WorldWideScience

Sample records for earth extreme climatic

  1. Climate in Earth history

    Science.gov (United States)

    Berger, W. H.; Crowell, J. C.

    1982-01-01

    Complex atmosphere-ocean-land interactions govern the climate system and its variations. During the course of Earth history, nature has performed a large number of experiments involving climatic change; the geologic record contains much information regarding these experiments. This information should result in an increased understanding of the climate system, including climatic stability and factors that perturb climate. In addition, the paleoclimatic record has been demonstrated to be useful in interpreting the origin of important resources-petroleum, natural gas, coal, phosphate deposits, and many others.

  2. Future Precipitation Extremes in China Under Climate Change and Their Possible Mechanisms by Regional Climate Model and Earth System Model Simulations

    Science.gov (United States)

    Qin, P.; Xie, Z.

    2017-12-01

    Future precipitation extremes in China for the mid and end of 21st century were detected with six simulations using the regional climate model RegCM4 (RCM) and 17 global climate models (GCM) participated in the coupled Model Intercomparison Project Phase 5 (CMIP5). Prior to understanding the future changes in precipitation extremes, we overviewed the performance of precipitation extremes simulated by the CMIP5s and RCMs, and found both CMIP5s and RCMs could capture the temporal and spatial pattern of the historical precipitation extremes in China. In the mid-future period 2039-2058 (MF) and far-future 2079-2098 (FF), more wet precipitation extremes will occur in most area of China relative to the present period 1982-2001 (RF). We quantified the rates of the changes in precipitation extremes in China with the changes in air surface temperature (T2M) for the MF and FF period. Changes in precipitation extremes R95p were found around 5% K-1 for the MF period and 10% K-1 for the FF period, and changes in maximum 5 day precipitation (Rx5day) were detected around 4% K-1 for the MF period and 7% K-1 for the FF period, respectively. Finally, the possible physical mechanisms behind the changes in precipitation extremes in China were also discussed through the changes in specific humidity and vertical wind.

  3. Physical Processes Controlling Earth's Climate

    Science.gov (United States)

    Genio, Anthony Del

    2013-01-01

    As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.

  4. Mitigating Climate Change with Earth Orbital Sunshades

    Science.gov (United States)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  5. Attribution of climate extreme events

    Science.gov (United States)

    Trenberth, Kevin E.; Fasullo, John T.; Shepherd, Theodore G.

    2015-08-01

    There is a tremendous desire to attribute causes to weather and climate events that is often challenging from a physical standpoint. Headlines attributing an event solely to either human-induced climate change or natural variability can be misleading when both are invariably in play. The conventional attribution framework struggles with dynamically driven extremes because of the small signal-to-noise ratios and often uncertain nature of the forced changes. Here, we suggest that a different framing is desirable, which asks why such extremes unfold the way they do. Specifically, we suggest that it is more useful to regard the extreme circulation regime or weather event as being largely unaffected by climate change, and question whether known changes in the climate system's thermodynamic state affected the impact of the particular event. Some examples briefly illustrated include 'snowmaggedon' in February 2010, superstorm Sandy in October 2012 and supertyphoon Haiyan in November 2013, and, in more detail, the Boulder floods of September 2013, all of which were influenced by high sea surface temperatures that had a discernible human component.

  6. Event-adjusted evaluation of weather and climate extremes

    Czech Academy of Sciences Publication Activity Database

    Müller, Miloslav; Kašpar, Marek

    2014-01-01

    Roč. 14, č. 2 (2014), s. 473-483 ISSN 1561-8633 R&D Projects: GA ČR(CZ) GAP209/11/1990 Institutional support: RVO:68378289 Keywords : weather extreme * climate extreme * extremity evaluation * return period * generalized extreme value distribution * region of influence Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.735, year: 2014 http://www.nat-hazards- earth -syst-sci.net/14/473/2014/nhess-14-473-2014.pdf

  7. Climate change & extreme weather vulnerability assessment framework.

    Science.gov (United States)

    2012-12-01

    The Federal Highway Administrations (FHWAs) Climate Change and Extreme Weather Vulnerability : Assessment Framework is a guide for transportation agencies interested in assessing their vulnerability : to climate change and extreme weather event...

  8. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  9. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  10. The climate: Earth and men

    International Nuclear Information System (INIS)

    Poitou, Jean; Braconnot, Pascale; Masson-Delmotte, Valerie

    2015-01-01

    In this book, the authors first present the climate system as it operates under the influence of the atmosphere and oceans: Earth heated by the Sun, temperatures and movements within the atmosphere, surface and deep circulation in the oceans, exchanges between the atmosphere and the oceans. They present the various actors of climate and their interactions: water cycle, carbon cycle, greenhouse effect, clouds, aerosols, ocean, cryosphere-climate interaction, interaction between continental biosphere and climate, interactions between climate, continents and lithosphere, feedbacks and climate sensitivity. They comment the variety of climates and their variability when considered on a large scale (role of the Sun, ocean-atmosphere oscillations in El Nino and La Nina, North Atlantic oscillation, other examples of oscillations). The next part addresses climate modelling: model fundamentals (parameters and other components, coupling between components), model adjustment (simulation types, multi-model sets, and model assessment), models of intermediate complexity, regional models. The authors discuss the warming phenomenon: history of temperature measurements, clues of global warming, how to make climate change. They propose a presentation and discussion of anthropogenic and natural factors which disturb the climate: CO 2 and other greenhouse gases, changes in soil uses, other possible causes of climate disturbance (aerosol, aircraft wakes, volcanoes, and sun), combination of these disturbances, and identification of anthropogenic disturbances. They discuss past climate evolutions, and finally discuss how the climate could evolve in the future

  11. A journey through Earth climates

    International Nuclear Information System (INIS)

    Ramstein, Gilles; Brunet, Michel

    2015-01-01

    The author proposes a history of climates all along Earth's history, describes how cold and warm periods have been alternating during these billions of years. He also tries to highlight lessons learned from this long evolution of climate in order to better understand the current global warming. He discusses whether this disruption is unique in Earth's history, and how it threatens our environment and therefore our survival. The chapters describe how Earth could escape a global glaciation, the thermal regulation by greenhouse effect gases in a world without oxygen, the empowerment of oxygen and the first thermal accident, a new oxygenated and warm world, the second accident or how Earth entered and escaped from periods of total glaciation, the possible stabilisation, the succession of deregulations, crisis and extinctions, the slow way down to the cold, the various paleo-indicators during the Quaternary, the high frequency oscillations of climate during the last million of years, and the uncertain projections

  12. Colors of extreme exo-Earth environments.

    Science.gov (United States)

    Hegde, Siddharth; Kaltenegger, Lisa

    2013-01-01

    The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 μm) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This paper explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures.

  13. Influence of North Atlantic modes on European climate extremes

    Science.gov (United States)

    Proemmel, K.; Cubasch, U.

    2017-12-01

    It is well known that the North Atlantic strongly influences European climate. Only few studies exist that focus on its impact on climate extremes. We are interested in these extremes and the processes and mechanisms behind it. For the analysis of the North Atlantic Oscillation (NAO) we use simulations performed with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM). The NAO has a strong impact especially on European winter and the changes in minimum temperature are even larger than in maximum temperature. The impact of the Atlantic Multi-decadal Variability (AMV) on climate extremes is analyzed in ECHAM6 simulations forced with AMV warm and AMV cold sea surface temperature patterns. We analyze different extreme indices and try to understand the processes.

  14. Extreme Weather and Climate: Workshop Report

    Science.gov (United States)

    Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc; hide

    2016-01-01

    Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.

  15. Solar influence on Earth's climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties...... and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget....... via cosmic ray ionisation (the latter being modulated by solar activity). Support for this idea is found from satellite observations of cloud cover. Such data have revealed a striking correlation between the intensity of galactic cosmic rays (GCR) and low liquid clouds (

  16. Climate change, climatic variation and extreme biological responses.

    Science.gov (United States)

    Palmer, Georgina; Platts, Philip J; Brereton, Tom; Chapman, Jason W; Dytham, Calvin; Fox, Richard; Pearce-Higgins, James W; Roy, David B; Hill, Jane K; Thomas, Chris D

    2017-06-19

    Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population 'crashes' (outliers in terms of species' year-to-year population changes) were 46% more frequent than population 'explosions'. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions. This suggests that, even within the same broad taxonomic groups, species are exhibiting individualistic dynamics, most probably driven by their responses to different, short-term events associated with climatic variability. (ii) Six out of 44 years showed a significant excess of species experiencing extreme population changes (5 years for Lepidoptera, 1 for birds). These 'consensus years' were associated with climatically extreme years, consistent with a link between extreme population responses and climatic variability, although not all climatically extreme years generated excess numbers of extreme population responses. (iii) Links between extreme population changes and long-term population trends were absent in Lepidoptera and modest (but significant) in birds. We conclude that extreme biological responses are individualistic, in the sense that the extreme population changes of most species are taking place in different years, and that long-term trends of widespread species have not, to date, been dominated by these extreme changes.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Authors.

  17. Extreme weather and climate events with ecological relevance: a review.

    Science.gov (United States)

    Ummenhofer, Caroline C; Meehl, Gerald A

    2017-06-19

    Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events

  18. Climatic forecast: down-scaling and extremes

    International Nuclear Information System (INIS)

    Deque, M.; Li, L.

    2007-01-01

    There is a strong demand for specifying the future climate at local scale and about extreme events. New methods, allowing a better output from the climate models, are currently being developed and French laboratories involved in the Escrime project are actively participating. (authors)

  19. Earth's portfolio of extreme sediment transport events

    Science.gov (United States)

    Korup, Oliver

    2012-05-01

    Quantitative estimates of sediment flux and the global cycling of sediments from hillslopes to rivers, estuaries, deltas, continental shelves, and deep-sea basins have a long research tradition. In this context, extremely large and commensurately rare sediment transport events have so far eluded a systematic analysis. To start filling this knowledge gap I review some of the highest reported sediment yields in mountain rivers impacted by volcanic eruptions, earthquake- and storm-triggered landslide episodes, and catastrophic dam breaks. Extreme specific yields, defined here as those exceeding the 95th percentile of compiled data, are ~ 104 t km- 2 yr- 1 if averaged over 1 yr. These extreme yields vary by eight orders of magnitude, but systematically decay with reference intervals from minutes to millennia such that yields vary by three orders of magnitude for a given reference interval. Sediment delivery from natural dam breaks and pyroclastic eruptions dominate these yields for a given reference interval. Even if averaged over 102-103 yr, the contribution of individual disturbances may remain elevated above corresponding catchment denudation rates. I further estimate rates of sediment (re-)mobilisation by individual giant terrestrial and submarine mass movements. Less than 50 postglacial submarine mass movements have involved an equivalent of ~ 10% of the contemporary annual global flux of fluvial sediment to Earth's oceans, while mobilisation rates by individual events rival the decadal-scale sediment discharge from tectonically active orogens such as Taiwan or New Zealand. Sediment flushing associated with catastrophic natural dam breaks is non-stationary and shows a distinct kink at the last glacial-interglacial transition, owing to the drainage of very large late Pleistocene ice-marginal lakes. Besides emphasising the contribution of high-magnitude and low-frequency events to the global sediment cascade, these findings stress the importance of sediment storage

  20. Extreme climate. Blessing and curse

    Energy Technology Data Exchange (ETDEWEB)

    Forst, Michael

    2010-07-01

    While the commercial and banking centre Dubai finds itself dealing with the aftermath of the economic crisis, the conservative neighbour Abu Dhabi is already pursuing ambitious targets - but the climate conditions in the desert states are not always ideal for the utilization of renewable energies. (orig.)

  1. Extreme Weather Events and Climate Change Attribution

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Katherine [National Academy of Sciences, Washington, DC (United States)

    2016-03-31

    A report from the National Academies of Sciences, Engineering, and Medicine concludes it is now possible to estimate the influence of climate change on some types of extreme events. The science of extreme event attribution has advanced rapidly in recent years, giving new insight to the ways that human-caused climate change can influence the magnitude or frequency of some extreme weather events. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities. Confidence is strongest in attributing types of extreme events that are influenced by climate change through a well-understood physical mechanism, such as, the more frequent heat waves that are closely connected to human-caused global temperature increases, the report finds. Confidence is lower for other types of events, such as hurricanes, whose relationship to climate change is more complex and less understood at present. For any extreme event, the results of attribution studies hinge on how questions about the event's causes are posed, and on the data, modeling approaches, and statistical tools chosen for the analysis.

  2. Community responses to extreme climatic conditions

    Directory of Open Access Journals (Sweden)

    Frédéric JIGUET, Lluis BROTONS, Vincent DEVICTOR

    2011-06-01

    Full Text Available Species assemblages and natural communities are increasingly impacted by changes in the frequency and severity of extreme climatic events. Here we propose a brief overview of expected and demonstrated direct and indirect impacts of extreme events on animal communities. We show that differential impacts on basic biological parameters of individual species can lead to strong changes in community composition and structure with the potential to considerably modify the functional traits of the community. Sudden disequilibria have even been shown to induce irreversible shifts in marine ecosystems, while cascade effects on various taxonomic groups have been highlighted in Mediterranean forests. Indirect effects of extreme climatic events are expected when event-induced habitat changes (e.g. soil stability, vegetation composition, water flows altered by droughts, floods or hurricanes have differential consequences on species assembled within the communities. Moreover, in increasing the amplitude of trophic mismatches, extreme events are likely to turn many systems into ecological traps under climate change. Finally, we propose a focus on the potential impacts of an extreme heat wave on local assemblages as an empirical case study, analysing monitoring data on breeding birds collected in France. In this example, we show that despite specific populations were differently affected by local temperature anomalies, communities seem to be unaffected by a sudden heat wave. These results suggest that communities are tracking climate change at the highest possible rate [Current Zoology 57 (3: 406–413, 2011].

  3. Coping with extreme climate events: Institutional flocking

    NARCIS (Netherlands)

    Koppen, van C.S.A.; Mol, A.P.J.; Tatenhove, van J.P.M.

    2010-01-01

    The article explores the governance structures that would be needed to cope with extreme and unpredictable climate change. The impacts on the Netherlands of a Gulf Stream collapse in the Northern Atlantic are taken as a case. This hypothetical situation of serious risks and high uncertainties

  4. The Engineering for Climate Extremes Partnership

    Science.gov (United States)

    Holland, G. J.; Tye, M. R.

    2014-12-01

    Hurricane Sandy and the recent floods in Thailand have demonstrated not only how sensitive the urban environment is to the impact of severe weather, but also the associated global reach of the ramifications. These, together with other growing extreme weather impacts and the increasing interdependence of global commercial activities point towards a growing vulnerability to weather and climate extremes. The Engineering for Climate Extremes Partnership brings academia, industry and government together with the goals encouraging joint activities aimed at developing new, robust, and well-communicated responses to this increasing vulnerability. Integral to the approach is the concept of 'graceful failure' in which flexible designs are adopted that protect against failure by combining engineering or network strengths with a plan for efficient and rapid recovery if and when they fail. Such an approach enables optimal planning for both known future scenarios and their assessed uncertainty.

  5. Climate change and extreme events in weather

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    reported that the climate based extreme weather event is increasing throughout the world. One of the major chal- lenges before the scientists is to determine whether the ob- served change in extreme weather events exceeds the vari- ability expected through... was recorded in July 1943 on the hills of Mewar and Merwara. Unprecedent flood in Ajmer and Merwara devasted 50 villages and took a toll of 5000 lives (De et al., 2005). Severe Floods occurred to Godavari and Tungabhadra rivers in the last week of August...

  6. Expected impacts of climate change on extreme climate events

    International Nuclear Information System (INIS)

    Planton, S.; Deque, M.; Chauvin, F.; Terray, L.

    2008-01-01

    An overview of the expected change of climate extremes during this century due to greenhouse gases and aerosol anthropogenic emissions is presented. The most commonly used methodologies rely on the dynamical or statistical down-scaling of climate projections, performed with coupled atmosphere-ocean general circulation models. Either of dynamical or of statistical type, down-scaling methods present strengths and weaknesses, but neither their validation on present climate conditions, nor their potential ability to project the impact of climate change on extreme event statistics allows one to give a specific advantage to one of the two types. The results synthesized in the last IPCC report and more recent studies underline a convergence for a very likely increase in heat wave episodes over land surfaces, linked to the mean warming and the increase in temperature variability. In addition, the number of days of frost should decrease and the growing season length should increase. The projected increase in heavy precipitation events appears also as very likely over most areas and also seems linked to a change in the shape of the precipitation intensity distribution. The global trends for drought duration are less consistent between models and down-scaling methodologies, due to their regional variability. The change of wind-related extremes is also regionally dependent, and associated to a poleward displacement of the mid-latitude storm tracks. The specific study of extreme events over France reveals the high sensitivity of some statistics of climate extremes at the decadal time scale as a consequence of regional climate internal variability. (authors)

  7. Imprint of Galactic dynamics on Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2006-01-01

    A connection between climate and the Solar system's motion perpendicular to the Galactic plane during the last 200 Myr years is studied. An imprint of galactic dynamics is found in a long-term record of the Earth's climate that is consistent with variations in the Solar system oscillation around...

  8. Floridian heatwaves and extreme precipitation: future climate projections

    Science.gov (United States)

    Raghavendra, Ajay; Dai, Aiguo; Milrad, Shawn M.; Cloutier-Bisbee, Shealynn R.

    2018-02-01

    Observational analysis and climate modeling efforts concur that the frequency, intensity, and duration of heatwaves will increase as the Earth's mean climate shifts towards warmer temperatures. While the impacts and mechanisms of heatwaves have been well explored, extreme temperatures over Florida are generally understudied. This paper sheds light on Floridian heatwaves by exploring 13 years of daily data from surface observations and high-resolution WRF climate simulations for the same timeframe. The characteristics of the current and future heatwaves under the RCP8.5 high emissions scenario for 2070-2099 were then investigated. Results show a tripling in the frequency, and greater than a sixfold increase in the mean duration of heatwaves over Florida when the current standard of heatwaves was used. The intensity of heatwaves also increased by 4-6 °C due to the combined effects of rising mean temperatures and a 1-2 °C increase attributed to the flattening of the temperature distribution. Since Florida's atmospheric boundary layer is rich in moisture and heatwaves could further increase the moisture content in the lower troposphere, the relationship between heatwaves and extreme precipitation was also explored in both the current and future climate. As expected, rainfall during a heatwave event was anomalously low, but it quickly recovered to normal within 3 days after the passage of a heatwave. Finally, the late 21st-century climate could witness a slight decrease in the mean precipitation over Florida, accompanied by heavier heatwave-associated extreme precipitation events over central and southern Florida.

  9. Climate Extreme Events over Northern Eurasia in Changing Climate

    Science.gov (United States)

    Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.

    2014-12-01

    During the period of widespread instrumental observations in Northern Eurasia, the annual surface air temperature has increased by 1.5°C. Close to the north in the Arctic Ocean, the late summer sea ice extent has decreased by 40% providing a near-infinite source of water vapor for the dry Arctic atmosphere in the early cold season months. The contemporary sea ice changes are especially visible in the Eastern Hemisphere All these factors affect the change extreme events. Daily and sub-daily data of 940 stations to analyze variations in the space time distribution of extreme temperatures, precipitation, and wind over Russia were used. Changing in number of days with thaw over Russia was described. The total seasonal numbers of days, when daily surface air temperatures (wind, precipitation) were found to be above (below) selected thresholds, were used as indices of climate extremes. Changing in difference between maximum and minimum temperature (DTR) may produce a variety of effects on biological systems. All values falling within the intervals ranged from the lowest percentile to the 5th percentile and from the 95th percentile to the highest percentile for the time period of interest were considered as daily extremes. The number of days, N, when daily temperatures (wind, precipitation, DTR) were within the above mentioned intervals, was determined for the seasons of each year. Linear trends in the number of days were calculated for each station and for quasi-homogeneous climatic regions. Regional analysis of extreme events was carried out using quasi-homogeneous climatic regions. Maps (climatology, trends) are presented mostly for visualization purposes. Differences in regional characteristics of extreme events are accounted for over a large extent of the Russian territory and variety of its physical and geographical conditions. The number of days with maximum temperatures higher than the 95% percentile has increased in most of Russia and decreased in Siberia in

  10. Temperature extremes in a changing climate: Drivers and feedbacks (Invited)

    Science.gov (United States)

    Seneviratne, S. I.; Davin, E. L.; Hirschi, M.; Mueller, B.; Orlowsky, B.; Orth, R.; Wilhelm, M.

    2013-12-01

    2013: Using soil moisture forecasts for sub-seasonal temperature predictions in Europe. Submitted to Clim. Dyn.. Seneviratne, S.I., et al., 2006: Land-atmosphere coupling and climate change in Europe. Nature, 443, 205-209. Seneviratne, S.I., et al., 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 3-4, 125-161, doi:10.1016/j.earscirev.2010.02.004. Seneviratne, S.I., N. Nicholls, et al., 2012: Changes in climate extremes and their impacts on the natural physical environment. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., et al. (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, pp. 109-230. Seneviratne, S.I., et al., 2013: Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Submitted to Geophys. Res. Lett.

  11. Seasonal Climate Extremes : Mechanism, Predictability and Responses to Global Warming

    NARCIS (Netherlands)

    Shongwe, M.E.

    2010-01-01

    Climate extremes are rarely occurring natural phenomena in the climate system. They often pose one of the greatest environmental threats to human and natural systems. Statistical methods are commonly used to investigate characteristics of climate extremes. The fitted statistical properties are often

  12. Assessing Climate Variability using Extreme Rainfall and ...

    African Journals Online (AJOL)

    user1

    extreme frequency); the average intensity of rainfall from extreme events ... frequency and extreme intensity indices, suggesting that extreme events are more frequent and intense during years with high rainfall. The proportion of total rainfall from ...

  13. Energy conservation in the earth's crust and climate change.

    Science.gov (United States)

    Mu, Yao; Mu, Xinzhi

    2013-02-01

    Among various matters which make up the earth's crust, the thermal conductivity of coal, oil, and oil-gas, which are formed over a long period of geological time, is extremely low. This is significant to prevent transferring the internal heat of the earth to the thermal insulation of the surface, cooling the surface of the earth, stimulating biological evolution, and maintaining natural ecological balance as well. Fossil energy is thermal insulating layer in the earth's crust. Just like the function of the thermal isolation of subcutaneous fatty tissue under the dermis of human skin, it keeps the internal heat within the organism so it won't be transferred to the skin's surface and be lost maintaining body temperature at low temperatures. Coal, oil, oil-gas, and fat belong to the same hydrocarbons, and the functions of their thermal insulation are exactly the same. That is to say, coal, oil, and oil-gas are just like the earth's "subcutaneous fatty tissue" and objectively formed the insulation protection on earth's surface. This paper argues that the human large-scale extraction of fossil energy leads to damage of the earth's crust heat-resistant sealing, increasing terrestrial heat flow, or the heat flow as it is called, transferring the internal heat of the earth to Earth's surface excessively, and causing geotemperature and sea temperature to rise, thus giving rise to global warming. The reason for climate warming is not due to the expansion of greenhouse gases but to the wide exploitation of fossil energy, which destroyed the heat insulation of the earth's crust, making more heat from the interior of the earth be released to the atmosphere. Based on the energy conservation principle, the measurement of the increase of the average global temperature that was caused by the increase of terrestrial heat flow since the Industrial Revolution is consistent with practical data. This paper illustrates "pathogenesis" of climate change using medical knowledge. The

  14. Spatially explicit modelling of extreme weather and climate events ...

    African Journals Online (AJOL)

    The reality of climate change continues to influence the intensity and frequency of extreme weather events such as heat waves, droughts, floods, and landslides. The impacts of the cumulative interplay of these extreme weather and climate events variation continue to perturb governments causing a scramble into formation ...

  15. Linkages between the Urban Environment and Earth's Climate System

    Science.gov (United States)

    Shepherd, J. Marshall; Jin, Menglin

    2003-01-01

    Urbanization is one of the extreme cases of land use change. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025 60% of the world s population will live in cities (UNFP, 1999). Though urban areas are local in scale, human activity in urban environments has impacts at local, to global scale by changing atmospheric composition; impacting components of the water cycle; and modifying the carbon cycle 2nd ecosystems. For example, urban dwellers are undoubtedly familiar with "high" ozone pollution days, flash flooding in city streets, or heat stress on summer days. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s weather, oceans, and land work together and the influence of the urban environment on this climate system is critical. This paper highlights some of the major and current issues involving interactions between urban environments and the Earth's climate system. It also captures some of the most current thinking and findings of the authors and key experts in the field.

  16. Climate variations and changes in extreme climate events in Russia

    International Nuclear Information System (INIS)

    Bulygina, O N; Razuvaev, V N; Korshunova, N N; Groisman, P Ya

    2007-01-01

    Daily temperature (mean, minimum and maximum) and atmospheric precipitation data from 857 stations are used to analyze variations in the space-time distribution of extreme temperatures and precipitation across Russia during the past six decades. The seasonal numbers of days (N) when daily air temperatures (diurnal temperature range, precipitation) were higher or lower than selected thresholds are used as indices of climatic extremes. Linear trends in N are calculated for each station for the time period of interest. The seasonal numbers of days (for each season) with maximum temperatures higher than the 95th percentile have increased over most of Russia, with minimum temperatures lower than the 5th percentile having decreased. A tendency for the decrease in the number of days with abnormally high diurnal temperature range is observed over most of Russia. In individual regions of Russia, however, a tendency for an increasing number of days with a large diurnal amplitude is found. The largest tendency for increasing number of days with heavy precipitation is observed in winter in Western Siberia and Yakutia

  17. France during the last two climate extremes

    International Nuclear Information System (INIS)

    2001-01-01

    The study of past climate events provides precious information for the forecasting of future climates at the 5000, 10000 or 50000 years vista. This work belongs to the geo-prospective work carried out by the Andra. It aims at understanding the key climatic events of the geological history in order to design possible scenarios of the future evolution of the climate and its eventual impacts on underground radioactive waste repositories. Paleo-climatic maps are given in appendixes. (J.S.)

  18. Climatic extremes improve predictions of spatial patterns of tree species

    Science.gov (United States)

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  19. Public perceptions of climate change and extreme weather events

    Science.gov (United States)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.

    2013-12-01

    Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such

  20. Enhancing the Extreme Climate Index (ECI) to monitor climate extremes for an index-based insurance scheme across Africa

    Science.gov (United States)

    Helmschrot, J.; Malherbe, J.; Chamunorwa, M.; Muthige, M.; Petitta, M.; Calmanti, S.; Cucchi, M.; Syroka, J.; Iyahen, E.; Engelbrecht, F.

    2017-12-01

    Climate services are a key component of National Adaptation Plan (NAP) processes, which require the analysis of current climate conditions, future climate change scenarios and the identification of adaptation strategies, including the capacity to finance and implement effective adaptation options. The Extreme Climate Facility (XCF) proposed by the African Risk Capacity (ARC) developed a climate index insurance scheme, which is based on the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events, thus indicating possible shifts to a new climate regime in various regions. The main hazards covered by ECI are extreme dry, wet and heat events, with the possibility of adding other region-specific risk events. The ECI is standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be compared. Initially developed by an Italian company specialized in Climate Services, research is now conducted at the CSIR and SASSCAL, to verify and further develop the ECI for application in southern African countries, through a project initiated by the World Food Programme (WFP) and ARC. The paper will present findings on the most appropriate definitions of extremely wet and dry conditions in Africa, in terms of their impact across a multitude of sub-regional climates of the African continent. Findings of a verification analysis of the ECI, as determined through vegetation monitoring data and the SASSCAL weather station network will be discussed. Changes in the ECI under climate change will subsequently be projected, using detailed regional projections generated by the CSIR and through the Coordinated Regional Downscaling Experiment (CORDEX). This work will be concluded by the development of a web-based climate service informing African Stakeholders on climate extremes.

  1. Adaptation to extreme climate events at a regional scale

    OpenAIRE

    Hoffmann, Christin

    2017-01-01

    A significant increase of the frequency, the intensity and the duration of extreme climate events in Switzerland induces the need to find a strategy to deal with the damages they cause. For more than two decades, mitigation has been the main objective of climate policy. However, due to already high atmospheric carbon concentrations and the inertia of the climate system, climate change is unavoidable to some degree, even if today’s emissions were almost completely cut back. Along with the high...

  2. Impacts of climate extremes on gross primary production under global warming

    International Nuclear Information System (INIS)

    Williams, I N; Torn, M S; Riley, W J; Wehner, M F

    2014-01-01

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at the warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections

  3. Extreme climatic events: reducing ecological and social systems vulnerabilities

    International Nuclear Information System (INIS)

    Decamps, H.; Amatore, C.; Bach, J.F.; Baccelli, F.; Balian, R.; Carpentier, A.; Charnay, P.; Cuzin, F.; Davier, M.; Dercourt, J.; Dumas, C.; Encrenaz, P.; Jeannerod, M.; Kahane, J.P.; Meunier, B.; Rebut, P.H.; Salencon, J.; Spitz, E.; Suquet, P.; Taquet, P.; Valleron, A.J.; Yoccoz, J.C.; Chapron, J.Y.; Fanon, J.; Andre, J.C.; Auger, P.; Bourrelier, P.H.; Combes, C.; Derrida, B.; Laubier, L.; Laval, K.; Le Maho, Y.; Marsily, G. De; Petit, M.; Schmidt-Laine, C.; Birot, Y.; Peyron, J.L.; Seguin, B.; Barles, S.; Besancenot, J.P.; Michel-Kerjan, E.; Hallegatte, S.; Dumas, P.; Ancey, V.; Requier-Desjardins, M.; Ducharnes, A.; Ciais, P.; Peylin, P.; Kaniewski, D.; Van Campo, E.; Planton, S.; Manuguerra, J.C.; Le Bars, Y.; Lagadec, P.; Kessler, D.; Pontikis, C.; Nussbaum, R.

    2010-01-01

    The Earth has to face more and more devastating extreme events. Between 1970 and 2009, at the worldwide scale, the 25 most costly catastrophes all took place after 1987, and for more than half of them after 2001. Among these 25 catastrophes, 23 were linked to climate conditions. France was not spared: the December 1999 storms led to 88 deaths, deprived 3.5 million households of electricity and costed more than 9 billion euros. The 2003 heat wave led to about 15000 supernumerary deaths between August 1 and August 20. The recent Xynthia storm, with its flood barrier ruptures, provoked 53 deaths in addition to many other tragedies that took place in areas liable to flooding. In the present day context of climate change, we know that we must be prepared to even more dangerous events, sometimes unexpected before. These events can have amplified effects because of the urban development, the overpopulation of coastal areas and the anthropization of natural environments. They represent real 'poverty traps' for the poorest countries of the Earth. The anticipation need is real but is our country ready to answer it? Does it have a sufficient contribution to international actions aiming at reducing risks? Is his scientific information suitable? France is not less vulnerable than other countries. It must reinforce its prevention, its response and resilience capacities in the framework of integrated policies of catastrophes risk management as well as in the framework of climate change adaptation plans. This reinforcement supposes the development of vigilance systems with a better risk coverage and benefiting by the advances gained in the meteorology and health domains. It supposes a town and country planning allowing to improve the viability of ecological and social systems - in particular by protecting their diversity. Finally, this reinforcement requires inciting financial coverage solutions for catastrophes prevention and for their management once they have taken place. A

  4. Chemistry and Climate in Asia - An Earth System Modeling Project

    Science.gov (United States)

    Barth, M. C.; Emmons, L. K.; Massie, S. T.; Pfister, G.; Romero Lankao, P.; Lamarque, J.; Carmichael, G. R.

    2011-12-01

    Asia is one of the most highly populated and economically dynamic regions in the world, with much of the population located in growing mega-cities. It is a region with significant emissions of greenhouse gases, aerosols and other pollutants, which pose high health risks to urban populations. Emissions of these aerosols and gases increased drastically over the last decade due to economic growth and urbanization and are expected to rise further in the near future. As such, the continent plays a role in influencing climate change via its effluent of aerosols and gaseous pollutants. Asia is also susceptible to adverse climate change through interactions between aerosols and clouds, which potentially can have serious implications for freshwater resources. We are developing an integrated inter-disciplinary program to focus on Asia, its climate, air quality, and impact on humans that will include connections with hydrology, ecosystems, extreme weather events, and human health. The primary goal of this project is to create a team to identify key scientific questions and establish networks of specialists to create a plan for future studies to address these questions. A second goal is to establish research facilities and a framework for investigating chemistry and climate over Asia. These facilities include producing high resolution Earth System Model simulations that have been evaluated with meteorological and chemical measurements, producing high-resolution emission inventories, analyzing satellite data, and analyzing the vulnerability of humans to air quality and extreme natural events. In this presentation we will describe in more detail these activities and discuss a future workshop on the impact of chemistry in climate on air quality and human health.

  5. Evaluation of climate change impact on extreme hydrological event ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Changes in hydrological extremes will have implications on the design of future hydraulic structures, flood plain development, and water resource management. This study assesses the potential impact of climate change on extreme hydrological events in the Akaki River catchment area in and around Addis Ababa city.

  6. Climate Change : Behavioral Responses from Extreme Events and Delayed Damages

    NARCIS (Netherlands)

    Ghidoni, Riccardo; Calzolari, G.; Casari, Marco

    2017-01-01

    Understanding how to sustain cooperation in the climate change global dilemma is crucial to mitigate its harmful consequences. Damages from climate change typically occurs after long delays and can take the form of more frequent realizations of extreme and random events. These features generate a

  7. Climate change : Behavioral responses from extreme events and delayed damages

    NARCIS (Netherlands)

    Ghidoni, Riccardo; Calzolari, Giacomo; Casari, Marco

    2017-01-01

    Understanding how to sustain cooperation in the climate change global dilemma is crucial to mitigate its harmful consequences. Damages from climate change typically occur after long delays and can take the form of more frequent realizations of extreme and random events. These features generate a

  8. Orbital Noise in the Earth System and Climate Fluctuations

    Science.gov (United States)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  9. Computational data sciences for assessment and prediction of climate extremes

    Science.gov (United States)

    Ganguly, A. R.

    2011-12-01

    Climate extremes may be defined inclusively as severe weather events or large shifts in global or regional weather patterns which may be caused or exacerbated by natural climate variability or climate change. This area of research arguably represents one of the largest knowledge-gaps in climate science which is relevant for informing resource managers and policy makers. While physics-based climate models are essential in view of non-stationary and nonlinear dynamical processes, their current pace of uncertainty reduction may not be adequate for urgent stakeholder needs. The structure of the models may in some cases preclude reduction of uncertainty for critical processes at scales or for the extremes of interest. On the other hand, methods based on complex networks, extreme value statistics, machine learning, and space-time data mining, have demonstrated significant promise to improve scientific understanding and generate enhanced predictions. When combined with conceptual process understanding at multiple spatiotemporal scales and designed to handle massive data, interdisciplinary data science methods and algorithms may complement or supplement physics-based models. Specific examples from the prior literature and our ongoing work suggests how data-guided improvements may be possible, for example, in the context of ocean meteorology, climate oscillators, teleconnections, and atmospheric process understanding, which in turn can improve projections of regional climate, precipitation extremes and tropical cyclones in an useful and interpretable fashion. A community-wide effort is motivated to develop and adapt computational data science tools for translating climate model simulations to information relevant for adaptation and policy, as well as for improving our scientific understanding of climate extremes from both observed and model-simulated data.

  10. The biogeophysical effects of extreme afforestation in modeling future climate

    Science.gov (United States)

    Wang, Ye; Yan, Xiaodong; Wang, Zhaomin

    2014-11-01

    Afforestation has been deployed as a mitigation strategy for global warming due to its substantial carbon sequestration, which is partly counterbalanced with its biogeophysical effects through modifying the fluxes of energy, water, and momentum at the land surface. To assess the potential biophysical effects of afforestation, a set of extreme experiments in an Earth system model of intermediate complexity, the McGill Paleoclimate Model-2 (MPM-2), is designed. Model results show that latitudinal afforestation not only has a local warming effect but also induces global and remote warming over regions beyond the forcing originating areas. Precipitation increases in the northern hemisphere and decreases in southern hemisphere in response to afforestation. The local surface warming over the forcing originating areas in northern hemisphere is driven by decreases in surface albedo and increases in precipitation. The remote surface warming in southern hemisphere is induced by decreases in surface albedo and precipitation. The results suggest that the potential impact of afforestation on regional and global climate depended critically on the location of the forest expansion. That is, afforestation in 0°-15°N leaves a relatively minor impact on global and regional temperature; afforestation in 45°-60°N results in a significant global warming, while afforestation in 30°-45°N results in a prominent regional warming. In addition, the afforestation leads to a decrease in annual mean meridional oceanic heat transport with a maximum decrease in forest expansion of 30°-45°N. These results can help to compare afforestation effects and find areas where afforestation mitigates climate change most effectively combined with its carbon drawdown effects.

  11. Extreme climate in China. Facts, simulation and projection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui-Jun; Sun, Jian-Qi; Chen, Huo-Po; Zhu, Ya-Li; Zhang, Ying; Jiang, Da-Bang; Lang, Xian-Mei; Fan, Ke; Yu, En-Tao [Chinese Academy of Sciences, Beijing (China). Inst. of Atmospheric Physics; Yang, Song [NOAA Climate Prediction Center, Camp Springs, MD (United States)

    2012-06-15

    In this paper, studies on extreme climate in China including extreme temperature and precipitation, dust weather activity, tropical cyclone activity, intense snowfall and cold surge activity, floods, and droughts are reviewed based on the peer-reviewed publications in recent decades. The review is focused first on the climatological features, variability, and trends in the past half century and then on simulations and projections based on global and regional climate models. As the annual mean surface air temperature (SAT) increased throughout China, heat wave intensity and frequency overall increased in the past half century, with a large rate after the 1980s. The daily or yearly minimum SAT increased more significantly than the mean or maximum SAT. The long-term change in precipitation is predominantly characterized by the so-called southern flood and northern drought pattern in eastern China and by the overall increase over Northwest China. The interdecadal variation of monsoon, represented by the monsoon weakening in the end of 1970s, is largely responsible for this change in mean precipitation. Precipitation-related extreme events (e.g., heavy rainfall and intense snowfall) have become more frequent and intense generally over China in the recent years, with large spatial features. Dust weather activity, however, has become less frequent over northern China in the recent years, as result of weakened cold surge activity, reinforced precipitation, and improved vegetation condition. State-of-the-art climate models are capable of reproducing some features of the mean climate and extreme climate events. However, discrepancies among models in simulating and projecting the mean and extreme climate are also demonstrated by many recent studies. Regional models with higher resolutions often perform better than global models. To predict and project climate variations and extremes, many new approaches and schemes based on dynamical models, statistical methods, or their

  12. Carbon Cycle Extremes in the 22nd and 23rd Century and Attribution to Climate Drivers

    Science.gov (United States)

    Sharma, B.; Hoffman, F. M.; Kumar, J.; Ganguly, A. R.

    2017-12-01

    Terrestrial ecosystems are affected by climate extremes such as droughts and heatwaves which have a potential to modify carbon budgets. Previous studies have found the impact of negative extremes in gross primary production (GPP) and net ecosystem production (NEP) to be diminishing towards the end of the 21st century relative to the overall increase in global carbon uptake. A few studies have estimated that the land use changes (e.g. from forest to croplands) would cause more cumulative carbon loss between 1850 and 2300 than due to climate change caused by anthropogenic forcing over the same interval. However, not many studies have looked at the impact of carbon cycle extremes beyond 21st century especially under with and without LULCC scenarios. This study aims to analyze spatiotemporal extreme events in GPP and NEP using the model CESM1-BGC and understand the climate drivers they can be attributed to. Using the Community Earth System Model (CESM1-BGC), we investigated the impact of climate extremes on the terrestrial ecosystem using simulations forced by Representative Concentration Pathway 8.5 with and without land-use and land-cover change (LULCC). To capture non-linear feedbacks in the global carbon cycle, both these simulations were extended to the year 2300. It is important to understand the impacts of climate extremes on the carbon cycle for quantifying carbon-cycle climate feedback and estimating future atmospheric CO2 levels and temperature increases. The results of this study would help improve our understanding of carbon cycle extremes and inform future mitigation policy.

  13. Extreme magnetoresistance in magnetic rare-earth monopnictides

    Science.gov (United States)

    Ye, Linda; Suzuki, Takehito; Wicker, Christina R.; Checkelsky, Joseph G.

    2018-02-01

    The acute sensitivity of the electrical resistance of certain systems to magnetic fields known as extreme magnetoresistance (XMR) has recently been explored in a new materials context with topological semimetals. Exemplified by WTe2 and rare-earth monopnictide La(Sb,Bi), these systems tend to be nonmagnetic, nearly compensated semimetals and represent a platform for large magnetoresistance driven by intrinsic electronic structure. Here we explore electronic transport in magnetic members of the latter family of semimetals and find that XMR is strongly modulated by magnetic order. In particular, CeSb exhibits XMR in excess of 1.6 ×106% at fields of 9 T whereas the magnetoresistance itself is nonmonotonic across the various magnetic phases and shows a transition from negative magnetoresistance to XMR with fields above magnetic ordering temperature TN. The magnitude of the XMR is larger than in other rare-earth monopnictides including the nonmagnetic members and follows a nonsaturating power law to fields above 30 T. We show that the overall response can be understood as the modulation of conductivity by the Ce orbital state and for intermediate temperatures can be characterized by an effective medium model. Comparison to the orbitally quenched compound GdBi supports the correlation of XMR with the onset of magnetic ordering and compensation and highlights the unique combination of orbital inversion and type-I magnetic ordering in CeSb in determining its large response. These findings suggest a paradigm for magneto-orbital control of XMR and are relevant to the understanding of rare-earth-based correlated topological materials.

  14. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    Science.gov (United States)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  15. Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes

    International Nuclear Information System (INIS)

    Liu Guo; Liu Hongyan; Yin Yi

    2013-01-01

    Extremes in climate have significant impacts on ecosystems and are expected to increase under future climate change. Extremes in vegetation could capture such impacts and indicate the vulnerability of ecosystems, but currently have not received a global long-term assessment. In this study, a robust method has been developed to detect significant extremes (low values) in biweekly time series of global normalized difference vegetation index (NDVI) from 1982 to 2006 and thus to acquire a global pattern of vegetation extreme frequency. This pattern coincides with vegetation vulnerability patterns suggested by earlier studies using different methods over different time spans, indicating a consistent mechanism of regulation. Vegetation extremes were found to aggregate in Amazonia and in the semi-arid and semi-humid regions in low and middle latitudes, while they seldom occurred in high latitudes. Among the environmental variables studied, extreme low precipitation has the highest slope against extreme vegetation. For the eight biomes analyzed, these slopes are highest in temperate broadleaf forest and temperate grassland, suggesting a higher sensitivity in these environments. The results presented here contradict the hypothesis that vegetation in water-limited semi-arid and semi-humid regions might be adapted to drought and suggest that vegetation in these regions (especially temperate broadleaf forest and temperate grassland) is highly prone to vegetation extreme events under more severe precipitation extremes. It is also suggested here that more attention be paid to precipitation-induced vegetation changes than to temperature-induced events. (letter)

  16. Changes in observed climate extremes in global urban areas

    International Nuclear Information System (INIS)

    Mishra, Vimal; Ganguly, Auroop R; Nijssen, Bart; Lettenmaier, Dennis P

    2015-01-01

    Climate extremes have profound implications for urban infrastructure and human society, but studies of observed changes in climate extremes over the global urban areas are few, even though more than half of the global population now resides in urban areas. Here, using observed station data for 217 urban areas across the globe, we show that these urban areas have experienced significant increases (p-value <0.05) in the number of heat waves during the period 1973–2012, while the frequency of cold waves has declined. Almost half of the urban areas experienced significant increases in the number of extreme hot days, while almost 2/3 showed significant increases in the frequency of extreme hot nights. Extreme windy days declined substantially during the last four decades with statistically significant declines in about 60% in the urban areas. Significant increases (p-value <0.05) in the frequency of daily precipitation extremes and in annual maximum precipitation occurred at smaller fractions (17 and 10% respectively) of the total urban areas, with about half as many urban areas showing statistically significant downtrends as uptrends. Changes in temperature and wind extremes, estimated as the result of a 40 year linear trend, differed for urban and non-urban pairs, while changes in indices of extreme precipitation showed no clear differentiation for urban and selected non-urban stations. (letter)

  17. Biodiversity increases the resistance of ecosystem productivity to climate extremes.

    Science.gov (United States)

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Niklaus, Pascal A; Polley, H Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico

    2015-10-22

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  18. Understanding the Role of Air-Sea Interaction on Extreme Rainfall in Aquaplanet and Earth-like CESM2

    Science.gov (United States)

    Benedict, J. J.; Clement, A. C.; Medeiros, B.

    2017-12-01

    Extreme precipitation events are associated with anomalous, latitudinally dependent dynamical and convective weather systems. For example, plumes of excessive poleward water vapor transport and topographical effects drive extreme precipitation events in the midlatitudes, while intense tropical precipitation is associated with organized convective systems. In both cases, air-sea fluxes have the potential to contribute significantly to the moisture budget of these storms, but the roles of surface fluxes and upper-ocean processes and their impact on precipitation extremes have yet to be explored in sufficient detail. To examine such mechanisms, we implement a climate model hierarchy that encompasses a spectrum of ocean models, from prescribed-SST to fully dynamic, as well as both aquaplanet and Earth-like lower boundary types within version 2 of the Community Earth System Model (CESM2). Using the CESM2 hierarchy and comparing to observations, we identify key moisture processes and related air-sea interactions that drive extreme precipitation events across different latitudes in Earth-like models and then generalize the analyses in aquaplanet configurations to highlight the most salient features. The analyses are applied to both present-day and global warming conditions to investigate how these fundamental mechanisms might change extreme precipitation events in the future climate.

  19. Sensitivity of Rainfall Extremes Under Warming Climate in Urban India

    Science.gov (United States)

    Ali, H.; Mishra, V.

    2017-12-01

    Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.

  20. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics

    Science.gov (United States)

    Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.

    2017-01-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  1. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics.

    Science.gov (United States)

    Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B

    2017-06-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  2. Increasing impacts of climate extremes on critical infrastructures in Europe

    Science.gov (United States)

    Forzieri, Giovanni; Bianchi, Alessandra; Feyen, Luc; Silva, Filipe Batista e.; Marin, Mario; Lavalle, Carlo; Leblois, Antoine

    2016-04-01

    The projected increases in exposure to multiple climate hazards in many regions of Europe, emphasize the relevance of a multi-hazard risk assessment to comprehensively quantify potential impacts of climate change and develop suitable adaptation strategies. In this context, quantifying the future impacts of climatic extremes on critical infrastructures is crucial due to their key role for human wellbeing and their effects on the overall economy. Critical infrastructures describe the existing assets and systems that are essential for the maintenance of vital societal functions, health, safety, security, economic or social well-being of people, and the disruption or destruction of which would have a significant impact as a result of the failure to maintain those functions. We assess the direct damages of heat and cold waves, river and coastal flooding, droughts, wildfires and windstorms to energy, transport, industry and social infrastructures in Europe along the 21st century. The methodology integrates in a coherent framework climate hazard, exposure and vulnerability components. Overall damage is expected to rise up to 38 billion €/yr, ten time-folds the current climate damage, with drastic variations in risk scenarios. Exemplificative are drought and heat-related damages that could represent 70% of the overall climate damage in 2080s versus the current 12%. Many regions, prominently Southern Europe, will likely suffer multiple stresses and systematic infrastructure failures due to climate extremes if no suitable adaptation measures will be taken.

  3. Rainfall Variability and the Recent Climate Extremes in Nigeria ...

    African Journals Online (AJOL)

    Recently, large and extended weather and climate extremes were recorded in different parts of the country, causing significant socio-economic impacts. Weather patterns affecting the country are driven by the northward and southward movement of the Inter-Tropical Discontinuity (ITD) as well as developments within the ...

  4. Evolution of extreme rainfall in France with a changing climate

    International Nuclear Information System (INIS)

    Soubeyroux, Jean-Michel; Veysseire, Jean-Michel; Gouget, Viviane; Neppel, Luc; Tramblay, Yves; Carreau, Julie

    2015-01-01

    This paper focuses a synthesis of the works led within the framework of the French project ANR/Extraflo on the evolution of the daily (and infra daily) extreme rainfall in France. An important dataset of more than 900 series was used. It was shown that a majority of series presented a not significant upward trend in particular in Mediterranean area, in relation with various recent exceptional extreme events. An interesting way to characterize this evolution consists in identifying climatic co-variables associated to heavy rainfall events (weather patterns, average temperatures, flow of humidity) and in taking into account them with a non stationary POT model. The application of this method with climatic projections under scenario A2 from IPCC could lead to a possible increase on extreme precipitation quantiles on the horizon 2070. (authors)

  5. In and out of glacial extremes by way of dust‑climate feedbacks

    Science.gov (United States)

    Shaffer, Gary; Lambert, Fabrice

    2018-03-01

    Mineral dust aerosols cool Earth directly by scattering incoming solar radiation and indirectly by affecting clouds and biogeochemical cycles. Recent Earth history has featured quasi-100,000-y, glacial‑interglacial climate cycles with lower/higher temperatures and greenhouse gas concentrations during glacials/interglacials. Global average, glacial maxima dust levels were more than 3 times higher than during interglacials, thereby contributing to glacial cooling. However, the timing, strength, and overall role of dust‑climate feedbacks over these cycles remain unclear. Here we use dust deposition data and temperature reconstructions from ice sheet, ocean sediment, and land archives to construct dust‑climate relationships. Although absolute dust deposition rates vary greatly among these archives, they all exhibit striking, nonlinear increases toward coldest glacial conditions. From these relationships and reconstructed temperature time series, we diagnose glacial‑interglacial time series of dust radiative forcing and iron fertilization of ocean biota, and use these time series to force Earth system model simulations. The results of these simulations show that dust‑climate feedbacks, perhaps set off by orbital forcing, push the system in and out of extreme cold conditions such as glacial maxima. Without these dust effects, glacial temperature and atmospheric CO2 concentrations would have been much more stable at higher, intermediate glacial levels. The structure of residual anomalies over the glacial‑interglacial climate cycles after subtraction of dust effects provides constraints for the strength and timing of other processes governing these cycles.

  6. Attribution of extreme weather and climate-related events.

    Science.gov (United States)

    Stott, Peter A; Christidis, Nikolaos; Otto, Friederike E L; Sun, Ying; Vanderlinden, Jean-Paul; van Oldenborgh, Geert Jan; Vautard, Robert; von Storch, Hans; Walton, Peter; Yiou, Pascal; Zwiers, Francis W

    2016-01-01

    Extreme weather and climate-related events occur in a particular place, by definition, infrequently. It is therefore challenging to detect systematic changes in their occurrence given the relative shortness of observational records. However, there is a clear interest from outside the climate science community in the extent to which recent damaging extreme events can be linked to human-induced climate change or natural climate variability. Event attribution studies seek to determine to what extent anthropogenic climate change has altered the probability or magnitude of particular events. They have shown clear evidence for human influence having increased the probability of many extremely warm seasonal temperatures and reduced the probability of extremely cold seasonal temperatures in many parts of the world. The evidence for human influence on the probability of extreme precipitation events, droughts, and storms is more mixed. Although the science of event attribution has developed rapidly in recent years, geographical coverage of events remains patchy and based on the interests and capabilities of individual research groups. The development of operational event attribution would allow a more timely and methodical production of attribution assessments than currently obtained on an ad hoc basis. For event attribution assessments to be most useful, remaining scientific uncertainties need to be robustly assessed and the results clearly communicated. This requires the continuing development of methodologies to assess the reliability of event attribution results and further work to understand the potential utility of event attribution for stakeholder groups and decision makers. WIREs Clim Change 2016, 7:23-41. doi: 10.1002/wcc.380 For further resources related to this article, please visit the WIREs website.

  7. Temperature extremes in Europe: mechanisms and responses to climatic change

    International Nuclear Information System (INIS)

    Cattiaux, Julien

    2010-01-01

    Europe witnessed a spate of record-breaking warm seasons during the 2000's. As illustrated by the devastating heat-wave of the summer 2003, these episodes induced strong societal and environmental impacts. Such occurrence of exceptional events over a relatively short time period raised up many questionings in the present context of climate change. In particular, can recent temperature extremes be considered as 'previews' of future climate conditions? Do they result from an increasing temperature variability? These questions constitute the main motivations of this thesis. Thus, our work aims to contribute to the understanding of physical mechanisms responsible for seasonal temperature extremes in Europe, in order to anticipate their future statistical characteristics. Involved processes are assessed by both statistical data-analysis of observations and climate projections and regional modeling experiments. First we show that while the inter-annual European temperature variability appears driven by disturbances in the North-Atlantic dynamics, the recent warming is likely to be dissociated with potential circulation changes. This inconsistency climaxes during the exceptionally mild autumn of 2006, whose temperature anomaly is only half explained by the atmospheric flow. Recent warm surface conditions in the North-Atlantic ocean seem to substantially contribute to the European warming in autumn-winter, through the establishment of advective and radiative processes. In spring-summer, since both advection by the westerlies and Atlantic warming are reduced, more local processes appear predominant (e.g. soil moisture, clouds, aerosols). Then the issue of future evolution of the relationship between North-Atlantic dynamics and European temperatures is addressed, based on climate projections of the International Panel on Climate Change. Multi-model analysis, using both flow-analogues and weather regimes methods, show that the inconsistency noticed over recent decades is

  8. Extreme Precipitation and Runoff under Changing Climate in Southern Maine

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Eugene [Argonne National Lab. (ANL), Argonne, IL (United States); Jared, Alissa [Argonne National Lab. (ANL), Argonne, IL (United States); Mahat, Vinod [Argonne National Lab. (ANL), Argonne, IL (United States); Picel, Mark [Argonne National Lab. (ANL), Argonne, IL (United States); Verner, Duane [Argonne National Lab. (ANL), Argonne, IL (United States); Wall, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Moges, Edom M. [Washington State Univ., Pullman, WA (United States); Demissie, Yonas K. [Washington State Univ., Pullman, WA (United States); Pierce, Julia [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The quantification of extreme precipitation events is vitally important for designing and engineering water and flood sensitive infrastructure. Since this kind of infrastructure is usually built to last much longer than 10, 50, or even 100 years, there is great need for statistically sound estimates of the intensity of 10-, 50-, 100-, and 500-year rainstorms and associated floods. The recent assessment indicated that the intensity of the most extreme precipitation events (or the heaviest 1% of all daily events) have increased in every region of the contiguous states since the 1950s (Melillo et al. 2014). The maximum change in precipitation intensity of extreme events occurred in the northeast region reaching 71%. The precipitation extremes can be characterized using intensity-duration-frequency analysis (IDF). However, the current IDFs in this region were developed around the assumption that climate condition remains stationary over the next 50 or 100 years. To better characterize the potential flood risk, this project will (1) develop precipitation IDFs on the basis of both historical observations and future climate projections from dynamic downscaling with Argonne National Laboratory’s (Argonne’s) regional climate model and (2) develop runoff IDFs using precipitation IDFs for the Casco Bay Watershed. IDF development also considers non-stationary distribution models and snowmelt effects that are not incorporated in the current IDFs.

  9. Adaptation to climate extremes: Experiences in the agricultural sector

    International Nuclear Information System (INIS)

    Ball, M.; Dowlatabadi, H.

    1994-01-01

    Various social and economic systems are at risk from variability in weather conditions. A realization of this fact has prompted endogenous adaptations to cope with weather variability. Climate change may overwhelm existing adaptive strategies. These systems would experience this change from the secular trends in first-order and higher order statistics of climate parameters (e.g., mean biotemperature, intensity, and inter-arrival times of extreme events). Historically, different human activities have formally or informally incorporated adaptation to climate conditions. Activities such as agriculture are influenced strongly by weather, yet through a variety of mechanisms, impacts are ameliorated. Taking agriculture as an example of a central and substantive system, the authors' study presents response strategies of oranges production -- a crop currently affected greatly by weather conditions. Understanding the adaptation mechanisms used today can be used to examine the cost and effectiveness of adaptive actions to future climate change

  10. Uncertainties in extreme precipitation under climate change conditions

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia

    of adaptation strategies, but these changes are subject to uncertainties. The focus of this PhD thesis is the quantification of uncertainties in changes in extreme precipitation. It addresses two of the main sources of uncertainty in climate change impact studies: regional climate models (RCMs) and statistical...... downscaling methods (SDMs). RCMs provide information on climate change at the regional scale. SDMs are used to bias-correct and downscale the outputs of the RCMs to the local scale of interest in adaptation strategies. In the first part of the study, a multi-model ensemble of RCMs from the European ENSEMBLES...... project was used to quantify the uncertainty in RCM projections over Denmark. Three aspects of the RCMs relevant for the uncertainty quantification were first identified and investigated. These are: the interdependency of the RCMs; the performance in current climate; and the change in the performance...

