WorldWideScience

Sample records for earth exploration toolbook

  1. Earth Exploration Toolbook Workshops: Helping Teachers and Students Analyze Web-based Scientific Data

    Science.gov (United States)

    McAuliffe, C.; Ledley, T.; Dahlman, L.; Haddad, N.

    2007-12-01

    One of the challenges faced by Earth science teachers, particularly in K-12 settings, is that of connecting scientific research to classroom experiences. Helping teachers and students analyze Web-based scientific data is one way to bring scientific research to the classroom. The Earth Exploration Toolbook (EET) was developed as an online resource to accomplish precisely that. The EET consists of chapters containing step-by-step instructions for accessing Web-based scientific data and for using a software analysis tool to explore issues or concepts in science, technology, and mathematics. For example, in one EET chapter, users download Earthquake data from the USGS and bring it into a geographic information system (GIS), analyzing factors affecting the distribution of earthquakes. The goal of the EET Workshops project is to provide professional development that enables teachers to incorporate Web-based scientific data and analysis tools in ways that meet their curricular needs. In the EET Workshops project, Earth science teachers participate in a pair of workshops that are conducted in a combined teleconference and Web-conference format. In the first workshop, the EET Data Analysis Workshop, participants are introduced to the National Science Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). They also walk through an Earth Exploration Toolbook (EET) chapter and discuss ways to use Earth science datasets and tools with their students. In a follow-up second workshop, the EET Implementation Workshop, teachers share how they used these materials in the classroom by describing the projects and activities that they carried out with students. The EET Workshops project offers unique and effective professional development. Participants work at their own Internet-connected computers, and dial into a toll-free group teleconference for step-by-step facilitation and interaction. They also receive support via Elluminate, a Web

  2. Earth Exploration Toolbook Workshops: Web-Conferencing and Teleconferencing Professional Development Bringing Earth Science Data Analysis and Visualization Tools to K-12 Teachers and Students

    Science.gov (United States)

    McAuliffe, C.; Ledley, T.

    2008-12-01

    The Earth Exploration Toolbook (EET) Workshops Project provides a mechanism for teachers and students to have successful data-using educational experiences. In this professional development project, teachers learn to use National Science Digital Library (NSDL), the Digital Library for Earth System Education (DLESE), and an Earth Exploration Toolbook (EET) chapter. In an EET Data Analysis Workshop, participants walk through an Earth Exploration Toolbook (EET) chapter, learning basic data analysis techniques and discussing ways to use Earth science datasets and analysis tools with their students. We have offered twenty-eight Data Analysis Workshops since the project began. The total number of participants in the twenty-eight workshops to date is three hundred eleven, which reflects one hundred eighty different teachers participating in one or more workshops. Our workshops reach middle and high school teachers across the United States at schools with lower socioeconomic levels and at schools with large numbers of minority students. Our participants come from thirty-eight different states including Alaska, Maine, Florida, Montana, and many others. Eighty-six percent of our participants are classroom teachers. The remaining fourteen percent are staff development specialists, university faculty, or outreach educators working with teachers. Of the classroom teachers, one third are middle school teachers (grades 6 to 8) and two thirds are high school teachers (grades 9 to 12.) Thirty-four percent of our participants come from schools where minority populations are the majority make up of the school. Twenty-five percent of our participants are at schools where the majority of the students receive free or reduced cost lunches. Our professional development workshops are helping to raise teachers' awareness of both the Digital Library for Earth System Education (DLESE) and the National Science Digital Library (NSDL). Prior to taking one of our workshops, forty-two percent of

  3. The Federation of Earth Science Information Partners (ESIP Federation): Facilitating Partnerships that Work to Bring Earth Science Data into Educational Settings

    Science.gov (United States)

    Freuder, R.; Ledley, T. S.; Dahlman, L.

    2004-12-01

    The Federation of Earth Science Information Partners (ESIP Federation, http://www.esipfed.org) formed seven years ago and now with 77 member organizations is working to "increase the quality and value of Earth science products and services .for the benefit of the ESIP Federation's stakeholder communities." Education (both formal and informal) is a huge audience that we serve. Partnerships formed by members within the ESIP Federation have created bridges that close the gap between Earth science data collection and research and the effective use of that Earth science data to explore concepts in Earth system science by the educational community. The Earth Exploration Toolbook is one of those successful collaborations. The Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) grew out of a need of the educational community (articulated by the Digital Library for Earth System Education (DLESE) community) to have better access to Earth science data and data analysis tools and help in effectively using them with students. It is a collection of web-accessible chapters, each featuring step-by-step instructions on how to use an Earth science dataset and data analysis tool to investigate an issue or concept in Earth system science. Each chapter also provides the teacher information on the outcome of the activity, grade level, standards addressed, learning goals, time required, and ideas for exploring further. The individual ESIP Federation partners alone could not create the EET. However, the ESIP Federation facilitated the partnering of members, drawing from data providers, researchers and education tool developers, to create the EET. Interest in the EET has grown since it went live with five chapters in July 2003. There are currently seven chapters with another six soon to be released. Monthly online seminars in which over a hundred educators have participated have given very positive feedback. Post workshop surveys from our telecon-online workshops indicate that

  4. Atlas and toolbook of MR mammography; Lehratlas der MR-Mammographie

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U. [Universitaetsklinikum Goettingen (Germany). Abt. Roentgendiagnostik I; Brinck, U. [Universitaetsklinikum Goettingen (Germany). Abt. Pathologie und Pathologische Anatomie

    2000-07-01

    This richly illustrated toolbook and atlas contains information on all aspects of nmr diagnostic imaging of benign or malignant neoplasms of female and male mammary glands. It offers pinpointed guidance and insight for vocational training and continuing training of radiology assistants, students and medical radiologists. (orig./AJ) [German] Die MRT als hochaufloesendes und schaedigungsfreies Diagnostikum gewinnt gerade in der emotional stark besetzten Mammadiagnostik zunehmend an Bedeutung. Dennoch beherrschen nur wenige Zentren im deutschsprachigen Raum diese Technik, die - eine hohe Reproduzierbarkeit bei fehlender Belastung fuer die Patientin bietet, - invasive Karzinome bereits ab einer Groesse von 5 mm mit hoher Zuverlaessigkeit ausschliessen kann und - gerade bei widerspruechlichen Befunden zwischen klinischer Untersuchung, Roentgenmammographie und perkutaner Biopsie eine wesentliche Entscheidungshilfe bieten kann. Aus einem der fuehrenden Zentren in der MR-Mammographie wurde daher dieser praxisnahe, opulent ausgestattete und weit ueber die reine Bildinformation hinausgehende 'Einstiegs- und Lehratlas' entwickelt. Er bietet Radiologen in Fort- und Weiterbildung, aber auch Gynaekologen mit ueber 400 Abbildungen klare Antworten auf die Fragen. (orig./AJ)

  5. Applicability of neutrino beams to Earth exploration

    International Nuclear Information System (INIS)

    Dolgoshein, B.A.; Kalinovskij, A.N.

    1985-01-01

    The projects on applicability of neutrino beams from high energy accelerators for geological exploration and study of the Earth structure are discussed. The GENIUS (Geological Exploration by Neutrino Induced Underground Sound) project is among them. It covers detecting and studying space-time characteristics of acoustic signal arising in case of neutrino interaction with Earth depth rocks discussed. The GEMINI (Geological Exploration with Muons Induced by neutrino interactions) project represents one more possibility for using geotron neutrino beam for the purpose of geological exploration. The GEOSCAN project represents the possibility for applying high energy neutrino beams for the purpose of the Earth translusence to determine the changes in the density of internal part of the Earth. The necessity of detailed investigations of the problem of applicability of neutrino beams in the field of the Earth exploration is pointed out

  6. Impacts on Explorer 46 from an Earth orbiting population

    Science.gov (United States)

    Kessler, D. J.

    1985-01-01

    Explorer 46 was launched into Earth orbit in August 1972 to evaluate the effectiveness of using double-wall structures to protect against meteoroids. The data from the Meteoroid Bumper Experiment on Explorer 46 is reexamined and it is concluded that most of the impacts originated from an Earth orbiting population. The probable source of this orbiting population is solid rocket motors fired in Earth orbit.

