) method with suppressed conductivity detection for the determination of traces of nitrogen along with alkali and alkaline earth elements in uranium based nuclear fuels. Method was developed to determine nitrogen as NH 4 + along with alkali and alkaline earth cations by IC using a cation exchange column. (author)

  15. Ion-conductivity of thin film Li-Borate glasses

    International Nuclear Information System (INIS)

    Abouzari, M.R.S.

    2007-01-01

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi 2 O.(1-y)B 2 O 3 with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10 -10 Ω -1 cm -1 and 2.5 x 10 -6 Ω -1 cm -1 when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but we have also found that the depression arises from the nature of ionic motions. The model

  16. Ion-conductivity of thin film Li-Borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Abouzari, M.R.S.

    2007-12-17

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi{sub 2}O.(1-y)B{sub 2}O{sub 3} with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10{sup -10} {omega}{sup -1}cm{sup -1} and 2.5 x 10{sup -6} {omega}{sup -1}cm{sup -1} when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but

  17. Time domain optical memories using rare earth ions

    International Nuclear Information System (INIS)

    Sellars, M.J.; Dyke, T.; Pryde, G.J.; Manson, N.B.

    1998-01-01

    Full text: Rare earth doped crystals are the chosen materials for the next generation of optical memories where the process of spectral holeburning can be employed to provide an extra dimension of frequency or time to spatial dimensions and with certain rare earth ions increases of the order of 10 7 in storage capacity can be achieved over conventional optical memories. Time domain techniques are preferred over frequency domain techniques and are now well developed. In these techniques arbitrary pulse sequences are stored in the material and read out at some later time with a single read pulse using a stimulated photon echo process. Long pulse sequences will enable more data to be stored but necessitates the use of materials with long dephasing times (corresponding to narrow spectral lines) and it is this characteristic of rare earth systems that makes them the preferred material for the new time domain optical memories. The storage time can range from hours to days but in a practical device will require refreshing or re-enforcing and this puts special requirements on the stability of the laser used for storing the information. The storage process itself can also be weak and more reliable storage can be achieved by recording the data several times with the same pulse sequence. For this to be successful the laser must be at held at a constant frequency and be stable in phase over the entire duration of the pulse sequence. The procedure of reinforcing the data sequence has been proposed before and attempted without attention to the laser frequency stability. However, if the laser is not stable although some data bits will be reinforced or increased in size others will be decreased or even erased. Indeed the reliability of the memory is degraded by the introducing the rewrite process. For our work we have developed a laser with the excellent stability and able to demonstrate reproducible reinforcement of the data sequence. Thus with the rewrite sequence we are able to

  18. Ion doping of surface layers in conducting electrical materials

    International Nuclear Information System (INIS)

    Zukowski, P.; Karwat, Cz.; Kozak, Cz. M.; Kolasik, M.; Kiszczak, K.

    2009-01-01

    The presented article gives basic component elements of an implanter MKPCz-99, its parameters and methods for doping surface layers of conducting electrical materials. The discussed device makes possible to dope the materials with ions of gaseous elements. At the application of cones made of solid-element sheets it is possible to perform doping with atoms that do not chemically react with the modified material. By performing voltage drop measurements with a specialized circuit between a movable testing electrode and the modified sample the dependence of transition resistance on pressure force of the testing electrode on the sample can be determined. The testing can be performed at the current passage of a determined value for surfaces modified with ions of gaseous elements or atoms of solid elements. A computer stand for switch testing makes possible to measure temperature of switch contacts and voltage drop at the contact and thereby to determine contact resistance of a switch depending on the number of switch cycles (ON-OFF). Pattern recording of current and voltage at the switch contacts and the application of an adequate computer software makes possible to determined the value of energy between fixed and moving contacts at their getting apart. In order to eliminate action of the environment onto the switch operation measurements can be performed at placing the tested switch together with the driving system in an atmosphere of noble gas like argon. (authors)

  19. Validation of ion chromatography for the determination of transition metal ions along with alkali, alkaline earth metal elements for uranium oxide fuel

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Prakash, Amrit; Afzal, Mohd.; Panakkal, J.P.

    2009-02-01

    The present report describes the use of Ion chromatography (IC) methods with spectrophotometric and direct conductivity detection for the determination of transition metal elements and alkali alkaline earth metal ions in UO 2 pellets. Transmet analytical column and Metrosep- cation 1-2 column were used for the separation of transition metal elements and alkali and alkaline earth metal elements respectively. Oxalic acid and mixture of pyridine 2,6-dicarboxylic acid (PDCA), Na 2 SO 4 and NaCl were used as mobile phase for the separation of transition metal ions and monitored after post - column reaction with 4,2-pyridylazo resorcinol (PAR) at 520nm spectrophotometrically. In the determination of alkali and alkaline earth metal ions the interference of transition metals are removed by complexing them with PDCA. Mixture of tartaric acid and PDCA employed in the separation of alkali and alkaline earth metal ions and monitored on direct conductivity detector. Mobile phase composition was optimised for the base line separation. Calibration plots of Fe 3+ , Cu 2+ , Ni 2+ , Co 2+ , Cd 2+ , Mn 2+ , Li + , Na + , K + , Mg 2+ , Ca 2+ and Sr 2+ were linear over a wide dynamic range with regression coefficient better than 0.999. Detection limit of above ions were between 5-30ppb. To prevent the overloading of the cation exchange column, uranium matrix was removed from UO 2 sample by solvent extraction with 30% TBP - TOPO/CCl 4 . Ten sintered UO2 pellets of same lot were analysed and R.S.D. ±10% was obtained. These methods were validated by analysis of ILCE standards of UO 2 . (author)

  20. Transferred hyperfine interaction between the rare-earth ions and the fluorine nuclei in rare-earth trifluorides

    DEFF Research Database (Denmark)

    Hansen, P. E.; Nevald, Rolf; Guggenheim, H. G.

    1978-01-01

    The isotropic and anisotropic transferred hyperfine interactions between F ions in the two chemically inequivalent sites and the rare-earth ions (R) have been derived from 19F NMR measurements in the temperature region 100-300 K on single crystals of TbF3 and DyF3. The isotropic interactions are ...... to vary only slightly with temperature. They are further assigned to definite R's in the unit cell, which cannot be done from macroscopic magnetic measurements....

  1. On fabrication procedures of Li-ion conducting garnets

    Energy Technology Data Exchange (ETDEWEB)

    Hanc, Emil [The Mineral and Energy Economy Research Institute, Polish Academy of Sciences, ul. Wybickiego 7, 31-261 Kraków (Poland); Zając, Wojciech, E-mail: wojciech.zajac@agh.edu.pl [AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków (Poland); Lu, Li; Yan, Binggong; Kotobuki, Masashi [Materials Science Group, Department of Mechanical Engineering, National University of Singapore (Singapore); Ziąbka, Magdalena [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków (Poland); Molenda, Janina [AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków (Poland)

    2017-04-15

    Ceramic oxides exhibiting high lithium-ion mobility at room temperature receive broad attention as candidate electrolytes for lithium batteries. Lithium-stuffed garnets from the Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} group seem to be especially promising because of their high ionic conductivity at room temperature and their electrochemical stability. In this work, we discuss factors that affect formation of the garnet in its bulk form or in the form of thick and thin films. We demonstrate that zinc oxide can be applied as a sintering aid that facilitate the formation of the highly conducting cubic Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} garnet phase in a single-step sintering procedure. Based on our experience with the single-step sintering experiments, we successfully fabricated a thick-film membrane consisting of a garnet solid electrolyte using the tape casting technique. In order to reduce the thickness of the electrolyte even further we investigated the fabrication of a thin-film Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} electrolyte by means of the pulsed laser deposition technique.

  2. Near equality of ion phase space densities at earth, Jupiter, and Saturn

    Science.gov (United States)

    Cheng, A. F.; Krimigis, S. M.; Armstrong, T. P.

    1985-01-01

    Energetic-ion phase-space density profiles are strikingly similar in the inner magnetospheres of earth, Jupiter, and Saturn for ions of first adiabatic invariant near 100 MeV/G and small mirror latitudes. Losses occur inside L approximately equal to 7 for Jupiter and Saturn and inside L approximately equal to 5 at earth. At these L values there exist steep plasma-density gradients at all three planets, associated with the Io plasma torus at Jupiter, the Rhea-Dione-Tethys torus at Saturn, and the plasmasphere at earth. Measurements of ion flux-tube contents at Jupiter and Saturn by the low-energy charged-particle experiment show that these are similar (for O ions at L = 5-9) to those at earth (for protons at L = 2-6). Furthermore, the thermal-ion flux-tube contents from Voyager plasma-science data at Jupiter and Saturn are also very nearly equal, and again similar to those at earth, differing by less than a factor of 3 at the respective L values. The near equality of energetic and thermal ion flux-tube contents at earth, Jupiter, and Saturn suggests the possibility of strong physical analogies in the interaction between plasma and energetic particles at the plasma tori/plasma sheets of Jupiter and Saturn and the plasmasphere of earth.

  3. The heavy ion diffusion region in magnetic reconnection in the Earth's magnetotail

    Science.gov (United States)

    Liu, Y. H.; Mouikis, C. G.; Kistler, L. M.; Wang, S.; Roytershteyn, V.; Karimabadi, H.

    2015-05-01

    While the plasma in the Earth's magnetotail predominantly consists of protons and electrons, there are times when a significant amount of oxygen is present. When magnetic reconnection occurs, the behavior of these heavy ions can be significantly different from that of the protons, due to their larger gyroradius. In this study, we investigate the heavy ion distribution functions in the reconnection ion diffusion region from a 2.5D three-species particle-in-cell numerical simulation and compare those with Cluster observations from the near-Earth magnetotail. From the simulation results, we find that the heavy ions are demagnetized and accelerated in a larger diffusion region, the heavy ion diffusion region. The ion velocity distribution functions show that, inside the heavy ion diffusion region, heavy ions appear as counterstreaming beams along z in the GSM x-z plane, while drifting in y, carrying cross-tail current. We compare this result with Cluster observations in the vicinity of reconnection regions in the near-Earth magnetotail and find that the simulation predictions are consistent with the observed ion distribution functions in the ion diffusion region, as well as the inflow, exhaust, and separatrix regions. Based on the simulation and observation results, the presence of a multiscale diffusion region model, for O+ abundant reconnection events in the Earth's magnetotail, is demonstrated. A test particle simulation shows that in the diffusion region, the H+ gains energy mainly through Ex, while the O+ energy gain comes equally from Ex and Ey.

  4. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Composite Material

    International Nuclear Information System (INIS)

    You-Hua, Jia; Biao, Zhong; Xian-Ming, Ji; Jian-Ping, Yin

    2008-01-01

    We predict enhanced laser cooling performance of rare-earth-ions-doped glasses containing nanometre-sized ul-traBne particles, which can be achieved by the enhancement of local Geld around rare earth ions, owing to the surface plasma resonance of small metallic particles. The influence of energy transfer between ions and the particle is theoretically discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption is predicted. It is concluded that the absorption are greatly enhanced in these composite materials, the cooling power is increased as compared to the bulk material

  5. Determination of aminoglycoside antibiotics using complex compounds of chromotropic acid bisazoderivatives with rare earth ions

    International Nuclear Information System (INIS)

    Alykov, N.M.

    1981-01-01

    Studies of complex formation of bisazo derivatives of chromotropic acid with rare earth ions and aminoglycoside antibiotics have made it possible to choose carboxyarsenazo, orthanyl R and carboxynitrazo as highly sensitive reagents for determining aminoglycoside antibiotics. Conditions have been found for the formation of precipitates of different-ligand complexes containing rare earth ions, bisazo derivatives of chromotropic acid and aminogylcoside antibiotics. A procedure has been worked out of determining the antibiotics in biological samples with carboxyarsenazo [ru

  6. Complex formation constant and hydration number change of aqua-rare earth ions

    International Nuclear Information System (INIS)

    Kanno, H.

    1998-01-01

    Full text: It is now well established that the inner-sphere hydration number of aqua-rare earth ions changes from nine to eight in the middle of the rare earth series. This hydration number change greatly affects the complex formation of rare earth ions as we observe irregular variations in most series behaviours of the complex formation constant (K) in aqueous solution systems when K being plotted against 1/r or r (r is ionic radius of rare earth ion). Furthermore, it shows very anomalous concentration dependence in the sense that nona-aqua Ln 3+ ion increases in number with increase in salt concentration in aqueous rare earth salt solution (salt chloride, perchlorate). In this report, a theoretical derivation of the formation constant (K) for the inner-sphere complex formation of rare earth ions with a monodentate ligand was made by taking account of both the hydration number change in the middle of the series and its anomalous salt concentration dependence. The series behaviour of the formation constant against 1/r (or r) is successfully explained with using the empirical finding that K varies almost linearly with 1/r (or r) in the region where only one hydration number dominates. This success is also taken as evidence that the anomalous salt concentration dependence of the hydration number change is caused by the outer-sphere complex formation of rare earth ions with the condition that nona-aqua rare earth ions form outer-sphere complexes more easily than octa-aqua ions

  7. Production techniques for rare earth and other heavy negative ions

    International Nuclear Information System (INIS)

    McK Hyder, H.R.; Ashenfelter, J.; McGrath, R.

    1998-01-01

    Current nuclear structure studies demand a wide range of heavy negative ion beams for tandem acceleration. Some of the wanted isotopes have low natural abundances and many have low or negative electron affinities. For these, gas injection or the use of hydrides, oxides, or fluorides is required to achieve usable intensities. The chemical properties of the target materials, and of the additive gases used to form molecular ions, often have detrimental effects on ion source performance and life. These effects include insulator breakdown, ionizer poisoning, and the erosion or deposition of material on critical electrodes. Methods of controlling sputter source conditions are being studied on the Wright Nuclear Structure Laboratory ion source test bench with the object of extending source life, increasing target efficiency, and achieving consistent negative ion outputs. Results are reported for several heavy ions including tellurium, neodymium, and ytterbium. copyright 1998 American Institute of Physics

  8. Silicon-conductive nanopaper for Li-ion batteries

    KAUST Repository

    Hu, Liangbing; Liu, Nian; Eskilsson, Martin; Zheng, Guangyuan; McDonough, James; Wå gberg, Lars; Cui, Yi

    2013-01-01

    There is an increasing interest in the development of thin, flexible energy storage devices for new applications. For large scale and low cost devices, structures with the use of earth abundant materials are attractive. In this study, we fabricated

  9. Temperature dependent mobility measurements of alkali earth ions in superfluid helium

    Science.gov (United States)

    Putlitz, Gisbert Zu; Baumann, I.; Foerste, M.; Jungmann, K.; Riediger, O.; Tabbert, B.; Wiebe, J.; Zühlke, C.

    1998-05-01

    Mobility measurements of impurity ions in superfluid helium are reported. Alkali earth ions were produced with a laser sputtering technique and were drawn inside the liquid by an electric field. The experiments were carried out in the temperature region from 1.27 up to 1.66 K. The temperature dependence of the mobility of Be^+-ions (measured here for the first time) differs from that of the other alkali earth ions Mg^+, Ca^+, Sr^+ and Ba^+, but behaves similar to that of He^+ (M. Foerste, H. Günther, O. Riediger, J. Wiebe, G. zu Putlitz, Z. Phys. B) 104, 317 (1997). Theories of Atkins (A. Atkins, Phys. Rev.) 116, 1339 (1959) and Cole (M.W. Cole, R.A. Bachmann Phys. Rev. B) 15, 1388 (1977) predict a different defect structure for He^+ and the alkali earth ions: the helium ion is assumed to form a snowball like structure whereas for the alkali earth ions a bubble structure is assumed. If the temperature dependence is a characteristic feature for the different structures, then it seems likely that the Be^+ ion builds a snowball like structure.

  10. On the single-ion Magnetic Anisotropy of the Rare-Earth Metals

    DEFF Research Database (Denmark)

    Kolmakova, N.P.; Tishin, A.M.; Bohr, Jakob

    1996-01-01

    The temperature dependences of the single-ion magnetic anisotropy constants for Tb and Dy metals are calculated in terms of the multipole moments of the rare-earth ions utilizing the available crystal-field parameters. The results are compared with the existing experimental data....

  11. Analysis of leaf surfaces using scanning ion conductance microscopy.

    Science.gov (United States)

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. No Giant Two-Ion Anisotropy in the Heavy-Rare-Earth Metals

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A new Bose-operator expansion of tensor operators is applied to the heavy-rare-earth metals. The Er data for the cone phase have been analyzed successfully with single-ion anisotropy and isotropic exchange interaction. The Tb data can be understood on the same basis. The previously found large two......-ion anisotropy was due to an inadequate treatment of the large single-ion anisotropy leading to an incorrect expression for the spin-wave energy....

  13. EXPERIMENTAL EFFECTS OF CONDUCTIVITY AND MAJOR IONS ON STREAM PERIPHYTON - abstract

    Science.gov (United States)

    Our study examined if specific conductivities comprised of different ions associated with resource extraction affected stream periphyton assemblages, which are important sources of primary production. Sixteen artificial streams were dosed with two ion recipes intended to mimic so...

  14. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  15. Energies of rare-earth ion states relative to host bands in optical materials from electron photoemission spectroscopy

    Science.gov (United States)

    Thiel, Charles Warren

    There are a vast number of applications for rare-earth-activated materials and much of today's cutting-edge optical technology and emerging innovations are enabled by their unique properties. In many of these applications, interactions between the rare-earth ion and the host material's electronic states can enhance or inhibit performance and provide mechanisms for manipulating the optical properties. Continued advances in these technologies require knowledge of the relative energies of rare-earth and crystal band states so that properties of available materials may be fully understood and new materials may be logically developed. Conventional and resonant electron photoemission techniques were used to measure 4f electron and valence band binding energies in important optical materials, including YAG, YAlO3, and LiYF4. The photoemission spectra were theoretically modeled and analyzed to accurately determine relative energies. By combining these energies with ultraviolet spectroscopy, binding energies of excited 4fN-15d and 4fN+1 states were determined. While the 4fN ground-state energies vary considerably between different trivalent ions and lie near or below the top of the valence band in optical materials, the lowest 4f N-15d states have similar energies and are near the bottom of the conduction band. As an example for YAG, the Tb3+ 4f N ground state is in the band gap at 0.7 eV above the valence band while the Lu3+ ground state is 4.7 eV below the valence band maximum; however, the lowest 4fN-15d states are 2.2 eV below the conduction band for both ions. We found that a simple model accurately describes the binding energies of the 4fN, 4fN-1 5d, and 4fN+1 states. The model's success across the entire rare-earth series indicates that measurements on two different ions in a host are sufficient to predict the energies of all rare-earth ions in that host. This information provides new insight into electron transfer transitions, luminescence quenching, and valence

  16. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models.

    Science.gov (United States)

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2014-10-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to be able to communicate with surface personnel after a major accident-hence, the interest in TTE communications. To determine the likelihood of establishing a TTE communication link, it would be ideal to be able to predict the apparent conductivity of the overburden above underground mines. In this paper, all 94 mine TTE measurement data collected by Bureau of Mines in the 1970s and early 1980s, are analyzed for the first time to determine the apparent conductivity of the overburden based on three different models: a homogenous half-space model, a thin sheet model, and an attenuation factor or Q-factor model. A statistical formula is proposed to estimate the apparent earth conductivity for a specific mine based on the TTE modeling results given the mine depth and signal frequency.

  17. The Thermal Conductivity of Earth's Core: A Key Geophysical Parameter's Constraints and Uncertainties

    Science.gov (United States)

    Williams, Q.

    2018-05-01

    The thermal conductivity of iron alloys at high pressures and temperatures is a critical parameter in governing ( a) the present-day heat flow out of Earth's core, ( b) the inferred age of Earth's inner core, and ( c) the thermal evolution of Earth's core and lowermost mantle. It is, however, one of the least well-constrained important geophysical parameters, with current estimates for end-member iron under core-mantle boundary conditions varying by about a factor of 6. Here, the current state of calculations, measurements, and inferences that constrain thermal conductivity at core conditions are reviewed. The applicability of the Wiedemann-Franz law, commonly used to convert electrical resistivity data to thermal conductivity data, is probed: Here, whether the constant of proportionality, the Lorenz number, is constant at extreme conditions is of vital importance. Electron-electron inelastic scattering and increases in Fermi-liquid-like behavior may cause uncertainties in thermal conductivities derived from both first-principles-associated calculations and electrical conductivity measurements. Additional uncertainties include the role of alloying constituents and local magnetic moments of iron in modulating the thermal conductivity. Thus, uncertainties in thermal conductivity remain pervasive, and hence a broad range of core heat flows and inner core ages appear to remain plausible.

  18. Theory and simulation of ion conduction in the pentameric GLIC channel.

    Science.gov (United States)

    Zhu, Fangqiang; Hummer, Gerhard

    2012-10-09

    GLIC is a bacterial member of the large family of pentameric ligand-gated ion channels. To study ion conduction through GLIC and other membrane channels, we combine the one-dimensional potential of mean force for ion passage with a Smoluchowski diffusion model, making it possible to calculate single-channel conductance in the regime of low ion concentrations from all-atom molecular dynamics (MD) simulations. We then perform MD simulations to examine sodium ion conduction through the GLIC transmembrane pore in two systems with different bulk ion concentrations. The ion potentials of mean force, calculated from umbrella sampling simulations with Hamiltonian replica exchange, reveal a major barrier at the hydrophobic constriction of the pore. The relevance of this barrier for ion transport is confirmed by a committor function that rises sharply in the barrier region. From the free evolution of Na(+) ions starting at the barrier top, we estimate the effective diffusion coefficient in the barrier region, and subsequently calculate the conductance of the pore. The resulting diffusivity compares well with the position-dependent ion diffusion coefficient obtained from restrained simulations. The ion conductance obtained from the diffusion model agrees with the value determined via a reactive-flux rate calculation. Our results show that the conformation in the GLIC crystal structure, with an estimated conductance of ~1 picosiemens at 140 mM ion concentration, is consistent with a physiologically open state of the channel.

  19. The two bands model for the high temperature conductivity of the binary rare earth alloys

    International Nuclear Information System (INIS)

    Borgiel, W.

    1983-09-01

    The formula for the high temperature spin disorder resistivity for the concentrated Asub(1-x)Bsub(x)C alloys where A,B is an element of Rare Earth (RE) is determined on the basis of two bands model and the coherent potential approximation (CPA). The conductivity given by the 5d bands coming from the RE compounds has been taken into account

  20. Scattering of field-aligned beam ions upstream of Earth's bow shock

    Directory of Open Access Journals (Sweden)

    A. Kis

    2007-03-01

    Full Text Available Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.

  1. Scattering of field-aligned beam ions upstream of Earth's bow shock

    Directory of Open Access Journals (Sweden)

    A. Kis

    2007-03-01

    Full Text Available Field-aligned beams are known to originate from the quasi-perpendicular side of the Earth's bow shock, while the diffuse ion population consists of accelerated ions at the quasi-parallel side of the bow shock. The two distinct ion populations show typical characteristics in their velocity space distributions. By using particle and magnetic field measurements from one Cluster spacecraft we present a case study when the two ion populations are observed simultaneously in the foreshock region during a high Mach number, high solar wind velocity event. We present the spatial-temporal evolution of the field-aligned beam ion distribution in front of the Earth's bow shock, focusing on the processes in the deep foreshock region, i.e. on the quasi-parallel side. Our analysis demonstrates that the scattering of field-aligned beam (FAB ions combined with convection by the solar wind results in the presence of lower-energy, toroidal gyrating ions at positions deeper in the foreshock region which are magnetically connected to the quasi-parallel bow shock. The gyrating ions are superposed onto a higher energy diffuse ion population. It is suggested that the toroidal gyrating ion population observed deep in the foreshock region has its origins in the FAB and that its characteristics are correlated with its distance from the FAB, but is independent on distance to the bow shock along the magnetic field.

  2. Photo-Induced conductivity of heterojunction GaAs/Rare-Earth doped SnO2

    Directory of Open Access Journals (Sweden)

    Cristina de Freitas Bueno

    2013-01-01

    Full Text Available Rare-earth doped (Eu3+ or Ce3+ thin layers of tin dioxide (SnO2 are deposited by the sol-gel-dip-coating technique, along with gallium arsenide (GaAs films, deposited by the resistive evaporation technique. The as-built heterojunction has potential application in optoelectronic devices, because it may combine the emission from the rare-earth-doped transparent oxide, with a high mobility semiconductor. Trivalent rare-earth-doped SnO2 presents very efficient emission in a wide wavelength range, including red (in the case of Eu3+ or blue (Ce3+. The advantage of this structure is the possibility of separation of the rare-earth emission centers, from the electron scattering, leading to an indicated combination for electroluminescence. Electrical characterization of the heterojunction SnO2:Eu/GaAs shows a significant conductivity increase when compared to the conductivity of the individual films. Monochromatic light excitation shows up the role of the most external layer, which may act as a shield (top GaAs, or an ultraviolet light absorber sink (top RE-doped SnO2. The observed improvement on the electrical transport properties is probably related to the formation of short conduction channels in the semiconductors junction with two-dimensional electron gas (2DEG behavior, which are evaluated by excitation with distinct monochromatic light sources, where the samples are deposited by varying the order of layer deposition.

  3. Tuning the conductivity of vanadium dioxide films on silicon by swift heavy ion irradiation

    Directory of Open Access Journals (Sweden)

    H. Hofsäss

    2011-09-01

    Full Text Available We demonstrate the generation of a persistent conductivity increase in vanadium dioxide thin films grown on single crystal silicon by irradiation with 1 GeV 238U swift heavy ions at room temperature. VO2 undergoes a temperature driven metal-insulator-transition (MIT at 67 °C. After room temperature ion irradiation with high electronic energy loss of 50 keV/nm the conductivity of the films below the transition temperature is strongly increased proportional to the ion fluence of 5·109 U/cm2 and 1·1010 U/cm2. At high temperatures the conductivity decreases slightly. The ion irradiation slightly reduces the MIT temperature. This observed conductivity change is persistent and remains after heating the samples above the transition temperature and subsequent cooling. Low temperature measurements down to 15 K show no further MIT below room temperature. Although the conductivity increase after irradiation at such low fluences is due to single ion track effects, atomic force microscopy (AFM measurements do not show surface hillocks, which are characteristic for ion tracks in other materials. Conductive AFM gives no evidence for conducting ion tracks but rather suggests the existence of conducting regions around poorly conducting ion tracks, possible due to stress generation. Another explanation of the persistent conductivity change could be the ion-induced modification of a high resistivity interface layer formed during film growth between the vanadium dioxide film and the n-Silicon substrate. The swift heavy ions may generate conducting filaments through this layer, thus increasing the effective contact area. Swift heavy ion irradiation can thus be used to tune the conductivity of VO2 films on silicon substrates.

  4. The operator technique in the theory of the rare earth ion interaction with ligand nuclei

    International Nuclear Information System (INIS)

    Anikeenok, O.A.; Eremin, M.V.; Khutsishvili, O.G.

    1986-01-01

    The tensor structure of the operator of rare earth ion interaction with nuclei of close ligands conditioned by virtual processes of charge transport is established. It is taken into account that virtual processes of electron transport from the ligand can take place to the non-filled 4f-, void 5d- and 6s- and preliminarily excited 5p-shells of the rare earth ion. Effects of 4f- and 5d-state mixing by the odd crystal field are considered for the first time. In contrast to the usual multipole-dipole interaction the given one is characterized by anomalously greater significance of highest multipole momenta of the rare earth ion and in the common case it does not have axial symmetry. The theory is compared with data on double electron-nuclear resonance and radiofrequency discrete saturation, taking CaF 2 :Ce 3+ impurity centers as an example

  5. Modeling the Conducting Stably-Stratified Layer of the Earth's Core

    Science.gov (United States)

    Petitdemange, L.; Philidet, J.; Gissinger, C.

    2017-12-01

    Observations of the Earth magnetic field as well as recent theoretical works tend to show that the Earth's outer liquid core is mostly comprised of a convective zone in which the Earth's magnetic field is generated - likely by dynamo action -, but also features a thin, stably stratified layer at the top of the core.We carry out direct numerical simulations by modeling this thin layer as an axisymmetric spherical Couette flow for a stably stratified fluid embedded in a dipolar magnetic field. The dynamo region is modeled by a conducting inner core rotating slightly faster than the insulating mantle due to magnetic torques acting on it, such that a weak differential rotation (low Rossby limit) can develop in the stably stratified layer.In the case of a non-stratified fluid, the combined action of the differential rotation and the magnetic field leads to the well known regime of `super-rotation', in which the fluid rotates faster than the inner core. Whereas in the classical case, this super-rotation is known to vanish in the magnetostrophic limit, we show here that the fluid stratification significantly extends the magnitude of the super-rotation, keeping this phenomenon relevant for the Earth core. Finally, we study how the shear layers generated by this new state might give birth to magnetohydrodynamic instabilities or waves impacting the secular variations or jerks of the Earth's magnetic field.

  6. Ion distributions in the Earth's foreshock upstream from the bow shock

    Science.gov (United States)

    Fuselier, S. A.

    1995-01-01

    A variety of suprathermal and energetic ion distributions are found upstream from shocks. Some distributions, such as field-aligned beams, are generated directly at the shock either through reflection processes or through leakage from the hotter downstream region. Other distributions, such as intermediate distributions, evolve from these parent distributions through wave-particle interactions. This paper reviews our current understanding of the creation and evolution of suprathermal distributions at shocks. Examples of suprathermal ion distributions are taken from observations at the Earth's bow shock. Particular emphasis is placed on the creation of field-aligned beams and specularly reflected ion distributions and on the evolution of these distributions in the Earth's ion foreshock. However, the results from this heavily studied region are applicable to interplanetary shocks, bow shocks at other planets, and comets.

  7. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Glass Containing Nanometer-Sized Metallic Particles

    International Nuclear Information System (INIS)

    Jia Youhua; Zhong Biao; Yin Jianping

    2009-01-01

    The enhanced laser cooling performance of rare-earth-ions-doped glasses containing small particles is predicted. This is achieved by the enhancement of local field around rare earth ions, owing to the surface plasmon resonance of small metallic particles. The role of energy transfer between ions and the particle is theoretical discussed. Depending on the particle size and the ion emission quantum efficiency, the enhancement of the absorption and the fluorescence is predicted. Moreover, taking Yb 3+ -doped ZBLAN as example, the cooling power and heat-light converting efficiency are calculated. It is finally concluded that the absorption and the fluorescence are greatly enhanced in these composite materials, the cooling power is increased compared to the bulk material. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Colored cool colorants based on rare earth metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Sreeram, Kalarical Janardhanan; Aby, Cheruvathoor Poulose; Nair, Balachandran Unni; Ramasami, Thirumalachari [Chemical Laboratory, Central Leather Research Institute, Council of Scientific and Industrial Research, Adyar, Chennai 600 020 (India)

    2008-11-15

    Colored pigments with high near infrared reflectance and not based on toxic metal ions like cadmium, lead and cobalt are being sought as cool colorants. Through appropriate doping two pigments Ce-Pr-Mo and Ce-Pr-Fe have been developed to offer a reddish brown and reddish orange color, respectively. These pigments have been characterized and found to be highly crystalline with an average size of 300 nm. A shift in band gap energy from 2.21 to 2.18 eV has been observed when Li{sub 2}CO{sub 3} was used as a mineralizer. Scanning electron microscope-energy dispersive X-ray analysis (SEM-EDAX) measurement indicate a uniform grind shape and distribution of metal ion, with over 65% reflectance in the NIR region, these pigments can well serve as cool colorants. (author)

  9. New Ion-Nucleation Mechanism Relevant for the Earth's Atmosphere

    DEFF Research Database (Denmark)

    Marsh, N.D.; Svensmark, Henrik; Pedersen, Jens Olaf Pepke

    Experimental studies of ultra-fine aerosol nucleation in clean atmospheric air, containing trace amounts of ozone, sulphur dioxide, and water vapour suggest that the production rate of critical clusters is sensitive to ionisation. To assess this sensitivity numerical simulations of the initial...... stages of particle coagulation and condensation have been performed and compared with the experimental results. The simulations indicate that a stable distribution of sub 3nm particles exists that cannot be detected using standard techniques for measuring atmospheric aerosol, and that the nucleation rate...... of critical clusters generating this distribution is a function of the number of ions present. This provides a set of boundary conditions, which constrain the properties of a possible microphysical mechanism. The role of ions in the nucleation process of critical clusters provides a source for new aerosol...

  10. Variation in viscosity and ion conductivity of a polymer–salt complex ...

    Indian Academy of Sciences (India)

    The ion conductivity shows a strong increase for an irradiation of. 35 kGy. DSC studies indicate a decrease in crystallinity with gamma dose. Keywords. Gamma irradiation; polymer electrolyte; viscosity; ion conductivity. PACS Nos 61.82.Pv; 66.30.Dn; 47.57.Ng; 81.70.Pg. 1. Introduction. When polymers are exposed to high ...

  11. Ion flow ripples in the Earth's plasma sheet

    Science.gov (United States)

    De Spiegeleer, Alexandre; Hamrin, Maria; Pitkänen, Timo; Norqvist, Patrik; Mann, Ingrid

    2016-04-01

    For a long time, magnetotail flows were considered rather smooth and laminar, and primarily dominated by a simple convection flow pattern. However, in the early 90's, high speed bursty bulk flows (BBFs) were discovered and found to commonly perturb the underlying convection flows. In addition, there are other disturbances complicating the magnetotail flow pattern. Instabilities such as the Kelvin-Helmholz instability and the kink instability can cause different types of magnetic field oscillations, such as field line resonances. It is expected that ions will follow these oscillations if the typical time and length scales are larger than the gyroperiod and gyroradius of the ions. Though low-velocity sloshing and ripple disturbances of the average magnetotail convection flows have been observed, their connection with magnetic field oscillations is not fully understood. Furthermore, when studying BFFs, these "Ion Flow Ripples" (IFRs) are often neglected, dismissed as noise or can even erroneously be identified as BBFs. It is therefore of utter importance to find out and understand the role of IFRs in magnetotail dynamics. In a statistical investigation, we use several years of Cluster plasma sheet data to study the low-speed flows in the magnetotail. We investigate different types of IFRs, study their occurrence, and discuss their possible causes.

  12. Laser induced adjustment of the conductivity of rare earth doped Mn-Zn nanoferrite

    Directory of Open Access Journals (Sweden)

    El-Dek S. I.

    2017-10-01

    Full Text Available Two series of Mn-Zn nanoferrites (namely Mn1-xZnxFe2O4 and Mn1-xZnxFe2-yRyO4 were synthesized using standard ceramic technique. X-ray diffraction and FT-IR were employed in the chacterization of the nanopowder. The X-ray density for each sample increased after laser irradiation which was correlated with the decrease in the unit cell volume. The study involved the thermal and frequency variation of the dielectric constant and AC conductivity of the investigated samples before and after laser irradiation. The later altered the conductivity by decreasing its value for the rare earth doped samples except for the Sm3+ doped one. The results suggested the exploitation of Mn-Zn doped rare earth nanoferrites in many technological applications demanding high resistivity.

  13. Reflected and diffuse ions backstreaming from the earth's bow shock 1. Basic properties

    International Nuclear Information System (INIS)

    Bonifazi, C.; Moreno, G.

    1981-01-01

    Plasma data supplied by the ISEE 2 solar wind experiment are used to perform the first extended statistical analysis of the basic moments of the ions backstream from the earth's bow shock. The analysis is based on 3253 ion spectra, corresponding to a total observation time of approx. =87 hours. It turns out that the density and total energy density of the backstream ions are, on the average, equal to approx. =1% and approx. =10% of those of the solar wind, respectively. The distinction between the 'reflected' and 'diffuse' populations has been confirmed and put on a quantitive basis using the ratio A = V /sub B/P/w/sub B/P between the bulk velocity and the rms thermal speed of the ions. The reflected ions are characterized by a bulk velocity V/sub B/P of the order of 2 times the solar wind velocity and by a temperature of approx.7 x 10 6 K. In contrast, the diffuse ions have, on the average, a bulk velocity 1.2 times the solar wind velocity and a temperature of 40 x 10 6 K. Therefore the total energy density of the diffuse ions is approx. =30% larger than that of the reflected ions. Finally, the kinetic and thermal energy densities are distributed quite differently in the two ion populations: in fact, approx. =70% of the total energy density is kinetic for the reflected ions, while this percentage decreases to approx. =20% for the diffuse ions

  14. Observations of nonadiabatic acceleration of ions in Earth's magnetotail

    Science.gov (United States)

    Frank, L. A.; Paterson, W. R.; Kivelson, M. G.

    1994-01-01

    We present observations of the three-dimensional velocity distributions of protons in the energy range 20 eV to 52 keV at locations within and near the current sheet of Earth's magnetotail at geocentric radial distances 35 to 87 R(sub E). These measurements were acquired on December 8, 1990, with a set of electrostatic analyzers on board the Galileo spacecraft during its approach to Earth in order to obtain one of its gravitational assists to Jupiter. It is found that the velocity distributions are inadequately described as quasi-Maxwellian distributions such as those found in the central plasma sheet at positions nearer to Earth. Instead the proton velocity distributions can be categorized into two major types. The first type is the 'lima bean' shaped distribution with high-speed bulk flows and high temperatures that are similar to those found nearer to Earth in the plasma sheet boundary layer. The second type consists of colder protons with considerably lesser bulk flow speeds. Examples of velocity distributions are given for the plasma mantle, a region near the magnetic neutral line, positions earthward and tailward of the neutral line, and the plasma sheet boundary layer. At positions near the neutral line, only complex velocity distributions consisting of the colder protons are found, whereas both of the above types of distributions are found in and near the current sheet at earthward and tailward locations. Bulk flows are directed generally earthward and tailward at positions earthward and tailward of the neutral line, respectively. Only the high-speed, hot distribution is present in the plasma sheet boundary layer. The observations are interpreted in terms of the nonadiabatic acceleration of protons that flow into the current sheet from the plasma mantle. For this interpretation the hot, 'lima bean' shaped distributions are associated with meandering, or Speiser, orbits in the current sheet. It is suggested that the colder, lower-speed proton velocity

  15. Ion motion and conductivity in rubidium and cesium hexafluorotitanates

    International Nuclear Information System (INIS)

    Moskvich, Yu.N.; Cherkasov, B.I.; Sukhovskij, A.A.; Davidovich, R.L.; AN SSSR, Vladivostok. Inst. Khimii)

    1988-01-01

    Relaxation times for 19 F nuclei and electric conductivity in Rb 2 TiF 6 and Cs 2 TiF 6 polycrystals are measured. The parameters of reoriented anion motion and diffusion cation motion are determined according to the NMR data. The effect of phase transition to the cubic phase on the parameters of these motions are studied. High conductivity reaching values σ∼10 -2 -10 -3 Ohm -1 xm -1 is detected at high temperatures. The electric conductivity observed is shown to be caused by the diffusion motion of Rb + and Cs + cations

  16. Bench scale studies on separation of rare earths by ion exchange

    International Nuclear Information System (INIS)

    Aroonrung-Areeya, A.

    1976-01-01

    The method of ion exchange was applied to the separation of mixtures of rare earth oxides into the pure components. The method consists of eluting a band of mixed rare earths adsorbed on a cation-exchange resin through a second cation-exchange bed in the copper II state. The eluent consists of an ammonia buffered solution of ethylenediamine tetraacetic acid. The mixed rare earth oxide used as testing material was obtained from the digestion of Thai monazite. The amounts varied from 1, 5 to 50 grams. The purity of the rare earth fractions were analyzed either by neutron activation of X-ray fluorescence. The Cu.EDTA was recovered by the addition of lime. It was found that gram quantities of pure rare earths could be obtained by this method

  17. Contribution to the study of rare earth separation by ion exchange, using ammonium lactate

    International Nuclear Information System (INIS)

    Gratot, I.

    1958-01-01

    Using the technique of chromatography on a column of Dowex 50 resin, heated to 87 deg. C, we have studied the separation of rare earths (from holmium to praseodymium) which may be produced with the cyclotron by heavy ions, α or protons. From an ammonium lactate solution M at pH 5, separations are carried out by varying the dilution as a function of the quantity of the target rare earth and of its position during elution. When weighable quantities of the rare earth (more than 5 mg) appear towards the end of the elution, the separation is little affected this case approaches that of a tracer mixture of rare earths; if on the other hand weighable quantities of the rare earth are washed through at the beginning of the chromatogram, the dilution must be adjusted in order to obtain a good separation. (author) [fr

  18. Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries

    Science.gov (United States)

    Deng, Kuirong; Wang, Shuanjin; Ren, Shan; Han, Dongmei; Xiao, Min; Meng, Yuezhong

    2017-08-01

    Electrolytes play a vital role in modulating lithium ion battery performance. An outstanding electrolyte should possess both high ionic conductivity and unity lithium ion transference number. Here, we present a facile method to fabricate a network type sp3 boron-based single-ion conducting polymer electrolyte (SIPE) with high ionic conductivity and lithium ion transference number approaching unity. The SIPE was synthesized by coupling of lithium bis(allylmalonato)borate (LiBAMB) and pentaerythritol tetrakis(2-mercaptoacetate) (PETMP) via one-step photoinitiated in situ thiol-ene click reaction in plasticizers. Influence of kinds and content of plasticizers was investigated and the optimized electrolytes show both outstanding ionic conductivity (1.47 × 10-3 S cm-1 at 25 °C) and high lithium transference number of 0.89. This ionic conductivity is among the highest ionic conductivity exhibited by SIPEs reported to date. Its electrochemical stability window is up to 5.2 V. More importantly, Li/LiFePO4 cells with the prepared single-ion conducting electrolytes as the electrolyte as well as the separator display highly reversible capacity and excellent rate capacity under room temperature. It also demonstrates excellent long-term stability and reliability as it maintains capacity of 124 mA h g-1 at 1 C rate even after 500 cycles without obvious decay.

  19. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  20. Ion burst event in the earth's dayside magnetosheath

    International Nuclear Information System (INIS)

    Paschalidis, N.P.; Krimigis, S.M.; Sibeck, D.G.; McEntire, R.W.; Zanetti, L.J.; Sarris, E.T.; Christon, S.P.

    1991-01-01

    The MEPA instrument on the AMPTE/CCE Spacecraft provided ion angular distributions as rapidly as every 6 sec for H, He, and O at energies of 10 keV to 2 MeV in the dayside magnetosheath within 8.75 R E , the CCE apogee. In this report the authors discuss a burst of energetic particles in the subsolar magnetosheath and its association with rapid changes in the local magnetic field direction in such a way that the magnetic field connected the spacecraft to the magnetopause during the enhancement. They find that magnetosheath angular distributions outside the burst peaked at 90 degree pitch angles, whereas during the burst they exhibited field aligned streaming either parallel or antiparallel to the magnetic field combined with a clear earthward gradient. The clear earthward gradients at E ≥ 10 KeV, the streaming, and the slope change in the burst-time magnetosheath spectrum at ∼10 KeV suggest magnetospheric source for the burst-time ≥ 10 KeV ions and heated solar wind for E < 10 KeV

  1. Experimental aspects of ion acceleration and transport in the Earth's magnetosphere

    International Nuclear Information System (INIS)

    Young, D.T.

    1985-01-01

    Major particle population within the Earth's magnetosphere have been studied via ion acceleration processes. Experimental advances over the past ten to fifteen years have demonstrated the complexity of the processes. A review is given here for areas where composition experiments have expanded perception on magnetospheric phenomena. 64 refs., 6 figs., 1 tab

  2. Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions

    Czech Academy of Sciences Publication Activity Database

    Kostka, Petr; Zavadil, Jiří; Iovu, M.S.; Ivanova, Z. G.; Furniss, D.; Seddon, A.B.

    2015-01-01

    Roč. 648, NOV 5 (2015), s. 237-243 ISSN 0925-8388 R&D Projects: GA ČR GAP106/12/2384 Institutional support: RVO:67985891 ; RVO:67985882 Keywords : chalcogenide glasses * rare earth ions * low-temperature photoluminescence * optical transmission Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 3.014, year: 2015

  3. Bragg-grating-based rare-earth-ion-doped channel waveguide lasers and their applications

    NARCIS (Netherlands)

    Bernhardi, Edward

    2012-01-01

    The research presented in this thesis concerns the investigation and development of Bragggrating-based integrated cavities for the rare-earth-ion-doped Al2O3 (aluminium oxide) waveguide platform, both from a theoretical and an experimental point of view, with the primary purpose of realizing

  4. High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip

    NARCIS (Netherlands)

    Sefünç, Mustafa; Segerink, Franciscus B.; García Blanco, Sonia Maria

    2015-01-01

    Rare-earth ion doped KY(WO4)2 amplifiers are proposed to be a good candidate for many future applications by benefiting from the excellent gain characteristics of rare-earth ions, namely high bit rate amplification (

  5. Ion distributions upstream and downstream of the Earth's bow shock: first results from Vlasiator

    Directory of Open Access Journals (Sweden)

    D. Pokhotelov

    2013-12-01

    Full Text Available A novel hybrid-Vlasov code, Vlasiator, is developed for global simulations of magnetospheric plasma kinetics. The code is applied to model the collisionless bow shock on scales of the Earth's magnetosphere in two spatial dimensions and three dimensions in velocity space retrieving ion distribution functions over the entire foreshock and magnetosheath regions with unprecedented detail. The hybrid-Vlasov approach produces noise-free uniformly discretized ion distribution functions comparable to those measured in situ by spacecraft. Vlasiator can reproduce features of the ion foreshock and magnetosheath well known from spacecraft observations, such as compressional magnetosonic waves generated by backstreaming ion populations in the foreshock and mirror modes in the magnetosheath. An overview of ion distributions from various regions of the bow shock is presented, demonstrating the great opportunities for comparison with multi-spacecraft observations.

  6. Ion acceleration at the earth's bow shock: A review of observations in the upstream region

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1979-01-01

    Positive ions are accelerated at or near the earth's bow shock and propagate into the upstream region. Two distinctly different population of these ions, distinguished by their greatly different spectral and angular widths, can be identified there. The type of ion population observed in the upstream region is strongly correlated with the presence or absence of long-period compresive waves in the solar wind. Very few ions are accelerated in the vicinity of the shock to energies much above about 100 keV. It is not yet clear whether the most energetic ions (i.e. those near 100 keV) are accelerated at the shock or in the broad disturbed region upstream from the shock. In either case stochastic acceleration by turbulent electrostatic fields seems to be the most viable candidate for the acceleration of the most energetic particles

  7. Ion exchange kinetics of alkaline earths on Zr(IV) arsenosilicate cation exchanger

    International Nuclear Information System (INIS)

    Varshney, K.G.; Agrawal, S.; Varshney, K.

    1984-01-01

    A new approach based on the Nernst-Planck equations was applied to study the ion exchange kinetics for the exchange reactions of Mg(II), Ca(II), Sr(II) and Ba(II) with H + -ions at various temperatures on the zirconium(IV) arsenosilicate phase. Under the conditions of particle diffusion, the rate of exchange was found to be independent of the metal ion concentration at and above 0.1 M in aqueous medium. Energy and entropy of activation were determined and found to vary linearly with the ionic radii and mobilities of alkaline earths, a unique feature observed for an inorganic ion exchanger. The results are useful for predicting the ion exchange processes occurring on the surface of an inorganic material of the type studied. (author)

  8. Luminescence of rare-earth ions in Mg[sub 2]SiO[sub 4

    Energy Technology Data Exchange (ETDEWEB)

    Van der Voort, D; Maat-Gersdorf, I de; Blasse, G [Rijksuniversiteit Utrecht (Netherlands)

    1992-01-01

    The luminescence of the rare-earth ions Eu[sup 3+], Tb[sup 3+] and Ce[sup 3+] in Mg[sub 2]SiO[sub 4] is reported. The Tb[sup 3+] ion shows a change in emission colour from blue to green depending on the charge compensator. This is ascribed to a difference in coupling of the Tb[sup 3+] ion to the vibrational lattice modes. The Eu[sup 3+] ion has an average quantum efficiency under charge-transfer excitation of 60% at 4.2 and 20% at 300 K. The Ce[sup 3+] emission is situated in the blue and shows a Stokes shift of 3 500 cm[sup -1]. The relaxation of these ions in the excited state is discussed in terms of their positive effective charge and the stiffness of their surroundings.

  9. Ion acceleration at the earth's bow shock: a review of observations in the upstream region

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.

    1979-01-01

    Positive ions are accelerated at or near the earth's bow shock and propagate into the upstream region. Two distinctly different populations of these ions, distinguished by their greatly different spectral and angular widths, can be identified there. The type of ion population observed in the upstream region is strongly correlated with the presence or absence of long-period compressive waves in the solar wind. Very few ions are accelerated in the vicinity of the shock to energies much above about 100 keV. It is not yet clear whether the most energetic ions (i.e., those near 100 keV) are accelerated at the shock or in broad disturbed region upstream from the shock. In either case stochastic acceleration by turbulent electrostatic fields seems to be the most viable candidate for the acceleration of the most energetic particles

  10. Conductivity studies of Chitosan doped with different ammonium salts: Effect of ion size

    Science.gov (United States)

    Mohan, C. Raja; Senthilkumar, M.; Jayakumar, K.

    2015-06-01

    In the present investigation influence of ion size on the electrical properties of various ammonium salts of various concentrations doped with Chitosan liquid electrolyte has been studied. The attachment of ammonium salts with Chitosan has been confirmed through FTIR Spectrum. Polarizability is calculated from the refractive index data. Addition of ammonium salts increases the conductivity. It is also observed that increase in ion size, increases the ionic conductivity due to increase in amorphous nature of the material. Increase in concentration leads to increase in conductivity due to the presence of more number of free ions.

  11. Interstitial pressure dependence of the thermal conductivity of some rare earth oxide powders

    International Nuclear Information System (INIS)

    Pradeep, P.

    1997-01-01

    Thermal transport properties of powdered materials depend upon interstitial gas pressure. The present study reports the experimental results for the effective thermal conductivity of three rare earth oxide powders viz. yttrium oxide, samarium oxide, and gadolinium oxide, at various interstitial pressures by using transient plane source (TPS) method. A theoretical model is also proposed for the interpretation of the variation of the effective thermal conductivity with interstitial gas pressure. Its validity is found to be good in low pressure range of 45 mm Hg to normal pressure when compared with the experimental results. Also an attempt has been made to calculate the variation of thermal conductivity with interstitial pressure in the high pressure range up to 2 kbar using the proposed model. (author)

  12. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N. A.; Neumayer, P.; Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt (Germany); Lomonosov, I. V.; Shutov, A. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Institutskii pr. 18, 142432 Chernogolovka (Russian Federation); Borm, B. [Goethe-Universität Frankfurt, D-60438 Frankfurt (Germany); Piriz, A. R.; Piriz, S. A. [E.T.S.I. Industriales, Universidad de Castilla-La Mancha, E-13071 Ciudad Real (Spain)

    2017-09-01

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will become operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.

  13. Studies of the Core Conditions of the Earth and Super-Earths Using Intense Ion Beams at FAIR

    International Nuclear Information System (INIS)

    Tahir, N. A.; Neumayer, P.; Bagnoud, V.; Lomonosov, I. V.; Shutov, A.; Borm, B.; Piriz, A. R.; Piriz, S. A.

    2017-01-01

    Using detailed numerical simulations, we present the design of an experiment that will generate samples of iron under extreme conditions of density and pressure believed to exist in the interior of the Earth and interior of extrasolar Earth-like planets. In the proposed experiment design, an intense uranium beam is used to implode a multilayered cylindrical target that consists of a thin Fe cylinder enclosed in a thick massive W shell. Such intense uranium beams will be available at the heavy-ion synchrotron, SIS100, at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt, which is under construction and will become operational in the next few years. It is expected that the beam intensity will increase gradually over a couple of years to its maximum design value. Therefore, in our studies, we have considered a wide range of beam parameters, from the initial beam intensity (“Day One”) to the maximum specified value. It is also worth noting that two different focal spot geometries have been used. In one case, a circular focal spot with a Gaussian transverse intensity distribution is considered, whereas in the other case, an annular focal spot is used. With these two beam geometries, one can access different parts of the Fe phase diagram. For example, heating the sample with a circular focal spot generates a hot liquid state, while an annular focal spot can produce a highly compressed liquid or a highly compressed solid phase depending on the beam intensity.

  14. Proton and oxide ion conductivity of doped LaScO3

    DEFF Research Database (Denmark)

    Lybye, D.; Bonanos, N.

    1999-01-01

    . At temperatures below 800 degrees C and low partial pressure of oxygen, proton conduction was dominant. Above this temperature, the ionic conductivity is dominated by oxide ion transport. The protonic transport number was estimated from the conductivities measured in dry and in water-moisturised gas. An isotope......The conductivity of La0.9Sr0.1Sc0.9Mg0.1O3 has been studied by impedance spectroscopy in controlled atmospheres. The material was found to be a mixed conductor with p-type conduction at high oxygen partial pressures and a combined proton and oxide ion conductor at low oxygen partial pressures...

  15. Formation of conductive polymers using nitrosyl ion as an oxidizing agent

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung-Shin; Jung, Yongju; Singh, Nikhilendra

    2016-06-07

    A method of forming a conductive polymer deposit on a substrate is disclosed. The method may include the steps of preparing a composition comprising monomers of the conductive polymer and a nitrosyl precursor, contacting the substrate with the composition so as to allow formation of nitrosyl ion on the exterior surface of the substrate, and allowing the monomer to polymerize into the conductive polymer, wherein the polymerization is initiated by the nitrosyl ion and the conductive polymer is deposited on the exterior surface of the substrate. The conductive polymer may be polypyrrole.