  11. Extreme weather events in Iran under a changing climate

    Science.gov (United States)

    Alizadeh-Choobari, Omid; Najafi, M. S.

    2018-01-01

    Observations unequivocally show that Iran has been rapidly warming over recent decades, which in sequence has triggered a wide range of climatic impacts. Meteorological records of several ground stations across Iran with daily temporal resolution for the period 1951-2013 were analyzed to investigate the climate change and its impact on some weather extremes. Iran has warmed by nearly 1.3 °C during the period 1951-2013 (+0.2 °C per decade), with an increase of the minimum temperature at a rate two times that of the maximum. Consequently, an increase in the frequency of heat extremes and a decrease in the frequency of cold extremes have been observed. The annual precipitation has decreased by 8 mm per decade, causing an expansion of Iran's dry zones. Previous studies have pointed out that warming is generally associated with more frequent heavy precipitation because a warmer air can hold more moisture. Nevertheless, warming in Iran has been associated with more frequent light precipitation, but less frequent moderate, heavy and extremely heavy precipitation. This is because in the subtropical dry zones, a longer time is required to recharge the atmosphere with water vapour in a warmer climate, causing more water vapour to be transported from the subtropics to high latitudes before precipitations forms. In addition, the altitude of the condensation level increases in a warmer climate in subtropical regions, causing an overall decrease of precipitation. We argue that changing in the frequency of heavy precipitation in response to warming varies depending on the geographical location. Warming over the dry subtropical regions is associated with a decrease in the frequency of heavy precipitation, while an increase is expected over both subpolar and tropical regions. The warmer climate has also led to the increase in the frequency of both thunderstorms (driven by convective heating) and dust events over Iran.

  12. Relevance of land forcings and feedbacks in the attribution of climate extremes

    Science.gov (United States)

    Seneviratne, S. I.; Davin, E.; Greve, P.; Gudmundsson, L.; Hauser, M.; Hirschi, M.; Mueller, B.; Orlowsky, B.; Orth, R.

    2014-12-01

    Land forcings and feedbacks play an important role in the climate system, in particular for the occurrence of climate extremes. Recent investigations have for instance highlighted the impacts of soil moisture-climate interactions for the development of droughts and heat waves (e.g. Seneviratne et al. 2012, Mueller and Seneviratne 2012, Seneviratne et al. 2013, Orlowsky and Seneviratne 2013). In addition, forcing from land use and land cover changes through modified albedo or turbulent fluxes can also affect the temperature variability in summer (Davin et al. 2014). These effects are important for better understanding the relationships between climate forcing and regional climate changes, and appear relevant for a recent discrepancy between trends in global mean temperature vs hot extremes over land (Seneviratne et al. 2014). This presentation will provide an overview on the underlying processes and on possible approaches for their consideration in attribution research. References:- Davin, E.L., S.I. Seneviratne, P. Ciais, A. Olioso, T. Wang, 2014: Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci., Published ahead of print June 23, 2014.- Mueller, B., and S.I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences, 109 (31), 12398-12403, doi: 10.1073/pnas.1204330109.- Orlowsky, B., and S.I. Seneviratne, 2013: Elusive drought: Uncertainty in observed trends and short- and long-term CMIP5 projections. Hydr. Earth Syst. Sci., 17, 1765-1781, doi:10.5194/hess-17-1765-2013- Seneviratne, S.I., N. Nicholls, et al., 2012: Changes in climate extremes and their impacts on the natural physical environment. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., et al. (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, pp. 109-230.- Seneviratne, S.I., et al

  13. Climate change scenarios of precipitation extremes in Central Europe from ENSEMBLES regional climate models

    Czech Academy of Sciences Publication Activity Database

    Gaál, Ľ.; Beranová, R.; Hlavčová, K.; Kyselý, Jan

    2014-01-01

    Roč. 2014, č. 943487 (2014), s. 1-14 ISSN 1687-9309 Institutional support: RVO:67179843 ; RVO:68378289 Keywords : precipitation extremes * regional climate models * climate change Subject RIV: EH - Ecology, Behaviour Impact factor: 0.946, year: 2014

  14. Robustness of Ensemble Climate Projections Analyzed with Climate Signal Maps: Seasonal and Extreme Precipitation for Germany

    Directory of Open Access Journals (Sweden)

    Susanne Pfeifer

    2015-05-01

    Full Text Available Climate signal maps can be used to identify regions where robust climate changes can be derived from an ensemble of climate change simulations. Here, robustness is defined as a combination of model agreement and the significance of the individual model projections. Climate signal maps do not show all information available from the model ensemble, but give a condensed view in order to be useful for non-climate scientists who have to assess climate change impact during the course of their work. Three different ensembles of regional climate projections have been analyzed regarding changes of seasonal mean and extreme precipitation (defined as the number of days exceeding the 95th percentile threshold of daily precipitation for Germany, using climate signal maps. Although the models used and the scenario assumptions differ for the three ensembles (representative concentration pathway (RCP 4.5 vs. RCP8.5 vs. A1B, some similarities in the projections of future seasonal and extreme precipitation can be seen. For the winter season, both mean and extreme precipitation are projected to increase. The strength, robustness and regional pattern of this increase, however, depends on the ensemble. For summer, a robust decrease of mean precipitation can be detected only for small regions in southwestern Germany and only from two of the three ensembles, whereas none of them projects a robust increase of summer extreme precipitation.

  15. Sea Extremes: Integrated impact assessment in coastal climate adaptation

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Knudsen, Per; Broge, Niels

    2016-01-01

    protection measures, topography, and infrastructure to provide a more complete picture of the water-related impact from climate change at an exposed coastal location. Results show that future sea extremes evaluated from extreme value statistics may, indeed, have a large impact. The integrated effects from......We investigate effects of sea level rise and a change in precipitation pattern on coastal flooding hazards. Historic and present in situ and satellite data of water and groundwater levels, precipitation, vertical ground motion, geology,and geotechnical soil properties are combined with flood...... research advances and projections for the future are updated....

  16. Generating and Visualizing Climate Indices using Google Earth Engine

    Science.gov (United States)

    Erickson, T. A.; Guentchev, G.; Rood, R. B.

    2017-12-01

    Climate change is expected to have largest impacts on regional and local scales. Relevant and credible climate information is needed to support the planning and adaptation efforts in our communities. The volume of climate projections of temperature and precipitation is steadily increasing, as datasets are being generated on finer spatial and temporal grids with an increasing number of ensembles to characterize uncertainty. Despite advancements in tools for querying and retrieving subsets of these large, multi-dimensional datasets, ease of access remains a barrier for many existing and potential users who want to derive useful information from these data, particularly for those outside of the climate modelling research community. Climate indices, that can be derived from daily temperature and precipitation data, such as annual number of frost days or growing season length, can provide useful information to practitioners and stakeholders. For this work the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset was loaded into Google Earth Engine, a cloud-based geospatial processing platform. Algorithms that use the Earth Engine API to generate several climate indices were written. The indices were chosen from the set developed by the joint CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI). Simple user interfaces were created that allow users to query, produce maps and graphs of the indices, as well as download results for additional analyses. These browser-based interfaces could allow users in low-bandwidth environments to access climate information. This research shows that calculating climate indices from global downscaled climate projection datasets and sharing them widely using cloud computing technologies is feasible. Further development will focus on exposing the climate indices to existing applications via the Earth Engine API, and building custom user interfaces for presenting climate indices to a diverse set of

  17. Future Projections of Fire Occurrence in Brazil Using EC-Earth Climate Model

    Directory of Open Access Journals (Sweden)

    Patrícia Silva

    Full Text Available Abstract Fire has a fundamental role in the Earth system as it influences global and local ecosystem patterns and processes, such as vegetation distribution and structure, the carbon cycle and climate. Since, in the global context, Brazil is one of the regions with higher fire activity, an assessment is here performed of the sensitivity of the wildfire regime in Brazilian savanna and shrubland areas to changes in regional climate during the 21st Century, for an intermediate scenario (RCP4.5 of climate change. The assessment is based on a spatial and temporal analysis of a meteorological fire danger index specifically developed for Brazilian biomes, which was evaluated based on regional climate simulations of temperature, relative humidity and precipitation using the Rossby Centre Regional Climate Model (RCA4 forced by the EC-Earth earth system model. Results show a systematic increase in the extreme levels of fire danger throughout the 21st Century that mainly results from the increase in maximum daily temperature, which rises by about 2 °C between 2005 and 2100. This study provides new insights about projected fire activity in Brazilian woody savannas associated to climate change and is expected to benefit the user community, from governmental policies to land management and climate researches.

  18. Introduction. Progress in Earth science and climate studies.

    Science.gov (United States)

    Thompson, J Michael T

    2008-12-28

    In this introductory paper, I review the 'visions of the future' articles prepared by top young scientists for the second of the two Christmas 2008 Triennial Issues of Phil. Trans. R. Soc.A, devoted respectively to astronomy and Earth science. Topics covered in the Earth science issue include: trace gases in the atmosphere; dynamics of the Antarctic circumpolar current; a study of the boundary between the Earth's rocky mantle and its iron core; and two studies of volcanoes and their plumes. A final section devoted to ecology and climate covers: the mathematical modelling of plant-soil interactions; the effects of the boreal forests on the Earth's climate; the role of the past palaeoclimate in testing and calibrating today's numerical climate models; and the evaluation of these models including the quantification of their uncertainties.

  19. Financial market response to extreme events indicating climatic change

    Science.gov (United States)

    Anttila-Hughes, J. K.

    2016-05-01

    A variety of recent extreme climatic events are considered to be strong evidence that the climate is warming, but these incremental advances in certainty often seem ignored by non-scientists. I identify two unusual types of events that are considered to be evidence of climate change, announcements by NASA that the global annual average temperature has set a new record, and the sudden collapse of major polar ice shelves, and then conduct an event study to test whether news of these events changes investors' valuation of energy companies, a subset of firms whose future performance is closely tied to climate change. I find evidence that both classes of events have influenced energy stock prices since the 1990s, with record temperature announcements on average associated with negative returns and ice shelf collapses associated with positive returns. I identify a variety of plausible mechanisms that may be driving these differential responses, discuss implications for energy markets' views on long-term regulatory risk, and conclude that investors not only pay attention to scientifically significant climate events, but discriminate between signals carrying different information about the nature of climatic change.

  20. Extreme climate, not extreme weather: the summer of 1816 in Geneva, Switzerland

    Directory of Open Access Journals (Sweden)

    R. Auchmann

    2012-02-01

    Full Text Available We analyze weather and climate during the "Year without Summer" 1816 using sub-daily data from Geneva, Switzerland, representing one of the climatically most severely affected regions. The record includes twice daily measurements and observations of air temperature, pressure, cloud cover, wind speed, and wind direction as well as daily measurements of precipitation. Comparing 1816 to a contemporary reference period (1799–1821 reveals that the coldness of the summer of 1816 was most prominent in the afternoon, with a shift of the entire distribution function of temperature anomalies by 3–4 °C. Early morning temperature anomalies show a smaller change for the mean, a significant decrease in the variability, and no changes in negative extremes. Analyzing cloudy and cloud-free conditions separately suggests that an increase in the number of cloudy days was to a significant extent responsible for these features. A daily weather type classification based on pressure, pressure tendency, and wind direction shows extremely anomalous frequencies in summer 1816, with only one day (compared to 20 in an average summer classified as high-pressure situation but a tripling of low-pressure situations. The afternoon temperature anomalies expected from only a change in weather types was much stronger negative in summer 1816 than in any other year. For precipitation, our analysis shows that the 80% increase in summer precipitation compared to the reference period can be explained by 80% increase in the frequency of precipitation, while no change could be found neither in the average intensity of precipitation nor in the frequency distribution of extreme precipitation. In all, the analysis shows that the regional circulation and local cloud cover played a dominant role. It also shows that the summer of 1816 was an example of extreme climate, not extreme weather.

  1. Nonlinear ecosystem services response to groundwater availability under climate extremes

    Science.gov (United States)

    Qiu, J.; Zipper, S. C.; Motew, M.; Booth, E.; Kucharik, C. J.; Steven, L. I.

    2017-12-01

    Depletion of groundwater has been accelerating at regional to global scales. Besides serving domestic, industrial and agricultural needs, in situ groundwater is also a key control on biological, physical and chemical processes across the critical zone, all of which underpin supply of ecosystem services essential for humanity. While there is a rich history of research on groundwater effects on subsurface and surface processes, understanding interactions, nonlinearity and feedbacks between groundwater and ecosystem services remain limited, and almost absent in the ecosystem service literature. Moreover, how climate extremes may alter groundwater effects on services is underexplored. In this research, we used a process-based ecosystem model (Agro-IBIS) to quantify groundwater effects on eight ecosystem services related to food, water and biogeochemical processes in an urbanizing agricultural watershed in the Midwest, USA. We asked: (1) Which ecosystem services are more susceptible to shallow groundwater influences? (2) Do effects of groundwater on ecosystem services vary under contrasting climate conditions (i.e., dry, wet and average)? (3) Where on the landscape are groundwater effects on ecosystem services most pronounced? (4) How do groundwater effects depend on water table depth? Overall, groundwater significantly impacted all services studied, with the largest effects on food production, water quality and quantity, and flood regulation services. Climate also mediated groundwater effects with the strongest effects occurring under dry climatic conditions. There was substantial spatial heterogeneity in groundwater effects across the landscape that is driven in part by spatial variations in water table depth. Most ecosystem services responded nonlinearly to groundwater availability, with most apparent groundwater effects occurring when the water table is shallower than a critical depth of 2.5-m. Our findings provide compelling evidence that groundwater plays a vital

  2. Cyclones and extreme windstorm events over Europe under climate change: Global and regional climate model diagnostics

    Science.gov (United States)

    Leckebusch, G. C.; Ulbrich, U.

    2003-04-01

    More than any changes of the climate system mean state conditions, the development of extreme events may influence social, economic and legal aspects of our society. This linkage results from the impact of extreme climate events (natural hazards) on environmental systems which again are directly linked to human activities. Prominent examples from the recent past are the record breaking rainfall amounts of August 2002 in central Europe which produced widespread floodings or the wind storm Lothar of December 1999. Within the MICE (Modelling the Impact of Climate Extremes) project framework an assessment of the impact of changes in extremes will be done. The investigation is carried out for several different impact categories as agriculture, energy use and property damage. Focus is laid on the diagnostics of GCM and RCM simulations under different climate change scenarios. In this study we concentrate on extreme windstorms and their relationship to cyclone activity in the global HADCM3 as well as in the regional HADRM3 model under two climate change scenarios (SRESA2a, B2a). In order to identify cyclones we used an objective algorithm from Murry and Simmonds which was widely tested under several different conditions. A slight increase in the occurrence of systems is identified above northern parts of central Europe for both scenarios. For more severe systems (core pressure Spain) a shift to more deep cyclones connected with an increasing number of strong wind events is found.

  3. Climate change and health in Earth's future

    Science.gov (United States)

    Bowles, Devin C.; Butler, Colin D.; Friel, Sharon

    2014-02-01

    Threats to health from climate change are increasingly recognized, yet little research into the effects upon health systems is published. However, additional demands on health systems are increasingly documented. Pathways include direct weather impacts, such as amplified heat stress, and altered ecological relationships, including alterations to the distribution and activity of pathogens and vectors. The greatest driver of demand on future health systems from climate change may be the alterations to socioeconomic systems; however, these "tertiary effects" have received less attention in the health literature. Increasing demands on health systems from climate change will impede health system capacity. Changing weather patterns and sea-level rise will reduce food production in many developing countries, thus fostering undernutrition and concomitant disease susceptibility. Associated poverty will impede people's ability to access and support health systems. Climate change will increase migration, potentially exposing migrants to endemic diseases for which they have limited resistance, transporting diseases and fostering conditions conducive to disease transmission. Specific predictions of timing and locations of migration remain elusive, hampering planning and misaligning needs and infrastructure. Food shortages, migration, falling economic activity, and failing government legitimacy following climate change are also "risk multipliers" for conflict. Injuries to combatants, undernutrition, and increased infectious disease will result. Modern conflict often sees health personnel and infrastructure deliberately targeted and disease surveillance and eradication programs obstructed. Climate change will substantially impede economic growth, reducing health system funding and limiting health system adaptation. Modern medical care may be snatched away from millions who recently obtained it.

  4. Effects of primitive photosynthesis on Earth's early climate system

    Science.gov (United States)

    Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.

    2018-01-01

    The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

  5. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China

    KAUST Repository

    Gao, Tao; Wang, Huixia Judy; Zhou, Tianjun

    2017-01-01

    of precipitation extremes over monsoon regions in China (MRC). However, research on monsoon extremes in China and their associations with climate variables is limited. In this study, we examine the space-time variations of extreme precipitation across the MRC

  6. Modelling extreme climatic events in Guadalquivir Estuary ( Spain)

    Science.gov (United States)

    Delgado, Juan; Moreno-Navas, Juan; Pulido, Antoine; García-Lafuente, Juan; Calero Quesada, Maria C.; García, Rodrigo

    2017-04-01

    Extreme climatic events, such as heat waves and severe storms are predicted to increase in frequency and magnitude as a consequence of global warming but their socio-ecological effects are poorly understood, particularly in estuarine ecosystems. The Guadalquivir Estuary has been anthropologically modified several times, the original salt marshes have been transformed to grow rice and cotton and approximately one-fourth of the total surface of the estuary is now part of two protected areas, one of them is a UNESCO, MAB Biosphere Reserve. The climatic events are most likely to affect Europe in forthcoming decades and a further understanding how these climatic disturbances drive abrupt changes in the Guadalquivir estuary is needed. A barotropic model has been developed to study how severe storm events affects the estuary by conducting paired control and climate-events simulations. The changes in the local wind and atmospheric pressure conditions in the estuary have been studied in detail and several scenarios are obtained by running the model under control and real storm conditions. The model output has been validated with in situ water elevation and good agreement between modelled and real measurements have been obtained. Our preliminary results show that the model demonstrated the capability describe of the tide-surge levels in the estuary, opening the possibility to study the interaction between climatic events and the port operations and food production activities. The barotropic hydrodynamic model provide spatially explicit information on the key variables governing the tide dynamics of estuarine areas under severe climatic scenarios . The numerical model will be a powerful tool in future climate change mitigation and adaptation programs in a complex socio-ecological system.

  7. Extreme winds over Europe in the ENSEMBLES regional climate models

    Directory of Open Access Journals (Sweden)

    S. D. Outten

    2013-05-01

    Full Text Available Extreme winds cause vast amounts of damage every year and represent a major concern for numerous industries including construction, afforestation, wind energy and many others. Under a changing climate, the intensity and frequency of extreme events are expected to change, and accurate projections of these changes will be invaluable to decision makers and society as a whole. This work examines four regional climate model downscalings over Europe following the SRES A1B scenario from the "ENSEMBLE-based Predictions of Climate Changes and their Impacts" project (ENSEMBLES. It investigates the projected changes in the 50 yr return wind speeds and the associated uncertainties. This is accomplished by employing the peaks-over-threshold method with the use of the generalised Pareto distribution. The models show that, for much of Europe, the 50 yr return wind is projected to change by less than 2 m s−1, while the uncertainties associated with the statistical estimates are larger than this. In keeping with previous works in this field, the largest source of uncertainty is found to be the inter-model spread, with some locations showing differences in the 50 yr return wind of over 20 m s−1 between two different downscalings.

  8. Preface: Impacts of extreme climate events and disturbances on carbon dynamics

    Science.gov (United States)

    Xiao, Jingfeng; Liu, Shuguang; Stoy, Paul C.

    2016-01-01

    The impacts of extreme climate events and disturbances (ECE&D) on the carbon cycle have received growing attention in recent years. This special issue showcases a collection of recent advances in understanding the impacts of ECE&D on carbon cycling. Notable advances include quantifying how harvesting activities impact forest structure, carbon pool dynamics, and recovery processes; observed drastic increases of the concentrations of dissolved organic carbon and dissolved methane in thermokarst lakes in western Siberia during a summer warming event; disentangling the roles of herbivores and fire on forest carbon dioxide flux; direct and indirect impacts of fire on the global carbon balance; and improved atmospheric inversion of regional carbon sources and sinks by incorporating disturbances. Combined, studies herein indicate several major research needs. First, disturbances and extreme events can interact with one another, and it is important to understand their overall impacts and also disentangle their effects on the carbon cycle. Second, current ecosystem models are not skillful enough to correctly simulate the underlying processes and impacts of ECE&D (e.g., tree mortality and carbon consequences). Third, benchmark data characterizing the timing, location, type, and magnitude of disturbances must be systematically created to improve our ability to quantify carbon dynamics over large areas. Finally, improving the representation of ECE&D in regional climate/earth system models and accounting for the resulting feedbacks to climate are essential for understanding the interactions between climate and ecosystem dynamics.

  9. Urban climate effects on extreme temperatures in Madison, Wisconsin, USA

    Science.gov (United States)

    Schatz, Jason; Kucharik, Christopher J.

    2015-09-01

    As climate change increases the frequency and intensity of extreme heat, cities and their urban heat island (UHI) effects are growing, as are the urban populations encountering them. These mutually reinforcing trends present a growing risk for urban populations. However, we have limited understanding of urban climates during extreme temperature episodes, when additional heat from the UHI may be most consequential. We observed a historically hot summer and historically cold winter using an array of up to 150 temperature and relative humidity sensors in and around Madison, Wisconsin, an urban area of population 402 000 surrounded by lakes and a rural landscape of agriculture, forests, wetlands, and grasslands. In the summer of 2012 (third hottest since 1869), Madison’s urban areas experienced up to twice as many hours ⩾32.2 °C (90 °F), mean July TMAX up to 1.8 °C higher, and mean July TMIN up to 5.3 °C higher than rural areas. During a record setting heat wave, dense urban areas spent over four consecutive nights above the National Weather Service nighttime heat stress threshold of 26.7 °C (80 °F), while rural areas fell below 26.7 °C nearly every night. In the winter of 2013-14 (coldest in 35 years), Madison’s most densely built urban areas experienced up to 40% fewer hours ⩽-17.8 °C (0 °F), mean January TMAX up to 1 °C higher, and mean January TMIN up to 3 °C higher than rural areas. Spatially, the UHI tended to be most intense in areas with higher population densities. Temporally, both daytime and nighttime UHIs tended to be slightly more intense during more-extreme heat days compared to average summer days. These results help us understand the climates for which cities must prepare in a warming, urbanizing world.

  10. Extreme states of matter on earth and in the cosmos

    CERN Document Server

    Fortov, Vladimir E

    2011-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures. Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview.  

  11. Using Extreme Tropical Precipitation Statistics to Constrain Future Climate States

    Science.gov (United States)

    Igel, M.; Biello, J. A.

    2017-12-01

    Tropical precipitation is characterized by a rapid growth in mean intensity as the column humidity increases. This behavior is examined in both a cloud resolving model and with high-resolution observations of precipitation and column humidity from CloudSat and AIRS, respectively. The model and the observations exhibit remarkable consistency and suggest a new paradigm for extreme precipitation. We show that the total precipitation can be decomposed into a product of contributions from a mean intensity, a probability of precipitation, and a global PDF of column humidity values. We use the modeling and observational results to suggest simple, analytic forms for each of these functions. The analytic representations are then used to construct a simple expression for the global accumulated precipitation as a function of the parameters of each of the component functions. As the climate warms, extreme precipitation intensity and global precipitation are expected to increase, though at different rates. When these predictions are incorporated into the new analytic expression for total precipitation, predictions for changes due to global warming to the probability of precipitation and the PDF of column humidity can be made. We show that strong constraints can be imposed on the future shape of the PDF of column humidity but that only weak constraints can be set on the probability of precipitation. These are largely imposed by the intensification of extreme precipitation. This result suggests that understanding precisely how extreme precipitation responds to climate warming is critical to predicting other impactful properties of global hydrology. The new framework can also be used to confirm and discount existing theories for shifting precipitation.

  12. Climate extremes drive changes in functional community structure.

    Science.gov (United States)

    Boucek, Ross E; Rehage, Jennifer S

    2014-06-01

    The response of communities to climate extremes can be quite variable. Much of this variation has been attributed to differences in community-specific functional trait diversity, as well as community composition. Yet, few if any studies have explicitly tested the response of the functional trait structure of communities following climate extremes (CEs). Recently in South Florida, two independent, but sequential potential CEs took place, a 2010 cold front, followed by a 2011 drought, both of which had profound impacts on a subtropical estuarine fish community. These CEs provided an opportunity to test whether the structure of South Florida fish communities following each extreme was a result of species-specific differences in functional traits. From historical temperature (1927-2012) and freshwater inflows records into the estuary (1955-2012), we determined that the cold front was a statistically extreme disturbance, while the drought was not, but rather a decadal rare disturbance. The two disturbances predictably affected different parts of functional community structure and thus different component species. The cold front virtually eliminated tropical species, including large-bodied snook, mojarra species, nonnative cichlids, and striped mullet, while having little affect on temperate fishes. Likewise, the drought severely impacted freshwater fishes including Florida gar, bowfin, and two centrarchids, with little effect on euryhaline species. Our findings illustrate the ability of this approach to predict and detect both the filtering effects of different types of disturbances and the implications of the resulting changes in community structure. Further, we highlight the value of this approach to developing predictive frameworks for better understanding community responses to global change. © 2014 John Wiley & Sons Ltd.

  13. The Sun and the Earth's Climate

    Directory of Open Access Journals (Sweden)

    Haigh Joanna D.

    2007-10-01

    Full Text Available Variations in solar activity, at least as observed in numbers of sunspots, have been apparent since ancient times but to what extent solar variability may affect global climate has been far more controversial. The subject had been in and out of fashion for at least two centuries but the current need to distinguish between natural and anthropogenic causes of climate change has brought it again to the forefront of meteorological research. The absolute radiometers carried by satellites since the late 1970s have produced indisputable evidence that total solar irradiance varies systematically over the 11-year sunspot cycle, relegating to history the term “solar constant”, but it is difficult to explain how the apparent response to the Sun, seen in many climate records, can be brought about by these rather small changes in radiation. This article reviews some of the evidence for a solar influence on the lower atmosphere and discusses some of the mechanisms whereby the Sun may produce more significant impacts than might be surmised from a consideration only of variations in total solar irradiance.

  14. Heliotropic dust rings for Earth climate engineering

    Science.gov (United States)

    Bewick, R.; Lücking, C.; Colombo, C.; Sanchez, J. P.; McInnes, C. R.

    2013-04-01

    This paper examines the concept of a Sun-pointing elliptical Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earth's J2 oblateness perturbation, is used to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geoengineering strategy. An analytical model is used to predict the orbit evolution of the dust ring due to solar-radiation pressure and the J2 effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbit decay of the material is considered. Moreover, the novel orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J2 effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side of the orbit. It is envisaged that small dust grains can be released from a circular generator orbit with an initial impulse to enter an eccentric orbit with Sun-facing apogee. Finally, a lowest estimate of 1 × 1012 kg of material is computed as the total mass required to offset the effects of global warming.

  15. Making the Earth to Life Connection Using Climate Change

    Science.gov (United States)

    Haine, D. B.; Berbeco, M.

    2016-12-01

    From ocean acidification to changes in air quality to shifts in the range of disease vectors, there are many opportunities for educators to make the earth science to life science connection by incorporating the impacts of climate change on organisms and entire ecosystems and by describing how living organisms impact climate. NCSE's study in Science found that 86% of life science teachers are teaching climate, but few admit they have any formal climate science training. This session will introduce activities we developed that utilize the 2014 National Climate Assessment, data visualizations, technology tools and models to allow students to explore the evidence that climate change is impacting life. Translating the NCA into classroom activities is an approach that becomes more pertinent with the advent of the Next Generation Science Standards (NGSS). Using the NCA and the NGSS we demonstrate strategies for weaving the concept of climate change into an already packed life science curriculum by enhancing rather than displacing content and ultimately promoting integration of science and engineering practices into instruction. Since the fall of 2014 we have engaged approximately 200 K-12 educators at local, state, regional and national teacher professional development events. Here we will summarize what we have learned from science teachers about how they address life science impacts of climate change and we will summarize evaluation data to inform future efforts to engage life science educators in light of the recent USGCRP Climate and Health Assessment and the upcoming 4th National Climate Assessment.

  16. Is extreme climate or moderate climate more conducive to longevity in China?

    Science.gov (United States)

    Huang, Yi; Rosenberg, Mark; Wang, Yingli

    2018-02-01

    Climate is closely related to human longevity. In China, there are many climate types. According to national population censuses from 1982 to 2000, most provinces with a high ratio of centenarians are located in western and northwestern China far from the sea; these areas are characterized by a dry, cold climate, very high altitude, very high daily temperature range, strong winds, and partial hypoxia. Meanwhile, provinces with a high ratio of nonagenarians from 1982 to 2000 are located in southern China near the sea. Previous studies have attributed the high ratio of centenarians in western and northwestern China to the extreme local climate. However, centenarians in these areas decreased greatly in 2010, whereas residents in southern China frequently reached 90 to 100 years old in 2010. This study aims to explain this strange phenomenon and find whether extreme climate in Tibetan plateau and northwestern China or moderate climate in southern China is more conducive to longevity. The study found that mortality rate in Tibetan plateau is much higher than southern China, then a population evolution experiment was proposed to compare longevity indicators between low mortality rate and high mortality rate and shows that longevity indicators will decrease in the near future and increase above their original levels after several decades when the mortality rate is decreased. Results of this study show individuals in northwestern China do not live as long as those in eastern and southern China. A moderate climate is more conducive to longevity than extreme climate in China. The longevity of a region should be judged by long-term longevity indicators.

  17. Urban Heat Island phenomenon in extreme continental climate (Astana, Kazakhstan)

    Science.gov (United States)

    Konstantinov, Pavel; Akhmetova, Alina

    2015-04-01

    Urban Heat Island (UHI) phenomenon is well known in scientific literature since first half of the 19th century [1]. By now a wide number of world capitals is described from climatological point of view, especially in mid-latitudes. In beginning of XXI century new studies focus on heat island of tropical cities. However dynamics UHI in extreme continental climates is insufficiently investigated, due to the fact that there isn't large cities in Europe and Northern America within that climate type. In this paper we investigate seasonal and diurnal dynamics UHI intensity for Astana, capital city of Kazakhstan (population larger than 835 000 within the city) including UHI intensity changes on different time scales. Now (since 1998) Astana is the second coldest capital city in the world after Ulaanbaatar, Mongolia [3] For this study we use the UHI investigation technology, described in [2]. According to this paper, we selected three stations: one located into city in high and midrise buildings area (including extensive lowrise and high-energy industrial - LCZ classification) and two others located in rural site (sparsely built or open-set and lightweight lowrise according LCZ classification). Also these stations must be close by distance (less than 100 km) and altitude. Therefore, first for Astana city were obtained numerical evaluations for UHI climate dynamics, UHI dependence of synoptic situations and total UHI climatology on monthly and daily averages. References: 1.Howard, L. (1833) The Climate of London, Deduced from Meteorological Observations. Volume 2, London. 2.Kukanova E.A., Konstantinov P.I. An urban heat islands climatology in Russia and linkages to the climate change In Geophysical Research Abstracts, volume 16 of EGU General Assembly, pages EGU2014-10833-1, Germany, 2014. Germany. 3.www.pogoda.ru.net

  18. Autochthonous Chikungunya Transmission and Extreme Climate Events in Southern France.

    Science.gov (United States)

    Roiz, David; Boussès, Philippe; Simard, Frédéric; Paupy, Christophe; Fontenille, Didier

    2015-06-01

    Extreme precipitation events are increasing as a result of ongoing global warming, but controversy surrounds the relationship between flooding and mosquito-borne diseases. A common view among the scientific community and public health officers is that heavy rainfalls have a flushing effect on breeding sites, which negatively affects vector populations, thereby diminishing disease transmission. During 2014 in Montpellier, France, there were at least 11 autochthonous cases of chikungunya caused by the invasive tiger mosquito Aedes albopictus in the vicinity of an imported case. We show that an extreme rainfall event increased and extended the abundance of the disease vector Ae. albopictus, hence the period of autochthonous transmission of chikungunya. We report results from close monitoring of the adult and egg population of the chikungunya vector Ae. albopictus through weekly sampling over the entire mosquito breeding season, which revealed an unexpected pattern. Statistical analysis of the seasonal dynamics of female abundance in relation to climatic factors showed that these relationships changed after the heavy rainfall event. Before the inundations, accumulated temperatures are the most important variable predicting Ae. albopictus seasonal dynamics. However, after the inundations, accumulated rainfall over the 4 weeks prior to capture predicts the seasonal dynamics of this species and extension of the transmission period. Our empirical data suggests that heavy rainfall events did increase the risk of arbovirus transmission in Southern France in 2014 by favouring a rapid rise in abundance of vector mosquitoes. Further studies should now confirm these results in different ecological contexts, so that the impact of global change and extreme climatic events on mosquito population dynamics and the risk of disease transmission can be adequately understood.

  19. Extreme climatic events: reducing ecological and social systems vulnerabilities; Evenements climatiques extremes: reduire les vulnerabilites des systemes ecologiques et sociaux

    Energy Technology Data Exchange (ETDEWEB)

    Decamps, H.; Amatore, C.; Bach, J.F.; Baccelli, F.; Balian, R.; Carpentier, A.; Charnay, P.; Cuzin, F.; Davier, M.; Dercourt, J.; Dumas, C.; Encrenaz, P.; Jeannerod, M.; Kahane, J.P.; Meunier, B.; Rebut, P.H.; Salencon, J.; Spitz, E.; Suquet, P.; Taquet, P.; Valleron, A.J.; Yoccoz, J.C.; Chapron, J.Y.; Fanon, J.; Andre, J.C.; Auger, P.; Bourrelier, P.H.; Combes, C.; Derrida, B.; Laubier, L.; Laval, K.; Le Maho, Y.; Marsily, G. De; Petit, M.; Schmidt-Laine, C.; Birot, Y.; Peyron, J.L.; Seguin, B.; Barles, S.; Besancenot, J.P.; Michel-Kerjan, E.; Hallegatte, S.; Dumas, P.; Ancey, V.; Requier-Desjardins, M.; Ducharnes, A.; Ciais, P.; Peylin, P.; Kaniewski, D.; Van Campo, E.; Planton, S.; Manuguerra, J.C.; Le Bars, Y.; Lagadec, P.; Kessler, D.; Pontikis, C.; Nussbaum, R.

    2010-07-01

    The Earth has to face more and more devastating extreme events. Between 1970 and 2009, at the worldwide scale, the 25 most costly catastrophes all took place after 1987, and for more than half of them after 2001. Among these 25 catastrophes, 23 were linked to climate conditions. France was not spared: the December 1999 storms led to 88 deaths, deprived 3.5 million households of electricity and costed more than 9 billion euros. The 2003 heat wave led to about 15000 supernumerary deaths between August 1 and August 20. The recent Xynthia storm, with its flood barrier ruptures, provoked 53 deaths in addition to many other tragedies that took place in areas liable to flooding. In the present day context of climate change, we know that we must be prepared to even more dangerous events, sometimes unexpected before. These events can have amplified effects because of the urban development, the overpopulation of coastal areas and the anthropization of natural environments. They represent real 'poverty traps' for the poorest countries of the Earth. The anticipation need is real but is our country ready to answer it? Does it have a sufficient contribution to international actions aiming at reducing risks? Is his scientific information suitable? France is not less vulnerable than other countries. It must reinforce its prevention, its response and resilience capacities in the framework of integrated policies of catastrophes risk management as well as in the framework of climate change adaptation plans. This reinforcement supposes the development of vigilance systems with a better risk coverage and benefiting by the advances gained in the meteorology and health domains. It supposes a town and country planning allowing to improve the viability of ecological and social systems - in particular by protecting their diversity. Finally, this reinforcement requires inciting financial coverage solutions for catastrophes prevention and for their management once they have taken

  20. Scale dependency of regional climate modeling of current and future climate extremes in Germany

    Science.gov (United States)

    Tölle, Merja H.; Schefczyk, Lukas; Gutjahr, Oliver

    2017-11-01

    A warmer climate is projected for mid-Europe, with less precipitation in summer, but with intensified extremes of precipitation and near-surface temperature. However, the extent and magnitude of such changes are associated with creditable uncertainty because of the limitations of model resolution and parameterizations. Here, we present the results of convection-permitting regional climate model simulations for Germany integrated with the COSMO-CLM using a horizontal grid spacing of 1.3 km, and additional 4.5- and 7-km simulations with convection parameterized. Of particular interest is how the temperature and precipitation fields and their extremes depend on the horizontal resolution for current and future climate conditions. The spatial variability of precipitation increases with resolution because of more realistic orography and physical parameterizations, but values are overestimated in summer and over mountain ridges in all simulations compared to observations. The spatial variability of temperature is improved at a resolution of 1.3 km, but the results are cold-biased, especially in summer. The increase in resolution from 7/4.5 km to 1.3 km is accompanied by less future warming in summer by 1 ∘C. Modeled future precipitation extremes will be more severe, and temperature extremes will not exclusively increase with higher resolution. Although the differences between the resolutions considered (7/4.5 km and 1.3 km) are small, we find that the differences in the changes in extremes are large. High-resolution simulations require further studies, with effective parameterizations and tunings for different topographic regions. Impact models and assessment studies may benefit from such high-resolution model results, but should account for the impact of model resolution on model processes and climate change.

  1. Hemispheric symmetry of the Earth's Energy Balance as a fundamental constraint on the Earth's climate

    Science.gov (United States)

    Stephens, G. L.; Webster, P. J.; OBrien, D. M.

    2013-12-01

    We currently lack a quantitative understanding of how the Earth's energy balance and the poleward energy transport adjust to different forcings that determine climate change. Currently, there are no constraints that guide this understanding. We will demonstrate that the Earth's energy balance exhibits a remarkable symmetry about the equator, and that this symmetry is a necessary condition of a steady state climate. Our analysis points to clouds as the principal agent that highly regulates this symmetry and sets the steady state. The existence of this thermodynamic steady-state constraint on climate and the symmetry required to sustain it leads to important inferences about the synchronous nature of climate changes between hemispheres, offering for example insights on mechanisms that can sustain global ice ages forced by asymmetric hemispheric solar radiation variations or how climate may respond to increases in greenhouse gas concentration. Further inferences regarding cloud effects on climate can also be deduced without resorting to the complex and intricate processes of cloud formation, whose representation continues to challenge the climate modeling community. The constraint suggests cloud feedbacks must be negative buffering the system against change. We will show that this constraint doesn't exist in the current CMIP5 model experiments and the lack of such a constraint suggests there is insufficient buffering in models in response to external forcings

  2. Web-based Visual Analytics for Extreme Scale Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Steed, Chad A [ORNL; Evans, Katherine J [ORNL; Harney, John F [ORNL; Jewell, Brian C [ORNL; Shipman, Galen M [ORNL; Smith, Brian E [ORNL; Thornton, Peter E [ORNL; Williams, Dean N. [Lawrence Livermore National Laboratory (LLNL)

    2014-01-01

    In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via new visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.

  3. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    Energy Technology Data Exchange (ETDEWEB)

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the in-teractions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The actual formation, abundance, composition, and effects of biological aerosols and the atmospheric microbi-ome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research and highlights recent advances in terms of bioaerosol identification, characterization, transport, and transfor-mation processes, as well as their interactions with climate, health, and ecosystems, focus-ing on the role bioaerosols play in the Earth system.

  4. Terraforming the Planets and Climate Change Mitigation on Earth

    Science.gov (United States)

    Toon, O. B.

    2008-12-01

    Hopefully, purposeful geo-engineering of the Earth will remain a theoretical concept. Of course, we have already inadvertently changed the Earth, and over geologic history life has left an indelible imprint on our planet. We can learn about geo-engineering schemes by reference to Earth history, for example climate changes after volcanic eruptions provide important clues to using sulfates to modify the climate. The terrestrial planets and Titan offer additional insights. For instance, Mars and Venus both have carbon dioxide dominated greenhouses. Both have more than 10 times as much carbon dioxide in their atmospheres as Earth, and both absorb less sunlight than Earth, yet one is much colder than Earth and one is much hotter. These facts provide important insights into carbon dioxide greenhouses that I will review. Mars cools dramatically following planet wide dust storms, and Titan has what is referred to as an anti- greenhouse climate driven by aerosols. These data can be used to reassure us that we can model aerosol caused changes to the climate of a planet, and also provide examples of aerosols offsetting a gas-driven greenhouse effect. People have long considered whether we might make the other planets habitable. While most of the schemes considered belong in the realm of science fiction, it is possible that some schemes might be practical. Terraforming brings to mind a number of issues that are thought provoking, but not so politically charged as geo-engineering. For example: What criteria define habitability, is it enough for people to live in isolated glass enclosures, or do we need to walk freely on the planet? Different creatures have different needs. Is a planet habitable if plants can thrive in the open, or do animals also need to be free? Are the raw materials present on any planet to make it habitable? If not, can we make the materials, or do we have to import them? Is it ethical to change a planetary climate? What if there are already primitive

  5. 2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-27

    The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities. The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.

  6. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts

    Science.gov (United States)

    Frank, Dorothea; Reichstein, Markus; Bahn, Michael; Thonicke, Kirsten; Frank, David; Mahecha, Miguel D; Smith, Pete; van der Velde, Marijn; Vicca, Sara; Babst, Flurin; Beer, Christian; Buchmann, Nina; Canadell, Josep G; Ciais, Philippe; Cramer, Wolfgang; Ibrom, Andreas; Miglietta, Franco; Poulter, Ben; Rammig, Anja; Seneviratne, Sonia I; Walz, Ariane; Wattenbach, Martin; Zavala, Miguel A; Zscheischler, Jakob

    2015-01-01

    Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global

  7. Sea Extremes: Integrated impact assessment in coastal climate adaptation

    Science.gov (United States)

    Sorensen, Carlo; Knudsen, Per; Broge, Niels; Molgaard, Mads; Andersen, Ole

    2016-04-01

    We investigate effects of sea level rise and a change in precipitation pattern on coastal flooding hazards. Historic and present in situ and satellite data of water and groundwater levels, precipitation, vertical ground motion, geology, and geotechnical soil properties are combined with flood protection measures, topography, and infrastructure to provide a more complete picture of the water-related impact from climate change at an exposed coastal location. Results show that future sea extremes evaluated from extreme value statistics may, indeed, have a large impact. The integrated effects from future storm surges and other geo- and hydro-parameters need to be considered in order to provide for the best protection and mitigation efforts, however. Based on the results we present and discuss a simple conceptual model setup that can e.g. be used for 'translation' of regional sea level rise evidence and projections to concrete impact measures. This may be used by potentially affected stakeholders -often working in different sectors and across levels of governance, in a common appraisal of the challenges faced ahead. The model may also enter dynamic tools to evaluate local impact as sea level research advances and projections for the future are updated.

  8. Earth Science Week 2009, "Understanding Climate", Highlights and News Clippings

    Energy Technology Data Exchange (ETDEWEB)

    Robeck, Edward C. [American Geological Inst., Alexandria, VA (United States)

    2010-01-05

    The American Geological Institute (AGI) proposes to expand its influential Earth Science Week Program in 2009, with the support of the U.S. Department of Energy, to disseminate DOE's key messages, information, and resources on climate education and to include new program components. These components, ranging from online resources to live events and professional networks, would significantly increase the reach and impact of AGI's already successful geoscience education and public awareness effort in the United States and abroad in 2009, when the campaign's theme will be "Understanding Climate."

  9. Climate change and the impact of extreme temperatures on aviation

    Science.gov (United States)

    Coffel, E.; Horton, R.

    2014-12-01

    Weather is the most significant factor affecting aircraft operations, accounting for 70-80% of passenger delays and costing airlines hundreds of millions of dollars per year in lost revenue. Temperature and airport elevation significantly influence the maximum allowable takeoff weight of an aircraft by changing the surface air density and thus the lift produced at a given speed. For a given runway length, airport elevation, and aircraft type there is a temperature threshold above which the airplane cannot take off at its maximum weight and thus must be weight restricted. The number of summer days necessitating weight restriction has increased since 1980 along with the observed increase in surface temperature. Climate change is projected to increase mean temperatures at all airports and significantly increase the frequency and severity of extreme heat events at some. These changes will negatively affect aircraft performance, leading to increased weight restrictions especially at airports with short runways and little room to expand. For a Boeing 737-800 aircraft, we find that the number of weight restriction days between May and September will increase by 50-100% at four major airports in the United States by 2050-2070 under the RCP8.5 high emissions scenario. These performance reductions may have a significant economic effect on the airline industry, leading to lower profits and higher passenger fares. Increased weight restrictions have previously been identified as potential impacts of climate change, but this study is the first to quantify the effect of higher temperatures on commercial aviation.

  10. JPL's Role in Advancing Earth System Science to Meet the Challenges of Climate and Environmental Change

    Science.gov (United States)

    Evans, Diane

    2012-01-01

    Objective 2.1.1: Improve understanding of and improve the predictive capability for changes in the ozone layer, climate forcing, and air quality associated with changes in atmospheric composition. Objective 2.1.2: Enable improved predictive capability for weather and extreme weather events. Objective 2.1.3: Quantify, understand, and predict changes in Earth s ecosystems and biogeochemical cycles, including the global carbon cycle, land cover, and biodiversity. Objective 2.1.4: Quantify the key reservoirs and fluxes in the global water cycle and assess water cycle change and water quality. Objective 2.1.5: Improve understanding of the roles of the ocean, atmosphere, land and ice in the climate system and improve predictive capability for its future evolution. Objective 2.1.6: Characterize the dynamics of Earth s surface and interior and form the scientific basis for the assessment and mitigation of natural hazards and response to rare and extreme events. Objective 2.1.7: Enable the broad use of Earth system science observations and results in decision-making activities for societal benefits.

  11. Climate services for an urban area (Baia Mare City, Romania) with a focus on climate extremes

    Science.gov (United States)

    Sima, Mihaela; Micu, Dana; Dragota, Carmen-Sofia; Mihalache, Sorin

    2013-04-01

    The Baia Mare Urban System is located in the north-western part of Romania, with around 200,000 inhabitants and represents one of the most important former mining areas in the country, whose socioeconomic profile and environmental conditions have greatly changed over the last 20 years during the transition and post-transition period. Currently the mining is closed in the area, but the historical legacy of this activity has implications in terms of economic growth, social and cultural developments and environmental quality. Baia Mare city lies in an extended depression, particularly sheltered by the mountain and hilly regions located in the north and respectively, in the south-south-eastern part of it, which explains the high frequency of calm conditions and low airstream channeling occurrences. This urban system has a typically moderate temperate-continental climate, subject to frequent westerly airflows (moist), which moderate the thermal regime (without depicting severe extremes, both positive and negative) and enhance the precipitation one (entailing a greater frequency of wet extremes). During the reference period (1971-2000), the climate change signal in the area is rather weak and not statistically significant. However, since the mid 1980s, the warming signal became more evident from the observational data (Baia Mare station), showing a higher frequency of dry spells and positive extremes. The modelling experiments covering the 2021-2050 time horizon using regional (RM5.1/HadRM3Q0/RCA3) and global (ARPEGE/HadCM3Q0/BCM/ECHAM5) circulation models carried out within the ECLISE FP7 project suggest an ongoing temperature rise, associated to an intensification of temperature and precipitation extremes. In this context, the aim of this study was to evaluate how the local authorities consider and include climate change in their activity, as well as in the development plans (e.g. territorial, economic and social development plans). Individual interviews have been

  12. Climate change impacts on extreme events in the United States: an uncertainty analysis

    Science.gov (United States)

    Extreme weather and climate events, such as heat waves, droughts and severe precipitation events, have substantial impacts on ecosystems and the economy. However, future climate simulations display large uncertainty in mean changes. As a result, the uncertainty in future changes ...

  13. Games and Simulations for Climate, Weather and Earth Science Education

    Science.gov (United States)

    Russell, R. M.; Clark, S.

    2015-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.

  14. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins.

    Science.gov (United States)

    Wijngaard, René R; Lutz, Arthur F; Nepal, Santosh; Khanal, Sonu; Pradhananga, Saurav; Shrestha, Arun B; Immerzeel, Walter W

    2017-01-01

    Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush-Himalayan region.

  15. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins.

    Directory of Open Access Journals (Sweden)

    René R Wijngaard

    Full Text Available Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush-Himalayan region.

  16. Potential climatic impact of organic haze on early Earth.

    Science.gov (United States)

    Hasenkopf, Christa A; Freedman, Miriam A; Beaver, Melinda R; Toon, Owen B; Tolbert, Margaret A

    2011-03-01

    We have explored the direct and indirect radiative effects on climate of organic particles likely to have been present on early Earth by measuring their hygroscopicity and cloud nucleating ability. The early Earth analog aerosol particles were generated via ultraviolet photolysis of an early Earth analog gas mixture, which was designed to mimic possible atmospheric conditions before the rise of oxygen. An analog aerosol for the present-day atmosphere of Saturn's moon Titan was tested for comparison. We exposed the early Earth aerosol to a range of relative humidities (RHs). Water uptake onto the aerosol was observed to occur over the entire RH range tested (RH=80-87%). To translate our measurements of hygroscopicity over a specific range of RHs into their water uptake ability at any RH 100%, we relied on the hygroscopicity parameter κ, developed by Petters and Kreidenweis. We retrieved κ=0.22 ±0.12 for the early Earth aerosol, which indicates that the humidified aerosol (RH 100%). In regions where the haze was dominant, it is expected that low particle concentrations, once activated into cloud droplets, would have created short-lived, optically thin clouds. Such clouds, if predominant on early Earth, would have had a lower albedo than clouds today, thereby warming the planet relative to current-day clouds. © Mary Ann Liebert, Inc.

  17. Climate network analysis of regional precipitation extremes: The true story told by event synchronization

    Science.gov (United States)

    Odenweller, Adrian; Donner, Reik V.

    2017-04-01

    Over the last decade, complex network methods have been frequently used for characterizing spatio-temporal patterns of climate variability from a complex systems perspective, yielding new insights into time-dependent teleconnectivity patterns and couplings between different components of the Earth climate. Among the foremost results reported, network analyses of the synchronicity of extreme events as captured by the so-called event synchronization have been proposed to be powerful tools for disentangling the spatio-temporal organization of particularly extreme rainfall events and anticipating the timing of monsoon onsets or extreme floodings. Rooted in the analysis of spike train synchrony analysis in the neurosciences, event synchronization has the great advantage of automatically classifying pairs of events arising at two distinct spatial locations as temporally close (and, thus, possibly statistically - or even dynamically - interrelated) or not without the necessity of selecting an additional parameter in terms of a maximally tolerable delay between these events. This consideration is conceptually justified in case of the original application to spike trains in electroencephalogram (EEG) recordings, where the inter-spike intervals show relatively narrow distributions at high temporal sampling rates. However, in case of climate studies, precipitation extremes defined by daily precipitation sums exceeding a certain empirical percentile of their local distribution exhibit a distinctively different type of distribution of waiting times between subsequent events. This raises conceptual concerns if event synchronization is still appropriate for detecting interlinkages between spatially distributed precipitation extremes. In order to study this problem in more detail, we employ event synchronization together with an alternative similarity measure for event sequences, event coincidence rates, which requires a manual setting of the tolerable maximum delay between two

  18. Carbon trading, climate change, environmental sustainability and saving planet Earth

    Science.gov (United States)

    Yim, W. W.

    2009-12-01

    Carbon trading namely the reduction of future carbon dioxide levels has been widely touted as a solution needed to counter the problem of climate change. However, there are enormous risks involved as the measure tackles only one of the causes of climate change and may prove to be ineffective. This presentation highlights ten points relevant to the discussion on carbon trading, climate change, environmental sustainability and saving planet Earth for increasing public awareness. They include: (1) Climate has changed throughout Earth’s history. (2) The present level of about 388 parts per million level of carbon dioxide in the atmosphere has already exceeded the maximum level of the past 800,000 years. This value is obtained from air bubbles trapped within the ice in Antarctica but the consequence of further increases remains uncertain. (3) Earth scientists do not have an overwhelming consensus on whether carbon trading alone is an effective measure in mitigating climate change. (4) The present state of the Earth’s demise is largely the result of human actions including population growth and the mismanagement of the Earth. (5) The latest evidence on sea-level changes in the South China Sea a far-field region unaffected by glacial isostatic readjustment is not in support of a ‘rapid’ rate of future sea-level rise through global warming. (6) Volcanic eruptions have an important role in driving the Earth’s climate. Examples of temperature lowering as well as abnormally wet and dry years can both be found in the instrumental record. (7) Humans have drastically modified the ‘natural’ water cycle. This is however not a well recognized cause of climate change compared to the emission of greenhouse gases through fossil fuel consumption. (8) The bulk (~75%) of the rise in mean annual temperature of about 1oC observed at the Hong Kong Observatory Station since record began in 1884 is best explained by the thermal heat island effect. (9) No evidence has been found

  19. (When and where) Do extreme climate events trigger extreme ecosystem responses? - Development and initial results of a holistic analysis framework

    Science.gov (United States)

    Hauber, Eva K.; Donner, Reik V.

    2015-04-01

    In the context of ongoing climate change, extremes are likely to increase in magnitude and frequency. One of the most important consequences of these changes is that the associated ecological risks and impacts are potentially rising as well. In order to better anticipate and understand these impacts, it therefore becomes more and more crucial to understand the general connection between climate extremes and the response and functionality of ecosystems. Among other region of the world, Europe presents an excellent test case for studies concerning the interaction between climate and biosphere, since it lies in the transition region between cold polar and warm tropical air masses and thus covers a great variety of different climatic zones and associated terrestrial ecosystems. The large temperature differences across the continent make this region particularly interesting for investigating the effects of climate change on biosphere-climate interactions. However, previously used methods for defining an extreme event typically disregard the necessity of taking seasonality as well as seasonal variance appropriately into account. Furthermore, most studies have focused on the impacts of individual extreme events instead of considering a whole inventory of extremes with their respective spatio-temporal extents. In order to overcome the aforementioned research gaps, this work introduces a new approach to studying climate-biosphere interactions associated with extreme events, which comprises three consecutive steps: (1) Since Europe exhibits climatic conditions characterized by marked seasonality, a novel method is developed to define extreme events taking into account the seasonality in all quantiles of the probability distribution of the respective variable of interest. This is achieved by considering kernel density estimates individually for each observation date during the year, including the properly weighted information from adjacent dates. By this procedure, we obtain

  20. Simulation of climate characteristics and extremes of the Volta Basin using CCLM and RCA regional climate models

    Science.gov (United States)

    Darko, Deborah; Adjei, Kwaku A.; Appiah-Adjei, Emmanuel K.; Odai, Samuel N.; Obuobie, Emmanuel; Asmah, Ruby

    2018-06-01

    The extent to which statistical bias-adjusted outputs of two regional climate models alter the projected change signals for the mean (and extreme) rainfall and temperature over the Volta Basin is evaluated. The outputs from two regional climate models in the Coordinated Regional Climate Downscaling Experiment for Africa (CORDEX-Africa) are bias adjusted using the quantile mapping technique. Annual maxima rainfall and temperature with their 10- and 20-year return values for the present (1981-2010) and future (2051-2080) climates are estimated using extreme value analyses. Moderate extremes are evaluated using extreme indices (viz. percentile-based, duration-based, and intensity-based). Bias adjustment of the original (bias-unadjusted) models improves the reproduction of mean rainfall and temperature for the present climate. However, the bias-adjusted models poorly reproduce the 10- and 20-year return values for rainfall and maximum temperature whereas the extreme indices are reproduced satisfactorily for the present climate. Consequently, projected changes in rainfall and temperature extremes were weak. The bias adjustment results in the reduction of the change signals for the mean rainfall while the mean temperature signals are rather magnified. The projected changes for the original mean climate and extremes are not conserved after bias adjustment with the exception of duration-based extreme indices.

  1. Climate Engine - Monitoring Drought with Google Earth Engine

    Science.gov (United States)

    Hegewisch, K.; Daudert, B.; Morton, C.; McEvoy, D.; Huntington, J. L.; Abatzoglou, J. T.