  7. Earth Trek...Explore Your Environment.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This booklet for children emphasizes the exploration and protection of the environment. An introduction discusses the interaction between humankind and the environment, emphasizing that the earth is a closed system. Chapter 1, "Mission: Protect the Water," addresses human dependence on water, water pollution, and water treatment. Chapter…

  8. The Exploration of Near-Earth Objects

    Science.gov (United States)

    1998-01-01

    Near-Earth objects (NEOs) are asteroids and comets with orbits that intersect or pass near that of our planet. About 400 NEOs are currently known, but the entire population contains perhaps 3000 objects with diameters larger than 1 km. These objects, thought to be similar in many ways to the ancient planetesimal swarms that accreted to form the planets, are interesting and highly accessible targets for scientific research. They carry records of the solar system's birth and the geologic evolution of small bodies in the interplanetary region. Because collisions of NEOs with Earth pose a finite hazard to life, the exploration of these objects is particularly urgent. Devising appropriate risk-avoidance strategies requires quantitative characterization of NEOS. They may also serve as resources for use by future human exploration missions. The scientific goals of a focused NEO exploration program are to determine their orbital distribution, physical characteristics, composition, and origin. Physical characteristics, such as size, shape, and spin properties, have been measured for approximately 80 NEOs using observations at infrared, radar, and visible wavelengths. Mineralogical compositions of a comparable number of NEOs have been inferred from visible and near-infrared spectroscopy. The formation and geologic histories of NEOs and related main-belt asteroids are currently inferred from studies of meteorites and from Galileo and Near-Earth Asteroid Rendezvous spacecraft flybys of three main-belt asteroids. Some progress has also been made in associating specific types of meteorites with main-belt asteroids, which probably are the parent bodies of most NEOs. The levels of discovery of NEOs in the future will certainly increase because of the application of new detection systems. The rate of discovery may increase by an order of magnitude, allowing the majority of Earth-crossing asteroids and comets with diameters greater than 1 km to he discovered in the next decade. A

  9. Strategic Implications of Human Exploration of Near-Earth Asteroids

    Science.gov (United States)

    Drake, Bret G.

    2011-01-01

    The current United States Space Policy [1] as articulated by the White House and later confirmed by the Congress [2] calls for [t]he extension of the human presence from low-Earth orbit to other regions of space beyond low-Earth orbit will enable missions to the surface of the Moon and missions to deep space destinations such as near-Earth asteroids and Mars. Human exploration of the Moon and Mars has been the focus of numerous exhaustive studies and planning, but missions to Near-Earth Asteroids (NEAs) has, by comparison, garnered relatively little attention in terms of mission and systems planning. This paper examines the strategic implications of human exploration of NEAs and how they can fit into the overall exploration strategy. This paper specifically addresses how accessible NEAs are in terms of mission duration, technologies required, and overall architecture construct. Example mission architectures utilizing different propulsion technologies such as chemical, nuclear thermal, and solar electric propulsion were formulated to determine resulting figures of merit including number of NEAs accessible, time of flight, mission mass, number of departure windows, and length of the launch windows. These data, in conjunction with what we currently know about these potential exploration targets (or need to know in the future), provide key insights necessary for future mission and strategic planning.

  10. Near earth tracking/data exploration

    Science.gov (United States)

    Spearing, Robert

    1990-01-01

    The future challenges facing NASA's data acquisition program are examined, with emphasis on the near-earth exploration activity and the associated data systems. It is noted that the process that is being followed is an evolutionary one: new technologies are being gradually integrated into currently operating systems. For example, advanced handling is already being introduced into such programs as the Space Telescope and the Gamma Ray Source Observatory System.

  11. The BIOMASS mission — An ESA Earth Explorer candidate to measure the BIOMASS of the earth's forests

    DEFF Research Database (Denmark)

    Scipal, K.; Arcioni, M.; Chave, J.

    2010-01-01

    The European Space Agency (ESA) released a Call for Proposals for the next Earth Explorer Core Mission in March 2005, with the aim to select the 7th Earth Explorer (EE-7) mission for launch in the next decade. Twenty-four proposals were received and subject to scientific and technical assessment...... of any current space systems capable of addressing this need....

  12. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    Science.gov (United States)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  13. Self-Guided Field Explorations: Integrating Earth Science into Students' Lives

    Science.gov (United States)

    Kirkby, K. C.; Kirkby, S.

    2013-12-01

    Self-guided field explorations are a simple way to transform an earth science class into a more pedagogically effective experience. Previous experience demonstrated that self-guided student explorations of museum and aquarium exhibits were both extremely popular and remarkably effective. That success led our program to test an expansion of the concept to include self-guided student explorations in outdoor field settings. Preliminary assessment indicates these self-guided field explorations are nearly as popular with students as the museum and aquarium explorations and are as pedagogically effective. Student gains on post-instruction assessment match or exceed those seen in instructor-assisted, hands-on, small group laboratory activities and completely eclipse gains achieved by traditional lecture instruction. As importantly, self-guided field explorations provide a way to integrate field experiences into large enrollment courses where the sheer scale of class trips makes them logistically impossible. This expands course breadth, integrating new topics that could not be as effectively covered by the original class structure. Our introductory program assessed two models of self-guided field explorations. A walking/cycling exploration of the Saint Anthony Falls area, a mile from campus, focuses on the intersections of geological processes with human history. Students explore the geology behind the waterfalls' evolution as well as its subsequent social and economic impacts on human history. A second exploration focuses on the campus area geology, including its building stones as well as its landscape evolution. In both explorations, the goal was to integrate geology with the students' broader understanding of the world they live in. Although the explorations' creation requires a significant commitment, once developed, self-guided explorations are surprisingly low maintenance. These explorations provide a model of a simple, highly effective pedagogical tool that is

  14. The 'glass earth' - geochemical frontiers in exploration through cover

    International Nuclear Information System (INIS)

    Carr, G.; Denton, G.; Giblin, A.; Korsch, M.; Andrew, A.; Whitford, D.

    1999-01-01

    'Glass Earth' represents a number of current and planned projects within CSIRO aimed at making 'transparent' the top 1000 m of the Earth's crust It builds upon current technologies developed within a number of CSIRO divisions as well as the Australian Mineral Exploration Technologies CRC (AMET CRC), the Australian Geodynamics CRC (AG CRC) and the CRC for Landscape Evolution and Mineral Exploration (CRC LEME). New geophysical and geochemical technologies will be developed to complement these, together with new capabilities in modelling, data integration and visualisation, including hydrogeochemistry, hydrogeology, surface geochemistry and isotope geochemistry, modelling of chemical, fluid and heat flows in rock and regolith, advanced visualisation and data fusion. This paper describes some recent work in the field of isotope geochemistry, with the principal aim of 'seeing through' cover to understand basement geology and detect hidden ore systems

  15. Virtual Exploration of Earth's Evolution

    Science.gov (United States)

    Anbar, A. D.; Bruce, G.; Semken, S. C.; Summons, R. E.; Buxner, S.; Horodyskyj, L.; Kotrc, B.; Swann, J.; Klug Boonstra, S. L.; Oliver, C.

    2014-12-01

    Traditional introductory STEM courses often reinforce misconceptions because the large scale of many classes forces a structured, lecture-centric model of teaching that emphasizes delivery of facts rather than exploration, inquiry, and scientific reasoning. This problem is especially acute in teaching about the co-evolution of Earth and life, where classroom learning and textbook teaching are far removed from the immersive and affective aspects of field-based science, and where the challenges of taking large numbers of students into the field make it difficult to expose them to the complex context of the geologic record. We are exploring the potential of digital technologies and online delivery to address this challenge, using immersive and engaging virtual environments that are more like games than like lectures, grounded in active learning, and deliverable at scale via the internet. The goal is to invert the traditional lecture-centric paradigm by placing lectures at the periphery and inquiry-driven, integrative virtual investigations at the center, and to do so at scale. To this end, we are applying a technology platform we devised, supported by NASA and the NSF, that integrates a variety of digital media in a format that we call an immersive virtual field trip (iVFT). In iVFTs, students engage directly with virtual representations of real field sites, with which they interact non-linearly at a variety of scales via game-like exploration while guided by an adaptive tutoring system. This platform has already been used to develop pilot iVFTs useful in teaching anthropology, archeology, ecology, and geoscience. With support the Howard Hughes Medical Institute, we are now developing and evaluating a coherent suite of ~ 12 iVFTs that span the sweep of life's history on Earth, from the 3.8 Ga metasediments of West Greenland to ancient hominid sites in East Africa. These iVFTs will teach fundamental principles of geology and practices of scientific inquiry, and expose

  16. The impact of earth resources exploration from space

    Science.gov (United States)

    Nordberg, W.

    1976-01-01

    Remote sensing of the earth from satellite systems such as Landsat, Nimbus, and Skylab has demonstrated the potential influence of such observations on a number of major human concerns. These concerns include the management of food, water and fiber resources, the exploration and management of mineral and energy resources, the protection of the environment, the protection of life and property, and improvements in shipping and navigation.