  16. Proton and heavy ion acceleration by stochastic fluctuations in the Earth's magnetotail

    Energy Technology Data Exchange (ETDEWEB)

    Catapano, Filomena; Zimbardo, Gaetano; Perri, Silvia; Greco, Antonella [Calabria Univ., Rende (Italy). Dept. of Physics; Artemyev, Anton V. [Russian Academy of Science, Moscow (Russian Federation). Space Research Inst.; California Univ., Los Angeles, CA (United States). Dept. of Earth, Planetary, and Space Science and Inst. of Geophysics and Planetary Physics

    2016-07-01

    Spacecraft observations show that energetic ions are found in the Earth's magnetotail, with energies ranging from tens of keV to a few hundreds of keV. In this paper we carry out test particle simulations in which protons and other ion species are injected in the Vlasov magnetic field configurations obtained by Catapano et al. (2015). These configurations represent solutions of a generalized Harris model, which well describes the observed profiles in the magnetotail. In addition, three-dimensional time-dependent stochastic electromagnetic perturbations are included in the simulation box, so that the ion acceleration process is studied while varying the equilibrium magnetic field profile and the ion species. We find that proton energies of the order of 100 keV are reached with simulation parameters typical of the Earth's magnetotail. By changing the ion mass and charge, we can study the acceleration of heavy ions such as He{sup ++} and O{sup +}, and it is found that energies of the order of 100-200 keV are reached in a few seconds for He{sup ++}, and about 100 keV for O{sup +}.

  17. Proton and heavy ion acceleration by stochastic fluctuations in the Earth's magnetotail

    Directory of Open Access Journals (Sweden)

    F. Catapano

    2016-10-01

    Full Text Available Spacecraft observations show that energetic ions are found in the Earth's magnetotail, with energies ranging from tens of keV to a few hundreds of keV. In this paper we carry out test particle simulations in which protons and other ion species are injected in the Vlasov magnetic field configurations obtained by Catapano et al. (2015. These configurations represent solutions of a generalized Harris model, which well describes the observed profiles in the magnetotail. In addition, three-dimensional time-dependent stochastic electromagnetic perturbations are included in the simulation box, so that the ion acceleration process is studied while varying the equilibrium magnetic field profile and the ion species. We find that proton energies of the order of 100 keV are reached with simulation parameters typical of the Earth's magnetotail. By changing the ion mass and charge, we can study the acceleration of heavy ions such as He+ +  and O+, and it is found that energies of the order of 100–200 keV are reached in a few seconds for He+ + , and about 100 keV for O+.

  18. Dense ceramic membranes based on ion conducting oxides

    International Nuclear Information System (INIS)

    Fontaine, M.L.; Larring, Y.; Bredesen, R.; Norby, T.; Grande, T.

    2007-01-01

    This chapter reviews the recent progress made in the fields of high temperature oxygen and hydrogen separation membranes. Studies of membranes for oxygen separation are mainly focusing on materials design to improve flux, and to lesser extent, related to stability issues. High oxygen fluxes satisfying industrial requirements can be obtained but, for many materials, the surface exchange rate is limiting the performance. The current status on electrolyte-type and mixed proton and electron conducting membranes is outlined, highlighting materials with improved stability in typical applications as solid oxide fuel cell technology and gas separation. In our presentation more fundamental aspects related to transport properties, chemical and mechanical stability of membrane materials are also treated. It is concluded that a significantly better understanding of the long term effects of operation in chemical gradients is needed for these types of membrane materials. (authors)

  19. Ion-conducting ceramic apparatus, method, fabrication, and applications

    Science.gov (United States)

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2012-03-06

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  20. Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the Shaker K+ Ion Channel.

    Science.gov (United States)

    Wood, Mona L; Freites, J Alfredo; Tombola, Francesco; Tobias, Douglas J

    2017-04-20

    Voltage-sensing domains (VSDs) sense changes in the membrane electrostatic potential and, through conformational changes, regulate a specific function. The VSDs of wild-type voltage-dependent K + , Na + , and Ca 2+ channels do not conduct ions, but they can become ion-permeable through pathological mutations in the VSD. Relatively little is known about the underlying mechanisms of conduction through VSDs. The most detailed studies have been performed on Shaker K + channel variants in which ion conduction through the VSD is manifested in electrophysiology experiments as a voltage-dependent inward current, the so-called omega current, which appears when the VSDs are in their resting state conformation. Only monovalent cations appear to permeate the Shaker VSD via a pathway that is believed to be, at least in part, the same as that followed by the S4 basic side chains during voltage-dependent activation. We performed μs-time scale atomistic molecular dynamics simulations of a cation-conducting variant of the Shaker VSD under applied electric fields in an experimentally validated resting-state conformation, embedded in a lipid bilayer surrounded by solutions containing guanidinium chloride or potassium chloride. Our simulations provide insights into the Shaker VSD permeation pathway, the protein-ion interactions that control permeation kinetics, and the mechanism of voltage-dependent activation of voltage-gated ion channels.

  1. In situ recording of particle network formation in liquids by ion conductivity measurements.

    Science.gov (United States)

    Pfaffenhuber, Christian; Sörgel, Seniz; Weichert, Katja; Bele, Marjan; Mundinger, Tabea; Göbel, Marcus; Maier, Joachim

    2011-09-21

    The formation of fractal silica networks from a colloidal initial state was followed in situ by ion conductivity measurements. The underlying effect is a high interfacial lithium ion conductivity arising when silica particles are brought into contact with Li salt-containing liquid electrolytes. The experimental results were modeled using Monte Carlo simulations and tested using confocal fluorescence laser microscopy and ζ-potential measurements.

  2. Nonthermal ions and associated magnetic field behavior at a quasi-parallel earth's bow shock

    Science.gov (United States)

    Wilkinson, W. P.; Pardaens, A. K.; Schwartz, S. J.; Burgess, D.; Luehr, H.; Kessel, R. L.; Dunlop, M.; Farrugia, C. J.

    1993-01-01

    Attention is given to ion and magnetic field measurements at the earth's bow shock from the AMPTE-UKS and -IRM spacecraft, which were examined in high time resolution during a 45-min interval when the field remained closely aligned with the model bow shock normal. Dense ion beams were detected almost exclusively in the midst of short-duration periods of turbulent magnetic field wave activity. Many examples of propagation at large elevation angles relative to the ecliptic plane, which is inconsistent with reflection in the standard model shock configuration, were discovered. The associated waves are elliptically polarized and are preferentially left-handed in the observer's frame of reference, but are less confined to the maximum variance plane than other previously studied foreshock waves. The association of the wave activity with the ion beams suggests that the former may be triggered by an ion-driven instability, and possible candidates are discussed.

  3. Effect of variation in the glass-former network structure on the relaxation properties of conductive Ag+ ions in AgI-based fast ion conducting glasses

    Science.gov (United States)

    Hanaya, Minoru; Nakayama, Michiko; Hatate, Atsuo; Oguni, Masaharu

    1995-08-01

    Heat capacities and ac conductivities of AgI-based fast ion conducting glasses of AgI-Ag2O-P2O5 and AgI-Ag2O-B2O3 systems with different P-O or B-O network structures but with the same AgI concentration of 1.55×104 mol m-3 were measured in the temperature range 14-400 K and in the temperature and frequency ranges 100-200 K and 10 Hz-1 MHz, respectively. The β-glass transition due to a freezing-in of the rearrangement of Ag+ ions was observed by adiabatic calorimetry for the glasses in the liquid-nitrogen temperature region, and the conductometry was suggested to see the same mode of Ag+-ion motion as the calorimetry. It was found that the development of the network structure of the glass former at constant AgI concentration resulted in the decrease of the β-glass transition temperature and the activation energy for the diffusional motion of Ag+ ions and in the increase of the heat-capacity jump associated with the glass transition. The results support the amorphous AgI aggregate model for the structure of the conductive region in the glasses with relatively high AgI compositions, indicating that Ag+-ion conductivity is mainly dominated by the degree of development of the AgI aggregate region dependent on the glass-former network structure as well as the AgI composition.

  4. Oxygen ion implantation induced microstructural changes and electrical conductivity in Bakelite RPC detector material

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, K. V. Aneesh, E-mail: aneesh1098@gmail.com; Ravikumar, H. B., E-mail: hbr@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Mysore-570006 (India); Ranganathaiah, C., E-mail: cr@physics.uni-mysore.ac.in [Govt. Research Centre, Sahyadri Educational Institutions, Mangalore-575007 (India); Kumarswamy, G. N., E-mail: kumy79@gmail.com [Department of Studies in Physics, Amrita Vishwa Vidyapeetham, Bangalore-560035 (India)

    2016-05-06

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite Resistive Plate Chamber (RPC) detector materials were exposed to 100 keV Oxygen ion in the fluences of 10{sup 12}, 10{sup 13}, 10{sup 14} and 10{sup 15} ions/cm{sup 2}. Ion implantation induced microstructural changes have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and X-Ray Diffraction (XRD) techniques. Positron lifetime parameters viz., o-Ps lifetime and its intensity shows the deposition of high energy interior track and chain scission leads to the formation of radicals, secondary ions and electrons at lower ion implantation fluences (10{sup 12} to10{sup 14} ions/cm{sup 2}) followed by cross-linking at 10{sup 15} ions/cm{sup 2} fluence due to the radical reactions. The reduction in electrical conductivity of Bakelite detector material is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate implantation energy and fluence of Oxygen ion on polymer based Bakelite RPC detector material may reduce the leakage current, improves the efficiency, time resolution and thereby rectify the aging crisis of the RPC detectors.

  5. Thermal conductivity of cement stabilized earth bricks reinforced with date palm fiber

    Science.gov (United States)

    Berrehail, Tahar; Zemmouri, Noureddine; Agoudjil, Boudjemaa

    2018-05-01

    Recently, some cheap materials are available and adaptable to climate seem to meet current requirements. This paper investigates the thermal and mechanical properties of cement stabilized earth bricks(CSEB) reinforced with date palm fibers (DPF). The main goal is to develop and expand the field of use of these materials in the construction sector, and investigate the possibility of new bio composite as renewable, insulating building material with low cost, made of earth and reinforced with palm wood waste. In this study, a particular interest is brought to the thermal and mechanical characteristics, which constitute a decisive character for the choice of a building material. A series of earthen samples stabilized at 5% and reinforced with DPF of various fiber weight fractions, (5%, 10%), were manufactured and compacted applying two levels compacting, (5MPa and 10MPa). Compressive strength and thermal conductivity were experimentally studied; heating capacity and diffusivity were indirectly calculated. It was found that the fibrous reinforcement proved thermal conductivity and compressive strength. it also enhanced thermal performances. Thus, the results found allow us to investigate hygrothermal behaviour and its impact on occupants comfort.

  6. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  7. Structural and electrical evolution of He ion irradiated hydrocarbon films observed by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Fan, Hongyu; Yang, Deming; Sun, Li; Yang, Qi; Niu, Jinhai; Bi, Zhenhua; Liu, Dongping

    2013-01-01

    Polymer-like hydrocarbon films are irradiated with 100 keV He ion at the fluences of 1.0 × 10 15 –1.0 × 10 17 ions/cm 2 or at the irradiation temperature ranging from 25 to 600 °C. Conductive atomic force microscopy (CAFM) has been used to evaluate the nanoscale electron conducting properties of these irradiated hydrocarbon films. Nanoscale and conducting defects have been formed in the hydrocarbon films irradiated at a relatively high ion fluence (1.0 × 10 17 ions/cm 2 ) or an elevated sample temperature. Analysis indicates that He ion irradiation results in the evolution of polymer-like hydrocarbon into a dense structure containing a large fraction of sp 2 carbon clusters. The sp 2 carbon clusters formed in irradiated hydrocarbon films can contribute to the formation of filament-like conducting channels with a relatively high local field-enhancing factor. Measurements indicate that the growth of nanoscale defects due to He ion irradiation can result in the surface swelling of irradiated hydrocarbon films at a relatively high ion fluences or elevated temperature

  8. Structural and electrical evolution of He ion irradiated hydrocarbon films observed by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Yang, Deming [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Sun, Li [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Physics, Liaoning Normal University, Dalian 116023 (China); Yang, Qi; Niu, Jinhai; Bi, Zhenhua [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electronic Science, Aeronautics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-10-01

    Polymer-like hydrocarbon films are irradiated with 100 keV He ion at the fluences of 1.0 × 10{sup 15}–1.0 × 10{sup 17} ions/cm{sup 2} or at the irradiation temperature ranging from 25 to 600 °C. Conductive atomic force microscopy (CAFM) has been used to evaluate the nanoscale electron conducting properties of these irradiated hydrocarbon films. Nanoscale and conducting defects have been formed in the hydrocarbon films irradiated at a relatively high ion fluence (1.0 × 10{sup 17} ions/cm{sup 2}) or an elevated sample temperature. Analysis indicates that He ion irradiation results in the evolution of polymer-like hydrocarbon into a dense structure containing a large fraction of sp{sup 2} carbon clusters. The sp{sup 2} carbon clusters formed in irradiated hydrocarbon films can contribute to the formation of filament-like conducting channels with a relatively high local field-enhancing factor. Measurements indicate that the growth of nanoscale defects due to He ion irradiation can result in the surface swelling of irradiated hydrocarbon films at a relatively high ion fluences or elevated temperature.

  9. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  10. Studies on mixed ligand complexes of adenine and xanthine with some rare earth ions

    International Nuclear Information System (INIS)

    Rastogi, P.R.; Singh, Mamta; Nayan, Ram

    1993-01-01

    Interactions of 6-aminopurine (adenine, HA) and 2,6-dihydroxypurine (xanthine, HB) with trivalent rare earth ions Y, Tb, Dy, Ho, Er and Tm, have been studied by pH-titration methods in aqueous solution at 20 o (μ = 0.1 M KNO 3 ). The ligands in their mixtures with tripositive rare earth ions (M 3+ ) form a number of mixed ligand complexes, M 3+ -adenine-xanthine, M 3+ -(adenine) 2 -xanthine, M 3+ -adenine-(xanthine) 2 in addition to the binary complexes, M 3+ -(adenine), M 3+ -(adenine) 2 , M 3+ -(adenine) 3 , M 3+ -(xanthine), M 3+ -(xanthine) 2 and M 3+ -(xanthine) 3 . The stability constants of these complexes have been evaluated and the results discussed. (author). 13 refs., 1 fig., 1 tab

  11. Magnetic properties of Kramers rare earth ions in aluminium and gallium garnets

    International Nuclear Information System (INIS)

    Capel, H.

    1964-01-01

    The magnetic properties of Kramers rare earth ions in aluminium and gallium garnets (MAlG and MGaG) are discussed by means of a molecular field treatment. The symmetry properties of the space group permit to establish a parametrization for the magnetic dipolar and exchange couplings. The magnetic properties of the system can be expressed in terms of these parameters and the g factors of the rare earth ions. We have calculated the transition temperatures, the sub-lattice magnetizations, the susceptibility in the paramagnetic region and the antiferromagnetic susceptibility for a special type of magnetic ordering. The influence of the excited Kramers doublets is described by means of a generalization of the usual g tensor. (authors) [fr

  12. Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle.

    Science.gov (United States)

    Chang, Yun-Yuan; Hsieh, Wen-Pin; Tan, Eh; Chen, Jiuhua

    2017-04-18

    Earth's water cycle enables the incorporation of water (hydration) in mantle minerals that can influence the physical properties of the mantle. Lattice thermal conductivity of mantle minerals is critical for controlling the temperature profile and dynamics of the mantle and subducting slabs. However, the effect of hydration on lattice thermal conductivity remains poorly understood and has often been assumed to be negligible. Here we have precisely measured the lattice thermal conductivity of hydrous San Carlos olivine (Mg 0.9 Fe 0.1 ) 2 SiO 4 (Fo90) up to 15 gigapascals using an ultrafast optical pump-probe technique. The thermal conductivity of hydrous Fo90 with ∼7,000 wt ppm water is significantly suppressed at pressures above ∼5 gigapascals, and is approximately 2 times smaller than the nominally anhydrous Fo90 at mantle transition zone pressures, demonstrating the critical influence of hydration on the lattice thermal conductivity of olivine in this region. Modeling the thermal structure of a subducting slab with our results shows that the hydration-reduced thermal conductivity in hydrated oceanic crust further decreases the temperature at the cold, dry center of the subducting slab. Therefore, the olivine-wadsleyite transformation rate in the slab with hydrated oceanic crust is much slower than that with dry oceanic crust after the slab sinks into the transition zone, extending the metastable olivine to a greater depth. The hydration-reduced thermal conductivity could enable hydrous minerals to survive in deeper mantle and enhance water transportation to the transition zone.

  13. Observations of energetic helium ions in the Earth's radiation belts during a sequence of geomagnetic storms

    International Nuclear Information System (INIS)

    Spjeldvik, W.N.; Fritz, T.A.

    1981-01-01

    Every year a significant number of magnetic storms disturb the earth's magnetosphere and the trapped particle populations. In this paper, we present observations of energetic (MeV) helium ions made with Explorer 45 during a sequence of magnetic storms during June through December of 1972. The first of these storms started on June 17 and had a Dst index excursion to approx.190 gamma, and the MeV helium ions were perturbed primarily beyond 3 earth radii in the equatorial radiation belts with a typical flux increase of an order of magnitude at L = 4. The second storm period took place during August and was associated with very major solar flare activity. Although the Dst extremum was at best 35 gamma less than the June storm, this period can be characterized as irregular (or multi-storm) with strong compression of the magnetosphere and very large (order of magnitude) MeV helium ion flux enhancements down to Lapprox.2. Following this injection the trapped helium ion fluxes showed positive spectral slope with the peak beyond 3.15 MeV at L = 2.5; and at the lowest observable L shells (Lapprox.2--3) little flux decay (tau>100 days) was seen during the rest of the year. Any effects of two subsequent major magnetic storms in September and November were essentially undetectable in the prolonged after-effect of the August solar flare associated MeV helium ion injection. The helium ion radial profile of the phase space density showed a significant negative slope during this period, and we infer that radial diffusion constitutes a significant loss of helium ions on L shells above Lapprox. =4 during the aftermath of the August 1972 magnetic storm

  14. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    International Nuclear Information System (INIS)

    Yasukawa, Akemi; Kandori, Kazuhiko; Tanaka, Hidekazu; Gotoh, Keiko

    2012-01-01

    Highlights: ► LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. ► The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln 3+ contents. ► A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0–0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y 3+ , Gd 3+ , Dy 3+ , Er 3+ and Yb 3+ ) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([X Ln ]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [X Y ] ≤ 0.10 for substituting Y system and at [X Ln ] ≤ 0.01–0.03 for substituting the other Ln systems. LnPO 4 was mixed with LnCaHap at higher [X Ln ] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [X Y ] = 0–0.10 were investigated using XRD, TEM, ICP-AES, IR and TG–DTA in detail.

  15. Ion Composition and Energization in the Earth's Inner Magnetosphere and the Effects on Ring Current Buildup

    Science.gov (United States)

    Keika, K.; Kistler, L. M.; Brandt, P. C.

    2014-12-01

    In-situ observations and modeling work have confirmed that singly-charged oxygen ions, O+, which are of Earth's ionospheric origin, are heated/accelerated up to >100 keV in the magnetosphere. The energetic O+ population makes a significant contribution to the plasma pressure in the Earth's inner magnetosphere during magnetic storms, although under quiet conditions H+ dominates the plasma pressure. The pressure enhancements, which we term energization, are caused by adiabatic heating through earthward transport of source population in the plasma sheet, local acceleration in the inner magnetosphere and near-Earth plasma sheet, and enhanced ion supply from the topside ionosphere. The key issues regarding stronger O+ energization than H+ are non-adiabatic local acceleration, responsible for increase in O+ temperature, and more significant O+ supply than H+, responsible for increase in O+ density. Although several acceleration mechanisms and O+ supply processes have been proposed, it remains an open question what mechanism(s)/process(es) play the dominant role in stronger O+ energization. In this paper we summarize important spacecraft observations including those from Van Allen Probes, introduces the proposed mechanisms/processes that generate O+-rich energetic plasma population, and outlines possible scenarios of O+ pressure abundance in the Earth's inner magnetosphere.

  16. Study on the Effect of Frequency on Conductivity of Underground Strata in Coal Mine Through-the-earth Wireless Communication

    OpenAIRE

    Jinyi TAO; Yuchen ZHANG

    2014-01-01

    The relationship of conductivity and the frequency, which is of decisive significance in through-the-earth wireless communication in coal mine, is closely related to the options of frequency range in coal mine wireless communication. When through-the-earth wireless communication is applied, the electromagnetic waves need to spread in the semi-conductive medium rocks. The main factors affecting the electromagnetic wave propagation in rocks is the rock strata electromagnetic parameters. These p...

  17. Coprecipitation of rare earths in systems of three heterovalent ions with sulfates of alkali and alkaline-earth metals

    International Nuclear Information System (INIS)

    Bobrik, V.M.

    1977-01-01

    Co-precipitation of rare earth elements (REE) in milligram amounts (3x10 -3 -3x10 -1 M) with alkali earth (AEE) sulfates in presence of alkali metal ions has been studied, the AEE:REE ratios between the co-precipitator and a REE (up to 50:1) the latter can be co-precipitated quantitatively in presence of corresponding alkali metals linked with the AEE in the Periodic table by a diagonal, i.e. in presence of sodium in co-precipitation with calcium sulfate, potassium with strontium sulfate and rubidium with barium sulfate. Co-precipitation with sulfates of sodium and calcium occurs at temperatures above 85 deg C and presumably involves calcium semihydrate. In presence of an alkali metal REE co-precipitation with AEE becomes isomorphic, i.e. at different AEE:REE ratios the co-precipitation coefficient remains constant. In presence of corresponding alkali metals the decrease in effectiveness of co-precipitation with AEE in the La-Lu series is more pronounced

  18. Study on the Effect of Frequency on Conductivity of Underground Strata in Coal Mine Through-the-earth Wireless Communication

    Directory of Open Access Journals (Sweden)

    Jinyi TAO

    2014-09-01

    Full Text Available The relationship of conductivity and the frequency, which is of decisive significance in through-the-earth wireless communication in coal mine, is closely related to the options of frequency range in coal mine wireless communication. When through-the-earth wireless communication is applied, the electromagnetic waves need to spread in the semi-conductive medium rocks. The main factors affecting the electromagnetic wave propagation in rocks is the rock strata electromagnetic parameters. These parameters are magnetic permeability m (H/m, dielectric constant e (F/m and electrical conductivity s (S/m. In these parameters, electrical conductivity is not constant. Under the influence of various factors, it will be great changes. This paper, for the specific circumstances of coal mine rock, discuses and conduct dada mining the effect frequency on the electrical conductivity of underground rock in coal mine with through-the-earth wireless communication.

  19. Near Earth Inner-Source and Interstellar Pickup Ions Observed with the Hot Plasma Composition Analyzer of the Magnetospheric Multiscale Mission Mms-Hpca

    Science.gov (United States)

    Gomez, R. G.; Fuselier, S. A.; Mukherjee, J.; Gonzalez, C. A.

    2017-12-01

    Pickup ions found near the earth are generally picked up in the rest frame of the solar wind, and propagate radially outward from their point of origin. While propagating, they simultaneously gyrate about the magnetic field. Pickup ions come in two general populations; interstellar and inner source ions. Interstellar ions originate in the interstellar medium, enter the solar system in a neutral charge state, are gravitationally focused on the side of the sun opposite their arrival direction and, are ionized when they travel near the sun. Inner-source ions originate at a location within the solar system and between the sun and the observation point. Both pickup ion populations share similarities in composition and charge states, so measuring of their dynamics, using their velocity distribution functions, f(v)'s, is absolutely essential to distinguishing them, and to determining their spatial and temporal origins. Presented here will be the results of studies conducted with the four Hot Plasma Composition Analyzers of the Magnetospheric Multiscale Mission (MMS-HPCA). These instruments measure the full sky (4π steradians) distribution functions of near earth plasmas at a 10 second cadence in an energy-to-charge range 0.001-40 keV/e. The instruments are also capable of parsing this combined energy-solid angle phase space with 22.5° resolution polar angle, and 11.25° in azimuthal angle, allowing for clear measurement of the pitch angle scattering of the ions.

  20. Chalcogenide glasses as optical and ion-conducting materials. Kogaku oyobi ion dendo zairyo toshite no chalcogenide glass

    Energy Technology Data Exchange (ETDEWEB)

    Toge, N.; Minami, T. (Univ. of Osaka Prefecture, Osaka (Japan))

    1991-12-01

    Nonoxide glasses whose main constituent are chalcogen elements like S, Se, or Te etc. show a lot of various properties, for instance, high infrared transmittancy and semi-conductivity which are already well known. Additionally, the optical properties change a lot along with the phase transition's happening between crystal and noncrystal under comparative low temperature. Further, it is also observed that the glasses containing proper cation appear high ion-conductivity. This paper supplies a brief reviews of chalcogenide glasses used as materials for infrared fiber, phase transition optical memory and superionic conductor, wherein the former two have already on the stage of utilization, particularly the realization of a rewritable optical memory is possible by using chalcogenide glasses film, and ion-conductor is in the phase to have shown the possibility of high conductivity while the development thereof is being expected. 22 refs., 8 figs.

  1. Electromagnetic Ion Cyclotron Waves Detected by Kaguya and Geotail in the Earth's Magnetotail

    Science.gov (United States)

    Nakagawa, Tomoko; Nishino, Masaki N.; Tsunakawa, Hideo; Takahashi, Futoshi; Shibuya, Hidetoshi; Shimizu, Hisayoshi; Matsushima, Masaki; Saito, Yoshifumi

    2018-02-01

    Narrowband electromagnetic ion cyclotron waves first discovered by the Apollo 15 and 16 Lunar Surface Magnetometers were surveyed in the magnetic field data obtained by the Kaguya satellite at an altitude of ˜100 km above the Moon in the tail lobe and plasma sheet boundary layer of the Earth's magnetosphere. The frequencies of the waves were typically 0.7 times the local proton cyclotron frequency, and 75% of the waves were left hand polarized with respect to the background magnetic field. They had a significant compressional component and comprised several discrete packets. They were detected on the dayside, nightside, and above the terminator of the Moon, irrespective of the lunar magnetic anomaly, or the magnetic connection to the lunar surface. The waves with the same characteristics were detected by Geotail in the absence of the Moon in the magnetotail. The most likely energy source of the electromagnetic ion cyclotron waves is the ring beam ions in the plasma sheet boundary layer.

  2. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Yu Qiao

    2018-01-01

    Full Text Available Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research.

  3. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior may depend on the details of ion hydration....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS...... direct calculation of the number of M+ ions entering the film, and therefore the inserted M+ mass. The mass of the water molecules is calculated as a difference. The results yield the following primary hydration numbers: Li+: 5.5-5.6; Na+: 4.0-4.1; K+: 2.0-2.5; Rb+: 0.6-1.2; Cs+: ~0. The most important...

  4. Modifying the conductivity of polypyrrole through low-energy lead ion implantation

    International Nuclear Information System (INIS)

    Booth, Marsilea Adela; Leveneur, Jérôme; Costa, Alexsandro Santos; Kennedy, John; Harbison, SallyAnn; Travas-Sejdic, Jadranka

    2012-01-01

    Interest lies in the creation of novel nanocomposite materials obtained through mixing, impregnation or incorporation techniques. One such technique is ion implantation which possesses the potential for retaining properties from the base material and implanted material as well as any effects observed from combining the two. To this end low-energy (15 keV) implantation of lead ions of various fluences was performed in conducting polypyrrole films. The presence of lead-rich particles was evidenced through transmission electron microscopy. An interesting trend was observed between fluence and conductivity. Of the fluences tested, the optimum fluences of lead ion implantation in polypyrrole films for enhanced conductivity are 5 × 10 14 at. cm −2 and 2 × 10 15 at. cm −2 . The conductivity and stability appear to result from a combination of effects: polymer degradation arising from ion beam damage, an increase in charge-carriers (dications) present after implantation and precipitation of Pb-rich nanoparticles. Monitoring conductivity over time showed increased retention of conductivity levels after lead implantation. Improvements in stability for polypyrrole open avenues for application and bring polypyrrole one step closer to practical use. A mechanism is suggested for this advantageous retained conductivity. -- Highlights: ► Implanted and characterized polypyrrole films with Pb ions at different fluences. ► Samples indicate high conductivity when implanted with particular fluences. ► Increase in charge carriers and precipitation of conductive Pb-rich phase. ► Conductivity stability is higher for some implanted fluences than for pristine polypyrrole.

  5. Physicochemical, spectroscopic and electrochemical characterization of magnesium ion-conducting, room temperature, ternary molten electrolytes

    Science.gov (United States)

    Narayanan, N. S. Venkata; Ashok Raj, B. V.; Sampath, S.

    Room temperature, magnesium ion-conducting molten electrolytes are prepared using a combination of acetamide, urea and magnesium triflate or magnesium perchlorate. The molten liquids show high ionic conductivity, of the order of mS cm -1 at 298 K. Vibrational spectroscopic studies based on triflate/perchlorate bands reveal that the free ion concentration is higher than that of ion-pairs and aggregates in the melt. Electrochemical reversibility of magnesium deposition and dissolution is demonstrated using cyclic voltammetry and impedance studies. The transport number of Mg 2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.40. Preliminary studies on the battery characteristics reveal good capacity for the magnesium rechargeable cell and open up the possibility of using this unique class of acetamide-based room temperature molten electrolytes in secondary magnesium batteries.

  6. Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance

    Science.gov (United States)

    Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew

    2011-01-01

    Molecular dynamics simulations were carried out in order to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistant with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive.The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be non-conducting. The conductance of the hexamer was estimated to be 115+/-34 pS and 74+/-20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K(+) and Cl(-) with their first solvation shells intact. The free energy barrier encountered by K(+) is only 2.2 kcal/mol whereas Cl(-) encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics. keywords: ion channels, peptaibols, channel conductance, molecular dynamics

  7. Properties of grafted polymer metal complexes as ion exchangers and its electrical conductivity

    International Nuclear Information System (INIS)

    El-Arnaouty, M.B.; Abdel Ghaffar, A.M.; Eid, M.

    2011-01-01

    The polyelectrolyte has been prepared as a potential proton exchanger polymer by grafting of acrylic acid/acrylamide and acrylic acid/acrylonitrile comonomer onto low density polyethylene film via gamma radiation. The influence of grafting percent on the electrical conductivity was studied. The resulting polymers were then characterized by evaluating their physico-chemical properties such as ion exchange capacity, and electrical conductivity as a function of grafting yield. The grafted films at different compositions was characterized by FTIR, TGA and SEM. The ion exchange capacity (IEC) of the grafted film at grafting % (191) and monomer concentration ratio 50:50 for (LDPE-g-AAc/AAm) was found to be more than that for (LDPE-g-AAc/AN). The electrical conductivity was found to be greatly affected by the comonomer composition where it increased as the degree of grafting increased for all grafted films. After alkaline treatment with 3% KOH, the electrical conductivity of the grafted films found to be increased. The presence of potassium as counter ion maximized the electrical conductivity of the grafted films. The electrical conductivity of Cu-membrane complexes was higher than that of both Co and Ni complexes. The electrical conductivity increases by increasing both Cu ions content and temperature

  8. Thermal conductivity measurement of the He-ion implanted layer of W using transient thermoreflectance technique

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Shilian; Li, Yuanfei [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wang, Zhigang [Department of Electronic Engineering, Dalian University of Technology, Dalian 116024 (China); Jia, Yuzhen [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213 (China); Li, Chun [School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144 (China); Xu, Ben; Chen, Wanqi [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bai, Suyuan [School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029 (China); Huang, Zhengxing; Tang, Zhenan [Department of Electronic Engineering, Dalian University of Technology, Dalian 116024 (China); Liu, Wei, E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2017-02-15

    Transient thermoreflectance method was applied on the thermal conductivity measurement of the surface damaged layer of He-implanted tungsten. Uniform damages tungsten surface layer was produced by multi-energy He-ion implantation with thickness of 450 nm. Result shows that the thermal conductivity is reduced by 90%. This technique was further applied on sample with holes on the surface, which was produced by the He-implanted at 2953 K. The thermal conductivity decreases to 3% from the bulk value.

  9. A study of tritium behavior in lithium oxide by ion conductivity measurements

    International Nuclear Information System (INIS)

    Noda, Kenji; Ishii, Yoshinobu; Ohno, Hideo; Watanabe, Hitoshi

    1989-01-01

    Ion conductivity of lithium oxide (Li 2 O) irradiated with oxygen ions was measured to obtain information about the effects of irradiation on the behavior of lithium ions and tritium. The conductivity around 490 K decreased with the ion fluence, while around 440 K it increased. The decrease around 490 K and the increase around 440 K were assumed to be attributed to the F + centers and the unspecified radiation defects, respectively. From the point of view that the rate determinant in the mechanism of diffusion of lithium ions in Li 2 O leading to the ion conductivity is the same as that of tritium, the diffusivity of tritium is assumed to be as follows: the diffusivity of tritium is decreased by the F + centers in the range from 490 K to the temperature at which almost all of F + centers are recovered, while it is increased around 440 K by the unspecified radiation defects. In addition, effects of the irradiation on valence states of tritium (i.e., T + , T - ) were discussed in terms of the radiation defects. (orig.)

  10. Ion irradiation of rare-earth- and yttrium-titanate-pyrochlores

    International Nuclear Information System (INIS)

    Wang, S.X.; Wang, L.M.; Ewing, R.C.; Govindan Kutty, K.V.

    2000-01-01

    Pyrochlore, A 1-2 B 2 O 6 (O,OH,F) 0-1 , is an actinide-bearing phase in Synroc, a polyphase ceramic proposed for the immobilization of high level nuclear waste. Structural damage due to alpha-decay events can significantly affect the chemical and physical stability of the nuclear waste form. Pyrochlore can effectively incorporate a variety of actinides into its structure. Four titanate pyrochlores were synthesized with compositions of Gd 2 Ti 2 O 7 , Sm 2 Ti 2 O 7 , Eu 2 Ti 2 O 7 and Y 2 Ti 2 O 2 . These samples were irradiated with 1 MeV Kr + in order to simulate alpha-decay damage and were observed by in situ electron microscopy. Irradiations were conducted from 25 K to 1023 K. At room temperature, Gd-, Sm- and Eu-pyrochlores amorphized at a dose of ∼2x10 14 ions/cm 2 (∼0.5 dpa) and Y-pyrochlore amorphized at 4x10 14 ions/cm 2 (∼0.8 dpa). The amorphization dose became higher at elevated temperatures with different rates of increase for each composition. The critical temperatures for amorphization are ∼1100 K for Gd-, Sm-, Eu-pyrochlore and ∼780 K for Y-pyrochlore. The rare-earth-pyrochlores are more susceptible to amorphization and have higher critical temperatures than Y-pyrochlore. The difference in amorphization dose and critical temperature is attributed to the different cascade sizes caused by the different cation masses of the target. Based on a model of cascade quenching, the larger cascade is related to a lower amorphization dose and higher critical temperature. The irradiated materials were studied by electron diffraction and high-resolution electron microscopy. All the pyrochlores transformed to a fluorite substructure prior to the completion of amorphization of the observed regions. This transformation was caused by the disordering between cations and between oxygen and oxygen vacancies. The concurrence of cation disordering with amorphization suggests the partial recrystallization of the displacement cascades. Isolated cascade damage

  11. Ions upstream of the earth's bow shock: a theoretical comparison of alternative source populations

    International Nuclear Information System (INIS)

    Schwartz, S.J.; Thomsen, M.F.; Gosling, J.T.

    1983-01-01

    A theoretical framework is developed for studying trajectories of ions reflected or leaked upstream from the earth's bow shock and subject solely to the Lorentz force in a steady interplanetary magnetic field B and the V x B electric field. We include the effects of a sharp shock potential rise. Expressions are derived for the guiding center motion and gyromotion in a frame (the Hoffman-Teller frame) moving parallel to the shock surface with sufficient speed to transform the incident solar wind velocity into motion entirely along the interplanetary magnetic field: the appropriate equations are also provided to transform these motions back to the observer's frame. The utility of these expressions is illustrated by comparing the predicted upstream motions for four different source models for upstream ions: magnetic moment-conserving reflection of the solar wind ions, specular reflection of solar wind ions, magnetic moment-conserving leakage of magnetosheath ions, and leakage of magnetosheath ions parallel to the shock normal. This comparison reveals that, for identical geometries, the reflection models produce higher energies and/or gyromotion than do the leakage models. We further argue that in a single simple encounter with the shock, an ion should behave in an unmagnetized manner and hence should not conserve its magnetic moment. Conservation of magnetic moment, if it is to occur, would seem to require multiple encounters with the shock. We investigate the conditions under which such multiple encounters can occur and find that under most quasi-parallel geometries neither leaked nor reflected ions should probably conserve their magnetic moments

  12. A statistical study of the upstream intermediate ion boundary in the Earth's foreshock

    Directory of Open Access Journals (Sweden)

    K. Meziane

    1998-02-01

    Full Text Available A statistical investigation of the location of onset of intermediate and gyrating ion populations in the Earth's foreshock is presented based on Fixed Voltage Analyzer data from ISEE 1. This study reveals the existence of a spatial boundary for intermediate and gyrating ion populations that coincides with the reported ULF wave boundary. This boundary position in the Earth's foreshock depends strongly upon the magnetic cone angle θBX and appears well defined for relatively large cone angles, though not for small cone angles. As reported in a previous study of the ULF wave boundary, the position of the intermediate-gyrating ion boundary is not compatible with a fixed growth rate of the waves resulting from the interaction between a uniform beam and the ambient plasma. The present work examines the momentum associated with protons which travel along this boundary, and we show that the variation of the boundary position (or equivalently, the associated particle momentum with the cone angle is related to classical acceleration mechanisms at the bow shock surface. The same functional behavior as a function of the cone angle is obtained for the momentum predicted by an acceleration model and for the particle momentum associated with the boundary. However, the model predicts systematically larger values of the momentum than the observation related values by a constant amount; we suggest that this difference may be due to some momentum exchange between the incident solar-wind population and the backstreaming particles through a wave-particle interaction resulting from a beam plasma instability.Key words. Intermediate ion boundary · Statistical investigation · Earth's foreshock · ISEE 1 spacecraft

  13. A statistical study of the upstream intermediate ion boundary in the Earth's foreshock

    Directory of Open Access Journals (Sweden)

    K. Meziane

    Full Text Available A statistical investigation of the location of onset of intermediate and gyrating ion populations in the Earth's foreshock is presented based on Fixed Voltage Analyzer data from ISEE 1. This study reveals the existence of a spatial boundary for intermediate and gyrating ion populations that coincides with the reported ULF wave boundary. This boundary position in the Earth's foreshock depends strongly upon the magnetic cone angle θBX and appears well defined for relatively large cone angles, though not for small cone angles. As reported in a previous study of the ULF wave boundary, the position of the intermediate-gyrating ion boundary is not compatible with a fixed growth rate of the waves resulting from the interaction between a uniform beam and the ambient plasma. The present work examines the momentum associated with protons which travel along this boundary, and we show that the variation of the boundary position (or equivalently, the associated particle momentum with the cone angle is related to classical acceleration mechanisms at the bow shock surface. The same functional behavior as a function of the cone angle is obtained for the momentum predicted by an acceleration model and for the particle momentum associated with the boundary. However, the model predicts systematically larger values of the momentum than the observation related values by a constant amount; we suggest that this difference may be due to some momentum exchange between the incident solar-wind population and the backstreaming particles through a wave-particle interaction resulting from a beam plasma instability.

    Key words. Intermediate ion boundary · Statistical investigation · Earth's foreshock · ISEE 1 spacecraft

  14. Reflection of the solar wind ions at the earth's bow shock: energization

    International Nuclear Information System (INIS)

    Bonifazi, C.; Moreno, G.; Russell, C.T.

    1983-01-01

    The energies of the field-aligned proton beams observed upstream of the earth's bow shock are tested, on a statistical basis, against a simple reflection model. The comparison is carried out using both plasma and magnetic field data collected by the ISEE 2 spacecraft. The observations refer to the period from November 5 to December 20, 1977. According to this model, some of the solar wind protons incident upon the earth's shock front when reflected upstream gain energy by displacement parallel to the interplanetary electric field. The energy gained in the reflection can be described as a function of the angles between the interplanetary magnetic field, the solar wind bulk velocity, and the local shock normal. The task of finding these angles, i.e., the expected source point of the reflected ions at the earth's shock front, has been resolved using both the measured magnetic field direction and actual beam trajectory. The latter method, which takes into account the ion drift velocity, leads to a better agreement between theory and observations when far from the shock. In particular, it allows us to check the energies of the field-aligned beams even when they are observed far from the earth's bow shock (at distances up to 10-15 R/sub E/). We confirm, on a statistical basis, the test of the model recently carried out using the Los Alamos National Laboratory/Max-Planck-extraterrestrische observations on ISEE 1 and 2. We infer that reflected beams can sometimes propagate far upstream of the earth's bow shock without changing their energy properties

  15. Carbon nanotube: nanodiamond Li-ion battery cathodes with increased thermal conductivity

    Science.gov (United States)

    Salgado, Ruben; Lee, Eungiee; Shevchenko, Elena V.; Balandin, Alexander A.

    2016-10-01

    Prevention of excess heat accumulation within the Li-ion battery cells is a critical design consideration for electronic and photonic device applications. Many existing approaches for heat removal from batteries increase substantially the complexity and overall weight of the battery. Some of us have previously shown a possibility of effective passive thermal management of Li-ion batteries via improvement of thermal conductivity of cathode and anode material1. In this presentation, we report the results of our investigation of the thermal conductivity of various Li-ion cathodes with incorporated carbon nanotubes and nanodiamonds in different layered structures. The cathodes were synthesized using the filtration method, which can be utilized for synthesis of commercial electrode-active materials. The thermal measurements were conducted with the "laser flash" technique. It has been established that the cathode with the carbon nanotubes-LiCo2 and carbon nanotube layered structure possesses the highest in-plane thermal conductivity of 206 W/mK at room temperature. The cathode containing nanodiamonds on carbon nanotubes structure revealed one of the highest cross-plane thermal conductivity values. The in-plane thermal conductivity is up to two orders-of-magnitude greater than that in conventional cathodes based on amorphous carbon. The obtained results demonstrate a potential of carbon nanotube incorporation in cathode materials for the effective thermal management of Li-ion high-powered density batteries.

  16. Electrical conductivity and ion diffusion in porcine meniscus: effects of strain, anisotropy, and tissue region.

    Science.gov (United States)

    Kleinhans, Kelsey L; McMahan, Jeffrey B; Jackson, Alicia R

    2016-09-06

    The purpose of the present study was to investigate the effects of mechanical strain, anisotropy, and tissue region on electrical conductivity and ion diffusivity in meniscus fibrocartilage. A one-dimensional, 4-wire conductivity experiment was employed to measure the electrical conductivity in porcine meniscus tissues from two tissue regions (horn and central), for two tissue orientations (axial and circumferential), and for three levels of compressive strain (0%, 10%, and 20%). Conductivity values were then used to estimate the relative ion diffusivity in meniscus. The water volume fraction of tissue specimens was determined using a buoyancy method. A total of 135 meniscus samples were measured; electrical conductivity values ranged from 2.47mS/cm to 4.84mS/cm, while relative ion diffusivity was in the range of 0.235 to 0.409. Results show that electrical conductivity and ion diffusion are significantly anisotropic (pmeniscus fibrocartilage, which is essential in developing new strategies to treat and/or prevent tissue degeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Intermittent Contact Alternating Current Scanning Electrochemical Microscopy: A Method for Mapping Conductivities in Solid Li Ion Conducting Electrolyte Samples

    Energy Technology Data Exchange (ETDEWEB)

    Catarelli, Samantha Raisa; Lonsdale, Daniel [Uniscan Instruments Ltd., Macclesfield (United Kingdom); Cheng, Lei [Energy Storage and Distribution Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Materials Sciences and Engineering Department, University of California Berkeley, Berkeley, CA (United States); Syzdek, Jaroslaw [Bio-Logic USA LLC, Knoxville, TN (United States); Doeff, Marca, E-mail: mmdoeff@lbl.gov [Energy Storage and Distribution Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-03-31

    Intermittent contact alternating current scanning electrochemical microscopy (ic-ac-SECM) has been used to determine the electrochemical response to an ac signal of several types of materials. A conductive gold foil and insulating Teflon sheet were first used to demonstrate that the intermittent contact function allows the topography and conductivity to be mapped simultaneously and independently in a single experiment. Then, a dense pellet of an electronically insulating but Li ion conducting garnet phase, Al-substituted Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO), was characterized using the same technique. The polycrystalline pellet was prepared by classical ceramic sintering techniques and was comprised of large (~150 μm) grains. Critical information regarding the contributions of grain and grain boundary resistances to the total conductivity of the garnet phase was lacking due to ambiguities in the impedance data. In contrast, the use of the ic-ac-SECM technique allowed spatially resolved information regarding local conductivities to be measured directly. Impedance mapping of the pellet showed that the grain boundary resistance, while generally higher than that of grains, varied considerably, revealing the complex nature of the LLZO sample.

  18. On optimal length of hydrocarbon chain of fatty-acid collectors of rare earth ions

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Sazonova, V.F.; Markina, Eh.L.

    1978-01-01

    The mechanism of the effect of the length of alkyl chain in fatty-acid collectors on the efficiency of flotation separation of the ions of rare earth elements (REE) collected by them has been investigated. REE flotation separation was studied on gadolinium chloride. Aqueous solutions of potassium caprinata, indecanate, laurate, tridecanate, myristate, pentadecanate and palmitate were used as collectors of Gd ions. The interaction of Gd ions with these compounds proceeds rapidly and is accompanied by stable colloidal solutions of Gd soaps being formed. Infrared spectra and radiograms of the sublates have been studied. It has been found that, with the number of carbon atoms in the collector molecule increasing from 10 to 16, the rate of flotation separation of Gd ions from solutions with pH 6 and 8 at first practically does not change (for potassium caprinate, undecanate and laurate), then drops sharply (potassium tridecanate and myristate), after which is again increases sharply (potassium pentadecanata and palmitate). The separation rate of Gd ions does not rise in solutions with pH 10. The nature of the sublate is shown to be determined by the solubility of the corresponing fatty acids and gadolinium soaps

  19. Order-disorder phase transformation in ion-irradiated rare earth sesquioxides

    International Nuclear Information System (INIS)

    Tang, M.; Valdez, J. A.; Sickafus, K. E.; Lu, P.

    2007-01-01

    An order-to-disorder (OD) transformation induced by ion irradiation in rare earth (RE) sesquioxides, Dy 2 O 3 , Er 2 O 3 , and Lu 2 O 3 , was studied using grazing incidence x-ray diffraction and transmission electron microscopy. These sesquioxides are characterized by a cubic C-type RE structure known as bixbyite. They were irradiated with heavy Kr ++ ions (300 keV) and light Ne + ions (150 keV) at cryogenic temperature (∼120 K). In each oxide, following a relatively low ion irradiation dose of ∼2.5 displacements per atom, the ordered bixbyite structure was transformed to a disordered, anion-deficient fluorite structure. This OD transformation was found in all three RE sesquioxides (RE=Dy, Er, and Lu) regardless of the ion type used in the irradiation. The authors discuss the irradiation-induced OD transformation process in terms of anion disordering, i.e., destruction of the oxygen order associated with the bixbyite structure

  20. SURVEY OF THE SPECTRA OF THE DIVALENT RARE EARTH IONS IN CUBIC CRYSTALS

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Donald S. [Univ. of Chicago, IL (United States); Kiss, Zoltan J. [RCA Laboratories, Princeton, NJ (United States)

    1963-04-15

    The rare earth ions may exist in the divalent state in suitable host crystals such as CaF/sub 2/. All of the trivalent ions from La to Yb are reduced in situ to the divalent state in CaF/sub 2/ by gamma irradiation. The spectra of most of these ions show that the ground and first few excited states derive from f/sup n/ configurations, but the wesk absorption due to these is masked at higher energies by strong broad bands of the parity permitted f/sup n/ yields f/sup n-1/ d transitions. The excitation energy of these spectra have been calculated in a first approximation as the energy difference between the Hund Rule'' single determinant states of the configurations f/sup n -1/d and f/sup n/. This procedure satisfactorily accounts for the remarkable variations in the excitation energy in passing from one ion to the next in the series with the exception of Ge/ sup 2+/ Ce/sup 2+/, and Tb/sup 2+/, Ge/sup 2+/ probably has f/sup 7/d for its ground con figuration, while Ce/sup 2+/ and Tb/sup 2+/ are borderline cases. The spectral structure probably arises chiefly from the crystal field splitting of the d-orbital, since each ion in CaF/sub 2/ has a similar spectrum, and the spectra change drastically in sites of other than cubic symmetry. (auth)

  1. Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Petr, E-mail: petr.kostka@irsm.cas.cz [Institute of Rock Structure and Mechanics AS CR, V Holešovičkách 41, 182 09 Praha 8 (Czech Republic); Zavadil, Jiří [Institute of Photonics and Electronics AS CR, Chaberská 57, 182 51 Praha 8, Kobylisy (Czech Republic); Iovu, Mihail S. [Institute of Applied Physics, Academy of Sciences of Moldova, Str. Academiei 5, MD-28 Chisinau, Republic of Moldova (Moldova, Republic of); Ivanova, Zoya G. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Furniss, David; Seddon, Angela B. [Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2015-11-05

    Sulfide and oxysulfide bulk glasses Ga-La-S-O, Ge-Ga-S and Ge-Ga-As-S doped, or co-doped, with various rare-earth (RE{sup 3+}) ions are investigated for their room temperature transmission and low-temperature photoluminescence. Photoluminescence spectra are collected by using external excitation into the Urbach tail of the fundamental absorption edge of the host-glass. The low-temperature photoluminescence spectra are dominated by the broad-band luminescence of the host glass, with superimposed relatively sharp emission bands due to radiative transitions within 4f shells of RE{sup 3+} ions. In addition, the dips in the host-glass luminescence due to 4f-4f up-transitions of RE{sup 3+} ions are observed in the Ge-Ga-S and Ge-Ga-As-S systems. These superimposed narrow effects provide a direct experimental evidence of energy transfer between the host glass and respective RE{sup 3+} dopants. - Highlights: • An evidence of energy transfer from host-glass to doped-in RE ions is presented. • Energy transfer is manifested by dips in host-glass broad-band luminescence. • This channel of energy transfer is documented on selected RE doped sulfide glasses. • Photoluminescence spectra are dominated by broad band host-glass luminescence. • Presence of RE ions is manifested by superimposed narrow 4f-4f transitions.

  2. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models

    OpenAIRE

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2014-01-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to...

  3. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    International Nuclear Information System (INIS)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Khotyaintsev, Yuri V.; Dandouras, Iannis

    2013-01-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  4. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor [Research Centre for Astronomy and Earth Sciences, Geodetic and Geophysical Institute, Sopron (Hungary); Agapitov, Oleksiy; Krasnoselskikh, Vladimir [LPC2E/CNRS, F-45071 Orleans (France); Khotyaintsev, Yuri V. [Swedish Institute of Space Physics, SE- 751 21 Uppsala (Sweden); Dandouras, Iannis, E-mail: akis@ggki.hu, E-mail: Kis.Arpad@csfk.mta.hu [CESR, F-31028 Toulouse (France)

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  5. Spectroscopic study of trivalent rare earth ions in calcium nitrate hydrate melt

    International Nuclear Information System (INIS)

    Fujii, Toshiyuki; Asano, Hideki; Kimura, Takaumi; Yamamoto, Takeshi; Uehara, Akihiro; Yamana, Hajimu

    2006-01-01

    Influence of the water content to chemical status of trivalent rare earth ions in calcium nitrate hydrate melt was studied by spectroscopic techniques. Fluorescence spectrometry for Eu(III) in Ca(NO 3 ) 2 .RH 2 O and electronic absorption spectrometry for Nd(III) in Ca(NO 3 ) 2 .RH 2 O were performed for analyzing the changing coordination symmetries through the changes in their hypersensitive transitions. Raman spectroscopic study and EXAFS study were performed for Y(NO 3 ) 3 solutions and Y(III) in Ca(NO 3 ) 2 .RH 2 O for analyzing the oxygen bonding to Y(III). Luminescence lifetime study of Eu(III) and Dy(III) in Ca(NO 3 ) 2 .RH 2 O was performed for evaluating the hydration number changes. Results of these spectroscopic studies indicated that, with the decrease of water content (R), the hydration number decreases while the interaction between trivalent rare earth ion and nitrate ion increases. It was also revealed that the symmetry of the coordination sphere gets distorted gradually by this interaction

  6. Comparative study of ion cyclotron waves at Mars, Venus and Earth

    Science.gov (United States)

    Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.

    2011-08-01

    Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which

  7. The European Alps as an interrupter of the Earth's conductivity structures

    Science.gov (United States)

    Al-Halbouni, D.

    2013-07-01

    Joint interpretation of magnetotelluric and geomagnetic depth sounding results in the period range of 10-105 s in the Western European Alps offer new insights into the conductivity structure of the Earth's crust and mantle. This first large scale electromagnetic study in the Alps covers a cross-section from Germany to northern Italy and shows the importance of the alpine mountain chain as an interrupter of continuous conductors. Poor data quality due to the highly crystalline underground is overcome by Remote Reference and Robust Processing techniques and the combination of both electromagnetic methods. 3-D forward modeling reveals on the one hand interrupted dipping crustal conductors with maximum conductances of 4960 S and on the other hand a lithosphere thickening up to 208 km beneath the central Western Alps. Graphite networks arising from Palaeozoic sedimentary deposits are considered to be accountable for the occurrence of high conductivity and the distribution pattern of crustal conductors. The influence of huge sedimentary Molasse basins on the electromagnetic data is suggested to be minor compared with the influence of crustal conductors. Dipping direction (S-SE) and maximum angle (10.1°) of the northern crustal conductor reveal the main thrusting conditions beneath the Helvetic Alps whereas the existence of a crustal conductor in the Briançonnais supports theses about its belonging to the Iberian Peninsula. In conclusion the proposed model arisen from combined 3-D modeling of noise corrected electromagnetic data is able to explain the geophysical influence of various structural features in and around the Western European Alps and serves as a background for further upcoming studies.