    2016-12-01

    Drought has adverse effects on society through reduced water availability and agricultural production and increased wildfire risk. An abundance of remotely sensed imagery and climate data are being collected in near-real time that can provide place-based monitoring and early warning of drought and related hazards. However, in an era of increasing wealth of earth observations, tools that quickly access, compute, and visualize archives, and provide answers at relevant scales to better inform decision-making are lacking. We have developed ClimateEngine.org, a web application that uses Google's Earth Engine platform to enable users to quickly compute and visualize real-time observations. A suite of drought indices allow us to monitor and track drought from local (30-meters) to regional scales and contextualize current droughts within the historical record. Climate Engine is currently being used by U.S. federal agencies and researchers to develop baseline conditions and impact assessments related to agricultural, ecological, and hydrological drought. Climate Engine is also working with the Famine Early Warning Systems Network (FEWS NET) to expedite monitoring agricultural drought over broad areas at risk of food insecurity globally.

  2. Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates

    Directory of Open Access Journals (Sweden)

    V. Romanova

    2006-01-01

    Full Text Available Using an atmospheric general circulation model of intermediate complexity coupled to a sea ice – slab ocean model, we perform a number of sensitivity experiments under present-day orbital conditions and geographical distribution to assess the possibility that land albedo, atmospheric CO2, orography and oceanic heat transport may cause an ice-covered Earth. Changing only one boundary or initial condition, the model produces solutions with at least some ice-free oceans in the low latitudes. Using some combination of these forcing parameters, a full Earth's glaciation is obtained. We find that the most significant factor leading to an ice-covered Earth is the high land albedo in combination with initial temperatures set equal to the freezing point. Oceanic heat transport and orography play only a minor role for the climate state. Extremely low concentrations of CO2 also appear to be insufficient to provoke a runaway ice-albedo feedback, but the strong deviations in surface air temperatures in the Northern Hemisphere point to the existence of a strong nonlinearity in the system. Finally, we argue that the initial condition determines whether the system can go into a completely ice covered state, indicating multiple equilibria, a feature known from simple energy balance models.

  3. Changes and Attribution of Extreme Precipitation in Climate Models: Subdaily and Daily Scales

    Science.gov (United States)

    Zhang, W.; Villarini, G.; Scoccimarro, E.; Vecchi, G. A.

    2017-12-01

    Extreme precipitation events are responsible for numerous hazards, including flooding, soil erosion, and landslides. Because of their significant socio-economic impacts, the attribution and projection of these events is of crucial importance to improve our response, mitigation and adaptation strategies. Here we present results from our ongoing work.In terms of attribution, we use idealized experiments [pre-industrial control experiment (PI) and 1% per year increase (1%CO2) in atmospheric CO2] from ten general circulation models produced under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and the fraction of attributable risk to examine the CO2 effects on extreme precipitation at the sub-daily and daily scales. We find that the increased CO2 concentration substantially increases the odds of the occurrence of sub-daily precipitation extremes compared to the daily scale in most areas of the world, with the exception of some regions in the sub-tropics, likely in relation to the subsidence of the Hadley Cell. These results point to the large role that atmospheric CO2 plays in extreme precipitation under an idealized framework. Furthermore, we investigate the changes in extreme precipitation events with the Community Earth System Model (CESM) climate experiments using the scenarios consistent with the 1.5°C and 2°C temperature targets. We find that the frequency of annual extreme precipitation at a global scale increases in both 1.5°C and 2°C scenarios until around 2070, after which the magnitudes of the trend become much weaker or even negative. Overall, the frequency of global annual extreme precipitation is similar between 1.5°C and 2°C for the period 2006-2035, and the changes in extreme precipitation in individual seasons are consistent with those for the entire year. The frequency of extreme precipitation in the 2°C experiments is higher than for the 1.5°C experiment after the late 2030s, particularly for the period 2071-2100.

  4. The impact of anthropogenic land use and land cover change on regional climate extremes.

    Science.gov (United States)

    Findell, Kirsten L; Berg, Alexis; Gentine, Pierre; Krasting, John P; Lintner, Benjamin R; Malyshev, Sergey; Santanello, Joseph A; Shevliakova, Elena

    2017-10-20

    Land surface processes modulate the severity of heat waves, droughts, and other extreme events. However, models show contrasting effects of land surface changes on extreme temperatures. Here, we use an earth system model from the Geophysical Fluid Dynamics Laboratory to investigate regional impacts of land use and land cover change on combined extremes of temperature and humidity, namely aridity and moist enthalpy, quantities central to human physiological experience of near-surface climate. The model's near-surface temperature response to deforestation is consistent with recent observations, and conversion of mid-latitude natural forests to cropland and pastures is accompanied by an increase in the occurrence of hot-dry summers from once-in-a-decade to every 2-3 years. In the tropics, long time-scale oceanic variability precludes determination of how much of a small, but significant, increase in moist enthalpy throughout the year stems from the model's novel representation of historical patterns of wood harvesting, shifting cultivation, and regrowth of secondary vegetation and how much is forced by internal variability within the tropical oceans.

  5. Change in Water Cycle- Important Issue on Climate Earth System

    Science.gov (United States)

    Singh, Pratik

    Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and

  6. Life at extreme elevations on Atacama volcanoes: the closest thing to Mars on Earth?

    Science.gov (United States)

    Schmidt, S K; Gendron, E M S; Vincent, K; Solon, A J; Sommers, P; Schubert, Z R; Vimercati, L; Porazinska, D L; Darcy, J L; Sowell, P

    2018-03-20

    Here we describe recent breakthroughs in our understanding of microbial life in dry volcanic tephra ("soil") that covers much of the surface area of the highest elevation volcanoes on Earth. Dry tephra above 6000 m.a.s.l. is perhaps the best Earth analog for the surface of Mars because these "soils" are acidic, extremely oligotrophic, exposed to a thin atmosphere, high UV fluxes, and extreme temperature fluctuations across the freezing point. The simple microbial communities found in these extreme sites have among the lowest alpha diversity of any known earthly ecosystem and contain bacteria and eukaryotes that are uniquely adapted to these extreme conditions. The most abundant eukaryotic organism across the highest elevation sites is a Naganishia species that is metabolically versatile, can withstand high levels of UV radiation and can grow at sub-zero temperatures, and during extreme diurnal freeze-thaw cycles (e.g. - 10 to + 30 °C). The most abundant bacterial phylotype at the highest dry sites sampled (6330 m.a.s.l. on Volcán Llullaillaco) belongs to the enigmatic B12-WMSP1 clade which is related to the Ktedonobacter/Thermosporothrix clade that includes versatile organisms with the largest known bacterial genomes. Close relatives of B12-WMSP1 are also found in fumarolic soils on Volcán Socompa and in oligotrophic, fumarolic caves on Mt. Erebus in Antarctica. In contrast to the extremely low diversity of dry tephra, fumaroles found at over 6000 m.a.s.l. on Volcán Socompa support very diverse microbial communities with alpha diversity levels rivalling those of low elevation temperate soils. Overall, the high-elevation biome of the Atacama region provides perhaps the best "natural experiment" in which to study microbial life in both its most extreme setting (dry tephra) and in one of its least extreme settings (fumarolic soils).

  7. Extreme daily precipitation in Western Europe with climate change at appropriate spatial scales

    NARCIS (Netherlands)

    Booij, Martijn J.

    2002-01-01

    Extreme daily precipitation for the current and changed climate at appropriate spatial scales is assessed. This is done in the context of the impact of climate change on flooding in the river Meuse in Western Europe. The objective is achieved by determining and comparing extreme precipitation from

  8. Earth System Grid II, Turning Climate Datasets into Community Resources

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects, we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.

  9. Changes in the probability of co-occurring extreme climate events

    Science.gov (United States)

    Diffenbaugh, N. S.

    2017-12-01

    Extreme climate events such as floods, droughts, heatwaves, and severe storms exert acute stresses on natural and human systems. When multiple extreme events co-occur, either in space or time, the impacts can be substantially compounded. A diverse set of human interests - including supply chains, agricultural commodities markets, reinsurance, and deployment of humanitarian aid - have historically relied on the rarity of extreme events to provide a geographic hedge against the compounded impacts of co-occuring extremes. However, changes in the frequency of extreme events in recent decades imply that the probability of co-occuring extremes is also changing, and is likely to continue to change in the future in response to additional global warming. This presentation will review the evidence for historical changes in extreme climate events and the response of extreme events to continued global warming, and will provide some perspective on methods for quantifying changes in the probability of co-occurring extremes in the past and future.

  10. Between Earth and Sky - Climate Change on the Last Frontier

    Science.gov (United States)

    Weindorf, David; Hunton, Paul

    2017-04-01

    Globally, Gelisols comprise 11.26 million km2; 8.6% of earth's surface. These soils effectively sequester 25% of global soil organic carbon. Global climate change has disproportionately affected arctic regions of the world, accelerating warming, erosion events, and altering soils and ecosystems. While many documentary films have touched on global climate change, this film is the first to consider the critical role soils play in the biogeochemical carbon cycle. Between Earth and Sky is a feature length documentary filmed in 4K which presents both the science of soil/climate dynamics whilst integrating the perspective of native Alaskans and respected elders of the community who provide personal accounts of changes observed over the past decades in Alaska. More than 40 scientists from universities, governmental research units, and consultancies deconstruct this complex topic to explain how soils form an integral part of the carbon cycle in arctic environments. This presentation will cover the development of the film from initial concepts, writing, fundraising, and project development, through filming on-site, post-production, marketing, and outreach plans.

  11. Graceful Failure, Engineering, and Planning for Extremes: The Engineering for Climate Extremes Partnership (ECEP)

    Science.gov (United States)

    Bruyere, C. L.; Tye, M. R.; Holland, G. J.; Done, J.

    2015-12-01

    Graceful failure acknowledges that all systems will fail at some level and incorporates the potential for failure as a key component of engineering design, community planning, and the associated research and development. This is a fundamental component of the ECEP, an interdisciplinary partnership bringing together scientific, engineering, cultural, business and government expertise to develop robust, well-communicated predictions and advice on the impacts of weather and climate extremes in support of decision-making. A feature of the partnership is the manner in which basic and applied research and development is conducted in direct collaboration with the end user. A major ECEP focus is the Global Risk and Resilience Toolbox (GRRT) that is aimed at developing public-domain, risk-modeling and response data and planning system in support of engineering design, and community planning and adaptation activities. In this presentation I will outline the overall ECEP and GRIP activities, and expand on the 'graceful failure' concept. Specific examples for direct assessment and prediction of hurricane impacts and damage potential will be included.

  12. Regional climate change trends and uncertainty analysis using extreme indices: A case study of Hamilton, Canada

    OpenAIRE

    Razavi, Tara; Switzman, Harris; Arain, Altaf; Coulibaly, Paulin

    2016-01-01

    This study aims to provide a deeper understanding of the level of uncertainty associated with the development of extreme weather frequency and intensity indices at the local scale. Several different global climate models, downscaling methods, and emission scenarios were used to develop extreme temperature and precipitation indices at the local scale in the Hamilton region, Ontario, Canada. Uncertainty associated with historical and future trends in extreme indices and future climate projectio...

  13. Climate: what if the Earth could get out of it by itself?

    International Nuclear Information System (INIS)

    Cabrol, L.

    2008-01-01

    Global warming is a reality but who is responsible? Climate has always changes in the past and sometimes with more abrupt ratios than today. The public opinion is permanently stroke by 'already prepared truths' and culpability but what do we really know about the mechanisms of global warming? In fact practically nothing. The climate machine is extremely complex and no scientifical certainty exists about the environmental reaction of oceans or clouds, about the carbon and temperature measurements, or about the role of the sun. Nobody knows if the Earth owns the resources to get out of this situation by itself. The author, journalist and specialist of meteorology is revolted by the 'unique thought' and analyses without passion the factors involved in the global warming in order to demonstrate that everything remains to be discovered. (J.S.)

  14. Analysis of Potential Future Climate and Climate Extremes in the Brazos Headwaters Basin, Texas

    Directory of Open Access Journals (Sweden)

    Ripendra Awal

    2016-12-01

    Full Text Available Texas’ fast-growing economy and population, coupled with cycles of droughts due to climate change, are creating an insatiable demand for water and an increasing need to understand the potential impacts of future climates and climate extremes on the state’s water resources. The objective of this study was to determine potential future climates and climate extremes; and to assess spatial and temporal changes in precipitation (Prec, and minimum and maximum temperature (Tmin and Tmax, respectively, in the Brazos Headwaters Basin under three greenhouse gas emissions scenarios (A2, A1B, and B1 for three future periods: 2020s (2011–2030, 2055s (2046–2065, and 2090s (2080–2099. Daily gridded climate data obtained from Climate Forecast System Reanalysis (CFSR were used to downscale outputs from 15 General Circulation Models (GCMs using the Long Ashton Research Station–Weather Generator (LARS-WG model. Results indicate that basin average Tmin and Tmax will increase; however, annual precipitation will decrease for all periods. Annual precipitation will decrease by up to 5.2% and 6.8% in the 2055s and 2090s, respectively. However, in some locations in the basin, up to a 14% decrease in precipitation is projected in the 2090s under the A2 (high emissions scenario. Overall, the northwestern and southern part of the Brazos Headwaters Basin will experience greater decreases in precipitation. Moreover, precipitation indices of the number of wet days (prec ≥ 5 mm and heavy precipitation days (prec ≥ 10 mm are projected to slightly decrease for all future periods. On the other hand, Tmin and Tmax will increase by 2 and 3 °C on average in the 2055s and 2090s, respectively. Mostly, projected increases in Tmin and Tmax will be in the upper range in the southern and southeastern part of the basin. Temperature indices of frost (Tmin < 0 °C and ice days (Tmax < 0 °C are projected to decrease, while tropical nights (Tmin > 20 °C and summer days (Tmax

  15. Climate impacts on extreme energy consumption of different types of buildings.

    Directory of Open Access Journals (Sweden)

    Mingcai Li

    Full Text Available Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382. The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  16. Climate impacts on extreme energy consumption of different types of buildings.

    Science.gov (United States)

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  17. Extreme heat in India and anthropogenic climate change

    Science.gov (United States)

    van Oldenborgh, Geert Jan; Philip, Sjoukje; Kew, Sarah; van Weele, Michiel; Uhe, Peter; Otto, Friederike; Singh, Roop; Pai, Indrani; Cullen, Heidi; AchutaRao, Krishna

    2018-01-01

    On 19 May 2016 the afternoon temperature reached 51.0 °C in Phalodi in the northwest of India - a new record for the highest observed maximum temperature in India. The previous year, a widely reported very lethal heat wave occurred in the southeast, in Andhra Pradesh and Telangana, killing thousands of people. In both cases it was widely assumed that the probability and severity of heat waves in India are increasing due to global warming, as they do in other parts of the world. However, we do not find positive trends in the highest maximum temperature of the year in most of India since the 1970s (except spurious trends due to missing data). Decadal variability cannot explain this, but both increased air pollution with aerosols blocking sunlight and increased irrigation leading to evaporative cooling have counteracted the effect of greenhouse gases up to now. Current climate models do not represent these processes well and hence cannot be used to attribute heat waves in this area. The health effects of heat are often described better by a combination of temperature and humidity, such as a heat index or wet bulb temperature. Due to the increase in humidity from irrigation and higher sea surface temperatures (SSTs), these indices have increased over the last decades even when extreme temperatures have not. The extreme air pollution also exacerbates the health impacts of heat. From these factors it follows that, from a health impact point of view, the severity of heat waves has increased in India. For the next decades we expect the trend due to global warming to continue but the surface cooling effect of aerosols to diminish as air quality controls are implemented. The expansion of irrigation will likely continue, though at a slower pace, mitigating this trend somewhat. Humidity will probably continue to rise. The combination will result in a strong rise in the temperature of heat waves. The high humidity will make health effects worse, whereas decreased air pollution

  18. Extreme heat in India and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    G. J. van Oldenborgh

    2018-01-01

    Full Text Available On 19 May 2016 the afternoon temperature reached 51.0 °C in Phalodi in the northwest of India – a new record for the highest observed maximum temperature in India. The previous year, a widely reported very lethal heat wave occurred in the southeast, in Andhra Pradesh and Telangana, killing thousands of people. In both cases it was widely assumed that the probability and severity of heat waves in India are increasing due to global warming, as they do in other parts of the world. However, we do not find positive trends in the highest maximum temperature of the year in most of India since the 1970s (except spurious trends due to missing data. Decadal variability cannot explain this, but both increased air pollution with aerosols blocking sunlight and increased irrigation leading to evaporative cooling have counteracted the effect of greenhouse gases up to now. Current climate models do not represent these processes well and hence cannot be used to attribute heat waves in this area. The health effects of heat are often described better by a combination of temperature and humidity, such as a heat index or wet bulb temperature. Due to the increase in humidity from irrigation and higher sea surface temperatures (SSTs, these indices have increased over the last decades even when extreme temperatures have not. The extreme air pollution also exacerbates the health impacts of heat. From these factors it follows that, from a health impact point of view, the severity of heat waves has increased in India. For the next decades we expect the trend due to global warming to continue but the surface cooling effect of aerosols to diminish as air quality controls are implemented. The expansion of irrigation will likely continue, though at a slower pace, mitigating this trend somewhat. Humidity will probably continue to rise. The combination will result in a strong rise in the temperature of heat waves. The high humidity will make health effects worse

  19. Integrating components of the earth system to model global climate changes: implications for the simulation of the climate of the next million years

    International Nuclear Information System (INIS)

    Duplessy, J.C.

    2009-01-01

    The climate system is complex because it is made up of several components (atmosphere, ocean, sea ice, continental surface, ice sheets), each of which has its own response time. The paleo-climate record provides ample evidence that these components interact nonlinearly with each other and also with global biogeochemical cycles, which drive greenhouse gas concentration in the atmosphere. Forecasting the evolution of future climate is therefore an extremely complex problem. In addition, since the nineteenth century, human activities are releasing great quantities of greenhouse gases (CO 2 , CH 4 , CFC, etc.) into the atmosphere. As a consequence, the atmospheric content of these gases has tremendously increased. As they have a strong greenhouse effect, their concentration is now large enough to perturb the natural evolution of the earth's climate. In this paper, we shall review the strategy which has been used to develop and validate tools that would allow to simulate the future long-term behaviour of the Earth's climate. This strategy rests on two complementary approaches: developing numerical models of the climate system and validating them by comparing their output with present-day meteorological data and paleo-climatic reconstructions. We shall then evaluate the methods available to simulate climate at the regional scale and the major uncertainties that must be solved to reasonable estimate the long-term evolution of a region, which would receive a geological repository for nuclear wastes. (author)

  20. Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system

    International Nuclear Information System (INIS)

    Gao, Y; Fu, J S; Drake, J B; Liu, Y; Lamarque, J-F

    2012-01-01

    This study is the first evaluation of dynamical downscaling using the Weather Research and Forecasting (WRF) Model on a 4 km × 4 km high resolution scale in the eastern US driven by the new Community Earth System Model version 1.0 (CESM v1.0). First we examined the global and regional climate model results, and corrected an inconsistency in skin temperature during the downscaling process by modifying the land/sea mask. In comparison with observations, WRF shows statistically significant improvement over CESM in reproducing extreme weather events, with improvement for heat wave frequency estimation as high as 98%. The fossil fuel intensive scenario Representative Concentration Pathway (RCP) 8.5 was used to study a possible future mid-century climate extreme in 2057–9. Both the heat waves and the extreme precipitation in 2057–9 are more severe than the present climate in the Eastern US. The Northeastern US shows large increases in both heat wave intensity (3.05 °C higher) and annual extreme precipitation (107.3 mm more per year). (letter)

  1. Earth's Climate History from Glaciers and Ice Cores

    Science.gov (United States)

    Thompson, Lonnie

    2013-03-01

    Glaciers serve both as recorders and early indicators of climate change. Over the past 35 years our research team has recovered climatic and environmental histories from ice cores drilled in both Polar Regions and from low to mid-latitude, high-elevation ice fields. Those ice core -derived proxy records extending back 25,000 years have made it possible to compare glacial stage conditions in the Tropics with those in the Polar Regions. High-resolution records of δ18O (in part a temperature proxy) demonstrate that the current warming at high elevations in the mid- to lower latitudes is unprecedented for the last two millennia, although at many sites the early Holocene was warmer than today. Remarkable similarities between changes in the highland and coastal cultures of Peru and regional climate variability, especially precipitation, imply a strong connection between prehistoric human activities and regional climate. Ice cores retrieved from shrinking glaciers around the world confirm their continuous existence for periods ranging from hundreds to thousands of years, suggesting that current climatological conditions in those regions today are different from those under which these ice fields originated and have been sustained. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low to middle latitudes, provides strong evidence that a large-scale, pervasive and, in some cases, rapid change in Earth's climate system is underway. Observations of glacier shrinkage during the 20th and 21st century girdle the globe from the South American Andes, the Himalayas, Kilimanjaro (Tanzania, Africa) and glaciers near Puncak Jaya, Indonesia (New Guinea). The history and fate of these ice caps, told through the adventure, beauty and the scientific evidence from some of world's most remote mountain tops, provide a global perspective for contemporary climate. NSF Paleoclimate Program

  2. Who Should be Empowered to Know about Earth's Changing Climate? The Case of Earth's Changing Cryosphere

    Science.gov (United States)

    Kargel, J. S.

    2006-12-01

    Global climate change in the past century has nearly pushed the envelope of all prior natural changes experienced since the dawn of civilization, and all plausible projections have climate shooting completely out of this envelope this century. Some plausible projections for the cumulative magnitude of climatic change this and next century are, at the upper range of these projections, comparable to the shift that ended the Ice Age and would place Earth in a "hot house" unlike anything going back 55 million years. Much life will survive and thrive through these changes, but if it is civilization we are concerned with, then we should understand and reduce the rate and long-term cumulative impact of predictable climate change and to reduce the chances of accidental tripping of a hair-trigger mechanism of rapid climate change. Coping with (even deriving some benefit from) inevitable climate changes, and forestalling even more disruptive changes, can only be accomplished through informed planning. A critical society-shaping issue is who will have and utilize the knowledge of climatic impacts. Since climate change affects all of us, the observational tools and research pertaining the Earth's changing condition should be in the hands of the masses of people: publicly financed and unclassified. A trickier issue is how to deal with information that particular cities or countries are at special risk, especially when the risk might be imminent and catastrophic. How do we maximize the efficiency of socioeconomic changes that will be needed to adapt? How do we overcome inertia and business as usual without inducing unintended consequences, such as panic? How should governments deal with this type of information? How should individual scientists deal with discoveries about the changing world that seem to pose special risks for certain people on the century timescale, the decadal scale, or this year? Natural hazards, such as volcanism, earthquakes, and hurricanes are hard enough

  3. Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Brunsell, Nathaniel [Univ. of Kansas, Lawrence, KS (United States); Mechem, David [Univ. of Kansas, Lawrence, KS (United States); Ma, Chunsheng [Wichita State Univ., KS (United States)

    2015-02-20

    Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive to alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the

  4. Observing Human-induced Linkages between Urbanization and Earth's Climate System

    Science.gov (United States)

    Shepherd, J. Marshall; Jin, Menglin

    2004-01-01

    Urbanization is one of the extreme cases of land use change. Most of world s population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025, 60% of the world s population will live in cities. Human activity in urban environments also alters atmospheric composition; impacts components of the water cycle; and modifies the carbon cycle and ecosystems. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s atmosphere-ocean-land-biosphere components interact as a coupled system and the influence of the urban environment on this climate system is critical. The goal of the 2003 AGU Union session Human-induced climate variations on urban areas: From observations to modeling was to bring together scientists from interdisciplinary backgrounds to discuss the data, scientific approaches and recent results on observing and modeling components of the urban environment with the intent of sampling our current stand and discussing future direction on this topic. Herein, a summary and discussion of the observations component of the session are presented.

  5. Interpreting the Climatic Effects on Xylem Functional Traits in Two Mediterranean Oak Species: The Role of Extreme Climatic Events.

    Science.gov (United States)

    Rita, Angelo; Borghetti, Marco; Todaro, Luigi; Saracino, Antonio

    2016-01-01

    In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern, and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival, and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale, and Shape (GAMLSS) technique and Bayesian modeling procedures to xylem traits data set, with the aim of (i) detecting non-linear long-term responses to climate and (ii) exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks) rises at extreme values of Standardized Precipitation Index (SPI). Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport, resulting

  6. Interpreting the climatic effects on xylem functional traits in two Mediterranean oak species: the role of extreme climatic events

    Directory of Open Access Journals (Sweden)

    Angelo Rita

    2016-08-01

    Full Text Available In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale and Shape (GAMLSS technique and Bayesian modeling procedures to xylem traits data set, with the aim of i detecting non-linear long-term responses to climate and ii exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks rises at extreme values of Standardized Precipitation Index (SPI. Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport

  7. Uncertainty information in climate data records from Earth observation

    Science.gov (United States)

    Merchant, Christopher J.; Paul, Frank; Popp, Thomas; Ablain, Michael; Bontemps, Sophie; Defourny, Pierre; Hollmann, Rainer; Lavergne, Thomas; Laeng, Alexandra; de Leeuw, Gerrit; Mittaz, Jonathan; Poulsen, Caroline; Povey, Adam C.; Reuter, Max; Sathyendranath, Shubha; Sandven, Stein; Sofieva, Viktoria F.; Wagner, Wolfgang

    2017-07-01

    The question of how to derive and present uncertainty information in climate data records (CDRs) has received sustained attention within the European Space Agency Climate Change Initiative (CCI), a programme to generate CDRs addressing a range of essential climate variables (ECVs) from satellite data. Here, we review the nature, mathematics, practicalities, and communication of uncertainty information in CDRs from Earth observations. This review paper argues that CDRs derived from satellite-based Earth observation (EO) should include rigorous uncertainty information to support the application of the data in contexts such as policy, climate modelling, and numerical weather prediction reanalysis. Uncertainty, error, and quality are distinct concepts, and the case is made that CDR products should follow international metrological norms for presenting quantified uncertainty. As a baseline for good practice, total standard uncertainty should be quantified per datum in a CDR, meaning that uncertainty estimates should clearly discriminate more and less certain data. In this case, flags for data quality should not duplicate uncertainty information, but instead describe complementary information (such as the confidence in the uncertainty estimate provided or indicators of conditions violating the retrieval assumptions). The paper discusses the many sources of error in CDRs, noting that different errors may be correlated across a wide range of timescales and space scales. Error effects that contribute negligibly to the total uncertainty in a single-satellite measurement can be the dominant sources of uncertainty in a CDR on the large space scales and long timescales that are highly relevant for some climate applications. For this reason, identifying and characterizing the relevant sources of uncertainty for CDRs is particularly challenging. The characterization of uncertainty caused by a given error effect involves assessing the magnitude of the effect, the shape of the

  8. An observational and modeling study of the August 2017 Florida climate extreme event.

    Science.gov (United States)

    Konduru, R.; Singh, V.; Routray, A.

    2017-12-01

    A special report on the climate extremes by the Intergovernmental Panel on Climate Change (IPCC) elucidates that the sole cause of disasters is due to the exposure and vulnerability of the human and natural system to the climate extremes. The cause of such a climate extreme could be anthropogenic or non-anthropogenic. Therefore, it is challenging to discern the critical factor of influence for a particular climate extreme. Such kind of perceptive study with reasonable confidence on climate extreme events is possible only if there exist any past case studies. A similar rarest climate extreme problem encountered in the case of Houston floods and extreme rainfall over Florida in August 2017. A continuum of hurricanes like Harvey and Irma targeted the Florida region and caused catastrophe. Due to the rarity of August 2017 Florida climate extreme event, it requires the in-depth study on this case. To understand the multi-faceted nature of the event, a study on the development of the Harvey hurricane and its progression and dynamics is significant. Current article focus on the observational and modeling study on the Harvey hurricane. A global model named as NCUM (The global UK Met office Unified Model (UM) operational at National Center for Medium Range Weather Forecasting, India, was utilized to simulate the Harvey hurricane. The simulated rainfall and wind fields were compared with the observational datasets like Tropical Rainfall Measuring Mission rainfall datasets and Era-Interim wind fields. The National Centre for Environmental Prediction (NCEP) automated tracking system was utilized to track the Harvey hurricane, and the tracks were analyzed statistically for different forecasts concerning the Harvey hurricane track of Joint Typhon Warning Centre. Further, the current study will be continued to investigate the atmospheric processes involved in the August 2017 Florida climate extreme event.

  9. Simulated trends of extreme climate indices for the Carpathian basin using outputs of different regional climate models

    Science.gov (United States)

    Pongracz, R.; Bartholy, J.; Szabo, P.; Pieczka, I.; Torma, C. S.

    2009-04-01

    Regional climatological effects of global warming may be recognized not only in shifts of mean temperature and precipitation, but in the frequency or intensity changes of different climate extremes. Several climate extreme indices are analyzed and compared for the Carpathian basin (located in Central/Eastern Europe) following the guidelines suggested by the joint WMO-CCl/CLIVAR Working Group on climate change detection. Our statistical trend analysis includes the evaluation of several extreme temperature and precipitation indices, e.g., the numbers of severe cold days, winter days, frost days, cold days, warm days, summer days, hot days, extremely hot days, cold nights, warm nights, the intra-annual extreme temperature range, the heat wave duration, the growing season length, the number of wet days (using several threshold values defining extremes), the maximum number of consecutive dry days, the highest 1-day precipitation amount, the greatest 5-day rainfall total, the annual fraction due to extreme precipitation events, etc. In order to evaluate the future trends (2071-2100) in the Carpathian basin, daily values of meteorological variables are obtained from the outputs of various regional climate model (RCM) experiments accomplished in the frame of the completed EU-project PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects). Horizontal resolution of the applied RCMs is 50 km. Both scenarios A2 and B2 are used to compare past and future trends of the extreme climate indices for the Carpathian basin. Furthermore, fine-resolution climate experiments of two additional RCMs adapted and run at the Department of Meteorology, Eotvos Lorand University are used to extend the trend analysis of climate extremes for the Carpathian basin. (1) Model PRECIS (run at 25 km horizontal resolution) was developed at the UK Met Office, Hadley Centre, and it uses the boundary conditions from the HadCM3 GCM. (2) Model Reg

  10. Climate change scenarios of precipitation extremes in the Carpathian region based on an ENSEMBLE of regional climate models

    Czech Academy of Sciences Publication Activity Database

    Gaál, Ladislav; Beranová, Romana; Hlavčová, K.; Kyselý, Jan

    2014-01-01

    Roč. 2014, č. 943487 (2014), s. 1-14 ISSN 1687-9309 R&D Projects: GA ČR(CZ) GA14-18675S Institutional support: RVO:68378289 Keywords : precipitation extremes * regional climate models * climate change Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.946, year: 2014 http://www.hindawi.com/journals/amete/2014/943487/

  11. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems

    International Nuclear Information System (INIS)

    Jentsch, A.; Jentsch, A.; Beierkuhnlein, C.

    2008-01-01

    Climate change will increase the recurrence of extreme weather events such as drought and heavy rainfall. Evidence suggests that modifications in extreme weather events pose stronger threats to ecosystem functioning than global trends and shifts in average conditions. As ecosystem functioning is connected with ecological services, this has far-reaching effects on societies in the 21. century. Here, we: (i) present the rationale for the increasing frequency and magnitude of extreme weather events in the near future; (ii) discuss recent findings on meteorological extremes and summarize their effects on ecosystems and (iii) identify gaps in current ecological climate change research. (authors)

  12. Biogeophysical Impacts of Land-Use Change on Climate Extremes in Low-Emission Scenarios: Results From HAPPI-Land

    Science.gov (United States)

    Hirsch, Annette L.; Guillod, Benoit P.; Seneviratne, Sonia I.; Beyerle, Urs; Boysen, Lena R.; Brovkin, Victor; Davin, Edouard L.; Doelman, Jonathan C.; Kim, Hyungjun; Mitchell, Daniel M.; Nitta, Tomoko; Shiogama, Hideo; Sparrow, Sarah; Stehfest, Elke; van Vuuren, Detlef P.; Wilson, Simon

    2018-03-01

    The impacts of land use have been shown to have considerable influence on regional climate. With the recent international commitment to limit global warming to well below 2°C, emission reductions need to be ambitious and could involve major land-use change (LUC). Land-based mitigation efforts to curb emissions growth include increasing terrestrial carbon sequestration through reforestation, or the adoption of bioenergy crops. These activities influence local climate through biogeophysical feedbacks, however, it is uncertain how important they are for a 1.5° climate target. This was the motivation for HAPPI-Land: the half a degree additional warming, prognosis, and projected impacts—land-use scenario experiment. Using four Earth system models, we present the first multimodel results from HAPPI-Land and demonstrate the critical role of land use for understanding the characteristics of regional climate extremes in low-emission scenarios. In particular, our results show that changes in temperature extremes due to LUC are comparable in magnitude to changes arising from half a degree of global warming. We also demonstrate that LUC contributes to more than 20% of the change in temperature extremes for large land areas concentrated over the Northern Hemisphere. However, we also identify sources of uncertainty that influence the multimodel consensus of our results including how LUC is implemented and the corresponding biogeophysical feedbacks that perturb climate. Therefore, our results highlight the urgent need to resolve the challenges in implementing LUC across models to quantify the impacts and consider how LUC contributes to regional changes in extremes associated with sustainable development pathways.

  13. Simulation of the 23 July 2012 Extreme Space Weather Event: What if This Extremely Rare CME Was Earth Directed?

    Science.gov (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Mays, M. Leila; Kuznetsova, Maria M.; Galvin, A. B.; Simunac, Kristin; Baker, Daniel N.; Li, Xinlin; Zheng, Yihua; Glocer, Alex

    2013-01-01

    Extreme space weather events are known to cause adverse impacts on critical modern day technological infrastructure such as high-voltage electric power transmission grids. On 23 July 2012, NASA's Solar Terrestrial Relations Observatory-Ahead (STEREO-A) spacecraft observed in situ an extremely fast coronal mass ejection (CME) that traveled 0.96 astronomical units (approx. 1 AU) in about 19 h. Here we use the SpaceWeather Modeling Framework (SWMF) to perform a simulation of this rare CME.We consider STEREO-A in situ observations to represent the upstream L1 solar wind boundary conditions. The goal of this study is to examine what would have happened if this Rare-type CME was Earth-bound. Global SWMF-generated ground geomagnetic field perturbations are used to compute the simulated induced geoelectric field at specific ground-based active INTERMAGNET magnetometer sites. Simulation results show that while modeled global SYM-H index, a high-resolution equivalent of the Dst index, was comparable to previously observed severe geomagnetic storms such as the Halloween 2003 storm, the 23 July CME would have produced some of the largest geomagnetically induced electric fields, making it very geoeffective. These results have important practical applications for risk management of electrical power grids.

  14. Assessment of future extreme climate events over the Porto wine Region

    Science.gov (United States)

    Viceto, Carolina; Cardoso, Susana; Marta-Almeida, Martinho; Gorodetskaya, Irina; Rocha, Alfredo

    2017-04-01

    The Douro Demarcated Region (DDR) is a wine region, in the northern Portugal, recognized for the Porto wine, which is responsible for more than 60% of the total value of national wine exportations. Since the viticulture is highly dependent on weather/climate patterns, the global warming is expected to affect the areas suitable to the growth of a certain variety of grape, its production and quality. This highlights the need of regional studies that assess the future climate changes effects in the vineyard, which might allow an early adjustment. We explore future climate change in the DDR region using a high-resolution regional climate model for Weather Research and Forecasting (WRF) forced by the Max Planck Institute Earth System Model - low resolution (MPI-ESM-LR). Two future periods have been simulated using the emission scenario RCP8.5 - for the mid- (2046-2065) and late 21st century (2081-2100) - and compared to a reference period (1986-2005). The RCP8.5 is a "baseline" scenario without any climate mitigation and corresponds to the pathway with the highest greenhouse gas emissions compared to other scenarios developed by the Intergovernmental Panel for Climate Change. Our regional WRF implementation uses three online-nested domains with increasing resolution at a downscaling ratio of three. The coarser domain of 81-km resolution covers part of the North Atlantic Ocean and most of the Europe. The innermost 9-km horizontal resolution domain includes the Iberian Peninsula, a portion of Northern Africa and the adjacent part of the Atlantic Ocean and Mediterranean Sea. Our study uses this 9-km resolution domain and focuses on a confined area, which comprises the DDR. Such dynamical downscaling approach gives an advantage to assess climate effects on the DDR region, where the high horizontal resolution allows including effects of the oceanic coastline, local riverbeds and complex topography. The climatology of the DDR region determines the more suitable wine variety

  15. Climate of an Earth-Like World with Changing Eccentricity

    Science.gov (United States)

    Kohler, Susanna

    2017-02-01

    Having a giant planet like Jupiter next door can really wreak havoc on your orbit! A new study examines what such a bad neighbor might mean for the long-term climate of an Earth-like planet.Influence of a Bad NeighborThe presence of a Jupiter-like giant planet in a nearby orbit can significantly affect how terrestrial planets evolve dynamically, causing elements like the planets orbital eccentricities and axial tilts to change over time. Earth is saved this inconvenience Jupiter isnt close enough to significantly influence us, and our large moon stabilizes our orbit against Jupiters tugs.Top panels: Authors simulationoutcomes for Case1, in which the planets eccentricity varies from 0 to 0.283 over 6500 years. Bottom panels: Outcomes for Case 2, in which the planets eccentricity varies from 0 to 0.066 over 4500 years. The highereccentricities reached in Case 1 causes the climate parameters to vary more widely. Click for a better look! [Way Georgakarakos 2017]Mars, on the other hand, isnt as lucky: its possible that Jupiters gravitational pull causes Marss axial tilt, for instance, to evolve through a range as large as 0 to 60 degrees on timescales of millions of years! Marss orbital eccentricity is similarly thought to vary due to Jupiters influence, and both of these factors play a major role in determining Marss climate.As exoplanet missions discover more planets many of which are Earth-like we must carefully consider which among these are most likely to be capable of sustaining life. If having a nearby neighbor like a Jupiter can tug an Earth-like world into an orbit with varying eccentricity, how does this affect the planets climate? Will the planet remain temperate? Or will it develop a runaway heating or cooling effect as it orbits, rendering it uninhabitable?Oceans and OrbitsTo examine these questions, two scientists have built the first ever 3D global climate model simulations of an Earth-like world using a fully coupled ocean (necessary for understanding

  16. NASA's Earth Observing System: The Transition from Climate Monitoring to Climate Change Prediction

    Science.gov (United States)

    King, Michael D.; Herring, David D.

    1998-01-01

    Earth's 4.5 billion year history is a study in change. Natural geological forces have been rearranging the surface features and climatic conditions of our planet since its beginning. There is scientific evidence that some of these natural changes have not only led to mass extinctions of species (e.g., dinosaurs), but have also severely impacted human civilizations. For instance, there is evidence that a relatively sudden climate change caused a 300-year drought that contributed to the downfall of Akkadia, one of the most powerful empires in the Middle-East region around 2200 BC. More recently, the "little ice age" from 1200-1400 AD forced the Vikings to abandon Greenland when temperatures there dropped by about 1.5 C, rendering it too difficult to grow enough crops to sustain the population. Today, there is compelling scientific evidence that human activities have attained the magnitude of a geological force and are speeding up the rate of global change. For example, carbon dioxide levels have risen 30 percent since the industrial revolution and about 40 percent of the world's land surface has been transformed by humans. We don't understand the cause-and-effect relationships among Earth's land, ocean, and atmosphere well enough to predict what, if any, impacts these rapid changes will have on future climate conditions. We need to make many measurements all over the world, over a long period of time, in order to assemble the information needed to construct accurate computer models that will enable us to forecast climate change. In 1988, the Earth System Sciences Committee, sponsored by NASA, issued a report calling for an integrated, long-term strategy for measuring the vital signs of Earth's climate system. The report urged that the measurements must all be intimately coupled with focused process studies, they must facilitate development of Earth system models, and they must be stored in an information system that ensures open access to consistent, long-term data

  17. Past and future climate change in the context of memorable seasonal extremes

    Directory of Open Access Journals (Sweden)

    T. Matthews

    2016-01-01

    Full Text Available It is thought that direct personal experience of extreme weather events could result in greater public engagement and policy response to climate change. Based on this premise, we present a set of future climate scenarios for Ireland communicated in the context of recent, observed extremes. Specifically, we examine the changing likelihood of extreme seasonal conditions in the long-term observational record, and explore how frequently such extremes might occur in a changed Irish climate according to the latest model projections. Over the period (1900–2014 records suggest a greater than 50-fold increase in the likelihood of the warmest recorded summer (1995, whilst the likelihood of the wettest winter (1994/95 and driest summer (1995 has respectively doubled since 1850. The most severe end-of-century climate model projections suggest that summers as cool as 1995 may only occur once every ∼7 years, whilst winters as wet as 1994/95 and summers as dry as 1995 may increase by factors of ∼8 and ∼10 respectively. Contrary to previous research, we find no evidence for increased wintertime storminess as the Irish climate warms, but caution that this conclusion may be an artefact of the metric employed. It is hoped that framing future climate scenarios in the context of extremes from living memory will help communicate the scale of the challenge climate change presents, and in so doing bridge the gap between climate scientists and wider society.

  18. Climate Change Extreme Events: Meeting the Information Needs of Water Resource Managers

    Science.gov (United States)

    Quay, R.; Garfin, G. M.; Dominguez, F.; Hirschboeck, K. K.; Woodhouse, C. A.; Guido, Z.; White, D. D.

    2013-12-01

    Information about climate has long been used by water managers to develop short term and long term plans and strategies for regional and local water resources. Inherent within longer term forecasts is an element of uncertainty, which is particularly evident in Global Climate model results for precipitation. For example in the southwest estimates in the flow of the Colorado River based on GCM results indicate changes from 120% or current flow to 60%. Many water resource managers are now using global climate model down scaled estimates results as indications of potential climate change as part of that planning. They are addressing the uncertainty within these estimates by using an anticipatory planning approach looking at a range of possible futures. One aspect of climate that is important for such planning are estimates of future extreme storm (short term) and drought (long term) events. However, the climate science of future possible changes in extreme events is less mature than general climate change science. At a recent workshop among climate scientists and water managers in the southwest, it was concluded the science of climate change extreme events is at least a decade away from being robust enough to be useful for water managers in their water resource management activities. However, it was proposed that there are existing estimates and records of past flooding and drought events that could be combined with general climate change science to create possible future events. These derived events could be of sufficient detail to be used by water resource managers until such time that the science of extreme events is able to provide more detailed estimates. Based on the results of this workshop and other work being done by the Decision Center for a Desert City at Arizona State University and the Climate Assessment for the Southwest center at University of Arizona., this article will 1) review what are the extreme event data needs of Water Resource Managers in the

  19. Challenges of Tsunami Disaster and Extreme climate Events Along Coastal Region in Asia-Pacific

    Science.gov (United States)

    Chaudhari, S.

    2017-12-01

    South Asia is more vulnerable to Geo disasters and impacts of climate changes in recent years. On 26 December 2004 massive waves triggered by an earthquake surged into coastal communities in Asia and East Africa with devastating force. Hitting Indonesia, Sri Lanka , Thailand and India hardest, the deadly waves swept more than 200 000 people to their deaths. Also in an another extreme climate change phenomenon during 2005 - 2006,causing heavy rains and flooding situation in the South Asia - Europe and Pacific region ,more than 100 million population in these regions are witnessing the social- economical and ecological risks and impacts due to climate changes and Geohazards. For mitigating geo-disasters, marine hazards and rehabilitation during post tsunami period, scientific knowledge is needed, requiring experienced research communities who can train the local population during tsunami rehabilitation. Several civil society institutions jointly started the initiatives on the problem identifications in management of risks in geo-disasters, tsunami rehabilitation ,Vulnerability and risk assessments for Geohazards etc., to investigate problems related to social-economic and ecological risks and management issues resulting from the December tsunami and Geo- disaster, to aid mitigation planning in affected areas and to educate scientists and local populations to form a basis for sustainable and economic solutions. The poster aims to assess the potential risk and hazard , technical issues, problems and damage arising from Tsunami in the Asia-pacific region in coastal geology, coastal ecosystems and coastal environmental systems . This poster deals with the status and issues of interactions between Human and Ocean Systems, Geo-risks, marine risks along coastal region of Asia- Pacific and also human influence on the earth system . The poster presentation focuses on capacity building of the local population, scientists and researchers for integration of human and ocean

  20. Does Nudging Squelch the Extremes in Regional Climate Modeling?

    Science.gov (United States)

    An important question in regional climate downscaling is whether to constrain (nudge) the interior of the limited-area domain toward the larger-scale driving fields. Prior research has demonstrated that interior nudging can increase the skill of regional climate predictions origin...

  1. Transportation system resilience, extreme weather and climate change : a thought leadership series

    Science.gov (United States)

    2014-09-01

    This report summarizes key findings from the Transportation System Resilience, Extreme Weather and Climate Change thought leadership series held at Volpe, the National Transportation Systems Center from fall 2013 to spring 2014.

  2. Detection and Attribution of Climate Change : From global mean temperature change to climate extremes and high impact weather.

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    This talk will describe how evidence has grown in recent years for a human influence on climate and explain how the Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that it is extremely likely (>95% probability) that human influence on climate has been the dominant cause of the observed global-mean warming since the mid-20th century. The fingerprint of human activities has also been detected in warming of the ocean, in changes in the global water cycle, in reductions in snow and ice, and in changes in some climate extremes. The strengthening of evidence for the effects of human influence on climate extremes is in line with long-held basic understanding of the consequences of mean warming for temperature extremes and for atmospheric moisture. Despite such compelling evidence this does not mean that every instance of high impact weather can be attributed to anthropogenic climate change, because climate variability is often a major factor in many locations, especially for rain...

  3. Mean versus extreme climate in the Mediterranean region and its sensitivity to future global warming conditions

    Energy Technology Data Exchange (ETDEWEB)

    Paeth, H.; Hense, A. [Meteorological Inst., Univ. Bonn (Germany)

    2005-06-01

    The Mediterranean region (MTR) has been supposed to be very sensitive to changes in land surface and atmospheric greenhouse-gas (GHG) concentrations. Particularly, an intensification of climate extremes may be associated with severe socio-economic implications. Here, we present an analysis of climate mean and extreme conditions in this subtropical area based on regional climate model experiments, simulating the present-day and possible future climate. The analysis of extreme values (EVs) is based on the assumption that the extremes of daily precipitation and near-surface temperature are well fitted by the Generalized Pareto distribution (GPD). Return values of extreme daily events are determined using the method of L-moments. Particular emphasis is laid on the evaluation of the return values with respect to the uncertainty range of the estimate as derived from a Monte Carlo sampling approach. During the most recent 25 years the MTR has become dryer in spring but more humid especially in the western part in autumn and winter. At the same time, the whole region has been subject to a substantial warming. The strongest rainfall extremes are simulated in autumn over the Mediterranean Sea around Italy. Temperature extremes are most pronounced over the land masses, especially over northern Africa. Given the large uncertainty of the EV estimate, only 1-year return values are further analysed. During recent decades, statistically significant changes in extremes are only found for temperature. Future climate conditions may come along with a decrease in mean and extreme precipitation during the cold season, whereas an intensification of the hydrological cycle is predicted in summer and autumn. Temperature is predominantly affected over the Iberian Peninsula and the eastern part of the MTR. In many grid boxes, the signals are blurred out due to the large amount of uncertainty in the EV estimate. Thus, a careful analysis is required when making inferences about the future

  4. Directional analysis of extreme winds under mixed climate conditions

    CSIR Research Space (South Africa)

    Kruger, A

    2013-07-01

    Full Text Available Directional statistics provide design engineers with the opportunity to realise considerable cost savings, but these are not yet provided for in the South African standard for wind loading. The development of the directional statistics of extreme...

  5. Data-based perfect-deficit approach to understanding climate extremes and forest carbon assimilation capacity

    International Nuclear Information System (INIS)

    Wei, Suhua; Yi, Chuixiang; Hendrey, George; Eaton, Timothy; Rustic, Gerald; Wang, Shaoqiang; Liu, Heping; Krakauer, Nir Y; Wang, Weiguo; Desai, Ankur R; Montagnani, Leonardo; Tha Paw U, Kyaw; Falk, Matthias; Black, Andrew; Bernhofer, Christian; Grünwald, Thomas; Laurila, Tuomas; Cescatti, Alessandro; Moors, Eddy

    2014-01-01

    Several lines of evidence suggest that the warming climate plays a vital role in driving certain types of extreme weather. The impact of warming and of extreme weather on forest carbon assimilation capacity is poorly known. Filling this knowledge gap is critical towards understanding the amount of carbon that forests can hold. Here, we used a perfect-deficit approach to identify forest canopy photosynthetic capacity (CPC) deficits and analyze how they correlate to climate extremes, based on observational data measured by the eddy covariance method at 27 forest sites over 146 site-years. We found that droughts severely affect the carbon assimilation capacities of evergreen broadleaf forest (EBF) and deciduous broadleaf forest. The carbon assimilation capacities of Mediterranean forests were highly sensitive to climate extremes, while marine forest climates tended to be insensitive to climate extremes. Our estimates suggest an average global reduction of forest CPC due to unfavorable climate extremes of 6.3 Pg C (∼5.2% of global gross primary production) per growing season over 2001–2010, with EBFs contributing 52% of the total reduction

  6. Methodology for featuring and assessing extreme climatic events

    International Nuclear Information System (INIS)

    Malleron, N.; Bernardara, P.; Benoit, M.; Parey, S.; Perret, C.

    2013-01-01

    The setting up of a nuclear power plant on a particular site requires the assessment of risks linked to extreme natural events like flooding or earthquakes. As a consequence of the Fukushima accident EDF proposes to take into account even rarer events in order to improve the robustness of the facility all over its operating life. This article presents the methodology used by EDF to analyse a set of data in a statistical way in order to extract extreme values. This analysis is based on the theory of extreme values and is applied to the extreme values of the flow rate in the case of a river overflowing. This methodology is made of 6 steps: 1) selection of the event, of its featuring parameter and of its probability, for instance the question is what is the flow rate of a flooding that has a probability of 10 -3 to happen, 2) to collect data over a long period of time (or to recover data from past periods), 3) to extract extreme values from the data, 4) to find an adequate statistical law that fits the spreading of the extreme values, 5) the selected statistical law must be validated through visual or statistical tests, and 6) the computation of the flow rate of the event itself. (A.C.)

  7. Biota and biomolecules in extreme environments on Earth: implications for life detection on Mars.

    Science.gov (United States)

    Aerts, Joost W; Röling, Wilfred F M; Elsaesser, Andreas; Ehrenfreund, Pascale

    2014-10-13

    The three main requirements for life as we know it are the presence of organic compounds, liquid water, and free energy. Several groups of organic compounds (e.g., amino acids, nucleobases, lipids) occur in all life forms on Earth and are used as diagnostic molecules, i.e., biomarkers, for the characterization of extant or extinct life. Due to their indispensability for life on Earth, these biomarkers are also prime targets in the search for life on Mars. Biomarkers degrade over time; in situ environmental conditions influence the preservation of those molecules. Nonetheless, upon shielding (e.g., by mineral surfaces), particular biomarkers can persist for billions of years, making them of vital importance in answering questions about the origins and limits of life on early Earth and Mars. The search for organic material and biosignatures on Mars is particularly challenging due to the hostile environment and its effect on organic compounds near the surface. In support of life detection on Mars, it is crucial to investigate analogue environments on Earth that resemble best past and present Mars conditions. Terrestrial extreme environments offer a rich source of information allowing us to determine how extreme conditions affect life and molecules associated with it. Extremophilic organisms have adapted to the most stunning conditions on Earth in environments with often unique geological and chemical features. One challenge in detecting biomarkers is to optimize extraction, since organic molecules can be low in abundance and can strongly adsorb to mineral surfaces. Methods and analytical tools in the field of life science are continuously improving. Amplification methods are very useful for the detection of low concentrations of genomic material but most other organic molecules are not prone to amplification methods. Therefore, a great deal depends on the extraction efficiency. The questions "what to look for", "where to look", and "how to look for it" require more of

  8. Biota and Biomolecules in Extreme Environments on Earth: Implications for Life Detection on Mars

    Directory of Open Access Journals (Sweden)

    Joost W. Aerts

    2014-10-01

    Full Text Available The three main requirements for life as we know it are the presence of organic compounds, liquid water, and free energy. Several groups of organic compounds (e.g., amino acids, nucleobases, lipids occur in all life forms on Earth and are used as diagnostic molecules, i.e., biomarkers, for the characterization of extant or extinct life. Due to their indispensability for life on Earth, these biomarkers are also prime targets in the search for life on Mars. Biomarkers degrade over time; in situ environmental conditions influence the preservation of those molecules. Nonetheless, upon shielding (e.g., by mineral surfaces, particular biomarkers can persist for billions of years, making them of vital importance in answering questions about the origins and limits of life on early Earth and Mars. The search for organic material and biosignatures on Mars is particularly challenging due to the hostile environment and its effect on organic compounds near the surface. In support of life detection on Mars, it is crucial to investigate analogue environments on Earth that resemble best past and present Mars conditions. Terrestrial extreme environments offer a rich source of information allowing us to determine how extreme conditions affect life and molecules associated with it. Extremophilic organisms have adapted to the most stunning conditions on Earth in environments with often unique geological and chemical features. One challenge in detecting biomarkers is to optimize extraction, since organic molecules can be low in abundance and can strongly adsorb to mineral surfaces. Methods and analytical tools in the field of life science are continuously improving. Amplification methods are very useful for the detection of low concentrations of genomic material but most other organic molecules are not prone to amplification methods. Therefore, a great deal depends on the extraction efficiency. The questions “what to look for”, “where to look”, and “how to

  9. Impact of climate change on extreme rainfall events and flood risk

    Indian Academy of Sciences (India)

    The analysis of the frequency of rainy days, rain days and heavy rainfall days as well as one-day extreme rainfall and return period has been carried out in this study to observe the impact of climate change on extreme rainfall events and flood risk in India. The frequency of heavy rainfall events are decreasing in major parts ...

  10. Changes of extreme precipitation and nonlinear influence of climate variables over monsoon region in China

    KAUST Repository

    Gao, Tao

    2017-07-19

    The El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) and Pacific decadal oscillation (PDO) are well understood to be major drivers for the variability of precipitation extremes over monsoon regions in China (MRC). However, research on monsoon extremes in China and their associations with climate variables is limited. In this study, we examine the space-time variations of extreme precipitation across the MRC, and assess the time-varying influences of the climate drivers using Bayesian dynamic linear regression and their combined nonlinear effects through fitting generalized additive models. Results suggest that the central-east and south China is dominated by less frequent but more intense precipitation. Extreme rainfalls show significant positive trends, coupled with a significant decline of dry spells, indicating an increasing chance of occurrence of flood-induced disasters in the MRC during 1960–2014. Majority of the regional indices display some abrupt shifts during the 1990s. The influences of climate variables on monsoon extremes exhibit distinct interannual or interdecadal variations. IOD, ENSO and AMO have strong impacts on monsoon and extreme precipitation, especially during the 1990s, which is generally consistent with the abrupt shifts in precipitation regimes around this period. Moreover, ENSO mainly affects moderate rainfalls and dry spells, while IOD has a more significant impact on precipitation extremes. These findings could be helpful for improving the forecasting of monsoon extremes in China and the evaluations of climate models.

  11. A plant's perspective of extremes: terrestrial plant responses to changing climatic variability.

    Science.gov (United States)

    Reyer, Christopher P O; Leuzinger, Sebastian; Rammig, Anja; Wolf, Annett; Bartholomeus, Ruud P; Bonfante, Antonello; de Lorenzi, Francesca; Dury, Marie; Gloning, Philipp; Abou Jaoudé, Renée; Klein, Tamir; Kuster, Thomas M; Martins, Monica; Niedrist, Georg; Riccardi, Maria; Wohlfahrt, Georg; de Angelis, Paolo; de Dato, Giovanbattista; François, Louis; Menzel, Annette; Pereira, Marízia

    2013-01-01

    We review observational, experimental, and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied, although potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heat-waves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational, and/or modeling studies have the potential to overcome important caveats of the respective individual approaches. © 2012 Blackwell Publishing Ltd.

  12. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    Science.gov (United States)

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  13. Intensification of extreme European summer precipitation in a warmer climate

    DEFF Research Database (Denmark)

    Christensen, O. B.; Christensen, J. H.

    2004-01-01

    Heavy and/or extended precipitation episodes with subsequent surface runoff can inflict catastrophic property damage and loss of human life. Thus, it is important to determine how the character of such events could change in response to greenhouse gas-induced global warming. Impacts of climate...... warming on severe precipitation events in Europe on a diurnal time scale were investigated with a high-resolution regional climate model for two of the greenhouse gas emission scenarios constructed by the Intergovernmental Panel on Climate Change (IPCC; Nakicenovic, N., et al., 2000, IPCC special report...... models both originating from fully transient climate change simulations. Here, we show that although the summer time precipitation decreases over a substantial part of Europe in the scenarios analysed, an increase in the amount of precipitation exceeding the present-day 99th and in most cases even the 95...