  17. ExploreNEOs: The Warm Spitzer Near Earth Object survey

    NARCIS (Netherlands)

    Mueller, M.; Trilling, D. E.; Hora, J. L.; Harris, A. W.; Benner, L. A. M.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Delbó, M.; Emery, J. P.; Fazio, G.; Hagen, A. R.; Kistler, J. L.; Mainzer, A.; Mommert, M.; Morbidelli, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.; Thomas, C. A.

    2011-01-01

    We are carrying out the ExploreNEOs project in which we observe more than 600 near Earth Objects (NEOs) at 3.6 and 4.5 microns with Warm Spitzer. For each NEO we derive diameter and albedo. We present our results to date, which include studies of individual objects, results for our entire observed

  18. Finding Near-Earth Asteroid (NEA) Destinations for Human Exploration: Implications for Astrobiology

    Science.gov (United States)

    Landis, Rob; Abell, Paul; Barbee, Brent; Johnson, Lindley

    2012-01-01

    The current number of known potential NEA targets for HSF is limited to those objects whose orbital characteristics are similar to that of the Earth. This is due to the projected capabilities of the exploration systems currently under consideration and development at NASA. However, NEAs with such orbital characteristics often have viewing geometries that place them at low solar elongations and thus are difficult to detect from the vicinity of Earth. While ongoing ground-based surveys and data archives maintained by the NEO Program Observation Program Office and the Minor Planet Center (MPC) have provided a solid basis upon which to build, a more complete catalog of the NEO population is required to inform a robust and sustainable HSF exploration program. Since all the present NEO observing assets are currently confined to the vicinity of the Earth, additional effort must be made to provide capabilities for detection of additional HSF targets via assets beyond Earth orbit. A space-based NEO survey telescope located beyond the vicinity of the Earth, has considerable implications for planetary science and astrobiology. Such a telescope will provide foundational knowledge of our Solar System small body population and detect targets of interest for both the HSF and scientific communities. Data from this asset will yield basic characterization data on the NEOs observed (i.e., albedo, size determination, potential for volatiles and organics, etc.) and help down select targets for future HSF missions. Ideally, the most attractive targets from both HSF and astrobiology perspectives are those NEAs that may contain organic and volatile materials, and which could be effectively sampled at a variety of locations and depths. Presented here is an overview of four space-based survey concepts; any one of which after just a few years of operation will discover many highly accessible NEO targets suitable for robotic and human exploration. Such a space-based survey mission will reveal

  19. Earth cloud, aerosol, and radiation explorer optical payload development status

    Science.gov (United States)

    Hélière, A.; Wallace, K.; Pereira do Carmo, J.; Lefebvre, A.

    2017-09-01

    The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the ojective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. MSI is a compact instrument with a 150 km swath providing 500 m pixel data in seven channels, whose retrieved data will give context to the active instrument measurements, as well as providing cloud and aerosol information. BBR measures reflected solar and emitted thermal radiation from the scene. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol and molecular scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are measured on dedicated channels. This paper will provide a description of the optical payload implementation, the design and characterisation of the instruments.

  20. The NASA GOLD Mission: Exploring the Interface between Earth and Space

    Science.gov (United States)

    Mason, T.; Costanza, B.

    2017-12-01

    NASA's Global-scale Observations of the Limb and Disk, or GOLD, mission will explore a little understood area close to home, but historically hard to observe: the interface between Earth and space, a dynamic area of near-Earth space that responds both to space weather above, and the lower atmosphere below. GOLD, scheduled to launch into geostationary orbit in early 2018, will collect observations with a 30-minute cadence, much higher than any mission that has come before it. This will enable GOLD to be the first mission to study the day-to-day weather of a region of space—the thermosphere and ionosphere—rather than its long-term climate. GOLD will explore the near-Earth space environment, which is home to astronauts, radio signals used to guide airplanes and ships, and satellites that provide our communications and GPS systems. GOLD's unprecedented images and data will enable research that can improve situational awareness to help protect astronauts, spacecraft, and humans on the ground. As part of the GOLD communications and outreach program, the Office of Communications & Outreach at the Laboratory for Atmospheric and Space Physics (LASP) is developing a suite of products and programs to introduce the science of the GOLD mission to a broad range of public audiences, including students, teachers, journalists, social media practitioners, and the wider planetary and Earth science communities. We plan to showcase with this poster some of the tools we are developing to achieve this goal.

  1. Earth Orbiting Support Systems for commercial low Earth orbit data relay: Assessing architectures through tradespace exploration

    Science.gov (United States)

    Palermo, Gianluca; Golkar, Alessandro; Gaudenzi, Paolo

    2015-06-01

    As small satellites and Sun Synchronous Earth Observation systems are assuming an increased role in nowadays space activities, including commercial investments, it is of interest to assess how infrastructures could be developed to support the development of such systems and other spacecraft that could benefit from having a data relay service in Low Earth Orbit (LEO), as opposed to traditional Geostationary relays. This paper presents a tradespace exploration study of the architecture of such LEO commercial satellite data relay systems, here defined as Earth Orbiting Support Systems (EOSS). The paper proposes a methodology to formulate architectural decisions for EOSS constellations, and enumerate the corresponding tradespace of feasible architectures. Evaluation metrics are proposed to measure benefits and costs of architectures; lastly, a multicriteria Pareto criterion is used to downselect optimal architectures for subsequent analysis. The methodology is applied to two case studies for a set of 30 and 100 customer-spacecraft respectively, representing potential markets for LEO services in Exploration, Earth Observation, Science, and CubeSats. Pareto analysis shows how increased performance of the constellation is always achieved by an increased node size, as measured by the gain of the communications antenna mounted on EOSS spacecraft. On the other hand, nonlinear trends in optimal orbital altitude, number of satellites per plane, and number of orbital planes, are found in both cases. An upward trend in individual node memory capacity is found, although never exceeding 256 Gbits of onboard memory for both cases that have been considered, assuming the availability of a polar ground station for EOSS data downlink. System architects can use the proposed methodology to identify optimal EOSS constellations for a given service pricing strategy and customer target, thus identifying alternatives for selection by decision makers.

  2. The Scale of Exploration: Planetary Missions Set in the Context of Tourist Destinations on Earth

    Science.gov (United States)

    Garry, W. B.; Bleacher, L. V.; Bleacher, J. E.; Petro, N. E.; Mest, S. C.; Williams, S. H.

    2012-03-01

    What if the Apollo astronauts explored Washington, DC, or the Mars Exploration Rovers explored Disney World? We present educational versions of the traverse maps for Apollo and MER missions set in the context of popular tourist destinations on Earth.

  3. A new trajectory concept for exploring the earth's geomagnetic tail

    Science.gov (United States)

    Farquhar, R. W.; Dunham, D. W.

    1981-01-01

    An innovative trajectory technique for a magnetotail mapping mission is described which can control the apsidal rotation of an elliptical earth orbit and keep its apogee segment inside the tail region. The required apsidal rotation rate of approximately 1 deg/day is achieved by using the moon to carry out a prescribed sequence of gravity-assist maneuvers. Apogee distances are alternately raised and lowered by the lunar-swingby maneuvers; several categories of the 'sun-synchronous' swingby trajectories are identified. The strength and flexibility of the new trajectory concept is demonstrated by using real-world simulations showing that a large variety of trajectory shapes can be used to explore the earth's geomagnetic tail between 60 and 250 R sub E.

  4. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    Science.gov (United States)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  5. Fun and Games: using Games and Immersive Exploration to Teach Earth and Space Science

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.

    2011-12-01

    We have been using games to teach Earth and Space Science for over 15 years. Our software "TicTacToe" has been used continuously at the Houston Museum of Natural Science since 2002. It is the single piece of educational software in the "Earth Forum" suite that holds the attention of visitors the longest - averaging over 10 minutes compared to 1-2 minutes for the other software kiosks. We now have question sets covering solar system, space weather, and Earth science. In 2010 we introduced a new game technology - that of immersive interactive explorations. In our "Tikal Explorer", visitors use a game pad to navigate a three-dimensional environment of the Classic Maya city of Tikal. Teams of students climb pyramids, look for artifacts, identify plants and animals, and site astronomical alignments that predict the annual return of the rains. We also have a new 3D exploration of the International Space Station, where students can fly around and inside the ISS. These interactive explorations are very natural to the video-game generation, and promise to bring educational objectives to experiences that had previously been used strictly for gaming. If space permits, we will set up our portable Discovery Dome in the poster session for a full immersive demonstration of these game environments.