  8. Flexible probe for measuring local conductivity variations in Li-ion electrode films

    Science.gov (United States)

    Hardy, Emilee; Clement, Derek; Vogel, John; Wheeler, Dean; Mazzeo, Brian

    2018-04-01

    Li-ion battery performance is governed by electronic and ionic properties of the battery. A key metric that characterizes Li-ion battery cell performance is the electronic conductivity of the electrodes, which are metal foils with thin coatings of electrochemically active materials. To accurately measure the spatial variation of electronic conductivity of these electrodes, a micro-four-line probe (μ4LP) was designed and used to non-destructively measure the properties of commercial-quality Li-ion battery films. This previous research established that the electronic conductivity of film electrodes is not homogeneous throughout the entirety of the deposited film area. In this work, a micro-N-line probe (μNLP) and a flexible micro-flex-line probe (μFLP) were developed to improve the non-destructive micro-scale conductivity measurements that we can take. These devices were validated by comparing test results to that of the predecessor, the micro-four-line probe (μ4LP), on various commercial-quality Li-ion battery electrodes. Results show that there is significant variation in conductivity on a millimeter and even micrometer length scale through the electrode film. Compared to the μ4LP, the μNLP and μFLP also introduce additional measurement configuration possibilities, while providing a more robust design. Researchers and manufacturers can use these probes to identify heterogeneity in their electrodes during the fabrication process, which will lead to the development of better batteries.

  9. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Inda, Yasushi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Katoh, Takashi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Baba, Mamoru [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)

    2007-12-06

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10{sup -3} S cm{sup -1} or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO{sub 2} positive electrode, a Li{sub 4}Ti{sub 5}O{sub 12} negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic. (author)

  10. Previously hidden low-energy ions: a better map of near-Earth space and the terrestrial mass balance

    International Nuclear Information System (INIS)

    André, Mats

    2015-01-01

    This is a review of the mass balance of planet Earth, intended also for scientists not usually working with space physics or geophysics. The discussion includes both outflow of ions and neutrals from the ionosphere and upper atmosphere, and the inflow of meteoroids and larger objects. The focus is on ions with energies less than tens of eV originating from the ionosphere. Positive low-energy ions are complicated to detect onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of volts. We have invented a technique to observe low-energy ions based on the detection of the wake behind a charged spacecraft in a supersonic ion flow. We find that low-energy ions usually dominate the ion density and the outward flux in large volumes in the magnetosphere. The global outflow is of the order of 10 26 ions s –1 . This is a significant fraction of the total number outflow of particles from Earth, and changes plasma processes in near-Earth space. We compare order of magnitude estimates of the mass outflow and inflow for planet Earth and find that they are similar, at around 1 kg s −1 (30 000 ton yr −1 ). We briefly discuss atmospheric and ionospheric outflow from other planets and the connection to evolution of extraterrestrial life. (invited comment)

  11. Radiation damage produced by swift heavy ions in rare earth phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Romanenko, Anton

    2017-02-13

    This work is devoted to the study of radiation damage produced by swift heavy ions in rare earth phosphates, materials that are considered as perspective for radioactive waste storage. Single crystals of rare earth phosphates were exposed to 2.1 GeV gold (Au) and 1.5 GeV xenon (Xe) ions of and analyzed mainly by Raman spectroscopy. All phosphates were found almost completely amorphous after the irradiation by 2.1 GeV Au ions at a fluence of 1 x 10{sup 13} ions/cm{sup 2}. Radiation-induced changes in the Raman spectra include the intensity decrease of all Raman bands accompanied by the appearance of broad humps and a reduction of the pronounced luminescence present in virgin samples. Analyzing the Raman peak intensities as a function of irradiation fluence allowed the calculation of the track radii for 2.1 GeV Au ions in several rare earth phosphates, which appear to be about 5.0 nm for all studied samples. Series of samples were studied to search for a trend of the track radius depending on the rare earth element (REE) cation. Among the monoclinic phosphates both Raman and small-angle X-ray scattering (SAXS) suggest no significant change of the track radius with increasing REE mass. In contrast, within the tetragonal phosphates Raman spectroscopy data suggests a possible slight decreasing trend of the track radius with the increase of REE atomic number. That finding, however, requires further investigation due to the low reliability of the qualitative Raman analysis. Detailed analysis of Raman spectra in HoPO{sub 4} showed the increase of peak width at the initial stage of the irradiation and subsequent decrease to a steady value at higher fluences. This observation suggested the existence of a defect halo around the amorphous tracks in HoPO{sub 4}. Raman peaks were found to initially shift to lower wavenumbers with reversing this trend at the fluence of 5 x 10{sup 11} for NdPO{sub 4} and 1 x 10{sup 12} ions/cm{sup 2} for HoPO{sub 4}. At the next fluence steps

  12. Radiation damage produced by swift heavy ions in rare earth phosphates

    International Nuclear Information System (INIS)

    Romanenko, Anton

    2017-01-01

    This work is devoted to the study of radiation damage produced by swift heavy ions in rare earth phosphates, materials that are considered as perspective for radioactive waste storage. Single crystals of rare earth phosphates were exposed to 2.1 GeV gold (Au) and 1.5 GeV xenon (Xe) ions of and analyzed mainly by Raman spectroscopy. All phosphates were found almost completely amorphous after the irradiation by 2.1 GeV Au ions at a fluence of 1 x 10 13 ions/cm 2 . Radiation-induced changes in the Raman spectra include the intensity decrease of all Raman bands accompanied by the appearance of broad humps and a reduction of the pronounced luminescence present in virgin samples. Analyzing the Raman peak intensities as a function of irradiation fluence allowed the calculation of the track radii for 2.1 GeV Au ions in several rare earth phosphates, which appear to be about 5.0 nm for all studied samples. Series of samples were studied to search for a trend of the track radius depending on the rare earth element (REE) cation. Among the monoclinic phosphates both Raman and small-angle X-ray scattering (SAXS) suggest no significant change of the track radius with increasing REE mass. In contrast, within the tetragonal phosphates Raman spectroscopy data suggests a possible slight decreasing trend of the track radius with the increase of REE atomic number. That finding, however, requires further investigation due to the low reliability of the qualitative Raman analysis. Detailed analysis of Raman spectra in HoPO 4 showed the increase of peak width at the initial stage of the irradiation and subsequent decrease to a steady value at higher fluences. This observation suggested the existence of a defect halo around the amorphous tracks in HoPO 4 . Raman peaks were found to initially shift to lower wavenumbers with reversing this trend at the fluence of 5 x 10 11 for NdPO 4 and 1 x 10 12 ions/cm 2 for HoPO 4 . At the next fluence steps peaks moved in the other direction, passed

  13. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    , and a secondary (or outer) solvation shell, consisting of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior...... may depend on the details of ion hydration. Although the solvation of alkali metal ions in aqueous solution has been discussed for many years, there is still no clear consensus. Part of the discrepancy is simply that different methods measure over different time scales, and therefore do...... not necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique...

  14. Ion distribution dynamics near the Earth's bow shock: first measurements with the 2D ion energy spectrometer CORALL on the INTERBALL/Tail-probe satellite

    Directory of Open Access Journals (Sweden)

    Yu. I. Yermolaev

    1997-05-01

    Full Text Available The dynamics of the ion distribution function near the Earth's bow shock is studied on the basis of quasi-3D measurements of ion energy spectra in the range of 30–24200 eV/q with the Russian-Cuban CORALL instrument on the INTERBALL/Tail-probe satellite. The instrument was designed for observations of magnetospheric plasma and measures ions, in an angular range of 36°–144° from the Earth-Sun direction. Ion populations generated by the Earth bow shock are often observed upstream from the bow shock. In the solar-wind stream compressed and heated by the passing of very dense magnetic cloud (CME, two types of these ion populations were measured upstream and before the bow shock crossing on 25 August 1995 at 07:37 UT. Both populations were observed in the energy range above 2 keV. At ~06:20 UT, when the angle between the direction of the interplanetary magnetic field and normal to the bow shock VBn was ≃ 43° the instrument observed a narrow, fast (~800 km/s field-aligned beam moving from the Earth. At ~07:30, when Bn ≃ 28°, the wide ion pitch-angle distribution was observed. A similar suprathermal ion population is observed in the magnetosheath simultaneously with the solar-wind ion population being heated and deflected from the Sun-Earth direction. The similarity of observations during the mentioned time-interval and under usual solar-wind conditions allows us to conclude that types of suprathermal ion populations upstream and downstream from the bow shock do not depend on the solar-wind disturbance generated by magnetic cloud.

  15. First-order Fermi acceleration of the diffuse ion population near the earth's bow shock

    Science.gov (United States)

    Forman, M. A.

    1981-01-01

    The flux of 30-65 keV particles observed by the ISEE-3 200 earth radii upstream is shown to be an upstream escape of the energetic ions in the earth's bow shock. A formal solution to the transport equation for the distribution function of energetic particles upstream from an isotropic monoenergetic source of particles/sq cm at a plane shock where the plasma changes speed is found, and escape conditions are defined. The efficiency of the acceleration is calculated to depend on the charge/particle, and fluxes near and far upstream of the shock are described analytically. Any model which takes into account shock acceleration by diffusive scattering with significant escape losses produces the observed spectrum close to the shock. The escape loss upstream is demonstrated to control the spectrum and the variation of flux and anisotropy with distance from the shock.

  16. Macroscopic ion acceleration associated with the formation of the ring current in the earth's magnetosphere

    International Nuclear Information System (INIS)

    Mauk, B.H.; Meng, C.I.

    1986-01-01

    As an illustration of the operation of macroscopic ion acceleration processes within the earth's magnetosphere, the paper reviews processes thought to be associated with the formation of the earth's ring-current populations. Arguing that the process of global, quasi-curl-free convection cannot explain particle characteristics observed in the middle (geosynchronous) to outer regions, it is concluded that the transport and energization of the seed populations that give rise to the ring-current populations come about in two distinct stages involving distinct processes. Near and outside the geostationary region, the energization and transport are always associated with highly impulsive and relatively localized processes driven by inductive electric fields. The subsequent adiabatic earthward transport is driven principally by enhanced, curl-free global convection fields. 58 references

  17. A new ion source for fission-yield measurements of rare-earth isotopes

    International Nuclear Information System (INIS)

    Pilzer, E.H.; Engler, G.

    1987-01-01

    A new integrated target-ion source for fission-yield measurements of rare-earth isotopes has been developed for the Soreq on-line isotope separator (SOLIS). The source is heated by electron bombardment to a temperature of 2400 0 C and ionization takes place in a rhenium hot cavity. To overcome the problem of impurities which reduce the ionization efficiency, a ZrC disk was inserted in the cavity. Calculations show that because of its high thermionic emission, ZrC enhances ionization performance considerably. For example, in the presence of 10 -5 mbar of cesium impurity, the ionization efficiency of a rhenium hot cavity for the rare-earth terbium is 6%. However, with a ZrC disk, the efficiency increases to 97%. (orig.)

  18. Electrical conduction in 100 keV Kr+ ion implanted poly (ethylene terephthalate)

    Science.gov (United States)

    Goyal, P. K.; Kumar, V.; Gupta, Renu; Mahendia, S.; Anita, Kumar, S.

    2012-06-01

    Polyethylene terephthalate (PET) samples have been implanted to 100 keV Kr+ ions at the fluences 1×1015-- 1×1016 cm-2. From I-V characteristics, the conduction mechanism was found to be shifted from ohmic to space charge limited conduction (SCLC) after implantation. The surface conductivity of these implanted samples was found to increase with increasing implantation dose. The structural alterations in the Raman spectra of implanted PET samples indicate that such an increase in the conductivity may be attributed to the formation of conjugated double bonded carbonaceous structure in the implanted layer of PET.

  19. Effect of the kind of alkaline and rare earth ions on the structure of a glass rich in earth; Effet de la nature des ions alcalins et alcalino-terreux sur la structure d un verre riche en terre

    Energy Technology Data Exchange (ETDEWEB)

    Quintas, Arnaud; Caurant, Daniel; Majerus, Odile [Laboratoire de Chimie Appliquee de l Etat Solide, UMR 7574, ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, (France); Lenoir, Marion; Dussossoy, Jean-Luc [Commissariat a l Energie Atomique, Centre d Etudes de la Vallee du Rhone, DIEC/SCDV/LEBM, 30207 Bagnols-sur-Ceze, (France); Charpentier, Thibault [Service de Chimie Moleculaire, DSM/DRECAM/CEA Saclay, 91191 Gif-sur-Yvette Cedex, (France); Neuville, Daniel R. [Laboratoire de Physique des Mineraux et des Magmas, UMR 7047-CNRS-IPGP, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05, (France); Gervais, C. [Laboratoire de Chimie de la matiere condensee, UMR7574, Universite Pierre et Marie Curie, 4 place Jussieu, F-75252 Paris Cedex 05, (France)

    2006-07-01

    In the framework of a structural study of a nuclear wastes containment glass of type alumino borosilicate and rich in rare earths, the influence of the kind of alkaline or rare earth ions is analyzed. For that, two glasses series have been prepared in which the Na{sup +} ion (respectively Ca{sup 2+} ions) present in the standard composition is totally substituted by another alkaline ion Li{sup +}, K{sup +}, Rb{sup +} or Cs{sup +} (respectively another rare earth ion Mg{sup 2+}, Sr{sup 2+} or Ba{sup 2+}). These glasses, analyzed by optical absorption, Raman and {sup 27}Al or {sup 11}B NMR spectroscopies have revealed the strong impact of the kind of the modifying ion as well as the structure of the vitreous lattice (variation of the ratio BO{sub 3}/BO{sub 4} and local variations of the polymerization degree) than the local surroundings of the rare earth (decrease of the covalency degree of the bond Nd-O with the increase of the field force of the modifying ion). (O.M.)

  20. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Yasukawa, Akemi, E-mail: yasukawa@cc.hirosaki-u.ac.jp [School of Home Economics, Faculty of Education, Hirosaki University, 1-bunkyo, Hirosaki, Aomori 036-8560 (Japan); Kandori, Kazuhiko [School of Chemistry, Osaka University of Education, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582 (Japan); Tanaka, Hidekazu [Department of Material Science, Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 (Japan); Gotoh, Keiko [Faculty of Human Life and Environment, Nara Women' s University, Kita-uoya-nishi, Nara 630-8506 (Japan)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. Black-Right-Pointing-Pointer The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln{sup 3+} contents. Black-Right-Pointing-Pointer A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0-0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y{sup 3+}, Gd{sup 3+}, Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+}) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([X{sub Ln}]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [X{sub Y}] {<=} 0.10 for substituting Y system and at [X{sub Ln}] {<=} 0.01-0.03 for substituting the other Ln systems. LnPO{sub 4} was mixed with LnCaHap at higher [X{sub Ln}] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [X{sub Y}] = 0-0.10 were investigated using XRD, TEM, ICP-AES, IR and TG-DTA in detail.

  1. Atomic Scale Picture of the Ion Conduction Mechanism in Tetrahedral Network of Lanthanum Barium Gallate

    Energy Technology Data Exchange (ETDEWEB)

    Jalarvo, Niina H [ORNL; Gourdon, Olivier [ORNL; Bi, Zhonghe [ORNL; Gout, Delphine J [ORNL; Ohl, Michael E [ORNL; Paranthaman, Mariappan Parans [ORNL

    2013-01-01

    Combined experimental study of impedance spectroscopy, neutron powder diffraction and quasielastic neutron scattering was performed to shed light into the atomic scale ion migration processes in proton and oxide ion conductor; La0.8Ba1.2GaO3.9 . This material consist of tetrahedral GaO4 units, which are rather flexible and rocking motion of these units promotes the ionic migration process. The oxide ion (vacancy) conduction takes place on channels along c axis, involving a single elementary step, which occurs between adjacent tetrahedron (inter-tetrahedron jump). The proton conduction mechanism consists of intra-tetrahedron and inter-tetrahedron elementary processes. The intra-tetrahedron proton transport is the rate-limiting process, with activation energy of 0.44 eV. The rocking motion of the GaO4 tetrahedron aids the inter-tetrahedral proton transport, which has the activation energy of 0.068 eV.

  2. All-solid-state ion-selective silicone rubber membrane electrodes with a new conducting polymer

    International Nuclear Information System (INIS)

    Park, Eun Rang; Chung, Yeon Joon; Hwang, Sun Woo

    2012-01-01

    New conducting polymers containing heterocyclic rings with carbazole, ethylene dioxythiophene (EDOT) and benzobisthiazole were synthesized and the characterized by using organic spectroscopic methods. Potentiometric ion-selective membrane electrodes (ISMEs) have been extensively used for ion analysis in clinical, environmental, and industrial fields owing to their wide response range (4 to 7 orders of magnitude), no effect of sample turbidity, fast response time, and ease of miniaturization. Considerable attention has been given to alternative use of room-temperature vulcanizing (RTV)-type silicone rubber (SR) owing to its strong adhesion and high thermal durability. Unfortunately, the high membrane resistance of SR-based ion-selective membranes (ISMs) (2 to 3 higher orders of magnitude compared to those of poly(vinyl chloride)(PVC)-based ones) has significantly restricted their application. Herein, we demonstrate a new method to reduce the membrane resistance via addition of a new conducting polymer into the SR-based ISMs.

  3. Mixed mobile ion effect on a.c. conductivity of boroarsenate glasses

    Indian Academy of Sciences (India)

    In this article we report the study of mixed mobile ion effect (MMIE) in boroarsenate glasses. DSC and a.c. electrical conductivity studies have been carried out for MgO–(25−)Li2O–50B2O3–25As2O3 glasses. It is observed that strength of MMIE in a.c. conductivity is less pronounced with increase in temperature and ...

  4. Dansyl - Substituted Aza Crown Ethers: Complexation with Alkali, Alkaline Earth Metal Ions and Ammonium

    Science.gov (United States)

    Deiab, Shihab; Archibong, Edikan; Tasheva, Donka; Mochona, Bereket; Gangapuram, Madhavi; Redda, Kinfe

    2011-01-01

    The present study investigates the binding properties of four dansyl substituted aza-crown ethers with alkali, alkaline earth metal ions and ammonium. The influence of the solvent polarity and protonation on the photophysical properties of the compounds was studied by UV/Vis and fluorescence methods. The host species caused only slight changes on the absorption spectra of the ligands. The fluorescence changes were more pronounced and concentration dependent thus allowing to calculate the binding constants of the process. The most stable complex under our working conditions was the one between Ba2+ and DNS18C6. PMID:21738561

  5. Mesocosm Community Response Sensitivities to Specific Conductivity Comprised of Different Major Ions

    Science.gov (United States)

    Traditional toxicity test assays have been used to evaluate the relative sensitivity to different major ion mixtures as a proxy for understanding what the response of aquatic species growing in their natural environment would be during exposure to specific conductivity stress ema...

  6. Equilibrium studies on mixed ligand complexes of some tripositive rare earth ions

    International Nuclear Information System (INIS)

    Vimal, Rashmi; Singh, Mamta; Ram Nayan

    1996-01-01

    Interaction of the rare earth ions, La 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ and Eu 3+ with the pair of ligands 1-amino-2-naphthol-4-sulphonic acid (an, H 2 A) and o-aminophenol (ap, HB) have been studied in aqueous solution at 25 degC (μ=0.1 M KNO 3 /NaCl). Equilibrium constants of the reactions involving the formations of the mixed ligand species MAB, MA 2 B 2- , MB 2 A - (M = metal ion) and the binary complexes containing up to three ligand molecules have been evaluated from the pH-metric data, and coordinating behaviour of the ligands in the formation of the mixed ligand complexes has been discussed. (author). 10 refs., 1 tab., 1 fig

  7. Equilibrium studies on interactions of rare earth ions with phytic acid

    International Nuclear Information System (INIS)

    Siddiqi, K.S.; Shah, S.A.; Aqra, F.M.A.M.; Tabassum, S.; Zaidi, S.A.A.; Benlian, D.

    1993-01-01

    The interaction between phytic acid and trivalent rare earth metal ions, viz., Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Gd 3+ , Tb 3+ , Dy 3+ and HO 3+ has been investigated potentiometrically at 25degC. The proton-ligand stability constants (pK Y H ) of phytic acid and the stability constants (logK) of metal complexes formed in aqueous medium (μ = 0.1 M NaClO 4 ) have been evaluated. The results indicate that eight protons of phytic acid are highly acidic, two are weakly acidic and two very weakly acidic, titrable in the pH ranges 1.2-4.9, 5.0-8.15 and 8.3-11.0 respectively. The stability of each phytic acid-lanthanide ion complex decreases with an increase in pH and follows the usual trend through the series. (author). 11 refs., 2 tabs

  8. Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions

    International Nuclear Information System (INIS)

    Auzel, F.

    1976-01-01

    Experimental demonstration of multiphonon-assisted anti-Stokes and Stokes excitation of rare-earth ions (R 3+ ) in different hosts, that is, in a weak-coupling ion-lattice interaction case, is obtained. An exponential behavior of excitation probabilities with respect to energy difference between excitation and electronic line is found just as for multiphonon-assisted nonradiative decay and energy transfer. Exponential parameters α/sub As/ and α/sub S/ for anti-Stokes and Stokes excitation are measured and linked to the Miyakawa-Dexter α parameter for decay, leading to estimates for Pekar-Huang-Rhys coupling parameter S 0 of about 0.04, in agreement with values obtained from one-phonon spectra or nonradiative-decay measurements. A semiempirical formula is deduced to obtain α from only one parameter, an effective phonon energy

  9. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H., E-mail: h-manjunath@blr.amrita.edu; Kumaraswamy, G. N. [Department of Physics, Amrita Vishwa Vidyapeetham, Bengaluru-560 035 (India); Damle, R. [Department of Physics, Bangalore University, Bengaluru-560 056 (India)

    2016-05-06

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10{sup −1} – 10{sup −3} Scm{sup −1}, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEO{sub x}NaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O{sup +1} ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  10. Nuclear Spin Lattice Relaxation and Conductivity Studies of the Non-Arrhenius Conductivity Behavior in Lithium Fast Ion Conducting Sulfide Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Benjamin Michael [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    As time progresses, the world is using up more of the planet's natural resources. Without technological advances, the day will eventually arrive when these natural resources will no longer be sufficient to supply all of the energy needs. As a result, society is seeing a push for the development of alternative fuel sources such as wind power, solar power, fuel cells, and etc. These pursuits are even occurring in the state of Iowa with increasing social pressure to incorporate larger percentages of ethanol in gasoline. Consumers are increasingly demanding that energy sources be more powerful, more durable, and, ultimately, more cost efficient. Fast Ionic Conducting (FIC) glasses are a material that offers great potential for the development of new batteries and/or fuel cells to help inspire the energy density of battery power supplies. This dissertation probes the mechanisms by which ions conduct in these glasses. A variety of different experimental techniques give a better understanding of the interesting materials science taking place within these systems. This dissertation discusses Nuclear Magnetic Resonance (NMR) techniques performed on FIC glasses over the past few years. These NMR results have been complimented with other measurement techniques, primarily impedance spectroscopy, to develop models that describe the mechanisms by which ionic conduction takes place and the dependence of the ion dynamics on the local structure of the glass. The aim of these measurements was to probe the cause of a non-Arrhenius behavior of the conductivity which has been seen at high temperatures in the silver thio-borosilicate glasses. One aspect that will be addressed is if this behavior is unique to silver containing fast ion conducting glasses. more specifically, this study will determine if a non-Arrhenius correlation time, τ, can be observed in the Nuclear Spin Lattice Relaxation (NSLR) measurements. If so, then can this behavior be modeled with a new single

  11. Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth's bow shock

    International Nuclear Information System (INIS)

    Lee, M.A.

    1982-01-01

    A self-consistent theory is presented for the excitation of hydromagnetic waves and the acceleration of diffuse ions upstream of the earth's bow shock in the quasi-equilibrium that results when the solar wind velocity and the interplanetary magnetic field are nearly parallel. For the waves the quasi-equilibrium results from a balance between excitation by the ions, which stream relative to the solar wind plasma, and convective loss to the magnetosheath. For the diffuse ions the quasi-equilibrium results from a balance between injection at the shock front, confinement to the foreshock by pitch angle scattering on the waves, acceleration by compression at the shock front, loss to the magnetosheath, loss due to escape upstream of the foreshock, and loss via diffusion perpendicular to the average magnetic field onto field lines that do not connect to the shock front. Diffusion equations describing the ion transport and wave kinetic equations describing the hydromagnetic wave transport are solved self-consistently to yield analytical expressions for the differential wave intensity spectrum as a function of frequency and distance from the bow shock z and for the ion omnidirectional distribution functions and anisotropies as functions of energy and z, In quantitative agreement with observations, the theory predicts (1) exponential spectra at the bow shock in energy per charge, (2) a decrease in intensity and hardening of the ion spectra with increasing z, (3) a 30-keV proton anisotropy parallel to z increasing from -0.28 at the bow shock to +0.51 as z→infinity (4) a linearly polarized wave intensity spectrum with a minimum at approx.6 x 10 -3 Hz and a maximum at approx.2--3 x 10 -2 Hz, (5) a decrease in the wave intensity spectrum with increasing z, (6) a total energy density in protons with energies >15 keV about eight times that in the hydromagnetic waves

  12. Review- Magnetic orientation and magnetic anisotropy in paramagnetic layered oxides containing rare-earth ions

    Directory of Open Access Journals (Sweden)

    Shigeru Horii, Atsushi Ishihara, Takayuki Fukushima, Tetsuo Uchikoshi, Hiraku Ogino, Tohru S Suzuki, Yoshio Sakka, Jun-ichi Shimoyama and Kohji Kishio

    2009-01-01

    Full Text Available The magnetic anisotropies and easy axes of magnetization at room temperature were determined, and the effects of rare-earth (RE ions were clarified for RE-based cuprates, RE-doped bismuth-based cuprates and RE-doped Bi-based cobaltite regarding the grain orientation by magnetic field. The easy axis, determined from the powder orientation in a static field of 10 T, depended qualitatively on the type of RE ion for all three systems. On the other hand, the magnetization measurement of the c-axis oriented powders, aligned in static or rotating fields, revealed that the type of RE ion strongly affected not only the directions of the easy axis but also the absolute value of magnetic anisotropy, and an appropriate choice of RE ion is required to minimize the magnetic field used for grain orientation. We also studied the possibility of triaxial grain orientation in high-critical-temperature superconductors by a modulated oval magnetic field. In particular, triaxial orientation was attempted in a high-oxygen-pressure phase of orthorhombic RE-based cuprates Y2Ba4Cu7Oy. Although the experiment was performed in epoxy resin, which is not practical, in-plane alignment within 3° was achieved.

  13. Experimental test of the electromagnetic ion cyclotron instability within the earth's magnetosphere

    International Nuclear Information System (INIS)

    Mauk, B.H.; McPherron, R.L.

    1980-01-01

    The ATS-6 geostationary satellite has observed many examples of propagating, electromagnetic Alfven/ion cyclotron waves in both plasma particle and magnetic field data. These waves have been viewed predominantly near the afternoon and dusk regions of the earth's magnetosphere with normalized frequencies (ω/Ω/sub H/ + ) ranging between 0.05 and 0.5. Viewed from an average geomagnetic latitude of +10 0 , the waves have only been observed to propagate northward, suggesting that they are generated within the equatorial or minimum BETA regions. Two wave events have been chosen for detailed analysis. Both events appeared coincidentally with the encounter of cool plasma populations (5 eV) which joined the hot populations already present (10--40 keV). These coincidences suggest the popular, yet largely untested, electromagnetic ion cyclotron instability as the wave generation mechanism. As a test of this hypothesis, ion cyclotron amplification profiles are obtained by evaluating the linear growth rate integrals under the measured, anisotropic hot ion distributions. The measured frequencies for both of the chosen events are in good agreement with the quite restricted values which correspond to the peaks of the amplification profiles. As a result of magnetic field inhomogeneities, the interactions remain within the linear regime

  14. Synthesis of rock-salt type lithium borohydride and its peculiar Li+ ion conduction properties

    Directory of Open Access Journals (Sweden)

    R. Miyazaki

    2014-05-01

    Full Text Available The high energy density and excellent cycle performance of lithium ion batteries makes them superior to all other secondary batteries and explains why they are widely used in portable devices. However, because organic liquid electrolytes have a higher operating voltage than aqueous solution, they are used in lithium ion batteries. This comes with the risk of fire due to their flammability. Solid electrolytes are being investigated to find an alternative to organic liquid. However, the nature of the solid-solid point contact at the interface between the electrolyte and electrode or between the electrolyte grains is such that high power density has proven difficult to attain. We develop a new method for the fabrication of a solid electrolyte using LiBH4, known for its super Li+ ion conduction without any grain boundary contribution. The modifications to the conduction pathway achieved by stabilizing the high pressure form of this material provided a new structure with some LiBH4, more suitable to the high rate condition. We synthesized the H.P. form of LiBH4 under ambient pressure by doping LiBH4 with the KI lattice by sintering. The formation of a KI - LiBH4 solid solution was confirmed both macroscopically and microscopically. The obtained sample was shown to be a pure Li+ conductor despite its small Li+ content. This conduction mechanism, where the light doping cation played a major role in ion conduction, was termed the “Parasitic Conduction Mechanism.” This mechanism made it possible to synthesize a new ion conductor and is expected to have enormous potential in the search for new battery materials.

  15. An Approach to Model Earth Conductivity Structures with Lateral Changes for Calculating Induced Currents and Geoelectric Fields during Geomagnetic Disturbances

    Directory of Open Access Journals (Sweden)

    Bo Dong

    2015-01-01

    Full Text Available During geomagnetic disturbances, the telluric currents which are driven by the induced electric fields will flow in conductive Earth. An approach to model the Earth conductivity structures with lateral conductivity changes for calculating geoelectric fields is presented in this paper. Numerical results, which are obtained by the Finite Element Method (FEM with a planar grid in two-dimensional modelling and a solid grid in three-dimensional modelling, are compared, and the flow of induced telluric currents in different conductivity regions is demonstrated. Then a three-dimensional conductivity structure is modelled and the induced currents in different depths and the geoelectric field at the Earth’s surface are shown. The geovoltages by integrating the geoelectric field along specific paths can be obtained, which are very important regarding calculations of geomagnetically induced currents (GIC in ground-based technical networks, such as power systems.

  16. Ion-beam-directed self-organization of conducting nanowire arrays

    International Nuclear Information System (INIS)

    Batzill, M.; Bardou, F.; Snowdon, K. J.

    2001-01-01

    Glancing-incidence ion-beam irradiation has been used both to ease kinetic constraints which otherwise restrict the establishment of long-range order and to impose external control on the orientation of nanowire arrays formed during stress-field-induced self-ordering of calcium atoms on a CaF 2 (111) surface. The arrays exhibit exceptional long-range order, with the long axis of the wires oriented along the azimuthal direction of ion-beam incidence. Transport measurements reveal a highly anisotropic electrical conductivity, whose maximum lies in the direction of the long axis of the 10.1-nm-period calcium wires

  17. High-performance ion-exchange chromatography of alkali metals with conductivity detection

    International Nuclear Information System (INIS)

    Ahmad, M.; Khan, A.R.

    1981-01-01

    High-performance ion-exchange chromatography of alkali metal and ammonium ions was studied using a conductivity meter as detector. Elution with 0.003 N mitric acid gave excellent resolution. Sensitivity levels, for a 200 micro litre injection, vary from 5 ppm for potassium to 0.1 ppm for lithium. A method to decrease retention times by reducing the exchange capacity of the cation exchange column used by loading it with calciumions, without affecting the resolation, has been described. Application of the method to water, soil and uranium dioxide samples has been demonstrated. (author)

  18. Dosimetric and kinetic parameters of lithium cadmium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    J. Anjaiah

    2014-10-01

    Full Text Available Thermoluminescence (TL characteristics of X-ray irradiated pure and doped with four different rare earth ions (viz., Pr3+, Nd3+, Sm3+ and Eu3+ Li2O–Cdo–B2O3 glasses have been studied in the temperature range 303–573 K; the pure glass has exhibited single TL peak at 466 K. When this glass is doped with different rare earth ions no additional peaks are observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve is found to be maximum for Eu3+ doped glasses. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen's formulae. The possible use of these glasses in radiation dosimetry has been described. The result clearly showed that europium doped cadmium borate glass has a potential to be considered as the thermoluminescence dosimeter.

  19. Forging Fast Ion Conducting Nanochannels with Swift Heavy Ions: The Correlated Role of Local Electronic and Atomic Structure

    Energy Technology Data Exchange (ETDEWEB)

    Sachan, Ritesh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Cooper, Valentino R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Liu, Bin [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Aidhy, Dilpuneet S. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Mechanical Engineering; Voas, Brian K. [Iowa State Univ., Ames, IA (United States). Dept. of Materials Science and Engineering; Lang, Maik [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Ou, Xin [Chinese Academy of Sciences (CAS), Shanghai (China). State Key Lab. of Functional Material for Informatics; Trautmann, Christina [GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Technical Univ. of Darmstadt (Germany). Dept. of Materials Science; Zhang, Yanwen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Chisholm, Matthew F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division; Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Material Science and Technology Division

    2016-12-19

    Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd2Ti2O7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic structure, which could provide a channel for fast oxygen conduction. In this paper, we provide insights into the subangstrom scale on the disordering-induced variations in the local atomic environment and its effect on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiOx polyhedral that exist in the amorphous and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd2Ti2O7. Finally, the correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction.

  20. Spectroscopic and visible luminescence properties of rare earth ions in lead fluoroborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Anjaiah, G. [Department of Physics, Osmania University, Hyderabad 500007 (India); Nayab Rasool, SK. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Kistaiah, P., E-mail: pkistaiah@yahoo.com [Department of Physics, Osmania University, Hyderabad 500007 (India)

    2015-03-15

    The lanthanide doped lead lithium calcium zinc fluoroborate glasses (LLCZFB:Ln) of composition 20PbF{sub 2}+10Li{sub 2}O+5Cao+5ZnO+59B{sub 2}O{sub 3}+1Ln{sub 2}O{sub 3} (where Ln=Sm, Eu and Dy in mol%) were prepared by conventional melt quench technique. The amorphous nature of these glasses was confirmed by X-ray diffraction studies. The glass transition temperatures (T{sub g}) were studied by DSC analysis. The glass structure and spectroscopic properties were investigated using optical absorption, vibrational and fluorescence spectra. The FT-IR spectra and Raman spectra reveal the presence of BO{sub 3}, BO{sub 4} and non-bridging oxygen's. The Judd–Ofelt intensity parameters Ω{sub λ} (λ=2, 4, 6) were determined from the spectral intensities of absorption bands. These parameters were used to calculate the radiative parameters such as radiative transition probability (A{sub R}), radiative life time (τ{sub R}) and branching ratio (β{sub r}) for various excited luminescent states of rare earth ions. The visible emission spectra for different rare earth ions were recorded by exciting the samples at different wavelengths and the decay rates for the different rare earth ions were measured. Using the emission spectra, full width half maxima (FWFM), stimulated emission cross section (σ{sup E}{sub p}) were evaluated. The nature of decay profiles of {sup 4}F{sub 9/2}, {sup 4}G{sub 5/2} and {sup 5}D{sub 0} states of Dy, Sm and Eu ions respectively are analyzed. Comparison of luminescence features of these glasses and also with those reported for different glass hosts indicates that the LLCZFB:Dy glass has strong luminescence in the visible region. - Highlights: • LLCZFB:Ln glasses are prepared with Ln: Sm, Eu and Dy. • Glasses are characterized by XRD, FTIR, Raman, absorption and emission spectra. • J–O theory is used to calculate different radiative properties. • Green, yellow and red emissions are observed. • Glasses are useful for the development

  1. Production and characterization of phosphorescent nanopowders doped with rare earth ions

    International Nuclear Information System (INIS)

    Montes, Paulo Jorge Ribeiro

    2009-01-01

    In this work the feasibility of employing the synthesis process using a methodology developed by Macedo and Sasaki (Macedo, M. A. e Sasaki, J. M. Fabrication process nano particulate powders. INPI 0203876-5 1998) to produce pore and rare earths doped ceramic nano powders of SrAl 2 O 4 and Ca 12 Al 14 O 33 was investigated. In this new methodology, coconut water is used as a start solvent for the production of the samples. Thermal analysis techniques were employed in order to obtain the best calcination conditions. The structural and microstructural characterizations of the samples were made using powder X-ray diffraction and Atomic Force Microscopy techniques. The analysis by X-ray diffraction showed the formation of the SrAl 2 O 4 and Ca 12 Al 14 O 33 phases in the calcined powders. The emission/excitation spectra exhibited the typical transitions of the rare earth elements indicating the incorporation of the dopant in the nano crystals. Emission characteristics of divalent europium show that the reduction of Eu ions is induced during the synthesis stage. The doped samples show an intense bright emission when exposed to X-rays. That emission is associated with divalent europium transitions, indicating that irradiation also induces the reduction of the valence state of Eu ions from Eu 3+ to Eu 2+ . Radioluminescence spectra (RL) versus time show a decay of the RL intensity to 40% of the initial intensity after 20 minutes of exposure to X-rays. Irradiation also causes a change in color of the samples indicating the production of radiation damage. Analysis of the results of X-ray spectroscopy (XAS- X-ray Absorption Spectroscopy) and the luminescent emission of samples excited by X-rays (XEOL - X-ray Excited Optical Luminescence) enabled the creation of a model that explains that behavior. DXAS technique (Dispersive X-ray Absorption Spectroscopy) was used to monitor the kinetics of the reduction process of Eu ions during irradiation, in order to verify the

  2. Ion conductivities of ZrF4-BaF2-CsF glasses

    International Nuclear Information System (INIS)

    Kawamoto, Yoji; Nohara, Ichiro

    1987-01-01

    The glass-forming region in the ZrF 4 -BaF 2 -CsF glass system has been determined and the ac conductivity and the transport number of fluoride ions have been measured. The conductivities of compounds β-Cs 2 ZrF 6 , α-SrZrF 6 , α-BaZrF 6 , β-BaZrF 6 and α-PbZrF 6 have also been measured. These results and a previous study of ZrF 4 -BaF 2 -MF n (M: the groups I-IV metals) glasses revealed the following: (1) the ZrF 4 -BaF 2 -CsF glasses are exclusively fluoride-ion conductors; (2) the ionic conductivities of ZrF 4 -based glasses are predominantly determined by the activation energies for conduction; (3) the activation energy for conduction decreases with an increase in the average polarizability of glass-constituting cations; (4) a decrease in average Zr-F bond length and a lowering of the average F coordination number of Zr are presumed to increase the activation energy for conduction. Principles of developing ZrF 4 -based glasses with higher conductivities have also been proposed. (Auth.)

  3. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  4. Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Lybye, D.; Bonanos, N.

    2004-01-01

    Many metal oxides of fluorite and perovskite related structures are oxide ion conductors, which have practical applications in devices such as oxygen sensors, solid oxide fuel cells (SOFC) and electrolysers. Several structural and thermodynamic parameters such as (1) critical radius of the pathway...... such parameters for fluorite and perovskite oxides by considering their sensitivities to the individual ionic radii. Based on experimental data available in the literature, it is argued that lattice distortion (lattice stress and deviation from cubic symmetry) due to ion radii mismatch determines the ionic...... conductivity to a very large extent, and that lattice distortion is of much greater importance than many other proposed parameters. In case of the perovskites, the charge of the B-site ion is also of major importance. (C) 2004 Published by Elsevier B.V....

  5. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    Directory of Open Access Journals (Sweden)

    Mahnaz M Abdi

    Full Text Available A new sensing area for a sensor based on surface plasmon resonance (SPR was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+ and Hg(2+ ions. The Pb(2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+ compared to Hg(2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  6. Determination of Monochloroacetic Acid in Swimming Pool Water by Ion Chromatography-Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Maria Pythias B. Espino

    2013-12-01

    Full Text Available In this study, an analytical method involving ion chromatography with conductivity detection was developed and optimized for the determination of monochloroacetic acid in swimming pool water. The ion chromatographic method has a detection limit of 0.02 mg L-1 and linear range of 0.05 to 1.0 mg L-1 with correlation coeff icient of 0.9992. The method is reproducible with percent RSD of 0.052% (n=10. The recovery of monochloroacetic acid spiked in different water types (bottled, tap and swimming pool water ranged from 28 to 122%. In dilute solutions, chloride and bromide were simultaneously analyzed along with monochloroacetic acid using the optimized method. Chloride and bromide have detection limits of 0.01 to 0.05 mg L-1, respectively. The usefulness of the ion chromatographic method was demonstrated in the analysis of monochloroacetic acid in swimming pool water samples. In such highly-chlorinated samples, an Ag/H cartridge was used prior to the ion chromatographic determination so as to minimize the signal due to chloride ion. Monochloroacetic acid was detected in concentrations between 0.020 and 0.093 mg L-1 in three of the six swimming pool water samples studied. The presence of monochloroacetic acid in the swimming pool water samples suggests the possible occurrence of other disinfection by-products in these waters.

  7. Determination of Monochloroacetic Acid in Swimming Pool Water by Ion Chromatography-Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Maria Pythias B. Espino

    2013-02-01

    Full Text Available In this study, an analytical method involving ion chromatography with conductivity detection was developed and optimized for the determination of monochloroacetic acid in swimming pool water. The ion chromatographic method has a detection limit of 0.02 mg L-1 and linear range of 0.05 to 1.0 mg L-1 with correlation coeff icient of 0.9992. The method is reproducible with percent RSD of 0.052% (n=10. The recovery of monochloroacetic acid spiked in different water types (bottled, tap and swimming pool water ranged from 28 to 122%. In dilute solutions, chloride and bromide were simultaneously analyzed along with monochloroacetic acid using the optimized method. Chloride and bromide have detection limits of 0.01 to 0.05 mg L-1, respectively. The usefulness of the ion chromatographic method was demonstrated in the analysis of monochloroacetic acid in swimming pool water samples. In such highly-chlorinated samples, an Ag/H cartridge was used prior to the ion chromatographic determination so as to minimize the signal due to chloride ion. Monochloroacetic acid was detected in concentrations between 0.020 and 0.093 mg L-1 in three of the six swimming pool water samples studied. The presence of monochloroacetic acid in the swimming pool water samples suggests the possible occurrence of other disinfection by-products in these waters.

  8. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    Science.gov (United States)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  9. A new model of Earth's radial conductivity structure derived from over 10 yr of satellite and observatory magnetic data

    DEFF Research Database (Denmark)

    Püthe, Christoph; Kuvshinov, Alexey; Khan, Amir

    2015-01-01

    We present a newmodel of the radial (1-D) conductivity structure of Earth's mantle. This model is derived frommore than 10 yr of magnetic measurements from the satellites ørsted, CHAMP, SAC-C and the Swarm trio as well as the global network of geomagnetic observatories. After removal of core...

  10. Modification and structuring of conducting polymer films on insulating substrates by ion beam treatment

    International Nuclear Information System (INIS)

    Asmus, T.; Wolf, Gerhard K.

    2000-01-01

    Besides the commonly used procedures of UV-, X-ray and electron beam lithography, surface structuring by ion beam processes represents an alternative route to receive patterns in the nanometre-micrometre scale. In this work we focused on changes of surface properties of the polymer materials induced by ion irradiation and on reproducing hexagonal and square patterns in the micrometre scale. To achieve a better understanding of modification and structuring of insulating and conducting polymers by ion beam treatment we investigated effects of 14 keV Ar + bombardment on thin films of doped conducting polyethoxithiophene (PEOT) and polyethylenedioxithiophene (PEDT) on polyethersulfone (PES) as insulating substrate within the fluence range from 10 14 to 10 17 ions/cm 2 . Changes of surface properties like wettability, solubility, topology and electrochemical behaviour have been studied by contact angle technique, AFM/LFM, cyclovoltammetry and electrochemical microelectrode. By irradiation through copper masks structured patterns were achieved. These patterns can be converted by galvanic or electroless copper deposition in structured metal layers

  11. Origins of energetic ions in the Earth's magnetosheath. Final Report, 8 May 1991 - 5 Jun. 1992

    International Nuclear Information System (INIS)

    Fuselter, S.A.; Shelley, E.G.; Klumpar, D.M.

    1992-06-01

    The analysis and interpretation of the combined scientific data from the Hot Plasma Composition Experiment (HPCE) and the Charge Energy Mass (CHEM) spectrometer on the Active Mesospheric Particle Tracer Experiment (AMPTE) Charge Composition Explorer (CCE) spacecraft are discussed. These combined data sets have and will be used to survey the energetic ion environment in the Earth's magnetosheath to determine the origins and relative strengths of the energetic ion populations found there. A computer code was developed to analyze and interpret the data sets. The focus of the first year was on the determination of the contribution of leaked magnetospheric protons to the total energetic proton population. Emphasis was placed on intervals when the AMPTE spacecraft was in the plasma depletion layer because it was argued that in this region, only the leaked population contributes to the energetic ion population. Manipulation of the CHEM data and comparison of the CHEM and HPCE data over their common energy range near the magnetopause also contributed directly to a second study of that region

  12. Electronic and ionic conductivity studies on microwave synthesized glasses containing transition metal ions

    Directory of Open Access Journals (Sweden)

    Basareddy Sujatha

    2017-01-01

    Full Text Available Glasses in the system xV2O5·20Li2O·(80 − x [0.6B2O3:0.4ZnO] (where 10 ≤ x ≤ 50 have been prepared by a simple microwave method. Microwave synthesis of materials offers advantages of efficient transformation of energy throughout the volume in an effectively short time. Conductivity in these glasses was controlled by the concentration of transition metal ion (TMI. The dc conductivity follows Arrhenius law and the activation energies determined by regression analysis varies with the content of V2O5 in a non-linear passion. This non-linearity is due to different conduction mechanisms operating in the investigated glasses. Impedance and electron paramagnetic resonance (EPR spectroscopic studies were performed to elucidate the nature of conduction mechanism. Cole–cole plots of the investigated glasses consist of (i single semicircle with a low frequency spur, (ii two depressed semicircles and (iii single semicircle without spur, which suggests the operation of two conduction mechanisms. EPR spectra reveal the existence of electronic conduction between aliovalent vanadium sites. Further, in highly modified (10V2O5 mol% glasses Li+ ion migration dominates.

  13. Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan

    Science.gov (United States)

    Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.

    2017-10-01

    Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.

  14. Identification of low-frequency kinetic wave modes in the Earth's ion foreshock

    Directory of Open Access Journals (Sweden)

    X. Blanco-Cano

    1997-03-01

    Full Text Available In this work we use ion and magnetic field data from the AMPTE-UKS mission to study the characteristics of low frequency (ωr « Ωp waves observed upstream of the Earth's bow shock. We test the application of various plasma-field correlations and magnetic ratios derived from linear Vlasov theory to identify the modes in this region. We evaluate (for a parameter space consistent with the ion foreshock the Alfvén ratio, the parallel compressibility, the cross-helicity, the noncoplanar ratio, the magnetic compression and the polarization for the two kinetic instabilities that can be generated in the foreshock by the interaction of hot diffuse ions with the solar wind: the left-hand resonant and the right-hand resonant ion beam instabilities. Comparison of these quantities with the observed plasma-field correlations and various magnetic properties of the waves observed during 10 intervals on 30 October 1984, where the waves are associated with diffuse ions, allows us to identify regions with Alfvénic waves and regions where the predominant mode is the right-hand resonant instability. In all the cases the waves are transverse, propagating at angles ≤ 33° and are elliptically polarized. Our results suggest that while the observed Alfvén waves are generated locally by hot diffuse ions, the right-handed waves may result from the superposition of waves generated by two different types of beam distribution (i.e. cold beam and diffuse ions. Even when there was good agreement between the values of observed transport ratios and the values given by the theory, some discrepancies were found. This shows that the observed waves are different from the theoretical modes and that mode identification based only on polarization quantities does not give a complete picture of the waves' characteristics and can lead to mode identification of waves whose polarization may agree with theoretical predictions even when other properties can diverge from those of the

  15. Identification of low-frequency kinetic wave modes in the Earth's ion foreshock

    Directory of Open Access Journals (Sweden)

    X. Blanco-Cano

    Full Text Available In this work we use ion and magnetic field data from the AMPTE-UKS mission to study the characteristics of low frequency (ωr « Ωp waves observed upstream of the Earth's bow shock. We test the application of various plasma-field correlations and magnetic ratios derived from linear Vlasov theory to identify the modes in this region. We evaluate (for a parameter space consistent with the ion foreshock the Alfvén ratio, the parallel compressibility, the cross-helicity, the noncoplanar ratio, the magnetic compression and the polarization for the two kinetic instabilities that can be generated in the foreshock by the interaction of hot diffuse ions with the solar wind: the left-hand resonant and the right-hand resonant ion beam instabilities. Comparison of these quantities with the observed plasma-field correlations and various magnetic properties of the waves observed during 10 intervals on 30 October 1984, where the waves are associated with diffuse ions, allows us to identify regions with Alfvénic waves and regions where the predominant mode is the right-hand resonant instability. In all the cases the waves are transverse, propagating at angles ≤ 33° and are elliptically polarized. Our results suggest that while the observed Alfvén waves are generated locally by hot diffuse ions, the right-handed waves may result from the superposition of waves generated by two different types of beam distribution (i.e. cold beam and diffuse ions. Even when there was good agreement between the values of observed transport ratios and the values given by the theory, some discrepancies were found. This shows that the observed waves are different from the theoretical modes and that mode identification based only on polarization quantities does not give a complete picture of the waves' characteristics and can lead to mode identification of waves whose polarization may agree with theoretical predictions even when

  16. Determination of anionic surfactants during wastewater recycling process by ion pair chromatography with suppressed conductivity detection

    Science.gov (United States)

    Levine, L. H.; Judkins, J. E.; Garland, J. L.; Sager, J. C. (Principal Investigator)

    2000-01-01

    A direct approach utilizing ion pairing reversed-phase chromatography coupled with suppressed conductivity detection was developed to monitor biodegradation of anionic surfactants during wastewater recycling through hydroponic plant growth systems and fixed-film bioreactors. Samples of hydroponic nutrient solution and bioreactor effluent with high concentrations (up to 120 mS electrical conductance) of inorganic ions can be analyzed without pretreatment or interference. The presence of non-ionic surfactants did not significantly affect the analysis. Dynamic linear ranges for tested surfactants [Igepon TC-42, ammonium lauryl sulfate, sodium laureth sulfate and sodium alkyl (C10-C16) ether sulfate] were 2 to approximately 500, 1 to approximately 500, 2.5 to approximately 550 and 3.0 to approximately 630 microg/ml, respectively.

  17. Decoupling ion conductivity and fluid permeation through optimizing hydrophilic channel morphology

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Peter Po-Jen, E-mail: pjchu@cc.ncu.edu.tw; Fang, Yu-Shin; Tseng, Yu-Chen [Department of Chemistry, National Central University, No. 300, Jhongda Rd., Jhongli City, Taoyuan County 32001, Taiwan (R.O.C.) (China)

    2016-05-18

    Approaches to improve membrane ion conductivity usually leads to higher degree of swelling, more serious fuel cross-over and often sacrificed membrane mechanical strength. Preserving all three main membrane properties is a tough challenge in searching high ion conducting fuel cell membrane. The long standing dilemma is resolved by decoupling ion conduction and fluid permeation property by creating optimized channel morphology using external electric field poling. Success of this approach is demonstrated in the proton conducting membrane composed of poly(ether sulfones) (PES) and sulfonated poly(ether ether ketone) (sPEEK, degree of sulfonation=50%) composites prepared under electric field poling condition. The external field enhanced the aromatic chain ordering from both sPEEK and PES and improved the miscibility. This induced interaction is conducive to the formation of more densely packed amorphous domains that eventually leads to preferentially ordered hydrophilic proton conducting channels having a average dimension (3 nm) smaller than that in generic sPEEK or Nafion. The narrower but more ordered channel displayed much lower methanol permeability (3.17×10{sup −7} cm{sup 2}/s), and lower swelling ratio (31.20%), while the conductivity (~10{sup −1} S/cm) is higher than that of Nafion, or sPEEK at higher (64%) degree of sulfonation. The composite is chemically stable and highly durable with improved membrane mechanical strength. Nearly 50% increase of DMFC power output is observed using this membrane, and the best power density is recorded at 155 mA/cm{sup 2} (80 °C, 1M Methanol).

  18. Effect of swift heavy O7+ ion radiations on conductivity of lithium based polymer blend electrolyte

    Science.gov (United States)

    Joge, Prajakta; Kanchan, D. K.; Sharma, Poonam; Jayswal, Manish; Avasthi, D. K.

    2014-07-01

    In the present work, effect of swift heavy O7+ ion of 80 MeV of different fluences, on conductivity of [PVA(47.5)-PEO(47.5)-LiCF3SO3(5)]-EC(8) polymeric films has been investigated using ac impedance spectroscopy. The power law exponent n, hopping frequency ωh and activation energies for conduction Eac and relaxation Ear, have been investigated for different fluences. The DSC measurements are carried out in order to investigate the variations in the degree of crystallinity and thermal parameters (Tm) of the blend specimen prior and after irradiation. The Fourier Transform Infrared (FT-IR) measurements are carried out in order to investigate the changes in the vibrational modes of molecules upon irradiation. The FT-IR measurements corroborate the formation of amorphous phase in the blend matrix after irradiation. The conductivity is found to be optimum at the fluence of 1×1012 ions/cm2. The enhancement and the improvement in the electrolytic properties of PVA-PEO blend upon O7+ ion irradiation have been observed.

  19. Ion-conduction mechanisms in NaSICON-type membranes for energy storage and utilization

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Anthony H. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States); Ihlefeld, Jon F. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States); Bartelt, Norman Charles [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States)

    2015-10-01

    Next generation metal-ion conducting membranes are key to developing energy storage and utilization technologies like batteries and fuel ce lls. Sodium super-ionic conductors (aka NaSICON) are a class of compounds with AM 1 M 2 (PO 4 ) 3 stoichiometry where the choice of "A" and "M" cation varies widely. This report, which de scribes substitutional derivatives of NZP (NaZr 2 P 3 O 12 ), summarizes the accomplishments of a Laboratory D irected Research and Development (LDRD) project to analyze transport mec hanisms using a combination of in situ studies of structure, composition, and bonding, com bined with first principles theory and modeling. We developed an experimental platform and applied methods, such as synchrotron- based X-ray spectroscopies, to probe the electronic structure of compositionally well-controlled NaSICON films while in operation ( i.e ., conducting Na ions exposed to oxygen or water va por atmospheres). First principles theory and modeling were used to interpret the experimental observations and develop an enhanced understanding of atomistic processes that give rise to, and affect, ion conduction.

  20. Transport and solid state battery characteristic studies of silver based super ion conducting glasses

    International Nuclear Information System (INIS)

    Jayaseelan, S.; Muralidharan, P.; Venkateswarlu, M.; Satyanarayana, N.