  14. Vulnerability of solar energy infrastructure and output to extreme events: Climate change implications (Conference paper)

    OpenAIRE

    Patt, A.; Pfenninger, S.; Lilliestam, J.

    2010-01-01

    This paper explores the potential vulnerability of solar energy systems to future extreme event risks as a consequence of climate change. We describe the three main technologies likely to be used to harness sunlight -- thermal heating, photovoltaic (PV), and concentrating solar power (CSP) -- and identify critical extreme event vulnerabilities for each one. We then compare these vulnerabilities with assessments of future changes in extreme event risk levels. We do not identify any vulnerabili...

  15. Potential impacts of climate change on extreme precipitation over four African coastal cities

    CSIR Research Space (South Africa)

    Abiodun, BJ

    2017-08-01

    Full Text Available This study examines the impacts of climate change on characteristics of extreme precipitation events over four African coastal cities (Cape Town, Maputo, Lagos and Port Said) under two future climate scenarios (RCP4.5 and RCP8.5). Fourteen indices...

  16. Quantification of climate change effects on extreme precipitation used for high resolution hydrologic design

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten

    2012-01-01

    are studied, all based on output from historical rain series of the present climate and output from Regional Climate Models. Two models are applied, one being based on an extreme value model, the Partial Duration Series Approach, and the other based on a stochastic rainfall generator model. Finally...

  17. Behavioural, ecological and evolutionary responses to extreme climatic events : Challenges and directions

    NARCIS (Netherlands)

    Van de Pol, Martijn; Jenouvrier, Stéphanie; Cornelissen, Johannes H.C.; Visser, Marcel E.

    2017-01-01

    More extreme climatic events (ECEs) are among the most prominent consequences of climate change. Despite a long-standing recognition of the importance of ECEs by paleo-ecologists and macro-evolutionary biologists, ECEs have only recently received a strong interest in the wider ecological and

  18. Determination of a lower bound on Earth's climate sensitivity

    Directory of Open Access Journals (Sweden)

    STEPHEN E. Schwartz

    2013-09-01

    Full Text Available Transient and equilibrium sensitivity of Earth's climate has been calculated using global temperature, forcing and heating rate data for the period 1970–2010. We have assumed increased long-wave radiative forcing in the period due to the increase of the long-lived greenhouse gases. By assuming the change in aerosol forcing in the period to be zero, we calculate what we consider to be lower bounds to these sensitivities, as the magnitude of the negative aerosol forcing is unlikely to have diminished in this period. The radiation imbalance necessary to calculate equilibrium sensitivity is estimated from the rate of ocean heat accumulation as 0.37±0.03 W m−2 (all uncertainty estimates are 1−σ. With these data, we obtain best estimates for transient climate sensitivity 0.39±0.07 K (W m−2−1 and equilibrium climate sensitivity 0.54±0.14 K (W m−2−1, equivalent to 1.5±0.3 and 2.0±0.5 K (3.7 W m−2−1, respectively. The latter quantity is equal to the lower bound of the ‘likely’ range for this quantity given by the 2007 IPCC Assessment Report. The uncertainty attached to the lower-bound equilibrium sensitivity permits us to state, within the assumptions of this analysis, that the equilibrium sensitivity is greater than 0.31 K (W m−2−1, equivalent to 1.16 K (3.7 W m−2−1, at the 95% confidence level.

  19. Providing the Larger Climate Context During Extreme Weather - Lessons from Local Television News

    Science.gov (United States)

    Woods, M.; Cullen, H. M.

    2015-12-01

    Local television weathercasters, in their role as Station Scientists, are often called upon to educate viewers about the science and impacts of climate change. Climate Central supports these efforts through its Climate Matters program. Launched in 2010 with support from the National Science Foundation, the program has grown into a network that includes more than 245 weathercasters from across the country and provides localized information on climate and ready-to-use, broadcast quality graphics and analyses in both English and Spanish. This presentation will focus on discussing best practices for integrating climate science into the local weather forecast as well as advances in the science of extreme event attribution. The Chief Meteorologist at News10 (Sacramento, CA) will discuss local news coverage of the ongoing California drought, extreme weather and climate literacy.

  20. Climate change impact assessment of extreme precipitation on urban flash floods – case study, Aarhus, Denmark

    DEFF Research Database (Denmark)

    Madsen, Henrik; Sunyer Pinya, Maria Antonia; Rosbjerg, Dan

    projections for estimation of changes in extreme rainfall characteristics. Climate model projections from 20 regional climate models (RCM) from the ENSEMBLES data archive were used in the analysis. Two different estimation methods were applied, using, respectively, a direct estimation of the changes...... in the extreme value statistics of the RCM data, and application of a stochastic weather generator fitted to the changes in rainfall characteristics from the RCM data. The results show a large variability in the projected changes in extreme precipitation between the different RCMs and the two estimation methods...

  1. Higher order magnetic modulation structures in rare earth metal, alloys and compounds under extreme conditions

    International Nuclear Information System (INIS)

    Kawano, S.

    2003-01-01

    Magnetic materials consisting of rare earth ions form modulation structures such as a helical or sinusoidal structure caused by the oscillating magnetic interaction between rare earth ions due to RKKY magnetic interaction. These modulation structures, in some cases, develop further to higher order modulation structures by additional modulations caused by higher order crystalline electric field, magnetic interactions such as spin-lattice interaction, external magnetic field and pressure. The higher order modulation structures are observed in a spin-slip structure or a helifan structure in Ho, and a tilt helix structure in a TbEr alloy. Paramagnetic ions originated from frustration generate many magnetic phases under applied external magnetic field. KUR neutron diffraction groups have performed the development and adjustment of high-pressure instruments and external magnetic fields for neutron diffraction spectrometers. The studies of 'neutron diffraction under extreme conditions' by the seven groups are described in this report. (Y. Kazumata)

  2. A new synoptic scale resolving global climate simulation using the Community Earth System Model

    Science.gov (United States)

    Small, R. Justin; Bacmeister, Julio; Bailey, David; Baker, Allison; Bishop, Stuart; Bryan, Frank; Caron, Julie; Dennis, John; Gent, Peter; Hsu, Hsiao-ming; Jochum, Markus; Lawrence, David; Muñoz, Ernesto; diNezio, Pedro; Scheitlin, Tim; Tomas, Robert; Tribbia, Joseph; Tseng, Yu-heng; Vertenstein, Mariana

    2014-12-01

    High-resolution global climate modeling holds the promise of capturing planetary-scale climate modes and small-scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state-of-the-art high-resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of "present-day" simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El-Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small-scale features of the climate system to be represented, such as air-sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high-resolution run employed 23,404 cores, costing 250 thousand processor-hours per simulated year and made about two simulated years per day on the NCAR-Wyoming supercomputer "Yellowstone."

  3. Directional Considerations for Extreme Wind Climatic Events in the ...

    African Journals Online (AJOL)

    This paper takes a look at the importance and role of probability concepts structural design of transmission line. The reliability of transmission structure is clearly a function of the maximum loads that may be imposed over the useful life of the structure. These loads are, more often than not, caused by the extreme atmospheric ...

  4. Uncertainty information in climate data records from Earth observation

    Science.gov (United States)

    Merchant, C. J.

    2017-12-01

    How to derive and present uncertainty in climate data records (CDRs) has been debated within the European Space Agency Climate Change Initiative, in search of common principles applicable across a range of essential climate variables. Various points of consensus have been reached, including the importance of improving provision of uncertainty information and the benefit of adopting international norms of metrology for language around the distinct concepts of uncertainty and error. Providing an estimate of standard uncertainty per datum (or the means to readily calculate it) emerged as baseline good practice, and should be highly relevant to users of CDRs when the uncertainty in data is variable (the usual case). Given this baseline, the role of quality flags is clarified as being complementary to and not repetitive of uncertainty information. Data with high uncertainty are not poor quality if a valid estimate of the uncertainty is available. For CDRs and their applications, the error correlation properties across spatio-temporal scales present important challenges that are not fully solved. Error effects that are negligible in the uncertainty of a single pixel may dominate uncertainty in the large-scale and long-term. A further principle is that uncertainty estimates should themselves be validated. The concepts of estimating and propagating uncertainty are generally acknowledged in geophysical sciences, but less widely practised in Earth observation and development of CDRs. Uncertainty in a CDR depends in part (and usually significantly) on the error covariance of the radiances and auxiliary data used in the retrieval. Typically, error covariance information is not available in the fundamental CDR (FCDR) (i.e., with the level-1 radiances), since provision of adequate level-1 uncertainty information is not yet standard practice. Those deriving CDRs thus cannot propagate the radiance uncertainty to their geophysical products. The FIDUCEO project (www.fiduceo.eu) is

  5. Life stage influences the resistance and resilience of black mangrove forests to winter climate extremes

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; From, Andrew S.; McCoy, Megan L.; McLeod, Jennie L.; Kelleway, Jeffrey

    2015-01-01

    In subtropical coastal wetlands on multiple continents, climate change-induced reductions in the frequency and intensity of freezing temperatures are expected to lead to the expansion of woody plants (i.e., mangrove forests) at the expense of tidal grasslands (i.e., salt marshes). Since some ecosystem goods and services would be affected by mangrove range expansion, there is a need to better understand mangrove sensitivity to freezing temperatures as well as the implications of changing winter climate extremes for mangrove-salt marsh interactions. In this study, we investigated the following questions: (1) how does plant life stage (i.e., ontogeny) influence the resistance and resilience of black mangrove (Avicennia germinans) forests to freezing temperatures; and (2) how might differential life stage responses to freeze events affect the rate of mangrove expansion and salt marsh displacement due to climate change? To address these questions, we quantified freeze damage and recovery for different life stages (seedling, short tree, and tall tree) following extreme winter air temperature events that occurred near the northern range limit of A. germinans in North America. We found that life stage affects black mangrove forest resistance and resilience to winter climate extremes in a nonlinear fashion. Resistance to winter climate extremes was high for tall A. germinans trees and seedlings, but lowest for short trees. Resilience was highest for tall A. germinans trees. These results suggest the presence of positive feedbacks and indicate that climate-change induced decreases in the frequency and intensity of extreme minimum air temperatures could lead to a nonlinear increase in mangrove forest resistance and resilience. This feedback could accelerate future mangrove expansion and salt marsh loss at rates beyond what would be predicted from climate change alone. In general terms, our study highlights the importance of accounting for differential life stage responses and

  6. Extreme winds and sea-surges in climate models

    NARCIS (Netherlands)

    Brink, H.W. (Hendrik Willem) van den

    2005-01-01

    This thesis deals with the problem of how to estimate values of meteorological parameters that correspond to return periods that are considerably longer than the length of the observational data sets. The problem is approached by considering the output of weather-and climate models as

  7. Identification of Climate Change with Generalized Extreme Value (GEV) Distribution Approach

    International Nuclear Information System (INIS)

    Rahayu, Anita

    2013-01-01

    Some events are difficult to avoid and gives considerable influence to humans and the environment is extreme weather and climate change. Many of the problems that require knowledge about the behavior of extreme values and one of the methods used are the Extreme Value Theory (EVT). EVT used to draw up reliable systems in a variety of conditions, so as to minimize the risk of a major disaster. There are two methods for identifying extreme value, Block Maxima with Generalized Extreme Value (GEV) distribution approach and Peaks over Threshold (POT) with Generalized Pareto Distribution (GPD) approach. This research in Indramayu with January 1961-December 2003 period, the method used is Block Maxima with GEV distribution approach. The result showed that there is no climate change in Indramayu with January 1961-December 2003 period.

  8. Introduction to the special issue: Observed and projected changes in weather and climate extremes

    Directory of Open Access Journals (Sweden)

    John E. Hay

    2016-03-01

    Full Text Available This Special Issue documents not only the more recent progress made in detecting and attributing changes in temperature and precipitation extremes in the observational record, but also in projecting changes in such extremes at regional and local scales. It also deals with the impacts and other consequences and implications of both the historic and anticipated changes in extreme weather and climate events. Impact assessments using both dynamical downscaling and statistical modelling for two tropical cyclones are reported, as well as for storm surge and extreme wave changes. The Special Issue concludes with a consideration of some policy implications and practical applications arising from our relatively robust understanding of how the build up of greenhouse gases in the Earth’s atmosphere affects weather and climate extremes.

  9. Optimal adaptation to extreme rainfalls in current and future climate

    DEFF Research Database (Denmark)

    Rosbjerg, Dan

    2017-01-01

    . The value of the return period T that corresponds to the minimum of the sum of these costs will then be the optimal adaptation level. The change in climate, however, is expected to continue in the next century, which calls for expansion of the above model. The change can be expressed in terms of a climate......More intense and frequent rainfalls have increased the number of urban flooding events in recent years, prompting adaptation efforts. Economic optimization is considered an efficient tool to decide on the design level for adaptation. The costs associated with a flooding to the T-year level...... and the annual capital and operational costs of adapting to this level are described with log-linear relations. The total flooding costs are developed as the expected annual damage of flooding above the T-year level plus the annual capital and operational costs for ensuring no flooding below the T-year level...

  10. Risk Formulations versus Comprehensive Uncertainty Characterizations for Climate Extremes and their Impacts

    Science.gov (United States)

    Parish, E. S.; Ganguly, A. R.

    2009-12-01

    Climate extremes—defined inclusively as extreme hydro-metrological events and regional changes in climate patterns at decadal scales—and their impacts on natural, engineered or human systems, represent among the most significant knowledge-gaps in climate prediction and integrated assessments in a post-AR4 world. Risks and uncertainties are related but distinct concepts. However, their relevance to decision-support tools in the context of climate change is indisputable. The opportunities and challenges are presented with case studies developed for stakeholders and policy makers.

  11. Identifying climate analogues for precipitation extremes for Denmark based on RCM simulations from the ENSEMBLES database.

    Science.gov (United States)

    Arnbjerg-Nielsen, K; Funder, S G; Madsen, H

    2015-01-01

    Climate analogues, also denoted Space-For-Time, may be used to identify regions where the present climatic conditions resemble conditions of a past or future state of another location or region based on robust climate variable statistics in combination with projections of how these statistics change over time. The study focuses on assessing climate analogues for Denmark based on current climate data set (E-OBS) observations as well as the ENSEMBLES database of future climates with the aim of projecting future precipitation extremes. The local present precipitation extremes are assessed by means of intensity-duration-frequency curves for urban drainage design for the relevant locations being France, the Netherlands, Belgium, Germany, the United Kingdom, and Denmark. Based on this approach projected increases of extreme precipitation by 2100 of 9 and 21% are expected for 2 and 10 year return periods, respectively. The results should be interpreted with caution as the best region to represent future conditions for Denmark is the coastal areas of Northern France, for which only little information is available with respect to present precipitation extremes.

  12. Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method.

    Science.gov (United States)

    Kara, Fatih; Yucel, Ismail

    2015-09-01

    This study investigates the climate change impact on the changes of mean and extreme flows under current and future climate conditions in the Omerli Basin of Istanbul, Turkey. The 15 regional climate model output from the EU-ENSEMBLES project and a downscaling method based on local implications from geophysical variables were used for the comparative analyses. Automated calibration algorithm is used to optimize the parameters of Hydrologiska Byråns Vattenbalansavdel-ning (HBV) model for the study catchment using observed daily temperature and precipitation. The calibrated HBV model was implemented to simulate daily flows using precipitation and temperature data from climate models with and without downscaling method for reference (1960-1990) and scenario (2071-2100) periods. Flood indices were derived from daily flows, and their changes throughout the four seasons and year were evaluated by comparing their values derived from simulations corresponding to the current and future climate. All climate models strongly underestimate precipitation while downscaling improves their underestimation feature particularly for extreme events. Depending on precipitation input from climate models with and without downscaling the HBV also significantly underestimates daily mean and extreme flows through all seasons. However, this underestimation feature is importantly improved for all seasons especially for spring and winter through the use of downscaled inputs. Changes in extreme flows from reference to future increased for the winter and spring and decreased for the fall and summer seasons. These changes were more significant with downscaling inputs. With respect to current time, higher flow magnitudes for given return periods will be experienced in the future and hence, in the planning of the Omerli reservoir, the effective storage and water use should be sustained.

  13. Long-Term Climate Trends and Extreme Events in Northern Fennoscandia (1914–2013

    Directory of Open Access Journals (Sweden)

    Sonja Kivinen

    2017-02-01

    Full Text Available We studied climate trends and the occurrence of rare and extreme temperature and precipitation events in northern Fennoscandia in 1914–2013. Weather data were derived from nine observation stations located in Finland, Norway, Sweden and Russia. The results showed that spring and autumn temperatures and to a lesser extent summer temperatures increased significantly in the study region, the observed changes being the greatest for daily minimum temperatures. The number of frost days declined both in spring and autumn. Rarely cold winter, spring, summer and autumn seasons had a low occurrence and rarely warm spring and autumn seasons a high occurrence during the last 20-year interval (1994–2013, compared to the other 20-year intervals. That period was also characterized by a low number of days with extremely low temperature in all seasons (4–9% of all extremely cold days and a high number of April and October days with extremely high temperature (36–42% of all extremely warm days. A tendency of exceptionally high daily precipitation sums to grow even higher towards the end of the study period was also observed. To summarize, the results indicate a shortening of the cold season in northern Fennoscandia. Furthermore, the results suggest significant declines in extremely cold climate events in all seasons and increases in extremely warm climate events particularly in spring and autumn seasons.

  14. Influence of climate variability versus change at multi-decadal time scales on hydrological extremes

    Science.gov (United States)

    Willems, Patrick

    2014-05-01

    Recent studies have shown that rainfall and hydrological extremes do not randomly occur in time, but are subject to multidecadal oscillations. In addition to these oscillations, there are temporal trends due to climate change. Design statistics, such as intensity-duration-frequency (IDF) for extreme rainfall or flow-duration-frequency (QDF) relationships, are affected by both types of temporal changes (short term and long term). This presentation discusses these changes, how they influence water engineering design and decision making, and how this influence can be assessed and taken into account in practice. The multidecadal oscillations in rainfall and hydrological extremes were studied based on a technique for the identification and analysis of changes in extreme quantiles. The statistical significance of the oscillations was evaluated by means of a non-parametric bootstrapping method. Oscillations in large scale atmospheric circulation were identified as the main drivers for the temporal oscillations in rainfall and hydrological extremes. They also explain why spatial phase shifts (e.g. north-south variations in Europe) exist between the oscillation highs and lows. Next to the multidecadal climate oscillations, several stations show trends during the most recent decades, which may be attributed to climate change as a result of anthropogenic global warming. Such attribution to anthropogenic global warming is, however, uncertain. It can be done based on simulation results with climate models, but it is shown that the climate model results are too uncertain to enable a clear attribution. Water engineering design statistics, such as extreme rainfall IDF or peak or low flow QDF statistics, obviously are influenced by these temporal variations (oscillations, trends). It is shown in the paper, based on the Brussels 10-minutes rainfall data, that rainfall design values may be about 20% biased or different when based on short rainfall series of 10 to 15 years length, and

  15. Do climate extreme events foster violent civil conflicts? A coincidence analysis

    Science.gov (United States)

    Schleussner, Carl-Friedrich; Donges, Jonathan F.; Donner, Reik V.

    2014-05-01

    Civil conflicts promoted by adverse environmental conditions represent one of the most important potential feedbacks in the global socio-environmental nexus. While the role of climate extremes as a triggering factor is often discussed, no consensus is yet reached about the cause-and-effect relation in the observed data record. Here we present results of a rigorous statistical coincidence analysis based on the Munich Re Inc. extreme events database and the Uppsala conflict data program. We report evidence for statistically significant synchronicity between climate extremes with high economic impact and violent conflicts for various regions, although no coherent global signal emerges from our analysis. Our results indicate the importance of regional vulnerability and might aid to identify hot-spot regions for potential climate-triggered violent social conflicts.

  16. Optimal adaptation to extreme rainfalls under climate change

    Science.gov (United States)

    Rosbjerg, Dan

    2017-04-01

    More intense and frequent rainfalls have increased the number of urban flooding events in recent years, prompting adaptation efforts. Economic optimization is considered an efficient tool to decide on the design level for adaptation. The costs associated with a flooding to the T-year level and the annual capital and operational costs of adapting to this level are described with log-linear relations. The total flooding costs are developed as the expected annual damage of flooding above the T-year level plus the annual capital and operational costs for ensuring no flooding below the T-year level. The value of the return period T that corresponds to the minimum of the sum of these costs will then be the optimal adaptation level. The change in climate, however, is expected to continue in the next century, which calls for expansion of the above model. The change can be expressed in terms of a climate factor (the ratio between the future and the current design level) which is assumed to increase in time. This implies increasing costs of flooding in the future for many places in the world. The optimal adaptation level is found for immediate as well as for delayed adaptation. In these cases the optimum is determined by considering the net present value of the incurred costs during a sufficiently long time span. Immediate as well as delayed adaptation is considered.

  17. Optimal adaptation to extreme rainfalls in current and future climate

    Science.gov (United States)

    Rosbjerg, Dan

    2017-01-01

    More intense and frequent rainfalls have increased the number of urban flooding events in recent years, prompting adaptation efforts. Economic optimization is considered an efficient tool to decide on the design level for adaptation. The costs associated with a flooding to the T-year level and the annual capital and operational costs of adapting to this level are described with log-linear relations. The total flooding costs are developed as the expected annual damage of flooding above the T-year level plus the annual capital and operational costs for ensuring no flooding below the T-year level. The value of the return period T that corresponds to the minimum of the sum of these costs will then be the optimal adaptation level. The change in climate, however, is expected to continue in the next century, which calls for expansion of the above model. The change can be expressed in terms of a climate factor (the ratio between the future and the current design level) which is assumed to increase in time. This implies increasing costs of flooding in the future for many places in the world. The optimal adaptation level is found for immediate as well as for delayed adaptation. In these cases, the optimum is determined by considering the net present value of the incurred costs during a sufficiently long time-span. Immediate as well as delayed adaptation is considered.

  18. Regional Community Climate Simulations with variable resolution meshes in the Community Earth System Model

    Science.gov (United States)

    Zarzycki, C. M.; Gettelman, A.; Callaghan, P.

    2017-12-01

    Accurately predicting weather extremes such as precipitation (floods and droughts) and temperature (heat waves) requires high resolution to resolve mesoscale dynamics and topography at horizontal scales of 10-30km. Simulating such resolutions globally for climate scales (years to decades) remains computationally impractical. Simulating only a small region of the planet is more tractable at these scales for climate applications. This work describes global simulations using variable-resolution static meshes with multiple dynamical cores that target the continental United States using developmental versions of the Community Earth System Model version 2 (CESM2). CESM2 is tested in idealized, aquaplanet and full physics configurations to evaluate variable mesh simulations against uniform high and uniform low resolution simulations at resolutions down to 15km. Different physical parameterization suites are also evaluated to gauge their sensitivity to resolution. Idealized variable-resolution mesh cases compare well to high resolution tests. More recent versions of the atmospheric physics, including cloud schemes for CESM2, are more stable with respect to changes in horizontal resolution. Most of the sensitivity is due to sensitivity to timestep and interactions between deep convection and large scale condensation, expected from the closure methods. The resulting full physics model produces a comparable climate to the global low resolution mesh and similar high frequency statistics in the high resolution region. Some biases are reduced (orographic precipitation in the western United States), but biases do not necessarily go away at high resolution (e.g. summertime JJA surface Temp). The simulations are able to reproduce uniform high resolution results, making them an effective tool for regional climate studies and are available in CESM2.

  19. Assessing future climatic changes of rainfall extremes at small spatio-temporal scales

    DEFF Research Database (Denmark)

    Gregersen, Ida Bülow; Sørup, Hjalte Jomo Danielsen; Madsen, Henrik

    2013-01-01

    Climate change is expected to influence the occurrence and magnitude of rainfall extremes and hence the flood risks in cities. Major impacts of an increased pluvial flood risk are expected to occur at hourly and sub-hourly resolutions. This makes convective storms the dominant rainfall type...... in relation to urban flooding. The present study focuses on high-resolution regional climate model (RCM) skill in simulating sub-daily rainfall extremes. Temporal and spatial characteristics of output from three different RCM simulations with 25 km resolution are compared to point rainfall extremes estimated...... from observed data. The applied RCM data sets represent two different models and two different types of forcing. Temporal changes in observed extreme point rainfall are partly reproduced by the RCM RACMO when forced by ERA40 re-analysis data. Two ECHAM forced simulations show similar increases...

  20. Transformation of soil organics under extreme climate events: a project description

    Science.gov (United States)

    Blagodatskaya, Evgenia

    2017-04-01

    Recent climate scenarios predict not only continued global warming but also an increased frequency and intensity of extreme climatic events such as strong changes in temperature and precipitation with unusual regional dynamics. Weather anomalies at European territory of Russia are currently revealed as long-term drought and strong showers in summer and as an increased frequency of soil freezing-thawing cycles. Climate extremes totally change biogeochemical processes and elements cycling both at the ecosystem level and at the level of soil profile mainly affecting soil biota. Misbalance in these processes can cause a reduction of soil carbon stock and an increase of greenhouse gases emission. Our project aims to reveal the transformation mechanisms of soil organic matter caused by extreme weather events taking into consideration the role of biotic-abiotic interactions in regulation of formation, maintenance and turnover of soil carbon stock. Our research strategy is based on the novel concept considering extreme climatic events (showers after long-term droughts, soil flooding, freezing-thawing) as abiotic factors initiating a microbial succession. Study on stoichiometric flexibility of plants under climate extremes as well as on resulting response of soil heterotrophs on stoichiometric changes in substrate will be used for experimental prove and further development of the theory of ecological stoichiometry. The results enable us to reveal the mechanisms of biotic - abiotic interactions responsible for the balance between mobilization and stabilization of soil organic matter. Identified mechanisms will form the basis of an ecosystem model enabled to predict the effects of extreme climatic events on biogenic carbon cycle in the biosphere.

  1. Precipitation extremes and their relation to climatic indices in the Pacific Northwest USA

    Science.gov (United States)

    Zarekarizi, Mahkameh; Rana, Arun; Moradkhani, Hamid

    2018-06-01

    There has been focus on the influence of climate indices on precipitation extremes in the literature. Current study presents the evaluation of the precipitation-based extremes in Columbia River Basin (CRB) in the Pacific Northwest USA. We first analyzed the precipitation-based extremes using statistically (ten GCMs) and dynamically downscaled (three GCMs) past and future climate projections. Seven precipitation-based indices that help inform about the flood duration/intensity are used. These indices help in attaining first-hand information on spatial and temporal scales for different service sectors including energy, agriculture, forestry etc. Evaluation of these indices is first performed in historical period (1971-2000) followed by analysis of their relation to large scale tele-connections. Further we mapped these indices over the area to evaluate the spatial variation of past and future extremes in downscaled and observational data. The analysis shows that high values of extreme indices are clustered in either western or northern parts of the basin for historical period whereas the northern part is experiencing higher degree of change in the indices for future scenario. The focus is also on evaluating the relation of these extreme indices to climate tele-connections in historical period to understand their relationship with extremes over CRB. Various climate indices are evaluated for their relationship using Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). Results indicated that, out of 13 climate tele-connections used in the study, CRB is being most affected inversely by East Pacific (EP), Western Pacific (WP), East Atlantic (EA) and North Atlaentic Oscillation (NAO).

  2. Climatic changes of extreme precipitation in Denmark from 1872 to 2100

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Gregersen, Ida Bülow; Sunyer Pinya, Maria Antonia

    of climate change impacts from anthropogenic effects can be established based on projections of daily precipitation. These estimates have then been further downscaled to enable urban pluvial inundation calculations using different statistical downscaling and extreme value analysis techniques. . From...... of precipitation extremes. The objective is to establish cities that are resilient to pluvial floods by means of a gradual upgrading of the drainage capacity in combination with a structured risk management approach. Using the regional climate model (RCM) data repositories from PRUDENCE and ENSEMBLES, estimates....... These results are important for the extrapolation to future events. Currently efforts are dedicated to constructing similar models based on outputs from climate models, but the models are complicated due to the fact that the correlation structure of high-resolution precipitation in the climate models deviates...

  3. Extreme Events in China under Climate Change: Uncertainty and related impacts (CSSP-FOREX)

    Science.gov (United States)

    Leckebusch, Gregor C.; Befort, Daniel J.; Hodges, Kevin I.

    2016-04-01

    Suitable adaptation strategies or the timely initiation of related mitigation efforts in East Asia will strongly depend on robust and comprehensive information about future near-term as well as long-term potential changes in the climate system. Therefore, understanding the driving mechanisms associated with the East Asian climate is of major importance. The FOREX project (Fostering Regional Decision Making by the Assessment of Uncertainties of Future Regional Extremes and their Linkage to Global Climate System Variability for China and East Asia) focuses on the investigation of extreme wind and rainfall related events over Eastern Asia and their possible future changes. Here, analyses focus on the link between local extreme events and their driving weather systems. This includes the coupling between local rainfall extremes and tropical cyclones, the Meiyu frontal system, extra-tropical teleconnections and monsoonal activity. Furthermore, the relation between these driving weather systems and large-scale variability modes, e.g. NAO, PDO, ENSO is analysed. Thus, beside analysing future changes of local extreme events, the temporal variability of their driving weather systems and related large-scale variability modes will be assessed in current CMIP5 global model simulations to obtain more robust results. Beyond an overview of FOREX itself, first results regarding the link between local extremes and their steering weather systems based on observational and reanalysis data are shown. Special focus is laid on the contribution of monsoonal activity, tropical cyclones and the Meiyu frontal system on the inter-annual variability of the East Asian summer rainfall.

  4. Impacts of climate change on rainfall extremes and urban drainage systems: A review

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Willems, P.; Olsson, J.

    2013-01-01

    A review is made of current methods for assessing future changes in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic-induced climate change. The review concludes that in spite of significant advances there are still many limitations in our understanding of...... drainage infrastructure considering climate change impacts and co-optimizing these with other objectives will become ever more important to keep our cities habitable into the future. © IWA Publishing 2013....

  5. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    OpenAIRE

    A. Mahmud; M. Hixson; M. J. Kleeman

    2012-01-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for ...

  6. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    OpenAIRE

    A. Mahmud; M. Hixson; M. J. Kleeman

    2012-01-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days ...

  7. Means and extremes: building variability into community-level climate change experiments.

    Science.gov (United States)

    Thompson, Ross M; Beardall, John; Beringer, Jason; Grace, Mike; Sardina, Paula

    2013-06-01

    Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments. © 2013 John Wiley & Sons Ltd/CNRS.

  8. Impacts of climate change on extreme wave climate along the Western Coast of Sri Lanka

    NARCIS (Netherlands)

    Bamunawala, R. M.J.; Hettiarachchi, S. S.L.; Samarawickrama, S. P.; Wikramanayake, P. N.; Ranasinghe, Ranasinghe W M R J B; Baptiste, Alison

    2015-01-01

    Climate change and climate change driven impacts are most widely argued topics among contemporary researchers and scientists. Broadly there are two schools of thought that present entirely contrasting perceptions about the overall concept of climate change and its impacts. While one of the

  9. Climate. The earth and its atmosphere in the changing times. 3. upd. ed.

    International Nuclear Information System (INIS)

    Buchal, Christoph; Schoenwiese, Christian-Dietrich

    2016-01-01

    The Climate Change Challenge. Throughout the world, great efforts are being made to better understanding the development of the global climate and to model future trends. What characterizes the weather what the climate? How did the climate history of the Earth? What factors are affecting the climate? In the third, updated edition 2016 of the widespread attractive and scientifically-based four-volume nonfiction series ENERGY, AIR, POWER and MOBILITY which clearly explained basic knowledge of the climate system is expanded to include the latest information about the IPCC and keep up-to-date insight into modern research, especially the REKLIM project of the Helmholtz Association of German research Centres. [de

  10. How do the multiple large-scale climate oscillations trigger extreme precipitation?

    Science.gov (United States)

    Shi, Pengfei; Yang, Tao; Xu, Chong-Yu; Yong, Bin; Shao, Quanxi; Li, Zhenya; Wang, Xiaoyan; Zhou, Xudong; Li, Shu

    2017-10-01

    Identifying the links between variations in large-scale climate patterns and precipitation is of tremendous assistance in characterizing surplus or deficit of precipitation, which is especially important for evaluation of local water resources and ecosystems in semi-humid and semi-arid regions. Restricted by current limited knowledge on underlying mechanisms, statistical correlation methods are often used rather than physical based model to characterize the connections. Nevertheless, available correlation methods are generally unable to reveal the interactions among a wide range of climate oscillations and associated effects on precipitation, especially on extreme precipitation. In this work, a probabilistic analysis approach by means of a state-of-the-art Copula-based joint probability distribution is developed to characterize the aggregated behaviors for large-scale climate patterns and their connections to precipitation. This method is employed to identify the complex connections between climate patterns (Atlantic Multidecadal Oscillation (AMO), El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO)) and seasonal precipitation over a typical semi-humid and semi-arid region, the Haihe River Basin in China. Results show that the interactions among multiple climate oscillations are non-uniform in most seasons and phases. Certain joint extreme phases can significantly trigger extreme precipitation (flood and drought) owing to the amplification effect among climate oscillations.

  11. Millennial timescale carbon cycle and climate change in an efficient Earth system model

    Energy Technology Data Exchange (ETDEWEB)

    Lenton, T.M. [University of East Anglia, Tyndall Centre, UK and School of Environmental Sciences, Norwich (United Kingdom); Williamson, M.S. [University of East Anglia, Tyndall Centre, UK and School of Environmental Sciences, Norwich (United Kingdom); UK and National Oceanography Centre, Tyndall Centre, Southampton (United Kingdom); Edwards, N.R. [Open University, Earth Sciences, Milton Keynes (United Kingdom); Marsh, R.; Shepherd, J.G. [UK and National Oceanography Centre, Tyndall Centre, Southampton (United Kingdom); Price, A.R.; Cox, S.J. [University of Southampton, Southampton e-Science Centre, Southampton (United Kingdom); Ridgwell, A.J. [University of British Columbia, Department of Earth and Ocean Sciences, Vancouver (Canada)

    2006-06-15

    A new Earth system model, GENIE-1, is presented which comprises a 3-D frictional geostrophic ocean, phosphate-restoring marine biogeochemistry, dynamic and thermodynamic sea-ice, land surface physics and carbon cycling, and a seasonal 2-D energy-moisture balance atmosphere. Three sets of model climate parameters are used to explore the robustness of the results and for traceability to earlier work. The model versions have climate sensitivity of 2.8-3.3 C and predict atmospheric CO{sub 2} close to present observations. Six idealized total fossil fuel CO{sub 2} emissions scenarios are used to explore a range of 1,100-15,000 GtC total emissions and the effect of rate of emissions. Atmospheric CO{sub 2} approaches equilibrium in year 3000 at 420-5,660 ppmv, giving 1.5-12.5 C global warming. The ocean is a robust carbon sink of up to 6.5 GtC year{sup -1}. Under 'business as usual', the land becomes a carbon source around year 2100 which peaks at up to 2.5 GtC year{sup -1}. Soil carbon is lost globally, boreal vegetation generally increases, whilst under extreme forcing, dieback of some tropical and sub-tropical vegetation occurs. Average ocean surface pH drops by up to 1.15 units. A Greenland ice sheet melt threshold of 2.6 C local warming is only briefly exceeded if total emissions are limited to 1,100 GtC, whilst 15,000 GtC emissions cause complete Greenland melt by year 3000, contributing 7 m to sea level rise. Total sea-level rise, including thermal expansion, is 0.4-10 m in year 3000 and ongoing. The Atlantic meridional overturning circulation shuts down in two out of three model versions, but only under extreme emissions including exotic fossil fuel resources. (orig.)

  12. Spatial and temporal variations of Norwegian geohazards in a changing climate, the GeoExtreme Project

    Directory of Open Access Journals (Sweden)

    C. Jaedicke

    2008-08-01

    Full Text Available Various types of slope processes, mainly landslides and avalanches (snow, rock, clay and debris pose together with floods the main geohazards in Norway. Landslides and avalanches have caused more than 2000 casualties and considerable damage to infrastructure over the last 150 years. The interdisciplinary research project "GeoExtreme" focuses on investigating the coupling between meteorological factors and landslides and avalanches, extrapolating this into the near future with a changing climate and estimating the socioeconomic implications. The main objective of the project is to predict future geohazard changes in a changing climate. A database consisting of more than 20 000 recorded historical events have been coupled with a meteorological database to assess the predictability of landslides and avalanches caused by meteorological conditions. Present day climate and near future climate scenarios are modelled with a global climate model on a stretched grid, focusing on extreme weather events in Norway. The effects of climate change on landslides and avalanche activity are studied in four selected areas covering the most important climatic regions in Norway. The statistical analysis of historical landslide and avalanche events versus weather observations shows strong regional differences in the country. Avalanches show the best correlation with weather events while landslides and rockfalls are less correlated. The new climate modelling approach applying spectral nudging to achieve a regional downscaling for Norway proves to reproduce extreme events of precipitation much better than conventional modelling approaches. Detailed studies of slope stabilities in one of the selected study area show a high sensitivity of slope stability in a changed precipitation regime. The value of elements at risk was estimated in one study area using a GIS based approach that includes an estimation of the values within given present state hazard zones. The ongoing

  13. Semi-supervised tracking of extreme weather events in global spatio-temporal climate datasets

    Science.gov (United States)

    Kim, S. K.; Prabhat, M.; Williams, D. N.

    2017-12-01

    Deep neural networks have been successfully applied to solve problem to detect extreme weather events in large scale climate datasets and attend superior performance that overshadows all previous hand-crafted methods. Recent work has shown that multichannel spatiotemporal encoder-decoder CNN architecture is able to localize events in semi-supervised bounding box. Motivated by this work, we propose new learning metric based on Variational Auto-Encoders (VAE) and Long-Short-Term-Memory (LSTM) to track extreme weather events in spatio-temporal dataset. We consider spatio-temporal object tracking problems as learning probabilistic distribution of continuous latent features of auto-encoder using stochastic variational inference. For this, we assume that our datasets are i.i.d and latent features is able to be modeled by Gaussian distribution. In proposed metric, we first train VAE to generate approximate posterior given multichannel climate input with an extreme climate event at fixed time. Then, we predict bounding box, location and class of extreme climate events using convolutional layers given input concatenating three features including embedding, sampled mean and standard deviation. Lastly, we train LSTM with concatenated input to learn timely information of dataset by recurrently feeding output back to next time-step's input of VAE. Our contribution is two-fold. First, we show the first semi-supervised end-to-end architecture based on VAE to track extreme weather events which can apply to massive scaled unlabeled climate datasets. Second, the information of timely movement of events is considered for bounding box prediction using LSTM which can improve accuracy of localization. To our knowledge, this technique has not been explored neither in climate community or in Machine Learning community.

  14. Communicating Climate Uncertainties: Challenges and Opportunities Related to Spatial Scales, Extreme Events, and the Warming 'Hiatus'

    Science.gov (United States)

    Casola, J. H.; Huber, D.

    2013-12-01

    Many media, academic, government, and advocacy organizations have achieved sophistication in developing effective messages based on scientific information, and can quickly translate salient aspects of emerging climate research and evolving observations. However, there are several ways in which valid messages can be misconstrued by decision makers, leading them to inaccurate conclusions about the risks associated with climate impacts. Three cases will be discussed: 1) Issues of spatial scale in interpreting climate observations: Local climate observations may contradict summary statements about the effects of climate change on larger regional or global spatial scales. Effectively addressing these differences often requires communicators to understand local and regional climate drivers, and the distinction between a 'signal' associated with climate change and local climate 'noise.' Hydrological statistics in Missouri and California are shown to illustrate this case. 2) Issues of complexity related to extreme events: Climate change is typically invoked following a wide range of damaging meteorological events (e.g., heat waves, landfalling hurricanes, tornadoes), regardless of the strength of the relationship between anthropogenic climate change and the frequency or severity of that type of event. Examples are drawn from media coverage of several recent events, contrasting useful and potentially confusing word choices and frames. 3) Issues revolving around climate sensitivity: The so-called 'pause' or 'hiatus' in global warming has reverberated strongly through political and business discussions of climate change. Addressing the recent slowdown in warming yields an important opportunity to raise climate literacy in these communities. Attempts to use recent observations as a wedge between climate 'believers' and 'deniers' is likely to be counterproductive. Examples are drawn from Congressional testimony and media stories. All three cases illustrate ways that decision

  15. Methodology and Data Sources for Assessing Extreme Charging Events within the Earth's Magnetosphere

    Science.gov (United States)

    Parker, L. N.; Minow, J. I.; Talaat, E. R.

    2016-12-01

    Spacecraft surface and internal charging is a potential threat to space technologies because electrostatic discharges on, or within, charged spacecraft materials can result in a number of adverse impacts to spacecraft systems. The Space Weather Action Plan (SWAP) ionizing radiation benchmark team recognized that spacecraft charging will need to be considered to complete the ionizing radiation benchmarks in order to evaluate the threat of charging to critical space infrastructure operating within the near-Earth ionizing radiation environments. However, the team chose to defer work on the lower energy charging environments and focus the initial benchmark efforts on the higher energy galactic cosmic ray, solar energetic particle, and trapped radiation belt particle environments of concern for radiation dose and single event effects in humans and hardware. Therefore, an initial set of 1 in 100 year spacecraft charging environment benchmarks remains to be defined to meet the SWAP goals. This presentation will discuss the available data sources and a methodology to assess the 1 in 100 year extreme space weather events that drive surface and internal charging threats to spacecraft. Environments to be considered are the hot plasmas in the outer magnetosphere during geomagnetic storms, relativistic electrons in the outer radiation belt, and energetic auroral electrons in low Earth orbit at high latitudes.

  16. Effects of climate model interdependency on the uncertainty quantification of extreme rainfall projections

    DEFF Research Database (Denmark)

    Sunyer Pinya, Maria Antonia; Madsen, H.; Rosbjerg, Dan

    Climate Models (RCMs) and General Circulation Models (GCMs). These multi-model ensembles provide the information needed to estimate probabilistic climate change projections. Several probabilistic methods have been suggested. One common assumption in most of these methods is that the climate models...... are independent. The effects of this assumption on the uncertainty quantification of extreme rainfall projections are addressed in this study. First, the interdependency of the 95% quantile of wet days in the ENSEMBLES RCMs is estimated. For this statistic and the region studied, the RCMs cannot be assumed...

  17. Animal responses to natural disturbance and climate extremes: a review

    Science.gov (United States)

    Sergio, Fabrizio; Blas, Julio; Hiraldo, Fernando

    2018-02-01

    Natural disturbances, such as droughts, fires or hurricanes, are key drivers of ecological heterogeneity and ecosystem function. The frequency and severity of these episodes is unequivocally expected to increase in the coming decades, through the concerted action of climate change and anthropogenic pressures. This will impose severe challenges for many biota through exposure to rapidly changing conditions never experienced in the preceding millennia. Thus, it is urgently needed to gain a thorough understanding of animal responses and adaptations to disturbances in order to better estimate potential future impacts. Here, we review such adjustments and find that animals may respond to disturbances through changes in: (1) behaviour, such as altered mobility, emigration, resource-switching, refuge use, suspended animation, or biotic interactions; (2) life history traits, such as survival, aging, longevity, recruitment, reproductive restraint, breeding output, phenology and bet-hedging tactics; (3) morphology, such as rapid evolution through size-dependent mortality or facultative metamorphosis; (4) physiology, such as altered body condition, pathogen prevalence and transmission, or adrenocortical modulation of stress responses to emergency conditions; (5) genetic structure, such as changes in frequency of polymorphic variants or diversity-modulation through mortality bottlenecks. Individual-level responses scale up to population and community responses, such as altered density, population dynamics, distribution, local extinction and colonization, or assemblage structure and diversity. Overall, disturbances have pervasive effects on individuals, populations and communities of vertebrates and invertebrates of all realms, biomes, continents and ecosystems. Their rapidly increasing incidence and severity will bring unique study opportunities for researchers and novel, unpredictable challenges for managers, while demanding tougher choices and more proactive crisis

  18. Spatiotemporal Variations of Extreme Precipitation under a Changing Climate in the Three Gorges Reservoir Area (TGRA

    Directory of Open Access Journals (Sweden)

    Mingquan Lü

    2018-01-01

    Full Text Available The Three Gorges Dam (TGD is one of the largest hydroelectric projects in the world. Monitoring the spatiotemporal distribution of extreme precipitation offers valuable information for adaptation and mitigation strategies and reservoir management schemes. This study examined variations in extreme precipitation over the Three Gorges Reservoir area (TGRA in China to investigate the potential role of climate warming and Three Gorges Reservoir (TGR. The trends in extreme precipitation over the TGRA were investigated using the iterative-based Mann–Kendall (MK test and Sen’s slope estimator, based on weather station daily data series and TRMM (Tropical Rainfall Measuring Mission data series. The mean and density distribution of extreme precipitation indices between pre-dam and post-dam, pre-1985 and post-1985, and near and distant reservoir area were assessed by the Mann–Whitney test and the Kolmogorov–Smirnov test. The ratio of extreme precipitation to non-extreme precipitation became larger. The precipitation was characterized by increases in heavy precipitation as well as decreases in light and moderate rain. Comparing extreme precipitation indices between pre-1985 (cooling and post-1985 (warming indicated extreme precipitation has changed to become heavier. Under climate warming, the precipitation amount corresponding to more than the 95th percentile increased at the rate of 6.48%/°C. Results from comparing extreme precipitation for the pre- and post-dam, near reservoir area (NRA and away from the reservoir area (ARA imply an insignificant role of the TGR on rainfall extremes over the TGRA. Moreover, the impoundment of TGR did not exert detectable impacts on the surface relative humidity (RH and water vapor pressure (WP.

  19. Extreme events and predictability of catastrophic failure in composite materials and in the Earth

    Science.gov (United States)

    Main, I.; Naylor, M.

    2012-05-01

    Despite all attempts to isolate and predict extreme earthquakes, these nearly always occur without obvious warning in real time: fully deterministic earthquake prediction is very much a `black swan'. On the other hand engineering-scale samples of rocks and other composite materials often show clear precursors to dynamic failure under controlled conditions in the laboratory, and successful evacuations have occurred before several volcanic eruptions. This may be because extreme earthquakes are not statistically special, being an emergent property of the process of dynamic rupture. Nevertheless, probabilistic forecasting of event rate above a given size, based on the tendency of earthquakes to cluster in space and time, can have significant skill compared to say random failure, even in real-time mode. We address several questions in this debate, using examples from the Earth (earthquakes, volcanoes) and the laboratory, including the following. How can we identify `characteristic' events, i.e. beyond the power law, in model selection (do dragon-kings exist)? How do we discriminate quantitatively between stationary and non-stationary hazard models (is a dragon likely to come soon)? Does the system size (the size of the dragon's domain) matter? Are there localising signals of imminent catastrophic failure we may not be able to access (is the dragon effectively invisible on approach)? We focus on the effect of sampling effects and statistical uncertainty in the identification of extreme events and their predictability, and highlight the strong influence of scaling in space and time as an outstanding issue to be addressed by quantitative studies, experimentation and models.

  20. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    Science.gov (United States)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for

  1. Projections of future extreme weather losses under changes in climate and exposure

    NARCIS (Netherlands)

    Bouwer, L.M.

    2013-01-01

    Many attempts are made to assess future changes in extreme weather events due to anthropogenic climate change, but few studies have estimated the potential change in economic losses from such events. Projecting losses is more complex as it requires insight into the change in the weather hazard but

  2. Integrating plant ecological responses to climate extremes from individual to ecosystem levels.

    Science.gov (United States)

    Felton, Andrew J; Smith, Melinda D

    2017-06-19

    Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  3. Climate change impacts on extreme temperature mortality in select metropolitan areas of the United States

    Science.gov (United States)

    Projected mortality from climate change-driven impacts on extremely hot and cold days increases significantly over the 21st century in a large group of United States Metropolitan Statistical Areas. Increases in projected mortality from more hot days are greater than decreases in ...

  4. Simulation and Measurement of Through-the-Earth, Extremely Low-Frequency Signals Using Copper-Clad Steel Ground Rods

    OpenAIRE

    Damiano, Nicholas William; Yan, Lincan; Whisner, Bruce; Zhou, Chenming

    2017-01-01

    The underground mining environment can greatly affect radio signal propagation. Understanding how the earth affects signal propagation is a key to evaluating communications systems used during a mine emergency. One type of communication system is through-the-earth, which can utilize extremely low frequencies (ELF). This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating current injection...

  5. EarthLabs Climate Detectives: Using the Science, Data, and Technology of IODP Expedition 341 to Investigate the Earth's Past Climate

    Science.gov (United States)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.

    2014-12-01

    EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of

  6. Projected changes in climate extremes over Qatar and the Arabian Gulf region

    Science.gov (United States)

    Kundeti, K.; Kanikicharla, K. K.; Al sulaiti, M.; Khulaifi, M.; Alboinin, N.; Kito, A.

    2015-12-01

    The climate of the State of Qatar and the adjacent region is dominated by subtropical dry, hot desert climate with low annual rainfall, very high temperatures in summer and a big difference between maximum and minimum temperatures, especially in the inland areas. The coastal areas are influenced by the Arabian Gulf, and have lower maximum, but higher minimum temperatures and a higher moisture percentage in the air. The global warming can have profound impact on the mean climate as well as extreme weather events over the Arabian Peninsula that may affect both natural and human systems significantly. Therefore, it is important to assess the future changes in the seasonal/annual mean of temperature and precipitation and also the extremes in temperature and wind events for a country like Qatar. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in present and develops future climate scenarios. The changes in climate extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCPs (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. We analyzed the projected changes in temperature and precipitation extremes using several indices including those that capture heat stress. The observations show an increase in warm extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of both temperature and precipitation extremes over many parts of this region which may have serious implications on human health, water resources and the onshore/offshore infrastructure in this region. Data from a high-resolution (20km) AGCM simulation from Meteorological Research Institute of Japan Meteorological Agency for the present (1979-2003) and a future time slice (2075-2099) corresponding to RCP8.5 have also been utilized to assess the impact of climate change on

  7. The fire-vegetation-climate system: how ecology can contribute to earth system science

    CSIR Research Space (South Africa)

    Archibald, S

    2013-05-01

    Full Text Available and future state of global vegetation. A key complexity that is currently not well captured by Earth System models is that vegetation is not always deterministically responsive to climate and soils. Feedbacks within the Earth System, top-down controls...

  8. Uncertainty in projected point precipitation extremes for hydrological impact analysis of climate change

    Science.gov (United States)

    Van Uytven, Els; Willems, Patrick

    2017-04-01

    Current trends in the hydro-meteorological variables indicate the potential impact of climate change on hydrological extremes. Therefore, they trigger an increased importance climate adaptation strategies in water management. The impact of climate change on hydro-meteorological and hydrological extremes is, however, highly uncertain. This is due to uncertainties introduced by the climate models, the internal variability inherent to the climate system, the greenhouse gas scenarios and the statistical downscaling methods. In view of the need to define sustainable climate adaptation strategies, there is a need to assess these uncertainties. This is commonly done by means of ensemble approaches. Because more and more climate models and statistical downscaling methods become available, there is a need to facilitate the climate impact and uncertainty analysis. A Climate Perturbation Tool has been developed for that purpose, which combines a set of statistical downscaling methods including weather typing, weather generator, transfer function and advanced perturbation based approaches. By use of an interactive interface, climate impact modelers can apply these statistical downscaling methods in a semi-automatic way to an ensemble of climate model runs. The tool is applicable to any region, but has been demonstrated so far to cases in Belgium, Suriname, Vietnam and Bangladesh. Time series representing future local-scale precipitation, temperature and potential evapotranspiration (PET) conditions were obtained, starting from time series of historical observations. Uncertainties on the future meteorological conditions are represented in two different ways: through an ensemble of time series, and a reduced set of synthetic scenarios. The both aim to span the full uncertainty range as assessed from the ensemble of climate model runs and downscaling methods. For Belgium, for instance, use was made of 100-year time series of 10-minutes precipitation observations and daily

  9. Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review

    Science.gov (United States)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van

    2013-04-01

    Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. The review considers the following aspects: Analysis of long-term historical trends due to anthropogenic climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e.g. runoff peak flows, flood or surcharge frequencies, and CSO frequencies and volumes), including the impacts of more extreme conditions than considered during impact model calibration and validation. Implications for urban drainage infrastructure design and management: upgrading of the urban drainage system as part of a program of routine and scheduled replacement and renewal of aging infrastructure; how to account for the uncertainties; flexible and sustainable solutions

  10. Coping Strategies to Deal with Environmental Variability and Extreme Climatic Events in the Peruvian Anchovy Fishery

    Directory of Open Access Journals (Sweden)

    Marilú Bouchon

    2011-06-01

    Full Text Available The Peruvian anchovy fishery is the largest worldwide in terms of catches. The fishery started during the mid 1950s, and since then it has been highly dependent on natural stock fluctuations, due to the sensitivity of anchovy stocks to ocean-climate variability. The main driver of anchovy stock variability is the El Niño Southern Oscillation (ENSO, and three extreme ENSO warm events were recorded in 1972–1973, 1983–1984 and 1997–1998. This study investigates the evolution of coping strategies developed by the anchovy fisheries to deal with climate variability and extreme ENSO events. Results showed eight coping strategies to reduce impacts on the fishery. These included: decentralized installation of anchovy processing factories; simultaneous ownership of fishing fleet and processing factories; use of low-cost unloading facilities; opportunistic utilization of invading fish populations; low cost intensive monitoring; rapid flexible management; reduction of fishmeal price uncertainty through controlled production based on market demand; and decoupling of fishmeal prices from those of other protein-rich feed substitutes like soybean. This research shows that there are concrete lessons to be learned from successful adaptations to cope with climate change-related extreme climatic events that impact the supply of natural resources. The lessons can contribute to improved policies for coping with climate change in the commercial fishery sector.

  11. [Extreme Climatic Events in the Altai Republic According to Dendrochronological Data].

    Science.gov (United States)

    Barinov, V V; Myglan, V S; Nazarov, A N; Vaganov, E A; Agatova, A R; Nepop, R K

    2016-01-01

    The results of dating of extreme climatic events by damage to the anatomical structure and missing tree rings of the Siberian larch in the upper forest boundary of the Altai Republic are given. An analysis of the spatial distribution of the revealed dates over seven plots (Kokcy, Chind, Ak-ha, Jelo, Tute, Tara, and Sukor) allowed us to distinguish the extreme events on interregional (1700, 1783, 1788, 1812, 1814, 1884), regional (1724, 1775, 1784, 1835, 1840, 1847, 1850, 1852, 1854, 1869, 1871, 1910, 1917, 1927, 1938, 1958, 1961), and local (1702, 1736, 1751, 1785, 1842, 1843,1874, 1885, 1886, 1919, 2007, and 2009) scales. It was shown that the events of an interregional scale correspond with the dates of major volcanic eruptions (Grimsvotn, Lakagigar, Etna, Awu, Tambora, Soufriere St. Vinsent, Mayon, and Krakatau volcanos) and extreme climatic events, crop failures, lean years, etc., registered in historical sources.

  12. Climate Extremes and Land-Use Change: Effects on Ecosystem Processes and Services

    Science.gov (United States)

    Bahn, Michael; Erb, Karlheinz; Hasibeder, Roland; Mayr, Stefan; Niedertscheider, Maria; Oberhuber, Walter; Tappeiner, Ulrike; Tasser, Erich; Viovy, Nicolas; Wieser, Gerhard

    2016-04-01

    Extreme climatic events, in particular droughts and heatwaves, have significant impacts on ecosystem carbon and water cycles and a range of related ecosystem services. It is expected that in the coming decades the return intervals and severities of extreme droughts will increase substantially and may result in the passing of thresholds of ecosystem functioning, potentially causing legacy effects, which are so far poorly understood. Observational evidence suggests that different land cover types (forest, grassland) are differently influenced by extreme drought, but there is a lack of knowledge whether and how future, increasingly severe climate extremes will affect their concurrent and lagged responses, as well as land-use decisions determining future shifts in land cover. The ClimLUC project aims to understand how extreme summer drought affects carbon and water dynamics of mountain ecosystems under different land uses, and to analyse implications for ecosystem service provisioning. Overall, we hypothesize that land-use change alters the effects of extreme summer drought on ecosystem processes and the related services, grassland responding more rapidly and strongly but being more resilient to extreme drought than forest. To address the aims and hypotheses, we will 1) test experimentally how (a) a managed, (b) an abandoned mountain grassland and (c) an adjacent subalpine forest respond to a progressive extreme drought and will analyse threshold responses of carbon and water dynamics and their implications for ecosystem services (timber and fodder production, carbon sequestration, water provisioning); 2) quantify carry-over effects of the extreme event on ecosystem processes and services; 3) project and attribute future carbon and water cycle responses to extreme drought and related socio-economic changes, based on a process-based dynamic general vegetation model; 4) analyse the interrelation between land-use changes and the occurrence and severity of past and future

  13. Climate change impact assessment on urban rainfall extremes and urban drainage: Methods and shortcomings

    DEFF Research Database (Denmark)

    Willems, P.; Arnbjerg-Nielsen, Karsten; Olsson, J.