  6. International Space Station as a Base Camp for Exploration Beyond Low Earth Orbit

    Science.gov (United States)

    Raftery, Michael; Hoffman, Jeffrey

    2011-01-01

    The idea for using the International Space Station (ISS) as platform for exploration has matured in the past year and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed at Earth-Moon Libration point 1 (EML1) providing immediate benefits and flexibility for future exploration missions. We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low earth orbit. Life support systems and other technology developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecraft. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.

  7. The esa earth explorer land surface processes and interactions mission

    Science.gov (United States)

    Labandibar, Jean-Yves; Jubineau, Franck; Silvestrin, Pierluigi; Del Bello, Umberto

    2017-11-01

    The European Space Agency (ESA) is defining candidate missions for Earth Observation. In the class of the Earth Explorer missions, dedicated to research and pre-operational demonstration, the Land Surface Processes and Interactions Mission (LSPIM) will acquire the accurate quantitative measurements needed to improve our understanding of the nature and evolution of biosphere-atmosphere interactions and to contribute significantly to a solution of the scaling problems for energy, water and carbon fluxes at the Earth's surface. The mission is intended to provide detailed observations of the surface of the Earth and to collect data related to ecosystem processes and radiation balance. It is also intended to address a range of issues important for environmental monitoring, renewable resources assessment and climate models. The mission involves a dedicated maneuvering satellite which provides multi-directional observations for systematic measurement of Land Surface BRDF (BiDirectional Reflectance Distribution Function) of selected sites on Earth. The satellite carries an optical payload : PRISM (Processes Research by an Imaging Space Mission), a multispectral imager providing reasonably high spatial resolution images (50 m over 50 km swath) in the whole optical spectral domain (from 450 nm to 2.35 μm with a resolution close to 10 nm, and two thermal bands from 8.1 to 9.1 μm). This paper presents the results of the Phase A study awarded by ESA, led by ALCATEL Space Industries and concerning the design of LSPIM.

  8. Model-Based Trade Space Exploration for Near-Earth Space Missions

    Science.gov (United States)

    Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain

    2005-01-01

    We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.

  9. Collaborative Business Models for Exploration: - The Expansion of Public-Private Partnerships to Enable Exploration and Improve the Quality of Life on Earth

    Science.gov (United States)

    Davis, Jeffrey R.

    2012-01-01

    In May of 2007, The Space Life Sciences Strategy was published, launching a series of efforts aimed at driving human health and performance innovations that both meet space flight needs and benefit life on Earth. These efforts, led by the Space Life Science Directorate (SLSD) at the NASA Johnson Space Center, led to the development and implementation of the NASA Human Health and Performance Center (NHHPC) in October 2010. The NHHPC now has over 100 members including seven NASA centers; other federal agencies; some of the International Space Station partners; industry; academia and non-profits. The NHHPC seeks to share best practices, develop collaborative projects and experiment with open collaboration techniques such as crowdsourcing. Using this approach, the NHHPC collaborative projects are anticipated to be at the earliest possible stage of development utilizing the many possible public-private partnerships in this center. Two workshops have been successfully conducted in 2011 (January and October) with a third workshop planned for the spring of 2012. The challenges of space flight are similar in many respects to providing health care and environmental monitoring in challenging settings on the earth. These challenges to technology development include the need for low power consumption, low weight, in-situ analysis, operator independence (i.e., minimal training), robustness, and limited resupply or maintenance. When similar technology challenges are identified (such as the need to provide and monitor a safe water supply or develop a portable medical diagnostic device for remote use), opportunities arise for public-private partnerships to engage in co-creation of novel approaches for space exploration and health and environmental applications on earth. This approach can enable the use of shared resources to reduce costs, engage other organizations and the public in participatory exploration (solving real-world problems), and provide technologies with multiple uses

  10. Science in Exploration: From the Moon to Mars and Back Home to Earth

    Science.gov (United States)

    Garvin, James B.

    2007-01-01

    NASA is embarking on a grand journey of exploration that naturally integrates the past successes of the Apollo missions to the Moon, as well as robotic science missions to Mars, to Planet Earth, and to the broader Universe. The US Vision for Space Exporation (VSE) boldly lays out a plan for human and robotic reconnaissance of the accessible Universe, starting with the surface of the Moon, and later embracing the surface of Mars. Sustained human and robotic access to the Moon and Mars will enable a new era of scientific investigation of our planetary neighbors, tied to driving scientific questions that pertain to the evolution and destiny of our home planet, but which also can be related to the search habitable worlds across the nearby Universe. The Apollo missions provide a vital legacy for what can be learned from the Moon, and NASA is now poised to recapture the lunar frontier starting with the flight of the Lunar Reconnaissance Orbiter (LRO) in late 2008. LRO will provide a new scientific context from which joint human and robotic exploration will ensue, guided by objectives some of which are focused on the grandest scientific challenges imaginable : Where did we come from? Are we alone? and Where are we going? The Moon will serve as an essential stepping stone for sustained human access and exploration of deep space and as a training ground while robotic missions with ever increasing complexity probe the wonders of Mars. As we speak, an armada of spacecraft are actively investigating the red planet both from orbit (NASA's Mars Reconnaissance Orbiter and Mars Odyssey Orbiter, plus ESA's Mars Express) and from the surface (NASA's twin Mars Exploration Rovers, and in 2008 NASA's Phoenix polar lander). The dramatically changing views of Mars as a potentially habitable world, with its own flavor of global climate change and unique climate records, provides a new vantage point from which to observe and question the workings of our own planet Earth. By 2010 NASA will

  11. Human Expeditions to Near-Earth Asteroids: Implications for Exploration, Resource Utilization, Science, and Planetary Defense

    Science.gov (United States)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on human exploration of near-Earth asteroids (NEAs) and planetary defence. Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. With respect to planetary defence, in 2005 the U.S. Congress directed NASA to implement a survey program to detect, track, and characterize NEAs equal or greater than 140 m in diameter in order to access the threat from such objects to the Earth. The current goal of this survey is to achieve 90% completion of objects equal or greater than 140 m in diameter by 2020.

  12. A Reflight of the Explorer-1 Science Mission: The Montana EaRth Orbiting Pico Explorer (MEROPE)

    Science.gov (United States)

    Klumpar, D. M.; Obland, M.; Hunyadi, G.; Jepsen, S.; Larsen, B.; Kankelborg, C.; Hiscock, W.

    2001-05-01

    Montana State University's interdisciplinary Space Science and Engineering Laboratory (SSEL) under support from the Montana NASA Space Grant Consortium is engaged in an earth orbiting satellite student design and flight project. The Montana EaRth Orbiting Pico Explorer (MEROPE) will carry a modern-day reproduction of the scientific payload carried on Explorer-1. On February 1, 1958 the United States launched its first earth orbiting satellite carrying a 14 kg scientific experiment built by Professor James Van Allen's group at the State University of Iowa (now The University of Iowa). The MEROPE student satellite will carry a reproduction, using current-day technology, of the scientific payload flown on Explorer-1. The CubeSat-class satellite will use currently available, low cost technologies to produce a payload-carrying satellite with a total orbital mass of 1 kg in a volume of 1 cubic liter. The satellite is to be launched in late 2001 into a 600 km, 65° inclination orbit. MEROPE will utilize passive magnetic orientation for 2-axis attitude control. A central microprocessor provides timing, controls on-board operations and switching, and enables data storage. Body mounted GaAs solar arrays are expected to provide in excess of 1.5 W. to maintain battery charge and operate the bus and payload. The Geiger counter will be operated at approximately 50% duty cycle, primarily during transits of the earth's radiation belts. Data will be stored on board and transmitted approximately twice per day to a ground station located on the Bozeman campus of the Montana State University. Owing to the 65° inclination, the instrument will also detect the higher energy portion of the electron spectrum responsible for the production of the Aurora Borealis. This paper describes both the technical implementation and design of the satellite and its payload as well as the not inconsiderable task of large team organization and management. As of March 2001, the student team consists of

  13. Human Expeditions to Near-Earth Asteroids: An Update on NASA's Status and Proposed Activities for Small Body Exploration

    Science.gov (United States)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Reeves, David; Drake, Bret; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth- Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. The scientific and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a mission to a NEA using NASA s proposed exploration systems a compelling endeavor.

  14. Exploring the Earth Using Deep Learning Techniques

    Science.gov (United States)

    Larraondo, P. R.; Evans, B. J. K.; Antony, J.