    2005-01-01

    Silverarsenotellurite (SAT), silverphosphotellurite (SPT) and silvervanadotellurite (SVT) quaternary glass systems were prepared with various formers compositions by a melt quenching method. Glass nature, glass transition temperature (T g ) and structure of the prepared glasses were identified respectively by X-ray diffraction (XRD), differential scanning calorimetric (DSC) and Fourier transform infrared (FT-IR) technique. Electrical conductivity studies were carried out by impedance measurement in the frequency range 40 Hz to 100 KHz at different temperatures for all three sets of AgI-Ag 2 O-[TeO 2 -M 2 O 5 ] (M 2 O 5 = As 2 O 5 , P 2 O 5 , V 2 O 5 ) glasses. The high conducting compositions of SAT, SPT and SVT glass samples were fixed from the results of total conductivity (σ t ). Electronic conductivity (σ e ) studies were made on high conducting composition of each glass system by Wagner's polarization method. Total current (i t ) is due to ion and electron. Electronic current (i e ) due to electron were estimated through mobility studies. Ionic conductivity (σ i ) and ionic current (i i ) were calculated respectively using the conductivity (σ t and σ e ) and current (i t and i e ) results for the SAT, SPT and SVT glasses. Transport numbers due to ion (t i ) and electron (t e ) were calculated using the conductivity and mobility results for each glass system. The high conducting composition of the SAT, SPT and SVT glasses were used as solid electrolytes with silver metal as an anode and iodine:graphite (I:C) as a cathode for the fabrication of solid state batteries (SSBs). All the fabricated batteries were characterized by measuring the open circuit voltage (OCV) and polarization properties and estimated the batteries performances

  1. Study about ion exchange for decreasing the conductivity of water in power plant and refineries

    International Nuclear Information System (INIS)

    Khosravi, M.; Samani; Hajihosseini, N.

    2002-01-01

    Water has been used directly or indirectly for industries, its use would be in factories: such as steam or as a cooler or the product of the industrial material. water is used more than other material in many industries and what ever is obtained as the effect of industrial activities, it is destabilising like waste. By the control of P H and reducing (total dissolved solid) of water or decreasing conductivity of water, we can protect boiler from corrosion. We want to study this article for different method of decreasing (TDS) in order to produce <1μs/cm conductivity. The suitable method which is ion exchange system will be selected

  2. Solid electrolyte batteries and fast ion conducting glasses, factors affecting a proposed merger

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, D R; Tuller, H L; Button, D P; Valez, M [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Materials Science and Engineering

    1983-01-01

    The present paper is concerned with advanced battery systems employing glass as a solid electrolyte. After an initial discussion of battery systems employing solid electrolytes, and of the attractive features offered by glass electrolytes, consideration is given to batteries fabricated with such electrolytes and to their performance characteristics. Subsequent discussion is directed to the two principal characteristics of glasses which are critical to their use as solid electrolytes - viz., their electrical conductivity and resistance to corrosive attack. The present state of knowledge in each of these areas is summarized, with particular focus on glasses with exceptionally high ionic conductivities - so-called fast ion conductors or FIC's.

  3. Divalent Cations Regulate the Ion Conductance Properties of Diverse Classes of Aquaporins

    Directory of Open Access Journals (Sweden)

    Mohamad Kourghi

    2017-11-01

    Full Text Available Aquaporins (AQPs are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2, AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophila melanogaster DmBIB were expressed in Xenopus oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+ on ionic conductances. AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+ caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+ (AtPIP2;1 and AtPIP2;2 showed a distinctive relief of the Ca2+ block by co-application of excess Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent cations may enable the discovery of other classes of AQP ion channels, and facilitate the development of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse applications including improving salinity tolerance in plants, controlling vector-borne diseases, and intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular or renal dysfunction.

  4. First simultaneous detection of terrestrial ionospheric molecular ions in the Earth's inner magnetosphere and at the Moon

    Science.gov (United States)

    Dandouras, I.; Poppe, A. R.; Fillingim, M. O.; Kistler, L. M.; Mouikis, C. G.; Rème, H.

    2017-09-01

    First coordinated observation of escaping heavy molecular ions in the Earth's inner magnetosphere and at the Moon. Quantifying the underlying escape mechanisms is important in order to understand the long-term (billion years scale) evolution of the atmospheric composition, and in particular the evolution of the N/O ratio, which is essential for habitability. Terrestrial heavy ions, transported to the Moon, suggest also that the Earth's atmosphere of billions of years ago may be preserved on the present-day lunar regolith.

  5. Optical spectroscopy of rare earth ion-doped TiO2 nanophosphors.

    Science.gov (United States)

    Chen, Xueyuan; Luo, Wenqin

    2010-03-01

    Trivalent rare-earth (RE3+) ion-doped TiO2 nanophosphors belong to one kind of novel optical materials and have attracted increasing attention. The luminescence properties of different RE3+ ions in various TiO2 nanomaterials have been reviewed. Much attention is paid to our recent progresses on the luminescence properties of RE3+ (RE = Eu, Er, Sm, Nd) ions in anatase TiO2 nanoparticles prepared by a sol-gel-solvothermal method. Using Eu3+ as a sensitive optical probe, three significantly different luminescence centers of Eu3+ in TiO2 nanoparticles were detected by means of site-selective spectroscopy at 10 K. Based on the crystal-field (CF) splitting of Eu3+ at each site, C2v and D2 symmetries were proposed for Eu3+ incorporated at two lattice sites. A structural model for the formation of multiple sites was proposed based on the optical behaviors of Eu3+ at different sites. Similar multi-site luminescence was observed in Sm(3+)- or Nd(3+)-doped TiO2 nanoparticles. In Eu(3+)-doped TiO2 nanoparticles, only weak energy transfer from the TiO2 host to the Eu3+ ions was observed at 10 K due to the mismatch of energy between the TiO2 band-gap and the Eu3+ excited states. On the contrary, efficient host-sensitized luminescences were realized in Sm(3+)- or Nd(3+)-doped anatase TiO2 nanoparticles due to the match of energy between TiO2 band-gap and the Sm3+ and Nd3+ excited states. The excitation spectra of both Sm(3+)- and Nd(3+)-doped samples exhibit a dominant broad peak centered at approximately 340 nm, which is associated with the band-gap of TiO2, indicating that sensitized emission is much more efficient than direct excitation of the Sm3+ and Nd3+ ions. Single lattice site emission of Er3+ in TiO2 nanocrystals can be achieved by modifying the experimental conditions. Upon excitation by a Ti: sapphire laser at 978 nm, intense green upconverted luminescence was observed. The characteristic emission of Er3+ ions was obtained both in the ultraviolet-visible (UV-vis) and

  6. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices

    International Nuclear Information System (INIS)

    Shukur, M.F.; Kadir, M.F.Z.

    2015-01-01

    Highlights: • Cation transference number of the highest conducting starch-chitosan-NH 4 Cl-glycerol electrolyte is 0.56. • LSV has shown that the polymer electrolyte is suitable for fabrication of EDLC and proton batteries. • The fabricated EDLC has been charged and discharged for 500 cycles. • Secondary proton battery has been charged and discharged for 40 cycles. - Abstract: This paper reports the characterization of starch-chitosan blend based solid polymer electrolyte (SPE) system and its application in electrochemical double layer capacitor (EDLC) and proton batteries. All the SPEs are prepared via solution cast technique. Results from X-ray diffraction (XRD) verify the conductivity result from our previous work. Scanning electron microscopy (SEM) analysis shows the difference in the electrolyte's surface with respect to NH 4 Cl and glycerol content. From transference number measurements (TNM), transference number of ion (t ion ) of the electrolytes shows that ion is the dominant conducting species. Transference number of cation (t + ) for the highest conducting electrolyte is found to be 0.56. Linear sweep voltammetry (LSV) result confirms the suitability of the highest conducting electrolyte to be used in the fabrication of EDLC and proton batteries. The EDLC has been characterized using cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. The open circuit potential (OCP) of the primary proton batteries for 48 h is lasted at (1.54 ± 0.02) V, while that of secondary proton batteries is lasted at (1.58 ± 0.01) V. The primary proton batteries have been discharged at different constant currents. The secondary proton battery has been charged and discharged for 40 cycles

  7. REDOX BEHAVIOR AND DIFFUSIVITY OF ANTIMONY AND CERIUM ION IN ALKALI ALKALINE EARTH SILICATE GLASS MELTS

    Directory of Open Access Journals (Sweden)

    K. D. Kim

    2010-03-01

    Full Text Available Redox behavior and diffusivity of antimony and cerium ion in alkali alkaline earth silicate CRT (Cathode Ray Tube model glass melts were studied by means of square wave voltammetry under the frequency range of 5-1000 Hz and in the temperature range of 800-1400°C. According to voltammogram, peaks due to Sb³⁺/Sb⁰ were positioned in the negative potential region while peaks due to Sb⁵⁺/Sb³⁺ and Ce⁴⁺/Ce³⁺ were found in the positive potential region. By using some equations, correlation for peak potential versus temperature and peak current versus reciprocal frequency was examined, respectively. Their correlation showed a linear relation in the applied temperature and frequency range. Based on the linear relationship, thermodynamic and kinetic properties for each redox reaction were suggested.

  8. Interaction between rare-earth ions and amorphous silicon nanoclusters produced at low processing temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, A. [Department of Physics, University of Alberta, Edmonton, T6G2J1 (Canada)]. E-mail: ameldrum@ualberta.ca; Hryciw, A. [Department of Physics, University of Alberta, Edmonton, T6G2J1 (Canada); MacDonald, A.N. [Department of Physics, University of Alberta, Edmonton, T6G2J1 (Canada); Blois, C. [Department of Physics, University of Alberta, Edmonton, T6G2J1 (Canada); Clement, T. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6G2V4 (Canada); De Corby, R. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, T6G2V4 (Canada); Wang, J. [Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong (China); Li Quan [Department of Physics, Chinese University of Hong Kong, Shatin, Hong Kong (China)

    2006-12-15

    Temperatures of 1000 deg. C and higher are a significant problem for the incorporation of erbium-doped silicon nanocrystal devices into standard silicon technology, and make the fabrication of contacts and reflectors in light emitting devices difficult. In the present work, we use energy-filtered TEM imaging techniques to show the formation of size-controlled amorphous silicon nanoclusters in SiO films annealed between 400 and 500 deg. C. The PL properties of such films are characteristic of amorphous silicon, and the spectrum can be controlled via a statistical size effect-as opposed to quantum confinement-that has previously been proposed for porous amorphous silicon. Finally, we show that amorphous nanoclusters sensitize the luminescence from the rare-earth ions Er, Nd, Yb, and Tm with excitation cross-sections similar in magnitude to erbium-doped silicon nanocrystal composites, and with a similar nonresonant energy transfer mechanism.

  9. Electrochemical studies of ferrocene in a lithium ion conducting organic carbonate electrolyte

    International Nuclear Information System (INIS)

    Laoire, Cormac O.; Plichta, Edward; Hendrickson, Mary; Mukerjee, Sanjeev; Abraham, K.M.

    2009-01-01

    We carried out a detailed study of the kinetics of oxidation of ferrocene (Fc) to ferrocenium ion (Fc + ) in the non-aqueous lithium ion conducting electrolyte composed of a solution of 1 M LiPF 6 in 1:1 EC:EMC solvent mixture. This study using cyclic (CV) and rotating disk electrode (RDE) voltammetry showed that the Fc 0 /Fc + redox couple is reversible in this highly concentrated electrolyte. The ferrocene and ferrocenium ion diffusion coefficients (D) were calculated from these results. In addition, the electron transfer rate constant (k 0 ) and the exchange current density for the oxidation of ferrocene were determined. A comparison of the kinetic data obtained from the two electrochemical techniques appears to show that the data from the RDE experiments are more reliable because they are collected under strict mass transport control. A Tafel slope of c.a. 79 mV/decade and a transfer coefficient α of 0.3 obtained from analysis of the RDE data for ferrocene oxidation suggest that the structure of the activated complex is closer to that of the oxidized specie due to strong interactions with the carbonate solvents. The experiments reported here are relevant to the study of redox reagents for the chemical overcharge protection of Li-ion batteries.

  10. High energy (MeV) ion-irradiated π-conjugated polyaniline: Transition from insulating state to carbonized conducting state

    International Nuclear Information System (INIS)

    Park, S.K.; Lee, S.Y.; Lee, C.S.; Kim, H.M.; Joo, J.; Beag, Y.W.; Koh, S.K.

    2004-01-01

    High energy (MeV) C 2+ , F 2+ , and Cl 2+ ions were irradiated onto π-conjugated polyaniline emeraldine base (PAN-EB) samples. The energy of an ion beam was controlled to a range of 3-4.5 MeV, with the ion dosage varying from 1x10 12 to 1x10 16 ions/cm 2 . The highest dc conductivity (σ dc ) at room temperature was measured to be ∼60 S/cm for 4.5 MeV Cl 2+ ion-irradiated PAN-EB samples with a dose of 1x10 16 ions/cm 2 . We observed the transition of high energy ion-irradiated PAN-EB samples from insulating state to conducting state as a function of ion dosage based on σ dc and its temperature dependence. The characteristic peaks of the Raman spectrum of the PAN-EB samples were reduced, while the D-peak (disordered peak) and the G peak (graphitic peak) appeared as the ion dose increased. From the analysis of the D and G peaks of the Raman spectra of the systems compared to multiwalled carbon nanotubes, ion-irradiated graphites, and annealed carbon films, the number of the clusters of hexagon rings with conducting sp 2 -bonded carbons increased with ion dosage. We also observed the increase in the size of the nanocrystalline graphitic domain of the systems with increasing ion dosage. The intensity of normalized electron paramagnelic resonance signal also increased in correlation with ion dose. The results of this study demonstrate that π-conjugated pristine PAN-EB systems changed from insulating state to carbonized conducting state through high energy ion irradiation with high ion dosage

  11. Effect of rare earth ion Ce3+ on the lactate dehydrogenase isozyme patterns of six mouse organs

    International Nuclear Information System (INIS)

    Jiangyan, L.; Guojun, S.; Hengyi, L.; Yinhua, L.; Ting, W.; Yansheng, Y.

    1998-01-01

    Full text: Effect of rare earth ion Ce 3+ on the lactate dehydrogenase (LDH) isozyme patterns of six organs of mouse (heart, liver, kidney, muscle, stomach) were investigated by utilizing polyacrylamide gel electrophoresis (PAGE) methods. The results indicated: Ce 3+ not only can make some LDH bands disappear but also can induce some new bands. Under the action of Ce 3+ , the shades of some LDH bands were changed and the shade variations were different from organ to organ. In the muscle, it appeared the shade of LDH bands was related to the rare earth concentration in the feed. Rare earth can affect the muscle LDH patterns widely and apparently

  12. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  13. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    Alkali Metal Salts in Polyethylene Oxide * Redox Behavior of Alkyl Viologens in Ion Conductive Polymer Solid * Ionic Conductivity of Interpenetrating Polymer Networks Containing LiClO4 * Electrochemical Behaviors of Porphyrins Incorporated into Solid Polymer Electrolytes * Lithium Ion Conducting Polymer Electrolytes * Electrochemical Synthesis of Polyaniline Thin Film * Electrochemical Aspect of Polyaniline Electrode in Aqueous Electrolyte * Mixed Cation Effect in Epoxy Resin - PEO-IPN Containing Perchlorate Salts * Conductivity, Raman and IR Studies on the Doped PEO-PPG Polymer Blends * Proton Conducting Polymeric Electrolytes from Poly (Ethyleneoxide) System * Surface Structure of Polymer Solid Ionic Conductors Based on Segmented Polyether Polyurethaneureas * Study on Addition Products of LiI and Diethylene Glycol etc. * Solid State Rechargeable Battery Using Paper Form Copper Ion Conductive Solid Electrolyte * Characterization of Electrode/Electrolyte Interfaces in Battery Li/PVAC-Li-Mont./Li1+xV3O8 by AC Impedance Method * Investigation on Reversibility of Vanadium Oxide Cathode Materials in Solid-State Battery * Preparation and Characterization of Silver Boromolybdate Solid State Batteries * The Electric Properties of the Trinary Cathode Material and its Application in Magnisium Solid State Cell * Electrical Properties and Phase Relation of Na2Mo0.1S0.9O4 Doped with Rare Earth Sulfate * New Electrochemical Probe for Rapid Determination of Silicon Concentration in Hot Metals * A New Theoretical EMF Expression for SOx(x = 2, 3) Sensors Based on Na2SO4 Solid Electrolyte * Evaluation of the Electrochemical SOx(x = 2, 3) Sensor with a Tubular Nasicon Electrolyte * The Response Time of a Modified Oxygen Sensor Using Zirconia Electrolyte * Preparation, Characteristics and Sintering Behavior of MgO-PSZ Powder * Reaction between La0.9MnO3 and Yttria Doped Zirconia * Development of the Extended-Life Oxygen Sensor of Caβ''-Al2O3 * Caβ''-Al2O3 Ultra-Low Oxygen Sensor

  14. A conductivity study of preferential solvation of lithium ion in acetonitrile-dimethyl sulfoxide mixtures

    International Nuclear Information System (INIS)

    Mozhzhukhina, Nataliia; Longinotti, M. Paula; Corti, Horacio R.; Calvo, Ernesto J.

    2015-01-01

    The electrical mobility of LiPF 6 in acetonitrile–dimethyl sulfoxide (ACN–DMSO) mixtures, a potential electrolyte in oxygen cathodes of lithium-air batteries, has been studied using a very precise conductance technique, which allowed the determination of the infinite dilution molar conductivity and association constant of the salt in the whole composition range. In the search for preferential Li + ion solvation, we also measured the electrical conductivity of tetrabutylammonium hexafluorophosphate (TBAPF 6 ), a salt formed by a bulky cation, over the same composition range. The results show a qualitative change in the curvature of the LiPF 6 molar conductivity composition dependence for ACN molar fraction (x ACN ) ∼ 0.95, which was not observed for TBAPF 6 . The dependence of the measured Li/Li + couple potential with solvent composition also showed a pronounced change around the same composition. We suggest that these observations can be explained by Li + ion preferential solvation by DMSO in ACN–DMSO mixtures with very low molar fractions of DMSO

  15. Theoretical prediction of ion conductivity in solid state HfO2

    Science.gov (United States)

    Zhang, Wei; Chen, Wen-Zhou; Sun, Jiu-Yu; Jiang, Zhen-Yi

    2013-01-01

    A theoretical prediction of ion conductivity for solid state HfO2 is carried out in analogy to ZrO2 based on the density functional calculation. Geometric and electronic structures of pure bulks exhibit similarity for the two materials. Negative formation enthalpy and negative vacancy formation energy are found for YSH (yttria-stabilized hafnia) and YSZ (yttria-stabilized zirconia), suggesting the stability of both materials. Low activation energies (below 0.7 eV) of diffusion are found in both materials, and YSH's is a little higher than that of YSZ. In addition, for both HfO2 and ZrO2, the supercells with native oxygen vacancies are also studied. The so-called defect states are observed in the supercells with neutral and +1 charge native vacancy but not in the +2 charge one. It can give an explanation to the relatively lower activation energies of yttria-doped oxides and +2 charge vacancy supercells. A brief discussion is presented to explain the different YSH ion conductivities in the experiment and obtained by us, and we attribute this to the different ion vibrations at different temperatures.

  16. Antiferromagnetic coupling between rare earth ions and semiquinones in a series of 1:1 complexes.

    Science.gov (United States)

    Caneschi, Andrea; Dei, Andrea; Gatteschi, Dante; Poussereau, Sandrine; Sorace, Lorenzo

    2004-04-07

    We use the strategy of diamagnetic substitution for obtaining information on the crystal field effects in paramagnetic rare earth ions using the homologous series of compounds with the diamagnetic tropolonato ligand, Ln(Trp)(HBPz(3))(2), and the paramagnetic semiquinone ligand, Ln(DTBSQ)(HBPz(3))(2), (DTBSQ = 3,5-di-tert-butylsemiquinonato, Trp = tropolonate, HBPz(3)= hydrotrispyrazolylborate) for Ln = Sm(iii), Eu(iii), Gd(iii), Tb(iii), Dy(iii), Ho(iii), Er(iii) or Yb(iii). The X-ray crystal structure of a new form of tropolonate derivative is presented, which shows, as expected, a marked similarity with the structure of the semiquinonate derivative. The Ln(Trp)(HBPz(3))(2) derivatives were then used as a reference for the qualitative determination of crystal field effects in the exchange coupled semiquinone derivatives. Through magnetisation and susceptibility measurements this empirical diamagnetic substitution method evidenced for Er(iii), Tb(iii), Dy(iii) and Yb(iii) derivatives a dominating antiferromagnetic coupling. The increased antiferromagnetic contribution compared to other radical-rare earth metal complexes formed by nitronyl nitroxide ligands may be related to the increased donor strength of the semiquinone ligand.

  17. Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2018-03-01

    Full Text Available Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE. The SNIPE mission consists of four nanosatellites (~10 kg, which will be launched into a polar orbit at an altitude of 600 km (TBD in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

  18. Ion transport and loss in the earth's quiet ring current. I - Data and standard model

    Science.gov (United States)

    Sheldon, R. B.; Hamilton, D. C.

    1993-01-01

    A study of the transport and loss of ions in the earth's quiet time ring current, in which the standard radial diffusion model developed for the high-energy radiation belt particles is compared with the measurements of the lower-energy ring current ions, is presented. The data set provides ionic composition information in an energy range that includes the bulk of the ring current energy density, 1-300 keV/e. Protons are found to dominate the quiet time energy density at all altitudes, peaking near L of about 4 at 60 keV/cu cm, with much smaller contributions from O(+) (1-10 percent), He(+) (1-5 percent), and He(2+) (less than 1 percent). A minimization procedure is used to fit the amplitudes of the standard electric radial diffusion coefficient, yielding 5.8 x 10 exp -11 R(E-squared)/s. Fluctuation ionospheric electric fields are suggested as the source of the additional diffusion detected.

  19. Equilibrium studies on interactions of rare earth ions with phytic acid

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqi, K S; Shah, S A; Aqra, F M.A.M.; Tabassum, S; Zaidi, S A.A. [Aligarh Muslim Univ. (India). Dept. of Chemistry; Benlian, D [Centre de St Jerome, Cedex (France). Laboratoire de Chimie de Coordination

    1993-05-01

    The interaction between phytic acid and trivalent rare earth metal ions, viz., Ce[sup 3+], Pr[sup 3+], Nd[sup 3+], Sm[sup 3+], Gd[sup 3+], Tb[sup 3+], Dy[sup 3+] and HO[sup 3+] has been investigated potentiometrically at 25degC. The proton-ligand stability constants (pK[sub Y][sup H]) of phytic acid and the stability constants (logK) of metal complexes formed in aqueous medium ([mu] = 0.1 M NaClO[sub 4]) have been evaluated. The results indicate that eight protons of phytic acid are highly acidic, two are weakly acidic and two very weakly acidic, titrable in the pH ranges 1.2-4.9, 5.0-8.15 and 8.3-11.0 respectively. The stability of each phytic acid-lanthanide ion complex decreases with an increase in pH and follows the usual trend through the series. (author). 11 refs., 2 tabs.

  20. Scanning ion conductance microscopy for visualizing the three-dimensional surface topography of cells and tissues.

    Science.gov (United States)

    Nakajima, Masato; Mizutani, Yusuke; Iwata, Futoshi; Ushiki, Tatsuo

    2018-01-01

    Scanning ion conductance microscopy (SICM), which belongs to the family of scanning probe microscopy, regulates the tip-sample distance by monitoring the ion current through the use of an electrolyte-filled nanopipette as the probing tip. Thus, SICM enables "contact-free" imaging of cell surface topography in liquid conditions. In this paper, we applied hopping mode SICM for obtaining topographical images of convoluted tissue samples such as trachea and kidney in phosphate buffered saline. Some of the SICM images were compared with the images obtained by scanning electron microscopy (SEM) after drying the same samples. We showed that the imaging quality of hopping mode SICM was excellent enough for investigating the three-dimensional surface structure of the soft tissue samples. Thus, SICM is expected to be used for imaging a wide variety of cells and tissues - either fixed or alive- at high resolution under physiologically relevant liquid conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Experimental demonstration of efficient and selective population transfer and qubit distillation in a rare-earth-metal-ion-doped crystal

    International Nuclear Information System (INIS)

    Rippe, Lars; Nilsson, Mattias; Kroell, Stefan; Klieber, Robert; Suter, Dieter

    2005-01-01

    In optically controlled quantum computers it may be favorable to address different qubits using light with different frequencies, since the optical diffraction does not then limit the distance between qubits. Using qubits that are close to each other enables qubit-qubit interactions and gate operations that are strong and fast in comparison to qubit-environment interactions and decoherence rates. However, as qubits are addressed in frequency space, great care has to be taken when designing the laser pulses, so that they perform the desired operation on one qubit, without affecting other qubits. Complex hyperbolic secant pulses have theoretically been shown to be excellent for such frequency-addressed quantum computing [I. Roos and K. Molmer, Phys. Rev. A 69, 022321 (2004)] - e.g., for use in quantum computers based on optical interactions in rare-earth-metal-ion-doped crystals. The optical transition lines of the rare-earth-metal-ions are inhomogeneously broadened and therefore the frequency of the excitation pulses can be used to selectively address qubit ions that are spatially separated by a distance much less than a wavelength. Here, frequency-selective transfer of qubit ions between qubit states using complex hyperbolic secant pulses is experimentally demonstrated. Transfer efficiencies better than 90% were obtained. Using the complex hyperbolic secant pulses it was also possible to create two groups of ions, absorbing at specific frequencies, where 85% of the ions at one of the frequencies was shifted out of resonance with the field when ions in the other frequency group were excited. This procedure of selecting interacting ions, called qubit distillation, was carried out in preparation for two-qubit gate operations in the rare-earth-metal-ion-doped crystals. The techniques for frequency-selective state-to-state transfer developed here may be also useful also for other quantum optics and quantum information experiments in these long-coherence-time solid

  2. Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires

    Directory of Open Access Journals (Sweden)

    Minggang Xia

    2014-05-01

    Full Text Available The electrical and thermal conductivities are measured for individual zinc oxide (ZnO nanowires with and without gallium ion (Ga+ implantation at room temperature. Our results show that Ga+ implantation enhances electrical conductivity by one order of magnitude from 1.01 × 103 Ω−1m−1 to 1.46 × 104 Ω−1m−1 and reduces its thermal conductivity by one order of magnitude from 12.7 Wm−1K−1 to 1.22 Wm−1K−1 for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga+ implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga+ point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga+-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

  3. Surface-conductivity enhancement of PMMA by keV-energy metal-ion implantation

    International Nuclear Information System (INIS)

    Bannister, M.E.; Hijazi, H.; Meyer, H.M.; Cianciolo, V.; Meyer, F.W.

    2014-01-01

    An experiment has been proposed to measure the neutron electric dipole moment (nEDM) with high precision at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source. One of the requirements of this experiment is the development of PMMA (Lucite) material with a sufficiently conductive surface to permit its use as a high-voltage electrode while immersed in liquid He. At the ORNL Multicharged Ion Research Facility, an R and D activity is under way to achieve suitable surface conductivity in poly-methyl methacrylate (PMMA) using metal ion implantation. The metal implantation is performed using an electron-cyclotron-resonance (ECR) ion source and a recently developed beam line deceleration module that is capable of providing high flux beams for implantation at energies as low as a few tens of eV. The latter is essential for reaching implantation fluences exceeding 1 × 10 16 cm −2 , where typical percolation thresholds in polymers have been reported. In this contribution, we report results on initial implantation of Lucite by Ti and W beams with keV energies to average fluences in the range 0.5–6.2 × 10 16 cm −2 . Initial measurements of surface-resistivity changes are reported as function of implantation fluence, energy, and sample temperature. We also report X-ray photoelectron spectroscopy (XPS) surface and depth profiling measurements of the ion implanted samples, to identify possible correlations between the near surface and depth resolved implanted W concentrations and the measured surface resistivities

  4. Unambiguously identifying spin states of transition-metal ions in the Earth (Invited)

    Science.gov (United States)

    Hsu, H.

    2010-12-01

    The spin state of a transition-metal ion in crystalline solids, defined by the number of unpaired electrons in the ion’s incomplete 3d shell, may vary with many factors, such as temperature, pressure, strain, and the local atomic configuration, to name a few. Such a phenomenon, known as spin-state crossover, plays a crucial role in spintronic materials. Recently, the pressure-induced spin-state crossover in iron-bearing minerals has been recognized to affect the minerals’ structural and elastic properties. However, the detailed mechanism of such crossover in iron-bearing magnesium silicate perovskite, the most abundant mineral in the Earth, remains unclear. A significant part of this confusion arises from the difficulty in reliably extracting the spin state from experiments. For the same reason, the thermally-induced spin-state crossover in lanthanum cobaltite (LaCoO3) has been controversial for more than four decades. In this talk, I will discuss how first-principle calculations can help clarifying these long-standing controversies. In addition to the total energy, equation of state, and elastic properties of each spin state, first-principle calculations also predict the electric field gradient (EFG) at the nucleus of each transition-metal ion. Our calculations showed that the nuclear EFG, a quantity that can be measured via Mössbauer or nuclear magnetic resonance (NMR) spectroscopy, depends primarily on the spin state, irrespective of the concentration or configuration of transition-metal ions. Such robustness makes EFG a unique fingerprint to identify the spin state. The combination of first-principle calculations and Mössbauer/NMR spectroscopy can therefore be a reliable and efficient approach in tackling spin-state crossover problems in the Earth. This work was primarily supported by the MRSEC Program of NSF under Awards Number DMR-0212302 and DMR-0819885, and partially supported by NSF under ATM-0428774 (V-Lab), EAR-1019853, and EAR-0810272. The

  5. MAVEN-Measured Meteoritic Ions on Mars - Tracers of Lower Ionosphere Processes With and Without Analogues On Earth

    Science.gov (United States)

    Benna, M.; Grebowsky, J. M.; Collinson, G.; Plane, J. M. C.; Mitchell, D.; Srivastava, N.

    2017-12-01

    MAVEN observations of meteoritic metal ion populations during "deep dip" campaigns at Mars have revealed unique non-Earth like behavior that are not yet understood. These deep dip campaigns (6 so far) consisted each of more than a score of repeated orbits through the Martian molecular-ion-dominated lower ionosphere, whose terrestrial parallel (Earth's E-region) has been rather sparcely surveyed in situ by sounding rockets. In regions of weak Mars magnetic fields, MAVEN found ordered exponentially decreasing metal ion concentrations above the altitude of peak meteor ablation. Such an ordered trend has never been observed on Earth. Isolated anomalous high-altitude layers in the metal ion are also encountered, typically on deep dip campaigns in the southern hemisphere where large localized surface remanent magnetic fields prevail. The source of these anomalous layers is not yet evident, although the occurrences of some high-altitude metal ion enhancements were in regions with measured perturbed magnetic fields, indicative of localized electrical currents. Further investigation shows that those currents are also sometimes associated with superthermal/energetic electron bursts offering evidence that that impact ionization of neutral metal populations persisting at high altitudes are the source of metal ion enhancement - a rather difficult assumption to accept far above the ablation region where the metal neutrals are deposited. The relationship of the anomalous layers to the coincident electron populations as well as to the orientation of the magnetic fields which can play a role in the neutral wind generated ion convergences as on Earth is investigated.

  6. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2017-04-01

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg 2+ , Ca 2+ , and Sr 2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg 2+ , Ca 2+ , and Sr 2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg 2+ , Ca 2+ , and Sr 2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Rare-earth-ion doped KY(WO4)2 optical waveguides grown by liquid-phase epitaxy

    NARCIS (Netherlands)

    Romanyuk, Y.E.; Apostolopoulos, V.; Utke, U.; Pollnau, Markus

    High-quality KY(WO4)2 thin layers doped with rare-earth-ions were grown using liquid-phase epitaxy. A low-temperature mixture of chlorides was used as the flux and undoped KY(WO4)2 crystals as substrates. The crystalline layers possessed thicknesses up to 10 µm. Passive and active planar waveguiding

  8. Low-temperature liquid phase epitaxy of rare-earth-ion doped KY(WO4)2 thin layers

    NARCIS (Netherlands)

    Romanyuk, Y.E.; Utke, I.; Ehrentraut, D.; Pollnau, Markus; Garcia-Revilla, S.; Valiente, R.; Kuleshov, N.V.

    2004-01-01

    Rare-earth-ion doped KY(WO4)2 (hereafter KYW) is a promising material for novel solid-state lasers. Low laser threshold, high efficiency, high output powers, and third-order nonlinear effects have stimulated research towards miniaturized thin-film waveguide lasers and amplifiers for future photonic

  9. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features.

    Science.gov (United States)

    Malavasi, Lorenzo; Fisher, Craig A J; Islam, M Saiful

    2010-11-01

    This critical review presents an overview of the various classes of oxide materials exhibiting fast oxide-ion or proton conductivity for use as solid electrolytes in clean energy applications such as solid oxide fuel cells. Emphasis is placed on the relationship between structural and mechanistic features of the crystalline materials and their ion conduction properties. After describing well-established classes such as fluorite- and perovskite-based oxides, new materials and structure-types are presented. These include a variety of molybdate, gallate, apatite silicate/germanate and niobate systems, many of which contain flexible structural networks, and exhibit different defect properties and transport mechanisms to the conventional materials. It is concluded that the rich chemistry of these important systems provides diverse possibilities for developing superior ionic conductors for use as solid electrolytes in fuel cells and related applications. In most cases, a greater atomic-level understanding of the structures, defects and conduction mechanisms is achieved through a combination of experimental and computational techniques (217 references).

  10. Local structure and oxide-ion conduction mechanism in apatite-type lanthanum silicates.

    Science.gov (United States)

    Masson, Olivier; Berghout, Abid; Béchade, Emilie; Jouin, Jenny; Thomas, Philippe; Asaka, Toru; Fukuda, Koichiro

    2017-01-01

    The local structure of apatite-type lanthanum silicates of general formula La 9.33+x (SiO 4 ) 6 O 2+3x/2 has been investigated by combining the atomic pair distribution function (PDF) method, conventional X-ray and neutron powder diffraction (NPD) data and density functional theory (DFT) calculations. DFT was used to build structure models with stable positions of excess oxide ions within the conduction channel. Two stable interstitial positions were obtained in accordance with literature, the first one located at the very periphery of the conduction channel, neighbouring the SiO 4 tetrahedral units, and the second one closer to the channel axis. The corresponding PDFs and average structures were then calculated and tested against experimental PDFs obtained by X-ray total scattering and NPD Rietveld refinements results gathered from literature. It was shown that of the two stable interstitial positions obtained with DFT only the second one located within the channel is consistent with experimental data. This result consolidates one of the two main conduction mechanisms along the c-axis reported in the literature, namely the one involving cooperative movement of O4 and Oi ions.

  11. Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives

    Science.gov (United States)

    Ahn, Soonho; Kim, Youngduk; Kim, Kyung Joon; Kim, Tae Hyung; Lee, Hyungkeun; Kim, Myung H.

    As lithium ion cells dominate the battery market, the performance improvement is an utmost concern among developers and researchers. Conductive additives are routinely employed to enhance electrode conductivity and capacity. Carbon particulates—graphite or carbon black powders—are conventional and popular choices as conductive fillers. However, percolation requirements of particles demand significant volumetric content of impalpable, and thereby high area conductive fillers. As might be expected, the electrode active surface area escalates unnecessarily, resulting in overall increase in reaction with electrolytes and organic solvents. The increased reactions usually manifest as an irreversible loss of anode capacity, gradual oxidation and consumption of electrolyte on the cathode—which causes capacity decline during cycling—and an increased threat to battery safety by gas evolution and exothermic solvent oxidation. In this work we have utilized high aspect ratio, flexible, micronic metal fibers as low active area and high conductivity additives. The metal fibers appear well dispersed within the electrode and to satisfy percolation requirements very efficiently at very low volumetric content compared to conventional carbon-based conductive additives. Results from 18650-type cells indicate significant enhancements in electrode capacity and high rate capability while the irreversible capacity loss is negligible.

  12. Conductivity and applications of Li-biphenyl-1,2-dimethoxyethane solution for lithium ion batteries

    Institute of Scientific and Technical Information of China (English)

    Geng Chu; Bo-Nan Liu; Fei Luo; Wen-Jun Li; Hao Lu; Li-Quan Chen; Hong Li

    2017-01-01

    The total conductivity of Li-biphenyl-l,2-dimethoxyethane solution (LixBp(DME)9.65,Bp =biphenyl,DME =1,2-dimethoxyethane,x =0.25,0.50,1.00,1.50,2.00) is measured by impedance spectroscopy at a temperature range from 0 ℃C to 40 ℃C.The Li1.50Bp(DME)9.65 has the highest total conductivity 10.7 mS/cm.The conductivity obeys Arrhenius law with the activation energy (Ea(x=0.50) =0.014 eV,Ea(x=1.00) =0.046 eV).The ionic conductivity and electronic conductivity of LixBp(DME)9.65 solutions are investigated at 20 ℃C using the isothermal transient ionic current (ITIC) technique with an ion-blocking stainless steal electrode.The ionic conductivity and electronic conductivity of Li1.00Bp(DME)9.65 are measured as 4.5 mS/cm and 6.6 mS/cm,respectively.The Li1.00Bp(DME)9.65 solution is tested as an anode material of half liquid lithium ion battery due to the coexistence of electronic conductivity and ionic conductivity.The lithium iron phosphate (LFP) and Li1.5Al0.5Ti1.5(PO4)3 (LATP) are chosen to be the counter electrode and electrolyte,respectively.The assembled cell is cycled in the voltage range of 2.2 V-3.75 V at a current density of 50 mA/g.The potential of Lit.00Bp(DME)9.65 solution is about 0.3 V vs.Li+/Li,which indicates the solution has a strong reducibility.The Li1.00Bp(DME)9.65 solution is also used to prelithiate the anode material with low first efficiency,such as hard carbon,soft carbon and silicon.

  13. Investigation of the electrical conductivity of γ-irradiated sodium silicate glasses containing multivalence Cu ions

    International Nuclear Information System (INIS)

    Tawansi, A.; Basha, A.F.; El-Konsol, S.

    1981-07-01

    The present investigation deals with a study of the γ-radiation effects on the d.c. electrical resistivity (rho) of SiO 2 -Na 2 O-CaO glasses containing Cu 0 , Cu + , Cu 2+ and mixture of Cu + and Cu 2+ ions over the temperature (T) range from 300 to 630 0 K. The applicability of the polaron hopping conduction mechanism has been established from the reciprocal temperature dependence of 1n rho/T for the samples under investigation. The electrical resistivity is found to decrease by increasing the TM valancy which enhances the hoping process. The post-irradiation effect due to ionizing gamma-radiation is investigated within the frame work of the electron (and hole) trapping theory, and an average value of 0.45 is obtained for the parameter Δ, characterizing traps with an exponentially decreasing numbers below the conduction band. (author)

  14. Effect of mixed transition metal ions on DC conductivity in lithium bismuth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Khasa, S.; Yadav, Arti, E-mail: artidabhur@gmail.com; Dahiya, M. S.; Seema,; Ashima [Physics Department, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-131039 (India); Agarwal, A. [Physics Department, G.J. University of science and technology, Hisar-125001 (India)

    2015-06-24

    The DC conductivities of glasses having composition x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (with x=0, 2, 5, 7 and 10, i.e. NVLBB glasses) and glass samples having composition 7NiO·23 Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (NLBB and VLBB respectively) are investigated as a function of temperature. Conductivity for glasses containing higher percentage of lithium ions is predominantly ionic and in glasses containing higher percentage of transition metal (TM) ions is predominantly electronic. The observed increase in conductivity with x and peak-like behavior at x=7 in NVLBB glasses due to competitive transport of small polaron contributing to a significant structural change in NVLBB glasses. Variation of molar volume and density was also observed with x. In NVLBB glasses, as x increases density increases except a slight decrease at x=7. Also density increases in NLBB whereas in case of VLBB it decreases in comparison to NVLBB1 glass composition. Mott’s small polaron hopping (SPH) model has been applied to analyze the high temperature conductivity data and activation energy.

  15. Electrochemical ion exchanger in the water circuit to measure cation conductivity

    International Nuclear Information System (INIS)

    Bengtsson, B.; Ingemarsson, R.; Settervik, G.; Velin, A.

    2010-01-01

    In Ringhals NPP, more than four years of successful operation with a full-scale EDI for the recycling of steam generator blow down (SGBD) gave the inspiration to modify and 'scale down' this EDI process. This with purpose to explore the possibilities to replace the cation exchanger columns used for cation conductivity analysis, with some small and integrated electrochemical ion-exchange cells. Monitoring the cation conductivity requires the use of a small cation resin column upstream of the conductivity probe and is one of the most important analyses at power plants. However, when operating with high alkaline treatment in the steam circuit, it's connected to the disadvantage of getting the resins rapidly exhausted, with needs to be frequently replaced or regenerated. This is causing interruptions in the monitoring and giving rise to high workload for the maintenance. This paper reports about some optimization and tests of two different two-compartment electrochemical cells for the possible replacements of cation resin columns when analyzing cation conductivity in the secondary steam circuit at Ringhals NPPs. Field tests during start up condition and more than four months of steady operation together with real and simulated test for impurity influences, indicates that a ELectrical Ion Echange process (ELIX) could be successfully used to replace the resin columns in Ringhals during operating with high pH-AVT (All Volatile Treatment), using hydrazine and ammonia. Installation of an ELIX-system downstream a particle filter and upstream of a small cation resin column, will introduce additional safety and further reduce the maintenance with possible interruptions. Performance of the ELIX-process together with other chemical additives (Morpholine, ETA, MPA, DMA) and dispersants, may be further evaluated to qualify the ELIX-process as well as SGBD-EDI for wider use in nuclear applications. (author)

  16. Enhanced AC conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni12+ swift heavy ions

    International Nuclear Information System (INIS)

    Hazarika, J.; Kumar, A.

    2014-01-01

    In this paper, we report the 160 MeV Ni 12+ swift heavy ions (SHIs) irradiation effects on AC conductivity and dielectric relaxation properties of polypyrrole (PPy) nanoparticles in the frequency range of 42 Hz–5 MHz. Four ion fluences of 5 × 10 10 , 1 × 10 11 , 5 × 10 11 and 1 × 10 12 ions/cm 2 have been used for the irradiation purpose. Transport properties in the pristine and irradiated PPy nanoparticles have been investigated with permittivity and modulus formalisms to study the polarization effects and conductivity relaxation. With increasing ion fluence, the relaxation peak in imaginary modulus (M ″ ) plots shifts toward high frequency suggesting long range motion of the charge carriers. The AC conductivity studies suggest correlated barrier hopping as the dominant transport mechanism. The hopping distance (R ω ) of the charge carriers decreases with increasing the ion fluence. Binding energy (W m ) calculations depict that polarons are the dominant charge carriers

  17. Rare-Earth Ions in Niobium-Based Devices as a Quantum Memory: Magneto-Optical Effects on Room Temperature Electrical Transport

    Science.gov (United States)

    2016-09-01

    heterostructure can be used to implement cryogenic memory for superconducting digital computing. Our concept involves embedding rare-earth ions in...rare-earth neodymium by ion implantation in thin films of niobium and niobium-based heterostructure devices. We model the ion implantation process...the films and devices so they can properly designed and optimized for utility as quantum memory. We find that the magnetic field has a strong effect

  18. First-principles calculation on oxygen ion migration in alkaline-earth doped La2GeO5

    International Nuclear Information System (INIS)

    Thuy Linh, Tran Phan; Sakaue, Mamoru; Aspera, Susan Meñez; Alaydrus, Musa; Wungu, Triati Dewi Kencana; Hoang Linh, Nguyen; Kasai, Hideaki; Mohri, Takahiro; Ishihara, Tatsumi

    2014-01-01

    By using first-principles calculations based on the density functional theory, we investigated the doping effects of alkaline-earth metals (Ba, Sr and Ca) in monoclinic lanthanum germanate La 2 GeO 5 on its oxygen ion conduction. Although the lattice parameters of the doped systems changed due to the ionic radii mismatch, the crystal structures remained monoclinic. The contribution of each atomic orbital to electronic densities of states was evaluated from the partial densities of states and partial charge densities. It was confirmed that the materials behaved as ionic crystals comprising of cations of La and dopants and anions of oxygen and covalently formed GeO 4 . The doping effect on the activation barrier for oxygen hopping to the most stable oxygen vacancy site was investigated by the climbing-image nudged elastic band method. By tracing the charge density change during the hopping, it was confirmed that the oxygen motion is governed by covalent interactions. The obtained activation barriers showed excellent quantitative agreements with an experiment for the Ca- and Sr-doped systems in low temperatures as well as the qualitative trend, including the Ba-doped system. (paper)

  19. Research on the Earth's Interior Conducted by Russia after IGY: The Geotraverse Project and "Intermargins"

    Directory of Open Access Journals (Sweden)

    A G Rodnikov

    2009-04-01

    Full Text Available Fifty years have passed since the International Geophysical Year (IGY of 1957.58, one of the most important and noble initiatives in the history of science and in the history of humanity in general. IGY became the model for subsequent international scientific initiatives in various fields of solid Earth research, including the Upper Mantle Project (1961.71, the Geodynamic Project (1971.80, the Geotraverse Project (1987.2003, and the "InterMARGINS" Project (2003. The Russian investigations as part of the Geotraverse Project and "InterMARGINS" were aimed at research into the deep structure of the continental margins of East Eurasia, which are characterized by high seismicity, volcanism, and natural cataclysms hazardous to people living there.

  20. Structural, thermal and ion transport properties of radiation grafted lithium conductive polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Nasef, Mohamed Mahmoud [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)]. E-mail: mahmoudeithar@mailcity.com; Saidi, Hamdani [Business and Advanced Technology Centre (BATC), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia)

    2006-10-10

    Structural, thermal and ion transport properties of lithium conductive polymer electrolytes prepared by radiation-induced grafting of styrene onto poly(vinylidene fluoride) (PVDF) films and subsequent activation with LiPH{sub 6}/EC/DEC liquid electrolyte were investigated in correlation with the content of the grafted polystyrene (Y%). The changes in the structure were studied using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Thermal gravimetric analysis (TGA) was used to evaluate the thermal stability. The ionic conductivity was measured by means of ac impedance spectroscopy at various temperatures. The polymer electrolytes were found to undergo considerable structural and morphological changes that resulted in a noticeable increase in their ionic conductivity with the increase in Y% at various temperatures (25-65 deg. C). The ionic conductivity achieved a value of 1.61 x 10{sup -3} S cm{sup -1} when Y of the polymer electrolyte reached 50% and at 25 deg. C. The polymer electrolytes also showed a multi-step degradation behaviour and thermal stability up to 120 deg. C, which suits normal lithium battery operation temperature range. The overall results of this work suggest that the structural changes took place in PVDF matrix during the preparation of these polymer electrolytes have a strong impact on their various properties.

  1. Epoxy-silica hybrid organic–inorganic electrolytes with a high Li-ion conductivity

    International Nuclear Information System (INIS)

    Vélez, J.F.; Procaccini, R.A.; Aparicio, M.; Mosa, J.

    2013-01-01

    Organic–inorganic hybrid electrolytes were prepared by co-hydrolysis and co-condensation of 3-glycidoxipropyltrimethoxysilane (GPTMS) and tetraethyl orthosilicate (TEOS) doped with lithium acetate as self-supported materials and thin-films. The effects of the relative molar content of LiAc on the physicochemical properties of electrolytes, such as morphology, thermal, chemical and electrochemical properties were investigated. Two and four probes test cells were designed for comparative studies of ionic conductivity of hybrid electrolytes using electrochemical impedance spectroscopy (EIS). Similar ionic conductivities were obtained using both measurement methods, reaching a maximum ionic conductivity value of around 10 −6 S/cm at 25 °C. The conductivity mechanism presents Arrehenius behavior with the increase of the temperature from 25 °C to 120 °C. The electrochemical stability window is found to be in the range of 0–5 V, which ensures that hybrid organic–inorganic materials are potential electrolytes for solid-state rechargeable lithium ion batteries

  2. Fabrication of Conductive Nanostructures by Femtosecond Laser Induced Reduction of Silver Ions

    Science.gov (United States)

    Barton, Peter G.

    Nanofabrication through multiphoton absorption has generated considerable interest because of its unique ability to generate 2D and 3D structures in a single laser-direct-write step as well as its ability to generate feature sizes well below the diffraction limited laser spot size. The majority of multiphoton fabrication has been used to create 3D structures of photopolymers which have applications in a wide variety of fields, but require additional post-processing steps to fabricate conductive structures. It has been shown that metal ions can also undergo multiphoton absorption, which reduces the metal ions to stable atoms/nanoparticles which are formed at the laser focal point. When the focus is located at the substrate surface, the reduced metal is deposited on the surface, which allows arbitrary 2D patterning as well as building up 3D structures from this first layer. Samples containing the metal ions can be prepared either in a liquid solution, or in a polymer film. The polymer film approach has the benefit of added support for the 3D metallic structures; however it is difficult to remove the polymer after fabrication to leave a free standing metallic structure. With the ion solution method, free standing metallic structures can be fabricated but need to be able to withstand surface tension forces when the remaining unexposed solution is washed away. So far, silver nanowires with resistivity on the order of bulk silver have been fabricated, as well as a few small 3D structures. This research focuses on the surfactant assisted multiphoton reduction of silver ions in a liquid solution. The experimental setup consists of a Coherent Micra 10 Ultrafast laser with 30fs pulse length, 80MHz repetition rate, and a wavelength centered at 800nm. This beam is focused into the sample using a 100x objective with a N.A. of 1.49. Silver structures such as nanowires and grid patterns have been produced with minimum linewidth of 180nm. Silver nanowires with resistivity down to

  3. A novel fluorescent probe (dtpa-bis(cytosine)) for detection of Eu(III) in rare earth metal ions

    Science.gov (United States)

    Yang, Fan; Ren, Peipei; Liu, Guanhong; Song, Youtao; Bu, Naishun; Wang, Jun

    2018-03-01

    In this paper, a novel fluorescent probe, dtpa-bis(cytosine), was designed and synthesized for detecting europium (Eu3 +) ion. Upon addition of Eu3 + ions into the dtpa-bis(cytosine) solution, the fluorescence intensity can strongly be enhanced. Conversely, adding other rare earth metal ions, such as Y3 +, Ce3 +, Pr3 +, Nd3 +, Sm3 +, Gd3 +, Tb3 +, Dy3 +, Ho3 +, Er3 +, Yb3 + and Lu3 +, into dtpa-bis(cytosine) solution, the fluorescence intensity is decreased slightly. Some parameters affecting the fluorescence intensity of dtpa-bis(cytosine) solution in the presence of Eu3 + ions were investigated, including solution pH value, Eu3 + ion concentration and interfering substances. The detection mechanism of Eu3 + ion using dtpa-bis(cytosine) as fluorescent probe was proposed. Under optimum conditions, the fluorescence emission intensities of EuIII-dtpa-bis(cytosine) at 375 nm in the concentration range of 0.50 × 10- 5 mol • L- 1-5.00 × 10- 5 mol • L- 1 of Eu3 + ion display a better linear relationship. The limit of detection (LOD) was determined as 8.65 × 10- 7 mol • L- 1 and the corresponding correlation coefficient (R2) of the linear equation is 0.9807. It is wished that the proposed method could be applied for sensitively and selectively detecting Eu3 + ion.

  4. The structure of new germanates, gallates, borates and silicates with laser, piezo, ferroelectric and ion conducting properties

    International Nuclear Information System (INIS)

    Belokonev, E.L.

    1994-01-01

    The results of structure investigation of more than 50 new crystalline germanates, gallates, borogermanates, borates, and silicates with laser, piezo, ferroelectric, and ion-conducting properties are described. The structure - properties relationship is examined. 71 refs.; 24 figs.; 10 tabs

  5. Electrospinning of Ceramic Solid Electrolyte Nanowires for Lithium-Ion Batteries with Enhanced Ionic Conductivity

    Science.gov (United States)

    Yang, Ting

    Solid electrolytes have great potential to address the safety issues of Li-ion batteries, but better synthesis methods are still required for ceramics electrolytes such as lithium lanthanum titanate (LLTO) and lithium lanthanum zirconate (LLZO). Pellets made from ceramic nanopowders using conventional sintering can be porous due to the agglomeration of nanoparticles (NPs). Electrospinning is a simple and versatile technique for preparing oxide ceramic nanowires (NWs) and was used to prepare electrospun LLTO and LLZO NWs. Pellets prepared from the electrospun LLTO NWs had higher density, less void space, and higher Li+ conductivity compared to those comprised of LLTO prepared with conventional sol-gel methods, which demonstrated the potential that electrospinning can provide towards improving the properties of sol-gel derived ceramics. Cubic phase LLZO was stabilized at room temperature in the form of electrospun NWs without extrinsic dopants. Bulk LLZO with tetragonal structure was transformed to the cubic phase using particle size reduction via ball milling. Heating conditions that promoted particle coalescence and grain growth induced a transformation from the cubic to tetragonal phase in both types of nanostructured LLZO. Composite polymer solid electrolyte was fabricated using LLZO NWs as the filler and showed an improved ionic conductivity at room temperature. Nuclear magnetic resonance studies show that LLZO NWs partially modify the polymer matrix and create preferential pathways for Li+ conduction through the modified polymer regions. Doping did not have significant effect on improving the overall conductivity as the interfaces played a predominant role. By comparing fillers with different morphologies and intrinsic conductivities, it was found that both NW morphology and high intrinsic conductivity are desired.

  6. Ferromagnetism in some semi-conducting heavy rare-earth molybdates

    International Nuclear Information System (INIS)

    Lal, H.B.; Pandey, R.N.