    2012-01-01

    Cities are becoming increasingly vulnerable to flooding because of rapid urbanization, installation of complex infrastructure, and changes in the precipitation patterns caused by anthropogenic climate change. The present paper provides a critical review of the current state-of-the-art methods...... for assessing the impacts of climate change on precipitation at the urban catchment scale. Downscaling of results from global circulation models or regional climate models to urban catchment scales are needed because these models are not able to describe accurately the rainfall process at suitable high temporal...... and spatial resolution for urban drainage studies. The downscaled rainfall results are however highly uncertain, depending on the models and downscaling methods considered. This uncertainty becomes more challenging for rainfall extremes since the properties of these extremes do not automatically reflect those...

  14. Global crop yield response to extreme heat stress under multiple climate change futures

    Science.gov (United States)

    Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.

    2014-12-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  15. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk?

    Science.gov (United States)

    McDermott Long, Osgur; Warren, Rachel; Price, Jeff; Brereton, Tom M; Botham, Marc S; Franco, Aldina M A

    2017-01-01

    There is growing recognition as to the importance of extreme climatic events (ECEs) in determining changes in species populations. In fact, it is often the extent of climate variability that determines a population's ability to persist at a given site. This study examined the impact of ECEs on the resident UK butterfly species (n = 41) over a 37-year period. The study investigated the sensitivity of butterflies to four extremes (drought, extreme precipitation, extreme heat and extreme cold), identified at the site level, across each species' life stages. Variations in the vulnerability of butterflies at the site level were also compared based on three life-history traits (voltinism, habitat requirement and range). This is the first study to examine the effects of ECEs at the site level across all life stages of a butterfly, identifying sensitive life stages and unravelling the role life-history traits play in species sensitivity to ECEs. Butterfly population changes were found to be primarily driven by temperature extremes. Extreme heat was detrimental during overwintering periods and beneficial during adult periods and extreme cold had opposite impacts on both of these life stages. Previously undocumented detrimental effects were identified for extreme precipitation during the pupal life stage for univoltine species. Generalists were found to have significantly more negative associations with ECEs than specialists. With future projections of warmer, wetter winters and more severe weather events, UK butterflies could come under severe pressure given the findings of this study. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  16. Analyses of Observed and Anticipated Changes in Extreme Climate Events in the Northwest Himalaya

    Directory of Open Access Journals (Sweden)

    Dharmaveer Singh

    2016-02-01

    Full Text Available In this study, past (1970-2005 as well as future long term (2011-2099 trends in various extreme events of temperature and precipitation have been investigated over selected hydro-meteorological stations in the Sutlej river basin. The ensembles of two Coupled Model Intercomparison Project (CMIP3 models: third generation Canadian Coupled Global Climate Model and Hadley Centre Coupled Model have been used for simulation of future daily time series of temperature (maximum and minimum and precipitation under A2 emission scenario. Large scale atmospheric variables of both models and National Centre for Environmental Prediction/National Centre for Atmospheric Research reanalysis data sets have been downscaled using statistical downscaling technique at individual stations. A total number of 25 extreme indices of temperature (14 and precipitation (11 as specified by the Expert Team of the World Meteorological Organization and Climate Variability and Predictability are derived for the past and future periods. Trends in extreme indices are detected over time using the modified Mann-Kendall test method. The stations which have shown either decrease or no change in hot extreme events (i.e., maximum TMax, warm days, warm nights, maximum TMin, tropical nights, summer days and warm spell duration indicators for 1970–2005 and increase in cold extreme events (cool days, cool nights, frost days and cold spell duration indicators are predicted to increase and decrease respectively in the future. In addition, an increase in frequency and intensity of extreme precipitation events is also predicted.

  17. The impact of CO2 fertilization and historical land use/land cover change on regional climate extremes

    Science.gov (United States)

    Findell, Kirsten; Berg, Alexis; Gentine, Pierre; Krasting, John; Lintner, Benjamin; Malyshev, Sergey; Santanello, Joseph; Shevliakova, Elena

    2017-04-01

    Recent research highlights the role of land surface processes in heat waves, droughts, and other extreme events. Here we use an earth system model (ESM) from the Geophysical Fluid Dynamics Laboratory (GFDL) to investigate the regional impacts of historical anthropogenic land use/land cover change (LULCC) and the vegetative response to changes in atmospheric CO2 on combined extremes of temperature and humidity. A bivariate assessment allows us to consider aridity and moist enthalpy extremes, quantities central to human experience of near-surface climate conditions. We show that according to this model, conversion of forests to cropland has contributed to much of the upper central US and central Europe experiencing extreme hot, dry summers every 2-3 years instead of every 10 years. In the tropics, historical patterns of wood harvesting, shifting cultivation and regrowth of secondary vegetation have enhanced near surface moist enthalpy, leading to extensive increases in the occurrence of humid conditions throughout the tropics year round. These critical land use processes and practices are not included in many current generation land models, yet these results identify them as critical factors in the energy and water cycles of the midlatitudes and tropics. Current work is targeted at understanding how CO2 fertilization of plant growth impacts water use efficiency and surface flux partitioning, and how these changes influence temperature and humidity extremes. We use this modeling work to explore how remote sensing can be used to determine how different forest ecosystems in different climatological regimes are responding to enhanced CO2 and a warming world.

  18. Low degree Earth's gravity coefficients determined from different space geodetic observations and climate models

    Science.gov (United States)

    Wińska, Małgorzata; Nastula, Jolanta

    2017-04-01

    Large scale mass redistribution and its transport within the Earth system causes changes in the Earth's rotation in space, gravity field and Earth's ellipsoid shape. These changes are observed in the ΔC21, ΔS21, and ΔC20 spherical harmonics gravity coefficients, which are proportional to the mass load-induced Earth rotational excitations. In this study, linear trend, decadal, inter-annual, and seasonal variations of low degree spherical harmonics coefficients of Earth's gravity field, determined from different space geodetic techniques, Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), Global Navigation Satellite System (GNSS), Earth rotation, and climate models, are examined. In this way, the contribution of each measurement technique to interpreting the low degree surface mass density of the Earth is shown. Especially, we evaluate an usefulness of several climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) to determine the low degree Earth's gravity coefficients using GRACE satellite observations. To do that, Terrestrial Water Storage (TWS) changes from several CMIP5 climate models are determined and then these simulated data are compared with the GRACE observations. Spherical harmonics ΔC21, ΔS21, and ΔC20 changes are calculated as the sum of atmosphere and ocean mass effect (GAC values) taken from GRACE and a land surface hydrological estimate from the selected CMIP5 climate models. Low degree Stokes coefficients of the surface mass density determined from GRACE, SLR, GNSS, Earth rotation measurements and climate models are compared to each other in order to assess their consistency. The comparison is done by using different types of statistical and signal processing methods.

  19. Record-breaking climate extremes in Africa under stabilized 1.5 °C and 2 °C global warming scenarios

    Science.gov (United States)

    Nangombe, Shingirai; Zhou, Tianjun; Zhang, Wenxia; Wu, Bo; Hu, Shuai; Zou, Liwei; Li, Donghuan

    2018-05-01

    Anthropogenic forcing is anticipated to increase the magnitude and frequency of extreme events1, the impacts of which will be particularly hard-felt in already vulnerable locations such as Africa2. However, projected changes in African climate extremes remain little explored, particularly in the context of the Paris Agreement targets3,4. Here, using Community Earth System Model low warming simulations5, we examine how heat and hydrological extremes may change in Africa under stabilized 1.5 °C and 2 °C scenarios, focusing on the projected changing likelihood of events that have comparable magnitudes to observed record-breaking seasons. In the Community Earth System Model, limiting end-of-century warming to 1.5 °C is suggested to robustly reduce the frequency of heat extremes compared to 2 °C. In particular, the probability of events similar to the December-February 1991/1992 southern African and 2009/2010 North African heat waves is estimated to be reduced by 25 ± 5% and 20 ± 4%, respectively, if warming is limited to 1.5 °C instead of 2 °C. For hydrometeorological extremes (that is, drought and heavy precipitation), by contrast, signal differences are indistinguishable from the variation between ensemble members. Thus, according to this model, continued efforts to limit warming to 1.5 °C offer considerable benefits in terms of minimizing heat extremes and their associated socio-economic impacts across Africa.

  20. The role of land-climate interactions for the regional amplification of temperature extremes in climate projections

    Science.gov (United States)

    Seneviratne, S. I.; Vogel, M.; Zscheischler, J.; Schwingshackl, C.; Davin, E.; Gudmundsson, L.; Guillod, B.; Hauser, M.; Hirsch, A.; Hirschi, M.; Humphrey, V.; Thiery, W.

    2017-12-01

    Regional hot extremes are projected to increase more strongly than the global mean temperature, with substantially larger changes than 2°C even if global warming is limited to this level (Seneviratne et al. 2016). This presentation will highlight the processes underlying this behavior, which is strongly related to land-climate feedbacks (Vogel et al. 2017). The identified feedbacks are also affecting the occurrence probability of compound drought and heat events (Zscheischler and Seneviratne 2017), with high relevance for impacts on forest fire and agriculture production. Moreover, the responsible land processes strongly contribute to the inter-model spread in the projections, and can thus be used to derive observations-based constraints to reduce the uncertainty of projected changes in climate extremes. Finally, we will also discuss the role of soil moisture effects on carbon uptake and their relevance for projections, as well as the role of land use changes in affecting the identified feedbacks and projected changes in climate extremes. References: Seneviratne, S.I., M. Donat, A.J. Pitman, R. Knutti, and R.L. Wilby, 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529, 477-483, doi:10.1038/nature16542. Vogel, M.M., R. Orth, F. Cheruy, S. Hagemann, R. Lorenz, B.J.J.M. Hurk, and S.I. Seneviratne, 2017: Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, 44(3), 1511-1519, doi:10.1002/2016GL071235. Zscheischler, J., and S.I. Seneviratne, 2017: Dependence of drivers affects risks associated with compound events. Science Advances, 3(6), doi: 10.1126/sciadv.1700263

  1. Future extreme events in European climate: An exploration of regional climate model projections

    DEFF Research Database (Denmark)

    Beniston, M.; Stephenson, D.B.; Christensen, O.B.

    2007-01-01

    -90) and future (2071-2 100) climate on the basis of regional climate model simulations produced by the PRUDENCE project. A summary of the main results follows. Heat waves - Regional surface warming causes the frequency, intensity and duration of heat waves to increase over Europe. By the end of the twenty first...

  2. Correlations between the geomagnetic field variations, the fluctuations of the earth`s rotation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Greiner-Mai, H; Jochmann, H

    1995-03-01

    The amplitude spectra of global geophysical phenomena were investigated to motivate research of physical connections between them. The suggested causality was derived from comparison of the spectra, and from cross correlation functions. The following global parameters were discussed: For the earth rotation by the variations of the length of day, for the geomagnetic variation by the global field intensity, changes of the dipole axis and the westward drift, and for climate change by the atmospheric excitation function derived from air pressure variations, and temperature variations. The model of atmospheric excitation, which can be proved most exactly for the annual variations of length of day, is responsible for the 11 and 22 years periods, too. It failed for longer periods, e.g. partially for the 30 years periods and completely for the 60 to 80 years periods, which were also discovered in the mean temperature and geomagnetic field variations. Therefore, it was suggested that longer periods in climate change and in the variations of the earth`s rotation are caused independently by the same process in the earth core, provided that a physical influence of the geomagnetic field on climate will be accepted in future. The investigation was completed by comparison with the spectra of some local temperature variations in Europe. (orig.)

  3. Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C.

    Science.gov (United States)

    Seneviratne, Sonia I; Wartenburger, Richard; Guillod, Benoit P; Hirsch, Annette L; Vogel, Martha M; Brovkin, Victor; van Vuuren, Detlef P; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke

    2018-05-13

    This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.

  4. Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C

    Science.gov (United States)

    Wartenburger, Richard; Guillod, Benoit P.; Hirsch, Annette L.; Vogel, Martha M.; Brovkin, Victor; van Vuuren, Detlef P.; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V.; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke

    2018-01-01

    This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. PMID:29610382

  5. Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C

    Science.gov (United States)

    Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.; Hirsch, Annette L.; Vogel, Martha M.; Brovkin, Victor; van Vuuren, Detlef P.; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V.; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke

    2018-05-01

    This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the `Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  6. Enabling Extreme Scale Earth Science Applications at the Oak Ridge Leadership Computing Facility

    Science.gov (United States)

    Anantharaj, V. G.; Mozdzynski, G.; Hamrud, M.; Deconinck, W.; Smith, L.; Hack, J.

    2014-12-01

    The Oak Ridge Leadership Facility (OLCF), established at the Oak Ridge National Laboratory (ORNL) under the auspices of the U.S. Department of Energy (DOE), welcomes investigators from universities, government agencies, national laboratories and industry who are prepared to perform breakthrough research across a broad domain of scientific disciplines, including earth and space sciences. Titan, the OLCF flagship system, is currently listed as #2 in the Top500 list of supercomputers in the world, and the largest available for open science. The computational resources are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, sponsored by the U.S. DOE Office of Science. In 2014, over 2.25 billion core hours on Titan were awarded via INCITE projects., including 14% of the allocation toward earth sciences. The INCITE competition is also open to research scientists based outside the USA. In fact, international research projects account for 12% of the INCITE awards in 2014. The INCITE scientific review panel also includes 20% participation from international experts. Recent accomplishments in earth sciences at OLCF include the world's first continuous simulation of 21,000 years of earth's climate history (2009); and an unprecedented simulation of a magnitude 8 earthquake over 125 sq. miles. One of the ongoing international projects involves scaling the ECMWF Integrated Forecasting System (IFS) model to over 200K cores of Titan. ECMWF is a partner in the EU funded Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) project. The significance of the research carried out within this project is the demonstration of techniques required to scale current generation Petascale capable simulation codes towards the performance levels required for running on future Exascale systems. One of the techniques pursued by ECMWF is to use Fortran2008 coarrays to overlap computations and communications and

  7. Climate Resiliency Planning: Making Extreme Event Science Useful for Managers and Planners in Northern Nevada

    Science.gov (United States)

    McCarthy, M.; Kenneston, A.; Wall, T. U.; Brown, T. J.; Redmond, K. T.

    2014-12-01

    Effective climate resiliency planning at the regional level requires extensive interactive dialogue among climate scientists, emergency managers, public health officials, urban planners, social scientists, and policy makers. Engaging federal, tribal, state, local governments and private sector business and infrastructure owners/operators in defining, assessing and characterizing the impacts of extreme events allows communities to understand how different events "break the system" forcing local communities to seek support and resources from state/federal governments and/or the private sector and what actions can be taken proactively to mitigate consequences and accelerate recovery. The Washoe County Regional Resiliency Study was prepared in response to potential climate variability related impacts specific to the Northern Nevada Region. The last several decades have seen dramatic growth in the region, coupled with increased resource demands that have forced local governments to consider how those impacts will affect the region and may, in turn, impact the region's ability to provide essential services. The Western Regional Climate Center of the Desert Research Institute provided a synthesis of climate studies with predictions regarding plausible changes in the local climate of Northern California and Nevada for the next 50 years. In general, these predictions indicate that the region's climate is undergoing a gradual shift, which will primarily affect the frequency, amount, and form of precipitation in the Sierra Nevada and Great Basin. Changes in water availability and other extreme events may have serious and long lasting effects in the Northern Nevada Region, and create a variety of social, environmental and economic concerns. A range of extreme events were considered including Adverse Air Quality, Droughts, Floods, Heat Waves, High Wind, Structure Fires, Wildland Fires, and Major Winter Storms. Due to the complexity of our climate systems, and the difficulty in

  8. Assessing local and regional economic impacts of climatic extremes and feasibility of adaptation measures in Dutch arable farming systems

    NARCIS (Netherlands)

    Diogo, V.; Reidsma, P.; Schaap, B.; Andree, B. P.J.; Koomen, E.

    2017-01-01

    We propose a method that combines local productivity factors, economic factors, crop-specific sensitivity to climatic extremes, and future climate change scenarios, to assess potential impacts of extreme weather events on agricultural production systems. Our assessment is spatially explicit and uses

  9. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Science.gov (United States)

    Mahmud, A.; Hixson, M.; Kleeman, M. J.

    2012-08-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines

  10. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2012-08-01

    Full Text Available The effect of climate change on population-weighted concentrations of particulate matter (PM during extreme pollution events was studied using the Parallel Climate Model (PCM, the Weather Research and Forecasting (WRF model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44 global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV, the San Joaquin Valley air basin (SJV and the South Coast Air Basin (SoCAB. Results over annual-average periods were contrasted with extreme events.

    The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; −3% and organic carbon (OC; −3% due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (−3% and food cooking (−4%. In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3. In general, climate

  11. Attribution of Extreme Rainfall from Landfalling Tropical Cyclones to Climate Change for the Eastern United States

    Science.gov (United States)

    Liu, M.; Yang, L.; Smith, J. A.; Vecchi, G. A.

    2017-12-01

    Extreme rainfall and flooding associated with landfalling tropical cyclones (TC) is responsible for vast socioeconomic losses and fatalities. Landfalling tropical cyclones are an important element of extreme rainfall and flood peak distributions in the eastern United States. Record floods for USGS stream gauging stations over the eastern US are closely tied to landfalling hurricanes. A small number of storms account for the largest record floods, most notably Hurricanes Diane (1955) and Agnes (1972). The question we address is: if the synoptic conditions accompanying those hurricanes were to be repeated in the future, how would the thermodynamic and dynamic storm properties and associated extreme rainfall differ in response to climate change? We examine three hurricanes: Diane (1955), Agnes (1972) and Irene (2011), due to the contrasts in structure/evolution properties and their important roles in dictating the upper tail properties of extreme rainfall and flood frequency over eastern US. Extreme rainfall from Diane is more localized as the storm maintains tropical characteristics, while synoptic-scale vertical motion associated with extratropical transition is a central feature for extreme rainfall induced by Agnes. Our analyses are based on ensemble simulations using the Weather Research and Forecasting (WRF) model, considering combinations of different physics options (i.e., microphysics, boundary layer schemes). The initial and boundary conditions of WRF simulations for the present-day climate are using the Twentieth Century Reanalysis (20thCR). A sub-selection of GCMs is used, as part of phase 5 of the Coupled Model Intercomparison Project (CMIP5), to provide future climate projections. For future simulations, changes in model fields (i.e., temperature, humidity, geopotential height) between present-day and future climate are first derived and then added to the same 20thCR initial and boundary data used for the present-day simulations, and the ensemble is

  12. Effective and responsible teaching of climate change in Earth Science-related disciplines

    Science.gov (United States)

    Robinson, Z. P.; Greenhough, B. J.

    2009-04-01

    Climate change is a core topic within Earth Science-related courses. This vast topic covers a wide array of different aspects that could be covered, from past climatic change across a vast range of scales to environmental (and social and economic) impacts of future climatic change and strategies for reducing anthropogenic climate change. The Earth Science disciplines play a crucial role in our understanding of past, present and future climate change and the Earth system in addition to understanding leading to development of strategies and technological solutions to achieve sustainability. However, an increased knowledge of the occurrence and causes of past (natural) climate changes can lead to a lessened concern and sense of urgency and responsibility amongst students in relation to anthropogenic causes of climatic change. Two concepts integral to the teaching of climate change are those of scientific uncertainty and complexity, yet an emphasis on these concepts can lead to scepticism about future predictions and a further loss of sense of urgency. The requirement to understand the nature of scientific uncertainty and think and move between different scales in particular relating an increased knowledge of longer timescale climatic change to recent (industrialised) climate change, are clearly areas of troublesome knowledge that affect students' sense of responsibility towards their role in achieving a sustainable society. Study of the attitudes of university students in a UK HE institution on a range of Earth Science-related programmes highlights a range of different attitudes in the student body towards the subject of climate change. Students express varied amounts of ‘climate change saturation' resulting from both media and curriculum coverage, a range of views relating to the significance of humans to the global climate and a range of opinions about the relevance of environmental citizenship to their degree programme. Climate change is therefore a challenging

  13. Extreme waves from tropical cyclones and climate change in the Gulf of Mexico

    Science.gov (United States)

    Appendini, Christian M.; Pedrozo-Acuña, Adrian; Meza-Padilla, Rafael; Torres-Freyermuth, Alec; Cerezo-Mota, Ruth; López-González, José

    2017-04-01

    Tropical cyclones generate extreme waves that represent a risk to infrastructure and maritime activities. The projection of the tropical cyclones derived wave climate are challenged by the short historical record of tropical cyclones, their low occurrence, and the poor wind field resolution in General Circulation Models. In this study we use synthetic tropical cyclones to overcome such limitations and be able to characterize present and future wave climate associated with tropical cyclones in the Gulf of Mexico. Synthetic events derived from the NCEP/NCAR atmospheric reanalysis and the Coupled Model Intercomparison Project Phase 5 models NOAA/GFDL CM3 and UK Met Office HADGEM2-ES, were used to force a third generation wave model to characterize the present and future wave climate under RCP 4.5 and 8.5 escenarios. An increase in wave activity is projected for the future climate, particularly for the GFDL model that shows less bias in the present climate, although some areas are expected to decrease the wave energy. The practical implications of determining the future wave climate is exemplified by means of the 100-year design wave, where the use of the present climate may result in under/over design of structures, since the lifespan of a structure includes the future wave climate period.

  14. Will climate change increase the risk for critical infrastructure failures in Europe due to extreme precipitation?

    Science.gov (United States)

    Nissen, Katrin; Ulbrich, Uwe

    2016-04-01

    An event based detection algorithm for extreme precipitation is applied to a multi-model ensemble of regional climate model simulations. The algorithm determines extent, location, duration and severity of extreme precipitation events. We assume that precipitation in excess of the local present-day 10-year return value will potentially exceed the capacity of the drainage systems that protect critical infrastructure elements. This assumption is based on legislation for the design of drainage systems which is in place in many European countries. Thus, events exceeding the local 10-year return value are detected. In this study we distinguish between sub-daily events (3 hourly) with high precipitation intensities and long-duration events (1-3 days) with high precipitation amounts. The climate change simulations investigated here were conducted within the EURO-CORDEX framework and exhibit a horizontal resolution of approximately 12.5 km. The period between 1971-2100 forced with observed and scenario (RCP 8.5 and RCP 4.5) greenhouse gas concentrations was analysed. Examined are changes in event frequency, event duration and size. The simulations show an increase in the number of extreme precipitation events for the future climate period over most of the area, which is strongest in Northern Europe. Strength and statistical significance of the signal increase with increasing greenhouse gas concentrations. This work has been conducted within the EU project RAIN (Risk Analysis of Infrastructure Networks in response to extreme weather).

  15. Antarctic Climate Change: Extreme Events Disrupt Plastic Phenotypic Response in Adélie Penguins

    Science.gov (United States)

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G.

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A ‘natural experiment’ brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The ‘natural experiment’ uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise. PMID:24489657

  16. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.

    Directory of Open Access Journals (Sweden)

    Amélie Lescroël

    Full Text Available In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC on the foraging efficiency of Adélie penguins (Pygoscelis adeliae breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  17. Developing research about extreme events and impacts to support international climate policy

    Science.gov (United States)

    Otto, Friederike; James, Rachel; Parker, Hannah; Boyd, Emily; Jones, Richard; Allen, Myles; Mitchell, Daniel; Cornforth, Rosalind

    2015-04-01

    Climate change is expected to have some of its most significant impacts through changes in the frequency and severity of extreme events. There is a pressing need for policy to support adaptation to changing climate risks, and to deal with residual loss and damage from climate change. In 2013, the Warsaw International Mechanism was established by the United Nations Framework Convention on Climate Change (UNFCCC) to address loss and damage in developing countries. Strategies to help vulnerable regions cope with losses from extreme events will presumably require information about the influence of anthropogenic forcing on extreme weather. But what kind of scientific evidence will be most useful for the Warsaw Mechanism? And how can the scientific communities working on extreme events and impacts develop their research to support the advance of this important policy? As climate scientists conducting probabilistic event attribution studies, we have been working with social scientists to investigate these questions. Our own research seeks to examine the role of external drivers, including greenhouse gas emissions, on the risk of extreme weather events such as heatwaves, flooding, and drought. We use large ensembles of climate models to compute the probability of occurrence of extreme events under current conditions and in a world which might have been without anthropogenic interference. In cases where the models are able to simulate extreme weather, the analysis allows for conclusions about the extent to which climate change may have increased, decreased, or made no change to the risk of the event occurring. These results could thus have relevance for the UNFCCC negotiations on loss and damage, and we have been communicating with policymakers and observers to the policy process to better understand how we can develop our research to support their work; by attending policy meetings, conducting interviews, and using a participatory game developed with the Red Cross

  18. Climate Central World Weather Attribution (WWA) project: Real-time extreme weather event attribution analysis

    Science.gov (United States)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2015-04-01

    Extreme weather detection and attribution analysis has emerged as a core theme in climate science over the last decade or so. By using a combination of observational data and climate models it is possible to identify the role of climate change in certain types of extreme weather events such as sea level rise and its contribution to storm surges, extreme heat events and droughts or heavy rainfall and flood events. These analyses are usually carried out after an extreme event has occurred when reanalysis and observational data become available. The Climate Central WWA project will exploit the increasing forecast skill of seasonal forecast prediction systems such as the UK MetOffice GloSea5 (Global seasonal forecasting system) ensemble forecasting method. This way, the current weather can be fed into climate models to simulate large ensembles of possible weather scenarios before an event has fully emerged yet. This effort runs along parallel and intersecting tracks of science and communications that involve research, message development and testing, staged socialization of attribution science with key audiences, and dissemination. The method we employ uses a very large ensemble of simulations of regional climate models to run two different analyses: one to represent the current climate as it was observed, and one to represent the same events in the world that might have been without human-induced climate change. For the weather "as observed" experiment, the atmospheric model uses observed sea surface temperature (SST) data from GloSea5 (currently) and present-day atmospheric gas concentrations to simulate weather events that are possible given the observed climate conditions. The weather in the "world that might have been" experiments is obtained by removing the anthropogenic forcing from the observed SSTs, thereby simulating a counterfactual world without human activity. The anthropogenic forcing is obtained by comparing the CMIP5 historical and natural simulations

  19. Climate Change and Fetal Health: The Impacts of Exposure to Extreme Temperatures in New York City

    Science.gov (United States)

    Ngo, Nicole S.; Horton, Radley M.

    2015-01-01

    Background: Climate change is projected to increase the frequency, intensity, and duration of heat waves while reducing cold extremes, yet few studies have examined the relationship between temperature and fetal health. Objectives: We estimate the impacts of extreme temperatures on birth weight and gestational age in Manhattan, a borough in New York City, and explore differences by socioeconomic status (SES). Methods: We combine average daily temperature from 1985 to 2010 with birth certificate data in Manhattan for the same time period. We then generate 33 downscaled climate model time series to project impacts on fetal health. Results: We find exposure to an extra day where average temperature 25 F and 85 F during pregnancy is associated with a 1.8 and 1.7 g (respectively) reduction in birth weight, but the impact varies by SES, particularly for extreme heat, where teen mothers seem most vulnerable. We find no meaningful, significant effect on gestational age. Using projections of temperature from these climate models, we project average net reductions in birth weight in the 2070- 2099 period of 4.6 g in the business-as-usual scenario. Conclusions: Results suggest that increasing heat events from climate change could adversely impact birth weight and vary by SES.

  20. Extreme temperature events on Greenland in observations and the MAR regional climate model

    Science.gov (United States)

    Leeson, Amber A.; Eastoe, Emma; Fettweis, Xavier

    2018-03-01

    Meltwater from the Greenland Ice Sheet contributed 1.7-6.12 mm to global sea level between 1993 and 2010 and is expected to contribute 20-110 mm to future sea level rise by 2100. These estimates were produced by regional climate models (RCMs) which are known to be robust at the ice sheet scale but occasionally miss regional- and local-scale climate variability (e.g. Leeson et al., 2017; Medley et al., 2013). To date, the fidelity of these models in the context of short-period variability in time (i.e. intra-seasonal) has not been fully assessed, for example their ability to simulate extreme temperature events. We use an event identification algorithm commonly used in extreme value analysis, together with observations from the Greenland Climate Network (GC-Net), to assess the ability of the MAR (Modèle Atmosphérique Régional) RCM to reproduce observed extreme positive-temperature events at 14 sites around Greenland. We find that MAR is able to accurately simulate the frequency and duration of these events but underestimates their magnitude by more than half a degree Celsius/kelvin, although this bias is much smaller than that exhibited by coarse-scale Era-Interim reanalysis data. As a result, melt energy in MAR output is underestimated by between 16 and 41 % depending on global forcing applied. Further work is needed to precisely determine the drivers of extreme temperature events, and why the model underperforms in this area, but our findings suggest that biases are passed into MAR from boundary forcing data. This is important because these forcings are common between RCMs and their range of predictions of past and future ice sheet melting. We propose that examining extreme events should become a routine part of global and regional climate model evaluation and that addressing shortcomings in this area should be a priority for model development.

  1. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  2. Limitations and pitfalls of climate change impact analysis on urban rainfall extremes

    DEFF Research Database (Denmark)

    Willems, P.; Olsson, J.; Arnbjerg-Nielsen, Karsten

    Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due...... to anthropogenic climate change. Current practices have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. Climate change may well be the driver that ensures that changes in urban drainage paradigms are identified...... and suitable solutions implemented. Design and optimization of urban drainage infrastructure considering climate change impacts and co-optimizing with other objectives will become ever more important to keep our cities liveable into the future....

  3. A possible interrelation between Earth rotation and climatic variability at decadal time-scale

    Directory of Open Access Journals (Sweden)

    Leonid Zotov

    2016-05-01

    Full Text Available Using multichannel singular spectrum analysis (MSSA we decomposed climatic time series into principal components, and compared them with Earth rotation parameters. The global warming trends were initially subtracted. Similar quasi 60 and 20 year periodic oscillations have been found in the global mean Earth temperature anomaly (HadCRUT4 and global mean sea level (GMSL. Similar cycles were also found in Earth rotation variation. Over the last 160 years multi-decadal change of Earth's rotation velocity is correlated with the 60-year temperature anomaly, and Chandler wobble envelope reproduces the form of the 60-year oscillation noticed in GMSL. The quasi 20-year oscillation observed in GMSL is correlated with the Chandler wobble excitation. So, we assume that Earth's rotation and climate indexes are connected. Despite of all the clues hinting this connection, no sound conclusion can be done as far as ocean circulation modelling is not able to correctly catch angular momentum of the oscillatory modes.

  4. Impact of extreme weather events and climate change for health and social care systems.

    Science.gov (United States)

    Curtis, Sarah; Fair, Alistair; Wistow, Jonathan; Val, Dimitri V; Oven, Katie

    2017-12-05

    This review, commissioned by the Research Councils UK Living With Environmental Change (LWEC) programme, concerns research on the impacts on health and social care systems in the United Kingdom of extreme weather events, under conditions of climate change. Extreme weather events considered include heatwaves, coldwaves and flooding. Using a structured review method, we consider evidence regarding the currently observed and anticipated future impacts of extreme weather on health and social care systems and the potential of preparedness and adaptation measures that may enhance resilience. We highlight a number of general conclusions which are likely to be of international relevance, although the review focussed on the situation in the UK. Extreme weather events impact the operation of health services through the effects on built, social and institutional infrastructures which support health and health care, and also because of changes in service demand as extreme weather impacts on human health. Strategic planning for extreme weather and impacts on the care system should be sensitive to within country variations. Adaptation will require changes to built infrastructure systems (including transport and utilities as well as individual care facilities) and also to institutional and social infrastructure supporting the health care system. Care sector organisations, communities and individuals need to adapt their practices to improve resilience of health and health care to extreme weather. Preparedness and emergency response strategies call for action extending beyond the emergency response services, to include health and social care providers more generally.

  5. Adaptation Strategies of Soil and Water Conservation in Taiwan for Extreme Climate

    Science.gov (United States)

    Huang, Wen-Cheng; Lin, Cheng-Yu; Hsieh, Ting-Ju

    2016-04-01

    Due to global climate change, the impact caused by extreme climate has become more and more compelling. In Taiwan, the total rainfall stays in the same level, but it brings along changes to rain types. The rainfall with high recurrence interval happens frequently, leading to soil loss of slope-land, and it may further result in flooding and sediment hazards. Although Taiwan is a small island, the population density is ranked at the second highest around the world. Moreover, third-fourth of Taiwan is slope-land, so the soil and water conservation is rather important. This study is based on the international trend analysis approach to review the related researches worldwide and 264 research projects in Taiwan. It indicates that under the pressure of extreme climate and social economic changes, it has higher possibility of slope-land to face the impacts from extreme rainfall events, and meanwhile, the carrying capacity of slope-land is decreasing. The experts' brainstorming meetings were held three times, and it concluded the current problems of soil and water conservation and the goal in 2025 for sustainable resources. Also, the 20-year weather data set was adopted to screen out 3 key watersheds with the potential of flooding (Puzih River Watershed), droughts (Xindian River Watershed), and sediment hazards (Chishan River Watershed) according to the moisture index, and further, to propose countermeasures in order to realize the goal in 2025, which is "regarding to climate and socioeconomic changes, it is based on multiple use to manage watershed resources for avoiding disasters and sustaining soil and water conservation." Keyword: Extreme climate, International trend analysis, Brainstorming, Key watershed

  6. Know your limits? Climate extremes impact the range of Scots pine in unexpected places.

    Science.gov (United States)

    Julio Camarero, J; Gazol, Antonio; Sancho-Benages, Santiago; Sangüesa-Barreda, Gabriel

    2015-11-01

    Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin ('rear edge') of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species' European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs). A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits. The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen. The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern 'rear edge', in order to avoid biased predictions based solely on warmer climatic scenarios. © The Author 2015. Published by

  7. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change

    NARCIS (Netherlands)

    Bokhorst, S.F.; Phoenix, G.K.; Berg, M.P.; Callaghan, T.V.; Kirby-Lambert, C.; Bjerke, J.W.

    2015-01-01

    Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect

  8. Assessing the impact of future climate extremes on the US corn and soybean production

    Science.gov (United States)

    Jin, Z.

    2015-12-01

    Future climate changes will place big challenges to the US agricultural system, among which increasing heat stress and precipitation variability were the two major concerns. Reliable prediction of crop productions in response to the increasingly frequent and severe extreme climate is a prerequisite for developing adaptive strategies on agricultural risk management. However, the progress has been slow on quantifying the uncertainty of computational predictions at high spatial resolutions. Here we assessed the risks of future climate extremes on the US corn and soybean production using the Agricultural Production System sIMulator (APSIM) model under different climate scenarios. To quantify the uncertainty due to conceptual representations of heat, drought and flooding stress in crop models, we proposed a new strategy of algorithm ensemble in which different methods for simulating crop responses to those extreme climatic events were incorporated into the APSIM. This strategy allowed us to isolate irrelevant structure differences among existing crop models but only focus on the process of interest. Future climate inputs were derived from high-spatial-resolution (12km × 12km) Weather Research and Forecasting (WRF) simulations under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). Based on crop model simulations, we analyzed the magnitude and frequency of heat, drought and flooding stress for the 21st century. We also evaluated the water use efficiency and water deficit on regional scales if farmers were to boost their yield by applying more fertilizers. Finally we proposed spatially explicit adaptation strategies of irrigation and fertilizing for different management zones.

  9. Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia.

    Directory of Open Access Journals (Sweden)

    Marcelo Zeri

    Full Text Available The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010 and a flooding year (2009. The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha(-1 year(-1, but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change.

  10. Climate Variability and Weather Extremes: Model-Simulated and Historical Data. Chapter 9

    Science.gov (United States)

    Schubert, Siegfried D.; Lim, Young-Kwon

    2012-01-01

    Extremes in weather and climate encompass a wide array of phenomena including tropical storms, mesoscale convective systems, snowstorms, floods, heat waves, and drought. Understanding how such extremes might change in the future requires an understanding of their past behavior including their connections to large-scale climate variability and trends. Previous studies suggest that the most robust findings concerning changes in short-term extremes are those that can be most directly (though not completely) tied to the increase in the global mean temperatures. These include the findings that (IPCC 2007): There has been a widespread reduction in the number of frost days in mid-latitude regions in recent decades, an increase in the number of warm extremes, particularly warm nights, and a reduction in the number of cold extremes, particularly cold nights. For North America in particular (CCSP SAP 3.3, 2008): There are fewer unusually cold days during the last few decades. The last 10 years have seen a lower number of severe cold waves than for any other 10-year period in the historical record that dates back to 1895. There has been a decrease in the number of frost days and a lengthening of the frost-free season, particularly in the western part of North America. Other aspects of extremes such as the changes in storminess have a less clear signature of long term change, with considerable interannual, and decadal variability that can obscure any climate change signal. Nevertheless, regarding extratropical storms (CCSP SAP 3.3, 2008): The balance of evidence suggests that there has been a northward shift in the tracks of strong low pressure systems (storms) in both the North Atlantic and North Pacific basins. For North America: Regional analyses suggest that there has been a decrease in snowstorms in the South and lower Midwest of the United States, and an increase in snowstorms in the upper Midwest and Northeast. Despite the progress already made, our understanding of the

  11. Halophilic archaea on Earth and in space: growth and survival under extreme conditions.

    Science.gov (United States)

    Oren, Aharon

    2014-12-13

    Salts are abundant on Mars, and any liquid water that is present or may have been present on the planet is expected to be hypersaline. Halophilic archaea (family Halobacteriaceae) are the microorganisms best adapted to life at extremes of salinity on Earth. This paper reviews the properties of the Halobacteriaceae that may make the group good candidates for life also on Mars. Many species resist high UV and gamma radiation levels; one species has survived exposure to vacuum and radiation during a space flight; and there is at least one psychrotolerant species. Halophilic archaea may survive for millions of years within brine inclusions in salt crystals. Many species have different modes of anaerobic metabolism, and some can use light as an energy source using the light-driven proton pump bacteriorhodopsin. They are also highly tolerant to perchlorate, recently shown to be present in Martian soils, and some species can even use perchlorate as an electron acceptor to support anaerobic growth. The presence of characteristic carotenoid pigments (α-bacterioruberin and derivatives) makes the Halobacteriaceae easy to identify by Raman spectroscopy. Thus, if present on Mars, such organisms may be detected by Raman instrumentation planned to explore Mars during the upcoming ExoMars mission. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  12. Responses of the ocean carbon cycle to climate change: Results from an earth system climate model simulation

    Institute of Scientific and Technical Information of China (English)

    WANG Shuang-Jing; CAO Long; LI Na

    2014-01-01

    Based on simulations using the University of Victoria’s Earth System Climate Model, we analyzed the responses of the ocean carbon cycle to increasing atmospheric CO2 levels and climate change from 1800 to 2500 following the RCP 8.5 scenario and its extension. Compared to simulations without climate change, the simulation with a climate sensitivity of 3.0 K shows that in 2100, due to increased atmospheric CO2 concentrations, the simulated sea surface temperature increases by 2.7 K, the intensity of the North Atlantic deep water formation reduces by4.5 Sv, and the oceanic uptake of anthropogenic CO2 decreases by 0.8 Pg C. Climate change is also found to have a large effect on the North Atlantic’s ocean column inventory of anthropogenic CO2. Between the years 1800 and 2500, compared with the simulation with no climate change, the simulation with climate change causes a reduction in the total anthropogenic CO2 column inventory over the entire ocean and in North Atlantic by 23.1% and 32.0%, respectively. A set of simulations with climate sensitivity variations from 0.5 K to 4.5 K show that with greater climate sensitivity climate change would have a greater effect in reducing the ocean’s ability to absorb CO2 from the atmosphere.

  13. Understanding the Impacts of Climate and Hydrologic Extremes on Diarrheal Diseases in Southwestern Amazon

    Science.gov (United States)

    Fonseca, P. A. M.

    2015-12-01

    Bacterial diarrheal diseases have a high incidence rate during and after flooding episodes. In the Brazilian Amazon, flood extreme events have become more frequent, leading to high incidence rates for infant diarrhea. In this study we aimed to find a statistical association between rainfall, river levels and diarrheal diseases in children under 5, in the river Acre basin, in the State of Acre (Brazil). We also aimed to identify the time-lag and annual season of extreme rainfall and flooding in different cities in the water basin. The results using Tropical Rainfall Measuring Mission (TRMM) Satellite rainfall data show robustness of these estimates against observational stations on-ground. The Pearson coefficient correlation results (highest 0.35) indicate a time-lag, up to 4 days in three of the cities in the water-basin. In addition, a correlation was also tested between monthly accumulated rainfall and the diarrheal incidence during the rainy season (DJF). Correlation results were higher, especially in Acrelândia (0.7) and Brasiléia and Epitaciolândia (0.5). The correlation between water level monthly averages and diarrheal diseases incidence was 0.3 and 0.5 in Brasiléia and Epitaciolândia. The time-lag evidence found in this paper is critical to inform stakeholders, local populations and civil defense authorities about the time available for preventive and adaptation measures between extreme rainfall and flooding events in vulnerable cities. This study was part of a pilot application in the state of Acre of the PULSE-Brazil project (http://www.pulse-brasil.org/tool/), an interface of climate, environmental and health data to support climate adaptation. The next step of this research is to expand the analysis to other climate variables on diarrheal diseases across the whole Brazilian Amazon Basin and estimate the relative risk (RR) of a child getting sick. A statistical model will estimate RR based on the observed values and seasonal forecasts (higher

  14. Using Critical Thresholds to Customize Climate Projections of Extreme Events to User Needs and Support Decisions

    Science.gov (United States)

    Garfin, G. M.; Petersen, A.; Shafer, M.; MacClune, K.; Hayhoe, K.; Riley, R.; Nasser, E.; Kos, L.; Allan, C.; Stults, M.; LeRoy, S. R.

    2016-12-01

    Many communities in the United States are already vulnerable to extreme events; many of these vulnerabilities are likely to increase with climate change. In order to promote the development of effective community responses to climate change, we tested a participatory process for developing usable climate science, in which our project team worked with decision-makers to identify extreme event parameters and critical thresholds associated with policy development and adaptation actions. Our hypothesis is that conveying climate science and data through user-defined parameters and thresholds will help develop capacity to streamline the use of climate projections in developing strategies and actions, and motivate participation by a variety of preparedness planners. Our team collaborated with urban decision-makers, in departments that included resilience, planning, public works, public health, emergency management, and others, in four cities in the semi-arid south-central plains and intermountain areas of Colorado, New Mexico, Oklahoma, and Texas. Through an iterative process, we homed in on both simple and hybrid indicators for which we could develop credible city-specific projections, to stimulate discussion about adaptation actions; throughout the process, we communicated information about confidence and uncertainty, in order to develop a blend of historic and projected climate data, as appropriate, depending on levels of uncertainty. Our collaborations have resulted in (a) the identification of more than 50 unique indicators and thresholds across the four communities, (b) the development of adaptation action strategies in each community, and (c) the implementation of actions, ranging from a climate leadership training program for city staff members, to a rainwater capture project to improve responses to expected increases in both stormwater runoff and water capture for drought episodes.

  15. Personal, Informal and Relatable: Engaging Wide Audiences in Climate Science with Nasa's Earth Right Now Blog

    Science.gov (United States)

    Tenenbaum, L. F.; Shaftel, H.; Jackson, R.

    2014-12-01

    There is no such thing as a non-scientist, but there are some who have yet to acknowledge their inner science spark. Aiming to ignite and fan the flame of curiosity, promote dialogue and attempt to make climate science personal and relevant to everyday life, NASA's Global Climate Change website http://climate.nasa.gov/ and Earth Right Now campaign http://www.nasa.gov/content/earth-right-now/ partnered together this year to launch the Earth Right Now blog http://climate.nasa.gov/blog. It quickly became one of the most popular blogs in all of NASA social media, receiving thousands of likes per week, and frequent comments as well as thoughtful and respectful discussions about climate change. Social media platforms such as blogs have become popular vehicles for engaging large swaths of the public in new exciting ways. NASA's Earth Right Now blog has become a powerful platform for engaging both scientists and the science-curious in constructive, fruitful conversations about the complex topic of climate science. We continue to interact and have ongoing dialogue with our readers by making the scientific content both accessible and engaging for diverse populations.

  16. EarthLabs Modules: Engaging Students In Extended, Rigorous Investigations Of The Ocean, Climate and Weather

    Science.gov (United States)

    Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.

    2016-02-01

    EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.

  17. Addressing extreme precipitation change under future climates in the Upper Yangtze River Basin

    Science.gov (United States)

    Yang, Z.; Yuan, Z.; Gao, X.

    2017-12-01

    Investigating the impact of climate change on extreme precipitation accurately is of importance for application purposes such as flooding mitigation and urban drainage system design. In this paper, a systematical analysis framework to assess the impact of climate change on extreme precipitation events is developed and practiced in the Upper Yangtze River Basin (UYRB) in China. Firstly, the UYRB is gridded and five extreme precipitation indices (annual maximum 3- 5- 7- 15- and 30-day precipitation) are selected. Secondly, with observed precipitation from China's Ground Precipitation 0.5°×0.5° Gridded Dataset (V2.0) and simulated daily precipitation from ten general circulation models (GCMs) of CMIP5, A regionally efficient GCM is selected for each grid by the skill score (SS) method which maximizes the overlapped area of probability density functions of extreme precipitation indices between observations and simulations during the historical period. Then, simulations of assembled efficient GCMs are bias corrected by Equidistant Cumulative Distribution Function method. Finally, the impact of climate change on extreme precipitation is analyzed. The results show that: (1) the MRI-CGCM3 and MIROC-ESM perform better in the UYRB. There are 19.8 to 20.9% and 14.2 to 18.7% of all grids regard this two GCMs as regionally efficient GCM for the five indices, respectively. Moreover, the regionally efficient GCMs are spatially distributed. (2) The assembled GCM performs much better than any single GCM, with the SS>0.8 and SS>0.6 in more than 65 and 85 percent grids. (3) Under the RCP4.5 scenario, the extreme precipitation of 50-year and 100-year return period is projected to increase in most areas of the UYRB in the future period, with 55.0 to 61.3% of the UYRB increasing larger than 10 percent for the five indices. The changes are spatially and temporal distributed. The upstream region of the UYRB has a relatively significant increase compared to the downstream basin, while

  18. Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations

    Czech Academy of Sciences Publication Activity Database

    Beranová, Romana; Kyselý, Jan; Hanel, M.

    2018-01-01

    Roč. 132, 1-2 (2018), s. 515-527 ISSN 0177-798X R&D Projects: GA ČR(CZ) GA14-18675S Institutional support: RVO:68378289 Keywords : sub-daily precipitation * regional climate models * extremes * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 2.640, year: 2016 https://link.springer.com/article/10.1007/s00704-017-2102-0

  19. Assessing trends in observed and modelled climate extremes over Australia in relation to future projections

    International Nuclear Information System (INIS)

    Alexander, Lisa

    2007-01-01

    Full text: Nine global coupled climate models were assessed for their ability to reproduce observed trends in a set of indices representing temperature and precipitation extremes over Australia. Observed trends for 1957-1999 were compared with individual and multi-modelled trends calculated over the same period. When averaged across Australia the magnitude of trends and interannual variability of temperature extremes were well simulated by most models, particularly for the warm nights index. Except for consecutive dry days, the majority of models also reproduced the correct sign of trend for precipitation extremes. A bootstrapping technique was used to show that most models produce plausible trends when averaged over Australia, although only heavy precipitation days simulated from the multi-model ensemble showed significant skill at reproducing the observed spatial pattern of trends. Two of the models with output from different forcings showed that only with anthropogenic forcing included could the models capture the observed areally averaged trend for some of the temperature indices, but the forcing made little difference to the models' ability to reproduce the spatial pattern of trends over Australia. Future projected changes in extremes using three emissions scenarios were also analysed. Australia shows a shift towards significant warming of temperature extremes with much longer dry spells interspersed with periods of increased extreme precipitation irrespective of the scenario used. More work is required to determine whether regional projected changes over Australia are robust

  20. Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years.

    Science.gov (United States)

    Ewald, Julie A; Wheatley, Christopher J; Aebischer, Nicholas J; Moreby, Stephen J; Duffield, Simon J; Crick, Humphrey Q P; Morecroft, Michael B

    2015-11-01

    Cereal fields are central to balancing food production and environmental health in the face of climate change. Within them, invertebrates provide key ecosystem services. Using 42 years of monitoring data collected in southern England, we investigated the sensitivity and resilience of invertebrates in cereal fields to extreme weather events and examined the effect of long-term changes in temperature, rainfall and pesticide use on invertebrate abundance. Of the 26 invertebrate groups examined, eleven proved sensitive to extreme weather events. Average abundance increased in hot/dry years and decreased in cold/wet years for Araneae, Cicadellidae, adult Heteroptera, Thysanoptera, Braconidae, Enicmus and Lathridiidae. The average abundance of Delphacidae, Cryptophagidae and Mycetophilidae increased in both hot/dry and cold/wet years relative to other years. The abundance of all 10 groups usually returned to their long-term trend within a year after the extreme event. For five of them, sensitivity to cold/wet events was lowest (translating into higher abundances) at locations with a westerly aspect. Some long-term trends in invertebrate abundance correlated with temperature and rainfall, indicating that climate change may affect them. However, pesticide use was more important in explaining the trends, suggesting that reduced pesticide use would mitigate the effects of climate change. © 2015 John Wiley & Sons Ltd.

  1. Decision-support tools for Extreme Weather and Climate Events in the Northeast United States

    Science.gov (United States)

    Kumar, S.; Lowery, M.; Whelchel, A.

    2013-12-01

    Decision-support tools were assessed for the 2013 National Climate Assessment technical input document, "Climate Change in the Northeast, A Sourcebook". The assessment included tools designed to generate and deliver actionable information to assist states and highly populated urban and other communities in assessment of climate change vulnerability and risk, quantification of effects, and identification of adaptive strategies in the context of adaptation planning across inter-annual, seasonal and multi-decadal time scales. State-level adaptation planning in the Northeast has generally relied on qualitative vulnerability assessments by expert panels and stakeholders, although some states have undertaken initiatives to develop statewide databases to support vulnerability assessments by urban and local governments, and state agencies. The devastation caused by Superstorm Sandy in October 2012 has raised awareness of the potential for extreme weather events to unprecedented levels and created urgency for action, especially in coastal urban and suburban communities that experienced pronounced impacts - especially in New Jersey, New York and Connecticut. Planning approaches vary, but any adaptation and resiliency planning process must include the following: - Knowledge of the probable change in a climate variable (e.g., precipitation, temperature, sea-level rise) over time or that the climate variable will attain a certain threshold deemed to be significant; - Knowledge of intensity and frequency of climate hazards (past, current or future events or conditions with potential to cause harm) and their relationship with climate variables; - Assessment of climate vulnerabilities (sensitive resources, infrastructure or populations exposed to climate-related hazards); - Assessment of relative risks to vulnerable resources; - Identification and prioritization of adaptive strategies to address risks. Many organizations are developing decision-support tools to assist in the urban

  2. Modelling of spatio-temporal precipitation relevant for urban hydrology with focus on scales, extremes and climate change

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen

    -correlation lengths for sub-daily extreme precipitation besides having too low intensities. Especially the wrong spatial correlation structure is disturbing from an urban hydrological point of view as short-term extremes will cover too much ground if derived directly from bias corrected regional climate model output...... of precipitation are compared and used to rank climate models with respect to performance metrics. The four different observational data sets themselves are compared at daily temporal scale with respect to climate indices for mean and extreme precipitation. Data density seems to be a crucial parameter for good...... happening in summer and most of the daily extremes in fall. This behaviour is in good accordance with reality where short term extremes originate in convective precipitation cells that occur when it is very warm and longer term extremes originate in frontal systems that dominate the fall and winter seasons...

  3. Contributions of natural climate changes and human activities to the trend of extreme precipitation

    Science.gov (United States)

    Gao, Lu; Huang, Jie; Chen, Xingwei; Chen, Ying; Liu, Meibing

    2018-06-01

    This study focuses on the analysis of the nonstationarity characteristics of extreme precipitation and their attributions in the southeastern coastal region of China. The maximum daily precipitation (MDP) series is extracted from observations at 79 meteorological stations in the study area during the first flood season (April-June) from 1960 to 2012. The trends of the mean (Mn) and variance (Var) of MDP are detected using the Generalized Additive Models for Location, Scale, and Shape parameters (GAMLSS) and Mann-Kendall test. The contributions of natural climate change and human activities to the Mn and Var changes of MDP are investigated using six large-scale circulation variables and emissions of four greenhouse gases based on GAMLSS and a contribution analysis method. The results demonstrate that the nonstationarity of extreme precipitation on local scales is significant. The Mn and Var of extreme precipitation increase in the north of Zhejiang, the middle of Fujian, and the south of Guangdong. In general, natural climate change contributes more to Mn from 1960 to 2012 than to Var. However, human activities cause a greater Var in the rapid socioeconomic development period (1986-2012) than in the slow socioeconomic development period (1960-1985), especially in Zhejiang and Guangdong. The community should pay more attention to the possibility of extreme precipitation events and associated disasters triggered by human activities.

  4. Climate Change, Extreme Weather Events, and Human Health Implications in the Asia Pacific Region.

    Science.gov (United States)

    Hashim, Jamal Hisham; Hashim, Zailina

    2016-03-01

    The Asia Pacific region is regarded as the most disaster-prone area of the world. Since 2000, 1.2 billion people have been exposed to hydrometeorological hazards alone through 1215 disaster events. The impacts of climate change on meteorological phenomena and environmental consequences are well documented. However, the impacts on health are more elusive. Nevertheless, climate change is believed to alter weather patterns on the regional scale, giving rise to extreme weather events. The impacts from extreme weather events are definitely more acute and traumatic in nature, leading to deaths and injuries, as well as debilitating and fatal communicable diseases. Extreme weather events include heat waves, cold waves, floods, droughts, hurricanes, tropical cyclones, heavy rain, and snowfalls. Globally, within the 20-year period from 1993 to 2012, more than 530 000 people died as a direct result of almost 15 000 extreme weather events, with losses of more than US$2.5 trillion in purchasing power parity. © 2015 APJPH.

  5. Headlines: Planet Earth: Improving Climate Literacy with Short Format News Videos

    Science.gov (United States)

    Tenenbaum, L. F.; Kulikov, A.; Jackson, R.

    2012-12-01

    One of the challenges of communicating climate science is the sense that climate change is remote and unconnected to daily life--something that's happening to someone else or in the future. To help face this challenge, NASA's Global Climate Change website http://climate.nasa.gov has launched a new video series, "Headlines: Planet Earth," which focuses on current climate news events. This rapid-response video series uses 3D video visualization technology combined with real-time satellite data and images, to throw a spotlight on real-world events.. The "Headlines: Planet Earth" news video products will be deployed frequently, ensuring timeliness. NASA's Global Climate Change Website makes extensive use of interactive media, immersive visualizations, ground-based and remote images, narrated and time-lapse videos, time-series animations, and real-time scientific data, plus maps and user-friendly graphics that make the scientific content both accessible and engaging to the public. The site has also won two consecutive Webby Awards for Best Science Website. Connecting climate science to current real-world events will contribute to improving climate literacy by making climate science relevant to everyday life.

  6. Variance decomposition shows the importance of human-climate feedbacks in the Earth system

    Science.gov (United States)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.

    2017-12-01

    The human and Earth systems are intricately linked: climate influences agricultural production, renewable energy potential, and water availability, for example, while anthropogenic emissions from industry and land use change alter temperature and precipitation. Such feedbacks have the potential to significantly alter future climate change. Current climate change projections contain significant uncertainties, however, and because Earth System Models do not generally include dynamic human (demography, economy, energy, water, land use) components, little is known about how climate feedbacks contribute to that uncertainty. Here we use variance decomposition of a novel coupled human-earth system model to show that the influence of human-climate feedbacks can be as large as 17% of the total variance in the near term for global mean temperature rise, and 11% in the long term for cropland area. The near-term contribution of energy and land use feedbacks to the climate on global mean temperature rise is as large as that from model internal variability, a factor typically considered in modeling studies. Conversely, the contribution of climate feedbacks to cropland extent, while non-negligible, is less than that from socioeconomics, policy, or model. Previous assessments have largely excluded these feedbacks, with the climate community focusing on uncertainty due to internal variability, scenario, and model and the integrated assessment community focusing on uncertainty due to socioeconomics, technology, policy, and model. Our results set the stage for a new generation of models and hypothesis testing to determine when and how bidirectional feedbacks between human and Earth systems should be considered in future assessments of climate change.