    2016-12-01

    Research using deep neural networks have significantly matured in recent times, and there is now a surge in interest to apply such methods to Earth systems science and the geosciences. When combined with Big Data, we believe there are opportunities for significantly transforming a number of areas relevant to researchers and policy makers. In particular, by using a combination of data from a range of satellite Earth observations as well as computer simulations from climate models and reanalysis, we can gain new insights into the information that is locked within the data. Global geospatial datasets describe a wide range of physical and chemical parameters, which are mostly available using regular grids covering large spatial and temporal extents. This makes them perfect candidates to apply deep learning methods. So far, these techniques have been successfully applied to image analysis through the use of convolutional neural networks. However, this is only one field of interest, and there is potential for many more use cases to be explored. The deep learning algorithms require fast access to large amounts of data in the form of tensors and make intensive use of CPU in order to train its models. The Australian National Computational Infrastructure (NCI) has recently augmented its Raijin 1.2 PFlop supercomputer with hardware accelerators. Together with NCI's 3000 core high performance OpenStack cloud, these computational systems have direct access to NCI's 10+ PBytes of datasets and associated Big Data software technologies (see http://geonetwork.nci.org.au/ and http://nci.org.au/systems-services/national-facility/nerdip/). To effectively use these computing infrastructures requires that both the data and software are organised in a way that readily supports the deep learning software ecosystem. Deep learning software, such as the open source TensorFlow library, has allowed us to demonstrate the possibility of generating geospatial models by combining information from

  15. Human Health and Performance Considerations for Exploration of Near-Earth Asteroids

    Science.gov (United States)

    Kundrot, Craig; Steinberg, Susan; Charles, John

    2010-01-01

    This presentation will describe the human health and performance issues that are anticipated for the human exploration of near-Earth asteroids (NEA). Humans are considered a system in the design of any such deep-space exploration mission, and exploration of NEA presents unique challenges for the human system. Key factors that define the mission are those that are strongly affected by distance and duration. The most critical of these is deep-space radiation exposure without even the temporary shielding of a nearby large planetary body. The current space radiation permissible exposure limits (PEL) restrict mission duration to 3-10 months depending on age and gender of crewmembers and stage of the solar cycle. Factors that affect mission architecture include medical capability; countermeasures for bone, muscle, and cardiovascular atrophy during continuous weightlessness; restricted food supplies; and limited habitable volume. The design of a habitat that can maintain the physical and psychological health of the crew and support mission operations with limited intervention from Earth will require an integrated research and development effort by NASA s Human Research Program, engineering, and human factors groups. Limited abort and return options for an NEA mission are anticipated to have important effects on crew psychology as well as influence medical supplies and training requirements of the crew. Other important factors are those related to isolation, confinement, communication delays, autonomous operations, task design, small crew size, and even the unchanging view outside the windows for most of the mission. Geological properties of the NEA will influence design of sample handling and containment, and extravehicular activity capabilities including suit ports and tools. A robotic precursor mission that collects basic information on NEA surface properties would reduce uncertainty about these aspects of the mission as well as aid in design of mission architecture and

  16. Prospecting and exploration of rare earth bearing mineral resources in India: an overview

    International Nuclear Information System (INIS)

    Mohanty, R.

    2014-01-01

    Rare earth elements (REE) have a wide range of applications including nuclear and the REE bearing minerals occur in varied geological environments.The commercial rare earth bearing minerals are monazite ((Ce,La,Pr,Nd,Th,Y)PO 4 ), xenotime (YPO 4 ), bastnasite ((Ce,La,Y)CO 3 F) and pyrochlore ((Na,Ca) 2 Nb 2 O 6 (OH,F) which occur either as placer concentrations or in tracer quantities in rocks. While Monazite contains dominantly LREE, Xenotime and Bastnasite are richer in HREE. The exploration and evaluation of these two types of occurrences follow different methodologies

  17. Human Health and Performance Considerations for Exploration of Near Earth Asteroids (NEA)

    Science.gov (United States)

    Kundrot, Craig E.; Charles, John B.; Steinberg, Susan L.

    2011-01-01

    This slide presentation reviews some of the health and performance issues for an manned exploration mission to some of the Near Earth Asteroids (NEA). The issues that NASA is reviewing are: 1. Radiation exposure 2. Inadequate food and nutrition 3. Challenges to behavioral health 4. Muscle, cardiovascular, bone atrophy 5. Dust and volatiles 6. Remote medical care 7. Decompression sickness.

  18. Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense

    Science.gov (United States)

    Abell, P. A.; Sanders, G. B.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Drake, B. G.; Friedensen, V. P.

    2012-12-01

    Introduction: In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. NEA Space-Based Survey and Robotic Precursor Missions: The most suitable targets for human missions are NEAs in Earth-like orbits with long synodic periods. However, these mission candidates are often not observable from Earth until the timeframe of their most favorable human mission opportunities, which does not provide an appropriate amount of time for mission development. A space-based survey telescope could more efficiently find these targets in a timely, affordable manner. Such a system is not only able to discover new objects, but also track and characterize objects of interest for human space flight consideration. Those objects with characteristic signatures representative of volatile-rich or metallic materials will be considered as top candidates for further investigation due to their potential for resource utilization and scientific discovery. Once suitable candidates have been identified, precursor spacecraft are required to perform basic reconnaissance of a few NEAs under consideration for the human-led mission. Robotic spacecraft will assess targets for potential hazards that may pose a risk to the deep space transportation vehicle, its deployable assets, and the crew. Additionally, the information obtained about the NEA's basic physical characteristics will be crucial for planning operational activities, designing in-depth scientific/engineering investigations, and identifying sites on the NEA for sample collection. Human Exploration

  19. Language of the Earth: Exploring Natural Hazards through a Literary Anthology

    Science.gov (United States)

    Malamud, B. D.; Rhodes, F. H. T.

    2009-04-01

    This paper explores natural hazards teaching and communications through the use of a literary anthology of writings about the earth aimed at non-experts. Teaching natural hazards in high-school and university introductory Earth Science and Geography courses revolves mostly around lectures, examinations, and laboratory demonstrations/activities. Often the results of such a course are that a student 'memorizes' the answers, and is penalized when they miss a given fact [e.g., "You lost one point because you were off by 50 km/hr on the wind speed of an F5 tornado."] Although facts and general methodologies are certainly important when teaching natural hazards, it is a strong motivation to a student's assimilation of, and enthusiasm for, this knowledge, if supplemented by writings about the Earth. In this paper, we discuss a literary anthology which we developed [Language of the Earth, Rhodes, Stone, Malamud, Wiley-Blackwell, 2008] which includes many descriptions about natural hazards. Using first- and second-hand accounts of landslides, earthquakes, tsunamis, floods and volcanic eruptions, through the writings of McPhee, Gaskill, Voltaire, Austin, Cloos, and many others, hazards become 'alive', and more than 'just' a compilation of facts and processes. Using short excerpts such as these, or other similar anthologies, of remarkably written accounts and discussions about natural hazards results in 'dry' facts becoming more than just facts. These often highly personal viewpoints of our catostrophic world, provide a useful supplement to a student's understanding of the turbulent world in which we live.

  20. 60 Years of Studying the Earth-Sun System from Space: Explorer 1

    Science.gov (United States)

    Zurbuchen, T.

    2017-12-01

    The era of space-based observation of the Earth-Sun system initiated with the Explorer-1 satellite has revolutionized our knowledge of the Earth, Sun, and the processes that connect them. The space-based perspective has not only enabled us to achieve a fundamentally new understanding of our home planet and the star that sustains us, but it has allowed for significant improvements in predictive capability that serves to protect life, health, and property. NASA has played a leadership role in the United States in creating both the technology and science that has enabled and benefited from these new capabilities, and works closely with partner agencies and around the world to synergistically address these global challenges which are of sufficient magnitude that no one nation or organization can address on their own. Three areas are at the heart of NASA's comprehensive science program: Discovering the secrets of the universe, searching for life elsewhere, and safeguarding and improving life on Earth. Together, these tenets will help NASA lead on a civilization scale. In this talk, a review of these 60 years of advances, a status of current activities, and thoughts about their evolution into the future will be presented.

  1. Human Missions to Near-Earth Asteroids: An Update on NASA's Current Status and Proposed Activities for Small Body Exploration

    Science.gov (United States)

    Abell, P. A.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Larman, K. T.; hide

    2012-01-01

    Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010.