    1978-01-01

    Measurements of the magnetic susceptibility of powdered samples of Dy 2 (MoO 4 ) 3 , Ho 2 (MoO 4 ) 3 and Er 2 (MoO 4 ) 3 in the temperature range 300 to 920 K are reported. The Curie Weiss Law is obeyed and yields the magneton numbers 10.72, 10.68 and 9.68 for the Dy 3+ , Ho 3+ and Er 3+ ions, respectively, the theoretical values being 10.63, 10.60 and 9.60. The results are analysed in terms of molecular field theory and it is predicted that Dy 2 (MoO 4 ) 3 , Ho 2 (MoO 4 ) 3 and Er 2 (MoO 4 ) 3 become ferromagnetic below 12, 17 and 5 K, respectively. (orig.) [de

  7. The adsorption kinetics of metal ions onto different microalgae and siliceous earth.

    Science.gov (United States)

    Schmitt, D; Müller, A; Csögör, Z; Frimmel, F H; Posten, C

    2001-03-01

    In the present work the adsorption kinetics of the six metal ions aluminum, zinc, mercury, lead, copper, and cadmium onto living microalgae were measured. The freshwater green microalga Scenedesmus subspicatus, the brackish water diatom Cyclotella cryptica, the seawater diatom Phaeodactylum tricornutum, and the seawater red alga Porphyridium purpureum were the subject of investigation. In most cases the adsorption rate of the metals could be well described by using the equation of the Langmuir adsorption rate expression. Inverse parameter estimation allowed the determination of the rate constants of the adsorption process and the maximum metal content of the algae. The highest values for the rate constant were obtained for Porphyridium purpureum followed by Phaeodactylum tricornutum. High values for the maximum content were obtained for Cyclotella cryptica and Scenedesmus subspicatus. The maximum rate constant was 24.21 h-1 for the adsorption of Hg to Porphyridium purpureum whereas the maximum metal content (0.243 g g-1) was obtained for Zn on Cyclotella cryptica. A comparison of these values with those obtained for the mineral siliceous earth exhibiting low maximum content and high adsorption rates reveals that the mechanism of adsorption onto the algae is a mixture of adsorption and accumulation.

  8. Threefold symmetric magnetic two-ion coupling in hcp rare-earth metals

    International Nuclear Information System (INIS)

    Jensen, J.

    1997-01-01

    The heavy rare earths crystallize in the hcp structure. Most of magnetic couplings between two ions in these metals are independent of the two different orientations of the hexagonal layers. However, trigonal anisotropy terms may occur, reflecting that c-axis is only threefold axis. In the presence of a trigonal coupling the symmetry is reduced, and the double-zone representation in the c-direction ceases to be valid. The strong interaction between the transverse optical phonons and the acoustic spin waves propagating in the c-direction of Yb detected more than twenty years ago, was the first example of a trigonal coupling found in these systems. A few years ago a careful neutron-diffraction study of the c-axis modulated magnetic structures in Er showed the presence of higher harmonics at positions along the c-axis translated by odd multiple of 2φ/c. This indicates distortions of the structures due to trigonal couplings, and the same characteristic phenomenon has now been also observed in Ho. Additionally, mean field calculations show that a trigonal coupling in Ho is required, in order to explain the increase in the commensurable effects observed for the 8 and 10 layered periodic structures, when a field is applied along the c-axis. (author)

  9. The electrical conductivity of the Earth's upper mantle as estimated from satellite measured magnetic field variations. Ph.D. Thesis

    Science.gov (United States)

    Didwall, E. M.

    1981-01-01

    Low latitude magnetic field variations (magnetic storms) caused by large fluctuations in the equatorial ring current were derived from magnetic field magnitude data obtained by OGO 2, 4, and 6 satellites over an almost 5 year period. Analysis procedures consisted of (1) separating the disturbance field into internal and external parts relative to the surface of the Earth; (2) estimating the response function which related to the internally generated magnetic field variations to the external variations due to the ring current; and (3) interpreting the estimated response function using theoretical response functions for known conductivity profiles. Special consideration is given to possible ocean effects. A temperature profile is proposed using conductivity temperature data for single crystal olivine. The resulting temperature profile is reasonable for depths below 150-200 km, but is too high for shallower depths. Apparently, conductivity is not controlled solely by olivine at shallow depths.

  10. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.

    Science.gov (United States)

    Wang, Byung-Yong; Yoo, Tae-Hee; Song, Yong-Won; Lim, Dae-Soon; Oh, Young-Jei

    2013-05-22

    Direct printing techniques that utilize nanoparticles to mitigate environmental pollution and reduce the processing time of the routing and formation of electrodes have received much attention lately. In particular, copper (Cu) nanoink using Cu nanoparticles offers high conductivity and can be prepared at low cost. However, it is difficult to produce homogeneous nanoparticles and ensure good dispersion within the ink. Moreover, Cu particles require a sintering process over an extended time at a high temperature due to high melting temperature of Cu. During this process, the nanoparticles oxidize quickly in air. To address these problems, the authors developed a Cu ion ink that is free of Cu particles or any other impurities. It consequently does not require separate dispersion stability. In addition, the developed ink is environmentally friendly and can be sintered even at low temperatures. The Cu ion ink was sintered on a flexible substrate using intense pulsed light (IPL), which facilitates large-area, high-speed calcination at room temperature and at atmospheric pressures. As the applied light energy increases, the Cu2O phase diminishes, leaving only the Cu phase. This is attributed to the influence of formic acid (HCOOH) on the Cu ion ink. Only the Cu phase was observed above 40 J cm(-2). The Cu-patterned film after sintering showed outstanding electrical resistivity in a range of 3.21-5.27 μΩ·cm at an IPL energy of 40-60 J cm(-2). A spiral-type micropattern with a line width of 160 μm on a PI substrate was formed without line bulges or coffee ring effects. The electrical resistivity was 5.27 μΩ·cm at an energy level of 40.6 J cm(-2).

  11. Lithium ion conductivity of molecularly compatibilized chitosan-poly(aminopropyltriethoxysilane)-poly(ethylene oxide) nanocomposites

    International Nuclear Information System (INIS)

    Fuentes, S.; Retuert, P.J.; Gonzalez, G.

    2007-01-01

    Films of composites of chitosan/poly(aminopropyltriethoxysilane)/poly(ethylene oxide) (CHI/pAPS/PEO) containing a fixed amount of lithium salt are studied. The ternary composition diagram of the composites, reporting information on the mechanic stability, the transparence and the electrical conductivity of the films, shows there is a window in which the molecular compatibility of the components is optimal. In this window, defined by the components ratios CHI/PEO 3:2, pAPS/PEO 2:3 and CHI/PEO 1:2, there is a particular composition Li x (CHI) 1 (PEO) 2 (pAPS) 1.2 for which the conductivity reaches a value of 1.7 x 10 -5 S cm -1 at near room temperature. Considering the balance between the Lewis acid and basic sites available in the component and the observed stoichiometry limits of formed polymer complexes, the conductivity values of these products may be understood by the formation of a layered structure in which the lithium ions, stabilized by the donors, poly(ethylene oxide) and/or poly(aminopropyltriethoxysilane), are intercalated in a chitosan matrix

  12. Silver/carbon nanotube hybrids: A novel conductive network for high-rate lithium ion batteries

    International Nuclear Information System (INIS)

    Zhou, Fangdong; Qiu, Kehui; Peng, Gongchang; Xia, Li

    2015-01-01

    LiNi 1/3 Co 1/3 Mn 1/3 O 2 /Ag composite cathodes are synthesized by a thermal decomposition method and multi-walled carbon nanotubes are uniformly introduced into the composites through ball mixing. A composite electrically conductive network consisting of CNTs and Ag is obtained to improve the conductivity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material. By comparing with the pure LiNi 1/3 Co 1/3 Mn 1/3 O 2 and cathode modified by CNTs or Ag, the as-obtained LiNi 1/3 Co 1/3 Mn 1/3 O 2 –CNT/Ag electrode exhibits the best rate capability (120.6 mAh/g at 5C) and cycle performance (134.2 mAh/g at 1C with a capacity retention of 94.4% over 100 cycles). With the construction of 3D spatial conductive network, the novel hybrid CNT/Ag demonstrates itself a promising strategy to improve Li storage performance for lithium ion batteries

  13. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza

    2015-02-04

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties. In this work, Pt deposited by FIB is characterized thermally, structurally, and chemically. Its thermal conductivity is found to be substantially lower than the bulk value of Pt, 7.2 W m-1 K-1 versus 71.6 W m-1 K-1 at room temperature. The low thermal conductivity is attributed to the nanostructure of the material and its chemical composition. Pt deposited by FIB is shown, via aberration corrected TEM, to be a segregated mix of nanocrystalline Pt and amorphous C with Ga and O impurities. Ga impurities mainly reside in the Pt while O is homogeneously distributed throughout. The Ga impurity, small grain size of the Pt, and the amorphous carbon between grains are the cause for the low thermal conductivity of this material. Since Pt deposited by FIB is a common material for affixing samples, this information can be used to assess systematic errors in thermal characterization of different nanosamples. This application is also demonstrated by thermal characterization of two carbon nanofibers and a correction using the reported thermal properties of the Pt deposited by FIB.

  14. Electrical properties of fast ion conducting silver based borate glasses: Application in solid battery

    International Nuclear Information System (INIS)

    Masoud, Emad M.; Khairy, M.; Mousa, M.A.

    2013-01-01

    Graphical abstract: -- Highlights: •AgI dopant created more opened borate network structure. •Dielectric constant and loss values increased with AgI concentration. •AgI dopant enhanced both ion migration and orientation. •0.6 AgI–0.27 Ag 2 O–0.13 B 2 O 3 showed the highest DC-conductivity at room temperature. •It showed also good life time as a solid electrolyte in solid battery at room temperature. -- Abstract: The electrical properties of the ternary ionic conducting glass system xAgI–(1 – x)[0.67Ag 2 O–0.33B 2 O 3 ], where x = 0.4 , 0.5, 0.6, 0.7 and 0.8, were studied for emphasizing the influence of silver iodide concentration on the transport properties in the based borate glasses. The glasses were prepared by melt quenching technique and characterized using X-ray diffraction (XRD), FT-IR spectra and differential thermal analysis (DTA). XRD confirmed a glassy nature for all investigated compositions. Electrical conductivity (σ), dielectric constant (ε′), dielectric loss (ε ″ ) and impedance spectra (Z′–Z′′) were studied for all samples at a frequency range of 0–10 6 Hz and over a temperature range of 303–413 K. Changes of conductivity and dielectric properties with composition, temperature and frequency were analyzed and discussed. A silver iodine battery using glassy electrolyte sample with the highest ionic conductivity (x = 0.6) was studied

  15. Microsputterer with integrated ion-drag focusing for additive manufacturing of thin, narrow conductive lines

    Science.gov (United States)

    Kornbluth, Y. S.; Mathews, R. H.; Parameswaran, L.; Racz, L. M.; Velásquez-García, L. F.

    2018-04-01

    We report the design, modelling, and proof-of-concept demonstration of a continuously fed, atmospheric-pressure microplasma metal sputterer that is capable of printing conductive lines narrower than the width of the target without the need for post-processing or lithographic patterning. Ion drag-induced focusing is harnessed to print narrow lines; the focusing mechanism is modelled via COMSOL Multiphysics simulations and validated with experiments. A microplasma sputter head with gold target is constructed and used to deposit imprints with minimum feature sizes as narrow as 9 µm, roughness as small as 55 nm, and electrical resistivity as low as 1.1 µΩ · m.

  16. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    Science.gov (United States)

    Javier, Anna Esmeralda K; Balsara, Nitash Pervez; Patel, Shrayesh Naran; Hallinan, Jr., Daniel T

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  17. Cu_2O Hybridized Titanium Carbide with Open Conductive Frameworks for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Zhang, Huang; Dong, Hui; Zhang, Xuan; Xu, Yunlong; Fransaer, Jan

    2016-01-01

    Though MXenes, a new family of 2D transition metal carbides, are generating considerable interests as electrode materials for batteries and supercapacitors, further application is hindered by their low capacities and poor rate capabilities. Here we propose a simple route for the synthesis of Cu_2O particle hybridized titanium carbide Ti_2CT_x (T = O, OH) composites via a solvothermal method. Electrodes containing Cu_2O/MXene were fabricated without carbon black, and tested as anodes for lithium ion batteries. A discharge capacity of 143 mAh g"−"1 was obtained at a discharge current density of 1000 mA g"−"1 and the capacity retention was near 100% after 200 cycles. The hybrid electrodes with open conductive frameworks exhibited significantly improved electrochemical performance, suggesting a new method for preparing MXene-based composites for energy storage application.

  18. Structural transitions, ion mobility, and conductivity in CsSbF3(H2PO4)

    Science.gov (United States)

    Kavun, V. Ya.; Uvarov, N. F.; Slobodyuk, A. B.; Ulihin, A. S.; Kovaleva, E. V.; Zemnukhova, L. A.

    2018-02-01

    Structural transitions, ion mobility, and conductivity in CsSbF3(H2PO4) (I) have been investigated by the methods of 1H, 19F, 31P NMR (including 1H, 19F, 31P MAS NMR), DSC, X-ray diffraction, and impedance spectroscopy. It was found that the fundamental changes in 1H, 19F, 31P NMR spectra (above 390 K) were associated with the formation of a crystalline disorder phase I with high ionic mobility in the proton and fluoride sublattices, as a result of a phase transition in the 400-420 K range. In the same temperature range, the transition of PO2(OH)2- anions from the "rigid lattice" to fast reorientations takes place. Above 430 K, there occurs a transition from the crystalline disordered phase to the amorphous one. The types of ion mobility in CsSbF3(H2PO4) and its amorphous phase have been established and temperature ranges of their realization have been determined (150-450 K). According to the NMR data, the diffusion in the proton sublattice of the disordered crystalline and amorphous phases is preserved even at room temperature. The ionic conductivity in CsSbF3(H2PO4) reaches the values of 2.6 × 10-4 S/cm in the temperature range 410-425 K and decreases down to 2.0 × 10-5 S/cm upon transition to the amorphous phase (435-445 K).

  19. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics.

    Science.gov (United States)

    Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo; Lin, Jung-Fu

    2018-04-17

    Iron may critically influence the physical properties and thermochemical structures of Earth's lower mantle. Its effects on thermal conductivity, with possible consequences on heat transfer and mantle dynamics, however, remain largely unknown. We measured the lattice thermal conductivity of lower-mantle ferropericlase to 120 GPa using the ultrafast optical pump-probe technique in a diamond anvil cell. The thermal conductivity of ferropericlase with 56% iron significantly drops by a factor of 1.8 across the spin transition around 53 GPa, while that with 8-10% iron increases monotonically with pressure, causing an enhanced iron substitution effect in the low-spin state. Combined with bridgmanite data, modeling of our results provides a self-consistent radial profile of lower-mantle thermal conductivity, which is dominated by pressure, temperature, and iron effects, and shows a twofold increase from top to bottom of the lower mantle. Such increase in thermal conductivity may delay the cooling of the core, while its decrease with iron content may enhance the dynamics of large low shear-wave velocity provinces. Our findings further show that, if hot and strongly enriched in iron, the seismic ultralow velocity zones have exceptionally low conductivity, thus delaying their cooling.

  20. Spray-drying and fabrication of superionic conducting sodium rare-earth silicates

    International Nuclear Information System (INIS)

    Yamashita, Kimihiro; Nicholson, P.S.

    1985-01-01

    Fine precursor powders of particle diameter of 0.50-7 μm and high surface area (9 m 2 /g) for superionic conducting Na 5 RESi 4 O 12 (RE = Gd, Y) were successfully produced by spray-drying and an optimised calcination procedure. Using these powders, dense sinters (>98% of theoretical) with f(NGS) or f(NYS) = 1.0 (the proposed parameter for purity) were obtained under normal sintering conditions. 300 0 C ionic resistivities were calculated from ac impedance and had values of 5.6 Ω cm with an activation energy for conduction of 4.5 kcal/mol for Na 5 GdSi 4 O 12 and 7.7 Ω cm and 5.9 kcal/mol for Na 5 YSi 4 O 12 . These values were dependent on the f(NGS) or f(NYS). (orig.)

  1. Electrical conductivity of the Earth's mantle after one year of SWARM magnetic field measurements

    Science.gov (United States)

    Civet, François; Thebault, Erwan; Verhoeven, Olivier; Langlais, Benoit; Saturnino, Diana

    2015-04-01

    We present a global EM induction study using L1b Swarm satellite magnetic field measurements data down to a depth of 2000 km. Starting from raw measurements, we first derive a model for the main magnetic field, correct the data for a lithospheric field model, and further select the data to reduce the contributions of the ionospheric field. These computations allowed us to keep a full control on the data processes. We correct residual field from outliers and estimate the spherical harmonic coefficients of the transient field for periods between 2 and 256 days. We used full latitude range and all local times to keep a maximum amount of data. We perform a Bayesian inversion and construct a Markov chain during which model parameters are randomly updated at each iteration. We first consider regular layers of equal thickness and extra layers are added where conductivity contrast between successive layers exceed a threshold value. The mean and maximum likelihood of the electrical conductivity profile is then estimated from the probability density function. The obtained profile particularly shows a conductivity jump in the 600-700 km depth range, consistent with the olivine phase transition at 660 km depth. Our study is the first one to show such a conductivity increase in this depth range without any a priori informations on the internal strucutres. Assuming a pyrolitic mantle composition, this profile is interpreted in terms of temperature variations in the depth range where the probability density function is the narrowest. We finally obtained a temperature gradient in the lower mantle close to adiabatic.

  2. Energy time dispersion of a new class of magnetospheric ion events observed near the Earth's bow shock

    Directory of Open Access Journals (Sweden)

    G. C. Anagnostopoulos

    2000-01-01

    Full Text Available We have analyzed high time resolution (\\geq6 s data during the onset and the decay phase of several energetic (\\geq35 keV ion events observed near the Earth's bow shock by the CCE/AMPTE and IMP-7/8 spacecraft, during times of intense substorm/geomagnetic activity. We found that forward energy dispersion at the onset of events (earlier increase of middle energy ions and/or a delayed fall of the middle energy ion fluxes at the end of events are often evident in high time resolution data. The energy spectra at the onset and the decay of this kind of events show a characteristic hump at middle (50-120 keV energies and the angular distributions display either anisotropic or broad forms. The time scale of energy dispersion in the ion events examined was found to range from several seconds to \\sim1 h depending on the ion energies compared and on the rate of variation of the Interplanetary Magnetic Field (IMF direction. Several canditate processes are discussed to explain the observations and it is suggested that a rigidity dependent transport process of magnetospheric particles within the magnetosheath is most probably responsible for the detection of this new type of near bow shock magnetospheric ion events. The new class of ion events was observed within both the magnetosheath and the upstream region.Key words. Interplanetary physics (energetic particles; planetary bow shocks

  3. Enhanced Scattering of Diffuse Ions on Front of the Earth's Quasi-Parallel Bow Shock: a Case Study

    Science.gov (United States)

    Kis, A.; Matsukiyo, S.; Otsuka, F.; Hada, T.; Lemperger, I.; Dandouras, I. S.; Barta, V.; Facsko, G. I.

    2017-12-01

    In the analysis we present a case study of three energetic upstream ion events at the Earth's quasi-parallel bow shock based on multi-spacecraft data recorded by Cluster. The CIS-HIA instrument onboard Cluster provides partial energetic ion densities in 4 energy channels between 10 and 32 keV.The difference of the partial ion densities recorded by the individual spacecraft at various distances from the bow shock surface makes possible the determination of the spatial gradient of energetic ions.Using the gradient values we determined the spatial profile of the energetic ion partial densities as a function of distance from the bow shock and we calculated the e-folding distance and the diffusion coefficient for each event and each ion energy range. Results show that in two cases the scattering of diffuse ions takes place in a normal way, as "by the book", and the e-folding distance and diffusion coefficient values are comparable with previous results. On the other hand, in the third case the e-folding distance and the diffusion coefficient values are significantly lower, which suggests that in this case the scattering process -and therefore the diffusive shock acceleration (DSA) mechanism also- is much more efficient. Our analysis provides an explanation for this "enhanced" scattering process recorded in the third case.

  4. Formation of the high-energy ion population in the earth's magnetotail: spacecraft observations and theoretical models

    Directory of Open Access Journals (Sweden)

    A. V. Artemyev

    2014-10-01

    Full Text Available We investigate the formation of the high-energy (E ∈ [20,600] keV ion population in the earth's magnetotail. We collect statistics of 4 years of Interball / Tail observations (1995–1998 in the vicinity of the neutral plane in the magnetotail region (X RE, |Y| ≤ 20 RE in geocentric solar magnetospheric (GSM system. We study the dependence of high-energy ion spectra on the thermal-plasma parameters (the temperature Ti and the amplitude of bulk velocity vi and on the magnetic-field component Bz. The ion population in the energy range E ∈ [20,600] keV can be separated in the thermal core and the power-law tail with the slope (index ~ −4.5. Fluxes of the high-energy ion population increase with the growth of Bz, vi and especially Ti, but spectrum index seems to be independent on these parameters. We have suggested that the high-energy ion population is generated by small scale transient processes, rather than by the global reconfiguration of the magnetotail. We have proposed the relatively simple and general model of ion acceleration by transient bursts of the electric field. This model describes the power-law energy spectra and predicts typical energies of accelerated ions.

  5. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    GharibDoust, Seyed Hosein Payandeh; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4...... with increasing lattice parameter, that is, increasing size of the halide ion in the structure. Thus, we conclude that the sizes of both windows are important for the lithium ion conduction in LiLa(BH4)3X compounds. The lithium ion conductivity is measured over one to three heating cycles and with different...

  6. Removal of Cu(II) ions from contaminated waters using a conducting microfiltration membrane.

    Science.gov (United States)

    Wang, Xueye; Wang, Zhiwei; Chen, Haiqin; Wu, Zhichao

    2017-10-05

    Efficient removal of toxic metals using low-pressure membrane processes from contaminated waters is an important but challenging task. In the present work, a conducting microfiltration membrane prepared by embedding a stainless steel mesh in the active layer of a polyvinylidene fluoride membrane is developed to remove Cu(II) ions from contaminated waters. Results showed that the conducting membrane had favorable electrochemical properties and stability as cathode. Batch tests showed that Cu(II) removal efficiency increased with the increase of voltages and leveled off with the further enhancement of electric field. The optimal voltages were determined to be 1.0V and 2.0V for the influent Cu(II) concentrations of 5mg/L and 30mg/L, respectively. X-ray photoelectron spectroscopy and X-ray diffraction results demonstrated the presence of Cu(0) and Cu(OH) 2 on the membrane surface. The removal mechanisms involved the intrinsic adsorption of membrane, electrosorption of membrane, adsorption of deposited layer, chemical precipitation of Cu(OH) 2 and deposition of Cu(0) which were aided by electrophoresis and electrochemical oxidation-reduction. Long-term tests showed that the major contributors for Cu(II) removal were the deposition of Cu(0) by electrochemical reduction-oxidation (47.3%±8.5%) and chemical precipitation (41.1%±0.2%), followed by electrosorption, adsorption by the fouling layer and membrane intrinsic sorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Beltless translocation domain of botulinum neurotoxin A embodies a minimum ion-conductive channel.

    Science.gov (United States)

    Fischer, Audrey; Sambashivan, Shilpa; Brunger, Axel T; Montal, Mauricio

    2012-01-13

    Botulinum neurotoxin, the causative agent of the paralytic disease botulism, is an endopeptidase composed of a catalytic domain (or light chain (LC)) and a heavy chain (HC) encompassing the translocation domain (TD) and receptor-binding domain. Upon receptor-mediated endocytosis, the LC and TD are proposed to undergo conformational changes in the acidic endocytic environment resulting in the formation of an LC protein-conducting TD channel. The mechanism of channel formation and the conformational changes in the toxin upon acidification are important but less well understood aspects of botulinum neurotoxin intoxication. Here, we have identified a minimum channel-forming truncation of the TD, the "beltless" TD, that forms transmembrane channels with ion conduction properties similar to those of the full-length TD. At variance with the holotoxin and the HC, channel formation for both the TD and the beltless TD occurs independent of a transmembrane pH gradient. Furthermore, acidification in solution induces moderate secondary structure changes. The subtle nature of the conformational changes evoked by acidification on the TD suggests that, in the context of the holotoxin, larger structural rearrangements and LC unfolding occur preceding or concurrent to channel formation. This notion is consistent with the hypothesis that although each domain of the holotoxin functions individually, each domain serves as a chaperone for the others.

  8. Using Google Earth to conduct a neighborhood audit: reliability of a virtual audit instrument.

    Science.gov (United States)

    Clarke, Philippa; Ailshire, Jennifer; Melendez, Robert; Bader, Michael; Morenoff, Jeffrey

    2010-11-01

    Over the last two decades, the impact of community characteristics on the physical and mental health of residents has emerged as an important frontier of research in population health and health disparities. However, the development and evaluation of measures to capture community characteristics is still at a relatively early stage. The purpose of this work was to assess the reliability of a neighborhood audit instrument administered in the city of Chicago using Google Street View by comparing these "virtual" data to those obtained from an identical instrument administered "in-person". We find that a virtual audit instrument can provide reliable indicators of recreational facilities, the local food environment, and general land use. However, caution should be exercised when trying to gather more finely detailed observations. Using the internet to conduct a neighborhood audit has the potential to significantly reduce the costs of collecting data objectively and unobtrusively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Conductivity through Polymer Electrolytes and Its Implications in Lithium-Ion Batteries: Real-World Application of Periodic Trends

    Science.gov (United States)

    Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.

    2012-01-01

    Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…

  10. Suppression of ion conductance by electro-osmotic flow in nano-channels with weakly overlapping electrical double layers

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-08-01

    Full Text Available This theoretical study investigates the nonlinear ionic current-voltage characteristics of nano-channels that have weakly overlapping electrical double layers. Numerical simulations as well as a 1-D mathematical model are developed to reveal that the electro-osmotic flow (EOF interplays with the concentration-polarization process and depletes the ion concentration inside the channels, thus significantly suppressing the channel conductance. The conductance may be restored at high electrical biases in the presence of recirculating vortices within the channels. As a result of the EOF-driven ion depletion, a limiting-conductance behavior is identified, which is intrinsically different from the classical limiting-current behavior.

  11. Effect of transition metal ions on the conductivity and stability of stabilized zirconia

    DEFF Research Database (Denmark)

    Lybye, D.; Mogensen, Mogens Bjerg

    2007-01-01

    the effect of co-doping with smaller transition metal ions such as Ti-, Fe- and Mn-ions. Many of the ionic radii of the transition metal ions are too small compared to the host lattice ionic radius of zirconium. Here we explore the effect of a) the small ionic radii compared to the large ionic radii...

  12. Speculations on the existence of hydride ions in proton conducting oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2001-01-01

    The chemical and physical nature of the hydride ion is briefly treated. Several reactions of the hydride ion in oxides or oxygen atmosphere are given, A number of perovskites and inverse perovskites are listed. which contain the H- ion on the oxygen or B-anion sites in the archetype ABO(3) System...

  13. Solar wind dependence of ion parameters in the Earth's magnetospheric region calculated from CLUSTER observations

    Directory of Open Access Journals (Sweden)

    M. H. Denton

    2008-03-01

    Full Text Available Moments calculated from the ion distributions (~0–40 keV measured by the Cluster Ion Spectrometry (CIS instrument are combined with data from the Cluster Flux Gate Magnetometer (FGM instrument and used to characterise the bulk properties of the plasma in the near-Earth magnetosphere over five years (2001–2005. Results are presented in the form of 2-D xy, xz and yz GSM cuts through the magnetosphere using data obtained from the Cluster Science Data System (CSDS and the Cluster Active Archive (CAA. Analysis reveals the distribution of ~0–40 keV ions in the inner magnetosphere is highly ordered and highly responsive to changes in solar wind velocity. Specifically, elevations in temperature are found to occur across the entire nightside plasma sheet region during times of fast solar wind. We demonstrate that the nightside plasma sheet ion temperature at a downtail distance of ~12 to 19 Earth radii increases by a factor of ~2 during periods of fast solar wind (500–1000 km s−1 compared to periods of slow solar wind (100–400 km s−1. The spatial extent of these increases are shown in the xy, xz and yz GSM planes. The results from the study have implications for modelling studies and simulations of solar-wind/magnetosphere coupling, which ultimately rely on in situ observations of the plasma sheet properties for input/boundary conditions.

  14. Improvement of corrosion resistance and biocompatibility of rare-earth WE43 magnesium alloy by neodymium self-ion implantation

    International Nuclear Information System (INIS)

    Jin, Weihong; Wu, Guosong; Feng, Hongqing; Wang, Wenhao; Zhang, Xuming; Chu, Paul K.

    2015-01-01

    Highlights: • Nd self-ion implantation produces a smooth and hydrophobic surface on rare-earth WE43 Mg alloy. • The implanted layer is composed of mainly Nd 2 O 3 and MgO. • Degradation is significantly retarded in simulated body fluids and cell culture medium. • The Nd-implanted WE43 alloy exhibits remarkably enhanced cell adhesion and biocompatibility. - Abstract: Without introducing extraneous elements, a small amount of Nd is introduced into rare-earth WE43 magnesium alloy by ion implantation. The surface composition, morphology, polarization, and electrochemical properties, as well as weight loss, pH, and leached ion concentrations after immersion, are systematically evaluated to determine the corrosion behavior. The cell adhesion and viability are also determined to evaluate the biological response in vitro. A relatively smooth and hydrophobic surface layer composed of mainly Nd 2 O 3 and MgO is produced and degradation of WE43 is significantly retarded. Furthermore, significantly enhanced cell adhesion and excellent biocompatibility are observed after Nd self-ion implantation

  15. Modeling Li-ion conductivity in LiLa(PO{sub 3}){sub 4} powder

    Energy Technology Data Exchange (ETDEWEB)

    Mounir, Ferhi, E-mail: ferhi.mounir@gmail.com [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Karima, Horchani-Naifer [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia); Khaled, Ben Saad [Laboratoire de Photovoltaieque, Centre des Recherches et des Technologies de l' Energie, Technopole Borj Cedria, BP No. 95, 2050 Hammam Lif (Tunisia); Mokhtar, Ferid [Laboratoire de Physicochimie des Materiaux Mineraux et leurs Applications, Centre National des Recherches en Sciences des Materiaux, BP No. 73, 8027 Soliman (Tunisia)

    2012-07-01

    Polycrystalline powder and single-crystal of LiLa(PO{sub 3}){sub 4} are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO{sub 3}){sub 4} powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO{sub 3}){sub 4} are characterized by single-crystal X-ray diffraction. The LiLa(PO{sub 3}){sub 4} structure was found to be isotypic with LiNd(PO{sub 3}){sub 4}. It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) A, b=7.130(3) A, c=9.913(3) A, {beta}=126.37(4) Degree-Sign , V=946.72(6) A{sup 3} and Z=4. The LiLa(PO{sub 3}){sub 4} structure was described as an alternation between spiraling chains (PO{sub 3}){sub n} and (La{sup 3+}, Li{sup +}) cations along the b direction. The small Li{sup +} ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO{sub 8} polyhedra and the polyphosphate chains. The jumping of Li{sup +} through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO{sub 3}){sub 4} and its crystallographic structure was investigated and the most probably transport pathway model was determined.

  16. Modeling Li-ion conductivity in LiLa(PO3)4 powder

    International Nuclear Information System (INIS)

    Mounir, Ferhi; Karima, Horchani-Naifer; Khaled, Ben Saad; Mokhtar, Férid

    2012-01-01

    Polycrystalline powder and single-crystal of LiLa(PO 3 ) 4 are synthesized by solid state reaction and flux technique, respectively. A morphological description of the obtained product was made based on scanning electron microscopy micrographs. The obtained powder was characterized by X-ray powder diffraction, FTIR and Raman spectroscopies. Ionic conductivity of the LiLa(PO 3 ) 4 powder was measured and evaluated over a temperature range from 553 to 913 K. Single crystals of LiLa(PO 3 ) 4 are characterized by single-crystal X-ray diffraction. The LiLa(PO 3 ) 4 structure was found to be isotypic with LiNd(PO 3 ) 4 . It crystallizes in the monoclinic system with space group C2/c and cell parameters: a=16.635(6) Å, b=7.130(3) Å, c=9.913(3) Å, β=126.37(4)°, V=946.72(6) Å 3 and Z=4. The LiLa(PO 3 ) 4 structure was described as an alternation between spiraling chains (PO 3 ) n and (La 3+ , Li + ) cations along the b direction. The small Li + ions, coordinated to four oxygen atoms, were located in the large connected cavities created between the LaO 8 polyhedra and the polyphosphate chains. The jumping of Li + through tunnels of the crystalline network was investigated using complex impedance spectroscopy. The close value of the activation energies calculated through the analysis of conductivity data and loss spectra indicate that the transport in the investigated system is through hopping mechanism. The correlation between ionic conductivity of LiLa(PO 3 ) 4 and its crystallographic structure was investigated and the most probably transport pathway model was determined.

  17. Increase of ionic conductivity in the microporous lithosilicate RUB-29 by Na-ion exchange processes

    International Nuclear Information System (INIS)

    Park, S.-H.; Senyshyn, A.; Paulmann, C.

    2007-01-01

    The ionic conductivity in the zeolite-like lithosilicate RUB-29 (Cs 14 Li 24 [Li 18 Si 72 O 172 ].14H 2 O [S.-H. Park, J.B. Parise, H. Gies, H. Liu, C.P. Grey, B.H. Toby, J. Am. Chem. Soc. 122 (2000) 11023-11024]) increases via simple ion-exchange processes, in particular when Na cations replace a part of Cs + and Li + of the material. The resulting ionic conductivity value of 3.2x10 -3 S cm -1 at 885 K is about two orders higher than that for the original material [S.-H. Park, J.B. Parise, M.E. Franke, T. Seydel, C. Paulmann, Micropor. Mesopor. Mater., in print ( (doi:10.1016/j.micromeso.2007.03.040) available online since April 19, 2007)]. The structural basis of a Na + -exchanged RUB-29 sample (Na-RUB-29) at 673 K could be elucidated by means of neutron powder diffraction. Rietveld refinements confirmed the replacement of Na + for both parts of Cs and Li cations, agreeing with idealized cell content, Na 8 Cs 8 Li 40 Si 72 O 172 . As a result of the incorporation of Na + in large pores, the number of Li + vacancies in dense Li 2 O-layers of the structure could increase. This can be one of the main reasons for the improved conductivity in Na-RUB-29. In addition, mobile Na cations may also contribute to the conductivity in Na-RUB-29 as continuous scattering length densities were found around the sites for Na in difference Fourier map. - Graphical abstract: Li 2 O-layers formed by edge- and corner-sharing LiO 4 - and LiO 3 -moieties in the zeolite-like lithosilicate RUB-29 provide optimal pathways for conducting Li + . The number of empty Li sites in this layer-like configuration could increase via 'simple' Na + -exchange processes, promoting fast Li motions

  18. Structural, optical absorption and photoluminescence spectral studies of Sm3+ ions in Alkaline-Earth Boro Tellurite glasses

    Science.gov (United States)

    Siva Rama Krishna Reddy, K.; Swapna, K.; Mahamuda, Sk.; Venkateswarlu, M.; Srinivas Prasad, M. V. V. K.; Rao, A. S.; Prakash, G. Vijaya

    2018-05-01

    Sm3+ ions doped Alkaline-Earth Boro Tellurite (AEBT) glasses were prepared by using conventional melt quenching technique and characterized using the spectroscopic techniques such as FT-IR, optical absorption, emission and decay spectral measurements to understand their utility in optoelectronic devices. From absorption spectra, the bonding parameters, nephelauxetic ratios were determined to know the nature of bonding between Sm3+ ions and its surrounding ligands. From the measured oscillator strengths, the Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ions in AEBT glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 in the visible region for which the emission cross-sections and branching ratios were evaluated. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition showed single exponential for lower concentration and non-exponential for higher concentration of doped rare earth ion in the as prepared glasses. Conversion of decay spectral profiles from single to non-exponential have been analyzed using Inokuti-Hirayama (I-H) model to understand the energy transfer mechanism involved in the decay process. CIE Chromaticity coordinates were measured using emission spectral data to identify the exact region of emission from the as-prepared glasses. From the evaluated radiative parameters, emission cross-sections and quantum efficiencies, it was observed that AEBT glass with 1 mol% of Sm3+ ions is more suitable for designing optoelectronic devices.

  19. Ion thermal conductivity and convective energy transport in JET hot-ion regimes and H-modes

    International Nuclear Information System (INIS)

    Tibone, F.; Balet, B.; Cordey, J.G.

    1989-01-01

    Local transport in a recent series of JET experiments has been studied using interpretive codes. Auxiliary heating, mainly via neutral beam injection, was applied on low-density target plasmas confined in the double-null X-point configuration. This has produced two-component plasmas with high ion temperature and neutron yield and, above a threshold density, H-modes characterised by peak density and power deposition profiles. H-mode confinement was also obtained for the first time with 25 MW auxiliary power, of which 10 MW was from ion cyclotron resonance heating. We have used profile measurements of electron temperature T e from electron cyclotron emission and LIDAR Thomson scattering, ion temperature T i from charge-exchange recombination spectroscopy (during NBI), electron density n e from LIDAR and Abel-inverted interferometer measurements. Only sparse information is, however, available to date concerning radial profiles of effective ionic charge and radiation losses. Deuterium depletion due to high impurity levels is an important effect in these discharges, and our interpretation of thermal ion energy content, neutron yield and ion particle fluxes needs to be confirmed using measured Z eff -profiles. (author) 4 refs., 4 figs

  20. Plasma rest frame distributions of suprathermal ions in the earth's foreshock region

    International Nuclear Information System (INIS)

    Sentman, D.D.; Kennel, C.F.; Frank, L.A.

    1981-01-01

    We present rest frame ion distributions computed from three-dimensional observations of upstream superthermal ions gained by the Universtiy of Iowa Quadrispherical Lepedea on ISEE-1. The observations are for a single inbound, midmorning pass starting upstream from the ion foreshock and continuing across the quasiparallel bow shock into the magnetosheath. The crossing of the ion foreshock boundary is marked by a several minute burst of ions of temperature 100--200 eV moving along the IMF away from the bow shock at 500 km/s relative to the solar wind. The observation of these 'reflected' ions is followed by an extended interval of 'diffuse' ions of temperatures 2--3 keV flowing at approx.250 km/s relative to the solar wind and persisting until the bow shock is crossed. The diffuse ion β has a value of approximately 6 in the region of the superthermal ions, exceeding the normal thermal β of the solar wind by roughly an order of magnitude. Both types of superthermal ions constitute roughly 2% of the total ion density and carry a parallel heat flux of approx.2 x 10 -2 ergs cm -2 s -2 . When integrated over an assumed 10 x 10 R/sub E/ bow shock emission area, this implies an upstream dissipation that may approach 10 17 to 10 18 ergs/s, comparable to a modest substorm

  1. Lactococcin G is a potassium ion-conducting, two-component bacteriocin.

    Science.gov (United States)

    Moll, G; Ubbink-Kok, T; Hildeng-Hauge, H; Nissen-Meyer, J; Nes, I F; Konings, W N; Driessen, A J

    1996-02-01

    Lactococcin G is a novel lactococcal bacteriocin whose activity depends on the complementary action of two peptides, termed alpha and beta. Peptide synthesis of the alpha and beta peptides yielded biologically active lactococcin G, which was used in mode-of-action studies on sensitive cells of Lactococcus lactis. Approximately equivalent amounts of both peptides were required for optimal bactericidal effect. No effect was observed with either the alpha or beta peptide in the absence of the complementary peptide. The combination of alpha and beta peptides (lactococcin G) dissipates the membrane potential (delta omega), and as a consequence cells release alpha-aminoisobutyrate, a non-metabolizable alanine analog that is accumulated through a proton motive-force dependent mechanism. In addition, the cellular ATP level is dramatically reduced, which results in a drastic decrease of the ATP-driven glutamate uptake. Lactococcin G does not form a proton-conducting pore, as it has no effect on the transmembrane pH gradient. Dissipation of the membrane potential by uncouplers causes a slow release of potassium (rubidium) ions. However, rapid release of potassium was observed in the presence of lactococcin G. These data suggest that the bactericidal effect of lactococcin G is due to the formation of potassium-selective channels by the alpha and beta peptides in the target bacterial membrane.

  2. Simultaneous Determination of Different Anions in Milk Samples Using Ion Chromatography with Conductivity Detection

    Directory of Open Access Journals (Sweden)

    Gülçin Gümüş Yılmaz

    2016-12-01

    Full Text Available The description of a simple method for simultaneous determination of chloride, nitrate, sulfate, iodide, phosphate, thiocyanate, perchlorate, and orotic acid in milk samples was outlined. The method involves the use of dialysis cassettes for matrix elimination, followed by ion chromatography on a high capacity anion exchange column with suppressed conductivity detection. The novelty of dialysis process was that it did not need any chemical and organic solvent for elimination of macromolecules such as fat, carbohydrates and proteins from milk samples. External standard calibration curves for these analytes were linear with great correlation coefficients. The relative standard deviations of analyte concentrations were acceptable both inter-day and intra-day evaluations. Under optimized conditions, the limit of detection (Signal-to-Noise ratio = 3 for chloride, phosphate, thiocyanate, perchlorate, iodide, nitrate, sulfate, and orotate was found to be 0.012, 0.112, 0.140, 0.280, 0.312, 0.516, 0.520, and 0.840 mg L−1, respectively. Significant results were obtained for various spiked milk samples with % recovery in the range of 93.88 - 109.75 %. The proposed method was successfully applied to milk samples collected from Istanbul markets. The advantages of the method described herein are reagent-free, simple, and reliable.

  3. Macro-SICM: A Scanning Ion Conductance Microscope for Large-Range Imaging.

    Science.gov (United States)

    Schierbaum, Nicolas; Hack, Martin; Betz, Oliver; Schäffer, Tilman E

    2018-04-17

    The scanning ion conductance microscope (SICM) is a versatile, high-resolution imaging technique that uses an electrolyte-filled nanopipet as a probe. Its noncontact imaging principle makes the SICM uniquely suited for the investigation of soft and delicate surface structures in a liquid environment. The SICM has found an ever-increasing number of applications in chemistry, physics, and biology. However, a drawback of conventional SICMs is their relatively small scan range (typically 100 μm × 100 μm in the lateral and 10 μm in the vertical direction). We have developed a Macro-SICM with an exceedingly large scan range of 25 mm × 25 mm in the lateral and 0.25 mm in the vertical direction. We demonstrate the high versatility of the Macro-SICM by imaging at different length scales: from centimeters (fingerprint, coin) to millimeters (bovine tongue tissue, insect wing) to micrometers (cellular extensions). We applied the Macro-SICM to the study of collective cell migration in epithelial wound healing.

  4. Influence of rare-earth ions on fluorogallate glass formation and properties

    International Nuclear Information System (INIS)

    Zhang Guoyin; Poulain, M.J.

    1998-01-01

    Various rare earths have been incorporated in a lead fluorogallate glass with the following chemical composition: 30PbF 2 -20GaF 3 -15InF 3 -20CdF 2 -15ZnF 2 (PGICZ). Selected rare earths are La, Ce, Pr, Nd, Gd, Er, Yb and Lu, and the doping level varies between 1 and 10 mol%. The influence of rare earth fluorides on glass forming ability and on physical properties is investigated. At low concentration ( 3 in a modified PGCIZ glass have been cast. Experimental results suggest that rare earths act as modifiers rather than vitrifies in this fluorogallate system. The effect of rare earths on the values of glass transition temperature, refractive index, density and thermal expansion is reported. (orig.)

  5. Effect of upstream ULF waves on the energetic ion diffusion at the earth's foreshock: Theory, Simulation, and Observations

    Science.gov (United States)

    Otsuka, F.; Matsukiyo, S.; Kis, A.; Hada, T.

    2017-12-01

    Spatial diffusion of energetic particles is an important problem not only from a fundamental physics point of view but also for its application to particle acceleration processes at astrophysical shocks. Quasi-linear theory can provide the spatial diffusion coefficient as a function of the wave turbulence spectrum. By assuming a simple power-law spectrum for the turbulence, the theory has been successfully applied to diffusion and acceleration of cosmic rays in the interplanetary and interstellar medium. Near the earth's foreshock, however, the wave spectrum often has an intense peak, presumably corresponding to the upstream ULF waves generated by the field-aligned beam (FAB). In this presentation, we numerically and theoretically discuss how the intense ULF peak in the wave spectrum modifies the spatial parallel diffusion of energetic ions. The turbulence is given as a superposition of non-propagating transverse MHD waves in the solar wind rest frame, and its spectrum is composed of a piecewise power-law spectrum with different power-law indices. The diffusion coefficients are then estimated by using the quasi-linear theory and test particle simulations. We find that the presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The results above are used to discuss the Cluster observations of the diffuse ions at the Earth's foreshock. Using the density gradients of the energetic ions detected by the Cluster spacecraft, we determine the e-folding distances, equivalently, the spatial diffusion coefficients, of ions with their energies from 10 to 32 keV. The observed e-folding distances are significantly smaller than those estimated in the past statistical studies. This suggests that the particle acceleration at the foreshock can be more efficient than considered before. Our test particle simulation explains well the small estimate of the e-folding distances, by using the observed wave turbulence spectrum

  6. thermal, electrical and structural characterization of fast ion conducting glasses (Ag Br)x(AgPO)1-x

    International Nuclear Information System (INIS)

    Kartini, E.; Yufus, S.; Priyanto, T; Indayaningsih, N; Collins, M F

    2001-01-01

    Fast ion conducting glasses are of considerable technological interest because of their possible application in batteries, sensors, and displays. One of the main scientific challenges is to explain how the disordered structure of the glass is related to the high ionic conductivity that can be achieved at ambient temperature. Fast ion conducting glasses (AgBr) x (AgPO3) 1- x with x=0.0; 0.2; 0.3; 0.4; 0.5; 0.7; and 0.85 were prepared by rapid quenching. The studies of structure, thermal property and electrical conductivity have been made. The X-ray diffraction patterns of this system show that the sample are glasses for x 0.5. The neutron diffraction data shows that all AgBr doped glasses exhibit a strong and relatively sharp diffraction peak at anomalously low momentum transfer value, Q∼ 0.7 Α - 1. The low Q-peak is not observed in AgPO 3 glass, and in the X-ray data. The results of electrical conductivity show that the conduction is essentially ionic and due to silver ions alone. The logarithm of the ionic conductivity increases with increasing AgBr mole fraction, and reaches maximum for x = 0.5. The thermal property results measured by differential scanning calorimetric show that the temperatures of the glass transition, the crystallization and the melt reach minimum for the glass with composition x 0.5. We conclude that there appears to be a relation between higher conductivity at ambient temperature, and the low Q-peak. Based on this investigation a better fast ion conducting glass proposed is (AgBr) 0 .5(AgPO 3 ) 0 .5 with the conductivity of 8 x 10 - 5 S/cm

  7. High time resolution characteristics of intermediate ion distributions upstream of the earth's bow shock

    Science.gov (United States)

    Potter, D. W.

    1985-01-01

    High time resolution particle data upstream of the bow shock during time intervals that have been identified as having intermediate ion distributions often show high amplitude oscillations in the ion fluxes of energy 2 and 6 keV. These ion oscillations, observed with the particle instruments of the University of California, Berkeley, on the ISEE 1 and 2 spacecraft, are at the same frequency (about 0.04 Hz) as the magnetic field oscillations. Typically, the 6-keV ion flux increases then the 2-keV flux increases followed by a decrease in the 2-keV flux and then the 6-keV flux decreases. This process repeats many times. Although there is no entirely satisfactory explanation, the presence of these ion flux oscillations suggests that distributions often are misidentified as intermediate ion distributions.

  8. Characteristics of reflected and diffuse ions upstream from the earth's bow shock

    International Nuclear Information System (INIS)

    Paschmann, G.; Sckopke, N.; Papamastorakis, I.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1981-01-01

    The distinction between two types of upstream ion populations has been made on the basis of pronounced differences in their distribution functions. The 'reflected' ions represent a fast beam with temperatures typically 1 to 5 times 10 6 K and speeds up to five times the solar wind speed. An important feature of the reflected ion distributions in their strong temperature anisotropy, with T/sub perpendicular/ exceeding T/sub parallel/ by a factor of two to three. In contrast, the 'diffuse' ions occupy a much larger region of phase space, both in energy and angle; their distribution function generally has the form roughly of a circular ridge in 2 dimensions and a spherical shell in 3 dimensions. Accordingly, their temperature is much larger (> or approx. =10 7 K), and their bulk speed typically is smaller than the solar wind speed. Both ion populations have densities of the order of 0.1 cm -3 . At times transitions between the two extremes, represented by the reflected and diffuse ion populations, are observed. These 'intermediate' distributions are cresent shaped, with the center of curvature near the solar wind velocity. This property suggests that the intermediate distributions result from pitch angle scattering of the reflected beams in the solar wind frame and supports the idea that the reflected ions are the origin of the diffuse ions. At times the diffuse ion distributions exhibit considerable structure and rapid temporal variations. Reflected and diffuse ions can also be distinguished by their occurrence as a function of the angle theta between the local shock normal and the interplanetary magnetic field. Whereas the diffuse ions occur predominantly for small theta, the reflected ions are observed most frequently for theta> or approx. =45 0

  9. A comparative study on electrochemical performances of the electrodes with different nanocarbon conductive additives for lithium ion batteries

    International Nuclear Information System (INIS)

    Chen, Taiqiang; Pan, Likun; Liu, Xinjuan; Sun, Zhuo

    2013-01-01

    Three nanocarbon materials (0 D acetylene black (AB), 1 D carbon nanotubes (CNTs) and 2 D reduced graphene oxide (RGO)) were used as conductive additives (CAs) in the mesocarbon microbead anodes for lithium ion batteries. The electrochemical performances of the electrodes were investigated. The results show that the CAs have a significant impact on the electrode performance because they can influence the electron conduction and lithium ion transportation within the electrode. The electrode with RGO achieves a maximum capacity of 387 mAh g −1 after 50 cycles at a current density of 50 mA g −1 , much higher than those of the electrodes with AB (334 mAh g −1 ) and CNTs (319 mAh g −1 ). The improvement should be mainly ascribed to the “plane-to-point” conducting network formed in the electrode with 2 D RGO which can favor the electron conduction and enhance the lithium ion transportation. - Highlights: • Three carbon materials were used as additives in the electrodes of Li ion battery. • The electrochemical performances of the electrodes were comparatively investigated. • The carbon additives have a significant impact on the electrode performance. • RGO additive acts as a bridge to form a “plane-to-point” conducting network. • The electrode with RGO exhibits better performance than those with other additives

  10. Ion Transport in Confined Geometries below the Nanoscale: Access Resistance Dominates Protein Channel Conductance in Diluted Solutions.

    Science.gov (United States)

    Alcaraz, Antonio; López, M Lidón; Queralt-Martín, María; Aguilella, Vicente M

    2017-10-24

    Synthetic nanopores and mesoscopic protein channels have common traits like the importance of electrostatic interactions between the permeating ions and the nanochannel. Ion transport at the nanoscale occurs under confinement conditions so that the usual assumptions made in microfluidics are challenged, among others, by interfacial effects such as access resistance (AR). Here, we show that a sound interpretation of electrophysiological measurements in terms of channel ion selective properties requires the consideration of interfacial effects, up to the point that they dominate protein channel conductance in diluted solutions. We measure AR in a large ion channel, the bacterial porin OmpF, by means of single-channel conductance measurements in electrolyte solutions containing varying concentrations of high molecular weight PEG, sterically excluded from the pore. Comparison of experiments performed in charged and neutral planar membranes shows that lipid surface charges modify the ion distribution and determine the value of AR, indicating that lipid molecules are more than passive scaffolds even in the case of large transmembrane proteins. We also found that AR may reach up to 80% of the total channel conductance in diluted solutions, where electrophysiological recordings register essentially the AR of the system and depend marginally on the pore characteristics. These findings may have implications for several low aspect ratio biological channels that perform their physiological function in a low ionic strength and macromolecule crowded environment, just the two conditions enhancing the AR contribution.

  11. Enhanced AC conductivity and dielectric relaxation properties of polypyrrole nanoparticles irradiated with Ni{sup 12+} swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, J.; Kumar, A., E-mail: ask@tezu.ernet.in

    2014-08-15

    In this paper, we report the 160 MeV Ni{sup 12+} swift heavy ions (SHIs) irradiation effects on AC conductivity and dielectric relaxation properties of polypyrrole (PPy) nanoparticles in the frequency range of 42 Hz–5 MHz. Four ion fluences of 5 × 10{sup 10}, 1 × 10{sup 11}, 5 × 10{sup 11} and 1 × 10{sup 12} ions/cm{sup 2} have been used for the irradiation purpose. Transport properties in the pristine and irradiated PPy nanoparticles have been investigated with permittivity and modulus formalisms to study the polarization effects and conductivity relaxation. With increasing ion fluence, the relaxation peak in imaginary modulus (M{sup ″}) plots shifts toward high frequency suggesting long range motion of the charge carriers. The AC conductivity studies suggest correlated barrier hopping as the dominant transport mechanism. The hopping distance (R{sub ω}) of the charge carriers decreases with increasing the ion fluence. Binding energy (W{sub m}) calculations depict that polarons are the dominant charge carriers.

  12. Stomatal Conductance, Plant Hydraulics, and Multilayer Canopies: A New Paradigm for Earth System Models or Unnecessary Uncertainty

    Science.gov (United States)

    Bonan, G. B.

    2016-12-01

    Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.

  13. Effects of dust polarity and nonextensive electrons on the dust-ion acoustic solitons and double layers in earth atmosphere

    Science.gov (United States)

    Ghobakhloo, Marzieh; Zomorrodian, Mohammad Ebrahim; Javidan, Kurosh

    2018-05-01

    Propagation of dustion acoustic solitary waves (DIASWs) and double layers is discussed in earth atmosphere, using the Sagdeev potential method. The best model for distribution function of electrons in earth atmosphere is found by fitting available data on different distribution functions. The nonextensive function with parameter q = 0.58 provides the best fit on observations. Thus we analyze the propagation of localized waves in an unmagnetized plasma containing nonextensive electrons, inertial ions, and negatively/positively charged stationary dust. It is found that both compressive and rarefactive solitons as well as double layers exist depending on the sign (and the value) of dust polarity. Characters of propagated waves are described using the presented model.