  7. Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia.

    Science.gov (United States)

    Sánchez-Salguero, Raúl; Camarero, J Julio; Carrer, Marco; Gutiérrez, Emilia; Alla, Arben Q; Andreu-Hayles, Laia; Hevia, Andrea; Koutavas, Athanasios; Martínez-Sancho, Elisabet; Nola, Paola; Papadopoulos, Andreas; Pasho, Edmond; Toromani, Ervin; Carreira, José A; Linares, Juan C

    2017-11-21

    Warmer and drier climatic conditions are projected for the 21st century; however, the role played by extreme climatic events on forest vulnerability is still little understood. For example, more severe droughts and heat waves could threaten quaternary relict tree refugia such as Circum-Mediterranean fir forests (CMFF). Using tree-ring data and a process-based model, we characterized the major climate constraints of recent (1950-2010) CMFF growth to project their vulnerability to 21st-century climate. Simulations predict a 30% growth reduction in some fir species with the 2050s business-as-usual emission scenario, whereas growth would increase in moist refugia due to a longer and warmer growing season. Fir populations currently subjected to warm and dry conditions will be the most vulnerable in the late 21st century when climatic conditions will be analogous to the most severe dry/heat spells causing dieback in the late 20th century. Quantification of growth trends based on climate scenarios could allow defining vulnerability thresholds in tree populations. The presented predictions call for conservation strategies to safeguard relict tree populations and anticipate how many refugia could be threatened by 21st-century dry spells.

  8. Effects of climate change on streamflow extremes and implications for reservoir inflow in the United States

    International Nuclear Information System (INIS)

    Naz, Bibi S.; Kao, Shih-Chieh; Ashfaq, Moetasim; Gao, Huilin

    2017-01-01

    The magnitude and frequency of hydrometeorological extremes are expected to increase in the conterminous United States (CONUS) over the rest of this century, and their increase will significantly impact water resource management. While previous efforts focused on the effects of reservoirs on downstream discharge, the effects of climate change on reservoir inflows in upstream areas are not well understood. We evaluated the large-scale climate change effects on extreme hydrological events and their implications for reservoir inflows in 178 headwater basins across CONUS using the Variable Infiltration Capacity (VIC) hydrologic model. The VIC model was forced with a 10-member ensemble of global circulation models under the Representative Concentration Pathway 8.5 that were dynamically downscaled using a regional climate model (RegCM4) and bias-corrected to 1/24° grid cell resolution. The results projected an increase in the likelihood of flood risk by 44% for a majority of subbasins upstream of flood control reservoirs in the central United States and increased drought risk by 11% for subbasins upstream of hydropower reservoirs across the western United States. Increased risk of both floods and droughts can potentially make reservoirs across CONUS more vulnerable to future climate conditions. In conclusion, this study estimates reservoir inflow changes over the next several decades, which can be used to optimize water supply management downstream.

  9. Quantifying the Influence of Global Warming on Unprecedented Extreme Climate Events

    Science.gov (United States)

    Diffenbaugh, Noah S.; Singh, Deepti; Mankin, Justin S.; Horton, Daniel E.; Swain, Daniel L.; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; hide

    2017-01-01

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.

  10. Quantifying the influence of global warming on unprecedented extreme climate events.

    Science.gov (United States)

    Diffenbaugh, Noah S; Singh, Deepti; Mankin, Justin S; Horton, Daniel E; Swain, Daniel L; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; Rajaratnam, Bala

    2017-05-09

    Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.

  11. Public health and climate change. The example of extreme weather events

    International Nuclear Information System (INIS)

    Pascal, M.; Pirard, P.; Medina, S.; Viso, A.C.; Caserio-Schonemann, C.; Beaudeau, P.

    2013-01-01

    Climate change may be considered as a key factor for environmental change, exposure to health risks and pathogens, consequently impairing the state of health among populations. Health surveillance Systems can be used 1) to trigger early warning Systems, 2) to create databases which improve scientific knowledge about the health impacts of climate change, 3) to identify and prioritize needs for intervention and adaptation measures, and 4) to evaluate these measures. InVS proposed a method to identify possible health risks and to assess the needs for strengthened health surveillance Systems, taking into account environment, individual and social behaviors, demography and health state. Extreme climate events are illustrated here. These events have short, medium and long term impacts that could be reduced through efficient prevention. To better understand these impacts and orientate prevention, interdisciplinary studies will be needed. (authors)

  12. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    Science.gov (United States)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling

  13. Global crop yield response to extreme heat stress under multiple climate change futures

    International Nuclear Information System (INIS)

    Deryng, Delphine; Warren, Rachel; Conway, Declan; Ramankutty, Navin; Price, Jeff

    2014-01-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO 2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO 2 fertilization effects, could double global losses of maize yield (ΔY = −12.8 ± 6.7% versus − 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO 2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries. (paper)

  14. GCMs-based spatiotemporal evolution of climate extremes during the 21st century in China

    Science.gov (United States)

    Li, Jianfeng; Zhang, Qiang; Chen, Yongqin David; Singh, Vijay P.

    2013-10-01

    Changes in the hydrological cycle being caused by human-induced global warming are triggering variations in observed spatiotemporal distributions of precipitation and temperature extremes, and hence in droughts and floods across China. Evaluation of future climate extremes based on General Circulation Models (GCMs) outputs will be of great importance in scientific management of water resources and agricultural activities. In this study, five precipitation extreme and five temperature extreme indices are defined. This study analyzes daily precipitation and temperature data for 1960-2005 from 529 stations in China and outputs of GCMs from the Coupled Model Intercomparison Project Phase 3 (CMIP3) and Phase 5 (CMIP5). Downscaling methods, based on QQ-plot and transfer functions, are used to downscale GCMs outputs to the site scale. Performances of GCMs in simulating climate extremes were evaluated using the Taylor diagram. Results showed that: (1) the multimodel CMIP5 ensemble performs the best in simulating observed extreme conditions; (2) precipitation processes are intensifying with increased frequency and intensity across entire China. The southwest China, however, is dominated by lengthening maximum consecutive dry days and also more heavy precipitation extremes; (3) warming processes continue with increasing warm nights, decreasing frost days, and lengthening heat waves during the 21st century; (4) changes in precipitation and temperature extremes exhibit larger changing magnitudes under RCP85 scenario; (5) for the evolution of changes in extremes, in most cases, the spatial pattern keeps the same, even though changing rates vary. In some cases, area with specific changing properties extends or shrinks gradually. The directions of trends may alter during the evolution; and (6) changes under RCP85 become more and more pronounced as time elapses. Under the peak-and-decline RCP26, changes in some cases do not decrease correspondingly during 2070-2099 even though the

  15. Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity

    DEFF Research Database (Denmark)

    Eby, M.; Weaver, A. J.; Alexander, K.

    2013-01-01

    Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE...... and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20...

  16. AMOC decadal variability in Earth system models: Mechanisms and climate impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Alexey [Yale Univ., New Haven, CT (United States)

    2017-09-06

    This is the final report for the project titled "AMOC decadal variability in Earth system models: Mechanisms and climate impacts". The central goal of this one-year research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) within a hierarchy of climate models ranging from realistic ocean GCMs to Earth system models. The AMOC is a key element of ocean circulation responsible for oceanic transport of heat from low to high latitudes and controlling, to a large extent, climate variations in the North Atlantic. The questions of the AMOC stability, variability and predictability, directly relevant to the questions of climate predictability, were at the center of the research work.

  17. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models.

    Science.gov (United States)

    Bonan, Gordon B; Doney, Scott C

    2018-02-02

    Many global change stresses on terrestrial and marine ecosystems affect not only ecosystem services that are essential to humankind, but also the trajectory of future climate by altering energy and mass exchanges with the atmosphere. Earth system models, which simulate terrestrial and marine ecosystems and biogeochemical cycles, offer a common framework for ecological research related to climate processes; analyses of vulnerability, impacts, and adaptation; and climate change mitigation. They provide an opportunity to move beyond physical descriptors of atmospheric and oceanic states to societally relevant quantities such as wildfire risk, habitat loss, water availability, and crop, fishery, and timber yields. To achieve this, the science of climate prediction must be extended to a more multifaceted Earth system prediction that includes the biosphere and its resources. Copyright © 2018, American Association for the Advancement of Science.

  18. Earth Radiation Budget Experiment (ERBE) Data Sets for Global Environment and Climate Change Studies

    Science.gov (United States)

    Bess, T. Dale; Carlson, Ann B.; Denn, Fredrick M.

    1997-01-01

    For a number of years there has been considerable interest in the earth's radiation budget (ERB) or energy balance, and entails making the best measurements possible of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation. ERB data are fundamental to the development of realistic climate models and studying natural and anthropogenic perturbations of the climate. Much of the interest and investigations in the earth's energy balance predated the age of earth-orbiting satellites (Hunt et al., 1986). Beginning in the mid 1960's earth-orbiting satellites began to play an important role in making measurements of the earth's radiation flux although much effort had gone into measuring ERB parameters prior to 1960 (House et al., 1986). Beginning in 1974 and extending until the present time, three different satellite experiments (not all operating at the same time) have been making radiation budget measurements almost continually in time. Two of the experiments were totally dedicated to making radiation budget measurements of the earth, and the other experiment flown on NOAA sun-synchronous AVHRR weather satellites produced radiation budget parameters as a by-product. The heat budget data from the AVHRR satellites began collecting data in June 1974 and have operated almost continuously for 23 years producing valuable data for long term climate monitoring.

  19. Tackling air pollution and extreme climate changes in China: Implementing the Paris climate change agreement.

    Science.gov (United States)

    Tambo, Ernest; Duo-Quan, Wang; Zhou, Xiao-Nong

    2016-10-01

    China still depends on coal for more than 60% of its power despite big investments in the process of shifting to nuclear, solar and wind power renewable energy resources alignment with Paris climate change agreement (Paris CCA). Chinese government through the Communist Party Central Committee (CPCC) ascribes great importance and commitment to Paris CCA legacy and history landmark implementation at all levels. As the world's biggest carbon dioxide emitter, China has embarked on "SMART" pollution and climate changes programs and measures to reduce coal-fired power plants to less than 50% in the next five years include: new China model of energy policies commitment on CO2 and greenhouse gas emissions reductions to less than 20% non-fossil energy use by 2030 without undermining their economic growth, newly introduced electric vehicles transportation benefits, interactive and sustained air quality index (AQI) monitoring systems, decreasing reliance on fossil fuel economic activities, revision of energy price reforms and renewable energy to less energy efficient technologies development. Furthermore, ongoing CPCC improved environmental initiatives, implemented strict regulations and penalties on local companies and firms' pollution production management, massive infrastructures such as highways to reduce CO2 expansion of seven regional emissions trading markets and programs for CO2 emissions and other pollutants are being documented. Maximizing on the centralized nature of the China's government, implemented Chinese pollution, climate changes mitigation and adaptation initiatives, "SMART" strategies and credible measures are promising. A good and practical example is the interactive and dynamic website and database covering 367 Chinese cities and providing real time information on environmental and pollution emissions AQI. Also, water quality index (WQI), radiation and nuclear safety monitoring and management systems over time and space. These are ongoing Chinese

  20. Climate extremes promote fatal co-infections during canine distemper epidemics in African lions.

    Directory of Open Access Journals (Sweden)

    Linda Munson

    Full Text Available Extreme climatic conditions may alter historic host-pathogen relationships and synchronize the temporal and spatial convergence of multiple infectious agents, triggering epidemics with far greater mortality than those due to single pathogens. Here we present the first data to clearly illustrate how climate extremes can promote a complex interplay between epidemic and endemic pathogens that are normally tolerated in isolation, but with co-infection, result in catastrophic mortality. A 1994 canine distemper virus (CDV epidemic in Serengeti lions (Panthera leo coincided with the death of a third of the population, and a second high-mortality CDV epidemic struck the nearby Ngorongoro Crater lion population in 2001. The extent of adult mortalities was unusual for CDV and prompted an investigation into contributing factors. Serological analyses indicated that at least five "silent" CDV epidemics swept through the same two lion populations between 1976 and 2006 without clinical signs or measurable mortality, indicating that CDV was not necessarily fatal. Clinical and pathology findings suggested that hemoparsitism was a major contributing factor during fatal epidemics. Using quantitative real-time PCR, we measured the magnitude of hemoparasite infections in these populations over 22 years and demonstrated significantly higher levels of Babesia during the 1994 and 2001 epidemics. Babesia levels correlated with mortalities and extent of CDV exposure within prides. The common event preceding the two high mortality CDV outbreaks was extreme drought conditions with wide-spread herbivore die-offs, most notably of Cape buffalo (Syncerus caffer. As a consequence of high tick numbers after the resumption of rains and heavy tick infestations of starving buffalo, the lions were infected by unusually high numbers of Babesia, infections that were magnified by the immunosuppressive effects of coincident CDV, leading to unprecedented mortality. Such mass mortality

  1. Climate extremes promote fatal co-infections during canine distemper epidemics in African lions.

    Science.gov (United States)

    Munson, Linda; Terio, Karen A; Kock, Richard; Mlengeya, Titus; Roelke, Melody E; Dubovi, Edward; Summers, Brian; Sinclair, Anthony R E; Packer, Craig

    2008-06-25

    Extreme climatic conditions may alter historic host-pathogen relationships and synchronize the temporal and spatial convergence of multiple infectious agents, triggering epidemics with far greater mortality than those due to single pathogens. Here we present the first data to clearly illustrate how climate extremes can promote a complex interplay between epidemic and endemic pathogens that are normally tolerated in isolation, but with co-infection, result in catastrophic mortality. A 1994 canine distemper virus (CDV) epidemic in Serengeti lions (Panthera leo) coincided with the death of a third of the population, and a second high-mortality CDV epidemic struck the nearby Ngorongoro Crater lion population in 2001. The extent of adult mortalities was unusual for CDV and prompted an investigation into contributing factors. Serological analyses indicated that at least five "silent" CDV epidemics swept through the same two lion populations between 1976 and 2006 without clinical signs or measurable mortality, indicating that CDV was not necessarily fatal. Clinical and pathology findings suggested that hemoparsitism was a major contributing factor during fatal epidemics. Using quantitative real-time PCR, we measured the magnitude of hemoparasite infections in these populations over 22 years and demonstrated significantly higher levels of Babesia during the 1994 and 2001 epidemics. Babesia levels correlated with mortalities and extent of CDV exposure within prides. The common event preceding the two high mortality CDV outbreaks was extreme drought conditions with wide-spread herbivore die-offs, most notably of Cape buffalo (Syncerus caffer). As a consequence of high tick numbers after the resumption of rains and heavy tick infestations of starving buffalo, the lions were infected by unusually high numbers of Babesia, infections that were magnified by the immunosuppressive effects of coincident CDV, leading to unprecedented mortality. Such mass mortality events may become

  2. Climate Extremes Promote Fatal Co-Infections during Canine Distemper Epidemics in African Lions

    Science.gov (United States)

    Munson, Linda; Terio, Karen A.; Kock, Richard; Mlengeya, Titus; Roelke, Melody E.; Dubovi, Edward; Summers, Brian; Sinclair, Anthony R. E.; Packer, Craig

    2008-01-01

    Extreme climatic conditions may alter historic host-pathogen relationships and synchronize the temporal and spatial convergence of multiple infectious agents, triggering epidemics with far greater mortality than those due to single pathogens. Here we present the first data to clearly illustrate how climate extremes can promote a complex interplay between epidemic and endemic pathogens that are normally tolerated in isolation, but with co-infection, result in catastrophic mortality. A 1994 canine distemper virus (CDV) epidemic in Serengeti lions (Panthera leo) coincided with the death of a third of the population, and a second high-mortality CDV epidemic struck the nearby Ngorongoro Crater lion population in 2001. The extent of adult mortalities was unusual for CDV and prompted an investigation into contributing factors. Serological analyses indicated that at least five “silent” CDV epidemics swept through the same two lion populations between 1976 and 2006 without clinical signs or measurable mortality, indicating that CDV was not necessarily fatal. Clinical and pathology findings suggested that hemoparsitism was a major contributing factor during fatal epidemics. Using quantitative real-time PCR, we measured the magnitude of hemoparasite infections in these populations over 22 years and demonstrated significantly higher levels of Babesia during the 1994 and 2001 epidemics. Babesia levels correlated with mortalities and extent of CDV exposure within prides. The common event preceding the two high mortality CDV outbreaks was extreme drought conditions with wide-spread herbivore die-offs, most notably of Cape buffalo (Syncerus caffer). As a consequence of high tick numbers after the resumption of rains and heavy tick infestations of starving buffalo, the lions were infected by unusually high numbers of Babesia, infections that were magnified by the immunosuppressive effects of coincident CDV, leading to unprecedented mortality. Such mass mortality events may

  3. New climate on the Earth: understanding, predicting, reacting

    International Nuclear Information System (INIS)

    Le Treut, H.

    2009-01-01

    The objective of the Copenhagen meeting was to recast the Kyoto protocol, to widen it to all countries, to find a global agreement for the aid to vulnerable populations and for the abatement of greenhouse gases both from industrialized and emerging countries, including the USA and China. Scientific research has revealed the huge complexity of the climate machine and the difficulty to predict its evolution. What will be the sea level in 2100, the pressure on coastal areas, the expansion of desertification, the evolution of glaciers? Today no quantification is possible but it is demonstrated that our greenhouse gas emissions are responsible for the climate change, that this change is already irreversible and will affect all natural environments, and that a warming up greater than 2 deg. C will make climate evolution out of control. In this book, the author lists the actions to implement urgently: significantly reducing greenhouse gas emissions, implementing energy saving policies, limiting fossil fuels consumption, developing alternate energies, capturing and sequestering the CO 2 of thermal plants. We just have few decades in front of us to reduce the extent of the changes in progress and to be prepared to face the ensuing new inequalities. (J.S.)

  4. GRACE, time-varying gravity, Earth system dynamics and climate change

    Science.gov (United States)

    Wouters, B.; Bonin, J. A.; Chambers, D. P.; Riva, R. E. M.; Sasgen, I.; Wahr, J.

    2014-11-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.

  5. GRACE, time-varying gravity, Earth system dynamics and climate change

    International Nuclear Information System (INIS)

    Wouters, B; Bonin, J A; Chambers, D P; Riva, R E M; Sasgen, I; Wahr, J

    2014-01-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography. (review article)

  6. Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate

    Science.gov (United States)

    Walls, Susan C.; Barichivich, William J.; Brown, Mary E.

    2013-01-01

    The Class Amphibia is one of the most severely impacted taxa in an on-going global biodiversity crisis. Because amphibian reproduction is tightly associated with the presence of water, climatic changes that affect water availability pose a particularly menacing threat to both aquatic and terrestrial-breeding amphibians. We explore the impacts that one facet of climate change—that of extreme variation in precipitation—may have on amphibians. This variation is manifested principally as increases in the incidence and severity of both drought and major storm events. We stress the need to consider not only total precipitation amounts but also the pattern and timing of rainfall events. Such rainfall “pulses” are likely to become increasingly more influential on amphibians, especially in relation to seasonal reproduction. Changes in reproductive phenology can strongly influence the outcome of competitive and predatory interactions, thus potentially altering community dynamics in assemblages of co-existing species. We present a conceptual model to illustrate possible landscape and metapopulation consequences of alternative climate change scenarios for pond-breeding amphibians, using the Mole Salamander, Ambystoma talpoideum, as an example. Although amphibians have evolved a variety of life history strategies that enable them to cope with environmental uncertainty, it is unclear whether adaptations can keep pace with the escalating rate of climate change. Climate change, especially in combination with other stressors, is a daunting challenge for the persistence of amphibians and, thus, the conservation of global biodiversity.

  7. Web processing service for climate impact and extreme weather event analyses. Flyingpigeon (Version 1.0)

    Science.gov (United States)

    Hempelmann, Nils; Ehbrecht, Carsten; Alvarez-Castro, Carmen; Brockmann, Patrick; Falk, Wolfgang; Hoffmann, Jörg; Kindermann, Stephan; Koziol, Ben; Nangini, Cathy; Radanovics, Sabine; Vautard, Robert; Yiou, Pascal

    2018-01-01

    Analyses of extreme weather events and their impacts often requires big data processing of ensembles of climate model simulations. Researchers generally proceed by downloading the data from the providers and processing the data files ;at home; with their own analysis processes. However, the growing amount of available climate model and observation data makes this procedure quite awkward. In addition, data processing knowledge is kept local, instead of being consolidated into a common resource of reusable code. These drawbacks can be mitigated by using a web processing service (WPS). A WPS hosts services such as data analysis processes that are accessible over the web, and can be installed close to the data archives. We developed a WPS named 'flyingpigeon' that communicates over an HTTP network protocol based on standards defined by the Open Geospatial Consortium (OGC), to be used by climatologists and impact modelers as a tool for analyzing large datasets remotely. Here, we present the current processes we developed in flyingpigeon relating to commonly-used processes (preprocessing steps, spatial subsets at continent, country or region level, and climate indices) as well as methods for specific climate data analysis (weather regimes, analogues of circulation, segetal flora distribution, and species distribution models). We also developed a novel, browser-based interactive data visualization for circulation analogues, illustrating the flexibility of WPS in designing custom outputs. Bringing the software to the data instead of transferring the data to the code is becoming increasingly necessary, especially with the upcoming massive climate datasets.

  8. Identifying Neutrino Mass Hierarchy at Extremely Small θ13 through Earth Matter Effects in a Supernova Signal

    International Nuclear Information System (INIS)

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro

    2008-01-01

    Collective neutrino flavor transformations deep inside a supernova are sensitive to the neutrino mass hierarchy even at extremely small values of θ 13 . Exploiting this effect, we show that comparison of the antineutrino signals from a galactic supernova in two megaton class water Cherenkov detectors, one of which is shadowed by Earth, will enable us to distinguish between the hierarchies if sin 2 θ 13 -5 , where long baseline neutrino experiments would be ineffectual

  9. Development of a High-Resolution Climate Model for Future Climate Change Projection on the Earth Simulator

    Science.gov (United States)

    Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.

    2002-12-01

    The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).

  10. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    Science.gov (United States)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  11. EVOLUTIONARY TRACKS OF THE CLIMATE OF EARTH-LIKE PLANETS AROUND DIFFERENT MASS STARS

    Energy Technology Data Exchange (ETDEWEB)

    Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Faculty of Science Bldg. 1 #711, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan)

    2016-07-10

    The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO{sub 2} in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending on the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO{sub 2} degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.

  12. EVOLUTIONARY TRACKS OF THE CLIMATE OF EARTH-LIKE PLANETS AROUND DIFFERENT MASS STARS

    International Nuclear Information System (INIS)

    Kadoya, S.; Tajika, E.

    2016-01-01

    The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO_2 in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending on the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO_2 degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.

  13. Statistical Analysis of Wave Climate Data Using Mixed Distributions and Extreme Wave Prediction

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-05-01

    Full Text Available The investigation of various aspects of the wave climate at a wave energy test site is essential for the development of reliable and efficient wave energy conversion technology. This paper presents studies of the wave climate based on nine years of wave observations from the 2005–2013 period measured with a wave measurement buoy at the Lysekil wave energy test site located off the west coast of Sweden. A detailed analysis of the wave statistics is investigated to reveal the characteristics of the wave climate at this specific test site. The long-term extreme waves are estimated from applying the Peak over Threshold (POT method on the measured wave data. The significant wave height and the maximum wave height at the test site for different return periods are also compared. In this study, a new approach using a mixed-distribution model is proposed to describe the long-term behavior of the significant wave height and it shows an impressive goodness of fit to wave data from the test site. The mixed-distribution model is also applied to measured wave data from four other sites and it provides an illustration of the general applicability of the proposed model. The methodologies used in this paper can be applied to general wave climate analysis of wave energy test sites to estimate extreme waves for the survivability assessment of wave energy converters and characterize the long wave climate to forecast the wave energy resource of the test sites and the energy production of the wave energy converters.

  14. Riparian responses to extreme climate and land-use change scenarios.

    Science.gov (United States)

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Climate extremes in Europe at 1.5 and 2 degrees of global warming

    Science.gov (United States)

    King, Andrew D.; Karoly, David J.

    2017-11-01

    There is an international effort to attempt to limit global warming to 1.5 °C above pre-industrial levels, however, there is a lack of quantitative analysis on the benefits of holding global warming to such a level. In this study, coupled climate model simulations are used to form large ensembles of simulated years at 1.5 °C and 2 °C of global warming. These ensembles are used to assess projected changes in the frequency and magnitude of European climate extremes at these warming levels. For example, we find that events similar to the European record hot summer of 2003, which caused tens of thousands of excess deaths, would be very likely at least 24% less frequent in a world at 1.5 °C global warming compared to 2 °C global warming. Under 2 °C of global warming, we could expect such extreme summer temperatures in the historical record to become commonplace, occurring in at least one-in-every-two years. We find that there are very clear benefits to limiting global warming for the European continent, including fewer and less intense heat and rainfall extremes when compared with higher levels of global warming.

  16. Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010

    International Nuclear Information System (INIS)

    John, Ranjeet; Chen Jiquan; Ouyang Zutao; Becker, Richard; Xiao Jingfeng; Samanta, Arindam; Ganguly, Sangram; Yuan Wenping; Batkhishig, Ochirbat

    2013-01-01

    Climate change has led to more frequent extreme winters (aka, dzud) and summer droughts on the Mongolian Plateau during the last decade. Among these events, the 2000–2002 combined summer drought–dzud and 2010 dzud were the most severe on vegetation. We examined the vegetation response to these extremes through the past decade across the Mongolian Plateau as compared to decadal means. We first assessed the severity and extent of drought using the Tropical Rainfall Measuring Mission (TRMM) precipitation data and the Palmer drought severity index (PDSI). We then examined the effects of drought by mapping anomalies in vegetation indices (EVI, EVI2) and land surface temperature derived from MODIS and AVHRR for the period of 2000–2010. We found that the standardized anomalies of vegetation indices exhibited positively skewed frequency distributions in dry years, which were more common for the desert biome than for grasslands. For the desert biome, the dry years (2000–2001, 2005 and 2009) were characterized by negative anomalies with peak values between −1.5 and −0.5 and were statistically different (P 2 = 65 and 60, p 2 = 53, p < 0.05). Our results showed significant differences in the responses to extreme climatic events (summer drought and dzud) between the desert and grassland biomes on the Plateau. (letter)

  17. Estimation of the impact of climate change-induced extreme precipitation events on floods

    Science.gov (United States)

    Hlavčová, Kamila; Lapin, Milan; Valent, Peter; Szolgay, Ján; Kohnová, Silvia; Rončák, Peter

    2015-09-01

    In order to estimate possible changes in the flood regime in the mountainous regions of Slovakia, a simple physically-based concept for climate change-induced changes in extreme 5-day precipitation totals is proposed in the paper. It utilizes regionally downscaled scenarios of the long-term monthly means of the air temperature, specific air humidity and precipitation projected for Central Slovakia by two regional (RCM) and two global circulation models (GCM). A simplified physically-based model for the calculation of short-term precipitation totals over the course of changing air temperatures, which is used to drive a conceptual rainfall-runoff model, was proposed. In the paper a case study of this approach in the upper Hron river basin in Central Slovakia is presented. From the 1981-2010 period, 20 events of the basin's most extreme average of 5-day precipitation totals were selected. Only events with continual precipitation during 5 days were considered. These 5-day precipitation totals were modified according to the RCM and GCM-based scenarios for the future time horizons of 2025, 2050 and 2075. For modelling runoff under changed 5-day precipitation totals, a conceptual rainfall-runoff model developed at the Slovak University of Technology was used. Changes in extreme mean daily discharges due to climate change were compared with the original flood events and discussed.

  18. Extreme precipitation response to climate perturbations in an atmospheric mesoscale model

    International Nuclear Information System (INIS)

    Attema, Jisk J; Loriaux, Jessica M; Lenderink, Geert

    2014-01-01

    Observations of extreme (sub-)hourly precipitation at mid-latitudes show a large dependency on the dew point temperature often close to 14% per degree—2 times the dependency of the specific humidity on dew point temperature which is given by the Clausius–Clapeyron (CC) relation. By simulating a selection of 11 cases over the Netherlands characterized by intense showers, we investigate this behavior in the non-hydrostatic weather prediction model Harmonie at a resolution of 2.5 km. These experiments are repeated using perturbations of the atmospheric profiles of temperature and humidity: (i) using an idealized approach with a 2° warmer (colder) atmosphere assuming constant relative humidity, and (ii) using changes in temperature and humidity derived from a long climate change simulation at 2° global warming. All perturbations have a difference in the local dew point temperature compared to the reference of approximately 2°. Differences are considerable between the cases, with dependencies ranging from almost zero to an increase of 18% per degree rise of the dew point temperature. On average however, we find an increase of extreme precipitation intensity of 11% per degree for the idealized perturbation, and 9% per degree for the climate change perturbation. For the most extreme events these dependencies appear to approach a rate of 11–14% per degree, in closer agreement with the observed relation. (paper)

  19. Comparing regional precipitation and temperature extremes in climate model and reanalysis products

    Directory of Open Access Journals (Sweden)

    Oliver Angélil

    2016-09-01

    Full Text Available A growing field of research aims to characterise the contribution of anthropogenic emissions to the likelihood of extreme weather and climate events. These analyses can be sensitive to the shapes of the tails of simulated distributions. If tails are found to be unrealistically short or long, the anthropogenic signal emerges more or less clearly, respectively, from the noise of possible weather. Here we compare the chance of daily land-surface precipitation and near-surface temperature extremes generated by three Atmospheric Global Climate Models typically used for event attribution, with distributions from six reanalysis products. The likelihoods of extremes are compared for area-averages over grid cell and regional sized spatial domains. Results suggest a bias favouring overly strong attribution estimates for hot and cold events over many regions of Africa and Australia, and a bias favouring overly weak attribution estimates over regions of North America and Asia. For rainfall, results are more sensitive to geographic location. Although the three models show similar results over many regions, they do disagree over others. Equally, results highlight the discrepancy amongst reanalyses products. This emphasises the importance of using multiple reanalysis and/or observation products, as well as multiple models in event attribution studies.

  20. Evolution of extreme temperature events in short term climate projection for Iberian Peninsula.

    Science.gov (United States)

    Rodriguez, Alfredo; Tarquis, Ana M.; Sanchez, Enrique; Dosio, Alessandro; Ruiz-Ramos, Margarita

    2014-05-01

    Extreme events of maximum and minimum temperatures are a main hazard for agricultural production in Iberian Peninsula. For this purpose, in this study we analyze projections of their evolution that could be valid for the next decade, represented in this study by the 30-year period 2004-2034 (target period). For this purpose two kinds of data were used in this study: 1) observations from the station network of AEMET (Spanish National Meteorological Agency) for five Spanish locations, and 2) simulated data at a resolution of 50 ×50 km horizontal grid derived from the outputs of twelve Regional Climate Models (RCMs) taken from project ENSEMBLES (van der Linden and Mitchell, 2009), with a bias correction (Dosio and Paruolo, 2011; Dosio et al., 2012) regarding the observational dataset Spain02 (Herrera et al., 2012). To validate the simulated climate, the available period of observations was compared to a baseline period (1964-1994) of simulated climate for all locations. Then, to analyze the changes for the present/very next future, probability of extreme temperature events for 2004-2034 were compared to that of the baseline period. Although only minor changes are expected, small variations in variability may have a significant impact in crop performance. The objective of the work is to evaluate the utility of these short term projections for potential users, as for instance insurance companies. References Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, VOL. 116,D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research,Volume 117, D17, doi: 0.1029/2012JD017968 Herrera et. al. (2012) Development and Analysis of a 50 year high

  1. Vulnerability to extreme heat and climate change: is ethnicity a factor?

    Science.gov (United States)

    Hansen, Alana; Bi, Linda; Saniotis, Arthur; Nitschke, Monika

    2013-07-29

    With a warming climate, it is important to identify sub-populations at risk of harm during extreme heat. Several international studies have reported that individuals from ethnic minorities are at increased risk of heat-related illness, for reasons that are not often discussed. The aim of this article is to investigate the underpinning reasons as to why ethnicity may be associated with susceptibility to extreme heat, and how this may be relevant to Australia's population. Drawing upon literary sources, the authors provide commentary on this important, yet poorly understood area of heat research. Social and economic disparities, living conditions, language barriers, and occupational exposure are among the many factors contributing to heat-susceptibility among minority ethnic groups in the United States. However, there is a knowledge gap about socio-cultural influences on vulnerability in other countries. More research needs to be undertaken to determine the effects of heat on tourists, migrants, and refugees who are confronted with a different climatic environment. Thorough epidemiological investigations of the association between ethnicity and heat-related health outcomes are required, and this could be assisted with better reporting of nationality data in health statistics. Climate change adaptation strategies in Australia and elsewhere need to be ethnically inclusive and cognisant of an upward trend in the proportion of the population who are migrants and refugees.

  2. Computing the distribution of return levels of extreme warm temperatures for future climate projections

    Energy Technology Data Exchange (ETDEWEB)

    Pausader, M.; Parey, S.; Nogaj, M. [EDF/R and D, Chatou Cedex (France); Bernie, D. [Met Office Hadley Centre, Exeter (United Kingdom)

    2012-03-15

    In order to take into account uncertainties in the future climate projections there is a growing demand for probabilistic projections of climate change. This paper presents a methodology for producing such a probabilistic analysis of future temperature extremes. The 20- and 100-years return levels are obtained from that of the normalized variable and the changes in mean and standard deviation given by climate models for the desired future periods. Uncertainty in future change of these extremes is quantified using a multi-model ensemble and a perturbed physics ensemble. The probability density functions of future return levels are computed at a representative location from the joint probability distribution of mean and standard deviation changes given by the two combined ensembles of models. For the studied location, the 100-years return level at the end of the century is lower than 41 C with an 80% confidence. Then, as the number of model simulations is low to compute a reliable distribution, two techniques proposed in the literature (local pattern scaling and ANOVA) have been used to infer the changes in mean and standard deviation for the combinations of RCM and GCM which have not been run. The ANOVA technique leads to better results for the reconstruction of the mean changes, whereas the two methods fail to correctly infer the changes in standard deviation. As standard deviation change has a major impact on return level change, there is a need to improve the models and the different techniques regarding the variance changes. (orig.)

  3. Characteristics of Extreme Extratropical Cyclones in a High-Resolution Global Climate Model

    Science.gov (United States)

    Catalano, A. J.; Broccoli, A. J.; Kapnick, S. B.; Janoski, T. P.

    2017-12-01

    In the northeastern United States, many of the strongest impacts from extratropical cyclones (ETCs) are associated with storms that exhibit slow movement, unusual tracks, or exceptional intensity. Examples of extreme ETCs include the Appalachian storm of November 1950, the Perfect Storm of October 1991, and the Superstorm of March 1993. Owing to the rare nature of these events, it is difficult to quantify the associated risks (e.g. high winds, storm surge) given the limited duration of high-quality observational datasets. Furthermore, storms with even greater impacts than those observed may be possible, particularly in a warming climate. In the context of tropical cyclones, Lin and Emanuel (2016) have used the metaphor "grey swans" to refer to high-impact events that have not been observed but may be physically possible. One method for analyzing "grey swans" is to generate a larger sample of ETCs using a coupled climate model. Therefore, we use long simulations (over 1,000 years with atmospheric constituents fixed at 1990 levels) from a global climate model (GFDL FLOR) with 50km atmospheric resolution. FLOR has been shown to realistically simulate the spatial distribution and climatology of ETCs during the reanalysis era. We will discuss the climatological features of these extreme ETC events.

  4. Vulnerability to extreme heat and climate change: is ethnicity a factor?

    Directory of Open Access Journals (Sweden)

    Alana Hansen

    2013-07-01

    Full Text Available Background: With a warming climate, it is important to identify sub-populations at risk of harm during extreme heat. Several international studies have reported that individuals from ethnic minorities are at increased risk of heat-related illness, for reasons that are not often discussed. Objective: The aim of this article is to investigate the underpinning reasons as to why ethnicity may be associated with susceptibility to extreme heat, and how this may be relevant to Australia's population. Design: Drawing upon literary sources, the authors provide commentary on this important, yet poorly understood area of heat research. Results: Social and economic disparities, living conditions, language barriers, and occupational exposure are among the many factors contributing to heat-susceptibility among minority ethnic groups in the United States. However, there is a knowledge gap about socio-cultural influences on vulnerability in other countries. Conclusion: More research needs to be undertaken to determine the effects of heat on tourists, migrants, and refugees who are confronted with a different climatic environment. Thorough epidemiological investigations of the association between ethnicity and heat-related health outcomes are required, and this could be assisted with better reporting of nationality data in health statistics. Climate change adaptation strategies in Australia and elsewhere need to be ethnically inclusive and cognisant of an upward trend in the proportion of the population who are migrants and refugees.

  5. Attributing regional effects of the 2014 Jordanian extreme drought to external climate drivers

    Science.gov (United States)

    Bergaoui, Karim; Mitchell, Dann; Zaaboul, Rashyd; Otto, Friederike; McDonnell, Rachael; Dadson, Simon; Allen, Myles

    2015-04-01

    Throughout 2014, the regions of Jordan, Israel, Lebanon and Syria have experienced a persistent draught with clear impacts on the local populations. In this study we perform an extreme event attribution analysis of how such a draught has changed under climate change, with a specific focus on the flow rate of the Upper Jordan river and the water level of Lake Tiberious (AKA the Sea of Galilee). Both of which hold major societal, political and religious importance. To perform the analysis we make use of distributed computing power to run thousands of modelled years of 2014 with slightly different initial conditions. We use an atmosphere only model (HadAM3p) with a nested 50 km regional model covering Africa and the Middle East. The 50 km model atmospheric variables will be used directly to force offline our 1 km LIS surface model. Two separate experiments and simulations are performed, 1. for all known climate forcings that are present in 2014, and 2. for a naturalised 2014 scenario where we assume humans never impacted the climate. We perform sensitivity analyses on the observed precipitation over the regions of interest, and determine that the TRMM data is in good agreement with station data obtained from the Jordanian Ministry of Water. Using a combination of the TRMM and model data we are able to make clear statements on the attribution of a 2014-like extreme draught event to human causal factors.

  6. Simulation and Measurement of Through-the-Earth, Extremely Low-Frequency Signals Using Copper-Clad Steel Ground Rods.

    Science.gov (United States)

    Damiano, Nicholas William; Yan, Lincan; Whisner, Bruce; Zhou, Chenming

    2017-01-01

    The underground mining environment can greatly affect radio signal propagation. Understanding how the earth affects signal propagation is a key to evaluating communications systems used during a mine emergency. One type of communication system is through-the-earth, which can utilize extremely low frequencies (ELF). This paper presents the simulation and measurement results of recent National Institute for Occupational Safety and Health (NIOSH) research aimed at investigating current injection at ELF, and in particular, ground contact impedance. Measurements were taken at an outside surface testing location. The results obtained from modeling and measurement are characterized by electrode impedance, and the voltage received between two distant electrodes. This paper concludes with a discussion of design considerations found to affect low-frequency communication systems utilizing ground rods to inject a current into the earth.

  7. Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya: Contributions Toward Future Earth Initiatives

    Directory of Open Access Journals (Sweden)

    Joseph Shea

    2017-08-01

    Full Text Available Reviewed: Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya: Contributions Toward Future Earth Initiatives. Edited by R. B. Singh, Udo Schickhoff, and Suraj Mal. Cham, Switzerland: Springer, 2016. xvi + 399 pp. Hardcover: US$ 179.00, ISBN 978-3-319-28975-5. E-book: US$ 139.00, ISBN 978-3-319-28977-9.

  8. A model perspective on orbital forcing of monsoons and Mediterranean climate using EC-Earth

    NARCIS (Netherlands)

    Bosmans, J.H.C.

    2014-01-01

    This thesis focuses on orbitally forced changes of monsoons and Mediterranean climate. Changes in the shape of the Earths orbit around the Sun and its rotational axis govern the seasonal and latitudinal distribution of incoming solar radiation on time scales of thousands to millions of years. The

  9. Climate Science: How Earth System Models are Reshaping the Science Policy Interface.

    Science.gov (United States)

    Ruane, Alex

    2015-01-01

    This talk is oriented at a general audience including the largest French utility company, and will describe the basics of climate change before moving into emissions scenarios and agricultural impacts that we can test with our earth system models and impacts models.

  10. The Future of Coral Reefs Subject to Rapid Climate Change: Lessons from Natural Extreme Environments

    Directory of Open Access Journals (Sweden)

    Emma F. Camp

    2018-02-01

    Full Text Available Global climate change and localized anthropogenic stressors are driving rapid declines in coral reef health. In vitro experiments have been fundamental in providing insight into how reef organisms will potentially respond to future climates. However, such experiments are inevitably limited in their ability to reproduce the complex interactions that govern reef systems. Studies examining coral communities that already persist under naturally-occurring extreme and marginal physicochemical conditions have therefore become increasingly popular to advance ecosystem scale predictions of future reef form and function, although no single site provides a perfect analog to future reefs. Here we review the current state of knowledge that exists on the distribution of corals in marginal and extreme environments, and geographic sites at the latitudinal extremes of reef growth, as well as a variety of shallow reef systems and reef-neighboring environments (including upwelling and CO2 vent sites. We also conduct a synthesis of the abiotic data that have been collected at these systems, to provide the first collective assessment on the range of extreme conditions under which corals currently persist. We use the review and data synthesis to increase our understanding of the biological and ecological mechanisms that facilitate survival and success under sub-optimal physicochemical conditions. This comprehensive assessment can begin to: (i highlight the extent of extreme abiotic scenarios under which corals can persist, (ii explore whether there are commonalities in coral taxa able to persist in such extremes, (iii provide evidence for key mechanisms required to support survival and/or persistence under sub-optimal environmental conditions, and (iv evaluate the potential of current sub-optimal coral environments to act as potential refugia under changing environmental conditions. Such a collective approach is critical to better understand the future survival of

  11. Identifying evidence of climate change impact on extreme events in permeable chalk catchments

    Science.gov (United States)

    Butler, A. P.; Nubert, S.

    2009-12-01

    The permeable chalk catchments of southern England are vital for the economy and well being of the UK. Not only important as a water resource, their freely draining soils support intensive agricultural production, and the rolling downs and chalk streams provide important habitants for many protected plant and animal species. Consequently, there are concerns about the potential impact of climate change on such catchments, particularly in relation to groundwater recharge. Of major concern are possible changes in extreme events, such as groundwater floods and droughts, as any increase in the frequency and/or severity of these has important consequences for water resources, ecological systems and local infrastructure. Studies of climate change impact on extreme events for such catchments have indicated that, under medium and high emissions scenarios, droughts are likely to become more severe whilst floods less so. However, given the uncertainties in such predictions and the inherent variability in historic data, producing definitive evidence of changes in flood/drought frequency/severity poses a significant challenge. Thus, there is a need for specific extreme event statistics that can be used as indicators of actual climate change in streamflow and groundwater level observations. Identifying such indicators that are sufficiently robust requires catchments with long historic time series data. One such catchment is the River Lavant, an intermittent chalk stream in West Sussex, UK. Located within this catchment is Chilgrove House, the site of the UK’s longest groundwater monitoring well (with a continuous record of water level observations of varying frequency dating back to 1836). Using a variety of meteorological datasets, the behaviour of the catchment has been modelled, from 1855 to present, using a 'leaky aquifer' conceptual model. Model calibration was based on observed daily streamflow, at a gauging station just outside the town of Chichester, from 1970. Long

  12. Progress Report 2008: A Scalable and Extensible Earth System Model for Climate Change Science

    Energy Technology Data Exchange (ETDEWEB)

    Drake, John B [ORNL; Worley, Patrick H [ORNL; Hoffman, Forrest M [ORNL; Jones, Phil [Los Alamos National Laboratory (LANL)

    2009-01-01

    This project employs multi-disciplinary teams to accelerate development of the Community Climate System Model (CCSM), based at the National Center for Atmospheric Research (NCAR). A consortium of eight Department of Energy (DOE) National Laboratories collaborate with NCAR and the NASA Global Modeling and Assimilation Office (GMAO). The laboratories are Argonne (ANL), Brookhaven (BNL) Los Alamos (LANL), Lawrence Berkeley (LBNL), Lawrence Livermore (LLNL), Oak Ridge (ORNL), Pacific Northwest (PNNL) and Sandia (SNL). The work plan focuses on scalablity for petascale computation and extensibility to a more comprehensive earth system model. Our stated goal is to support the DOE mission in climate change research by helping ... To determine the range of possible climate changes over the 21st century and beyond through simulations using a more accurate climate system model that includes the full range of human and natural climate feedbacks with increased realism and spatial resolution.

  13. An Assessment of Direct and Indirect Economic Losses of Climatic Extreme Events

    Science.gov (United States)

    Otto, C.; Willner, S. N.; Wenz, L.; Levermann, A.

    2015-12-01

    Risk of extreme weather events like storms, heat extremes, and floods has already risen due to anthropogenic climate change and is likely to increase further under future global warming. Additionally, the structure of the global economy has changed importantly in the last decades. In the process of globalization, local economies have become more and more interwoven forming a complex network. Together with a trend towards lean production, this has resulted in a strong dependency of local manufacturers on global supply and value added chains, which may render the economic network more vulnerable to climatic extremes; outages of local manufacturers trigger indirect losses, which spread along supply chains and can even outstrip direct losses. Accordingly, in a comprehensive climate risk assessment these inter-linkages should be considered. Here, we present acclimate, an agent based dynamic damage propagation model. Its agents are production and consumption sites, which are interlinked by economic flows accounting for the complexity as well as the heterogeneity of the global supply network. Assessing the economic response on the timescale of the adverse event, the model permits to study temporal and spatial evolution of indirect production losses during the disaster and in the subsequent recovery phase of the economy. In this study, we focus on the dynamic economic resilience defined here as the ratio of direct to total losses. This implies that the resilience of the system under consideration is low if the high indirect losses are high. We find and assess a nonlinear dependence of the resilience on the disaster size. Further, we analyze the influence of the network structure upon resilience and discuss the potential of warehousing as an adaptation option.

  14. Localized Multi-Model Extremes Metrics for the Fourth National Climate Assessment

    Science.gov (United States)

    Thompson, T. R.; Kunkel, K.; Stevens, L. E.; Easterling, D. R.; Biard, J.; Sun, L.

    2017-12-01

    We have performed localized analysis of scenario-based datasets for the Fourth National Climate Assessment (NCA4). These datasets include CMIP5-based Localized Constructed Analogs (LOCA) downscaled simulations at daily temporal resolution and 1/16th-degree spatial resolution. Over 45 temperature and precipitation extremes metrics have been processed using LOCA data, including threshold, percentile, and degree-days calculations. The localized analysis calculates trends in the temperature and precipitation extremes metrics for relatively small regions such as counties, metropolitan areas, climate zones, administrative areas, or economic zones. For NCA4, we are currently addressing metropolitan areas as defined by U.S. Census Bureau Metropolitan Statistical Areas. Such localized analysis provides essential information for adaptation planning at scales relevant to local planning agencies and businesses. Nearly 30 such regions have been analyzed to date. Each locale is defined by a closed polygon that is used to extract LOCA-based extremes metrics specific to the area. For each metric, single-model data at each LOCA grid location are first averaged over several 30-year historical and future periods. Then, for each metric, the spatial average across the region is calculated using model weights based on both model independence and reproducibility of current climate conditions. The range of single-model results is also captured on the same localized basis, and then combined with the weighted ensemble average for each region and each metric. For example, Boston-area cooling degree days and maximum daily temperature is shown below for RCP8.5 (red) and RCP4.5 (blue) scenarios. We also discuss inter-regional comparison of these metrics, as well as their relevance to risk analysis for adaptation planning.

  15. Climate Products and Services to Meet the Challenges of Extreme Events

    Science.gov (United States)

    McCalla, M. R.

    2008-12-01

    The 2002 Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM1)-sponsored report, Weather Information for Surface Transportation: National Needs Assessment Report, addressed meteorological needs for six core modes of surface transportation: roadway, railway, transit, marine transportation/operations, pipeline, and airport ground operations. The report's goal was to articulate the weather information needs and attendant surface transportation weather products and services for those entities that use, operate, and manage America's surface transportation infrastructure. The report documented weather thresholds and associated impacts which are critical for decision-making in surface transportation. More recently, the 2008 Climate Change Science Program's (CCSP) Synthesis and Assessment Product (SAP) 4.7 entitled, Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I, included many of the impacts from the OFCM- sponsored report in Table 1.1 of this SAP.2 The Intergovernmental Panel on Climate Change (IPCC) reported that since 1950, there has been an increase in the number of heat waves, heavy precipitation events, and areas of drought. Moreover, the IPCC indicated that greater wind speeds could accompany more severe tropical cyclones.3 Taken together, the OFCM, CCSP, and IPCC reports indicate not only the significance of extreme events, but also the potential increasing significance of many of the weather thresholds and associated impacts which are critical for decision-making in surface transportation. Accordingly, there is a real and urgent need to understand what climate products and services are available now to address the weather thresholds within the surface transportation arena. It is equally urgent to understand what new climate products and services are needed to address these weather thresholds, and articulate what can be done to fill the gap between the

  16. Analysis of long-term changes in extreme climatic indices: a case study of the Mediterranean climate, Marmara Region, Turkey

    Science.gov (United States)

    Abbasnia, Mohsen; Toros, Hüseyin

    2018-05-01

    This study aimed to analyze extreme temperature and precipitation indices at seven stations in the Marmara Region of Turkey for the period 1961-2016. The trend of temperature indices showed that the warm-spell duration and the numbers of summer days, tropical nights, warm nights, and warm days have increased, while the cold-spell duration and number of ice days, cool nights, and cool days have decreased across the Marmara Region. Additionally, the diurnal temperature range has slightly increased at most of the stations. A majority of stations have shown significant warming trends for warm days and warm nights throughout the study area, whereas warm extremes and night-time based temperature indices have shown stronger trends compared to cold extremes and day-time indices. The analysis of precipitation indices has mostly shown increasing trends in consecutive dry days and increasing trends in annual rainfall, rainfall intensity for inland and urban stations, especially for stations in Sariyer and Edirne, which are affected by a fast rate of urbanization. Overall, a large proportion of study stations have experienced an increase in annual precipitation and heavy precipitation events, although there was a low percentage of results that was significant. Therefore, it is expected that the rainfall events will tend to become shorter and more intense, the occurrence of temperature extremes will become more pronounced in favor of hotter events, and there will be an increase in the atmospheric moisture content over the Marmara Region. This provides regional evidence for the importance of ongoing research on climate change.

  17. A climate-based multivariate extreme emulator of met-ocean-hydrological events for coastal flooding

    Science.gov (United States)

    Camus, Paula; Rueda, Ana; Mendez, Fernando J.; Tomas, Antonio; Del Jesus, Manuel; Losada, Iñigo J.

    2015-04-01

    Atmosphere-ocean general circulation models (AOGCMs) are useful to analyze large-scale climate variability (long-term historical periods, future climate projections). However, applications such as coastal flood modeling require climate information at finer scale. Besides, flooding events depend on multiple climate conditions: waves, surge levels from the open-ocean and river discharge caused by precipitation. Therefore, a multivariate statistical downscaling approach is adopted to reproduce relationships between variables and due to its low computational cost. The proposed method can be considered as a hybrid approach which combines a probabilistic weather type downscaling model with a stochastic weather generator component. Predictand distributions are reproduced modeling the relationship with AOGCM predictors based on a physical division in weather types (Camus et al., 2012). The multivariate dependence structure of the predictand (extreme events) is introduced linking the independent marginal distributions of the variables by a probabilistic copula regression (Ben Ayala et al., 2014). This hybrid approach is applied for the downscaling of AOGCM data to daily precipitation and maximum significant wave height and storm-surge in different locations along the Spanish coast. Reanalysis data is used to assess the proposed method. A commonly predictor for the three variables involved is classified using a regression-guided clustering algorithm. The most appropriate statistical model (general extreme value distribution, pareto distribution) for daily conditions is fitted. Stochastic simulation of the present climate is performed obtaining the set of hydraulic boundary conditions needed for high resolution coastal flood modeling. References: Camus, P., Menéndez, M., Méndez, F.J., Izaguirre, C., Espejo, A., Cánovas, V., Pérez, J., Rueda, A., Losada, I.J., Medina, R. (2014b). A weather-type statistical downscaling framework for ocean wave climate. Journal of

  18. Using Copernicus earth observation services to monitor climate change impacts and adaptations

    Science.gov (United States)

    Becker, Daniel; Zebisch, Marc; Sonnenschein, Ruth; Schönthaler, Konstanze; von Andrian-Werburg, Stefan

    2016-04-01

    In the last years, earth observation made a big leap towards an operational monitoring of the state of environment. Remote sensing provides for instance information on the dynamics, trends and anomalies of snow and glaciers, vegetation, soil moisture or water temperature. In particular, the European Copernicus initiative offers new opportunities through new satellites with a higher temporal and spatial resolution, operational services for environmental monitoring and an open data access policy. With the Copernicus climate change service and the ESA climate change initiative, specific earth observation programs are in place to address the impacts of climate change. However, such products and services are until now rarely picked up in the field of policy or decision making oriented climate impact or climate risk assessments. In this talk, we will present results of a study, which focus on the question, if and how remote sensing approaches could be integrated into operational monitoring activities of climate impacts and response measures on a national and subnational scale. We assessed all existing and planned Copernicus services regarding their relevance for climate impact monitoring by comparing them against the indication fields from an indicator system for climate impact and response monitoring in Germany, which has lately been developed in the framework of the German national adaptation strategy. For several climate impact or response indicators, an immediate integration of remote sensing data could be identified and been recommended. For these cases, we will show practical examples on the benefit of remote sensing data. For other indication fields, promising approaches were found, which need further development. We argue that remote sensing is a very valuable complement to the existing indicator schemes by contributing with spatial explicit, timely information but not always easy to integrate with classical approaches, which are oriented towards consistent long

  19. Historical Trends in Mean and Extreme Runoff and Streamflow Based on Observations and Climate Models

    Directory of Open Access Journals (Sweden)

    Behzad Asadieh

    2016-05-01

    Full Text Available To understand changes in global mean and extreme streamflow volumes over recent decades, we statistically analyzed runoff and streamflow simulated by the WBM-plus hydrological model using either observational-based meteorological inputs from WATCH Forcing Data (WFD, or bias-corrected inputs from five global climate models (GCMs provided by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP. Results show that the bias-corrected GCM inputs yield very good agreement with the observation-based inputs in average magnitude of runoff and streamflow. On global average, the observation-based simulated mean runoff and streamflow both decreased about 1.3% from 1971 to 2001. However, GCM-based simulations yield increasing trends over that period, with an inter-model global average of 1% for mean runoff and 0.9% for mean streamflow. In the GCM-based simulations, relative changes in extreme runoff and extreme streamflow (annual maximum daily values and annual-maximum seven-day streamflow are slightly greater than those of mean runoff and streamflow, in terms of global and continental averages. Observation-based simulations show increasing trend in mean runoff and streamflow for about one-half of the land areas and decreasing trend for the other half. However, mean and extreme runoff and streamflow based on the GCMs show increasing trend for approximately two-thirds of the global land area and decreasing trend for the other one-third. Further work is needed to understand why GCM simulations appear to indicate trends in streamflow that are more positive than those suggested by climate observations, even where, as in ISI-MIP, bias correction has been applied so that their streamflow climatology is realistic.

  20. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes.

    Directory of Open Access Journals (Sweden)

    A F Lutz

    Full Text Available The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin's water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members.