  2. Exploring Earth Systems Through STEM

    Science.gov (United States)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2015-04-01

    During the 2010 school year, grade 8 science teachers at Dwight D. Eisenhower Middle School in Wyckoff, New Jersey, began using the draft of A Framework for K-12 Science Education to transition to the Next Generation Science Standards. In an evolutionary process of testing and revising, teachers work collaboratively to develop problem-based science, technology, engineering, and mathematics (STEM) units that integrate earth science, physical science, and life science topics. Students explore the interconnections of Earth's atmosphere, lithosphere, hydrosphere, and biosphere through problem-based learning. Problem-based learning engages students in (1) direct observations in the field and classroom, (2) collection and analysis of data from remote sensors and hand-held sensors, and (3) analysis of physical, mathematical, and virtual models. Students use a variety of technologies and applications in their investigations, for example iPad apps, Google Classroom, and Vernier sensors. Data from NASA, NOAA, non-government organizations, and scientific research papers inspire student questions and spark investigations. Teachers create materials and websites to support student learning. Teachers curate reading, video, simulations, and other Internet resources for students. Because curriculum is standards-based as opposed to textbook-based, teacher participation in workshops and institutes frequently translates into new or improved study units. Recent programs include Toyota International Teacher Program to Costa Rica, Japan Society Going Global, Siemens STEM Academy, U.S. Naval Academy SET Sail, and NJSTA Maitland P. Simmons Memorial Award Summer Institute. Unit themes include weather and climate, introduction to general chemistry and biochemistry, and cells and heredity. Each if the three 12-week units has embedded engineering challenges inspired by current events, community needs, and/or the work of scientists. The unit segments begin with a problem, progress to

  3. Exploring Best Practices for Research Data Management in Earth Science through Collaborating with University Libraries

    Science.gov (United States)

    Wang, T.; Branch, B. D.

    2013-12-01

    Earth Science research data, its data management, informatics processing and its data curation are valuable in allowing earth scientists to make new discoveries. But how to actively manage these research assets to ensure them safe and secure, accessible and reusable for long term is a big challenge. Nowadays, the data deluge makes this challenge become even more difficult. To address the growing demand for managing earth science data, the Council on Library and Information Resources (CLIR) partners with the Library and Technology Services (LTS) of Lehigh University and Purdue University Libraries (PUL) on hosting postdoctoral fellows in data curation activity. This inter-disciplinary fellowship program funded by the SLOAN Foundation innovatively connects university libraries and earth science departments and provides earth science Ph.D.'s opportunities to use their research experiences in earth science and data curation trainings received during their fellowship to explore best practices for research data management in earth science. In the process of exploring best practices for data curation in earth science, the CLIR Data Curation Fellows have accumulated rich experiences and insights on the data management behaviors and needs of earth scientists. Specifically, Ting Wang, the postdoctoral fellow at Lehigh University has worked together with the LTS support team for the College of Arts and Sciences, Web Specialists and the High Performance Computing Team, to assess and meet the data management needs of researchers at the Department of Earth and Environmental Sciences (EES). By interviewing the faculty members and graduate students at EES, the fellow has identified a variety of data-related challenges at different research fields of earth science, such as climate, ecology, geochemistry, geomorphology, etc. The investigation findings of the fellow also support the LTS for developing campus infrastructure for long-term data management in the sciences. Likewise

  4. Exploring Rare Earths supply constraints for the emerging clean energy technologies and the role of recycling

    DEFF Research Database (Denmark)

    Habib, Komal; Wenzel, Henrik

    The dependency on critical resources like Rare Earth Elements (REEs) has been pronounced as a potential barrier to a broader implementation of emerging renewable energy technologies. This study explores the dependency of such technologies especially wind turbines and electric vehicles along with ...

  5. Desert RATS 2011: Near-Earth Asteroid Human Exploration Operations

    Science.gov (United States)

    Abercromby, Andrew; Gernhardt, Michael L.; Chappel, Steve

    2012-01-01

    The Desert Research and Technology Studies (D-RATS) 2011 field test involved the planning and execution of a series of exploration scenarios under operational conditions similar to those that would be expected during a human exploration mission to a near-Earth asteroid (NEA). The focus was on understanding the operations tempo during simulated NEA exploration and the implications of communications latency and limited data bandwidth. Anchoring technologies and sampling techniques were not evaluated due to the immaturity of those technologies and the inability to meaningfully test them at D-RATS. Reduced gravity analogs and simulations are being used to fully evaluate Multi-Mission Space Exploration Vehicle (MMSEV) and extravehicular (EVA) operations and interactions in near-weightlessness at a NEA as part of NASA s integrated analogs program. Hypotheses were tested by planning and performing a series of 1-day simulated exploration excursions comparing test conditions all of which involved a single Deep Space Habitat (DSH) and either zero, one, or two MMSEVs; three or four crewmembers; one of two different communications bandwidths; and a 100-second roundtrip communications latency between the field site and Houston. Excursions were executed at the Black Point Lava Flow test site with a Mission Control Center and Science Support Room at Johnson Space Center (JSC) being operated with 100-second roundtrip communication latency to the field. Crews were composed of astronauts and professional field geologists and teams of Mission Operations, Science, and Education & Public Outreach (EPO) experts also supported the mission simulations each day. Data were collected separately from the Crew, Mission Operations, Science, and EPO teams to assess the test conditions from multiple perspectives. For the operations tested, data indicates practically significant benefits may be realized by including at least one MMSEV and by including 4 versus 3 crewmembers in the NEA exploration

  6. Giovanni in the Cloud: Earth Science Data Exploration in Amazon Web Services

    Science.gov (United States)

    Hegde, M.; Petrenko, M.; Smit, C.; Zhang, H.; Pilone, P.; Zasorin, A. A.; Pham, L.

    2017-12-01

    Giovanni (https://giovanni.gsfc.nasa.gov/giovanni/) is a popular online data exploration tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), providing 22 analysis and visualization services for over 1600 Earth Science data variables. Owing to its popularity, Giovanni has experienced a consistent growth in overall demand, with periodic usage spikes attributed to trainings by education organizations, extensive data analysis in response to natural disasters, preparations for science meetings, etc. Furthermore, the new generation of spaceborne sensors and high resolution models have resulted in an exponential growth in data volume with data distributed across the traditional boundaries of datacenters. Seamless exploration of data (without users having to worry about data center boundaries) has been a key recommendation of the GES DISC User Working Group. These factors have required new strategies for delivering acceptable performance. The cloud-based Giovanni, built on Amazon Web Services (AWS), evaluates (1) AWS native solutions to provide a scalable, serverless architecture; (2) open standards for data storage in the Cloud; (3) a cost model for operations; and (4) end-user performance. Our preliminary findings indicate that the use of serverless architecture has a potential to significantly reduce development and operational cost of Giovanni. The combination of using AWS managed services, storage of data in open standards, and schema-on-read data access strategy simplifies data access and analytics, in addition to making data more accessible to the end users of Giovanni through popular programming languages.

  7. Giovanni in the Cloud: Earth Science Data Exploration in Amazon Web Services

    Science.gov (United States)

    Petrenko, Maksym; Hegde, Mahabal; Smit, Christine; Zhang, Hailiang; Pilone, Paul; Zasorin, Andrey A.; Pham, Long

    2017-01-01

    Giovanni is an exploration tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), providing 22 analysis and visualization services for over 1600 Earth Science data variables. Owing to its popularity, Giovanni has experienced a consistent growth in overall demand, with periodic usage spikes attributed to trainings by education organizations, extensive data analysis in response to natural disasters, preparations for science meetings, etc. Furthermore, the new generation of spaceborne sensors and high resolution models have resulted in an exponential growth in data volume with data distributed across the traditional boundaries of data centers. Seamless exploration of data (without users having to worry about data center boundaries) has been a key recommendation of the GES DISC User Working Group. These factors have required new strategies for delivering acceptable performance. The cloud-based Giovanni, built on Amazon Web Services (AWS), evaluates (1) AWS native solutions to provide a scalable, serverless architecture; (2) open standards for data storage in the Cloud; (3) a cost model for operations; and (4) end-user performance. Our preliminary findings indicate that the use of serverless architecture has a potential to significantly reduce development and operational cost of Giovanni. The combination of using AWS managed services, storage of data in open standards, and schema-on-read data access strategy simplifies data access and analytics, in addition to making data more accessible to the end users of Giovanni through popular programming languages.

  8. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    Science.gov (United States)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Crew Vehicle s (MPCV s) first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate

  9. Asteroid exploration and utilization: The Hawking explorer

    Science.gov (United States)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  10. Earth Matters: Promoting Science Exploration through Blogs and Social Media

    Science.gov (United States)

    Ward, K.; Voiland, A. P.; Carlowicz, M. J.; Simmon, R. B.; Allen, J.; Scott, M.; Przyborski, P. D.