  14. Mesoscale Origin of the Enhanced Cycling-Stability of the Si-Conductive Polymer Anode for Li-ion Batteries

    Science.gov (United States)

    Gu, Meng; Xiao, Xing-Cheng; Liu, Gao; Thevuthasan, Suntharampillai; Baer, Donald R.; Zhang, Ji-Guang; Liu, Jun; Browning, Nigel D.; Wang, Chong-Min

    2014-01-01

    Electrode used in lithium-ion battery is invariably a composite of multifunctional components. The performance of the electrode is controlled by the interactive function of all components at mesoscale. Fundamental understanding of mesoscale phenomenon sets the basis for innovative designing of new materials. Here we report the achievement and origin of a significant performance enhancement of electrode for lithium ion batteries based on Si nanoparticles wrapped with conductive polymer. This new material is in marked contrast with conventional material, which exhibit fast capacity fade. In-situ TEM unveils that the enhanced cycling stability of the conductive polymer-Si composite is associated with mesoscale concordant function of Si nanoparticles and the conductive polymer. Reversible accommodation of the volume changes of Si by the conductive polymer allows good electrical contact between all the particles during the cycling process. In contrast, the failure of the conventional Si-electrode is probed to be the inadequate electrical contact. PMID:24418812

  15. Towards rare-earth-ion-doped Al2O3 active integrated optical devices

    OpenAIRE

    Ay, F.; Bradley, J.; Worhoff, Kerstin; Pollnau, Markus

    2007-01-01

    Aluminum oxide planar waveguides with low loss (0.11 dB/cm at 1523 nm) are fabricated. Channel waveguides are obtained by reactive ion etching. Erbium-doped layers show no upconversion luminescence, a hint that ion clustering is small.

  16. Ion bombardment effects on surface states in selected oxide systems: rutile and alkaline earth titanates

    International Nuclear Information System (INIS)

    Gruen, D.M.

    1978-01-01

    In this paper, the nature of the surface states of n-type TiO 2 and SrTiO 3 is discussed and the role of ion bombardment in modifying the properties of these states is elucidated. Insofar as possible, the interrelationships between oxide nonstoichiometry, surface states, ion bombardment effects and photoelectrolysis are explored

  17. A study of the structural properties of GaN implanted by various rare-earth ions

    Czech Academy of Sciences Publication Activity Database

    Macková, Anna; Malinský, Petr; Sofer, Z.; Šimek, P.; Sedmidubský, D.; Mikulics, M.; Wilhelm, R. A.

    2013-01-01

    Roč. 307, č. 7 (2013), s. 446-451 ISSN 0168-583X. [18th International Conference on Ion Beam Modifications of Materials (IBMM). Qingdao, 02.09.2012-07.09.2012] R&D Projects: GA ČR GA106/09/0125; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : rare earth implantation * GaN * depth profiles * RBS * Raman spectroscopy * AFM Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.186, year: 2013 http://www.sciencedirect.com/science/article/pii/S0168583X13000955

  18. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    OpenAIRE

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-01-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle from 2002 to 2013 to verify if solar cycle-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection spe...

  19. Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range

    OpenAIRE

    Dekker, R.; Worhoff, Kerstin; Stouwdam, J.W.; van Veggel, F.C.J.M.; Driessen, A.

    2005-01-01

    In the present work we applied a measurement setup to determine several relevant properties of rare-earth doped nanoparticles dispersed in polymer slab waveguides in a single absorption measurement: background absorption of the polymer host material, water absorption, polymer composition (overtones), rare earth concentration, and ligand contribution (increase of exponential loss trend in the UV). Furthermore, nanoparticle size and concentration in case of a refractive index mismatch (1//spl l...

  20. Amorphous Fast Ion Conducting Systems, Part 1. Structure and Properties of Mid and Far IR Transmitting Materials, Part 2

    Science.gov (United States)

    1991-10-31

    Glasses with high conductivities can also be formed with the Lewis acids GeO 2 (11 ) and no doubt Bi 20 3, TeO2 , etc., but these have been less...P age 3 1. Mechanical Relaxation and Relation to Electrical Relaxation in Fast Ion-Conducting Glasses ...relaxation although considerable information was available for the classical alkali silicate and borate glasses . Our program was to utilize the rheovibron

  1. The molecular mechanism of multi-ion conduction in K{sup +} channels

    Energy Technology Data Exchange (ETDEWEB)

    Gwan, J.F.

    2007-01-19

    Steered molecular dynamics (SMD) simulation method is applied to a fully solvated membrane-channel model for studying the ion permeation process in potassium channels. The channel model is based on the crystallographic structure of a prokaryotic K{sup +} channel- the KcsA channel, which is a representative of most known eukaryotic K{sup +} channels. It has long been proposed that the ion transportation in a conventional K{sup +}-channel follows a multi-ion fashion: permeating ions line in a queue in the channel pore and move in a single file through the channel. The conventional view of multi-ion transportation is that the electrostatic repulsion between ions helps to overcome the attraction between ions and the channel pore. In this study, we proposed two SMD simulation schemes, referred to 'the single-ion SMD' simulations and 'the multi-ion SMD' simulations. Concerted movements of a K-W-K sequence in the selectivity filter were observed in the single-ion SMD simulations. The analysis of the concerted movement reveals the molecular mechanism of the multi-ion transportation. It shows that, rather than the long range electrostatic interaction, the short range polar interaction is a more dominant factor in the multi-ion transportation. The polar groups which play a role in the concerted transportation are the water molecules and the backbone carbonyl groups of the selectivity filter. The polar interaction is sensitive to the relative orientation of the polar groups. By changing the orientation of a polar group, the interaction may switch from attractive to repulsive or vice versa. By this means, the energy barrier between binding sites in the selectivity filter can be switched on and off, and therefore the K{sup +} may be able to move to the neighboring binding site without an external driving force. The concerted transportation in the selectivity filter requires a delicate cooperation between K{sup +}, waters, and the backbone carbonyl groups. To

  2. Evaluation of capacity ion exchange of MMT-Na+with rare earth salts for use in polymeric nano composites

    International Nuclear Information System (INIS)

    Maino, Isabel B.; Scienza, Lisete C.; Piazza, Diego; Zattera, Ademir J.; Ferreira, Carlos A.

    2011-01-01

    The modification of the montmorillonite clay is associated with materials science, arousing interest in science and technology provide significant improvements when incorporated into polymeric materials neat and conventional composites. The process of modification of clays occurs mainly through the ion exchange of exchangeable cations in its crystal structure. In this study, we performed ion exchange of sodium montmorillonite with rare earth salts (cerium) through two routes: centrifugation and filtration. The samples were characterized by X-ray diffraction (XRD) and energy dispersive analysis by X-ray (EDS). The sample obtained by the filtration route showed an increase of basal clay by XRD, indicating the presence of salts of cerium on the structure, and corroborated by EDS analysis. (author)

  3. Ionic conductivity of metal oxides : an essential property for all-solid-state Lithium-ion batteries

    NARCIS (Netherlands)

    Chen, C.; Eichel, R.-A.; Notten, P.H.L.

    2017-01-01

    Essential progress has been made for adopting metal oxides (MeO) in various energy storage and energy conversion applications. Among these, utilizing MeO in Lithium-ions batteries (LIBs) seems to be one of the most promising applications. In particular, conductive Li-containing oxides or

  4. One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes.

    Science.gov (United States)

    Wong, Min Hao; Zhang, Zixuan; Yang, Xianfeng; Chen, Xiaojun; Ying, Jackie Y

    2015-09-14

    An efficient and adaptable method is demonstrated for the synthesis of lithium hexacyanoferrate/conductive polymer hybrids for Li-ion battery cathodes. The hybrids were synthesized via a one-pot method, involving a redox-coupled reaction between pyrrole monomers and the Li3Fe(CN)6 precursor. The hybrids showed much better cyclability relative to reported Prussian Blue (PB) analogs.

  5. Fluctuation Induced Conductivity Studies of 100 MeV Oxygen Ion Irradiated Pb Doped Bi-2223 Superconductors

    NARCIS (Netherlands)

    Banerjee, Tamalika; Kumar, Ravi; Kanjilal, D.; Ramasamy, S.

    2000-01-01

    We report on 100 MeV oxygen ion irradiation in Pb doped Bi-2223 superconductors. Resistivity measurements reveal that both grains as well as the grain boundaries are affected by such irradiation. An analysis of the excess conductivity has been made within the framework of Aslamazov-Larkin (AL) and

  6. Conductivity enhancement of ion tracks in tetrahedral amorphous carbon by doping with N, B, Cu and Fe

    International Nuclear Information System (INIS)

    Krauser, J.; Nix, A.-K.; Gehrke, H.-G.; Hofsäss, H.; Trautmann, C.; Weidinger, A.

    2012-01-01

    Conducting ion tracks are formed when high-energy heavy ions (e.g. 1 GeV Au) pass through tetrahedral amorphous carbon (ta-C). These nanowires with a diameter of about 8 nm are embedded in the insulating ta-C matrix and of interest for various nanotechnological applications. Usually the overall conductivity of the tracks and the current/voltage characteristics (Ohmic or non-Ohmic) vary strongly from track to track, even when measured on the same sample, indicating that the track formation is neither complete nor homogeneous. To improve the track conductivity, doping of ta-C with N, B, Cu, or Fe is investigated. Beneficial changes in track conductivity after doping compete with a conductivity increase of the surrounding matrix material. Best results are achieved by incorporation of 1 at.% Cu, while for different reasons, the improvement of the tracks remains moderate for N, B, and Fe doping. Conductivity enhancement of the tracks is assumed to develop during the ion track formation process by an increased number of localized states which contribute to the current transport.

  7. Thermal conductivity and nanocrystalline structure of platinum deposited by focused ion beam

    KAUST Repository

    Alaie, Seyedhamidreza; Goettler, Drew F.; Jiang, Yingbing; Abbas, Khawar; Baboly, Mohammadhosein Ghasemi; Anjum, Dalaver H.; Chaieb, Saharoui; Leseman, Zayd Chad

    2015-01-01

    Pt deposited by focused ion beam (FIB) is a common material used for attachment of nanosamples, repair of integrated circuits, and synthesis of nanostructures. Despite its common use little information is available on its thermal properties

  8. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio; Huggins, Robert A.; Cui, Yi

    2012-01-01

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon

  9. Structural and Dynamical Properties of Alkaline Earth Metal Halides in Supercritical Water: Effect of Ion Size and Concentration.

    Science.gov (United States)

    Keshri, Sonanki; Tembe, B L

    2017-11-22

    Constant temperature-constant pressure molecular dynamics simulations have been performed for aqueous alkaline earth metal chloride [M 2+ -Cl - (M = Mg, Ca, Sr, and Ba)] solutions over a wide range of concentrations (0.27-5.55 m) in supercritical (SC) and ambient conditions to investigate their structural and dynamical properties. A strong influence of the salt concentration is observed on the ion-ion pair correlation functions in both ambient and SC conditions. In SC conditions, significant clustering is observed in the 0.27 m solution, whereas the reverse situation is observed at room temperature and this is also supported by the residence times of the clusters. The concentration and ion size (cation size) seem to have opposite effects on the average number of hydrogen bonds. The simulation results show that the self-diffusion coefficients of water, cations, and the chloride ion increase with increasing temperature, whereas they decrease with increasing salt concentration. The cluster size distribution shows a strong density dependence in both ambient and SC conditions. In SC conditions, cluster sizes display a near-Gaussian distribution, whereas the distribution decays monotonically in ambient conditions.

  10. A rare-earth-magnet ion trap for confining low-Z, bare nuclei

    Science.gov (United States)

    Brewer, Samuel M.; Tan, Joseph N.

    2009-05-01

    Simplifications in the theory for Rydberg states of hydrogenlike ions allow a substantial improvement in the accuracy of predicted levels, which can yield information on the values of fundamental constants and test theory if they can be compared with precision frequency measurements.[1] We consider the trapping of bare nuclei (fully-stripped) to be used in making Rydberg states of one-electron ions with atomic number 1Wundt, ``Fundamental constants and tests of theory in Rydberg states of hydrogenlike ions,'' Phys. Rev. Lett. 100, 160404 (2008).

  11. In situ characterization of thermal conductivities of irradiated solids by using ion beam heating and infrared imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mondrik, Nicholas; Gigax, Jonathan; Wang, Xuemei; Price, Lloyd [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Wei, Chaochen [Materials Science and Engineering Department, Texas A and M University, College Station, TX 77843 (United States); Shao, Lin, E-mail: lshao@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Materials Science and Engineering Department, Texas A and M University, College Station, TX 77843 (United States)

    2014-08-01

    We propose a method to characterize thermal properties of ion irradiated materials. This method uses an ion beam as a heating source to create a hot spot on sample surface. Infrared imaging is used as a surface temperature mapping tool to record hot zone spreading. Since ion energy, ion flux, and ion penetration depth can be precisely controlled, the beam heating data is highly reliable and repeatable. Using a high speed infrared camera to capture lateral spreading of the hot zone, thermal diffusivity can be readily extracted. The proposed method has advantages in studying radiation induced thermal property changes, for which radiation damage can be introduced by using an irradiating beam over a relatively large beam spot and beam heating can be introduced by using a focused testing beam over a relatively small beam spot. These two beams can be switched without breaking vacuum. Thus thermal conductivity changes can be characterized in situ with ion irradiation. The feasibility of the technique is demonstrated on a single crystal quartz substrate.

  12. In situ characterization of thermal conductivities of irradiated solids by using ion beam heating and infrared imaging

    International Nuclear Information System (INIS)

    Mondrik, Nicholas; Gigax, Jonathan; Wang, Xuemei; Price, Lloyd; Wei, Chaochen; Shao, Lin

    2014-01-01

    We propose a method to characterize thermal properties of ion irradiated materials. This method uses an ion beam as a heating source to create a hot spot on sample surface. Infrared imaging is used as a surface temperature mapping tool to record hot zone spreading. Since ion energy, ion flux, and ion penetration depth can be precisely controlled, the beam heating data is highly reliable and repeatable. Using a high speed infrared camera to capture lateral spreading of the hot zone, thermal diffusivity can be readily extracted. The proposed method has advantages in studying radiation induced thermal property changes, for which radiation damage can be introduced by using an irradiating beam over a relatively large beam spot and beam heating can be introduced by using a focused testing beam over a relatively small beam spot. These two beams can be switched without breaking vacuum. Thus thermal conductivity changes can be characterized in situ with ion irradiation. The feasibility of the technique is demonstrated on a single crystal quartz substrate

  13. Computer simulations of electromagnetic cool ion beam instabilities. [in near earth space

    Science.gov (United States)

    Gary, S. P.; Madland, C. D.; Schriver, D.; Winske, D.

    1986-01-01

    Electromagnetic ion beam instabilities driven by cool ion beams at propagation parallel or antiparallel to a uniform magnetic field are studied using computer simulations. The elements of linear theory applicable to electromagnetic ion beam instabilities and the simulations derived from a one-dimensional hybrid computer code are described. The quasi-linear regime of the right-hand resonant ion beam instability, and the gyrophase bunching of the nonlinear regime of the right-hand resonant and nonresonant instabilities are examined. It is detected that in the quasi-linear regime the instability saturation is due to a reduction in the beam core relative drift speed and an increase in the perpendicular-to-parallel beam temperature; in the nonlinear regime the instabilities saturate when half the initial beam drift kinetic energy density is converted to fluctuating magnetic field energy density.

  14. Alkali Earth Ion Spectroscopy in Preparation of a Weinberg Angle Measurement

    NARCIS (Netherlands)

    Valappol, Nivedya; Dijck, Elwin; Hofsteenge, Aswin; Mohanty, Amita; Willmann, Lorenz; Jungmann, Klaus-Peter

    2017-01-01

    Through precision spectroscopy on Ba+ ions we determine precisely the 6s2S1/2 - 6p2P1/2, 6p2P1/2 - 5d2D3/2, 6s2S1/2 - 5d2D3/2 transition frequencies. In these experiments we employ laser-cooled single trapped ions. The optical frequencies are controlled by a frequency comb and I2 line locked laser

  15. Analytical solution of electromagnetic radiation by a vertical electric dipole inside the earth and the effect of atmospheric electrical conductivity inhomogeneity

    Science.gov (United States)

    Mosayebidorcheh, Taha; Hosseinibalam, Fahimeh; Hassanzadeh, Smaeyl

    2017-11-01

    In this paper, the effect of atmospheric electrical conductivity on the electromagnetic waves radiated by a vertical electric dipole located in the earth, near the surface of the earth, is investigated. As far as electrical conductivity is concerned, the atmosphere is divided into three areas, in which the electrical conductivity changes with altitude. The Maxwell equations in these areas are investigated as well. Using the differential transform method, the differential equation is solved in a way that atmospheric electrical conductivity is variable. Solving the problem in these areas indicates that electrical conductivity in the middle and lower areas of atmosphere may be ignored. However, in the upper areas of atmosphere, the magnitude of the magnetic field in the ionosphere at a frequency of 10 kHz at night is five times smaller when electrical conductivity is considered compared to when it is neglected.

  16. The calculation of electron chemical potential and ion charge state and their influence on plasma conductivity in electrical explosion of metal wire

    International Nuclear Information System (INIS)

    Shi, Zongqian; Wang, Kun; Li, Yao; Shi, Yuanjie; Wu, Jian; Jia, Shenli

    2014-01-01

    The electron chemical potential and ion charge state (average ion charge and ion distribution) are important parameters in calculating plasma conductivity in electrical explosion of metal wire. In this paper, the calculating method of electron chemical potential and ion charge state is discussed at first. For the calculation of electron chemical potential, the ideal free electron gas model and Thomas-Fermi model are compared and analyzed in terms of the coupling constant of plasma. The Thomas-Fermi ionization model, which is used to calculate ion charge state, is compared with the method based on Saha equation. Furthermore, the influence of electron degenerated energy levels and ion excited states in Saha equation on the ion charge state is also analyzed. Then the influence of different calculating methods of electron chemical potential and ion charge state on plasma conductivity is discussed by applying them in the Lee-More conductivity model

  17. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Singh, Hemant Kr.; Avasthi, D.K.; Aggarwal, Shruti

    2015-01-01

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO 2 :F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In 2 O 3 :Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag +9 ions at fluences ranging from 3.0 × 10 11 ions/cm 2 to 3.0 × 10 13 ions/cm 2 . The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications

  18. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hemant Kr. [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India); Avasthi, D.K. [Inter University Accelerator Center, Post Box 10502, New Delhi (India); Aggarwal, Shruti, E-mail: shruti.al@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India)

    2015-06-15

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO{sub 2}:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In{sub 2}O{sub 3}:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag{sup +9} ions at fluences ranging from 3.0 × 10{sup 11} ions/cm{sup 2} to 3.0 × 10{sup 13} ions/cm{sup 2}. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  19. Interactions of microorganisms with rare earth ions and their utilization for separation and environmental technology.

    Science.gov (United States)

    Moriwaki, Hiroshi; Yamamoto, Hiroki

    2013-01-01

    In recent years, rare earth elements (REEs) have been widely used in various modern technological devices and the global demand for REE has been increasing. The increased demand for REEs has led to environmental exposure or water pollution from rare earth metal mines and various commercial products. Therefore, the development of a safe technology for the separation and adsorption of REEs is very important from the perspective of green chemistry and environmental pollution. In this review, the application and mechanisms of microorganisms for the removal and extraction of REEs from aqueous solutions are described. In addition, the advantages in using microorganisms for REE adsorption and future studies on this topic are discussed.

  20. An improved ion-exchange separation of rare-earth elements for spectrographic analysis

    International Nuclear Information System (INIS)

    Jones, E.A.

    1978-01-01

    Rare-earth elements are separated from scandium and base metals by adsorption onto anion resin BIORAD AG1-X8 in the nitrate form from a mixture of 5 per cent 7M nitric acid and 95 per cent methanol. The yttrium subgroup is eluted with a mixture of 45 per cent 7M nitric acid and 55 per cent methanol, followed by elution of the cerium subgroup with 8M nitric acid. This separation facilitates the determination of the traces of the heavier yttrium subgroup of rare-earth elements

  1. Intraparticle diffusion of rare earths in porous ion exchanger rounding by EDTA solution

    International Nuclear Information System (INIS)

    Ling Daren; Xie Weije

    1991-01-01

    The self-diffusion of rate earth (RE) isotopes in porous cation exchangers with various radii or different pore structures rounding by EDTA solution was studied. The intraparticle effective diffusivity De was calculated by Boyd's method and Kataoka's bi-disperse pore model, and through further calculation the solid phase diffusivity Dg and macropore diffusivity Dp were also obtained. (author)

  2. Crystal fields at light rare-earth ions in Y and Lu

    DEFF Research Database (Denmark)

    Touborg, P.; Nevald, Rolf; Johansson, Torben

    1978-01-01

    Crystal-field parameters have been deduced for the light rare-earth solutes Ce, Pr, and Nd in Y or Lu hosts from measurements of the paramagnetic susceptibilities. In the analysis all multiplets in the lowest LS term were included. For a given host, crystal-field parameters divided by Stevens fac...

  3. Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range

    NARCIS (Netherlands)

    Dekker, R.; Worhoff, Kerstin; Stouwdam, J.W.; van Veggel, F.C.J.M.; Driessen, A.

    2005-01-01

    In the present work we applied a measurement setup to determine several relevant properties of rare-earth doped nanoparticles dispersed in polymer slab waveguides in a single absorption measurement: background absorption of the polymer host material, water absorption, polymer composition

  4. Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range

    NARCIS (Netherlands)

    Dekker, R.; Worhoff, Kerstin; Stouwdam, J.W.; van Veggel, F.C.J.M.; Driessen, A.

    In the present work we applied a measurement setup to determine several relevant properties of rare-earth doped nanoparticles dispersed in polymer slab waveguides in a single absorption measurement: background absorption of the polymer host material, water absorption, polymer composition

  5. Reflected and diffuse ions backstreaming from the earth's bow shock 2. Origin

    International Nuclear Information System (INIS)

    Bonifazi, C.; Moreno, G.

    1981-01-01

    The morphology of the foreshock region and the origin of the 'reflected' and 'diffuse' ion populations are investigated for the first time through an extended statistical analysis. Data are supplied by the solar wind experiment on the satellite ISEE 2 in the period November 5 to December 20, 1977. It is confirmed, on a statistical basis, that quasi-perpendicular shock structures generate beams of reflected ions which propagate along the interplanetary magnetic field lines against the incoming solar wind. Diffuse ions are at least in part originated by the disruption of the reflected beams due to some plasma instability, having a growth time of the order of a few tens of seconds. A preliminary energy balance appears to be consistent with the proposed picture of the phenomena occurring in the foreshock region

  6. Ion-conducting lithium bis(oxalato)borate-based polymer electrolytes

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Dominko, R.; Nádherná, Martina; Jakubec, Ivo

    2009-01-01

    Roč. 189, č. 1 (2009), s. 133-138 ISSN 0378-7753 R&D Projects: GA MŠk LC523; GA AV ČR KJB400320701 Institutional research plan: CEZ:AV0Z40320502 Keywords : polymer electrolyte * 2-ethoxyethyl methacrylate * lithium -ion battery Subject RIV: CG - Electrochemistry Impact factor: 3.792, year: 2009

  7. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu, E-mail: lis@atm.neu.edu.cn

    2014-10-30

    Graphical abstract: - Highlights: • A uniform MnO{sub 2} layer was anchored onto diatomite surface. • Kinetics and isotherms over MnO{sub 2} modified diatomite were studied. • The Pb(II) adsorption is based on ion-exchange mechanism. - Abstract: A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO{sub 2} is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO{sub 2} was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO{sub 2} modification increased more than six times. And the adsorption of Pb{sup 2+} on the MnO{sub 2} surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix.

  8. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Science.gov (United States)

    Singh, Hemant Kr.; Avasthi, D. K.; Aggarwal, Shruti

    2015-06-01

    Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO2:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In2O3:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag+9 ions at fluences ranging from 3.0 × 1011 ions/cm2 to 3.0 × 1013 ions/cm2. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  9. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Science.gov (United States)

    Tripathi, Namrata; Thakur, Awalendra K.; Shukla, Archana; Marx, David T.

    2015-07-01

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε‧) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  10. In-situ Plasticized Cross-linked Polymer Composite Electrolyte Enhanced with Lithium-ion Conducting Nanofibers for Ambient All-Solid-State Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoyi; Zhu, Pei; Jia, Hao; Zhu, Jiadeng; Selvan, R. Kalai; Li, Ya; Dong, Xia; Du, Zhuang; Angunawela, Indunil; Wu, Nianqiang; Dirican, Mahmut

    2018-04-29

    Solid electrolytes have been gaining attention recently for the development of next-generation Li-ion batteries due to the substantial improvements in stability and safety. Among various types of solid electrolytes, composite solid electrolytes (CSEs) exhibit both high ionic conductivity and excellent interfacial contact with the electrodes. Incorporating active nanofibers into the polymer matrix demonstrates an effective method to fabricate CSEs. However, current CSEs based on traditional poly(ethylene oxide) (PEO) polymer suffer from the poor ionic conductivity of PEO and agglomeration effect of inorganic fillers at high concentrations, which limit further improvements in Li+ conductivity and electrochemical stability. Herein, we synthesize a novel PEO based cross-linked polymer (CLP) as the polymer matrix with naturally amorphous structure and high room-temperature ionic conductivity of 2.40 × 10-4 S cm-1. Li0.3La0.557TiO3 (LLTO) nanofibers incorporated composite solid electrolytes (L-CLPCSE) exhibit enhanced ionic conductivity without showing filler agglomeration. The high content of Li-conductive nanofibers improves the mechanical strength, ensures the conductive networks, and increases the total Li+ conductivity to 3.31 × 10-4 S cm-1. The all-solid-state Li|LiFePO4 batteries with L-CLPCSE are able to deliver attractive specific capacity of 147 mAh g-1 at room temperature, and no evident dendrite is found at the anode/electrolyte interface after 100 cycles.

  11. Ion and solvent diffusion and ion conduction of PC-DEC and PC-DME binary solvent electrolytes of LiN(SO2CF3)2

    International Nuclear Information System (INIS)

    Hayamizu, Kikuko; Aihara, Yuichi

    2004-01-01

    Two binary mixed solvent systems typically used for lithium batteries were studied by measuring the self-diffusion coefficients of the solvent, lithium ion and anion, independently by using the multi-nuclear pulsed field-gradient spin-echo (PGSE) 1 H, 7 Li and 19 F NMR method. One system was propylene carbonate (PC) and diethyl carbonate (DEC) system and the other binary system was PC and 1,2-dimethoxyethane (DME), and the lithium salt used was LiN(SO 2 CF 3 ) 2 (LiTFSI). The relative ratio of the PC was changed from zero (pure DME and DEC) to 100% (pure PC) in the DME-PC and the DEC-PC systems, respectively. The self-diffusion coefficients of the solvents were measured with and without the lithium salt, and the two solvents had almost the same diffusion coefficient in the DEC-PC system, while DME diffused faster than PC in the DME-PC system. In the electrolytes the solvents diffused the fastest, followed by the anion with the lithium ion diffusing the slowest. The degree of ion dissociation was estimated for each electrolyte by comparing the ionic conductivities estimated from the ion diffusion and those measured directly by the electrochemical method

  12. Ionic conduction in 70-MeV C5+-ion-irradiated poly(vinylidenefluoride- co-hexafluoropropylene)-based gel polymer electrolytes

    International Nuclear Information System (INIS)

    Saikia, D.; Kumar, A.; Singh, F.; Avasthi, D.K.; Mishra, N.C.

    2005-01-01

    In an attempt to increase the Li + -ion diffusivity, poly(vinylidenefluoride-co-hexafluoropropylene)-(propylene carbonate+diethyl carbonate)-lithium perchlorate gel polymer electrolyte system has been irradiated with 70-MeV C 5+ -ion beam of nine different fluences. Swift heavy-ion irradiation shows enhancement in ionic conductivity at lower fluences and decrease in ionic conductivity at higher fluences with respect to unirradiated gel polymer electrolyte films. Maximum room-temperature (303 K) ionic conductivity is found to be 2x10 -2 S/cm after irradiation with a fluence of 10 11 ions/cm 2 . This interesting result could be attributed to the fact that for a particular ion beam with a given energy, a higher fluence provides critical activation energy for cross linking and crystallization to occur, which results in the decrease in ionic conductivity. X-ray-diffraction results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤10 11 ions/cm 2 ) and increase in crystallinity at higher fluences (>10 11 ions/cm 2 ). Analysis of Fourier-transform infrared spectroscopy results suggests the bond breaking at a fluence of 5x10 9 ions/cm 2 and cross linking at a fluence of 10 12 ions/cm 2 and corroborate conductivity and x-ray-diffraction results. Scanning electron micrographs exhibit increased porosity of the polymer electrolyte after ion irradiation

  13. Nanostructuring of conduction channels in (In,Ga)As-InP heterostructures: Overcoming carrier generation caused by Ar ion milling

    Science.gov (United States)

    Hortelano, V.; Weidlich, H.; Semtsiv, M. P.; Masselink, W. T.; Ramsteiner, M.; Jahn, U.; Biermann, K.; Takagaki, Y.

    2018-04-01

    Nanometer-sized channels are fabricated in (In,Ga)As-InP heterostructures using Ar ion milling. The ion milling causes spontaneous creation of nanowires, and moreover, electrical conduction of the surface as carriers is generated by sputtering-induced defects. We demonstrate a method to restore electrical isolation in the etched area that is compatible with the presence of the nanochannels. We remove the heavily damaged surface layer using a diluted HCl solution and subsequently recover the crystalline order in the moderately damaged part by annealing. We optimize the HCl concentration to make the removal stop on its own before reaching the conduction channel part. The lateral depletion in the channels is shown to be almost absent.

  14. Influence of alkali and alkaline earth ions on the O-alkylation of the ...

    Indian Academy of Sciences (India)

    WINTEC

    have shown tetra-amide derivatives bound to metal ion species. Among all these, potassium salts act as ... used in these O-alkylation reactions has no effect on the type of the amide ... product formed was precipitated out by adding water.

  15. Investigation of complexing of vitamine B-6 with rare earth ions by PMR and luminescent spectroscopy

    International Nuclear Information System (INIS)

    Buiklinskij, V.D.; Zelenov, V.I.; Zolin, V.F.; Koreneva, L.G.; Panyushkin, V.T.

    1981-01-01

    To investigate the complexing of pyridoxine (P), pyridoxal (PL) and pyridoxamine (PM) with lanthanide ions the changes of PMR spectra of ligands in the presence of cerium, praseodymium, neodymium, europium, gadolinium ions, as well as luminescence and absorption spectra of europium in the presence of ligands are used. Using the optical spectroscopy it has been shown that the PL and PM complexes do not have axial symmetry. The values of parameters of the crystalline field of the second order, determining the anisotropy of magnetic susceptibility of europium complexes are evaluated. With an aid of PMR and luminescence spectroscopy it is shown that lanthanide ions coordinate the hydroxy groups of ligands. In the case of P and especially PL oxygen of the substituent in position 4 takes part in the coordination. Using the PMR spectroscopy the difference of the substituent location near C4 in the PM complex from its location in the P and PL complexes as well as the difference in the position of lanthanide ion in the complexes of all the three ligands are detected. The reasons for the differences above are discussed [ru

  16. Correlation of radiative properties of rare earth ions (Pr and Nd ) in ...

    Indian Academy of Sciences (India)

    Unknown

    E3, ξ4f and α), spectral intensities (fexpt), Judd–Ofelt intensity parameters (Ω2, Ω4 and Ω6) and radiative life- times (τR) ... minimize self-focusing effects of laser radiation (Weber. 1990 ..... for Pr3+ ion there is much variation in both Ω2 and Ω6.

  17. Magnetic behavior of light rare earth ions in (Nd,Eu,Gd)-123 superconductors

    Czech Academy of Sciences Publication Activity Database

    Jirsa, Miloš; Rameš, Michal; Marcenat, C.; Wolf, T.

    2013-01-01

    Roč. 26, č. 4 (2013), s. 901-905 ISSN 1557-1939 R&D Projects: GA MŠk(CZ) ME10069 Institutional support: RVO:68378271 Keywords : high- T c superconductors * cuprates * thermodynamic properties * LRE-123 * paramagnetic ions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.930, year: 2013

  18. Rare-earth-ion-doped Al2O3 waveguides for active integrated optical devices

    NARCIS (Netherlands)

    Bradley, J.; Ay, F.; Blauwendraat, Tom; Worhoff, Kerstin; Pollnau, Markus; Orlovic, Valentin A.; Panchenko, Vladislav; Scherbakov, Ivan A.

    2007-01-01

    Reactively co-sputtered amorphous $Al_2O_3$ waveguide layers with low propagation losses have been deposited. In order to define channel waveguides in such $Al_2O_3$ films, the etching behaviour of $Al_2O_3$ has been investigated using an inductively coupled reactive ion etch system. The etch rate

  19. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries

    Science.gov (United States)

    Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan

    2014-06-01

    In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.

  20. Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein; Brighi, Matteo; Sadikin, Yolanda

    2017-01-01

    In this work, a new type of addition reaction between La(BH4)3 and LiX, X = Cl, Br, I, is used to synthesize LiLa(BH4)3Cl and two new compounds LiLa(BH4)3X, X = Br, I. This method increases the amounts of LiLa(BH4)3X and the sample purity. The highest Li-ion conductivity is observed for LiLa(BH4)...

  1. Ion-conductive properties of polyether-based composite electrolytes filled with mesoporous silica, alumina and titania

    International Nuclear Information System (INIS)

    Tominaga, Yoichi; Endo, Masanori

    2013-01-01

    Composite polymer electrolytes were prepared consisting of amorphous polyether, Li salt and mesoporous inorganic filler, and we investigated their ion-conductive properties. We synthesized three types of filler, mesoporous silica, alumina and titania (MP-Si, Al, Ti), and characterized their structural and physicochemical properties using SEM, TEM, SAXS and BET surface area measurements. From these measurements, we confirmed that MP fillers have well-defined arrays of mesoporous and hexagonal structures. Dependence on the MP filler content of the glass transition temperature (T g ) revealed that the addition of filler to original polyether-salt electrolyte causes T g decrease, to due to the dissociation of aggregated ions such as triples or crystalline complex domains. The MP-Ti composites had the greatest ionic conductivity (1.4 × 10 −5 S/cm, 7.5 wt% at 30 °C) of all samples, and the values were more than double that of the original. The addition of MP-Ti also increased the lithium transference number, because the electrolyte/filler interface provided active sites that increase mobile Li ions and conducting paths so as to enhance the mobility

  2. Nanoconfinement of LiBH4 for High Ionic Conductivity in Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Lefevr, Jessica Emilia Avlina; Das, Supti; Blanchard, Didier

    2016-01-01

    Efficient energy conversion and storage is crucial for development of systems based on renewable energy sources. For electricity storage, Li-ion batteries are commonly used in electronics devices but require many improvements to obtain longer life-time and higher energy densities. The current use...... of organic liquids and gels electrolytes limits these improvements because of lithium dendrites formation, reducing the lifetime of the battery and which can possibly be hazardous due to risks of short circuits....

  3. Highly conductive bridges between graphite spheres to improve the cycle performance of a graphite anode in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan); Umeno, Tatsuo; Mizuma, Koutarou [Research Center, Mitsui Mining Co. Ltd., Hibiki-machi 1-3, Wakamatsu-ku, Kitakyushu 808-0021 (Japan); Yoshio, Masaki [Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan)

    2008-01-10

    Spherical carbon-coated natural graphite (SCCNG) is a promising anode material for lithium-ion batteries, but the smooth surface of graphite spheres is difficult to wet with an aqueous binder solution, and lacks electrical contacts. As a result, the cycle performance of such a graphite anode material is not satisfactory. An effective method has been introduced to tightly connect adjacent SCCNG particles by a highly conductive binder, viz. acetylene black bridges. The effect of the conductive bridges on the cyclability of SCCNG electrode has been investigated. (author)

  4. Rare-Earth Oxide Ion (Tm3+, Ho3+, and U3+) Doped Glasses and Fibres for 1.8 to 4 Micrometer Coherent and Broadband Sources

    Science.gov (United States)

    2006-07-24

    oxide ( TeO2 ) , fluorine- containing silicate (SiOF2) and germanate (GeOF2) glass hosts for each dopant by characterising the spectroscopic properties...Earth Oxide Ion (Tm3+, Ho3+, And U3+) Doped Glasses And Fibres For 1.8 To 4 Micrometer Coherent And Broadband Sources 5c. PROGRAM ELEMENT NUMBER 5d...Rare-earth oxide ion (Tm3+, Ho3+, and U3+) doped glasses and fibres for 1.8 to 4 micrometer coherent and broadband sources Report prepared

  5. Determination of major sodium iodide symporter (NIS) inhibitors in drinking waters using ion chromatography with conductivity detector.

    Science.gov (United States)

    Cengiz, Mehmet Fatih; Bilgin, Ayse Kevser

    2016-02-20

    Goiter is an important health problem all over the world and iodine deficiency is its most common cause. Perchlorate, thiocyanate and nitrate (called as major NIS inhibitors) are known to competitively inhibit iodide uptake by the thyroid gland and thus, human exposure to major NIS inhibitors is a public health concern. In this study, an ion chromatographic method for the determination of most common NIS inhibitor ions in drinking waters was developed and validated. This is the first study where an analytical method is used for the determination of major NIS inhibitors in drinking water by an ion chromatography system in a single run. Chromatographic separations were achieved with an anion-exchange column and separated ions were identified by a conductivity detector. The method was found to be selective, linear, precise accurate and true for all of interested ions. The limits of the detections (LOD) were estimated at 0.003, 0.004 and 0.025mgL(-1) for perchlorate, thiocyanate and nitrate, respectively. Possible interference ions in drinking waters were examined for the best separation of NIS inhibitors. The excellent method validation data and proficiency test result (Z-score for nitrate: -0.1) of the FAPAS(®) suggested that the developed method could be applied for determination of NIS inhibitor residues in drinking waters. To evaluate the usefulness of the method, 75 drinking water samples from Antalya/Turkey were analyzed for NIS inhibitors. Perchlorate concentrations in the samples ranged from not detected (less than LOD) to 0.07±0.02mgL(-1) and the range of nitrate concentrations were found to be 3.60±0.01mgL(-1) and 47.42±0.40mgL(-1). No thiocyanate residues were detected in tested drinking water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Amplification of electromagnetic ion cyclotron waves along a wave path in the Earth's multicomponent magnetosphere

    International Nuclear Information System (INIS)

    Hu, Y.D.; Fraser, B.J.; Olson, J.V.

    1990-01-01

    In this report, the authors consider the amplification of electromagnetic ion cyclotron waves along a geomagnetic field line in the multicomponent magnetosphere, assuming that the waves propagate parallel to the background magnetic field. The find it is possible for the ring-current protons (energy ∼ 10-100 keV), which supply the free energy to stimulate the waves, to resonate with the waves not only in the equatorial region but also off the equator. An instability, caused by a thermal anisotropy, may occur in separated regions on and/or off the equator. The positions of the source regions along the wave path depend on the concentration of cold heavy ion species. The significant off-equator source regions may be located at geomagnetic latitudes where the waves, with frequencies greater than the He + gyrofrequency on the equator, are in a local He + pass band

  7. Spin-spin cross-relaxation of optically-excited rare-earth ions in crystals

    International Nuclear Information System (INIS)

    Otto, F.W.; D'Amato, F.X.; Hahn, E.L.; Lukas, M.

    1986-01-01

    A laser saturation grating experiment is applied for the measurement of electron hyperfine state spin orientation diffusion among Tm +2 impurity ion hyperfine ground states in SrF 2 . A strong laser pulse at λ 1 produces a spatial grating of excited spin states followed by a probe at λ 2 . The probe transmission intensity is to assess diffusion of non-equilibrium spin population into regions not excited by the pulse at λ 1 . In a second experiment, a field sweep laser hole burning method enables measurement of Pr +3 optical ion hyperfine coupling of optical ground states to the reservoir of F nuclear moments in LaF 3 by level crossing. A related procedure with external RF resonance sweep excitation maps out the nuclear Zeeman-electric quadrupole coupled spectrum of Pr +3 over a wide range by monitoring laser beam transmission absorption

  8. Numerical experiments on thermal convection of highly compressible fluids with variable viscosity and thermal conductivity: Implications for mantle convection of super-Earths

    Science.gov (United States)

    Kameyama, Masanori; Yamamoto, Mayumi

    2018-01-01

    We conduct a series of numerical experiments of thermal convection of highly compressible fluids in a two-dimensional rectangular box, in order to study the mantle convection on super-Earths. The thermal conductivity and viscosity are assumed to exponentially depend on depth and temperature, respectively, while the variations in thermodynamic properties (thermal expansivity and reference density) with depth are taken to be relevant for the super-Earths with 10 times the Earth's. From our experiments we identified a distinct regime of convecting flow patterns induced by the interplay between the adiabatic temperature change and the spatial variations in viscosity and thermal conductivity. That is, for the cases with strong temperature-dependent viscosity and depth-dependent thermal conductivity, a "deep stratosphere" of stable thermal stratification is formed at the base of the mantle, in addition to thick stagnant lids at their top surfaces. In the "deep stratosphere", the fluid motion is insignificant particularly in the vertical direction in spite of smallest viscosity owing to its strong dependence on temperature. Our finding may further imply that some of super-Earths which are lacking in mobile tectonic plates on their top surfaces may have "deep stratospheres" at the base of their mantles.

  9. Thermodynamic studies on the interaction between some amino acids with some rare earth metal ions in aqueous solutions

    International Nuclear Information System (INIS)

    Mohamed, AbdAllah A.; Bakr, Moustafa F.; Abd El-Fattah, Khaled A.

    2003-01-01

    The interactions between the amino acids (glycine and L-threonine) with some rare earth metal ions (Pr 3+ , Nd 3+ , Eu 3+ , Gd 3+ , Dy 3+ , Ho 3+ and Yb 3+ ) were studied at a wide range from ionic strengths (0.07-0.32 M KNO 3 ) and temperatures (25-45 deg. C) in aqueous solutions by using Bjerrum potentiometric method. The stoichiometric and thermodynamic stability constants were calculated as well as the standard thermodynamic parameters (ΔG deg., ΔH deg. and ΔS deg. ) for all possible reactions that occur. The degree of formation (n-bar) for all studied systems was determined and discussed. The thermodynamic parameters differences (ΔΔG deg., ΔΔH deg. and ΔΔS deg. ) were calculated and discussed to determine the factors which control these complexation processes from the thermodynamic point of view

  10. Magnetoresistance effect in perovskite-like RCu3Mn4O12 (R - rare earth ion, Th)

    International Nuclear Information System (INIS)

    Lobanovskij, L.S.; Troyanchuk, I.O.; Trukhanov, S.V.; Pastushonok, S.N.; Pavlov, V.I.

    2003-01-01

    The study on the electric properties and magnetoresistance effect in the RCu 3 Mn 4 O 12 (where R is the rare-earth ion, Th) is carried out. It is established that all the compositions of the given series demonstrate the magnetoresistive effect, the value whereof at the liquid nitrogen temperature reaches 20% in the field 0.9 T. The increase in the magnetoresistance with the temperature decrease and high sensitivity to the weak magnetic fields at low temperatures indicate that this effect is intergranular. The peak of the magnetoresistance is identified near the Curie temperature (T C ). It is supposed that the degree of the magnetoresistance near the temperature of the magnetic ordering depends on the conditions of the samples synthesis and the effect of the intergranular interlayer on the transport properties of these compositions [ru

  11. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Namrata, E-mail: ntripat@ilstu.edu [Department of Physics, Illinois State University, Normal, IL 61790 (United States); Thakur, Awalendra K. [Department of Physics, Indian Institute of Technology Patna, Bihar 800013 (India); Shukla, Archana [Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology, Bombay 721302 (India); Marx, David T. [Department of Physics, Illinois State University, Normal, IL 61790 (United States)

    2015-07-15

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA{sub 4}LiClO{sub 4} dispersed with nano-CeO{sub 2} powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε′) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  12. Modification of corrosion resistances of steels by rare earths ion implantation

    International Nuclear Information System (INIS)

    Hu Zhaomin; Zhang Weiguo; Liu Fengying; Shao Tongyi; Xiang Xuyang; Gao Fengqin; Li Gongpan

    1987-01-01

    Five kinds of rare earth RE elements have been implanted into steel No.45 and GCr15 bearing steel respectively. The corrosion resistances of the specimens have been examined using electrochemical dynamic potential method, in a NaAc/HAc solution for steel No.45 specimens and in a NaAc/HAc solution containing 0.1 mol/lNaCl for GCr15 bearing steel specimens. It has been found that the aqueous solution corrosion resistances of steel No.45 are obviously modified by implantation of RE element, and the pitting corrosion properties of GCr15 bearing steel are significantly improved due to heavy RE element implantation

  13. Apparent molar volumes and compressibilities of alkaline earth metal ions in methanol and dimethylsulfoxide

    International Nuclear Information System (INIS)

    Warminska, Dorota; Wawer, Jaroslaw; Grzybkowski, Waclaw

    2010-01-01

    Temperature dependencies of density of magnesium (II), calcium (II), strontium (II), barium (II) perchlorates as well as beryllium (II), and sodium trifluoromethanesulfonates in methanol and dimethylsulfoxide have been determined over the composition range studied. From density data the apparent molar volumes and partial molar volumes of the salts at infinite dilution as well as the expansibilities have been evaluated. The apparent molar isentropic compressibilities of alkaline earth metal perchlorates and beryllium (II) and sodium triflates in methanol and DMSO have been calculated from sound speed data obtained at T = 298.15 K.

  14. Conductivity of ion dielectrics during the mean flux-density electron- and X-ray pulse radiation

    International Nuclear Information System (INIS)

    Vajsburd, D.I.; Mesyats, G.A.; Naminov, V.L.; Tavanov, Eh.G.

    1982-01-01

    Conductivity of ion dielectrics under electron and X-ray pulse radiation is investigated. Investigations have been conducted in the range of average beam densities in which extinction of low-energy conductivity takes place. Thin plates of alkali-halogen crystals have been used as samples. Small-dimensional accelerator with controlled beam parameters: 1-20 ns, 0.1-2000 A/cm 2 , 0.3-0.5 MeV has been used for radiation. Temperature dependence of conductivity current pulse is determined. Time resolution of 10 - 10 s is achieved. In the 70-300 K range it practically coincides with radiation pulse. An essential inertial constituent is observed below 300 K. It is shown that at average beam densities a comparable contribution into fast conductivity is made by intracentre conductivity independent of temperature and high-temperature conductivity which decreases with temperature with activation energy equal to the energy of short-wave background. That is why amplitude of fast constituent decreases with temperature slower than high-energy conductivity

  15. Conductivity enhancement in K{sup +}-ion conducting dry Solid Polymer Electrolyte (SPE): [PEO: KNO{sub 3}]: A consequence of KI dispersal and nano-ionic effect

    Energy Technology Data Exchange (ETDEWEB)

    Kesharwani, Priyanka; Sahu, Dinesh K.; Mahipal, Y.K.; Agrawal, R.C., E-mail: rakesh_c_agrawal@yahoo.co.in

    2017-06-01

    Solid–State batteries. Ion transport behaviour has been characterized in terms of ionic conductivity (σ), total ionic (t{sub ion}) and cation (t{sub +}) transference numbers, evaluated using different ac/dc techniques. Temperature dependent conductivity measurements have also been done to compute activation energy (E{sub a}) value by linear least square fitting of respective ‘log σ -1/T’ plots. Materials characterization vis-a-vis complexation of salt in polymeric host has been confirmed by SEM/XRD/FTIR/DSC analysis. - Highlights: • Non-lithium chemical based SPE films: [95PEO:5KNO{sub 3}] & [70PEO:30KNO{sub 3}] investigated. • Substantial enhancement in σ{sub rt} and t{sub +} achieved adopting two approaches. • As first approach, CPEs prepared dispersing IInd-phase active filler into Ist-phase SPE. • As second approach, Nano–ionic effect introduced by ball milling prior to casting CPE film. • Dry polymer electrolytes can be used for All-Solid-State battery applications.

  16. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    Science.gov (United States)

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-06-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle (SC) from 2002 to 2013 to verify if SC-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection speed of PUIs. We found that the ionization losses have a noticeable effect on the derivation of the ISN inflow longitude based on the Gaussian fit to the crescent and cone peak locations. We conclude that the non-zero radial velocity of the ISN flow and the energy range of the PUI distribution function that is accumulated are of importance for a precise reproduction of the PUI count rate along the Earth orbit. However, the temporal and latitudinal variations of the ionization in the heliosphere, and particularly their variation on the SC time-scale, may significantly modify the shape of PUI cone and crescent and also their peak positions from year to year and thus bias by a few degrees the derived longitude of the ISN gas inflow direction.

  17. Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping

    Science.gov (United States)

    Zhong, X. C.; Guo, X. J.; Zou, S. Y.; Yu, H. Y.; Liu, Z. W.; Zhang, Y. F.; Wang, K. X.

    2018-04-01

    Mn-Zn ferrites doped with different Sm2O3, Gd2O3, Ce2O3 or Y2O3 were prepared by traditional ceramic technology using industrial pre-sintered powders. A small amount of Sm2O3, Gd2O3, Ce2O3 or Y2O3 can significantly improve the microstructure and magnetic properties. The single spinel phase structure can be maintained with the doping amount up to 0.07 wt.%. A refined grain structure and uniform grain size distribution can be obtained by doping. For all rare earth oxides, a small amount of doping can significantly increase the permeability and reduce the coercivity and magnetic core loss. The optimized doping amount for Sm2O3 or Gd2O3 is 0.01 wt.%, while for Ce2O3 or Y2O3 is 0.03 wt.%. A further increase of the doping content will lead to reduced soft magnetic properties. The ferrite sample with 0.01 wt.% Sm2O3 exhibits the good magnetic properties with permeability, loss, and coercivity of 2586, 316 W/kg, and 24A/m, respectively, at 200 mT and 100 kHz. The present results indicate that rare earth doping can be suggested to be one of the effective ways to improve the performance of soft ferrites.

  18. Improving soft magnetic properties of Mn-Zn ferrite by rare earth ions doping

    Directory of Open Access Journals (Sweden)

    X. C. Zhong

    2018-04-01

    Full Text Available Mn-Zn ferrites doped with different Sm2O3, Gd2O3, Ce2O3 or Y2O3 were prepared by traditional ceramic technology using industrial pre-sintered powders. A small amount of Sm2O3, Gd2O3, Ce2O3 or Y2O3 can significantly improve the microstructure and magnetic properties. The single spinel phase structure can be maintained with the doping amount up to 0.07 wt.%. A refined grain structure and uniform grain size distribution can be obtained by doping. For all rare earth oxides, a small amount of doping can significantly increase the permeability and reduce the coercivity and magnetic core loss. The optimized doping amount for Sm2O3 or Gd2O3 is 0.01 wt.%, while for Ce2O3 or Y2O3 is 0.03 wt.%. A further increase of the doping content will lead to reduced soft magnetic properties. The ferrite sample with 0.01 wt.% Sm2O3 exhibits the good magnetic properties with permeability, loss, and coercivity of 2586, 316 W/kg, and 24A/m, respectively, at 200 mT and 100 kHz. The present results indicate that rare earth doping can be suggested to be one of the effective ways to improve the performance of soft ferrites.

  19. In-situ ionic conductivity measurement of lithium ceramics under high energy heavy ion irradiation

    International Nuclear Information System (INIS)

    Nakazawa, Tetsuya; Noda, Kenji; Ishii, Yoshinobu; Ohno, Hideo; Watanabe, Hitoshi; Matsui, Hisayuki.

    1992-01-01

    To obtain fundamental information regarding the radiation damage in some lithium ceramics, e.g. Li 2 O, Li 4 SiO 4 etc., candidate of breeder materials exposed to severe irradiation environment, an in-situ experiment technique for the ionic conductivity measurement, which allows the specimen temperature control and the beam current monitoring, have been developed. This paper describes the features of an apparatus to measure in situ the ionic conductivity under the irradiation environment and presents some results of ionic conductivity measured for typical ceramic breeders using this apparatus. (J.P.N.)

  20. On the extraction of ion association data and transference numbers from ionic diffusivity and conductivity data in polymer electrolytes

    International Nuclear Information System (INIS)

    Stolwijk, Nicolaas A.; Kösters, Johannes; Wiencierz, Manfred; Schönhoff, Monika

    2013-01-01

    The degree of ion association in polymer electrolytes is often characterized by the Nernst–Einstein deviation parameter Δ, which quantifies the relative difference between the true ionic conductivity directly measured by electrical methods and the hypothetical maximum conductivity calculated from the individual ionic self-diffusion coefficients. Despite its unambiguous definition, the parameter Δ is a global quantity with limited explanatory power. Similar is true for the cation transport number t cat * , which relies on the same ionic diffusion coefficients usually measured by nuclear magnetic resonance or radiotracer methods. Particularly in cases when neutral ion pairs dominate over higher-order aggregates, more specific information can be extracted from the same body of experimental data that is used for the calculation of Δ and t cat * . This information concerns the pair contributions to the diffusion coefficient of cations and anions. Also the true cation transference number based on charged species only can be deduced. We present the basic theoretical framework and some pertinent examples dealing with ion pairing in polymer electrolytes

  1. High-field magnetization of rare-earth ions in scandium

    DEFF Research Database (Denmark)

    Roeland, L. W.; Touborg, P.

    1978-01-01

    The magnetic moments of Tb, Dy, or Er ions in dilute Sc single-crystal alloys have been measured in fields up to 280 × 105 A/m (350 kOe). The Zeeman energies in this high field are comparable to the total crystal-field splittings. This gives rise to characteristic features in the magnetization cu...... curves. The crystal-field parameters obtained previously from experiments in low fields and the Zeeman interaction give a satisfactory quantitative acount of the experimental results....

  2. Helicity, membrane incorporation, orientation and thermal stability of the large conductance mechanosensitive ion channel from E. coli

    Science.gov (United States)

    Arkin, I. T.; Sukharev, S. I.; Blount, P.; Kung, C.; Brunger, A. T.