  1. Tambora and the mackerel year: phenology and fisheries during an extreme climate event

    Science.gov (United States)

    Alexander, Karen E.; Leavenworth, William B.; Hall, Carolyn; Mattocks, Steven; Bittner, Steven M.; Klein, Emily; Staudinger, Michelle D.; Bryan, Alexander; Rosset, Julianne; Willis, Theodore V.; Carr, Benjamin H.; Jordaan, Adrian

    2017-01-01

    Global warming has increased the frequency of extreme climate events, yet responses of biological and human communities are poorly understood, particularly for aquatic ecosystems and fisheries. Retrospective analysis of known outcomes may provide insights into the nature of adaptations and trajectory of subsequent conditions. We consider the 1815 eruption of the Indonesian volcano Tambora and its impact on Gulf of Maine (GoM) coastal and riparian fisheries in 1816. Applying complex adaptive systems theory with historical methods, we analyzed fish export data and contemporary climate records to disclose human and piscine responses to Tambora’s extreme weather at different spatial and temporal scales while also considering sociopolitical influences. Results identified a tipping point in GoM fisheries induced by concatenating social and biological responses to extreme weather. Abnormal daily temperatures selectively affected targeted fish species—alewives, shad, herring, and mackerel—according to their migration and spawning phenologies and temperature tolerances. First to arrive, alewives suffered the worst. Crop failure and incipient famine intensified fishing pressure, especially in heavily settled regions where dams already compromised watersheds. Insufficient alewife runs led fishers to target mackerel, the next species appearing in abundance along the coast; thus, 1816 became the “mackerel year.” Critically, the shift from riparian to marine fisheries persisted and expanded after temperatures moderated and alewives recovered. We conclude that contingent human adaptations to extraordinary weather permanently altered this complex system. Understanding how adaptive responses to extreme events can trigger unintended consequences may advance long-term planning for resilience in an uncertain future.

  2. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes

    Science.gov (United States)

    Immerzeel, W. W.; Kraaijenbrink, P. D. A.; Shrestha, A. B.; Bierkens, M. F. P.

    2016-01-01

    The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin’s water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members. PMID:27828994

  3. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes.

    Science.gov (United States)

    Lutz, A F; Immerzeel, W W; Kraaijenbrink, P D A; Shrestha, A B; Bierkens, M F P

    2016-01-01

    The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin's water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members.

  4. Extremes temperatures and enthalpy in Finland and Sweden in a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Venaelaeinen, A.; Saku, S.; Jylhae, K. (Finnish Meteorological Institute (Finland)); Nikulin, G.; Kjellstroem, E.; Baerring, L. (Swedish Meteorological Institute (Sweden))

    2009-06-15

    Though risks caused by harsh weather conditions are taken into account in the planning of nuclear power plants, some exceptional weather events or combination of different events may prevent normal power operation and simultaneously endanger safe shutdown of the plant. Extreme weather events could influence, for example, the external power grid connection, emergency diesel generators (blockage of air intakes), ventilation and cooling of electric and electronics equipment rooms and the seawater intake. Due to the influence of an intensified greenhouse effect the climate is changing rapidly during the coming decades and this change is expected to have an influence also on the occurrence of extreme weather events. In this report we have examined extreme temperatures. Enthalpy is a parameter that combines air temperature and air humidity and it is used in the design of air conditioning systems. Therefore, we have included also return levels of enthalpy in our analysis. The influence of climate change on extreme temperatures is analysed based on regional climate model simulations. The reoccurrence times of high temperatures combined with high air humidity was analysed based on measurements made at five Finnish and three Swedish meteorological stations. Based on the observational records we find the 10 year return level of daily maximum temperature to be around 32 deg. C and the 100 year return level around 35 deg. C. If we look the return levels of warm and humid conditions then for example in Helsinki the 10 year return level of one week mean temperature in case mean air humidity is above 80% is 20.1 deg. C. The 10 year return level of daily maximum enthalpy is around 60 kJ/kg and the 100 year return level almost 70 kJ/kg. According to the climate model simulations the largest increase of 50-year return level of daily maximum temperature is found in southern Sweden and south-western Finland. By the end of this century the increase can be 3-5 deg. C. The largest change

  5. Decision strategies for handling the uncertainty of future extreme rainfall under the influence of climate change

    DEFF Research Database (Denmark)

    Gregersen, Ida Bülow; Arnbjerg-Nielsen, Karsten

    2012-01-01

    Several extraordinary rainfall events have occurred in Denmark within the last few years. For each event, problems in urban areas occurred as the capacity of the existing drainage systems were exceeded. Adaptation to climate change is necessary but also very challenging as urban drainage systems...... are characterized by long technical lifetimes and high, unrecoverable construction costs. One of the most important barriers for the initiation and implementation of the adaptation strategies is therefore the uncertainty when predicting the magnitude of the extreme rainfall in the future. This challenge is explored...

  6. Extremes temperatures and enthalpy in Finland and Sweden in a changing climate

    International Nuclear Information System (INIS)

    Venaelaeinen, A.; Saku, S.; Jylhae, K.; Nikulin, G.; Kjellstroem, E.; Baerring, L.

    2009-06-01

    Though risks caused by harsh weather conditions are taken into account in the planning of nuclear power plants, some exceptional weather events or combination of different events may prevent normal power operation and simultaneously endanger safe shutdown of the plant. Extreme weather events could influence, for example, the external power grid connection, emergency diesel generators (blockage of air intakes), ventilation and cooling of electric and electronics equipment rooms and the seawater intake. Due to the influence of an intensified greenhouse effect the climate is changing rapidly during the coming decades and this change is expected to have an influence also on the occurrence of extreme weather events. In this report we have examined extreme temperatures. Enthalpy is a parameter that combines air temperature and air humidity and it is used in the design of air conditioning systems. Therefore, we have included also return levels of enthalpy in our analysis. The influence of climate change on extreme temperatures is analysed based on regional climate model simulations. The reoccurrence times of high temperatures combined with high air humidity was analysed based on measurements made at five Finnish and three Swedish meteorological stations. Based on the observational records we find the 10 year return level of daily maximum temperature to be around 32 deg. C and the 100 year return level around 35 deg. C. If we look the return levels of warm and humid conditions then for example in Helsinki the 10 year return level of one week mean temperature in case mean air humidity is above 80% is 20.1 deg. C. The 10 year return level of daily maximum enthalpy is around 60 kJ/kg and the 100 year return level almost 70 kJ/kg. According to the climate model simulations the largest increase of 50-year return level of daily maximum temperature is found in southern Sweden and south-western Finland. By the end of this century the increase can be 3-5 deg. C. The largest change

  7. The computational future for climate and Earth system models: on the path to petaflop and beyond.

    Science.gov (United States)

    Washington, Warren M; Buja, Lawrence; Craig, Anthony

    2009-03-13

    The development of the climate and Earth system models has had a long history, starting with the building of individual atmospheric, ocean, sea ice, land vegetation, biogeochemical, glacial and ecological model components. The early researchers were much aware of the long-term goal of building the Earth system models that would go beyond what is usually included in the climate models by adding interactive biogeochemical interactions. In the early days, the progress was limited by computer capability, as well as by our knowledge of the physical and chemical processes. Over the last few decades, there has been much improved knowledge, better observations for validation and more powerful supercomputer systems that are increasingly meeting the new challenges of comprehensive models. Some of the climate model history will be presented, along with some of the successes and difficulties encountered with present-day supercomputer systems.

  8. Do changes in the frequency, magnitude and timing of extreme climatic events threaten the population viability of coastal birds?

    NARCIS (Netherlands)

    van de Pol, Martijn; Ens, Bruno J.; Heg, Dik; Brouwer, Lyanne; Krol, Johan; Maier, Martin; Exo, Klaus-Michael; Oosterbeek, Kees; Lok, Tamar; Eising, Corine M.; Koffijberg, Kees

    P>1. Climate change encompasses changes in both the means and the extremes of climatic variables, but the population consequences of the latter are intrinsically difficult to study. 2. We investigated whether the frequency, magnitude and timing of rare but catastrophic flooding events have changed

  9. Future changes in extreme precipitation in the Rhine basin based on global and regional climate model simulations

    NARCIS (Netherlands)

    Pelt, van S.C.; Beersma, J.J.; Buishand, T.A.; Hurk, van den B.J.J.M.; Kabat, P.

    2012-01-01

    Probability estimates of the future change of extreme precipitation events are usually based on a limited number of available global climate model (GCM) or regional climate model (RCM) simulations. Since floods are related to heavy precipitation events, this restricts the assessment of flood risks.

  10. NASA and the National Climate Assessment: Promoting awareness of NASA Earth science

    Science.gov (United States)

    Leidner, A. K.

    2014-12-01

    NASA Earth science observations, models, analyses, and applications made significant contributions to numerous aspects of the Third National Climate Assessment (NCA) report and are contributing to sustained climate assessment activities. The agency's goal in participating in the NCA was to ensure that NASA scientific resources were made available to understand the current state of climate change science and climate change impacts. By working with federal agency partners and stakeholder communities to develop and write the report, the agency was able to raise awareness of NASA climate science with audiences beyond the traditional NASA community. To support assessment activities within the NASA community, the agency sponsored two competitive programs that not only funded research and tools for current and future assessments, but also increased capacity within our community to conduct assessment-relevant science and to participate in writing assessments. Such activities fostered the ability of graduate students, post-docs, and senior researchers to learn about the science needs of climate assessors and end-users, which can guide future research activities. NASA also contributed to developing the Global Change Information System, which deploys information from the NCA to scientists, decision makers, and the public, and thus contributes to climate literacy. Finally, NASA satellite imagery and animations used in the Third NCA helped the pubic and decision makers visualize climate changes and were frequently used in social media to communicate report key findings. These resources are also key for developing educational materials that help teachers and students explore regional climate change impacts and opportunities for responses.

  11. Strategic Planning for Land Use under Extreme Climate Changes: A Case Study in Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Huang

    2016-01-01

    Full Text Available Extreme weather caused by global climate change affects slope-land in Taiwan, causing soil loss, floods, and sediment hazards. Although Taiwan is a small island, the population density is ranked second highest worldwide. With three-fourths of the island area being slope-land, soil and water conservation (SWC is crucial. Therefore, because of the impact of climate and social change, the means of maintaining sustainable development of slope-land and the safety of the living environment in Taiwan is a developing and crucial issue. This study applied four foresight analysis tools that covered both qualitative and quantitative aspects, including international trend analysis, a focus group, the Delphi method, and a strategy roadmap. By combining the four analysis tools, we developed corresponding strategies to address climate change for use as references for policy-makers. The findings of this study can contribute to consensus-forming among multiple stakeholders on the sustainable development of soil and water resources and to devising foresight strategies for SWC in short-term, middle-term, and long-term bases. Ultimately, the goal of “considering climate and socioeconomic change, watershed resources being managed on a multiple-use basis to avoid disasters and to sustain SWC” can be realized by the year 2025.

  12. Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar.

    Science.gov (United States)

    Harvey, Celia A; Rakotobe, Zo Lalaina; Rao, Nalini S; Dave, Radhika; Razafimahatratra, Hery; Rabarijohn, Rivo Hasinandrianina; Rajaofara, Haingo; Mackinnon, James L

    2014-04-05

    Across the tropics, smallholder farmers already face numerous risks to agricultural production. Climate change is expected to disproportionately affect smallholder farmers and make their livelihoods even more precarious; however, there is limited information on their overall vulnerability and adaptation needs. We conducted surveys of 600 households in Madagascar to characterize the vulnerability of smallholder farmers, identify how farmers cope with risks and explore what strategies are needed to help them adapt to climate change. Malagasy farmers are particularly vulnerable to any shocks to their agricultural system owing to their high dependence on agriculture for their livelihoods, chronic food insecurity, physical isolation and lack of access to formal safety nets. Farmers are frequently exposed to pest and disease outbreaks and extreme weather events (particularly cyclones), which cause significant crop and income losses and exacerbate food insecurity. Although farmers use a variety of risk-coping strategies, these are insufficient to prevent them from remaining food insecure. Few farmers have adjusted their farming strategies in response to climate change, owing to limited resources and capacity. Urgent technical, financial and institutional support is needed to improve the agricultural production and food security of Malagasy farmers and make their livelihoods resilient to climate change.

  13. Three Connected Climate Education Interactives: Carbon Cycle, Earth System Energy Flows, and Climate Change Impacts/Adaptations

    Science.gov (United States)

    Sussman, A.

    2015-12-01

    The Pacific Islands Climate Education Partnership (PCEP) serves the U.S. Affiliated Pacific Island (USAPI) Region. The international entities served by PCEP are the state of Hawai'i (USA); three Freely Associated States (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau), and three Territories (Guam, Commonwealth of Northern Mariana Islands, and American Samoa). Funded by NSF, the PCEP aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and focus on adaptation strategies that can increase resiliency with respect to climate change impacts. Unfortunately the vast majority of the science texts used in schools come from the US mainland and feature contexts that do not relate to the lives of Pacific island students. The curricular materials also tend to be older and to have very weak climate science content, especially with respect to tropical islands and climate change. In collaboration with public broadcast station WGBH, PCEP has developed three climate education interactives that sequentially provide an introduction to key climate change education concepts. The first in the series focuses on the global carbon cycle and connects increased atmospheric CO2 with rising global temperatures. The second analyzes Earth system energy flows to explain the key role of the increased greenhouse effect. The third focuses on four climate change impacts (higher temperatures, rising sea level, changes in precipitation, and ocean acidification), and adaptation strategies to increase resiliency of local ecosystems and human systems. While the interactives have a Pacific island visual and text perspective, they are broadly applicable for other education audiences. Learners can use the interactives to engage with the basic science concepts, and then apply the climate change impacts to their own contexts.

  14. 3rd Annual Earth System Grid Federation and 3rd Annual Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Face-to-Face Meeting Report December 2013

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-02-21

    The climate and weather data science community gathered December 3–5, 2013, at Lawrence Livermore National Laboratory, in Livermore, California, for the third annual Earth System Grid Federation (ESGF) and Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Meeting, which was hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UV-CDAT are global collaborations designed to develop a new generation of open-source software infrastructure that provides distributed access and analysis to observed and simulated data from the climate and weather communities. The tools and infrastructure developed under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change, while the F2F meetings help to build a stronger climate and weather data science community and stronger federated software infrastructure. The 2013 F2F meeting determined requirements for existing and impending national and international community projects; enhancements needed for data distribution, analysis, and visualization infrastructure; and standards and resources needed for better collaborations.

  15. Are extreme hydro-meteorological events a prerequisite for extreme water quality impacts? Exploring climate impacts on inland and coastal waters

    Science.gov (United States)

    Michalak, A. M.; Balaji, V.; Del Giudice, D.; Sinha, E.; Zhou, Y.; Ho, J. C.

    2017-12-01

    Questions surrounding water sustainability, climate change, and extreme events are often framed around water quantity - whether too much or too little. The massive impacts of extreme water quality impairments are equally compelling, however. Recent years have provided a host of compelling examples, with unprecedented harmful algal blooms developing along the West coast, in Utah Lake, in Lake Erie, and off the Florida coast, and huge hypoxic dead zones continuing to form in regions such as Lake Erie, the Chesapeake Bay, and the Gulf of Mexico. Linkages between climate change, extreme events, and water quality impacts are not well understood, however. Several factors explain this lack of understanding, including the relative complexity of underlying processes, the spatial and temporal scale mismatch between hydrologists and climatologists, and observational uncertainty leading to ambiguities in the historical record. Here, we draw on a number of recent studies that aim to quantitatively link meteorological variability and water quality impacts to test the hypothesis that extreme water quality impairments are the result of extreme hydro-meteorological events. We find that extreme hydro-meteorological events are neither always a necessary nor a sufficient condition for the occurrence of extreme water quality impacts. Rather, extreme water quality impairments often occur in situations where multiple contributing factors compound, which complicates both attribution of historical events and the ability to predict the future incidence of such events. Given the critical societal importance of water quality projections, a concerted program of uncertainty reduction encompassing observational and modeling components will be needed to examine situations where extreme weather plays an important, but not solitary, role in the chain of cause and effect.

  16. Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations in the EC-Earth global climate model

    Science.gov (United States)

    Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Christensen, Hannah M.; Juricke, Stephan; Subramanian, Aneesh; Watson, Peter A. G.; Weisheimer, Antje; Palmer, Tim N.

    2017-03-01

    The Climate SPHINX (Stochastic Physics HIgh resolutioN eXperiments) project is a comprehensive set of ensemble simulations aimed at evaluating the sensitivity of present and future climate to model resolution and stochastic parameterisation. The EC-Earth Earth system model is used to explore the impact of stochastic physics in a large ensemble of 30-year climate integrations at five different atmospheric horizontal resolutions (from 125 up to 16 km). The project includes more than 120 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), together with coupled transient runs (1850-2100). A total of 20.4 million core hours have been used, made available from a single year grant from PRACE (the Partnership for Advanced Computing in Europe), and close to 1.5 PB of output data have been produced on SuperMUC IBM Petascale System at the Leibniz Supercomputing Centre (LRZ) in Garching, Germany. About 140 TB of post-processed data are stored on the CINECA supercomputing centre archives and are freely accessible to the community thanks to an EUDAT data pilot project. This paper presents the technical and scientific set-up of the experiments, including the details on the forcing used for the simulations performed, defining the SPHINX v1.0 protocol. In addition, an overview of preliminary results is given. An improvement in the simulation of Euro-Atlantic atmospheric blocking following resolution increase is observed. It is also shown that including stochastic parameterisation in the low-resolution runs helps to improve some aspects of the tropical climate - specifically the Madden-Julian Oscillation and the tropical rainfall variability. These findings show the importance of representing the impact of small-scale processes on the large-scale climate variability either explicitly (with high-resolution simulations) or stochastically (in low-resolution simulations).

  17. Late Lutetian Thermal Maximum—Crossing a Thermal Threshold in Earth's Climate System?

    Science.gov (United States)

    Westerhold, T.; Röhl, U.; Donner, B.; Frederichs, T.; Kordesch, W. E. C.; Bohaty, S. M.; Hodell, D. A.; Laskar, J.; Zeebe, R. E.

    2018-01-01

    Recognizing and deciphering transient global warming events triggered by massive release of carbon into Earth's ocean-atmosphere climate system in the past are important for understanding climate under elevated pCO2 conditions. Here we present new high-resolution geochemical records including benthic foraminiferal stable isotope data with clear evidence of a short-lived (30 kyr) warming event at 41.52 Ma. The event occurs in the late Lutetian within magnetochron C19r and is characterized by a ˜2°C warming of the deep ocean in the southern South Atlantic. The magnitudes of the carbon and oxygen isotope excursions of the Late Lutetian Thermal Maximum are comparable to the H2 event (53.6 Ma) suggesting a similar response of the climate system to carbon cycle perturbations even in an already relatively cooler climate several million years after the Early Eocene Climate Optimum. Coincidence of the event with exceptionally high insolation values in the Northern Hemisphere at 41.52 Ma might indicate that Earth's climate system has a thermal threshold. When this tipping point is crossed, rapid positive feedback mechanisms potentially trigger transient global warming. The orbital configuration in this case could have caused prolonged warm and dry season leading to a massive release of terrestrial carbon into the ocean-atmosphere system initiating environmental change.

  18. Ocean heat content and Earth's radiation imbalance. II. Relation to climate shifts

    International Nuclear Information System (INIS)

    Douglass, D.H.; Knox, R.S.

    2012-01-01

    In an earlier study of ocean heat content (OHC) we showed that Earth's empirically implied radiation imbalance has undergone abrupt changes. Other studies have identified additional such climate shifts since 1950. The shifts can be correlated with features in recently updated OHC data. The implied radiation imbalance may possibly alternate in sign at dates close to the climate shifts. The most recent shifts occurred during 2001–2002 and 2008–2009. The implied radiation imbalance between these dates, in the direction of ocean heat loss, was −0.03±0.06 W/m 2 , with a possible systematic error of [−0.00,+0.09] W/m 2 . -- Highlights: ► Ocean heat content (OHC) slope discontinuities match similar Earth climate features. ► OHC slopes between climate shifts give most of the implied radiation balance (IRI). ► IRI often alternates in sign at dates close to the climate shifts. ► IRI between climate shifts of 2001–2002 and 2008–2009 was −0.03±0.06 W/m 2 . ► Geothermal flux is relevant to analyses of radiation imbalance.

  19. Australian climate extremes at 1.5 °C and 2 °C of global warming

    Science.gov (United States)

    King, Andrew D.; Karoly, David J.; Henley, Benjamin J.

    2017-06-01

    To avoid more severe impacts from climate change, there is international agreement to strive to limit warming to below 1.5 °C. However, there is a lack of literature assessing climate change at 1.5 °C and the potential benefits in terms of reduced frequency of extreme events. Here, we demonstrate that existing model simulations provide a basis for rapid and rigorous analysis of the effects of different levels of warming on large-scale climate extremes, using Australia as a case study. We show that limiting warming to 1.5 °C, relative to 2 °C, would perceptibly reduce the frequency of extreme heat events in Australia. The Australian continent experiences a variety of high-impact climate extremes that result in loss of life, and economic and environmental damage. Events similar to the record-hot summer of 2012-2013 and warm seas associated with bleaching of the Great Barrier Reef in 2016 would be substantially less likely, by about 25% in both cases, if warming is kept to lower levels. The benefits of limiting warming on hydrometeorological extremes are less clear. This study provides a framework for analysing climate extremes at 1.5 °C global warming.

  20. THE VULNERABILITY OF THE BAIA MARE URBAN SYSTEM (ROMANIA TO EXTREME CLIMATE PHENOMENA DURING THE WARM SEMESTER OF THE YEAR

    Directory of Open Access Journals (Sweden)

    DRAGOTĂ CARMEN

    2013-03-01

    Full Text Available The geographical position of the Baia Mare Urban System (intra-hilly depression favours the occurrence of a wide range of extreme climate phenomena which, coupled with the industrial profile of the city (non-ferrous mining and metallurgical industry triggering typical emissions (CO2, SOX, particulate matters and Pb, might pose a significant threat to human health. The article is aiming to assess the occurrence, frequency and amplitude of these extreme climate phenomena based on monthly and daily extreme climatic values from Baia Mare weather station in order to identify the areas more exposed. A GIS-based qualitative-heuristic method was used, each extreme climatic hazard being evaluated on a 1 to 3 scale according to its significance/impact in the study area and assigned with a weight (w and a rank (r, resulting the climate hazard map for the warm semester of the year. The authors further relate the areas exposed to the selected extreme climatic events to socio-economic aspects: demographic and economic in order to delineate the spatial distribution of the environmental vulnerability in the Baia Mare Urban System.

  1. Snowball Earth climate dynamics and Cryogenian geology-geobiology.

    Science.gov (United States)

    Hoffman, Paul F; Abbot, Dorian S; Ashkenazy, Yosef; Benn, Douglas I; Brocks, Jochen J; Cohen, Phoebe A; Cox, Grant M; Creveling, Jessica R; Donnadieu, Yannick; Erwin, Douglas H; Fairchild, Ian J; Ferreira, David; Goodman, Jason C; Halverson, Galen P; Jansen, Malte F; Le Hir, Guillaume; Love, Gordon D; Macdonald, Francis A; Maloof, Adam C; Partin, Camille A; Ramstein, Gilles; Rose, Brian E J; Rose, Catherine V; Sadler, Peter M; Tziperman, Eli; Voigt, Aiko; Warren, Stephen G

    2017-11-01

    Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO 2 was 10 2 PAL (present atmospheric level) at the younger termination, consistent with a global ice cover. Sturtian glaciation followed breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freezing and melting. Tropical ice sheets flow faster as CO 2 rises but lose mass and become sensitive to orbital changes. Equatorial dust accumulation engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and certain eukaryotes. Meltwater flushing through cracks enables organic burial and submarine deposition of airborne volcanic ash. The subglacial ocean is turbulent and well mixed, in response to geothermal heating and heat loss through the ice cover, increasing with latitude. Terminal carbonate deposits, unique to Cryogenian glaciations, are products of intense weathering and ocean stratification. Whole-ocean warming and collapsing peripheral bulges allow marine coastal flooding to continue long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.

  2. Impact of Climate Change on Hydrologic Extremes in the Upper Basin of the Yellow River Basin of China

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2016-01-01

    Full Text Available To reveal the revolution law of hydrologic extremes in the next 50 years and analyze the impact of climate change on hydrologic extremes, the following main works were carried on: firstly, the long duration (15 d, 30 d, and 60 d rainfall extremes according to observed time-series and forecast time-series by dynamical climate model product (BCC-CSM-1.1 were deduced, respectively, on the basis that the quantitative estimation of the impact of climate change on rainfall extremes was conducted; secondly, the SWAT model was used to deduce design flood with the input of design rainfall for the next 50 years. On this basis, quantitative estimation of the impact of climate change on long duration flood volume extremes was conducted. It indicates that (1 the value of long duration rainfall extremes for given probabilities (1%, 2%, 5%, and 10% of the Tangnaihai basin will rise with slight increasing rate from 1% to 6% in the next 50 years and (2 long duration flood volume extremes of given probabilities of the Tangnaihai basin will rise with slight increasing rate from 1% to 6% in the next 50 years. The conclusions may provide technical supports for basin level planning of flood control and hydropower production.

  3. Trends in Middle East climate extreme indices from 1950 to 2003

    Science.gov (United States)

    Zhang, Xuebin; Aguilar, Enric; Sensoy, Serhat; Melkonyan, Hamlet; Tagiyeva, Umayra; Ahmed, Nader; Kutaladze, Nato; Rahimzadeh, Fatemeh; Taghipour, Afsaneh; Hantosh, T. H.; Albert, Pinhas; Semawi, Mohammed; Karam Ali, Mohammad; Said Al-Shabibi, Mansoor Halal; Al-Oulan, Zaid; Zatari, Taha; Al Dean Khelet, Imad; Hamoud, Saleh; Sagir, Ramazan; Demircan, Mesut; Eken, Mehmet; Adiguzel, Mustafa; Alexander, Lisa; Peterson, Thomas C.; Wallis, Trevor

    2005-11-01

    A climate change workshop for the Middle East brought together scientists and data for the region to produce the first area-wide analysis of climate extremes for the region. This paper reports trends in extreme precipitation and temperature indices that were computed during the workshop and additional indices data that became available after the workshop. Trends in these indices were examined for 1950-2003 at 52 stations covering 15 countries, including Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, and Turkey. Results indicate that there have been statistically significant, spatially coherent trends in temperature indices that are related to temperature increases in the region. Significant, increasing trends have been found in the annual maximum of daily maximum and minimum temperature, the annual minimum of daily maximum and minimum temperature, the number of summer nights, and the number of days where daily temperature has exceeded its 90th percentile. Significant negative trends have been found in the number of days when daily temperature is below its 10th percentile and daily temperature range. Trends in precipitation indices, including the number of days with precipitation, the average precipitation intensity, and maximum daily precipitation events, are weak in general and do not show spatial coherence. The workshop attendees have generously made the indices data available for the international research community.

  4. Extinction of an introduced warm-climate alien species, Xenopus laevis, by extreme weather events.

    Science.gov (United States)

    Tinsley, Richard C; Stott, Lucy C; Viney, Mark E; Mable, Barbara K; Tinsley, Matthew C

    Invasive, non-native species represent a major threat to biodiversity worldwide. The African amphibian Xenopus laevis is widely regarded as an invasive species and a threat to local faunas. Populations originating at the Western Cape, South Africa, have been introduced on four continents, mostly in areas with a similar Mediterranean climate. Some introduced populations are also established in cooler environments where persistence for many decades suggests a capacity for long-term adaptation. In these cases, recent climate warming might enhance invasion ability, favouring range expansion, population growth and negative effects on native faunas. In the cool temperate UK, populations have been established for about 50 years in Wales and for an unknown period, probably >20 years, in England (Lincolnshire). Our field studies over 30 and 10 years, respectively, show that in favourable conditions there may be good recruitment, fast individual growth rates and large body size; maximum longevity exceeds 23 years. Nevertheless, areas of distribution remained limited, with numbers extinct. The winters of 2009-2010 and 2010-2011 experienced extreme cold and drought (December 2010 was the coldest in 120 years and the third driest in 100 years). The extinction of X. laevis in these areas indicates that even relatively long-established alien species remain vulnerable to rare extreme weather conditions.

  5. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events.

    Science.gov (United States)

    Mann, Michael E; Rahmstorf, Stefan; Kornhuber, Kai; Steinman, Byron A; Miller, Sonya K; Coumou, Dim

    2017-03-27

    Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves within a particular wavelength range (zonal wavenumber 6-8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the zonal mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art ("CMIP5") historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability.

  6. Climate-driven ground-level ozone extreme in the fall over the Southeast United States.

    Science.gov (United States)

    Zhang, Yuzhong; Wang, Yuhang

    2016-09-06

    Ground-level ozone is adverse to human and vegetation health. High ground-level ozone concentrations usually occur over the United States in the summer, often referred to as the ozone season. However, observed monthly mean ozone concentrations in the southeastern United States were higher in October than July in 2010. The October ozone average in 2010 reached that of July in the past three decades (1980-2010). Our analysis shows that this extreme October ozone in 2010 over the Southeast is due in part to a dry and warm weather condition, which enhances photochemical production, air stagnation, and fire emissions. Observational evidence and modeling analysis also indicate that another significant contributor is enhanced emissions of biogenic isoprene, a major ozone precursor, from water-stressed plants under a dry and warm condition. The latter finding is corroborated by recent laboratory and field studies. This climate-induced biogenic control also explains the puzzling fact that the two extremes of high October ozone both occurred in the 2000s when anthropogenic emissions were lower than the 1980s and 1990s, in contrast to the observed decreasing trend of July ozone in the region. The occurrences of a drying and warming fall, projected by climate models, will likely lead to more active photochemistry, enhanced biogenic isoprene and fire emissions, an extension of the ozone season from summer to fall, and an increase of secondary organic aerosols in the Southeast, posing challenges to regional air quality management.

  7. Detecting and taking into account possible impacts of climate change on hydrological extremes

    International Nuclear Information System (INIS)

    Renard, B.

    2008-01-01

    Climate change is widely considered as a reality by scientists. Nevertheless, impacts on hydrological extremes are more difficult to observe and to forecast. The aim of this thesis is to answer the following questions: How to detect changes in hydro-climatic series? What are the observed changes for extreme discharges in France? How to take into account possible changes in frequency analysis? These objectives refer to both local and regional scales. This paper describes the developments related to the third question. In a first step, the concept of return period is revisited in a non-stationary context. Frequency analysis methods are then updated in order to account for evolutions in time. This is achieved by modelling trends affecting the distribution parameters. Parameter estimation uses the Bayesian formalism, which is a convenient tool for quantifying the uncertainty related to the stationarity hypothesis. This approach can be generalized at the regional scale, by means of non-stationary regional models. Such models are more general than the model underlying the index flood method. However, results of such a regional analysis are affected by the spatial dependence existing between studied sites. Impacts of this dependence on quantile estimates are highlighted, and a first approach is proposed in order to explicitly model spatial dependence. (author)

  8. Climate change: The necessary, the possible and the desirable Earth League climate statement on the implications for climate policy from the 5th IPCC Assessment

    Science.gov (United States)

    Rockström, Johan; Brasseur, Guy; Hoskins, Brian; Lucht, Wolfgang; Schellnhuber, John; Kabat, Pavel; Nakicenovic, Nebojsa; Gong, Peng; Schlosser, Peter; Máñez Costa, Maria; Humble, April; Eyre, Nick; Gleick, Peter; James, Rachel; Lucena, Andre; Masera, Omar; Moench, Marcus; Schaeffer, Roberto; Seitzinger, Sybil; van der Leeuw, Sander; Ward, Bob; Stern, Nicholas; Hurrell, James; Srivastava, Leena; Morgan, Jennifer; Nobre, Carlos; Sokona, Youba; Cremades, Roger; Roth, Ellinor; Liverman, Diana; Arnott, James

    2014-12-01

    The development of human civilisations has occurred at a time of stable climate. This climate stability is now threatened by human activity. The rising global climate risk occurs at a decisive moment for world development. World nations are currently discussing a global development agenda consequent to the Millennium Development Goals (MDGs), which ends in 2015. It is increasingly possible to envisage a world where absolute poverty is largely eradicated within one generation and where ambitious goals on universal access and equal opportunities for dignified lives are adopted. These grand aspirations for a world population approaching or even exceeding nine billion in 2050 is threatened by substantial global environmental risks and by rising inequality. Research shows that development gains, in both rich and poor nations, can be undermined by social, economic and ecological problems caused by human-induced global environmental change. Climate risks, and associated changes in marine and terrestrial ecosystems that regulate the resilience of the climate system, are at the forefront of these global risks. We, as citizens with a strong engagement in Earth system science and socio-ecological dynamics, share the vision of a more equitable and prosperous future for the world, yet we also see threats to this future from shifts in climate and environmental processes. Without collaborative action now, our shared Earth system may not be able to sustainably support a large proportion of humanity in the decades ahead.

  9. Climate Change Education Today in K-12: What's Happening in the Earth and Space Science Classroom?

    Science.gov (United States)

    Holzer, M. A.; National Earth Science Teachers Association

    2011-12-01

    Climate change is a highly interdisciplinary topic, involving not only multiple fields of science, but also social science and the humanities. There are many aspects of climate change science that make it particularly well-suited for exploration in the K-12 setting, including opportunities to explore the unifying processes of science such as complex systems, models, observations, change and evolution. Furthermore, this field of science offers the opportunity to observe the nature of science in action - including how scientists develop and improve their understanding through research and debate. Finally, climate change is inherently highly relevant to students - indeed, students today will need to deal with the consequences of the climate change. The science of climate change is clearly present in current science education standards, both at the National level as well as in the majority of states. Nonetheless, a significant number of teachers across the country report difficulties addressing climate change in the classroom. The National Earth Science Teachers Association has conducted several surveys of Earth and space science educators across the country over the past several years on a number of issues, including their needs and concerns, including their experience of external influences on what they teach. While the number of teachers that report external pressures to not teach climate change science are in the minority (and less than the pressure to not teach evolution and related topics), our results suggest that this pressure against climate change science in the K-12 classroom has grown over the past several years. Some teachers report being threatened by parents, being encouraged by administrators to not teach the subject, and a belief that the "two sides" of climate change should be taught. Survey results indicate that teachers in religious or politically-conservative districts are more likely to report difficulties in teaching about climate change than in

  10. Correlation analysis of extremely low-frequency variations of the natural electromagnetic Earth field and the problem of detecting periodical gravitational radiation

    International Nuclear Information System (INIS)

    Balakin, A.B.; Murzakhanov, Z.G.; Grunskaya, L.V.

    1994-01-01

    A proposal on the experimental detection of extremely low-frequency variations of the electromagnetic Earth field at the gravitational-wave frequency and method for correlation processing results of the experiments are described. 14 refs

  11. Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations

    Science.gov (United States)

    Beranová, Romana; Kyselý, Jan; Hanel, Martin

    2018-04-01

    The study compares characteristics of observed sub-daily precipitation extremes in the Czech Republic with those simulated by Hadley Centre Regional Model version 3 (HadRM3) and Rossby Centre Regional Atmospheric Model version 4 (RCA4) regional climate models (RCMs) driven by reanalyses and examines diurnal cycles of hourly precipitation and their dependence on intensity and surface temperature. The observed warm-season (May-September) maxima of short-duration (1, 2 and 3 h) amounts show one diurnal peak in the afternoon, which is simulated reasonably well by RCA4, although the peak occurs too early in the model. HadRM3 provides an unrealistic diurnal cycle with a nighttime peak and an afternoon minimum coinciding with the observed maximum for all three ensemble members, which suggests that convection is not captured realistically. Distorted relationships of the diurnal cycles of hourly precipitation to daily maximum temperature in HadRM3 further evidence that underlying physical mechanisms are misrepresented in this RCM. Goodness-of-fit tests indicate that generalised extreme value distribution is an applicable model for both observed and RCM-simulated precipitation maxima. However, the RCMs are not able to capture the range of the shape parameter estimates of distributions of short-duration precipitation maxima realistically, leading to either too many (nearly all for HadRM3) or too few (RCA4) grid boxes in which the shape parameter corresponds to a heavy tail. This means that the distributions of maxima of sub-daily amounts are distorted in the RCM-simulated data and do not match reality well. Therefore, projected changes of sub-daily precipitation extremes in climate change scenarios based on RCMs not resolving convection need to be interpreted with caution.

  12. Modeling nonstationary extreme wave heights in present and future climates of Greek Seas

    Directory of Open Access Journals (Sweden)

    Panagiota Galiatsatou

    2016-01-01

    Full Text Available In this study the generalized extreme value (GEV distribution function was used to assess nonstationarity in annual maximum wave heights for selected locations in the Greek Seas, both in the present and future climates. The available significant wave height data were divided into groups corresponding to the present period (1951–2000, a first future period (2001–2050, and a second future period (2051–2100. For each time period, the parameters of the GEV distribution were specified as functions of time-varying covariates and estimated using the conditional density network (CDN. For each location and selected time period, a total number of 29 linear and nonlinear models were fitted to the wave data, for a given combination of covariates. The covariates used in the GEV-CDN models consisted of wind fields resulting from the Regional Climate Model version 3 (RegCM3 developed by the International Center for Theoretical Physics (ICTP with a spatial resolution of 10 km × 10 km, after being processed using principal component analysis (PCA. The results obtained from the best fitted models in the present and future periods for each location were compared, revealing different patterns of relationships between wind components and extreme wave height quantiles in different parts of the Greek Seas and different periods. The analysis demonstrates an increase of extreme wave heights in the first future period as compared with the present period, causing a significant threat to Greek coastal areas in the North Aegean Sea and the Ionian Sea.

  13. Synoptic and Climate Attributions of the December 2015 Extreme Flooding in Missouri, USA

    Directory of Open Access Journals (Sweden)

    Boniface Fosu

    2018-03-01

    Full Text Available Three days of extreme rainfall in late December 2015 in the middle of the Mississippi River led to severe flooding in Missouri. The meteorological context of this event was analyzed through synoptic diagnosis into the atmospheric circulation that contributed to the precipitation event’s severity. The midlatitude synoptic waves that induced the extreme precipitation and ensuing flooding were traced to the Madden Julian Oscillation (MJO, which amplified the trans-Pacific Rossby wave train likely associated with the strong El Niño of December 2015. Though the near-historical El Niño contributed to a quasi-stationary trough over the western U.S. that induced the high precipitation event, an interference between the MJO and El Niño teleconnections resulted in a relatively weak atmospheric signature of the El Niño in comparison to that of the MJO. The influence of anthropogenic climate change on the relationship between ENSO and precipitation across several central U.S. states was also investigated using 17 CMIP5 models from the historical single-forcing experiments. A regime change in ENSO-related precipitation anomalies appears to have occurred, from being negatively correlated before 1950 to positive and significantly correlated after 1970, suggesting a likely effect of anthropogenic warming on the December 2015 extreme precipitation event.

  14. Impacts of Anthropogenic Aerosols on Regional Climate: Extreme Events, Stagnation, and the United States Warming Hole

    Science.gov (United States)

    Mascioli, Nora R.

    Extreme temperatures, heat waves, heavy rainfall events, drought, and extreme air pollution events have adverse effects on human health, infrastructure, agriculture and economies. The frequency, magnitude and duration of these events are expected to change in the future in response to increasing greenhouse gases and decreasing aerosols, but future climate projections are uncertain. A significant portion of this uncertainty arises from uncertainty in the effects of aerosol forcing: to what extent were the effects from greenhouse gases masked by aerosol forcing over the historical observational period, and how much will decreases in aerosol forcing influence regional and global climate over the remainder of the 21st century? The observed frequency and intensity of extreme heat and precipitation events have increased in the U.S. over the latter half of the 20th century. Using aerosol only (AER) and greenhouse gas only (GHG) simulations from 1860 to 2005 in the GFDL CM3 chemistry-climate model, I parse apart the competing influences of aerosols and greenhouse gases on these extreme events. I find that small changes in extremes in the "all forcing" simulations reflect cancellations between the effects of increasing anthropogenic aerosols and greenhouse gases. In AER, extreme high temperatures and the number of days with temperatures above the 90th percentile decline over most of the U.S., while in GHG high temperature extremes increase over most of the U.S. The spatial response patterns in AER and GHG are significantly anti-correlated, suggesting a preferred regional mode of response that is largely independent of the type of forcing. Extreme precipitation over the eastern U.S. decreases in AER, particularly in winter, and increases over the eastern and central U.S. in GHG, particularly in spring. Over the 21 st century under the RCP8.5 emissions scenario, the patterns of extreme temperature and precipitation change associated with greenhouse gas forcing dominate. The

  15. Evaluation of trends in high temperature extremes in north-western Europe in regional climate models

    International Nuclear Information System (INIS)

    Min, E; Hazeleger, W; Van Oldenborgh, G J; Sterl, A

    2013-01-01

    Projections of future changes in weather extremes on the regional and local scale depend on a realistic representation of trends in extremes in regional climate models (RCMs). We have tested this assumption for moderate high temperature extremes (the annual maximum of the daily maximum 2 m temperature, T ann.max ). Linear trends in T ann.max from historical runs of 14 RCMs driven by atmospheric reanalysis data are compared with trends in gridded station data. The ensemble of RCMs significantly underestimates the observed trends over most of the north-western European land surface. Individual models do not fare much better, with even the best performing models underestimating observed trends over large areas. We argue that the inability of RCMs to reproduce observed trends is probably not due to errors in large-scale circulation. There is also no significant correlation between the RCM T ann.max trends and trends in radiation or Bowen ratio. We conclude that care should be taken when using RCM data for adaptation decisions. (letter)

  16. Simulating the Impacts of Climate Extremes Across Sectors: The Case of the 2003 European Heat Wave

    Science.gov (United States)

    Schewe, J.; Zhao, F.; Reyer, C.; Breuer, L.; Coll, M.; Deryng, D.; Eddy, T.; Elliott, J. W.; Francois, L. M.; Friend, A. D.; Gerten, D.; Gosling, S.; Gudmundsson, L.; Huber, V.; Kim, H.; Lotze, H. K.; Orth, R.; Seneviratne, S. I.; Tittensor, D.; Vautard, R.; van Vliet, M. T. H.; Wada, Y.

    2017-12-01

    Increased occurrence of extreme climate or weather events is one of the most damaging consequences of global climate change today and in the future. Estimating the impacts of such extreme events across different human and natural systems is crucial for quantifying overall risks from climate change. Are current models fit for this task? Here we use the 2003 European heat wave and drought (EHW) as a historical analogue for comparable events in the future, and evaluate how accurately its impacts are reproduced by a multi-sectoral "super-ensemble" of state-of-the-art impacts models. Our study combines, for the first time, impacts on agriculture, freshwater resources, terrestrial and marine ecosystems, energy, and human health in a consistent multi-model framework. We identify key impacts of the 2003 EHW reported in the literature and/or recorded in publicly available databases, and examine how closely the models reproduce those impacts, applying the same measure of impact magnitude across different sectors. Preliminary results are mixed: While the EHW's impacts on water resources (streamflow) are reproduced well by most global hydrological models, not all crop and natural vegetation models reproduce the magnitude of impacts on agriculture and ecosystem productivity, respectively, and their performance varies by country or region. A hydropower capacity model matches reported hydropower generation anomalies only in some countries, and estimates of heat-related excess mortality from a set of statistical models are consistent with literature reports only for some of the cities investigated. We present a synthesis of simulated and observed impacts across sectors, and reflect on potential improvements in modeling and analyzing cross-sectoral impacts.

  17. Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions.

    Science.gov (United States)

    van de Pol, Martijn; Jenouvrier, Stéphanie; Cornelissen, Johannes H C; Visser, Marcel E

    2017-06-19

    More extreme climatic events (ECEs) are among the most prominent consequences of climate change. Despite a long-standing recognition of the importance of ECEs by paleo-ecologists and macro-evolutionary biologists, ECEs have only recently received a strong interest in the wider ecological and evolutionary community. However, as with many rapidly expanding fields, it lacks structure and cohesiveness, which strongly limits scientific progress. Furthermore, due to the descriptive and anecdotal nature of many ECE studies it is still unclear what the most relevant questions and long-term consequences are of ECEs. To improve synthesis, we first discuss ways to define ECEs that facilitate comparison among studies. We then argue that biologists should adhere to more rigorous attribution and mechanistic methods to assess ECE impacts. Subsequently, we discuss conceptual and methodological links with climatology and disturbance-, tipping point- and paleo-ecology. These research fields have close linkages with ECE research, but differ in the identity and/or the relative severity of environmental factors. By summarizing the contributions to this theme issue we draw parallels between behavioural, ecological and evolutionary ECE studies, and suggest that an overarching challenge is that most empirical and theoretical evidence points towards responses being highly idiosyncratic, and thus predictability being low. Finally, we suggest a roadmap based on the proposition that an increased focus on the mechanisms behind the biological response function will be crucial for increased understanding and predictability of the impacts of ECE.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  18. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.

    2010-01-01

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  19. A vulnerability tool for adapting water and aquatic resources to climate change and extremes on the Shoshone National Forest, Wyoming

    Science.gov (United States)

    Rice, J.; Joyce, L. A.; Armel, B.; Bevenger, G.; Zubic, R.

    2011-12-01

    Climate change introduces a significant challenge for land managers and decision makers managing the natural resources that provide many benefits from forests. These benefits include water for urban and agricultural uses, wildlife habitat, erosion and climate control, aquifer recharge, stream flows regulation, water temperature regulation, and cultural services such as outdoor recreation and aesthetic enjoyment. The Forest Service has responded to this challenge by developing a national strategy for responding to climate change (the National Roadmap for Responding to Climate Change, July 2010). In concert with this national strategy, the Forest Service's Westwide Climate Initiative has conducted 4 case studies on individual Forests in the western U.S to develop climate adaptation tools. Western National Forests are particularly vulnerable to climate change as they have high-mountain topography, diversity in climate and vegetation, large areas of water limited ecosystems, and increasing urbanization. Information about the vulnerability and capacity of resources to adapt to climate change and extremes is lacking. There is an urgent need to provide customized tools and synthesized local scale information about the impacts to resources from future climate change and extremes, as well as develop science based adaptation options and strategies in National Forest management and planning. The case study on the Shoshone National Forest has aligned its objectives with management needs by developing a climate extreme vulnerability tool that guides adaptation options development. The vulnerability tool determines the likely degree to which native Yellowstone cutthroat trout and water availability are susceptible to, or unable to cope with adverse effects of climate change extremes. We spatially categorize vulnerability for water and native trout resources using exposure, sensitivity, and adaptive capacity indicators that use minimum and maximum climate and GIS data. Results

  20. Climate Change and Health Risks from Extreme Heat and Air Pollution in the Eastern United States

    Science.gov (United States)

    Limaye, V.; Vargo, J.; Harkey, M.; Holloway, T.; Meier, P.; Patz, J.

    2013-12-01

    Climate change is expected to exacerbate health risks from exposure to extreme heat and air pollution through both direct and indirect mechanisms. Directly, warmer ambient temperatures promote biogenic emissions of ozone precursors and favor the formation of ground-level ozone, while an anticipated increase in the frequency of stagnant air masses will allow fine particulates to accumulate. Indirectly, warmer summertime temperatures stimulate energy demand and exacerbate polluting emissions from the electricity sector. Thus, while technological adaptations such as air conditioning can reduce risks from exposures to extreme heat, they can trigger downstream damage to air quality and public health. Through an interdisciplinary modeling effort, we quantify the impacts of climate change on ambient temperatures, summer energy demand, air quality, and public health. The first phase of this work explores how climate change will directly impact the burden of heat-related mortality. Climatic patterns, demographic trends, and epidemiologic risk models suggest that populations in the eastern United States are likely to experience an increasing heat stress mortality burden in response to rising summertime air temperatures. We use North American Regional Climate Change Assessment Program modeling data to estimate mid-century 2-meter air temperatures and humidity across the eastern US from June-August, and quantify how long-term changes in actual and apparent temperatures from present-day will affect the annual burden of heat-related mortality across this region. With the US Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program, we estimate health risks using concentration-response functions, which relate temperature increases to changes in annual mortality rates. We compare mid-century summertime temperature data, downscaled using the Weather Research and Forecasting model, to 2007 baseline temperatures at a 12 km resolution in order to estimate

  1. Achieving Conservation and Equity amidst Extreme Poverty and Climate Risk: The Makira REDD+ Project in Madagascar

    Directory of Open Access Journals (Sweden)

    Laura Brimont

    2015-03-01

    Full Text Available Achieving forest conservation together with poverty alleviation and equity is an unending challenge in the tropics. The Makira REDD+ pilot project located in northeastern Madagascar is a well-suited case to explore this challenge in conditions of extreme poverty and climatic vulnerability. We assessed the potential effect of project siting on the livelihoods of the local population and which households would be the most strongly impacted by conservation measures. Farmers living in hilly areas must resort to slash-and-burn agriculture (tavy since a combination of topographic and climatic constraints, such as cyclones, makes permanent rice cultivation very difficult. These are the people who suffer most from conservation-related restriction measures. For practical reasons the project, unfortunately, did not target these farmers. The main focus was on communities with a lower cyclonic risk that are able to practice permanent rice agriculture in the lowlands. To reduce deforestation without violating the principles of equity, REDD+ projects in Madagascar need to better target populations facing high climatic risks and invest in efforts to improve the farmers’ agricultural systems.

  2. Climate variability and extremes, interacting with nitrogen storage, amplify eutrophication risk

    Science.gov (United States)

    Lee, Minjin; Shevliakova, Elena; Malyshev, Sergey; Milly, P.C.D.; Jaffe, Peter R.

    2016-01-01

    Despite 30 years of basin-wide nutrient-reduction efforts, severe hypoxia continues to be observed in the Chesapeake Bay. Here we demonstrate the critical influence of climate variability, interacting with accumulated nitrogen (N) over multidecades, on Susquehanna River dissolved nitrogen (DN) loads, known precursors of the hypoxia in the Bay. We used the process model LM3-TAN (Terrestrial and Aquatic Nitrogen), which is capable of capturing both seasonal and decadal-to-century changes in vegetation-soil-river N storage, and produced nine scenarios of DN-load distributions under different short-term scenarios of climate variability and extremes. We illustrate that after 1 to 3 yearlong dry spells, the likelihood of exceeding a threshold DN load (56 kt yr−1) increases by 40 to 65% due to flushing of N accumulated throughout the dry spells and altered microbial processes. Our analyses suggest that possible future increases in climate variability/extremes—specifically, high precipitation occurring after multiyear dry spells—could likely lead to high DN-load anomalies and hypoxia.

  3. Open NASA Earth Exchange (OpenNEX): A Public-Private Partnership for Climate Change Research

    Science.gov (United States)

    Nemani, R. R.; Lee, T. J.; Michaelis, A.; Ganguly, S.; Votava, P.

    2014-12-01

    NASA Earth Exchange (NEX) is a data, computing and knowledge collaborative that houses satellite, climate and ancillary data where a community of researchers can come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform with access to large supercomputing resources. As a part of broadening the community beyond NASA-funded researchers, NASA through an agreement with Amazon Inc. made available to the public a large collection of Climate and Earth Sciences satellite data. The data, available through the Open NASA Earth Exchange (OpenNEX) platform hosted by Amazon Web Services (AWS) public cloud, consists of large amounts of global land surface imaging, vegetation conditions, climate observations and climate projections. In addition to the data, users of OpenNEX platform can also watch lectures from leading experts, learn basic access and use of the available data sets. In order to advance White House initiatives such as Open Data, Big Data and Climate Data and the Climate Action Plan, NASA over the past six months conducted the OpenNEX Challenge. The two-part challenge was designed to engage the public in creating innovative ways to use NASA data and address climate change impacts on economic growth, health and livelihood. Our intention was that the challenges allow citizen scientists to realize the value of NASA data assets and offers NASA new ideas on how to share and use that data. The first "ideation" challenge, closed on July 31st attracted over 450 participants consisting of climate scientists, hobbyists, citizen scientists, IT experts and App developers. Winning ideas from the first challenge will be incorporated into the second "builder" challenge currently targeted to launch mid-August and close by mid-November. The winner(s) will be formally announced at AGU in December of 2014. We will share our experiences and lessons learned over the past year from OpenNEX, a public-private partnership for

  4. Quantifying the effect of Tmax extreme events on local adaptation to climate change of maize crop in Andalusia for the 21st century

    Science.gov (United States)

    Gabaldon, Clara; Lorite, Ignacio J.; Ines Minguez, M.; Lizaso, Jon; Dosio, Alessandro; Sanchez, Enrique; Ruiz-Ramos, Margarita

    2015-04-01

    Agriculture, Food Security and Climate Change (FACCE - JPI) of EU and is financed by MULCLIVAR project (CGL2012-38923-C02-02) and IFAPA project AGR6126 from Junta de Andalucía, Spain. References Dosio A. and Paruolo P., 2011. Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, VOL. 116, D16106, doi:10.1029/2011JD015934 Dosio A., Paruolo P. and Rojas R., 2012. Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research, Volume 117, D17, doi: 0.1029/2012JD017968 Gabaldón C, Lorite IJ, Mínguez MI, Dosio A, Sánchez-Sánchez E and Ruiz-Ramos M, 2013. Evaluation of local adaptation strategies to climate change of maize crop in Andalusia for the first half of 21st century. Geophysical Research Abstracts. Vol. 15, EGU2013-13625, 2013. EGU General Assembly 2013, April 2013, Vienna, Austria. Jones C.A. and J.R. Kiniry. 1986. CERES-Maize: A simulation model of maize growth and development. Texas A&M Univ. Press, College Station. Ruiz-Ramos M., E. Sanchez, C. Galllardo, and M.I. Minguez. 2011. Impacts of projected maximum temperature extremes for C21 by an ensemble of regional climate models on cereal cropping systems in the Iberian Peninsula. Natural Hazards and Earth System Science 11: 3275-3291. Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F. Global hotspots of heat stress on agricultural crops due to climate change. Agric For Meteorol. 2013;170(15):206-215.

  5. Climate and weather of the Sun-Earth system (CAWSES) highlights from a priority program

    CERN Document Server

    Lübken, Franz-Josef

    2012-01-01

    CAWSES (Climate and Weather of the Sun-Earth System) is the most important scientific program of SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). CAWSES has triggered a scientific priority program within the German Research Foundation for a period of 6 years. Approximately 30 scientific institutes and 120 scientists were involved in Germany with strong links to international partners. The priority program focuses on solar influence on climate, atmospheric coupling processes, and space climatology. This book summarizes the most important results from this program covering some impor

  6. Projections of Future Precipitation Extremes Over Europe: A Multimodel Assessment of Climate Simulations

    Science.gov (United States)

    Rajczak, Jan; Schär, Christoph

    2017-10-01

    Projections of precipitation and its extremes over the European continent are analyzed in an extensive multimodel ensemble of 12 and 50 km resolution EURO-CORDEX Regional Climate Models (RCMs) forced by RCP2.6, RCP4.5, and RCP8.5 (Representative Concentration Pathway) aerosol and greenhouse gas emission scenarios. A systematic intercomparison with ENSEMBLES RCMs is carried out, such that in total information is provided for an unprecedentedly large data set of 100 RCM simulations. An evaluation finds very reasonable skill for the EURO-CORDEX models in simulating temporal and geographical variations of (mean and heavy) precipitation at both horizontal resolutions. Heavy and extreme precipitation events are projected to intensify across most of Europe throughout the whole year. All considered models agree on a distinct intensification of extremes by often more than +20% in winter and fall and over central and northern Europe. A reduction of rainy days and mean precipitation in summer is simulated by a large majority of models in the Mediterranean area, but intermodel spread between the simulations is large. In central Europe and France during summer, models project decreases in precipitation but more intense heavy and extreme rainfalls. Comparison to previous RCM projections from ENSEMBLES reveals consistency but slight differences in summer, where reductions in southern European precipitation are not as pronounced as previously projected. The projected changes of the European hydrological cycle may have substantial impact on environmental and anthropogenic systems. In particular, the simulations indicate a rising probability of summertime drought in southern Europe and more frequent and intense heavy rainfall across all of Europe.

  7. Prevailing trends of climatic extremes across Indus-Delta of Sindh-Pakistan

    Science.gov (United States)

    Abbas, Farhat; Rehman, Iqra; Adrees, Muhammad; Ibrahim, Muhammad; Saleem, Farhan; Ali, Shafaqat; Rizwan, Muhammad; Salik, Muhammad Raza

    2018-02-01

    This study examines the variability and change in the patterns of climatic extremes experienced in Indus-Delta of Sindh province of Pakistan, comprising regions of Karachi, Badin, Mohenjodaro, and Rohri. The homogenized daily minimum and maximum temperature and precipitation data for a 36-year period were used to calculate 13 and 11 indices of temperature and precipitation extremes with the help of RClimDex, a program written in the statistical software package R. A non-parametric Mann-Kendall test and Sen's slope estimates were used to determine the statistical significance and magnitude of the calculated trend. Temperatures of summer days and tropical nights increased in the region with overall significant warming trends for monthly maximum temperature as well as for warm days and nights reflecting dry conditions in the study area. The warm extremes and nighttime temperature indices showed greater trends than cold extremes and daytime indices depicting an overall warming trends in the Delta. Historic decrease in the acreage of major crops and over 33% decrease in agriculture credit for Sindh are the indicators of adverse impacts of warmer and drier weather on Sindh agriculture. Trends reported for Karachi and Badin are expected to decrease rice cultivation, hatching of fisheries, and mangroves forest surrounding these cities. Increase in the prevailing temperature trends will lead to increasingly hotter and drier summers resulting to constraints on cotton, wheat, and rice yield in Rohri and Mohenjodaro areas due to increased crop water requirements that may be met with additional groundwater pumping; nonetheless, the depleted groundwater resources would have a direct impact on the region's economy.