    2012-12-01

    NASA's Earth Observatory (EO) is a 13-year old online publication focusing on the communication of NASA Earth science research, including climate change, weather, geology, oceanography, and solar flares. We serve two primary audiences: the "attentive public"--people interested in and willing to seek out information about science, technology, and the environment--and popular media. We use the EO website (earthobservatory.nasa.gov) to host a variety of content including image-driven stories (natural events and research-based), articles featuring NASA research and, more recently, blogs that give us the ability to increase interaction with our users. For much of our site's history, our communication has been largely one way, and we have relied primarily on traditional online marketing techniques such as RSS and email listservs. As the information ecosystem evolves into one in which many users expect to play a more active role in distributing and even developing content through social media, we've experimented with various social media outlets (blogs, Twitter, Facebook, Google+, etc.) that offer new opportunities for people to interact with NASA data, scientists, and the EO editorial team. As part of our explorations, we are learning about how, and to what extent, these outlets can be used for interaction and outright promotion and how to achieve those goals with existing personnel and resources.

  11. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  12. Exploration Opportunity Search of Near-earth Objects Based on Analytical Gradients

    Science.gov (United States)

    Ren, Yuan; Cui, Ping-Yuan; Luan, En-Jie

    2008-07-01

    The problem of search of opportunity for the exploration of near-earth minor objects is investigated. For rendezvous missions, the analytical gradients of the performance index with respect to the free parameters are derived using the variational calculus and the theory of state-transition matrix. After generating randomly some initial guesses in the search space, the performance index is optimized, guided by the analytical gradients, leading to the local minimum points representing the potential launch opportunities. This method not only keeps the global-search property of the traditional method, but also avoids the blindness in the latter, thereby increasing greatly the computing speed. Furthermore, with this method, the searching precision could be controlled effectively.

  13. Rethinking Approaches to Exploration and Analysis of Big Data in Earth Science

    Science.gov (United States)

    Graves, S. J.; Maskey, M.

    2015-12-01

    With increasing amounts of data available for exploration and analysis, there are increasing numbers of users that need information extracted from the data for very specific purposes. Many of the specific purposes may not have even been considered yet so how do computational and data scientists plan for this diverse and not well defined set of possible users? There are challenges to be considered in the computational architectures, as well as the organizational structures for the data to allow for the best possible exploration and analytical capabilities. Data analytics need to be a key component in thinking about the data structures and types of storage of these large amounts of data, coming from a variety of sensing platforms that may be space based, airborne, in situ and social media. How do we provide for better capabilities for exploration and anaylsis at the point of collection for real-time or near real-time requirements? This presentation will address some of the approaches being considered and the challenges the computational and data science communities are facing in collaboration with the Earth Science research and application communities.

  14. Wind Streaks on Earth; Exploration and Interpretation

    Science.gov (United States)

    Cohen-Zada, Aviv Lee; Blumberg, Dan G.; Maman, Shimrit

    2015-04-01

    Wind streaks, one of the most common aeolian features on planetary surfaces, are observable on the surface of the planets Earth, Mars and Venus. Due to their reflectance properties, wind streaks are distinguishable from their surroundings, and they have thus been widely studied by remote sensing since the early 1970s, particularly on Mars. In imagery, these streaks are interpreted as the presence - or lack thereof - of small loose particles on the surface deposited or eroded by wind. The existence of wind streaks serves as evidence for past or present active aeolian processes. Therefore, wind streaks are thought to represent integrative climate processes. As opposed to the comprehensive and global studies of wind streaks on Mars and Venus, wind streaks on Earth are understudied and poorly investigated, both geomorphologically and by remote sensing. The aim of this study is, thus, to fill the knowledge gap about the wind streaks on Earth by: generating a global map of Earth wind streaks from modern high-resolution remotely sensed imagery; incorporating the streaks in a geographic information system (GIS); and overlaying the GIS layers with boundary layer wind data from general circulation models (GCMs) and data from the ECMWF Reanalysis Interim project. The study defines wind streaks (and thereby distinguishes them from other aeolian features) based not only on their appearance in imagery but more importantly on their surface appearance. This effort is complemented by a focused field investigation to study wind streaks on the ground and from a variety of remotely sensed images (both optical and radar). In this way, we provide a better definition of the physical and geomorphic characteristics of wind streaks and acquire a deeper knowledge of terrestrial wind streaks as a means to better understand global and planetary climate and climate change. In a preliminary study, we detected and mapped over 2,900 wind streaks in the desert regions of Earth distributed in

  15. EarthServer: Visualisation and use of uncertainty as a data exploration tool

    Science.gov (United States)

    Walker, Peter; Clements, Oliver; Grant, Mike

    2013-04-01

    software from the EarthServer project we can produce a novel data offering that allows the use of traditional exploration and access mechanisms such as WMS and WCS. However the real benefits can be seen when utilising WCPS to explore the data . We will show two major benefits to this infrastructure. Firstly we will show that the visualisation of the combined chlorophyll and uncertainty datasets through a web based GIS portal gives users the ability to instantaneously assess the quality of the data they are exploring using traditional web based plotting techniques as well as through novel web based 3 dimensional visualisation. Secondly we will showcase the benefits available when combining these data with the WCPS standard. The uncertainty data can be utilised in queries using the standard WCPS query language. This allows selection of data either for download or use within the query, based on the respective uncertainty values as well as the possibility of incorporating both the chlorophyll data and uncertainty data into complex queries to produce additional novel data products. By filtering with uncertainty at the data source rather than the client we can minimise traffic over the network allowing huge datasets to be worked on with a minimal time penalty.

  16. Exploring Sun-Earth Connections: A Physical Science Program for (K-8)Teachers

    Science.gov (United States)

    Michels, D. J.; Pickert, S. M.; Thompson, J. L.; Montrose, C. J.

    2003-12-01

    An experimental, inquiry-based physical science curriculum for undergraduate, pre-service K-8 teachers is under development at the Catholic University of America in collaboration with the Solar Physics Branch of the Naval Research Laboratory and NASA's Sun-Earth Connection missions. This is a progress report. The current, stunningly successful exploratory phase in Sun-Earth Connection (SEC) physics, sparked by SOHO, Yohkoh, TRACE, and other International Solar Terrestrial Physics (ISTP) and Living With a Star (LWS) programs, has provided dynamic, visually intuitive data that can be used for teaching basic physical concepts such as the properties of gravitational and electromagnetic fields which are manifest in beautiful imagery of the astrophysical plasmas of the solar atmosphere and Earth's auroras. Through a team approach capitalizing on the combined expertise of the Catholic University's departments of Education and Physics and of NRL solar researchers deeply involved in SEC missions we have laid out a program that will teach non-science-major undergraduates a very limited number of physical science concepts but in such a way as to develop for each one both a formal understanding and an intuitive grasp that will instill confidence, spark interest and scientific curiosity and, ideally, inspire a habit of lifetime inquiry and professional growth. A three-semester sequence is planned. The first semester will be required of incoming Education freshmen. The second and third semesters will be of such a level as to satisfy the one-year science requirement for non-science majors in the College of Arts and Sciences. The approach as adopted will integrate physics content and educational methods, with each concept introduced through inquiry-based, hands-on investigation using methods and materials directly applicable to K-8 teaching situations (Exploration Phase). The topic is further developed through discussion, demonstration and lecture, introducing such mathematical

  17. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    Science.gov (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K.; Runco, S.