    1998-01-01

    In this report, we present structural studies on the large conductance mechanosensitive ion channel (MscL) from E. coli in detergent micelles and lipid vesicles. Both transmission Fourier transform infrared spectroscopy and circular dichroism (CD) spectra indicate that the protein is highly helical in detergents as well as liposomes. The secondary structure of the proteins was shown to be highly resistant towards denaturation (25-95 degrees C) based on an ellipticity thermal profile. Amide H+/D+ exchange was shown to be extensive (ca. 66%), implying that two thirds of the protein are water accessible. MscL, reconstituted in oriented lipid bilayers, was shown to possess a net bilayer orientation using dichroic ratios measured by attenuated total-reflection Fourier transform infrared spectroscopy. Here, we present and discuss this initial set of structural data on this new family of ion-channel proteins.

  3. Influence of both ion bombardment and chemical treatment processes on the electrical conductivity of PVC/poly aniline composites

    International Nuclear Information System (INIS)

    Gad, E.A.M.; Ashour, A.H.; Abdel-Hamid, H.M.; Sayed, W.M.

    1999-01-01

    In this article the changes in the electrical conductivity of PVC/poly aniline composites, as temperature consecutively increases, have been measured. The measurement were taken with correspondence to a control series of the composites under two processes:A. Composite samples bombarded with Ar + ions with fluence 2.44 x 10 13 beam ions /cm 2 ., sec 4 of 4 ke V beam energy where argon atoms can induce defects in the surface layer take place. Composite samples treated chemically with concentrated H 2 SO 4 as dopant which reacts with nitrogen atom in aniline. The measurements were also, done with the composites as the ratio of poly(aniline) stepped upward

  4. Possible Time-Dependent Effect of Ions and Hydrophilic Surfaces on the Electrical Conductivity of Aqueous Solutions

    Science.gov (United States)

    Verdel, Nada; Jerman, Igor; Krasovec, Rok; Bukovec, Peter; Zupancic, Marija

    2012-01-01

    The purpose of this work was to determine the influence of mechanical and electrical treatment on the electrical conductivity of aqueous solutions. Solutions were treated mechanically by iteration of two steps: 1:100 dilution and vigorous shaking. These two processes were repeated until extremely dilute solutions were obtained. For electrical treatment the solutions were exposed to strong electrical impulses. Effects of mechanical (as well as electrical) treatment could not be demonstrated using electrical conductivity measurements. However, significantly higher conductivity than those of the freshly prepared chemically analogous solutions was found in all aged solutions except for those samples stored frozen. The results surprisingly resemble a previously observed weak gel-like behavior in water stored in closed flasks. We suggest that ions and contact with hydrophilic glass surfaces could be the determinative conditions for the occurrence of this phenomenon. PMID:22605965

  5. Simulation of electromagnetic ion cyclotron triggered emissions in the Earth's inner magnetosphere

    Science.gov (United States)

    Shoji, Masafumi; Omura, Yoshiharu

    2011-05-01

    In a recent observation by the Cluster spacecraft, emissions triggered by electromagnetic ion cyclotron (EMIC) waves were discovered in the inner magnetosphere. We perform hybrid simulations to reproduce the EMIC triggered emissions. We develop a self-consistent one-dimensional hybrid code with a cylindrical geometry of the background magnetic field. We assume a parabolic magnetic field to model the dipole magnetic field in the equatorial region of the inner magnetosphere. Triggering EMIC waves are driven by a left-handed polarized external current assumed at the magnetic equator in the simulation model. Cold proton, helium, and oxygen ions, which form branches of the dispersion relation of the EMIC waves, are uniformly distributed in the simulation space. Energetic protons with a loss cone distribution function are also assumed as resonant particles. We reproduce rising tone emissions in the simulation space, finding a good agreement with the nonlinear wave growth theory. In the energetic proton velocity distribution we find formation of a proton hole, which is assumed in the nonlinear wave growth theory. A substantial amount of the energetic protons are scattered into the loss cone, while some of the resonant protons are accelerated to higher pitch angles, forming a pancake velocity distribution.

  6. White emission materials from glass doped with rare Earth ions: A review

    Energy Technology Data Exchange (ETDEWEB)

    Yasaka, P.; Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, 73000 (Thailand)

    2016-03-11

    Solid State Lighting (SSL) based devices are predicted to play a crucial role in the coming years. Development of W-LED, which have an edge over traditional lighting sources due to their compact size, higher reliability, shock resistance, interesting design possibilities, higher transparency and an extremely long lifetime. Over the fifteen trivalent lanthanide ions, Dy{sup 3+} ions doped glasses are most appropriate for white light generation because of the fact that it exhibits two intense emission bands corresponds to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} (magnetic dipole) and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} (electric dipole) transitions at around 480-500 nm and 580-600 nm pertaining to blue and yellow regions respectively. In this work, the developments of Dy3+ doped in several glass structures for white emitting materials application have reviewed. Properties of Dy{sup 3+} doped in glasses were discussed for use as a solid state lighting materials application.

  7. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio

    2012-11-21

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon additive, the irreversible capacity during galvanostatic cycling between 2.75 and 5.25 V versus Li/Li+ could be as high as 700 mAh g-1 (of carbon). In the potential region below 5 V versus Li/Li+, high surface carbon additives also showed irreversible plateaus at about 4.1-4.2 and 4.6 V versus Li/Li+. These plateaus disappeared after thermal treatments at or above 150 °C in inert gas. The influence of the irreversible capacity of carbon additives on the overall performances of positive electrodes was discussed. © 2012 Springer Science+Business Media Dordrecht.

  8. Charge state analysis of heavy ions after penetration of uncleaned and sputter cleaned conducting surfaces

    International Nuclear Information System (INIS)

    Jung, M.; Schosnig, M.; Kroneberger, K.; Tobisch, M.; Maier, R.; Kuzel, M.; Fiedler, C.; Hofmann, D.; Groeneveld, K.O.

    1994-01-01

    The evolution of the charge state distribution of fast ions inside a solid is of basic interest in various research fields as stopping power measurements etc. The existing models for the charge state evolution differ in the treatment of the projectile-exit-surface interaction, which has a strong influence on the final charge state distributions. We measured the charge state distributions for C + , N + , and O + (30≤E/M≤130 keV/u) impact on thin C, Cu, and Au foils, where the surface properties were modified by sputter cleaning. The mesurements show a pronounced change of the mean projectile charge state to lower values in the case of sputter cleaned surfaces. This result underlines the importance of the projectile-surface interaction for the generation of the outcoming charge state distribution. (orig.)

  9. Use of natural clays as sorbent materials for rare earth ions: Materials characterization and set up of the operative parameters.

    Science.gov (United States)

    Iannicelli-Zubiani, Elena Maria; Cristiani, Cinzia; Dotelli, Giovanni; Gallo Stampino, Paola; Pelosato, Renato; Mesto, Ernesto; Schingaro, Emanuela; Lacalamita, Maria

    2015-12-01

    Two mineral clays of the montmorillonite group were tested as sorbents for the removal of Rare Earths (REs) from liquid solutions. Lanthanum and neodymium model solutions were used to perform uptake tests in order to: (a) verify the clays sorption capability, (b) investigate the sorption mechanisms and (c) optimize the experimental parameters, such as contact time and pH. The desorption was also studied, in order to evaluate the feasibility of REs recovery from waters. The adsorption-desorption procedure with the optimized parameters was also tested on a leaching solution obtained by dissolution of a dismantled NdFeB magnet of a hard-disk. The clays were fully characterized after REs adsorption and desorption by means of X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy (XPS); the liquid phase was characterized via Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) analyses. The experimental results show that both clays are able to capture and release La and Nd ions, with an ion exchange mechanism. The best total efficiency (capture ≈ 50%, release ≈ 70%) is obtained when the uptake and release processes are performed at pH=5 and pH=1 respectively; in real leached scrap solutions, the uptake is around 40% but release efficiency is strongly decreased passing from a mono-ion system to a real system (from 80% to 5%). Furthermore, a strong matrix effect is found, with the matrix largely affecting both the uptake and the release of neodymium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Spin-Orbit Qubits of Rare-Earth-Metal Ions in Axially Symmetric Crystal Fields

    Science.gov (United States)

    Bertaina, S.; Shim, J. H.; Gambarelli, S.; Malkin, B. Z.; Barbara, B.

    2009-11-01

    Contrary to the well-known spin qubits, rare-earth-metal qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crystal-field ground state which nutates (for several μs) and the Rabi frequency ΩR is anisotropic. Here, we present a study of the variations of ΩR(H→0) with the magnitude and direction of the static magnetic field H→0 for the odd Er167 isotope in a single crystal CaWO4:Er3+. The hyperfine interactions split the ΩR(H→0) curve into eight different curves which are fitted numerically and described analytically. These “spin-orbit qubits” should allow detailed studies of decoherence mechanisms which become relevant at high temperature and open new ways for qubit addressing using properly oriented magnetic fields.

  11. New insights into sub-ion scale turbulence in Earth's magnetosheath using MMS data

    Science.gov (United States)

    Breuillard, Hugo; Andriopoulou, Maria; Graham, Daniel; Le Contel, Olivier; Huang, Shiyong; Hadid, Lina; Sahraoui, Fouad; Alexandrova, Olga; Berthomier, Matthieu; Retino, Alessandro; Nakamura, Rumi; Baumjohann, Wolfgang

    2017-04-01

    On January 22nd 2016, MMS was located in Earth's magnetosheath and detected intense lion roars showing a secondary bandwidth. Detailed polarization analysis, using burst data from SCM and EDP instruments, and numerical simulation, using WHAMP, are performed in this study. They show that these mainly perpendicular fluctuations are highly nonlinear whistler wave packets, and that a high sampling rate is needed to pick up the peaks of the signal. As a result, their amplitude might have been underestimated in previous missions such as Cluster, which can have a significant impact on electron dynamics. Using FPI burst data, we show that electron velocity distribution functions exhibit a gyrophase-bunched signature in the presence of these lion roars. The analysis of magnetic and density fluctuations, inferred from spacecraft potential, also show the highly-compressible nature of turbulence up to electron scales.

  12. Conductivity of Cellulose Acetate Membranes from Pandan Duri Leaves (Pandanus tectorius for Li-ion Battery

    Directory of Open Access Journals (Sweden)

    Laksono Endang W.

    2016-01-01

    Full Text Available The purpose of this research is to know the influence of lithium chloride composition on membrane conductivity. Cellulose was extracted from pandan duri leaves (P. tectorius by dilute alkaline and bleaching with 0.5% NaOCl followed by synthesis of cellulose acetate using acetic anhydride as acetylating agent, acetic acid as solvent and sulfuric acid as catalyst. The membranes were prepared by casting polymer solution method and the composition of CA/LiCl were 60/40, 65/35, 70/30, 75/25, 80/20 and 100/0. Structural analysis was carried out by FTIR and X-ray diffraction. The conductivity was measured using Elkahfi 100. The highest conductivity of cellulose acetate membrane was 2.20 × 10-4 S cm-1 that measured at room temperature for 65/35 composition

  13. Lithium ion conducting biopolymer electrolyte based on pectin doped with Lithium nitrate

    Science.gov (United States)

    Manjuladevi, R.; Selvin, P. Christopher; Selvasekarapandian, S.; Shilpa, R.; Moniha, V.

    2018-04-01

    The Biopolymer electrolyte based on pectin doped with lithium nitrate of different concentrations have been prepared by solution casting technique. The decrease in crystalline nature of the biopolymer has been identified by XRD analyses. The complex formation between the polymer and the salt has been revealed using FTIR analysis. The ionic conductivity has been explored using A.C. impedance spectroscopy which reveals that the biopolymer containing 30 wt% Pectin: 70wt%LiNO3 has highest ionic conductivity of 3.97 × 10-3 Scm-1.

  14. Lithium ion conduction in sol-gel synthesized LiZr2(PO4)3 polymorphs

    Science.gov (United States)

    Kumar, Milind; Yadav, Arun Kumar; Anita, Sen, Somaditya; Kumar, Sunil

    2018-04-01

    Safety issue associated with the high flammability and volatility of organic electrolytes used in commercial rechargeable lithium ion batteries has led to significant attention to ceramic-based solid electrolytes. In the present study, lithium ion conduction in two polymorphs of LiZr2(PO4)3 synthesized via the sol-gel route has been investigated. Rietveld refinement of room temperature X-ray diffraction data of LiZr2(PO4)3 powders calcined at 900 °C and 1300 °C confirmed these to be the monoclinic phase with P21/n structure and rhombohedral phase with R3¯c structure, respectively. Increase in calcination temperature and resultant phase transformation improved the room temperature conductivity from 2.27×10-6 ohm-1m-1 for the monoclinic phase to 1.41×10-4 ohm-1m-1 for rhombohedral phase. Temperature dependence of conductivity was modeled using Arrhenius law and activation energy of ˜ 0.59 eV (for monoclinic phase) and ˜0.50 eV (for rhombohedral phase) were obtained.

  15. Ion-bombardment-induced reduction in vacancies and its enhanced effect on conductivity and reflectivity in hafnium nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhiqing; Wang, Jiafu; Hu, Chaoquan; Zhang, Xiaobo; Dang, Jianchen; Gao, Jing; Zheng, Weitao [Jilin University, School of Materials Science and Engineering, Key Laboratory of Mobile Materials, MOE, and State Key Laboratory of Superhard Materials, Changchun (China); Zhang, Sam [Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Wang, Xiaoyi [Chinese Academy of Sciences, Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun (China); Chen, Hong [Jilin University, Department of Control Science and Engineering, Changchun (China)

    2016-08-15

    Although the role of ion bombardment on electrical conductivity and optical reflectivity of transition metal nitrides films was reported previously, the results were controversial and the mechanism was not yet well explored. Here, we show that proper ion bombardment, induced by applying the negative bias voltage (V{sub b}), significantly improves the electrical conductivity and optical reflectivity in rocksalt hafnium nitride films regardless of level of stoichiometry (i.e., in both near-stoichiometric HfN{sub 1.04} and over-stoichiometric HfN{sub 1.17} films). The observed improvement arises from the increase in the concentration of free electrons and the relaxation time as a result of reduction in nitrogen and hafnium vacancies in the films. Furthermore, HfN{sub 1.17} films have always much lower electrical conductivity and infrared reflectance than HfN{sub 1.04} films for a given V{sub b}, owing to more hafnium vacancies because of larger composition deviation from HfN exact stoichiometry (N:Hf = 1:1). These new insights are supported by good agreement between experimental results and theoretical calculations. (orig.)

  16. Crystal structure and ion conducting properties of La5NbMo2O16

    KAUST Repository

    Vu, T.D.; Krichen, F.; Barre, M.; Busselez, R.; Adil, Karim; Jouanneaux, A.; Suard, E.; Goutenoire, F.

    2016-01-01

    .2250(1) Å. La5NbMo2O16 is a new analogue of the R5Mo3O16 series (R=Pr, Nd). The structure was refined from a combined data X-ray and neutron powder diffraction. The ionic conductivity of the compound is then measured on sintered pellets, by means of complex

  17. Modulation of the conductance of a 2,2′-bipyridine-functionalized peptidic ion channel by Ni2+

    Science.gov (United States)

    Pilz, Claudia S.

    2008-01-01

    An α-helical amphipathic peptide with the sequence H2N-(LSSLLSL)3-CONH2 was obtained by solid phase synthesis and a 2,2′-bipyridine was coupled to its N-terminus, which allows complexation of Ni2+. Complexation of the 2,2′-bipyridine residues was proven by UV/Vis spectroscopy. The peptide helices were inserted into lipid bilayers (nano black lipid membranes, nano-BLMs) that suspend the pores of porous alumina substrates with a pore diameter of 60 nm by applying a potential difference. From single channel recordings, we were able to distinguish four distinct conductance states, which we attribute to an increasing number of peptide helices participating in the conducting helix bundle. Addition of Ni2+ in micromolar concentrations altered the conductance behaviour of the formed ion channels in nano-BLMs considerably. The first two conductance states appear much more prominent demonstrating that the complexation of bipyridine by Ni2+ results in a considerable confinement of the observed multiple conductance states. However, the conductance levels were independent of the presence of Ni2+. Moreover, from a detailed analysis of the open lifetimes of the channels, we conclude that the complexation of Ni2+ diminishes the frequency of channel events with larger open times. Electronic supplementary material The online version of this article (doi:10.1007/s00249-008-0298-8) contains supplementary material, which is available to authorized users. PMID:18347789

  18. Comparison of single and mixed ion implantation effects on the changes of the surface hardness, light transmittance, and electrical conductivity of polymeric materials

    International Nuclear Information System (INIS)

    Park, J. W.; Lee, J. H.; Lee, J. S.; Kil, J. G.; Choi, B. H.; Han, Z. H.

    2001-01-01

    Single or mixed ions of N, He, C were implanted onto the transparent PET(Polyethylen Terephtalate) with the ion energies of less than 100 keV and the surface hardness, light transmittance and electrical conductivity were examined. As measured with nanoindentation, mixed ion implantations such as N + +He + or N + + C + exhibited more increase in the surface hardness than the single ion implantation. Especially, implantation of C+N ions increased the surface hardness by about three times as compared to the implantation of N ion alone, which means more than 10 times increase than the untreated PET. Surface electrical conductivity was increased along with the hardness increase. The conductivity increase was more proportional to the hardness when used the higher ion energy and ion dose, while it did not show any relationship at as low as 50 keV of ion energy. The light at the 550 nm wavelength (visual range) transmitted more than 85%, which is close to that of as-received PET, and at the wavelength below 300 nm(UV range) the rays were absorbed more than 95% as traveling through the sheet, implying that there are processing parameters which the ion implanted PET maintains the transparency and absorbs the UV rays

  19. Synthesis, structural, optical and electrical properties of metal nanoparticle-rare earth ion dispersed in polymer film

    Science.gov (United States)

    Kumar, Brijesh; Kaur, Gagandeep; Singh, P.; Rai, S. B.

    2013-03-01

    Cu-nanoparticles have been prepared by ablating a copper target submerged in benzene with laser pulses of Nd:YAG (wavelength: 355, 532 nm and 1,064 nm). Colloidal nanoparticles have been characterized by UV-Vis spectroscopy and transmission electron microscopy. The obtained radius for the nanoparticles prepared using 1,064 nm irradiation lies in the range 15-30 nm, with absorption peak at 572 nm. Luminescence properties of Tb3+ ions in the presence and absence of Cu-nanoparticles have been investigated using 355 nm excitation. An enhancement in luminescence of Tb3+ by local field effect causing increase in lifetime of 5D4 level of Tb3+ ion has been observed. Frequency and temperature-dependent conductivity of Tb3+ doped PVA thin films with and without Cu-nanoparticles have been measured in the frequency range 20 Hz-1 MHz and in the temperature range 318-338 K (well below its melting temperature). Real part of the conductivity spectra has been explained in terms of power law. The electrical properties of the thin films show a decrease in dc conductivity on incorporation of the Cu-nanoparticles.

  20. Ion transport under the effect of an electric field in porous medium: application to the separation of rare earths by focalization electrophoresis

    International Nuclear Information System (INIS)

    Vieira-Nunes, A.I.

    1999-01-01

    Trivalent ions of rare earth elements have very similar properties and their difficult separation each from another is usually carried out by liquid-liquid extraction or ion exchange. Focalization electrophoresis represents an alternative route to the usual techniques. The purpose of this work consisted of the fundamental investigation of ion transport phenomena in electrophoretic processes. Focalization electrophoresis is suitable for separation of amphoteric species such as rare earth ions, using a pH gradient in the cell and upon addition of a complexed agent e. g. EDTA. This technique relies upon the difference in iso-electrical points of the considered species, being under the form of free cation near the anode, and in the form of anionic complexed species closer to the cathode. Rare earth species are submitted to the antagonist effects of diffusion and migration, enabling their focalization to occur at the iso-electrical point, corresponding to nil value of their effective mobility. Following a literature survey on rare earth elements and electrophoresis processes, the document describes theoretical and experimental investigations of complexation equilibria of some rare earth elements, namely lanthanum, neodymium, praseodymium and cerium, depending on pH. Values for the iso-electrical points could be estimated. Transport and focalization phenomena in view of rare earth separation, are dealt in the last chapter. Investigations were first carried out without forced circulation of the electrolyte solution and the transient behavior of the system allowed operating conditions to be design and built-up of a continuous device, more suitable to separation, and provided with 42 potential and 42 temperature sensors: the results of the preliminary runs, in form of variable profiles, are presented and discussed. (author)

  1. Crystal structure and ion conducting properties of La5NbMo2O16

    KAUST Repository

    Vu, T.D.

    2016-01-29

    The new compound La5NbMo2O16 with high ionic conduction has been discovered during the study of the ternary phase diagram of La2O3-MoO3-Nb2O5. The material crystallizes in the cubic space group Pn 3n (no 222) with the unit cell parameter a=11.2250(1) Å. La5NbMo2O16 is a new analogue of the R5Mo3O16 series (R=Pr, Nd). The structure was refined from a combined data X-ray and neutron powder diffraction. The ionic conductivity of the compound is then measured on sintered pellets, by means of complex impedance spectroscopy. © 2016 Elsevier Inc. All rights reserved.

  2. Sulfonation degree effect on ion-conducting SPEEK-titanium oxide membranes properties

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Jacqueline Costa; Gomes, Ailton de Souza; Dutra Filho, José Carlos, E-mail: jacquecosta@gmail.com [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Instituto de Macromoléculas Professora Eloisa Mano; Hui, Wang Shu [Universidade de São Paulo (USP), São Paulo, SP (Brazil). Departamento de Engenharia Metalúrgica e de Materiais; Oliveira, Vivianna Silva de [Escola Técnica Rezende Rammel (ETRR), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Polymeric membranes were developed using a SPEEK (sulfonated poly(ether ether ketone)) polymer matrix, containing titanium oxide (TiO{sub 2}) (incorporated by sol-gel method). SPEEK with different sulfonation degrees (SD): 63% and 50% were used. The influence of sulfonation degree on membrane properties was investigated. The thermal analysis (TGA and DTGA) and X-ray diffraction (XRD) were carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluate the proton conductivity of the membranes. The proton conductivities in water were of 3.25 to 37.08 mS.cm{sup -1}. Experimental data of impedance spectroscopy were analyzed with equivalent circuits using the Zview software, and the results showed that, the best fitted was at 80 °C. (author)

  3. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    Science.gov (United States)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  4. Observation of He bubbles in ion irradiated fusion materials by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyu [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Li, Ruihuan [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Yang, Deming [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022 (China); Wu, Yunfeng; Niu, Jinhai; Yang, Qi [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Zhao, Jijun [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China); Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn [School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600 (China); Fujian Key Laboratory for Plasma and Magnetic Resonance, Department of Electronic Science, Aeronautics, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-10-15

    Using a non-destructive conductive atomic force microscope combined with the Ar{sup +} etching technique, we demonstrate that nanoscale and conductive He bubbles are formed in the implanted layer of single-crystalline 6H-SiC irradiated with 100 keV He{sup +}. We find that the surface swelling of irradiated SiC samples is well correlated with the growth of elliptic He bubbles in the implanted layer. First-principle calculations are performed to estimate the internal pressure of the He bubble in the void of SiC. Analysis indicates that nanoscale He bubbles acting as a captor capture the He atoms diffusing along the implanted layer at an evaluated temperature and result in the surface swelling of irradiated SiC materials.

  5. Structural properties of lithium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    Thomazini D.

    2001-01-01

    Full Text Available This paper presents the study on lithium triborate glass (LBO in the system (1-x|3B2O3.Li2O| (xNb2O5 yPr3+ zYb3+ wNd3+ with 0 <= x <= 20 mol% (y, z and w in mol%. The samples were studied by Raman spectroscopy, infrared absorption and differential thermal analysis. Pr3+-doped LBO and Pr3+/Yb3+-doped LBO samples show an increase of the glass transition and crystallization temperatures and a decrease of the fusion temperature associated with the increase of the praseodymium concentration in the LBO matrix. For the Nd3+-doped LBO and Pr3+/Yb3+-doped (LBO+Nb2O5 samples, a decrease of the glass transition temperature of the samples was observed. The increase of the rare earth doping leads to an increase of the difference between the glass transition and the crystallization temperatures. From infrared analysis it was possible to identify all the modes associated to the B-O structure. The NbO6 octahedra was also identified by IR spectroscopy for samples with x=5, 10, 15 and 20 mol% and y=0.05, z=1.1 mol%. Raman spectroscopy shows the presence of boroxol rings, tetrahedral and triangular coordination for boron. For samples containing niobium, the Raman spectra show the vibrational mode associated with the Nb-O bond in the niobium octahedra (NbO6.

  6. Electrochemical Investigations of the Interface at Li/Li+ Ion Conducting Channel

    Science.gov (United States)

    2006-10-04

    range of applications.1 Presently, these molecules are of particular interest in non-linear optics, as liquid crystals, as Langmuir - Blodgett films, for...cathode material in non-aqueous liquid electrolyte medium Since Li2Pc is a mixed ionic and electronic conductor, and some metal phthalocyanines are...14. ABSTRACT Dilithium phthalocyanine (Li2Pc) possesses mixed electronic- ionic conductivity due to overlap of - orbitals (electronic

  7. Beltless Translocation Domain of Botulinum Neurotoxin A Embodies a Minimum Ion-conductive Channel*

    OpenAIRE

    Fischer, Audrey; Sambashivan, Shilpa; Brunger, Axel T.; Montal, Mauricio

    2011-01-01

    Botulinum neurotoxin, the causative agent of the paralytic disease botulism, is an endopeptidase composed of a catalytic domain (or light chain (LC)) and a heavy chain (HC) encompassing the translocation domain (TD) and receptor-binding domain. Upon receptor-mediated endocytosis, the LC and TD are proposed to undergo conformational changes in the acidic endocytic environment resulting in the formation of an LC protein-conducting TD channel. The mechanism of channel formation and the conformat...

  8. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia.

    Science.gov (United States)

    Ma, Liqun; Zhang, Xuexin; Chen, Haijun

    2011-06-07

    Background potassium (K+) channels, which are normally selectively permeable to K+, maintain the cardiac resting membrane potential at around -80 mV. In subphysiological extracellular K+ concentrations ([K+]o), which occur in pathological hypokalemia, the resting membrane potential of human cardiomyocytes can depolarize to around -50 mV, whereas rat and mouse cardiomyocytes become hyperpolarized, consistent with the Nernst equation for K+. This paradoxical depolarization of cardiomyocytes in subphysiological [K+]o, which may contribute to cardiac arrhythmias, is thought to involve an inward leak sodium (Na+) current. Here, we show that human cardiac TWIK-1 (also known as K2P1) two-pore domain K+ channels change ion selectivity, becoming permeable to external Na+, and conduct inward leak Na+ currents in subphysiological [K+]o. A specific threonine residue (Thr118) within the pore selectivity sequence TxGYG was required for this altered ion selectivity. Mouse cardiomyocyte-derived HL-1 cells exhibited paradoxical depolarization with ectopic expression of TWIK-1 channels, whereas TWIK-1 knockdown in human spherical primary cardiac myocytes eliminated paradoxical depolarization. These findings indicate that ion selectivity of TWIK-1 K+ channels changes during pathological hypokalemia, elucidate a molecular basis for inward leak Na+ currents that could trigger or contribute to cardiac paradoxical depolarization in lowered [K+]o, and identify a mechanism for regulating cardiac excitability.

  9. Determination of Cd2+ in aqueous solution using polyindole-Ce(IV) vanadophosphate conductive nanocomposite ion-selective membrane electrode

    Science.gov (United States)

    Khan, Asif Ali; Quasim Khan, Mohd; Hussain, Rizwan

    2017-09-01

    In the present study an organic-inorganic nanocomposite ion exchanger Polyindole-Ce(IV) vanadophosphate (PIn-CVP) was synthesized via sol-gel process showing excellent ion exchange capacity (IEC‒1.90 meqg-1). The material was characterized by SEM, TEM, XRD, FTIR, and TGA. A heterogeneous ion exchange membrane of PIn-CVP (IEC‒0.90 meqg-1) was also prepared by solution casting method. PIn-CVP shows high electrical conductivity (5.5  ×  10-2 S cm-1) and it is stable up to 120 °C under ambient conditions. Cd2+ selective membrane electrode was fabricated and its linear working range (3.98  ×  10-7 M to 1.0  ×  10-1 M), response time (25 s), Nerstian slope 25.00 mV dec-1 and working pH range (4-7) were calculated. It was employed as an indicator electrode in the potentiometric titration of Cd2+.

  10. Conductive surface modification of cauliflower-like WO3 and its electrochemical properties for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yoon, Sukeun; Woo, Sang-Gil; Jung, Kyu-Nam; Song, Huesup

    2014-01-01

    Highlights: • Synthesis of cauliflower-like carbon-decorated WO 3 . • Superior cyclability and rate capability for cauliflower-like carbon-decorated WO 3 . • Electrochemical reaction behavior of cauliflower-like carbon-decorated WO 3 with lithium. • In-situ XRD analysis during the first discharge–charge shows a complex reaction of intercalation and conversion of WO 3 . - Abstract: Cauliflower-like WO 3 was synthesized by a hydrothermal reaction without a surfactant, followed by firing, and was investigated as an anode material for lithium-ion battery applications. The scanning electron microscope (SEM) and transmission electron microscope (TEM) characterization indicated that WO 3 nanorods had an aggregation framework and built a cauliflower morphology. With the objective of understanding the charge–discharge process within a voltage range of 0–3 V vs. Li + /Li, in situ X-ray diffraction was used and a complex reaction of intercalation and conversion of WO 3 was revealed for the first time. The cauliflower-like WO 3 after being decorated with carbon provides a high gravimetric capacity of >635 mA h/g (Li 5.5 WO 3 ) with good cycling and a high rate capability when used as an anode in lithium-ion batteries. Based on our studies, we attribute the high electrochemical performance to the nanoscopic WO 3 particles and a conductive carbon layer, which makes them a potential candidate for lithium-ion batteries

  11. Ionic conduction studies in Li3+ ion irradiated P(VDF-HFP)-(PC + DEC)-LiCF3SO3 gel polymer electrolyte

    International Nuclear Information System (INIS)

    Saikia, D.; Hussain, A.M.P.; Kumar, A.; Singh, F.; Avasthi, D.K.

    2006-01-01

    In an attempt to increase the Li ion diffusivity in gel polymer electrolytes, the effects of Li 3+ ion irradiation in P(VDF-HFP)-(PC + DEC)-LiCF 3 SO 3 electrolyte system, with five different fluences, is studied. Irradiation with swift heavy ions shows enhancement in conductivity at low fluences and decreased in conductivity at higher fluences with respect to pristine polymer electrolyte films. Maximum room temperature ionic conductivity after irradiation is found to be 2.6 x 10 -3 S/cm. This interesting result could be attributed to the fact that, higher fluence provides critical activation energy for cross-linking and crystallization to occur, which results in decrease in ionic conductivity. XRD results show decrease in the degree of crystallinity upon ion irradiation at low fluences (≤10 11 ions/cm 2 ) and increase in crystallinity at high fluences (>10 11 ions/cm 2 ). In FTIR spectra the absorption band intensities around 3025 cm -1 and 2985 cm -1 decrease upon irradiation with a fluence of 5 x 10 1 ions/cm 2 suggesting chain scission and increase upon irradiation with a fluence of 5 x 10 12 ions/cm 2 indicating cross-linking. FTIR analyses corroborate the conductivity and XRD results

  12. Synthesis, structural and optical properties of pure and rare-earth ion doped TiO{sub 2} nanowire arrays by a facile hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Bandi, Vengala Rao; Raghavan, Chinnambedu Murugesan; Grandhe, Bhaskar kumar; Kim, Sang Su [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jang, Kiwan, E-mail: kwjang@changwon.ac.kr [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Shin, Dong-Soo [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Yi, Soung-Soo [Department of Photonics, Silla University, Busan 617-736 (Korea, Republic of); Jeong, Jung-Hyun [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2013-11-29

    Single crystalline pure and rare-earth metal ions (Eu{sup 3+} and Ce{sup 3+}) doped TiO{sub 2} nanowire arrays were prepared on conductive fluorine doped indium tin oxide substrates by a facile hydrothermal method. Initially the conditions and parameters were optimized to prepare the high quality TiO{sub 2} nanowire arrays in the absence of organic additives. The average diameter and length of the TiO{sub 2} nanowire were found to be ∼ 30–50 nm and ∼ 0.5–1.5 μm, respectively. The formations of rutile phase structure in all the samples were confirmed by x-ray diffractometric analysis while the transmission electron microscopy confirms the single crystallinity and the maximum orientation of growth direction along [001] for the as-grown TiO{sub 2} nanowire. The optical properties of all the samples were analyzed using photoluminescence spectroscopy. The photocatalytic properties of the pure and doped TiO{sub 2} were investigated for the decomposition of organic toludine blue-O dye under ultraviolet irradiation. The result demonstrates that the Ce{sup 3+}: TiO{sub 2} decomposed almost 90% of the organic dye within 80 min. - Highlights: • Rare-earth (RE) doped TiO{sub 2} nanowire arrays were prepared by hydrothermal method • RE doping enhanced the growth rate of TiO{sub 2} nanowire arrays • The catalysts used to check their photocatalytic activity by toludine blue-O dye • RE doped TiO2 act as unprecedented photocatalyst for organic dye decomposition.

  13. Effect of minimum strength of mirror magnetic field (Bmin) on production of highly charged heavy ions from RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source (RAMSES)

    International Nuclear Information System (INIS)

    Arai, Hideyuki; Imanaka, Masashi; Lee, S.-M.Sang-Moo; Higurashi, Yoshihide; Nakagawa, Takahide; Kidera, Masanori; Kageyama, Tadashi; Kase, Masayuki; Yano, Yasushige; Aihara, Toshimitsu

    2002-01-01

    We measured the beam intensity of highly charged heavy ions (O, Ar and Kr ions) as a function of the minimum strength of mirror magnetic field (B min ) of the RIKEN liquid-He-free super conducting electron-cyclotron resonance ion source. In this experiment, we found that the optimum value of B min exists to maximize the beam intensity of highly charged heavy ions and the value was almost the same (∼0.49 T) for various charge state heavy ions

  14. Highly conductive cathode materials for Li-ion batteries prepared by thermal nanocrystallization of selected oxide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Pietrzak, T.K.; Wasiucionek, M.; Michalski, P.P.; Kaleta, A.; Garbarczyk, J.E., E-mail: garbar@if.pw.edu.pl

    2016-11-15

    Glassy analogs of two important cathode materials for Li-ion cells: V{sub 2}O{sub 5} and phosphoolivine LiFePO{sub 4} were heat-treated in order to prepare nanocrystallized materials with high electronic conductivity of up to 7 × 10{sup −2} S cm{sup −1} and ca 7 × 10{sup −3} S cm{sup −1} at 25 °C, respectively. There is a clear correlation between the crystallization phenomena and the increase in the electrical conductivity for both groups of glasses. Electrochemical tests of heat-treated glasses of the V{sub 2}O{sub 5}–P{sub 2}O{sub 5} system, used as cathodes in lithium cells confirm their good gravimetric capacity and reversibility. Heat-treatment of glasses of the Li{sub 2}O–FeO–V{sub 2}O{sub 5}–P{sub 2}O{sub 5} system also leads to a high increase in the conductivity and to formation of nanocrystalline grains in the glassy matrix, evidenced by HR-TEM images. The temperature dependence of the conductivity of these materials follows the Arrhenius formula. The presented results indicate that the overall increase in conductivity in nanocrystallized materials is due to good charge transport properties of their interfacial regions.

  15. Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer

    KAUST Repository

    Alias, Mohd Sharizal; Liao, Hsien-Yu; Ng, Tien Khee; Ooi, Boon S.

    2015-01-01

    Nanoscale periodic patterning on insulating materials using focused-ion beam (FIB) is challenging because of charging effect, which causes pattern distortion and resolution degradation. In this paper, the authors used a charging suppression scheme using electron conducting polymer for the implementation of FIB patterned dielectric subwavelength grating (SWG) reflector. Prior to the FIB patterning, the authors numerically designed the optimal structure and the fabrication tolerance for all grating parameters (period, grating thickness, fill-factor, and low refractive index layer thickness) using the rigorous-coupled wave analysis computation. Then, the authors performed the FIB patterning on the dielectric SWG reflector spin-coated with electron conducting polymer for the anticharging purpose. They also performed similar patterning using thin conductive film anticharging scheme (30 nm Cr coating) for comparison. Their results show that the electron conducting polymer anticharging scheme effectively suppressing the charging effect during the FIB patterning of dielectric SWG reflector. The fabricated grating exhibited nanoscale precision, high uniformity and contrast, constant patterning, and complied with fabrication tolerance for all grating parameters across the entire patterned area. Utilization of electron conducting polymer leads to a simpler anticharging scheme with high precision and uniformity for FIB patterning on insulator materials.

  16. Identification of an Actual Strain-Induced Effect on Fast Ion Conduction in a Thin-Film Electrolyte.

    Science.gov (United States)

    Ahn, Junsung; Jang, Ho Won; Ji, Hoil; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Kim, Byung-Kook; Lee, Hae-Weon; Lee, Jong-Ho

    2018-05-09

    Strain-induced fast ion conduction has been a research area of interest for nanoscale energy conversion and storage systems. However, because of significant discrepancies in the interpretation of strain effects, there remains a lack of understanding of how fast ionic transport can be achieved by strain effects and how strain can be controlled in a nanoscale system. In this study, we investigated strain effects on the ionic conductivity of Gd 0.2 Ce 0.8 O 1.9-δ (100) thin films under well controlled experimental conditions, in which errors due to the external environment could not intervene during the conductivity measurement. In order to avoid any interference from perpendicular-to-surface defects, such as grain boundaries, the ionic conductivity was measured in the out-of-plane direction by electrochemical impedance spectroscopy analysis. With varying film thickness, we found that a thicker film has a lower activation energy of ionic conduction. In addition, careful strain analysis using both reciprocal space mapping and strain mapping in transmission electron microscopy shows that a thicker film has a higher tensile strain than a thinner film. Furthermore, the tensile strain of thicker film was mostly developed near a grain boundary, which indicates that intrinsic strain is dominant rather than epitaxial or thermal strain during thin-film deposition and growth via the Volmer-Weber (island) growth mode.

  17. Charging suppression in focused-ion beam fabrication of visible subwavelength dielectric grating reflector using electron conducting polymer

    KAUST Repository

    Alias, Mohd Sharizal

    2015-08-19

    Nanoscale periodic patterning on insulating materials using focused-ion beam (FIB) is challenging because of charging effect, which causes pattern distortion and resolution degradation. In this paper, the authors used a charging suppression scheme using electron conducting polymer for the implementation of FIB patterned dielectric subwavelength grating (SWG) reflector. Prior to the FIB patterning, the authors numerically designed the optimal structure and the fabrication tolerance for all grating parameters (period, grating thickness, fill-factor, and low refractive index layer thickness) using the rigorous-coupled wave analysis computation. Then, the authors performed the FIB patterning on the dielectric SWG reflector spin-coated with electron conducting polymer for the anticharging purpose. They also performed similar patterning using thin conductive film anticharging scheme (30 nm Cr coating) for comparison. Their results show that the electron conducting polymer anticharging scheme effectively suppressing the charging effect during the FIB patterning of dielectric SWG reflector. The fabricated grating exhibited nanoscale precision, high uniformity and contrast, constant patterning, and complied with fabrication tolerance for all grating parameters across the entire patterned area. Utilization of electron conducting polymer leads to a simpler anticharging scheme with high precision and uniformity for FIB patterning on insulator materials.

  18. Ion conducting behavior in secondary battery materials detected by quasi-elastic neutron scattering measurements

    International Nuclear Information System (INIS)

    Nozaki, Hiroshi

    2014-01-01

    Ionic conducting behaviors in secondary battery materials, i.e. cathode and solid electrolyte, were studied with quasi-elastic neutron scattering (QENS) measurements. Although the incoherent scattering length for Li and Na is lower by two orders of magnitude than that for H, the QENS spectra were clearly detected using the combination of an intense neutron source and a low background spectrometer. The fundamental parameters, such as, the activation energy, the jump distance, and the diffusion coefficient were obtained by analyzing QENS spectra. These parameters are consistent with the previous results estimated by muon-spin relaxation (μSR) measurements and first principles calculations. (author)

  19. Elastic flexibility, fast-ion conduction, boson and floppy modes in AgPO3-AgI glasses

    Science.gov (United States)

    Novita, Deassy I.; Boolchand, P.; Malki, M.; Micoulaut, Matthieu

    2009-05-01

    Raman scattering, IR reflectance and modulated-DSC measurements are performed on specifically prepared dry (AgI)x(AgPO3)1-x glasses over a wide range of compositions 0%37.8% are elastically flexible. Raman optical elasticity power laws, trends in the nature of the glass transition endotherms, corroborate the three elastic phase assignments. Ionic conductivities reveal a step-like increase when glasses become stress-free at x>xc(1) = 9.5% and a logarithmic increase in conductivity (σ~(x-xc(2))μ) once they become flexible at x>xc(2) = 37.8% with a power law μ = 1.78. The power law is consistent with percolation of 3D filamentary conduction pathways. Traces of water doping lower Tg and narrow the reversibility window, and can also completely collapse it. Ideas on network flexibility promoting ion conduction are in harmony with the unified approach of Ingram et al (2008 J. Phys. Chem. B 112 859), who have emphasized the similarity of process compliance or elasticity relating to ion transport and structural relaxation in decoupled systems. Boson mode frequency and scattering strength display thresholds that coincide with the two elastic phase boundaries. In particular, the scattering strength of the boson mode increases almost linearly with glass composition x, with a slope that tracks the floppy mode fraction as a function of mean coordination number r predicted by mean-field rigidity theory. These data suggest that the excess low frequency vibrations contributing to the boson mode in flexible glasses come largely from floppy modes.

  20. Li2 NH-LiBH4 : a Complex Hydride with Near Ambient Hydrogen Adsorption and Fast Lithium Ion Conduction.

    Science.gov (United States)

    Wang, Han; Cao, Hujun; Zhang, Weijin; Chen, Jian; Wu, Hui; Pistidda, Claudio; Ju, Xiaohua; Zhou, Wei; Wu, Guotao; Etter, Martin; Klassen, Thomas; Dornheim, Martin; Chen, Ping

    2018-01-26

    Complex hydrides have played important roles in energy storage area. Here a complex hydride made of Li 2 NH and LiBH 4 was synthesized, which has a structure tentatively indexed using an orthorhombic cell with a space group of Pna2 1 and lattice parameters of a=10.121, b=6.997, and c=11.457 Å. The Li 2 NH-LiBH 4 sample (in a molar ratio of 1:1) shows excellent hydrogenation kinetics, starting to absorb H 2 at 310 K, which is more than 100 K lower than that of pristine Li 2 NH. Furthermore, the Li + ion conductivity of the Li 2 NH-LiBH 4 sample is about 1.0×10 -5  S cm -1 at room temperature, and is higher than that of either Li 2 NH or LiBH 4 at 373 K. Those unique properties of the Li 2 NH-LiBH 4 complex render it a promising candidate for hydrogen storage and Li ion conduction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    International Nuclear Information System (INIS)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-01-01

    The location of extraframework cations in Sr 2+ and Ba 2+ ion-exchanged SAPO-34 was estimated by means of 1 H and 23 Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO 2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO 2 adsorption performance. Highlights: ► Location of extraframework Sr 2+ or Ba 2+ cations was estimated by means of 1 H and 23 Na MAS NMR. ► Level of Sr 2+ or Ba 2+ ion exchange was limited by the presence of protons and sodium cations. ► Presence of ammonium cations in the supercages facilitated the exchange. ► Sr 2+ and Ba 2+ ion exchanged SAPOs are outstanding CO 2 adsorbents.

  2. Tuning the Origin of Magnetic Relaxation by Substituting the 3d or Rare-Earth Ions into Three Isostructural Cyano-Bridged 3d-4f Heterodinuclear Compounds.

    Science.gov (United States)

    Zhang, Yan; Guo, Zhen; Xie, Shuang; Li, Hui-Li; Zhu, Wen-Hua; Liu, Li; Dong, Xun-Qing; He, Wei-Xun; Ren, Jin-Chao; Liu, Ling-Zhi; Powell, Annie K

    2015-11-02

    Three isostructural cyano-bridged 3d-4f compounds, [YFe(CN)6(hep)2(H2O)4] (1), [DyFe(CN)6(hep)2(H2O)4] (2), and [DyCo(CN)6(hep)2(H2O)4] (3), were successfully assembled by site-targeted substitution of the 3d or rare-earth ions. All compounds have been structurally characterized to display slightly distorted pentagonal-bipyramidal local coordination geometry around the rare-earth ions. Magnetic analyses revealed negligible magnetic coupling in compound 1, antiferromagnetic intradimer interaction in 2, and weak ferromagnetic coupling through dipolar-dipolar interaction in 3. Under an applied direct-current (dc) field, 1 (Hdc = 2.5 kOe, τ0 = 1.3 × 10(-7) s, and Ueff/kB = 23 K) and 3 (Hdc = 2.0 kOe, τ0 = 7.1 × 10(-11) s, and Ueff/kB = 63 K) respectively indicated magnetic relaxation behavior based on a single [Fe(III)]LS ion and a Dy(III) ion; nevertheless, 2 (Hdc = 2.0 kOe, τ0 = 9.7 × 10(-8) s, and Ueff/kB = 23 K) appeared to be a single-molecule magnet based on a cyano-bridged DyFe dimer. Compound 1, which can be regarded as a single-ion magnet of the [Fe(III)]LS ion linked to a diamagnetic Y(III) ion in a cyano-bridged heterodimer, represents one of the rarely investigated examples based on a single Fe(III) ion explored in magnetic relaxation behavior. It demonstrated that the introduction of intradimer magnetic interaction of 2 through a cyano bridge between Dy(III) and [Fe(III)]LS ions negatively affects the energy barrier and χ″(T) peak temperature compared to 3.

  3. Anisotropic Proton and Oxygen Ion Conductivity in Epitaxial Ba2In2O5 Thin Films

    DEFF Research Database (Denmark)

    Fluri, Aline; Gilardi, Elisa; Karlsson, Maths

    2017-01-01

    Solid oxide oxygen ion and proton conductors are a highly important class of materials for renewable energy conversion devices like solid oxide fuel cells. Ba2In2O5 (BIO) exhibits both oxygen ion and proton conduction, in a dry and humid environment, respectively. In a dry environment...

  4. The effect of oxygen on segregation-induced redistribution of rare-earth elements in silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    Aleksandrov, O. V.

    2006-01-01

    A model of segregation-induced redistribution of impurities of rare-earth elements during solid-phase epitaxial crystallization of silicon layers amorphized by ion implantation is developed. This model is based on the assumption that a transition layer with a high mobility of atoms is formed at the interphase boundary on the side of a-Si; the thickness of this layer is governed by the diffusion length of vacancies in a-Si. The Er concentration profiles in Si implanted with both erbium and oxygen ions are analyzed in the context of the model. It shown that, in the case of high doses of implantation of rare-earth ions, it is necessary to take into account the formation of R m clusters (m = 4), where R denotes the atom of a rare-earth element, whereas, if oxygen ions are also implanted, formation of the complexes RO n (n = 3-6) should be taken into account; these complexes affect the transition-layer thickness and segregation coefficient

  5. Silver modified platinum surface/H{sup +} conducting Nafion membrane for cathodic reduction of nitrate ions

    Energy Technology Data Exchange (ETDEWEB)

    Hasnat, M.A., E-mail: mahtazim@yahoo.com [Department of Chemistry, Graduate School of Physical Sciences, Shahajalal University of Science and Technology, Sylhet 3114 (Bangladesh); School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia); Ahamad, N.; Nizam Uddin, S.M. [Department of Chemistry, Graduate School of Physical Sciences, Shahajalal University of Science and Technology, Sylhet 3114 (Bangladesh); Mohamed, Norita [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang (Malaysia)

    2012-01-15

    Electrocatalytic reduction of NO{sub 3}{sup -} was performed at an Ag modified Pt electrodes supported on a H{sup +} conducting Nafion-117 polymer electrolyte. The cyclic voltammetric and electrolysis experiments showed that the reduction process was a two-electron transfer reaction. The conversion of nitrate to nitrite follows first order kinetics. Controlled potential electrolysis experiments revealed that the highest reduction rate (k{sub 1}; 95.1 Multiplication-Sign 10{sup -3} min{sup -1}) could be obtained at -1.3 V versus Ag/AgCl (std. KCl) reference electrode. Meanwhile, substantial nitrate removal (ca. 89%) could be attained by a flow system when the flow rate is as low as 0.1 ml min{sup -1}. The Ag particles on the Pt film were a in polycrystalline state having roughness value of 0.45 {mu}m, which was reduced to 0.30 {mu}m after 270 min of undergoing electrolysis.

  6. METHOD 332.0: DETERMINATION OF PERCHLORATE IN DRINKING WATER BY ION CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY AND ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    Science.gov (United States)

    This method is applicable to the identification and quantitation of perchlorate in raw and finished drinking waters. The approach used is ion chromatography with suppressed conductivity and electrospray ionization mass spectrometry (IC-ESI/MS)

  7. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  8. Synergism between rare earth cerium(IV) ion and vanillin on the corrosion of cold rolled steel in 1.0 M HCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Li Xianghong [Department of Fundamental Courses, Southwest Forestry University, Kunming 650224 (China)], E-mail: xianghong-li@163.com; Deng Shuduan [Department of Wood Science and Technology, Southwest Forestry University, Kunming 650224 (China); Fu Hui [Department of Fundamental Courses, Southwest Forestry University, Kunming 650224 (China); Mu Guannan [Department of Chemistry, Yunnan University, Kunming 650091 (China)

    2008-12-15

    The synergism between rare earth cerium(IV) ion and vanillin on the corrosion of cold rolled steel (CRS) in 1.0 M HCl solution was first investigated by weight loss, potentiodynamic polarization, ultraviolet and visible spectrophotometer (UV-vis), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). The results revealed that vanillin had a moderate inhibitive effect, and the adsorption of vanillin obeyed the Temkin adsorption isotherm. For rare earth Ce{sup 4+}, it had a negligible effect. However, incorporation of Ce{sup 4+} with vanillin significantly improved the inhibition performance, and produced strong synergistic inhibition effect. Depending on the results, the synergism mechanism was proposed.

  9. Mass separation of rare-earth elements by a high-temperature thermal ion source coupled with a He-jet system

    International Nuclear Information System (INIS)

    Kawase, Y.; Okano, K.; Aoki, K.

    1987-01-01

    By using a high-temperature thermal ion source coupled to a He-jet system, neutron-rich isotopes of rare-earth elements such as cerium, praseodymium, neodymium and promethium produced by the thermal-neutron fission of /sup 235/U were ionized and successfully separated. The temperature dependence of the ionization efficiency has been measured and found to be explained qualitatively by the vapour pressure of the relevant elements. The characteristic temperature dependence of the ionization efficiency has been utilized for Z-identification of several isobars of rare-earth elements. The heaviest isotopes of neodymium and promethium, /sup 155/Nd and /sup 156/Pm, have recently been identified

  10. Synergism between rare earth cerium(IV) ion and vanillin on the corrosion of cold rolled steel in 1.0 M HCl solution

    International Nuclear Information System (INIS)

    Li Xianghong; Deng Shuduan; Fu Hui; Mu Guannan

    2008-01-01

    The synergism between rare earth cerium(IV) ion and vanillin on the corrosion of cold rolled steel (CRS) in 1.0 M HCl solution was first investigated by weight loss, potentiodynamic polarization, ultraviolet and visible spectrophotometer (UV-vis), X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). The results revealed that vanillin had a moderate inhibitive effect, and the adsorption of vanillin obeyed the Temkin adsorption isotherm. For rare earth Ce 4+ , it had a negligible effect. However, incorporation of Ce 4+ with vanillin significantly improved the inhibition performance, and produced strong synergistic inhibition effect. Depending on the results, the synergism mechanism was proposed

  11. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    Science.gov (United States)

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  12. Conductive surface modification of cauliflower-like WO{sub 3} and its electrochemical properties for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sukeun, E-mail: skyoon@kongju.ac.kr [Division of Advanced Materials Engineering, Kongju National University, Chungnam 330-717 (Korea, Republic of); Woo, Sang-Gil [Advanced Batteries Research Center, Korea Electronics Technology Institute, Gyeonggi 463-816 (Korea, Republic of); Jung, Kyu-Nam [Energy Efficiency and Materials Research Division, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Song, Huesup, E-mail: hssong@kongju.ac.kr [Division of Advanced Materials Engineering, Kongju National University, Chungnam 330-717 (Korea, Republic of)

    2014-11-15

    Highlights: • Synthesis of cauliflower-like carbon-decorated WO{sub 3}. • Superior cyclability and rate capability for cauliflower-like carbon-decorated WO{sub 3}. • Electrochemical reaction behavior of cauliflower-like carbon-decorated WO{sub 3} with lithium. • In-situ XRD analysis during the first discharge–charge shows a complex reaction of intercalation and conversion of WO{sub 3}. - Abstract: Cauliflower-like WO{sub 3} was synthesized by a hydrothermal reaction without a surfactant, followed by firing, and was investigated as an anode material for lithium-ion battery applications. The scanning electron microscope (SEM) and transmission electron microscope (TEM) characterization indicated that WO{sub 3} nanorods had an aggregation framework and built a cauliflower morphology. With the objective of understanding the charge–discharge process within a voltage range of 0–3 V vs. Li{sup +}/Li, in situ X-ray diffraction was used and a complex reaction of intercalation and conversion of WO{sub 3} was revealed for the first time. The cauliflower-like WO{sub 3} after being decorated with carbon provides a high gravimetric capacity of >635 mA h/g (Li{sub 5.5}WO{sub 3}) with good cycling and a high rate capability when used as an anode in lithium-ion batteries. Based on our studies, we attribute the high electrochemical performance to the nanoscopic WO{sub 3} particles and a conductive carbon layer, which makes them a potential candidate for lithium-ion batteries.