  8. Proactive systems for early warning of potential impacts of natural disasters on food safety: Climate-change-induced extreme events as case in point

    NARCIS (Netherlands)

    Marvin, H.J.P.; Kleter, G.A.; Fels-Klerx, van der H.J.; Noordam, M.Y.; Franz, E.; Willems, D.J.M.; Boxall, A.

    2013-01-01

    According to a recent report of the Intergovernmental Panel on Climate Change, the frequency of certain climate extremes is expected to increase under the influence of climate change. This review presents potential direct and indirect effects of such extremes as well as other severe weather and

  9. Impacts of climate change on precipitation and discharge extremes through the use of statistical downscaling approaches in a Mediterranean basin.

    Science.gov (United States)

    Piras, Monica; Mascaro, Giuseppe; Deidda, Roberto; Vivoni, Enrique R

    2016-02-01

    Mediterranean region is characterized by high precipitation variability often enhanced by orography, with strong seasonality and large inter-annual fluctuations, and by high heterogeneity of terrain and land surface properties. As a consequence, catchments in this area are often prone to the occurrence of hydrometeorological extremes, including storms, floods and flash-floods. A number of climate studies focused in the Mediterranean region predict that extreme events will occur with higher intensity and frequency, thus requiring further analyses to assess their effect at the land surface, particularly in small- and medium-sized watersheds. In this study, climate and hydrologic simulations produced within the Climate Induced Changes on the Hydrology of Mediterranean Basins (CLIMB) EU FP7 research project were used to analyze how precipitation extremes propagate into discharge extremes in the Rio Mannu basin (472.5km(2)), located in Sardinia, Italy. The basin hydrologic response to climate forcings in a reference (1971-2000) and a future (2041-2070) period was simulated through the combined use of a set of global and regional climate models, statistical downscaling techniques, and a process based distributed hydrologic model. We analyzed and compared the distribution of annual maxima extracted from hourly and daily precipitation and peak discharge time series, simulated by the hydrologic model under climate forcing. For this aim, yearly maxima were fit by the Generalized Extreme Value (GEV) distribution using a regional approach. Next, we discussed commonality and contrasting behaviors of precipitation and discharge maxima distributions to better understand how hydrological transformations impact propagation of extremes. Finally, we show how rainfall statistical downscaling algorithms produce more reliable forcings for hydrological models than coarse climate model outputs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Clouds and the Earth's Radiant Energy System (CERES) Data Products for Climate Research

    Science.gov (United States)

    Kato, Seiji; Loeb, Norman G.; Rutan, David A.; Rose, Fred G.

    2015-01-01

    NASA's Clouds and the Earth's Radiant Energy System (CERES) project integrates CERES, Moderate Resolution Imaging Spectroradiometer (MODIS), and geostationary satellite observations to provide top-of-atmosphere (TOA) irradiances derived from broadband radiance observations by CERES instruments. It also uses snow cover and sea ice extent retrieved from microwave instruments as well as thermodynamic variables from reanalysis. In addition, these variables are used for surface and atmospheric irradiance computations. The CERES project provides TOA, surface, and atmospheric irradiances in various spatial and temporal resolutions. These data sets are for climate research and evaluation of climate models. Long-term observations are required to understand how the Earth system responds to radiative forcing. A simple model is used to estimate the time to detect trends in TOA reflected shortwave and emitted longwave irradiances.

  11. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology.

    Science.gov (United States)

    Butt, Nathalie; Seabrook, Leonie; Maron, Martine; Law, Bradley S; Dawson, Terence P; Syktus, Jozef; McAlpine, Clive A

    2015-09-01

    Forest vertebrate fauna provide critical services, such as pollination and seed dispersal, which underpin functional and resilient ecosystems. In turn, many of these fauna are dependent on the flowering phenology of the plant species of such ecosystems. The impact of changes in climate, including climate extremes, on the interaction between these fauna and flora has not been identified or elucidated, yet influences on flowering phenology are already evident. These changes are well documented in the mid to high latitudes. However, there is emerging evidence that the flowering phenology, nectar/pollen production, and fruit production of long-lived trees in tropical and subtropical forests are also being impacted by changes in the frequency and severity of climate extremes. Here, we examine the implications of these changes for vertebrate fauna dependent on these resources. We review the literature to establish evidence for links between climate extremes and flowering phenology, elucidating the nature of relationships between different vertebrate taxa and flowering regimes. We combine this information with climate change projections to postulate about the likely impacts on nectar, pollen and fruit resource availability and the consequences for dependent vertebrate fauna. The most recent climate projections show that the frequency and intensity of climate extremes will increase during the 21st century. These changes are likely to significantly alter mass flowering and fruiting events in the tropics and subtropics, which are frequently cued by climate extremes, such as intensive rainfall events or rapid temperature shifts. We find that in these systems the abundance and duration of resource availability for vertebrate fauna is likely to fluctuate, and the time intervals between episodes of high resource availability to increase. The combined impact of these changes has the potential to result in cascading effects on ecosystems through changes in pollinator and seed

  12. Climate Change, Extreme Weather Events, and Fungal Disease Emergence and Spread

    Science.gov (United States)

    Tucker, Compton J.; Yager, Karina; Anyamba, Assaf; Linthicum, Kenneth J.

    2011-01-01

    Empirical evidence from multiple sources show the Earth has been warming since the late 19th century. More recently, evidence for this warming trend is strongly supported by satellite data since the late 1970s from the cryosphere, atmosphere, oceans, and land that confirms increasing temperature trends and their consequences (e.g., reduced Arctic sea ice, rising sea level, ice sheet mass loss, etc.). At the same time, satellite observations of the Sun show remarkably stable solar cycles since the late 1970s, when direct observations of the Sun's total solar irradiance began. Numerical simulation models, driven in part by assimilated satellite data, suggest that future-warming trends will lead to not only a warmer planet, but also a wetter and drier climate depending upon location in a fashion consistent with large-scale atmospheric processes. Continued global warming poses new opportunities for the emergence and spread of fungal disease, as climate systems change at regional and global scales, and as animal and plant species move into new niches. Our contribution to this proceedings is organized thus: First, we review empirical evidence for a warming Earth. Second, we show the Sun is not responsible for the observed warming. Third, we review numerical simulation modeling results that project these trends into the future, describing the projected abiotic environment of our planet in the next 40 to 50 years. Fourth, we illustrate how Rift Valley fever outbreaks have been linked to climate, enabling a better understanding of the dynamics of these diseases, and how this has led to the development of an operational predictive outbreak model for this disease in Africa. Fifth, We project how this experience may be applicable to predicting outbreaks of fungal pathogens in a warming world. Lastly, we describe an example of changing species ranges due to climate change, resulting from recent warming in the Andes and associated glacier melt that has enabled amphibians to

  13. Biota and biomolecules in extreme environments on Earth: implications for life detection on Mars.

    NARCIS (Netherlands)

    Aerts, J.W.; Roling, W.F.M.; Elsaesser, A.; Ehrenfreund, P.

    2014-01-01

    The three main requirements for life as we know it are the presence of organic compounds, liquid water, and free energy. Several groups of organic compounds (e.g., amino acids, nucleobases, lipids) occur in all life forms on Earth and are used as diagnostic molecules, i.e., biomarkers, for the

  14. Atmospheric carbon dioxide and the long-term control of the Earth's climate

    Directory of Open Access Journals (Sweden)

    J. H. Carver

    1995-07-01

    Full Text Available A CO2-weathering model has been used to explore the possible evolution of the Earth's climate as the Sun steadily brightened throughout geologic time. The results of the model calculations can be described in terms of three, qualitatively different, "Megaclimates". Mega-climate 1 resulted from a period of rapid outgassing in the early Archean, with high, but declining, temperatures caused by the small weathering rates on a largely water-covered planet. Mega-climate 2 began about 3 Gyear ago as major continental land masses developed, increasing the weathering rate in the early Proterozoic and thereby depleting the atmospheric CO2 concentration. This process produced the first Precambrian glaciations about 2.3 Gyear ago. During Mega-climate 2, evolutionary biological processes increased the surface weatherability in incremental steps and plate tectonics modulated the CO2 outgassing rate with an estimated period of 150 Myear (approximately one-half the period for the formation and breakup of super continents. Throughout Mega-climate 2 the surface temperature was controlled by variations in the atmospheric CO2 level allowing transitions between glacial and non-glacial conditions. The results of the model for Mega-climate 2 are in agreement with the occurrence (and absence of glaciations in the geologic record. Extending the model to the future suggests that CO2 control of the Earth's temperature will no longer be able to compensate for a solar flux that continues to increase. The present level of atmospheric CO2 is so small that further reduction in CO2 cannot prevent the Earth from experiencing Mega-climate 3 with steadily increasing surface temperatures caused by the continued brightening of the Sun. During Mega-climate 3, the main danger to the biosphere would come not from an increasing temperature but from a decreasing (rather than an increasing CO2 level which could, in time, fall below 0.5 PAL, causing serious damage to the biosphere

  15. Atmospheric carbon dioxide and the long-term control of the Earth's climate

    Directory of Open Access Journals (Sweden)

    J. H. Carver

    Full Text Available A CO2-weathering model has been used to explore the possible evolution of the Earth's climate as the Sun steadily brightened throughout geologic time. The results of the model calculations can be described in terms of three, qualitatively different, "Megaclimates". Mega-climate 1 resulted from a period of rapid outgassing in the early Archean, with high, but declining, temperatures caused by the small weathering rates on a largely water-covered planet. Mega-climate 2 began about 3 Gyear ago as major continental land masses developed, increasing the weathering rate in the early Proterozoic and thereby depleting the atmospheric CO2 concentration. This process produced the first Precambrian glaciations about 2.3 Gyear ago. During Mega-climate 2, evolutionary biological processes increased the surface weatherability in incremental steps and plate tectonics modulated the CO2 outgassing rate with an estimated period of 150 Myear (approximately one-half the period for the formation and breakup of super continents. Throughout Mega-climate 2 the surface temperature was controlled by variations in the atmospheric CO2 level allowing transitions between glacial and non-glacial conditions. The results of the model for Mega-climate 2 are in agreement with the occurrence (and absence of glaciations in the geologic record. Extending the model to the future suggests that CO2 control of the Earth's temperature will no longer be able to compensate for a solar flux that continues to increase. The present level of atmospheric CO2 is so small that further reduction in CO2 cannot prevent the Earth from experiencing Mega-climate 3 with steadily increasing surface temperatures caused by the continued brightening of the Sun. During Mega-climate 3, the main danger to the biosphere would come not from an increasing temperature but from a decreasing (rather than an increasing CO2

  16. The Response of Different Audiences to Place-based Communication about the Role of Climate Change in Extreme Weather Events

    Science.gov (United States)

    Halperin, A.; Walton, P.

    2015-12-01

    As the science of extreme event attribution grows, there is an increasing need to understand how the public responds to this type of climate change communication. Extreme event attribution has the unprecedented potential to locate the effects of climate change in the here and now, but there is little information about how different facets of the public might respond to these local framings of climate change. Drawing on theories of place attachment and psychological distance, this paper explores how people with different beliefs and values shift their willingness to mitigate and adapt to climate change in response to local or global communication of climate change impacts. Results will be presented from a recent survey of over 600 Californians who were each presented with one of three experimental conditions: 1) a local framing of the role of climate change in the California drought 2) a global framing of climate change and droughts worldwide, or 3) a control condition of no text. Participants were categorized into groups based on their prior beliefs about climate change according to the Six Americas classification scheme (Leiserowitz et al., 2011). The results from the survey in conjunction with qualitative results from follow-up interviews shed insight into the importance of place in communicating climate change for people in each of the Six Americas. Additional results examine the role of gender and political affiliation in mediating responses to climate change communication. Despite research that advocates unequivocally for local framing of climate change, this study offers a more nuanced perspective of under which circumstances extreme event attribution might be an effective tool for changing behaviors. These results could be useful for scientists who wish to gain a better understanding of how their event attribution research is perceived or for educators who want to target their message to audiences where it could have the most impact.

  17. Climate Change and Hydrological Extreme Events - Risks and Perspectives for Water Management in Bavaria and Québec

    Science.gov (United States)

    Ludwig, R.

    2017-12-01

    There is as yet no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for `virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the

  18. Constraints on Climate and Habitability for Earth-like Exoplanets Determined from a General Circulation Model

    International Nuclear Information System (INIS)

    Wolf, Eric T.; Toon, Owen B.; Shields, Aomawa L.; Kopparapu, Ravi K.; Haqq-Misra, Jacob

    2017-01-01

    Conventional definitions of habitability require abundant liquid surface water to exist continuously over geologic timescales. Water in each of its thermodynamic phases interacts with solar and thermal radiation and is the cause for strong climatic feedbacks. Thus, assessments of the habitable zone require models to include a complete treatment of the hydrological cycle over geologic time. Here, we use the Community Atmosphere Model from the National Center for Atmospheric Research to study the evolution of climate for an Earth-like planet at constant CO 2 , under a wide range of stellar fluxes from F-, G-, and K-dwarf main sequence stars. Around each star we find four stable climate states defined by mutually exclusive global mean surface temperatures ( T s ); snowball ( T s ≤ 235 K), waterbelt (235 K ≤ T s ≤ 250 K), temperate (275 K ≤ T s ≤ 315 K), and moist greenhouse ( T s ≥ 330 K). Each is separated by abrupt climatic transitions. Waterbelt, temperate, and cooler moist greenhouse climates can maintain open-ocean against both sea ice albedo and hydrogen escape processes respectively, and thus constitute habitable worlds. We consider the warmest possible habitable planet as having T s ∼ 355 K, at which point diffusion limited water-loss could remove an Earth ocean in ∼1 Gyr. Without long timescale regulation of non-condensable greenhouse species at Earth-like temperatures and pressures, such as CO 2 , habitability can be maintained for an upper limit of ∼2.2, ∼2.4, and ∼4.7 Gyr around F-, G-, and K-dwarf stars respectively, due to main sequence brightening.

  19. Constraints on Climate and Habitability for Earth-like Exoplanets Determined from a General Circulation Model

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Eric T.; Toon, Owen B. [Laboratory for Atmospheric and Space Physics, Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO (United States); Shields, Aomawa L. [University of California, Irvine, Department of Physics and Astronomy, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Kopparapu, Ravi K.; Haqq-Misra, Jacob, E-mail: eric.wolf@colorado.edu [NASA Astrobiology Institute' s Virtual Planetary Laboratory, P.O. Box 351580, Seattle, WA 98195 (United States)

    2017-03-10

    Conventional definitions of habitability require abundant liquid surface water to exist continuously over geologic timescales. Water in each of its thermodynamic phases interacts with solar and thermal radiation and is the cause for strong climatic feedbacks. Thus, assessments of the habitable zone require models to include a complete treatment of the hydrological cycle over geologic time. Here, we use the Community Atmosphere Model from the National Center for Atmospheric Research to study the evolution of climate for an Earth-like planet at constant CO{sub 2}, under a wide range of stellar fluxes from F-, G-, and K-dwarf main sequence stars. Around each star we find four stable climate states defined by mutually exclusive global mean surface temperatures ( T {sub s}); snowball ( T {sub s} ≤ 235 K), waterbelt (235 K ≤ T {sub s} ≤ 250 K), temperate (275 K ≤ T {sub s} ≤ 315 K), and moist greenhouse ( T {sub s} ≥ 330 K). Each is separated by abrupt climatic transitions. Waterbelt, temperate, and cooler moist greenhouse climates can maintain open-ocean against both sea ice albedo and hydrogen escape processes respectively, and thus constitute habitable worlds. We consider the warmest possible habitable planet as having T {sub s} ∼ 355 K, at which point diffusion limited water-loss could remove an Earth ocean in ∼1 Gyr. Without long timescale regulation of non-condensable greenhouse species at Earth-like temperatures and pressures, such as CO{sub 2}, habitability can be maintained for an upper limit of ∼2.2, ∼2.4, and ∼4.7 Gyr around F-, G-, and K-dwarf stars respectively, due to main sequence brightening.

  20. Novel Tools for Climate Change Learning and Responding in Earth Science Education

    Science.gov (United States)

    Sparrow, Elena; Brunacini, Jessica; Pfirman, Stephanie

    2015-04-01

    Several innovative, polar focused activities and tools including a polar hub website (http://thepolarhub.org) have been developed for use in formal and informal earth science or STEM education by the Polar Learning and Responding (PoLAR) Climate Change Education Partnership (consisting of climate scientists, experts in the learning sciences and education practitioners). In seeking to inform understanding of and response to climate change, these tools and activities range from increasing awareness to informing decisions about climate change, from being used in classrooms (by undergraduate students as well as by pre-college students or by teachers taking online climate graduate courses) to being used in the public arena (by stakeholders, community members and the general public), and from using low technology (card games such as EcoChains- Arctic Crisis, a food web game or SMARTIC - Strategic Management of Resources in Times of Change, an Arctic marine spatial planning game) to high technology (Greenify Network - a mobile real world action game that fosters sustainability and allows players to meaningfully address climate change in their daily lives, or the Polar Explorer Data Visualization Tablet App that allows individuals to explore data collected by scientists and presented for the everyday user through interactive maps and visualizations, to ask questions and go on an individualized tour of polar regions and their connections to the rest of the world). Games are useful tools in integrative and applied learning, in gaining practical and intellectual skills, and in systems thinking. Also, as part of the PoLAR Partnership, a Signs of the Land Climate Change Camp was collaboratively developed and conducted, that can be used as a model for engaging and representing indigenous communities in the co-production of climate change knowledge, communication tools and solutions building. Future camps are planned with Alaska Native Elders, educators including classroom

  1. Understanding the Reach of Agricultural Impacts from Climate Extremes in the Agricultural Model Intercomparison and Improvement Project (AgMIP)

    Science.gov (United States)

    Ruane, A. C.

    2016-12-01

    The Agricultural Model Intercomparison and Improvement Project (AgMIP) has been working since 2010 to build a modeling framework capable of representing the complexities of agriculture, its dependence on climate, and the many elements of society that depend on food systems. AgMIP's 30+ activities explore the interconnected nature of climate, crop, livestock, economics, food security, and nutrition, using common protocols to systematically evaluate the components of agricultural assessment and allow multi-model, multi-scale, and multi-method analysis of intertwining changes in socioeconomic development, environmental change, and technological adaptation. AgMIP is now launching Coordinated Global and Regional Assessments (CGRA) with a particular focus on unforeseen consequences of development strategies, interactions between global and local systems, and the resilience of agricultural systems to extreme climate events. Climate extremes shock the agricultural system through local, direct impacts (e.g., droughts, heat waves, floods, severe storms) and also through teleconnections propagated through international trade. As the climate changes, the nature of climate extremes affecting agriculture is also likely to change, leading to shifting intensity, duration, frequency, and geographic extents of extremes. AgMIP researchers are developing new scenario methodologies to represent near-term extreme droughts in a probabilistic manner, field experiments that impose heat wave conditions on crops, increased resolution to differentiate sub-national drought impacts, new behavioral functions that mimic the response of market actors faced with production shortfalls, analysis of impacts from simultaneous failures of multiple breadbasket regions, and more detailed mapping of food and socioeconomic indicators into food security and nutrition metrics that describe the human impact in diverse populations. Agricultural models illustrate the challenges facing agriculture, allowing

  2. The initiation of modern soft and hard Snowball Earth climates in CCSM4

    Directory of Open Access Journals (Sweden)

    J. Yang

    2012-05-01

    Full Text Available Geochemical and geological evidence has suggested that several global-scale glaciation events occurred during the Neoproterozoic Era in the interval from 750–580 million years ago. The initiation of these glaciations is thought to have been a consequence of the combined influence of a low level of atmospheric carbon dioxide concentration and an approximately 6% weakening of solar luminosity. The latest version of the Community Climate System Model (CCSM4 is employed herein to explore the detailed combination of forcings required to trigger such extreme glaciation conditions under present-day circumstances of geography and topography. It is found that runaway glaciation occurs in the model under the following conditions: (1 an 8–9% reduction in solar radiation with 286 ppmv CO2 or (2 a 6% reduction in solar radiation with 70–100 ppmv CO2. These thresholds are moderately different from those found to be characteristic of the previously employd CCSM3 model reported recently in Yang et al. (2012a,b, for which the respective critical points corresponded to a 10–10.5% reduction in solar radiation with 286 ppmv CO2 or a 6% reduction in solar radiation with 17.5–20 ppmv CO2. The most important reason for these differences is that the sea ice/snow albedo parameterization employed in CCSM4 is believed to be more realistic than that in CCSM3. Differences in cloud radiative forcings and ocean and atmosphere heat transports also influence the bifurcation points. These results are potentially very important, as they are to serve as control on further calculations which will be devoted to an investigation of the impact of continental configuration.

    We demonstrate that there exist ''soft Snowball'' Earth states, in which the fractional sea ice coverage reaches approximately 60–65%, land masses in low latitudes are covered by perennial snow, and runaway glaciation does not develop. This is

  3. A Scalable and Extensible Earth System Model for Climate Change Science

    Energy Technology Data Exchange (ETDEWEB)

    Gent, Peter; Lamarque, Jean-Francois; Conley, Andrew; Vertenstein, Mariana; Craig, Anthony

    2013-02-13

    The objective of this award was to build a scalable and extensible Earth System Model that can be used to study climate change science. That objective has been achieved with the public release of the Community Earth System Model, version 1 (CESM1). In particular, the development of the CESM1 atmospheric chemistry component was substantially funded by this award, as was the development of the significantly improved coupler component. The CESM1 allows new climate change science in areas such as future air quality in very large cities, the effects of recovery of the southern hemisphere ozone hole, and effects of runoff from ice melt in the Greenland and Antarctic ice sheets. Results from a whole series of future climate projections using the CESM1 are also freely available via the web from the CMIP5 archive at the Lawrence Livermore National Laboratory. Many research papers using these results have now been published, and will form part of the 5th Assessment Report of the United Nations Intergovernmental Panel on Climate Change, which is to be published late in 2013.

  4. Global climate change in the Earth's history: The cretaceous period was a period of greenhouse climate; Klimawandel in der Erdgeschichte: Kreidezeit war Treibhauswelt

    Energy Technology Data Exchange (ETDEWEB)

    Mutterlose, J.; Immenhauser, A. [Bochum Univ. (Germany). Inst. fuer Geologie, Mineralogie und Geophysik, Sediment- und Isotopengeologie/Geobiologie

    2007-07-01

    The impending global warning is one of the biggest challenges to be faced by humanity. A look back into Earth's history may be useful for describing and understanding the future scenario. Paleooceanographers, paleontologists and sedimentologists analyze the climates throughout Earth history, in which there were several periods of 'greenhouse conditions'. (orig.)

  5. Extending Climate Analytics-As to the Earth System Grid Federation

    Science.gov (United States)

    Tamkin, G.; Schnase, J. L.; Duffy, D.; McInerney, M.; Nadeau, D.; Li, J.; Strong, S.; Thompson, J. H.

    2015-12-01

    We are building three extensions to prior-funded work on climate analytics-as-a-service that will benefit the Earth System Grid Federation (ESGF) as it addresses the Big Data challenges of future climate research: (1) We are creating a cloud-based, high-performance Virtual Real-Time Analytics Testbed supporting a select set of climate variables from six major reanalysis data sets. This near real-time capability will enable advanced technologies like the Cloudera Impala-based Structured Query Language (SQL) query capabilities and Hadoop-based MapReduce analytics over native NetCDF files while providing a platform for community experimentation with emerging analytic technologies. (2) We are building a full-featured Reanalysis Ensemble Service comprising monthly means data from six reanalysis data sets. The service will provide a basic set of commonly used operations over the reanalysis collections. The operations will be made accessible through NASA's climate data analytics Web services and our client-side Climate Data Services (CDS) API. (3) We are establishing an Open Geospatial Consortium (OGC) WPS-compliant Web service interface to our climate data analytics service that will enable greater interoperability with next-generation ESGF capabilities. The CDS API will be extended to accommodate the new WPS Web service endpoints as well as ESGF's Web service endpoints. These activities address some of the most important technical challenges for server-side analytics and support the research community's requirements for improved interoperability and improved access to reanalysis data.

  6. The Community Earth System Model-Polar Climate Working Group and the status of CESM2.

    Science.gov (United States)

    Bailey, D. A.; Holland, M. M.; DuVivier, A. K.

    2017-12-01

    The Polar Climate Working Group (PCWG) is a consortium of scientists who are interested in modeling and understanding the climate in the Arctic and the Antarctic, and how polar climate processes interact with and influence climate at lower latitudes. Our members come from universities and laboratories, and our interests span all elements of polar climate, from the ocean depths to the top of the atmosphere. In addition to conducting scientific modeling experiments, we are charged with contributing to the development and maintenance of the state-of-the-art sea ice model component (CICE) used in the Community Earth System Model (CESM). A recent priority for the PCWG has been to come up with innovative ways to bring the observational and modeling communities together. This will allow for more robust validation of climate model simulations, the development and implementation of more physically-based model parameterizations, improved data assimilation capabilities, and the better use of models to design and implement field experiments. These have been informed by topical workshops and scientific visitors that we have hosted in these areas. These activities will be discussed and information on how the better integration of observations and models has influenced the new version of the CESM, which is due to be released in late 2017, will be provided. Additionally, we will address how enhanced interactions with the observational community will contribute to model developments and validation moving forward.

  7. Life on a warmer earth: possible climatic consequences of man-made global warming. [Monograph

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    A summary of research conducted by the International Institute for Applied Systems Analysis (IIASA) and published by H. Flohn in 1977 updates the original data to March 1980. The work explores the interaction between energy and climate, including the impact on the global climate of three main energy sources: solar, nuclear, and fossil fuels. Its findings describe the global warming effects caused by carbon dioxide released by burning fossil fuels and by other trace gases released into the atmosphere. The approach is paleoclimatic in that it gains insights into what global warming will produce by considering what is known about past periods of the earth's history when the global average surface temperature was higher than it is now. Although paleoclimatic knowledge is limited, no complete model of the climatic system is available. This research uses both approaches, combining the two to some extent. 10 figures.

  8. What Can The Engineering for Climate Extremes Partnership Do For Global Resilience?

    Science.gov (United States)

    Bruyere, C. L.; Tye, M. R.; Holland, G. J.

    2015-12-01

    ECEP is an interdisciplinary partnership that brings together academia, industry, commerce, societal groups and government to develop robust, well-communicated predictions and advice on the impacts of weather and climate extremes using cutting-edge science. A feature of the partnership is the manner in which basic and applied research and development is conducted in direct collaboration with the end user. ECEP was formally launched at the AGU Fall Meeting in December 2014, and has gained rapid momentum in the subsequent year. Integral to the ECEP approach to resilience is the concept of 'Graceful Failure'. By acknowledging that all designs will fail at some level, and instead adopting flexible designs that combine engineering or network strengths with a plan for efficient, systematic failure and avoid delayed recovery. Such an approach enables optimal planning for both known and future scenarios, and their assessed uncertainty. This presentation will use the Boulder and North Colorado floods of September 2013 as a case study of how Graceful Failure improves resilience to extreme weather.

  9. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin

    Directory of Open Access Journals (Sweden)

    M. T. Taye

    2011-01-01

    Full Text Available The potential impact of climate change was investigated on the hydrological extremes of Nyando River and Lake Tana catchments, which are located in two source regions of the Nile River basin. Climate change scenarios were developed for rainfall and potential evapotranspiration (ETo, considering 17 General Circulation Model (GCM simulations to better understand the range of possible future change. They were constructed by transferring the extracted climate change signals to the observed series using a frequency perturbation downscaling approach, which accounts for the changes in rainfall extremes. Projected changes under two future SRES emission scenarios A1B and B1 for the 2050s were considered. Two conceptual hydrological models were calibrated and used for the impact assessment. Their difference in simulating the flows under future climate scenarios was also investigated.

    The results reveal increasing mean runoff and extreme peak flows for Nyando catchment for the 2050s while unclear trend is observed for Lake Tana catchment for mean volumes and high/low flows. The hydrological models for Lake Tana catchment, however, performed better in simulating the hydrological regimes than for Nyando, which obviously also induces a difference in the reliability of the extreme future projections for both catchments. The unclear impact result for Lake Tana catchment implies that the GCM uncertainty is more important for explaining the unclear trend than the hydrological models uncertainty. Nevertheless, to have a better understanding of future impact, hydrological models need to be verified for their credibility of simulating extreme flows.

  10. Estimating extremes in climate change simulations using the peaks-over-threshold method with a non-stationary threshold

    Czech Academy of Sciences Publication Activity Database

    Kyselý, Jan; Picek, J.; Beranová, Romana

    2010-01-01

    Roč. 72, 1-2 (2010), s. 55-68 ISSN 0921-8181 R&D Projects: GA ČR GA205/06/1535; GA ČR GAP209/10/2045 Grant - others:GA MŠk(CZ) LC06024 Institutional research plan: CEZ:AV0Z30420517 Keywords : climate change * extreme value analysis * global climate models * peaks-over-threshold method * peaks-over-quantile regression * quantile regression * Poisson process * extreme temperatures Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.351, year: 2010

  11. Managing Community Resilience to Climate Extremes, Rapid Unsustainable Urbanization, Emergencies of Scarcity, and Biodiversity Crises by Use of a Disaster Risk Reduction Bank.

    Science.gov (United States)

    Canyon, Deon V; Burkle, Frederick M; Speare, Rick

    2015-12-01

    Earth's climate is changing and national and international decision-makers are recognizing that global health security requires urgent attention and a significant investment to protect the future. In most locations, current data are inadequate to conduct a full assessment of the direct and indirect health impacts of climate change. All states require this information to evaluate community-level resilience to climate extremes and climate change. A model that is being used successfully in the United Kingdom, Australia, and New Zealand is recommended to generate rapid information to assist decision-makers in the event of a disaster. The model overcomes barriers to success inherent in the traditional ''top-down'' approach to managing crises and recognizes the capacity of capable citizens and community organizers to facilitate response and recovery if provided the opportunity and resources. Local information is a prerequisite for strategic and tactical statewide planning. Time and resources are required to analyze risks within each community and what is required to prevent (mitigate), prepare, respond, recover (rehabilitate), anticipate, and assess any threatening events. Specific requirements at all levels from state to community must emphasize community roles by focusing on how best to maintain, respond, and recover public health protections and the infrastructure necessary for health security.

  12. Two drastically different climate states on an Earth-like land planet with overland water recycling

    Science.gov (United States)

    Kalidindi, S.; Reick, C. H.; Raddatz, T.; Claussen, M.

    2017-12-01

    Prior studies have demonstrated that habitable areas on low-obliquity land planets are confined to the edges of frozen ice caps. Whether such dry planets can maintain long-lived liquid water is unclear. Leconte et al. 2013 argue that on such planets mechanisms like gravity driven ice flows and geothermal flux can maintain liquid water at the edges of thick ice caps and this water may flow back to the lower latitudes through rivers. However, there exists no modelling study which investigates the climate of an Earth-like land planet with an overland recycling mechanism bringing fresh water back from higher to lower latitudes. In our study, by using a comprehensive climate model ICON, we find that an Earth-like land planet with an overland recycling mechanism can exist in two drastically different climate states for the same set of boundary conditions and parameter values: A Cold and Wet (CW) state with dominant low-latitude precipitation and, a Hot and Dry (HD) state with only high-latitude precipitation. For perpetual equinox conditions, both climate states are stable below a certain threshold value of background soil albedo (α) while above that only the CW state is stable. Starting from the HD state and increasing α above the threshold causes an abrupt shift from the HD state to the CW state resulting in a sudden cooling of about 35°C globally which is of the order of the temperature difference between the present-day and the Snowball Earth state. In contrast to the Snowball Earth instability, we find that the sudden cooling in our study is driven by the cloud albedo feedback rather than the snow-albedo feedback. Also, when α in the CW state is reduced back to zero the land planet does not display a closed hysteresis. Our study also has implications for the habitability of Earth-like land planets. At the inner edge of the habitable zone, the higher cloud cover in the CW state cools the planet and may prevent the onset of a runaway greenhouse state. At the outer

  13. Plate tectonic influences on Earth's baseline climate: a 2 billion-year record

    Science.gov (United States)

    McKenzie, R.; Evans, D. A.; Eglington, B. M.; Planavsky, N.

    2017-12-01

    Plate tectonic processes present strong influences on the long-term carbon cycle, and thus global climate. Here we utilize multiple aspects of the geologic record to assess the role plate tectonics has played in driving major icehouse­-greenhouse transitions for the past 2 billion years. Refined paleogeographic reconstructions allow us to quantitatively assess the area of continents in various latitudinal belts throughout this interval. From these data we are able to test the hypothesis that concentrating continental masses in low-latitudes will drive cooler climates due to increased silicate weathering. We further superimpose records of events that are believed to increase the `weatherability' of the crust, such as large igneous province emplacement, island-arc accretion, and continental collisional belts. Climatic records are then compared with global detrital zircon U-Pb age data as a proxy for continental magmatism. Our results show a consistent relationship between zircon-generating magmatism and icehouse-greenhouse transitions for > 2 billion years, whereas paleogeographic records show no clear consistent relationship between continental configurations and prominent climate transitions. Volcanic outgassing appears to exert a first-order control on major baseline climatic shifts; however, paleogeography likely plays an important role in the magnitude of this change. Notably, climatic extremes, such as the Cryogenian icehouse, occur during a combination of reduce volcanism and end-member concentrations of low-latitudinal continents.

  14. Characterizing phenological vegetation dynamics amidst extreme climate variability in Australia with MODIS VI data

    Science.gov (United States)

    Broich, M.; Huete, A. R.; Xuanlon, M.; Davies, K.; Restrepo-Coupe, N.; Ratana, P.

    2012-12-01

    Australia's climate is extremely variable with inter-annual rainfall at any given site varying by 5- or 6-fold or more, across the continent. In addition to such inter-annual variability, there can be significant intra-annual variability, especially in monsoonal Australia (e.g. the wet tropical savannas) and Mediterranean climates in SW Australia where prolonged dry seasons occur each year. This presents unique challenges to the characterization of seasonal dynamics with satellite datasets. In contrast to annual reoccurring temperature-driven phenology of northern hemisphere mid-latitudes, vegetation dynamics of the vast and dry Australian interior are poorly quantified by existing remote sensing products. For example, in the current global-based MODIS phenology product, central Australia is covered by ~30% fill values for any given year. Two challenges are specific to Australian landscapes: first, the difficulty of characterizing seasonality of rainfall-driven ecosystems in interior Australia where duration and magnitude of green-up and brown down cycles show high inter annual variability; second, modeling two phenologic layers, the trees and the grass in savannas were the trees are evergreen but the herbaceous understory varies with rainfall. Savannas cover >50% of Australia. Australia's vegetation and climate are different from other continents. A MODIS phenology product capable of characterizing vegetation dynamics across the continent is being developed in this research as part of the AusCover national expert network aiming to provide Australian biophysical remote sensing data time-series and continental-scale map products. These products aim to support the Terrestrial Ecosystem Research Network (TERN) serving ecosystem research in Australia. The MODIS land surface product for Australia first searches the entire time series of each Climate Modeling Grid pixel for low-high-low extreme point sequences. A double logistic function is then fit to each of these

  15. Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal

    Science.gov (United States)

    Cardoso, Rita M.; Soares, Pedro M. M.; Lima, Daniela C. A.; Miranda, Pedro M. A.

    2018-02-01

    Large temperature spatio-temporal gradients are a common feature of Mediterranean climates. The Portuguese complex topography and coastlines enhances such features, and in a small region large temperature gradients with high interannual variability is detected. In this study, the EURO-CORDEX high-resolution regional climate simulations (0.11° and 0.44° resolutions) are used to investigate the maximum and minimum temperature projections across the twenty-first century according to RCP4.5 and RCP8.5. An additional WRF simulation with even higher resolution (9 km) for RCP8.5 scenario is also examined. All simulations for the historical period (1971-2000) are evaluated against the available station observations and the EURO-CORDEX model results are ranked in order to build multi-model ensembles. In present climate models are able to reproduce the main topography/coast related temperature gradients. Although there are discernible differences between models, most present a cold bias. The multi-model ensembles improve the overall representation of the temperature. The ensembles project a significant increase of the maximum and minimum temperatures in all seasons and scenarios. Maximum increments of 8 °C in summer and autumn and between 2 and 4 °C in winter and spring are projected in RCP8.5. The temperature distributions for all models show a significant increase in the upper tails of the PDFs. In RCP8.5 more than half of the extended summer (MJJAS) has maximum temperatures exceeding the historical 90th percentile and, on average, 60 tropical nights are projected for the end of the century, whilst there are only 7 tropical nights in the historical period. Conversely, the number of cold days almost disappears. The yearly average number of heat waves increases by seven to ninefold by 2100 and the most frequent length rises from 5 to 22 days throughout the twenty-first century. 5% of the longest events will last for more than one month. The amplitude is overwhelming

  16. Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: a case study in Xinjiang, China

    Science.gov (United States)

    Yao, Junqiang; Chen, Yaning; Zhao, Yong; Mao, Weiyi; Xu, Xinbing; Liu, Yang; Yang, Qing

    2018-02-01

    Observed data showed the climatic transition from warm-dry to warm-wet in Xinjiang during the past 30 years and will probably affect vegetation dynamics. Here, we analyze the interannual change of vegetation index based on the satellite-derived normalized difference vegetation index (NDVI) with temperature and precipitation extreme over the Xinjiang, using the 8-km NDVI third-generation (NDVI3g) from the Global Inventory Modelling and Mapping Studies (GIMMS) from 1982 to 2010. Few previous studies analyzed the link between climate extremes and vegetation response. From the satellite-based results, annual NDVI significantly increased in the first two decades (1981-1998) and then decreased after 1998. We show that the NDVI decrease over the past decade may conjointly be triggered by the increases of temperature and precipitation extremes. The correlation analyses demonstrated that the trends of NDVI was close to the trend of extreme precipitation; that is, consecutive dry days (CDD) and torrential rainfall days (R24) positively correlated with NDVI during 1998-2010. For the temperature extreme, while the decreases of NDVI correlate positively with warmer mean minimum temperature ( Tnav), it correlates negatively with the number of warmest night days ( Rwn). The results suggest that the climatic extremes have possible negative effects on the ecosystem.

  17. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States.

    Science.gov (United States)

    Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D

    2001-05-01

    Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation.

  18. Understanding, representing and communicating earth system processes in weather and climate within CNRCWP

    Science.gov (United States)

    Sushama, Laxmi; Arora, Vivek; de Elia, Ramon; Déry, Stephen; Duguay, Claude; Gachon, Philippe; Gyakum, John; Laprise, René; Marshall, Shawn; Monahan, Adam; Scinocca, John; Thériault, Julie; Verseghy, Diana; Zwiers, Francis

    2017-04-01

    The Canadian Network for Regional Climate and Weather Processes (CNRCWP) provides significant advances and innovative research towards the ultimate goal of reducing uncertainty in numerical weather prediction and climate projections for Canada's Northern and Arctic regions. This talk will provide an overview of the Network and selected results related to the assessment of the added value of high-resolution modelling that has helped fill critical knowledge gaps in understanding the dynamics of extreme temperature and precipitation events and the complex land-atmosphere interactions and feedbacks in Canada's northern and Arctic regions. In addition, targeted developments in the Canadian regional climate model, that facilitate direct application of model outputs in impact and adaptation studies, particularly those related to the water, energy and infrastructure sectors will also be discussed. The close collaboration between the Network and its partners and end users contributed significantly to this effort.

  19. A spatial assessment framework for evaluating flood risk under extreme climates.

    Science.gov (United States)

    Chen, Yun; Liu, Rui; Barrett, Damian; Gao, Lei; Zhou, Mingwei; Renzullo, Luigi; Emelyanova, Irina

    2015-12-15

    Australian coal mines have been facing a major challenge of increasing risk of flooding caused by intensive rainfall events in recent years. In light of growing climate change concerns and the predicted escalation of flooding, estimating flood inundation risk becomes essential for understanding sustainable mine water management in the Australian mining sector. This research develops a spatial multi-criteria decision making prototype for the evaluation of flooding risk at a regional scale using the Bowen Basin and its surroundings in Queensland as a case study. Spatial gridded data, including climate, hydrology, topography, vegetation and soils, were collected and processed in ArcGIS. Several indices were derived based on time series of observations and spatial modeling taking account of extreme rainfall, evapotranspiration, stream flow, potential soil water retention, elevation and slope generated from a digital elevation model (DEM), as well as drainage density and proximity extracted from a river network. These spatial indices were weighted using the analytical hierarchy process (AHP) and integrated in an AHP-based suitability assessment (AHP-SA) model under the spatial risk evaluation framework. A regional flooding risk map was delineated to represent likely impacts of criterion indices at different risk levels, which was verified using the maximum inundation extent detectable by a time series of remote sensing imagery. The result provides baseline information to help Bowen Basin coal mines identify and assess flooding risk when making adaptation strategies and implementing mitigation measures in future. The framework and methodology developed in this research offers the Australian mining industry, and social and environmental studies around the world, an effective way to produce reliable assessment on flood risk for managing uncertainty in water availability under climate change. Copyright © 2015. Published by Elsevier B.V.

  20. Phenological response of an Arizona dryland forest to short-term climatic extremes

    Science.gov (United States)

    Walker, Jessica; de Beurs, Kirsten; Wynne, Randolph

    2015-01-01

    Baseline information about dryland forest phenology is necessary to accurately anticipate future ecosystem shifts. The overarching goal of our study was to investigate the variability of vegetation phenology across a dryland forest landscape in response to climate alterations. We analyzed the influence of site characteristics and climatic conditions on the phenological patterns of an Arizona, USA, ponderosa pine (Pinus ponderosa) forest during a five-year period (2005 to 2009) that encompassed extreme wet and dry precipitation regimes. We assembled 80 synthetic Landsat images by applying the spatial and temporal adaptive reflectance fusion method (STARFM) to 500 m MODIS and 30 m Landsat-5 Thematic Mapper (TM) data. We tested relationships between site characteristics and the timing of peak Normalized Difference Vegetation Index (NDVI) to assess the effect of climatic stress on the green-up of individual pixels during or after the summer monsoon. Our results show that drought-induced stress led to a fragmented phenological response that was highly dependent on microsite parameters, as both the spatial autocorrelation of peak timing and the number of significant site variables increased during the drought year. Pixels at lower elevations and with higher proportions of herbaceous vegetation were more likely to exhibit dynamic responses to changes in precipitation conditions. Our study demonstrates the complexity of responses within dryland forest ecosystems and highlights the need for standardized monitoring of phenology trends in these areas. The spatial and temporal variability of phenological signals may provide a quantitative solution to the problem of how to evaluate dryland land surface trends across time.

  1. Phenological Response of an Arizona Dryland Forest to Short-Term Climatic Extremes

    Directory of Open Access Journals (Sweden)

    Jessica Walker

    2015-08-01

    Full Text Available Baseline information about dryland forest phenology is necessary to accurately anticipate future ecosystem shifts. The overarching goal of our study was to investigate the variability of vegetation phenology across a dryland forest landscape in response to climate alterations. We analyzed the influence of site characteristics and climatic conditions on the phenological patterns of an Arizona, USA, ponderosa pine (Pinus ponderosa forest during a five-year period (2005 to 2009 that encompassed extreme wet and dry precipitation regimes. We assembled 80 synthetic Landsat images by applying the spatial and temporal adaptive reflectance fusion method (STARFM to 500 m MODIS and 30 m Landsat-5 Thematic Mapper (TM data. We tested relationships between site characteristics and the timing of peak Normalized Difference Vegetation Index (NDVI to assess the effect of climatic stress on the green-up of individual pixels during or after the summer monsoon. Our results show that drought-induced stress led to a fragmented phenological response that was highly dependent on microsite parameters, as both the spatial autocorrelation of peak timing and the number of significant site variables increased during the drought year. Pixels at lower elevations and with higher proportions of herbaceous vegetation were more likely to exhibit dynamic responses to changes in precipitation conditions. Our study demonstrates the complexity of responses within dryland forest ecosystems and highlights the need for standardized monitoring of phenology trends in these areas. The spatial and temporal variability of phenological signals may provide a quantitative solution to the problem of how to evaluate dryland land surface trends across time.

  2. Food Prices and Climate Extremes: A Model of Global Grain Price Variability with Storage

    Science.gov (United States)

    Otto, C.; Schewe, J.; Frieler, K.

    2015-12-01

    Extreme climate events such as droughts, floods, or heat waves affect agricultural production in major cropping regions and therefore impact the world market prices of staple crops. In the last decade, crop prices exhibited two very prominent price peaks in 2007-2008 and 2010-2011, threatening food security especially for poorer countries that are net importers of grain. There is evidence that these spikes in grain prices were at least partly triggered by actual supply shortages and the expectation of bad harvests. However, the response of the market to supply shocks is nonlinear and depends on complex and interlinked processes such as warehousing, speculation, and trade policies. Quantifying the contributions of such different factors to short-term price variability remains difficult, not least because many existing models ignore the role of storage which becomes important on short timescales. This in turn impedes the assessment of future climate change impacts on food prices. Here, we present a simple model of annual world grain prices that integrates grain stocks into the supply and demand functions. This firstly allows us to model explicitly the effect of storage strategies on world market price, and thus, for the first time, to quantify the potential contribution of trade policies to price variability in a simple global framework. Driven only by reported production and by long--term demand trends of the past ca. 40 years, the model reproduces observed variations in both the global storage volume and price of wheat. We demonstrate how recent price peaks can be reproduced by accounting for documented changes in storage strategies and trade policies, contrasting and complementing previous explanations based on different mechanisms such as speculation. Secondly, we show how the integration of storage allows long-term projections of grain price variability under climate change, based on existing crop yield scenarios.

  3. Vulnerability and impact assessment of extreme climatic event: A case study of southern Punjab, Pakistan.

    Science.gov (United States)

    Aslam, Abdul Qayyum; Ahmad, Sajid R; Ahmad, Iftikhar; Hussain, Yawar; Hussain, Muhammad Sameem

    2017-02-15

    Understanding of frequency, severity, damages and adaptation costs of climate extremes is crucial to manage their aftermath. Evaluation of PRECIS RCM modelled data under IPCC scenarios in Southern Punjab reveals that monthly mean temperature is 30°C under A2 scenario, 2.4°C higher than A1B which is 27.6°C in defined time lapses. Monthly mean precipitation under A2 scenario ranges from 12 to 15mm and for A1B scenario it ranges from 15 to 19mm. Frequency modelling of floods and droughts via poisson distribution shows increasing trend in upcoming decades posing serious impacts on agriculture and livestock, food security, water resources, public health and economic status. Cumulative loss projected for frequent floods without adaptation will be in the range of USD 66.8-79.3 billion in time lapse of 40years from 2010 base case. Drought damage function @ 18% for A2 scenario and @ 13.5% for A1B scenario was calculated; drought losses on agriculture and livestock sectors were modelled. Cumulative loss projected for frequent droughts without adaptation under A2 scenario will be in the range of USD 7.5-8.5 billion while under A1B scenario it will be in the range of USD 3.5-4.2 billion for time lapse of 60years from base case 1998-2002. Severity analysis of extreme events shows that situation get worse if adaptations are not only included in the policy but also in the integrated development framework with required allocation of funds. This evaluation also highlights the result of cost benefit analysis, benefits of the adaptation options (mean & worst case) for floods and droughts in Southern Punjab. Additionally the research highlights the role of integrated extreme events impact assessment methodology in performing the vulnerability assessments and to support the adaptation decisions. This paper is an effort to highlight importance of bottom up approaches to deal with climate change. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Climate Change: A New Metric to Measure Changes in the Frequency of Extreme Temperatures using Record Data

    Science.gov (United States)

    Munasinghe, L.; Jun, T.; Rind, D. H.

    2012-01-01

    Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.

  5. Climate Literacy: Progress in Climate and Global Change Undergraduate Courses in Meteorology and Earth System Science Programs at Jackson State University

    Science.gov (United States)

    Reddy, S. R.; Tuluri, F.; Fadavi, M.

    2017-12-01

    JSU Meteorology Program will be offering AMS Climate Studies undergraduate course under MET 210: Climatology in spring 2013. AMS Climate Studies is offered as a 3 credit hour laboratory course with 2 lectures and 1 lab sessions per week. Although this course places strong intellectual demands upon each student, the instructors' objective is to help each student to pass the course with an adequate understanding of the fundamentals and advanced and advanced courses. AMS Climate Studies is an introductory college-level course developed by the American Meteorological Society for implementation at undergraduate institutions nationwide. The course places students in a dynamic and highly motivational educational environment where they investigate Earth's climate system using real-world environmental data. The AMS Climate Studies course package consists of a textbook, investigations manual, course website, and course management system-compatible files. Instructors can use these resources in combinations that make for an exciting learning experience for their students. This is a content course in Earth Science. It introduces a new concept that views Earth as a synergistic physical system applied concepts of climatology, for him/her to understand basic atmospheric/climate processes, physical and dynamical climatology, regional climatology, past and future climates and statistical analysis using climate data and to be prepared to profit from studying more of interrelated phenomenon governed by complex processes involving the atmosphere, the hydrosphere, the biosphere, and the solid Earth. The course emphasizes that the events that shape the physical, chemical, and biological processes of the Earth do not occur in isolation. Rather, there is a delicate relationship between the events that occur in the ocean, atmosphere, and the solid Earth. The course provides a multidimensional approach in solving scientific issues related to Earth-related sciences,

  6. Climate change: which stakes? Stakes of climate change. Man and the trajectory of the Earth ship

    International Nuclear Information System (INIS)

    Bramy, Herve; Rogalski, Michel; Sachs, Ignacy

    2011-12-01

    A first article recalls what the greenhouse effect is, outlines that the increase of CO 2 concentration due to human activity is indisputable, that the future of the Kyoto Protocol remains hypothetical, that evolving towards a new development mode is a crucial necessity. It also addresses the issue of financing this struggle against climate change, and outlines the importance of international negotiations. A second article outlines the stakes of climate change, notably by referring to the different international summits and to the associated issues (commitments of most countries, technology transfers, and so on). The third article comments the entry into the Anthropocene as a disruption for the joint evolution of mankind and biosphere. The author outlines the need of a new planning for development, and briefly discusses the question of energies

  7. Climate Model Evaluation using New Datasets from the Clouds and the Earth's Radiant Energy System (CERES)

    Science.gov (United States)

    Loeb, Norman G.; Wielicki, Bruce A.; Doelling, David R.

    2008-01-01

    There are some in the science community who believe that the response of the climate system to anthropogenic radiative forcing is unpredictable and we should therefore call off the quest . The key limitation in climate predictability is associated with cloud feedback. Narrowing the uncertainty in cloud feedback (and therefore climate sensitivity) requires optimal use of the best available observations to evaluate and improve climate model processes and constrain climate model simulations over longer time scales. The Clouds and the Earth s Radiant Energy System (CERES) is a satellite-based program that provides global cloud, aerosol and radiative flux observations for improving our understanding of cloud-aerosol-radiation feedbacks in the Earth s climate system. CERES is the successor to the Earth Radiation Budget Experiment (ERBE), which has widely been used to evaluate climate models both at short time scales (e.g., process studies) and at decadal time scales. A CERES instrument flew on the TRMM satellite and captured the dramatic 1998 El Nino, and four other CERES instruments are currently flying aboard the Terra and Aqua platforms. Plans are underway to fly the remaining copy of CERES on the upcoming NPP spacecraft (mid-2010 launch date). Every aspect of CERES represents a significant improvement over ERBE. While both CERES and ERBE measure broadband radiation, CERES calibration is a factor of 2 better than ERBE. In order to improve the characterization of clouds and aerosols within a CERES footprint, we use coincident higher-resolution imager observations (VIRS, MODIS or VIIRS) to provide a consistent cloud-aerosol-radiation dataset at climate accuracy. Improved radiative fluxes are obtained by using new CERES-derived Angular Distribution Models (ADMs) for converting measured radiances to fluxes. CERES radiative fluxes are a factor of 2 more accurate than ERBE overall, but the improvement by cloud type and at high latitudes can be as high as a factor of 5

  8. Impact of urban WWTP and CSO fluxes on river peak flow extremes under current and future climate conditions.

    Science.gov (United States)

    Keupers, Ingrid; Willems, Patrick

    2013-01-01

    The impact of urban water fluxes on the river system outflow of the Grote Nete catchment (Belgium) was studied. First the impact of the Waste Water Treatment Plant (WWTP) and the Combined Sewer Overflow (CSO) outflows on the river system for the current climatic conditions was determined by simulating the urban fluxes as point sources in a detailed, hydrodynamic river model. Comparison was made of the simulation results on peak flow extremes with and without the urban point sources. In a second step, the impact of climate change scenarios on the urban fluxes and the consequent impacts on the river flow extremes were studied. It is shown that the change in the 10-year return period hourly peak flow discharge due to climate change (-14% to +45%) was in the same order of magnitude as the change due to the urban fluxes (+5%) in current climate conditions. Different climate change scenarios do not change the impact of the urban fluxes much except for the climate scenario that involves a strong increase in rainfall extremes in summer. This scenario leads to a strong increase of the impact of the urban fluxes on the river system.

  9. Oceanic influence on extreme rainfall trends in the north central coast of Venezuela: present and future climate assessments

    Directory of Open Access Journals (Sweden)

    Lelys Guenni

    2013-10-01

    Full Text Available Extreme events are an important part of climate variability and their intensity and persistence are often modulated by large scale climatic patterns which might act as forcing drivers affecting their probability of occurrence. When the North Tropical Atlantic (NTA and the Equatorial Pacific (Ni\\~no 3 region sea surface temperature (SST anomalies are of opposite signs and the first one is positive while the second one is negative, the rainfall response is stronger in the northern coast of Venezuela as well as in the Pacific coast of Central America during the Nov-Feb period. The difference between these two SST anomaly time series (NTA-Ni\\~no3 is used in this analysis and it is called the Atlantic-Pacific Index or API. By fitting a dynamic generalized extreme value (GEV model to station based daily rainfall at different locations and to the Xie and Arkin dataset for the Vargas state, we found the API index to be an adequate index to explain the probabilistic nature of rainfall extremes in the northern Venezuelan coast for the months Nov-Feb. Dependence between the Atlantic-Pacific index and the probabilistic behavior of extreme rainfall was also explored for simulations from two global coupled General Circulation Models for the 20th century climate (20C3M experiment and the 21st century climate (SRES A2 experiment: the Echam5 model and the HadCM3 model. A significant dependence of extreme rainfall on the Atlantic-Pacific index is well described by the GEV dynamic model for the Echam5 20C3M experiment model outputs. When looking at future climates under the SRES A2 experiment, the dependence of extreme rainfall from the API index is still significant for the middle part of the 21st century (2046-2064, while this dependence fades off for the latest part of the century (2081-2099

  10. Lifecycle Assessments of Railway Bridge Transitions Exposed to Extreme Climate Events

    Directory of Open Access Journals (Sweden)

    Sadudee Setsobhonkul

    2017-06-01

    Full Text Available Railway track components located at bridge transition zones or approach areas suffer from impact load and vibrations caused by abrupt changes in track stiffness on the bridge and the subgrade. The numerous strategies that can be used to mitigate these abrupt track stiffness changes rely on one of two concepts. The first concept is that of providing a gradual stiffness change, and the second is that of equalizing the track stiffness. A number of such mitigation methods have been developed and implemented over recent decades. Construction activities associated with these methods require various materials, processes, and uses of time, costs, and carbon emissions. In this study, eight of the most common techniques for railway bridge transition mitigation, including under ballast mats (UBMs, soft baseplates, under sleeper pads (USPs, rail pads, embankment treatments, transition slabs, ballast bonding, and wide sleepers, are compared. This study benchmarks the costs and carbon emissions of these eight mitigation techniques over the 50-year lifespan of a railway system subject to identical probabilities of four environmental scenarios: a control case, extremely high temperatures, extremely low temperatures, and flash flooding. This unprecedented study systemically investigates the effectiveness of the mitigation methods while considering the effects of 30 and 100 m bridge span lengths. Our results indicate that railway engineers should adopt different mitigation methods for different scenarios. The soft baseplate is the most appropriate method for a short-span bridge in the control case and the case of flash flooding, while ballast bonding is better for long-span railway bridges. Embankment treatment is recommended for both high- and low-extreme temperatures. However, its applicability is limited when the differential track stiffness is extremely high. Hence, alterna