  13. Study of amorphous semiconductors doped with rare earths (Gd and Er) and conducting polymers by EPR techniques and magnetic susceptibility; Estudo de semicondutores amorfos dopados com terras raras (Gd e Er) e de polimeros condutores atraves das tecnicas de RPE e susceptibilidade magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Sercheli, Mauricio da Silva

    1999-07-01

    This thesis involves the study of amorphous semiconductors and conducting polymers, which have been characterized by EPR and magnetic susceptibility measurements, and to a lesser extent by Raman spectroscopy and RBS. The semiconductors were studied using thin films of silicon doped with rare earth metals, e.g. erbium and gadolinium, which had their magnetic properties studied. Using these studies we could determine the state of valence of the rare earths as well as their concentrations in the silicon matrix. According to our results, the valence of the rare earth metal ions is 3+, and we were able to conclude that 4f electronic shells could not be used for the calculation of the conducting band in this system. Furthermore, the analysis of the data on the magnetic susceptibility of the Er{sup 3+} ion with cubic crystalline acting field, gave us the opportunity to estimate the overall splitting of their electronic states for the first time. The conducting polymers were studied using samples of poly(3-methylthiophene) doped with ClO{sub 4}{sup -}, which show a phase transition in the range of 230 K to 130 K. The electron paramagnetic resonance also gives important information on the crystallization, doping level and the presence of polarons or bipolarons in conducting polymers. (author)

  14. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Ruiyi, Li; Tengyuan, Chen; Beibei, Sun [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Zaijun, Li [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China); Zhiquo, Gu; Guangli, Wang; Junkang, Liu [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-10-15

    Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g{sup −1} and 293.5 mA cm{sup −3}), outstanding rate capability (155.7 mAh g{sup −1} at 10C) and intriguing cycling

  15. Comparative study of 150 keV Ar+ and O+ ion implantation induced structural modification on electrical conductivity in Bakelite polymer

    Science.gov (United States)

    Aneesh Kumar, K. V.; Krishnaveni, S.; Asokan, K.; Ranganathaiah, C.; Ravikumar, H. B.

    2018-02-01

    A comparative study of 150 keV argon (Ar+) and oxygen (O+) ion implantation induced microstructural modifications in Bakelite Resistive Plate Chamber (RPC) detector material at different implantation fluences have been studied using Positron Annihilation Lifetime Spectroscopy (PALS). Positron lifetime parameters viz., o-Ps lifetime (τ3) and its intensity (I3) upon lower implantation fluences can be interpreted as the cross-linking and the increased local temperature induced diffusion followed by trapping of ions in the interior polymer voids. The increased o-Ps lifetime (τ3) at higher O+ ion implantation fluences indicates chain scission owing to the oxidation and track formation. This is also justified by the X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) results. The modification in the microstructure and electrical conductivity of Bakelite materials are more upon implantation of O+ ions than Ar+ ions of same energy and fluences. The reduced electrical conductivity of Bakelite polymer material upon ion implantation of both the ions is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate energy and fluence of implanting ions might reduce the leakage current and hence improve the performance of Bakelite RPC detectors.

  16. Atomic Layer Deposition of Stable LiAlF4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling.

    Science.gov (United States)

    Xie, Jin; Sendek, Austin D; Cubuk, Ekin D; Zhang, Xiaokun; Lu, Zhiyi; Gong, Yongji; Wu, Tong; Shi, Feifei; Liu, Wei; Reed, Evan J; Cui, Yi

    2017-07-25

    Modern lithium ion batteries are often desired to operate at a wide electrochemical window to maximize energy densities. While pushing the limit of cutoff potentials allows batteries to provide greater energy densities with enhanced specific capacities and higher voltage outputs, it raises key challenges with thermodynamic and kinetic stability in the battery. This is especially true for layered lithium transition-metal oxides, where capacities can improve but stabilities are compromised as wider electrochemical windows are applied. To overcome the above-mentioned challenges, we used atomic layer deposition to develop a LiAlF 4 solid thin film with robust stability and satisfactory ion conductivity, which is superior to commonly used LiF and AlF 3 . With a predicted stable electrochemical window of approximately 2.0 ± 0.9 to 5.7 ± 0.7 V vs Li + /Li for LiAlF 4 , excellent stability was achieved for high Ni content LiNi 0.8 Mn 0.1 Co 0.1 O 2 electrodes with LiAlF 4 interfacial layer at a wide electrochemical window of 2.75-4.50 V vs Li + /Li.

  17. Efficient Imaging and Real-Time Display of Scanning Ion Conductance Microscopy Based on Block Compressive Sensing

    Science.gov (United States)

    Li, Gongxin; Li, Peng; Wang, Yuechao; Wang, Wenxue; Xi, Ning; Liu, Lianqing

    2014-07-01

    Scanning Ion Conductance Microscopy (SICM) is one kind of Scanning Probe Microscopies (SPMs), and it is widely used in imaging soft samples for many distinctive advantages. However, the scanning speed of SICM is much slower than other SPMs. Compressive sensing (CS) could improve scanning speed tremendously by breaking through the Shannon sampling theorem, but it still requires too much time in image reconstruction. Block compressive sensing can be applied to SICM imaging to further reduce the reconstruction time of sparse signals, and it has another unique application that it can achieve the function of image real-time display in SICM imaging. In this article, a new method of dividing blocks and a new matrix arithmetic operation were proposed to build the block compressive sensing model, and several experiments were carried out to verify the superiority of block compressive sensing in reducing imaging time and real-time display in SICM imaging.

  18. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells

    Science.gov (United States)

    Saung, Wint Thu; Foskett, J. Kevin

    2017-01-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na+ currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na+ and K+ channels but contributed modestly to the kinetics of action potentials. PMID:28202574

  19. PEMODELAN KONDUKTIVITAS ION DALAM STRUKTUR Li2Sc3(PO43 (Modeling Ionic Conductivity in Li2Sc3(PO43 Structure

    Directory of Open Access Journals (Sweden)

    Akram La Kilo

    2011-11-01

    Full Text Available ABSTRAK Fasa Li2Sc3(PO43 merupakan material konduktor superionik yang dapat diaplikasikan sebagai baterai yang dapat diisi ulang (rechargeable. Ion Li+ dalam struktur Li2Sc3(PO4 dapat mengalami migrasi dari posisi terisi ke posisi kosong. Penelitian ini telah memodelkan migrasi ion Li+ dalam struktur Li2Sc3(PO4 dengan menggunakan metode bond valence sum (BVS. Metode ini dapat memprediksi bilangan oksidasi suatu atom berdasarkan jarak dengan atom-atom tetangga. Source code berbasis BVS yang digunakan adalah JUMPITER yang mensimulasi efek gaya listrik eksternal yang bertindak pada ion litium sehingga nilai BVS litium dapat dipetakan terhadap jarak. Hasil simulasi menunjukkan bahwa konduksi ion Li+ dapat terjadi pada arah [010], [101], dan [120]. Namun, lintasan konduksi ion Li+ lebih mudah terjadi pada arah [120] atau bidang ab dengan nilai maksimum BVS adalah 0,982. ABSTRACT g-phase of Li2Sc3(PO43 is a lithium super ionic conductor which can be applied as a rechargeable lithium battery. Lithium ions of g-Li2Sc3(PO43 can migrate from occupied site to vacant site. In this research, simulation of Li+ ions migration in the structure of g-Li2Sc3(PO43 carried out using bond valence sum (BVS to predict the oxidation state of Li+ion based on the distance of the ion to neighboring atoms. BVS-based code used JUMPITER to simulate the effect of external electrical force acting on the lithium ions to produce the lithium BVS value which can be mapped to the distance. The simulation results shows that Li+ ion conduction can be occurred on [010], [101], and [120] directions. However, the Li ion conduction pathway occur more easily in the direction of [120] or ab plane with the BVS maximum value is 0.982.

  20. Low-temperature liquid-phase epitaxy and optical waveguiding of rare-earth-ion-doped KY(WO4)2 thin layers

    NARCIS (Netherlands)

    Romanyuk, Y.E.; Utke, I.; Ehrentraut, D.; Apostolopoulos, V.; Pollnau, Markus; Garcia-Revilla, S.; Valiente, B.

    2004-01-01

    Crystalline $KY(WO_{4})_{2}$ thin layers doped with different rare-earth ions were grown on b-oriented, undoped $KY(WO_{4})_{2}$ substrates by liquid-phase epitaxy employing a low-temperature flux. The ternary chloride mixture of NaCl, KCl, and CsCl with a melting point of 480°C was used as a

  1. The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides

    International Nuclear Information System (INIS)

    Islam, Z.

    1999-01-01

    This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi 2 Ge 2 (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi 2 Ge 2 compounds. Generalized susceptibility, χ 0 (q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi 2 Ge 2 , and the commensurate structure in EuNi 2 Ge 2 . A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T N in EuNi 2 Ge 2 than that in GdNi 2 Ge 2 is also explained. Next, all the metamagnetic phases in TbNi 2 Ge 2 with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation

  2. The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Z.

    1999-05-10

    This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi{sub 2}Ge{sub 2} (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi{sub 2}Ge{sub 2} compounds. Generalized susceptibility, {chi}{sub 0}(q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi{sub 2}Ge{sub 2}, and the commensurate structure in EuNi{sub 2}Ge{sub 2}. A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T{sub N} in EuNi{sub 2}Ge{sub 2} than that in GdNi{sub 2}Ge{sub 2} is also explained. Next, all the metamagnetic phases in TbNi{sub 2}Ge{sub 2} with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation.

  3. Study on lithium/air secondary batteries - Stability of NASICON-type lithium ion conducting glass-ceramics with water

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Satoshi; Imanishi, Nobuyuki; Zhang, Tao; Xie, Jian; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan)

    2009-04-01

    The water stability of the fast lithium ion conducting glass-ceramic electrolyte, Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATP), has been examined in distilled water, and aqueous solutions of LiNO{sub 3}, LiCl, LiOH, and HCl. This glass-ceramics are stable in aqueous LiNO{sub 3} and aqueous LiCl, and unstable in aqueous 0.1 M HCl and 1 M LiOH. In distilled water, the electrical conductivity slightly increases as a function of immersion time in water. The Li-Al/Li{sub 3-x}PO{sub 4-y}N{sub y}/LATP/aqueous 1 M LiCl/Pt cell, where lithium phosphors oxynitrides Li{sub 3-x}PO{sub 4-y}N{sub y} (LiPON) are used to protect the direct reaction of Li and LATP, shows a stable open circuit voltage (OCV) of 3.64 V at 25 C, and no cell resistance change for 1 week. Lithium phosphors oxynitride is effectively used as a protective layer to suppress the reaction between the LATP and Li metal. The water-stable Li/LiPON/LATP system can be used in Li/air secondary batteries with the air electrode containing water. (author)

  4. An Anion Conductance, the Essential Component of the Hydroxyl-Radical-Induced Ion Current in Plant Roots

    Directory of Open Access Journals (Sweden)

    Igor Pottosin

    2018-03-01

    Full Text Available Oxidative stress signaling is essential for plant adaptation to hostile environments. Previous studies revealed the essentiality of hydroxyl radicals (HO•-induced activation of massive K+ efflux and a smaller Ca2+ influx as an important component of plant adaptation to a broad range of abiotic stresses. Such activation would modify membrane potential making it more negative. Contrary to these expectations, here, we provide experimental evidence that HO• induces a strong depolarization, from −130 to −70 mV, which could only be explained by a substantial HO•-induced efflux of intracellular anions. Application of Gd3+ and NPPB, non-specific blockers of cation and anion conductance, respectively, reduced HO•-induced ion fluxes instantaneously, implying a direct block of the dual conductance. The selectivity of an early instantaneous HO•-induced whole cell current fluctuated from more anionic to more cationic and vice versa, developing a higher cation selectivity at later times. The parallel electroneutral efflux of K+ and anions should underlie a substantial leak of the cellular electrolyte, which may affect the cell’s turgor and metabolic status. The physiological implications of these findings are discussed in the context of cell fate determination, and ROS and cytosolic K+ signaling.

  5. The effect of metal ion exchange and alkali metal doping on the electrical conductivity of the Faujasite-type zeolite 13X

    International Nuclear Information System (INIS)

    Swart, S.

    1983-12-01

    Zeolite 13X was synthesized in the sodium form. Some transition metal cations were introduced into the zeolite framework by ion exchange reactions. These different cationic zeolite forms were doped or impregnated with sodium metal, utilizing the adsorptive properties of the zeolite. An A.C. technique was used to determine the electrical conductivity of the dehydrated ion exchanged zeolites and the sodium impregnated zeolite samples as a function of temperature. The conductivity value obtained was used to determine some thermodynamic parameters relating to the conduction process. For the dehydrated ion exchanged zeolites the electrical conductivity showed a general decrease with a decreasing ion exchange capacity. The sodium impregnated zeolites showed an increase in conductivity with respect to the dehydrated unimpregnated samples. This was attributed to the presence of Na 6 5 + centres in the impregnated zeolites. The reduction of some of the metal cations by the sodium on impregnation did not appear to have any significant effect on the overall ionic conductivity of the samples. The conductivity as a function of temperature and pressure for the dehydrated sodium form of zeolite 13X and its impregnated counterpart was determined. The conductivity was found to increase with increasing pressure and temperature

  6. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    Science.gov (United States)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  7. Influence of SiO{sub 2} on conduction and relaxation mechanism of Li{sup +} ions in binary network former lead silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ahlawat, Navneet [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India); Ahlawat, Neetu, E-mail: neetugju@yahoo.co.in [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India); Aghamkar, Praveen [Department of Physics, Chaudhary Devi Lal University, Sirsa 125055, Haryana (India); Agarwal, Ashish; Sanghi, Sujata; Sindhu, Monica [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana (India)

    2013-04-01

    Ion conducting glasses having composition 30Li{sub 2}O·(70−x)PbO·xSiO{sub 2} were prepared by the normal melt quench technique. The compositional variations in density, molar volume and glass transition temperature confirm the dual role of PbO acting as a network modifying oxide as well as a network forming oxide. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in the frequency range from 1 Hz to 7 MHz and in a temperature range below glass transition temperature. The ac and dc conductivities, activation energy of the dc conductivity and relaxation frequency were extracted from the impedance spectra. Similar values of activation energy for dc conduction and for conductivity relaxation time indicate that the ions have to overcome the same energy barrier while conducting and relaxing. The increase in dc conductivity for silica rich compositions is attributed to the presence of mixed former effect in the studied glasses. The study of conductivity spectra reveals a transition from non-random to random hopping motion of lithium ions on successive replacement of PbO by SiO{sub 2} in glass matrix. The conduction and relaxation mechanism in the studied glasses are well explained with the concept of mismatch and relaxation (CMR) model.

  8. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    Science.gov (United States)

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  9. Uses of extraction and ion exchange chromatography in the thorium and rare earths separation from industrial residue generated in thorium purification unity at IPEN. Application of rare earths as catalysts for generation of hydrogen

    International Nuclear Information System (INIS)

    Zini, Josiane

    2010-01-01

    In the 70's a pilot plant for studies of different concentrates processing obtained from the chemical processing of monazite was operated at IPEN / CNEN-SP, with a view to obtaining thorium of nuclear purity. This unity was operated on an industrial scale since 1985, generating around 25 metric tons of residue and was closed in 2002. This waste containing thorium and rare earths was named Retoter (Rejeito de Torio e Terras Raras, in portuguese) and stored in the IPEN Safeguards shed. This paper studies the treatment of the waste, aimed at environmental, radiological and technology. Were studied two cases for the chromatographic separation of thorium from rare earths. One of them was the chromatographic extraction, where the extracting agent tributyl phosphate was supported on polymeric resins Amberlite XAD16. The other method is studied for comparison purposes, since the material used in chromatographic extraction is unprecedented with regard to the separation of thorium, was the ion-exchange chromatography using DOWEX 1-X8 strong cationic resin. Was studied also the chromatographic process of extraction with the extracting agent DEHPA supported on Amberlite XAD16 for the fractionation in groups of rare earths elements. Thorium was separated with high purity for strategic purposes and rare earths recovered free from thorium, were tested as a catalyst for ethanol reforming to hydrogen obtaining which is used in fuel cells for power generation. (author)

  10. Inwardly Rectifying Potassium (Kir) Channels Represent a Critical Ion Conductance Pathway in the Nervous Systems of Insects.

    Science.gov (United States)

    Chen, Rui; Swale, Daniel R

    2018-01-25

    A complete understanding of the physiological pathways critical for proper function of the insect nervous system is still lacking. The recent development of potent and selective small-molecule modulators of insect inward rectifier potassium (Kir) channels has enabled the interrogation of the physiological role and toxicological potential of Kir channels within various insect tissue systems. Therefore, we aimed to highlight the physiological and functional role of neural Kir channels the central nervous system, muscular system, and neuromuscular system through pharmacological and genetic manipulations. Our data provide significant evidence that Drosophila neural systems rely on the inward conductance of K + ions for proper function since pharmacological inhibition and genetic ablation of neural Kir channels yielded dramatic alterations of the CNS spike discharge frequency and broadening and reduced amplitude of the evoked EPSP at the neuromuscular junction. Based on these data, we conclude that neural Kir channels in insects (1) are critical for proper function of the insect nervous system, (2) represents an unexplored physiological pathway that is likely to shape the understanding of neuronal signaling, maintenance of membrane potentials, and maintenance of the ionic balance of insects, and (3) are capable of inducing acute toxicity to insects through neurological poisoning.

  11. Correlation between the structure modification and conductivity of 3 MeV Si ion-irradiated polyimide

    International Nuclear Information System (INIS)

    Sun Youmei; Zhu Zhiyong; Li Changlin

    2002-01-01

    The surface modification of the polyimide (PI/Kapton) films was carried out by 3 MeV Si + implantation to fluences ranging from 1x10 12 to 1.25x10 15 ions/cm 2 . Fourier transform infrared (FTIR), Raman and ultraviolet/visible (UV/Vis) spectroscopes were employed to investigate the chemical degradation of function groups in the irradiated layer. FTIR results show that the absorbance of typical function group decreases exponentially as a function of fluence. The damage cross-section of typical bonds of PI was evaluated from the FTIR spectra. Raman analysis shows the absorbed dose for destruction of all function groups is above 218 MGy. The red shifting of the absorption edge from UV to visible reveals the band gap closing which results from increase of the cluster size. The production efficiency of the chromophores was discussed according to UV/Vis analysis. Irradiation dramatically enhances the electrical conductivity and the sheet resistivity in our experiment descends nearly 10 orders of magnitude compared with its intrinsic value

  12. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples.

    Science.gov (United States)

    Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek

    2013-11-15

    A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry). Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Reprocessing and Recycling of Highly Cross-Linked Ion-Conducting Networks through Transalkylation Exchanges of C-N Bonds.

    Science.gov (United States)

    Obadia, Mona M; Mudraboyina, Bhanu P; Serghei, Anatoli; Montarnal, Damien; Drockenmuller, Eric

    2015-05-13

    Exploiting exchangeable covalent bonds as dynamic cross-links recently afforded a new class of polymer materials coined as vitrimers. These permanent networks are insoluble and infusible, but the network topology can be reshuffled at high temperatures, thus enabling glasslike plastic deformation and reprocessing without depolymerization. We disclose herein the development of functional and high-value ion-conducting vitrimers that take inspiration from poly(ionic liquid)s. Tunable networks with high ionic content are obtained by the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer and simultaneous alkylation of the resulting poly(1,2,3-triazole)s with a series of difunctional cross-linking agents. Temperature-induced transalkylation exchanges of C-N bonds between 1,2,3-triazolium cross-links and halide-functionalized dangling chains enable recycling and reprocessing of these highly cross-linked permanent networks. They can also be recycled by depolymerization with specific solvents able to displace the transalkylation equilibrium, and they display a great potential for applications that require solid electrolytes with excellent mechanical performances and facile processing such as supercapacitors, batteries, fuel cells, and separation membranes.

  14. A conductance study of guanidinium chloride, thiocyanate, sulfate, and carbonate in dilute aqueous solutions: ion-association and carbonate hydrolysis effects.

    Science.gov (United States)

    Hunger, Johannes; Neueder, Roland; Buchner, Richard; Apelblat, Alexander

    2013-01-17

    We study the conductance of dilute aqueous solutions for a series of guandinium salts at 298.15 K. The experimental molar conductivities were analyzed within the framework of the Quint-Viallard theory in combination with Debye-Hückel activity coefficients. From this analysis, we find no evidence for significant ion association in aqueous solutions of guanidinium chloride (GdmCl) and guanidinium thiocyanate (GdmSCN), and the molar conductivity of these electrolytes can be modeled assuming a complete dissociation. The limiting ionic conductivity of the guanidinium ion (Gdm(+)) is accurately determined to λ(Gdm(+)) = 51.45 ± 0.10 S cm(2) mol(-1). For the bivalent salts guanidinium sulfate (Gdm(2)SO(4)) and guanidinium carbonate (Gdm(2)CO(3)), the molar conductivities show small deviations from ideal (fully dissociated electrolyte) behavior, which are related to weak ion association in solution. Furthermore, for solutions of Gdm(2)CO(3), the hydrolysis of the carbonate anion leads to distinctively increased molar conductivities at high dilutions. The observed ion association is rather weak for all studied electrolytes and cannot explain the different protein denaturing activities of the studied guanidinium salts, as has been proposed previously.

  15. Hybrid silica nanoparticles for sequestration and luminescence detection of trivalent rare-earth ions (Dy3+ and Nd3+) in solution

    Science.gov (United States)

    Topel, Seda Demirel; Legaria, Elizabeth Polido; Tiseanu, Carmen; Rocha, João; Nedelec, Jean-Marie; Kessler, Vadim G.; Seisenbaeva, Gulaim A.

    2014-12-01

    New hybrid material-based adsorbents acting also as luminescent probes upon uptake of trivalent rare-earth (RE) ions Nd3+ and Dy3+ have been developed. SiO2 NPs functionalized by three different organic ligands, N-aminopropylen-amido-iminodiacetic acid (L1), pyridine-α,β-dicarboxylic acid bis(propylenamide) (L2), and N-propylen-iminodiacetic acid (L3), have been produced and fully characterized by 13C, 1H, and 29Si solid-state NMR, FTIR, TGA, XRD, TEM, nitrogen gas adsorption, and also by NTA and DLS in solution. The synthesized hybrid materials are well dispersible and stable in aqueous solutions according to NTA and consist of spheres with diameters less than 100 nm. Their affinities to the lanthanide ions Dy3+ and Nd3+ have been investigated in aqueous solution and characterized by SEM-EDS and complexometric titration, demonstrating that they can be successfully used as adsorbents for sequestration of trivalent RE ions. The adsorbed RE ions can efficiently be desorbed from saturated nanoadsorbents by addition of hydrochloric acid. The produced nanomaterials may also be used as luminescent probes for Dy3+ and Nd3+ ions in solution.

  16. Preparation and luminescent properties of the novel polymer-rare earth complexes composed of Poly(ethylene-co-acrylic acid) and Europium ions

    Science.gov (United States)

    Wu, Yuewen; Hao, Haixia; Wu, Qingyao; Gao, Zihan; Xie, Hongde

    2018-06-01

    A series of novel polymer-rare earth complexes with Eu3+ ions have been synthesized and investigated successfully, including the binary complexes containing the single ligand poly(ethylene-co-acrylic acid) (EAA) and the ternary complexes using 1,10-phenanthroline (phen), dibenzoylmethane (DBM) or thenoyltrifluoroacetone (TTA) as the second ligand. Their structures have been characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and X-ray diffraction (XRD), which confirm that both EAA and small molecules participate in the coordination reaction with rare earth ions, and they can disperse homogeneously in the polymer matrixes. Both ultraviolet-visible (UV-vis) absorption and photoluminescence tests for the complexes have been recorded. The relationship between fluorescence intensity of polymer-rare earth complexes and the quantity of ligand EAA has been studied and discussed. The films casted from the complexes solution can emit strong characteristic red light under UV light excitation. All these results suggest that the complexes possess potential application as luminescent materials.

  17. Li-ion site disorder driven superionic conductivity in solid electrolytes: a first-principles investigation of β-Li3PS4

    International Nuclear Information System (INIS)

    Phani Dathar, Gopi Krishna; Balachandran, Janakiraman; Kent, Paul R. C.; Rondinone, Adam J.; Ganesh, P.

    2016-01-01

    The attractive safety and long-term stability of all solid-state batteries has added a new impetus to the discovery and development of solid electrolytes for lithium batteries. Recently several superionic lithium conducting solid electrolytes have been discovered. All the superionic lithium containing compounds (β-Li 3 PS 4 and Li 10 GeP 2 S 12 and oxides, predominantly in the garnet phase) have partially occupied sites. This naturally begs the question of understanding the role of partial site occupancies (or site disorder) in optimizing ionic conductivity in these family of solids. In this paper, we find that for a given topology of the host lattice, maximizing the number of sites with similar Li-ion adsorption energies, which gives partial site occupancy, is a natural way to increase the configurational entropy of the system and optimize the conductivity. For a given topology and density of Li-ion adsorption sites, the ionic conductivity is maximal when the number of mobile Li-ions are equal to the number of mobile vacancies, also the very condition for achieving maximal configurational entropy. We demonstrate applicability of this principle by elucidating the role of Li-ion site disorder and the local chemical environment in the high ionic conductivity of β-Li 3 PS 4 . In addition, for β-Li 3 PS 4 we find that a significant density of vacancies in the Li-ion sub-lattice (~25%) leads to sub-lattice melting at (~600 K) leading to a molten form for the Li-ions in an otherwise solid anionic host. This gives a lithium site occupancy that is similar to what is measured experimentally. We further show that quenching this disorder can improve conductivity at lower temperatures. As a consequence, we discover that (a) one can optimize ionic conductivity in a given topology by choosing a chemistry/composition that maximizes the number of mobile-carriers i.e. maximizing both mobile Li-ions and vacancies, and (b) when the concentration of vacancies becomes significant in

  18. Solar wind contribution to the average population of energetic He+ and He++ ions in the Earth's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. Kremser

    1994-01-01

    Full Text Available Measurements with the ion charge-energy-mass spectrometer CHEM on the AMPTE/CCE spacecraft were used to investigate the origin of energetic He+ and He++ ions observed in the equatorial plane at 3 ≤ L ≤ 9. Special emphasis was laid on the dependence of long-term average distributions on magnetic local time (MLT and the geomagnetic activity index Kp. The observations are described in terms of the phase space densities f1 (for He+ and f2 (for He++. They confirm preliminary results from a previous study: f1 is independent of MLT, whereas f2 is much larger on the nightside than on the dayside. They show, furthermore, that f1 increases slightly with Kp on intermediate drift shells, but decreases on high drift shells (L ≥ 7. f2 increases with Kp on all drift shells outside the premidnight sector. Within this sector a decrease is observed on high drift shells. A simple ion tracing code was developed to determine how and from where the ions move into the region of observations. It provides ion trajectories as a function of the ion charge, the magnetic moment and Kp. The ion tracing enables a distinction between regions of closed drift orbits (ring current and open convection trajectories (plasma sheet. It also indicates how the outer part of the observation region is connected to different parts of the more distant plasma sheet. Observations and tracing show that He++ ions are effectively transported from the plasma sheet on convection trajectories. Their distribution in the observation region corresponds to the distribution of solar wind ions in the plasma sheet. Thus, energetic He++ ions most likely originate in the solar wind. On the other hand, the plasma sheet is not an important source of energetic He+ ions. Convection trajectories more likely constitute a sink for He+ ions, which may diffuse onto them from closed drift orbits and then get lost through the magnetopause. An ionospheric origin of energetic He+ ions is unlikely as well, since

  19. Multilayer membranes of p-sulfonato-calix[8]arene and polyvinylamine and their use for selective enrichment of rare earth metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Toutianoush, Ali [Institut fuer Physikalische Chemie der Universitaet zu Koeln, Luxemburger Str. 116, D-50939 Cologne (Germany); El-Hashani, Ashraf [Institut fuer Physikalische Chemie der Universitaet zu Koeln, Luxemburger Str. 116, D-50939 Cologne (Germany); Schnepf, Judit [Institut fuer Physikalische Chemie der Universitaet zu Koeln, Luxemburger Str. 116, D-50939 Cologne (Germany); Tieke, Bernd [Institut fuer Physikalische Chemie der Universitaet zu Koeln, Luxemburger Str. 116, D-50939 Cologne (Germany)]. E-mail: Tieke@Uni-Koeln.de

    2005-06-30

    Using alternating electrostatic layer-by-layer assembly of p-octasulfonato-calix[8]arene and polyvinylamine, multilayer assemblies were built up on porous polymer supports. The resulting composite membranes with ultrathin separation layer were studied on their permeability for various metal chloride salts in aqueous solution. The membranes were permeable for sodium chloride, but much less permeable for divalent metal chlorides such as magnesium and zinc chloride, the theoretical separation factors {alpha} (NaCl/MgCl{sub 2}) and {alpha} (NaCl/ZnCl{sub 2}) being 43 and 20. Rare earth metal chlorides LnCl{sub 3} with Ln being La, Ce, Pr and Sm and the related YCl{sub 3} were strongly rejected from the membrane, the theoretical separation factors {alpha} (NaCl/LaCl{sub 3}) and {alpha} (NaCl/YCl{sub 3}) being 138 and 160, for example. Possible origins for the selective ion transport are discussed in terms of Donnan rejection of the highly charged ions and complex formation of the rare earth metal ions with the p-sulfonato-calixarene units in the membrane.

  20. Multilayer membranes of p-sulfonato-calix[8]arene and polyvinylamine and their use for selective enrichment of rare earth metal ions

    International Nuclear Information System (INIS)

    Toutianoush, Ali; El-Hashani, Ashraf; Schnepf, Judit; Tieke, Bernd

    2005-01-01

    Using alternating electrostatic layer-by-layer assembly of p-octasulfonato-calix[8]arene and polyvinylamine, multilayer assemblies were built up on porous polymer supports. The resulting composite membranes with ultrathin separation layer were studied on their permeability for various metal chloride salts in aqueous solution. The membranes were permeable for sodium chloride, but much less permeable for divalent metal chlorides such as magnesium and zinc chloride, the theoretical separation factors α (NaCl/MgCl 2 ) and α (NaCl/ZnCl 2 ) being 43 and 20. Rare earth metal chlorides LnCl 3 with Ln being La, Ce, Pr and Sm and the related YCl 3 were strongly rejected from the membrane, the theoretical separation factors α (NaCl/LaCl 3 ) and α (NaCl/YCl 3 ) being 138 and 160, for example. Possible origins for the selective ion transport are discussed in terms of Donnan rejection of the highly charged ions and complex formation of the rare earth metal ions with the p-sulfonato-calixarene units in the membrane

  1. 3D ion-scale dynamics of BBFs and their associated emissions in Earth's magnetotail using 3D hybrid simulations and MMS multi-spacecraft observations

    Science.gov (United States)

    Breuillard, H.; Aunai, N.; Le Contel, O.; Catapano, F.; Alexandrova, A.; Retino, A.; Cozzani, G.; Gershman, D. J.; Giles, B. L.; Khotyaintsev, Y. V.; Lindqvist, P. A.; Ergun, R.; Strangeway, R. J.; Russell, C. T.; Magnes, W.; Plaschke, F.; Nakamura, R.; Fuselier, S. A.; Turner, D. L.; Schwartz, S. J.; Torbert, R. B.; Burch, J.

    2017-12-01

    Transient and localized jets of hot plasma, also known as Bursty Bulk Flows (BBFs), play a crucial role in Earth's magnetotail dynamics because the energy input from the solar wind is partly dissipated in their vicinity, notably in their embedded dipolarization front (DF). This dissipation is in the form of strong low-frequency waves that can heat and accelerate energetic particles up to the high-latitude plasma sheet. The ion-scale dynamics of BBFs have been revealed by the Cluster and THEMIS multi-spacecraft missions. However, the dynamics of BBF propagation in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances, as well as simulation limitations. The NASA/MMS fleet, which features unprecedented high time resolution instruments and four spacecraft separated by kinetic-scale distances, has also shown recently that the DF normal dynamics and its associated emissions are below the ion gyroradius scale in this region. Large variations in the dawn-dusk direction were also observed. However, most of large-scale simulations are using the MHD approach and are assumed 2D in the XZ plane. Thus, in this study we take advantage of both multi-spacecraft observations by MMS and large-scale 3D hybrid simulations to investigate the 3D dynamics of BBFs and their associated emissions at ion-scale in Earth's magnetotail, and their impact on particle heating and acceleration.

  2. Contribution to the study of rare earth separation by ion exchange, using ammonium lactate; Contribution a l'etude de la separation des terres rares par echange d'ions a l'aide de lactate d'ammonium

    Energy Technology Data Exchange (ETDEWEB)

    Gratot, I [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Using the technique of chromatography on a column of Dowex 50 resin, heated to 87 deg. C, we have studied the separation of rare earths (from holmium to praseodymium) which may be produced with the cyclotron by heavy ions, {alpha} or protons. From an ammonium lactate solution M at pH 5, separations are carried out by varying the dilution as a function of the quantity of the target rare earth and of its position during elution. When weighable quantities of the rare earth (more than 5 mg) appear towards the end of the elution, the separation is little affected this case approaches that of a tracer mixture of rare earths; if on the other hand weighable quantities of the rare earth are washed through at the beginning of the chromatogram, the dilution must be adjusted in order to obtain a good separation. (author) [French] Par chromatographie sur colonne de resine Dowex 50, chauffee a 87 deg. C, nous avons examine la separation des terres rares (de l'holmium au praseodyme) susceptibles d'etre produites au cyclotron par ions lourds, {alpha} ou protons. A partir d'une solution de lactate d'ammonium M a pH 5, nous effectuons les separations en agissant sur la dilution en fonction de la quantite de terre rare cible et de sa position au cours de l'elution. Lorsque la terre rare en quantite ponderale (superieure a 5 mg) passe en fin d'elution, la separation est peu affectee; nous sommes ramenes au cas d'un melange de terres rares traceur; par contre, si la terre rare en quantite ponderale s'elue en tete du chromatogramme, nous devons agir sur la dilution pour obtenir une bonne separation. (auteur)

  3. Separation of rare-earth (RE) ions by flotation with the aid of citric acid and hexadecylamine

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Sazonova, V.F.; Pavlenko, S.N.; Karpenko, L.I.

    1989-01-01

    The aim of the present work was to develop further the flotation method for separating RE ions, namely, to examine the possibility of separating Re ions by converting them into citrate complexes and subsequently binding them with the aid of hexadecylamine in difficultly soluble and easily floatable compounds, sublates. Thus, these investigations showed that it is possible in principle to separate RE ions by conversion into citrate complexes followed by flotation separation of the latter from solutions with the aid of hexadecylamine

  4. Geomanetically Induced Currents (GIC) calculation, impact assessment on transmission system and validation using 3-D earth conductivity tensors and GIC measurements.

    Science.gov (United States)

    Sharma, R.; McCalley, J. D.

    2016-12-01

    Geomagnetic disturbance (GMD) causes the flow of geomagnetically induced currents (GIC) in the power transmission system that may cause large scale power outages and power system equipment damage. In order to plan for defense against GMD, it is necessary to accurately estimate the flow of GICs in the power transmission system. The current calculation as per NERC standards uses the 1-D earth conductivity models that don't reflect the coupling between the geoelectric and geomagnetic field components in the same direction. For accurate estimation of GICs, it is important to have spatially granular 3-D earth conductivity tensors, accurate DC network model of the transmission system and precisely estimated or measured input in the form of geomagnetic or geoelectric field data. Using these models and data the pre event, post event and online planning and assessment can be performed. The pre, post and online planning can be done by calculating GIC, analyzing voltage stability margin, identifying protection system vulnerabilities and estimating heating in transmission equipment. In order to perform the above mentioned tasks, an established GIC calculation and analysis procedure is needed that uses improved geophysical and DC network models obtained by model parameter tuning. The issue is addressed by performing the following tasks; 1) Geomagnetic field data and improved 3-D earth conductivity tensors are used to plot the geoelectric field map of a given area. The obtained geoelectric field map then serves as an input to the PSS/E platform, where through DC circuit analysis the GIC flows are calculated. 2) The computed GIC is evaluated against GIC measurements in order to fine tune the geophysical and DC network model parameters for any mismatch in the calculated and measured GIC. 3) The GIC calculation procedure is then adapted for a one in 100 year storm, in order to assess the impact of the worst case GMD on the power system. 4) Using the transformer models, the voltage

  5. Preparation and characterization of structures of oxygen-ion-conductive thin-film membranes; Herstellung und Charakterisierung von sauerstoffionenleitenden Duennschichtmembranstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Betz, Michael

    2010-07-01

    In power plants using Oxyfuel technology, fossil fuels are combusted with pure oxygen. This leads to carbon dioxide of high purity, which is necessary for its transport and storage. Oxygen separation by means of perovskitic membranes have great potential to decrease the efficiency losses caused by the allocation of the enormous amounts of oxygen. The aim of this work is the preparation and characterisation of thin film membranes on porous substrates and the analysis of their oxygen permeation properties. Therefore the material system A{sub 0,68}Sr{sub 0,3}Fe{sub 0,8}Co{sub 0,2}O{sub 3-{delta}} (A68SFC) was analysed, where the A-site was substituted with Lanthanides (La, Pr, Nd, Eu, Sm, Gd, Dy, Er) or alkaline earth metals (Ba, Ca). After an extensive characterisation, the selection was reduced to the substitutions with La, Pr and Nd. Other compounds could not meet the demands with regard to phase purity, chemical stability or extension behaviour. All analyses were conducted in comparison to Ba{sub 0,5}Sr{sub 0,5}Co{sub 0,8}Fe{sub 0,2}O{sub 3-{delta}} (BSCF) which is known to exhibit higher permeation rates, but is more sensitive to stability issues. The dependency of permeation rates on membrane thickness or oxygen partial pressures on both membrane surfaces is discussed by means of permeation measurements conducted on bulk BSCF membranes. These cannot be described completely by the Wagner equation. This is due to changes of the driving force originating from influences of the surface reaction kinetics and concentration polarisation on the membrane surface, which are not considered. Porous substrates for asymmetric membranes were manufactured by tape casting and warm pressing. The application of the functional layer was performed via screen printing. Permeation measurements show that the asymmetric structures exhibit higher permeation rates in comparison to bulk membranes with L=1 mm. The moderate increase can be attributed to the low gas permeability of the

  6. Characterization of ion heat conduction in JET and ASDEX Upgrade plasmas with and without internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, R C [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM/FZJ, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Baranov, Y [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Garbet, X [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Hawkes, N [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Peeters, A G [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Challis, C [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Baar, M de [FOM Instituut voor Plasmafyisica Rijnhuizen, Association EURATO-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Giroud, C [FOM Instituut voor Plasmafyisica Rijnhuizen, Association EURATO-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Joffrin, E [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Mantsinen, M [Helsinki University of Technology, Association-EURATOM Tekes, FIN-02015 HUT (Finland); Mazon, D [Association EURATOM-CEA sur la fusion, CEA Cadarache, F-13108 St Paul lez Durance (France); Meister, H [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Suttrop, W [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Zastrow, K-D [UKAEA/EURATOM Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)

    2003-09-01

    In ASDEX Upgrade and JET, the ion temperature profiles can be described by R/L{sub Ti} which exhibits only little variations, both locally, when comparing different discharges, and radially over a wide range of the poloidal cross-section. Considering a change of the local ion heat flux of more than a factor of two, this behaviour indicates some degree of profile stiffness. In JET, covering a large ion temperature range from 1 to 25 keV, the normalized ion temperature gradient, R/L{sub Ti}, shows a dependence on the electron to ion temperature ratio or toroidal rotational shear. In particular, in hot ion plasmas, produced predominantly by neutral beam heating at low densities, in which large T{sub i}/T{sub e} is coupled to strong toroidal rotation, the effect of the two quantities cannot be distinguished. Both in ASDEX Upgrade and JET, plasmas with internal transport barriers (ITBs), including the PEP mode in JET, are characterized by a significant increase of R/L{sub Ti} above the value of L- and H-mode plasmas. In agreement with previous ASDEX Upgrade results, no increase of the ion heat transport in reversed magnetic shear ITB plasmas is found in JET when raising the electron heating. Evidence is presented that magnetic shear directly influences R/L{sub Ti}, namely decreasing the ion heat transport when going from weakly positive to negative magnetic shear.

  7. Magnetic properties of Kramers rare earth ions in aluminium and gallium garnets; Proprietes magnetiques des ions de kramers des terres rares dans les grenats de terres rares et d'aluminium et les grenats de terres rares et de gallium

    Energy Technology Data Exchange (ETDEWEB)

    Capel, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The magnetic properties of Kramers rare earth ions in aluminium and gallium garnets (MAlG and MGaG) are discussed by means of a molecular field treatment. The symmetry properties of the space group permit to establish a parametrization for the magnetic dipolar and exchange couplings. The magnetic properties of the system can be expressed in terms of these parameters and the g factors of the rare earth ions. We have calculated the transition temperatures, the sub-lattice magnetizations, the susceptibility in the paramagnetic region and the antiferromagnetic susceptibility for a special type of magnetic ordering. The influence of the excited Kramers doublets is described by means of a generalization of the usual g tensor. (authors) [French] Les proprietes magnetiques des ions de Kramers des terres rares dans les grenats de terre rare et d'aluminium et les grenats de terre rare et de gallium sont discutees a l'aide d'un traitement du champ moleculaire. Les proprietes de symmetrie du groupe d'espace permettent d'exprimer les couplages dipolaires et les interactions d'echange en fonction de quelques parametres. Les proprietes magnetiques peuvent etre exprimees en fonction de ces parametres et les facteurs g des ions de terre rare. Nous avons calcule les temperatures de transition, les aimantations des sous-reseaux pour 0ions non de Kramers. (auteurs)

  8. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides.

    Science.gov (United States)

    Nakayama, Masanobu; Kotobuki, Masashi; Munakata, Hirokazu; Nogami, Masayuki; Kanamura, Kiyoshi

    2012-07-28

    The research and development of rechargeable all-ceramic lithium batteries are vital to realize their considerable advantages over existing commercial lithium ion batteries in terms of size, energy density, and safety. A key part of such effort is the development of solid-state electrolyte materials with high Li(+) conductivity and good electrochemical stability; lithium-containing oxides with a garnet-type structure are known to satisfy the requirements to achieve both features. Using first-principles density functional theory (DFT), we investigated the electrochemical stability of garnet-type Li(x)La(3)M(2)O(12) (M = Ti, Zr, Nb, Ta, Sb, Bi; x = 5 or 7) materials against Li metal. We found that the electrochemical stability of such materials depends on their composition and structure. The electrochemical stability against Li metal was improved when a cation M was chosen with a low effective nuclear charge, that is, with a high screening constant for an unoccupied orbital. In fact, both our computational and experimental results show that Li(7)La(3)Zr(2)O(12) and Li(5)La(3)Ta(2)O(12) are inert to Li metal. In addition, the linkage of MO(6) octahedra in the crystal structure affects the electrochemical stability. For example, perovskite-type La(1/3)TaO(3) was found, both experimentally and computationally, to react with Li metal owing to the corner-sharing MO(6) octahedral network of La(1/3)TaO(3), even though it has the same constituent elements as garnet-type Li(5)La(3)Ta(2)O(12) (which is inert to Li metal and features isolated TaO(6) octahedra).

  9. A bibliography of research conducted by the Earth Resources Observation Systems (EROS) Office, U.S. Geological Survey : 1975-1982

    Science.gov (United States)

    Bowman, Helen L.

    1984-01-01

    The U.S. Geological Survey's Earth Resources Observation Systems (EROS) Program was established in 1967 by Secretarial order to plan and develop techniques for collecting and analyzing remotely sensed data, and to apply these techniques to the resource inventory and management responsibilities of the Department of the Interior. U.S. Geological Survey scientists, realizing the potential benefits of synoptic views of the Earth, were among the first members of America's scientific community to press for the launch of civilian Earth-surface observation satellites. Under the leadership of Director William T. Pecora, U.S. Geological Survey initiatives greatly influenced the National Aeronautics and Space Administration's (NASA) development of the Landsat program.As part of the Landsat program, an agreement between NASA and the Geological Survey was signed to provide Landsat archiving and data production capabilities at the EROS Data Center in Sioux Falls, South Dakota. This partnership with NASA began in 1972 and continued until Presidential Directive 54 designated the National Oceanic and Atmospheric Administration (NOAA) of the Department of Commerce as the manager of U.S. civil operational land remote-sensing activities. NOAA has managed the Landsat program since Fiscal Year 1983, and EROS continues to process, archive, reproduce, and distribute Landsat data under a Memorandum of Understanding between NOAA and the Geological Survey. Archives at the EROS Data Center include over 2 million worldwide Landsat scenes and over 5 million aerial photographs, primarily of U.S. sites. Since the launch of Landsat 1, global imaging of the Earth's surface has become an operational tool for resource exploration and land management. As technology evolved, so did the EROS Program mission. Research and applications efforts began at the EROS Headquarters Office in the Washington metropolitan area in 1966; at the EROS Data Center in 1971; and at the EROS Field Office in Anchorage

  10. Conductivity, XRD, and FTIR studies of New Mg2+-ion-conducting solid polymer electrolytes: [PEG: Mg(CH3COO)2

    International Nuclear Information System (INIS)

    Polu, Anji Reddy; Kumar, Ranveer; Causin, Valerio; Neppalli, Ramesh

    2011-01-01

    Solid polymer electrolytes based on poly (ethylene glycol) (PEG) doped with Mg(CH 3 COO) 2 have been prepared by using the solution-casting method. The X-ray diffraction patterns of PEG with Mg(CH 3 COO) 2 salt indicated a decrease in the degree of crystallinity with increasing concentration of the salt. The complexation of Mg(CH 3 COO) 2 salt with the polymer was confirmed by using Fourier transform infrared spectroscopy (FTIR) studies. The ionic conductivity was measured for the [PEG: Mg(CH 3 COO) 2 ] system in the frequency range 50 Hz - 1 MHz. The addition of Mg salt was found to improve the ionic conductivity significantly. The 15-wt-% Mg(CH 3 COO) 2 -doped system had a maximum conductivity of 1.07 x 10 -6 S/cm at 303 K. The conductance spectrum shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the ionic conductivity reveals the conduction mechanism to be an Arrhenius-type thermally activated process.

  11. Observation of coherent population transfer in a four-level tripod system with a rare-earth-metal-ion-doped crystal

    International Nuclear Information System (INIS)

    Goto, Hayato; Ichimura, Kouichi

    2007-01-01

    Coherent population transfer in a laser-driven four-level system in a tripod configuration is experimentally investigated with a rare-earth-metal-ion-doped crystal (Pr 3+ :Y 2 SiO 5 ). The population transfers observed here indicate that a main process inducing them is not optical pumping, which is an incoherent process inducing population transfer. Moreover, numerical simulation, which well reproduces the experimental results, also shows that the process inducing the observed population transfers is similar to stimulated Raman adiabatic passage (STIRAP) in the sense that this process possesses characteristic features of STIRAP

  12. Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln = La-Yb)

    International Nuclear Information System (INIS)

    Iwahara, H.; Esaka, T.; Sato, T.; Takahashi, T.

    1981-01-01

    The electrical conduction in various phases of the system Bi 2 O 3 -Ln 2 O 3 (Ln = La, Nd, Sm, Dy, Er, or Yb) was investigated by measuring ac conductivity and the emf of the oxygen gas concentration cell. High-oxide-ion conduction was observed in the rhombohedral and face-centered cubic (fcc) phase in these systems. The fcc phase could be stabilized over a wide range of temperature by adding a certain amount of Ln 2 O 3 . In these cases, the larger the atomic number of Ln, the lower the content of Ln 2 O 3 required to form the fcc solid solution, except in the case of Yb 2 O 3 . The oxide ion conductivity of this phase decreased with increasing content of Ln 2 O 3 . Maximum conductivity was obtained at the lower limit of the fcc solid solution formation range in each system, which was more than one order of magnitude higher than those of conventional stabilized zirconias. Lattice parameters of the fcc phase were calculated from the x-ray diffraction patterns. The relationship between the oxide ion conductivity and the lattice parameter was also discussed

  13. Active Radiation Detectors for Use in Space Beyond Low Earth Orbit: Spatial and Energy Resolution Requirements and Methods for Heavy Ion Charge Classification

    Science.gov (United States)

    McBeth, Rafe A.

    Space radiation exposure to astronauts will need to be carefully monitored on future missions beyond low earth orbit. NASA has proposed an updated radiation risk framework that takes into account a significant amount of radiobiological and heavy ion track structure information. These models require active radiation detection systems to measure the energy and ion charge Z. However, current radiation detection systems cannot meet these demands. The aim of this study was to investigate several topics that will help next generation detection systems meet the NASA objectives. Specifically, this work investigates the required spatial resolution to avoid coincident events in a detector, the effects of energy straggling and conversion of dose from silicon to water, and methods for ion identification (Z) using machine learning. The main results of this dissertation are as follows: 1. Spatial resolution on the order of 0.1 cm is required for active space radiation detectors to have high confidence in identifying individual particles, i.e., to eliminate coincident events. 2. Energy resolution of a detector system will be limited by energy straggling effects and the conversion of dose in silicon to dose in biological tissue (water). 3. Machine learning methods show strong promise for identification of ion charge (Z) with simple detector designs.

  14. Solar wind contribution to the average population of energetic He+ and He++ ions in the Earth's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. Kremser

    Full Text Available Measurements with the ion charge-energy-mass spectrometer CHEM on the AMPTE/CCE spacecraft were used to investigate the origin of energetic He+ and He++ ions observed in the equatorial plane at 3 ≤ L ≤ 9. Special emphasis was laid on the dependence of long-term average distributions on magnetic local time (MLT and the geomagnetic activity index Kp. The observations are described in terms of the phase space densities f1 (for He+ and f2 (for He++. They confirm preliminary results from a previous study: f1 is independent of MLT, whereas f2 is much larger on the nightside than on the dayside. They show, furthermore, that f1 increases slightly with Kp on intermediate drift shells, but decreases on high drift shells (L ≥ 7. f2 increases with Kp on all drift shells outside the premidnight sector. Within this sector a decrease is observed on high drift shells. A simple ion tracing code was developed to determine how and from where the ions move into the region of observations. It provides ion trajectories as a function of the ion charge, the magnetic moment and Kp. The ion tracing enables a distinction between regions of closed drift orbits (ring current and open convection trajectories (plasma sheet. It also indicates how the outer part of the observation region is connected to different parts of the more distant plasma sheet. Observations and tracing show that He++ ions are effectively transported from the plasma sheet on convection trajectories. Their distribution in the observation region corresponds to the distribution of solar wind ions in the plasma sheet. Thus, energetic He++ ions most likely originate in the solar wind. On the other hand, the plasma sheet is not an

  15. Solar wind contribution to the average population of energetic He(+) and He(++) ions in the Earth's magnetosphere

    Science.gov (United States)

    Kremser, G.; Rasinkangas, R.; Tanskanen, P.; Wilken, B.; Gloeckler, G.

    1994-01-01

    Measurements with the ion charge-energy-mass spectrometer CHEM on the AMPTE/CCE spacecraft were used to investigate the origin of energetic He(+) and He(++) ions observed in the equatorial plane at 3 less than or equal to L less than or equal to 9. Special emphasis was laid on the dependence of long-term average distributions on magnetic local time (MLT) and the geomagnetic activity index K(sup p). The observations are described in terms of the phase space densities f(sub 1) (for He(+)) and f(sub 2) (for He(++)). They confirm preliminary results from a previous study f(sub 1) is independent of MLT, whereas f(sub 2) is much larger on the nightside than on the dayside. They show, furthermore, that f(sub 1) increases slightly with K(sub p) on intermediate drift shells, but decreases on high drift shells (L greater than or equal to 7). f(sub 2) increases with K(sub p) on all drift shells outside the premidnight sector. Within this sector a decrease is observed on high drift shells. A simple ion tracing code was developed to determine how and from where the ions move into the region of observations. It provides ion trajectories as a function of the ion charge, the magnetic moment and K(sub p). The ion tracing enables a distinction between regions of closed drift orbits (ring current) and open convection trajectories (plasma sheet). It also indicates how the outer part of the observation region is connected to different parts of the more distant plasma sheet. Observations and tracing show that He(++) ions are effectively transported from the plasma sheet on convection trajectories. Their distribution in the observation region corresponds to the distribution of solar wind ions in the plasma sheet. Thus, energetic He(++) ions most likely originate in the solar wind. On the other hand, the plasma sheet is not an important source of energetic He(+) ions. Convection trajectories more likely constitute a sink for He(+) ions, which may diffuse onto them from closed drift orbits

  16. A laser microsurgical method of cell wall removal allows detection of large-conductance ion channels in the guard cell plasma membrane

    Science.gov (United States)

    Miedema, H.; Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts of Vicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. "Laser-assisted" patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.

  17. Electrical Conductivity.

    Science.gov (United States)

    Hershey, David R.; Sand, Susan

    1993-01-01

    Explains how electrical conductivity (EC) can be used to measure ion concentration in solutions. Describes instrumentation for the measurement, temperature dependence and EC, and the EC of common substances. (PR)

  18. Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum

    Science.gov (United States)

    Bonan, G. B.; Williams, M.; Fisher, R. A.; Oleson, K. W.

    2014-09-01

    The Ball-Berry stomatal conductance model is commonly used in earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must be empirically parameterized. We evaluated the Ball-Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil-plant-atmosphere continuum (SPA). The SPA model simulates stomatal conductance numerically by (1) optimizing photosynthetic carbon gain per unit water loss while (2) constraining stomatal opening to prevent leaf water potential from dropping below a critical minimum. We evaluated two optimization algorithms: intrinsic water-use efficiency (ΔAn /Δgs, the marginal carbon gain of stomatal opening) and water-use efficiency (ΔAn /ΔEl, the marginal carbon gain of transpiration water loss). We implemented the stomatal models in a multi-layer plant canopy model to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using leaf analyses, eddy covariance fluxes at six forest sites, and parameter sensitivity analyses. The primary differences among stomatal models relate to soil moisture stress and vapor pressure deficit responses. Without soil moisture stress, the performance of the SPA stomatal model was comparable to or slightly better than the CLM Ball-Berry model in flux tower simulations, but was significantly better than the CLM Ball-Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from water flow along the soil-to-leaf pathway rather than being imposed a prior