    2012-12-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide

  18. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    Science.gov (United States)

    Graff, Paige; Stefanov, William; Willis, Kim; Runco, Susan

    2012-01-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide

  19. Cryosphere campaigns in support of ESA's Earth Explorers Missions

    Science.gov (United States)

    Casal, Tânia; Davidson, Malcolm; Plank, Gernot; Floberghagen, Rune; Parrinello, Tommaso; Mecklenburg, Susanne; Drusch, Matthias; Fernandez, Diego

    2014-05-01

    In the framework of its Earth Observation Programmes the European Space Agency (ESA) carries out ground based and airborne campaigns to support geophysical algorithm development, calibration/validation, simulation of future spaceborne Earth observation missions, and applications development related to land, oceans, atmosphere and solid Earth. ESA has conducted over 110 airborne and ground measurements campaigns since 1981 and this presentation will describe three campaigns in Antarctica and the Arctic. They were undertaken during the calibration/validation phase of Earth Explorer (EE) missions, such as SMOS (Soil Moisture and Ocean Salinity), GOCE (Gravity field and steady-state Ocean Circulation Explorer) and CryoSat-2. In support of SMOS and GOCE, the DOMECair airborne campaign took place in Antarctica, in the Dome C region in the middle of January 2013. The two main objectives were a) to quantify and document the spatial variability in the DOME C area (SMOS) and b) to fill a gap in the high-quality gravity anomaly maps in Antarctica where airborne gravity measurements are sparse (GOCE). Results from the campaign for the SMOS component, showed that the DOME C area is not as spatially homogenous as previously assumed, therefore comparisons of different missions (e.g. SMOS and NASA's Aquarius) with different footprints must be done with care, highlighting once again the importance of field work to test given assumptions. One extremely surprising outcome of this campaign was the pattern similarity between the gravity measurements and brightness temperature fields. To date, there has never been an indication that L-Band brightness temperatures could be correlated to gravity, but preliminary analysis showed coincident high brightness temperature with high gravity values, suggesting that topography may influence microwave emissions. Also in support of SMOS, the SMOSice airborne campaign has been planned in the Arctic. It was motived by a previous ESA SMOSice study that

  20. CarbonSat: ESA's Earth Explorer 8 Candidate Mission

    Science.gov (United States)

    Meijer, Y. J.; Ingmann, P.; Löscher, A.

    2012-04-01

    The CarbonSat candidate mission is part of ESA's Earth Explorer Programme. In 2010, two candidate opportunity missions had been selected for feasibility and preliminary definition studies. The missions, called FLEX and CarbonSat, are now in competition to become ESA's eighth Earth Explorer, both addressing key climate and environmental change issues. In this presentation we will provide a mission overview of CarbonSat with a focus on science. CarbonSat's primary mission objective is the quantification and monitoring of CO2 and CH4 sources and sinks from the local to the regional scale for i) a better understanding of the processes that control carbon cycle dynamics and ii) an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.) in the context of international treaties. A second priority objective is the monitoring/derivation of CO2 and CH4 fluxes on regional to global scale. These objectives will be achieved by a unique combination of frequent, high spatial resolution (2 x 2 km2) observations of XCO2 and XCH4 coupled to inverse modelling schemes. The required random error of a single measurement at ground-pixel resolution is of the order of between 1 and 3 ppm for XCO2 and between 9 and 17 ppb for XCH4. High spatial resolution is essential in order to maximize the probability for clear-sky observations and to identify flux hot spots. Ideally, CarbonSat shall have a wide swath allowing a 6-day global repeat cycle. The CarbonSat observations will enable CO2 emissions from coal-fired power plants, localized industrial complexes, cities, and other large emitters to be objectively assessed at a global scale. Similarly, the monitoring of natural gas pipelines and compressor station leakage will become feasible. The detection and quantification of the substantial geological greenhouse gas emission sources such as seeps, volcanoes and mud volcanoes will be achieved for the first time. CarbonSat's Greenhouse Gas instrument will

  1. Farside explorer

    DEFF Research Database (Denmark)

    Mimoun, David; Wieczorek, Mark A.; Alkalai, Leon

    2012-01-01

    the primary differentiation and evolution of the Moon, it can be continuously monitored from the Earth-Moon L2 Lagrange point, and there is a complete lack of reflected solar illumination from the Earth. Farside Explorer will exploit these properties and make the first radio-astronomy measurements from...... the most radio-quiet region of near-Earth space, determine the internal structure and thermal evolution of the Moon, from crust to core, and quantify impact hazards in near-Earth space by the measurement of flashes generated by impact events. The Farside Explorer flight system includes two identical solar......Farside Explorer is a proposed Cosmic Vision medium-size mission to the farside of the Moon consisting of two landers and an instrumented relay satellite. The farside of the Moon is a unique scientific platform in that it is shielded from terrestrial radio-frequency interference, it recorded...

  2. Cyberlearning for Climate Literacy: Challenges and Opportunities

    Science.gov (United States)

    McCaffrey, M. S.; Buhr, S. M.; Gold, A. U.; Ledley, T. S.; Mooney, M. E.; Niepold, F.

    2010-12-01

    Cyberlearning tools provide cost and carbon-efficient avenues for fostering a climate literate society through online engagement with learners. With climate change education becoming a Presidential Priority in 2009, funding for grants from NSF, NASA and NOAA is leading to a new generation of cyberlearning resources that supplement existing online resources. This paper provides an overview of challenges and opportunities relating to the online delivery of high quality, often complex climate science by examining several existing and emerging efforts, including the Climate Literacy and Energy Awareness Network (CLEAN,) a National Science Digital Library Pathway, the development by CIRES Education and Outreach of the Inspiring Climate Education Excellence (ICEE) online course, TERC’s Earth Exploration Toolbook (EET,) DataTools, and EarthLab modules, the NOAA Climate Stewards Education Program (CSEP) that utilizes the NSTA E-Learning Center, online efforts by members of the Federation of Earth Science Information Partners (ESIP), UCAR’s Climate Discovery program, and the Climate Adaptation, Mitigation e-Learning (CAMeL) project. In addition, we will summarize outcomes of the Cyberlearning for Climate Literacy workshop held in Washington DC in the Fall of 2009 and examine opportunities for teachers to develop and share their own lesson plans based on climate-related web resources that currently lack built-in learning activities, assessments or teaching tips.

  3. Exploring the implication of climate process uncertainties within the Earth System Framework

    Science.gov (United States)

    Booth, B.; Lambert, F. H.; McNeal, D.; Harris, G.; Sexton, D.; Boulton, C.; Murphy, J.

    2011-12-01

    Uncertainties in the magnitude of future climate change have been a focus of a great deal of research. Much of the work with General Circulation Models has focused on the atmospheric response to changes in atmospheric composition, while other processes remain outside these frameworks. Here we introduce an ensemble of new simulations, based on an Earth System configuration of HadCM3C, designed to explored uncertainties in both physical (atmospheric, oceanic and aerosol physics) and carbon cycle processes, using perturbed parameter approaches previously used to explore atmospheric uncertainty. Framed in the context of the climate response to future changes in emissions, the resultant future projections represent significantly broader uncertainty than existing concentration driven GCM assessments. The systematic nature of the ensemble design enables interactions between components to be explored. For example, we show how metrics of physical processes (such as climate sensitivity) are also influenced carbon cycle parameters. The suggestion from this work is that carbon cycle processes represent a comparable contribution to uncertainty in future climate projections as contributions from atmospheric feedbacks more conventionally explored. The broad range of climate responses explored within these ensembles, rather than representing a reason for inaction, provide information on lower likelihood but high impact changes. For example while the majority of these simulations suggest that future Amazon forest extent is resilient to the projected climate changes, a small number simulate dramatic forest dieback. This ensemble represents a framework to examine these risks, breaking them down into physical processes (such as ocean temperature drivers of rainfall change) and vegetation processes (where uncertainties point towards requirements for new observational constraints).

  4. Laurel Clark Earth Camp: A Program for Teachers and Students to Explore Their World and Study Global Change Through Field-Experience and Satellite Images

    Science.gov (United States)

    Buxner, S.; Orchard, A.; Colodner, D.; Schwartz, K.; Crown, D. A.; King, B.; Baldridge, A.

    2012-03-01

    The Laurel Clark Earth Camp program provides middle and high school students and teachers opportunities to explore local environmental issues and global change through field-experiences, inquiry exercises, and exploring satellite images.

  5. The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond

    Science.gov (United States)

    Boston, Penelope Jane

    2016-01-01

    We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can flourish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a "Field Guide to Unknown Organisms" for developing life detection space missions.

  6. Explore Earth Science Datasets for STEM with the NASA GES DISC Online Visualization and Analysis Tool, Giovanni

    Science.gov (United States)

    Liu, Z.; Acker, J.; Kempler, S.

    2016-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center(DISC) is one of twelve NASA Science Mission Directorate (SMD) Data Centers that provide Earth science data, information, and services to users around the world including research and application scientists, students, citizen scientists, etc. The GESDISC is the home (archive) of remote sensing datasets for NASA Precipitation and Hydrology, Atmospheric Composition and Dynamics, etc. To facilitate Earth science data access, the GES DISC has been developing user-friendly data services for users at different levels in different countries. Among them, the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni, http:giovanni.gsfc.nasa.gov) allows users to explore satellite-based datasets using sophisticated analyses and visualization without downloading data and software, which is particularly suitable for novices (such as students) to use NASA datasets in STEM (science, technology, engineering and mathematics) activities. In this presentation, we will briefly introduce Giovanni along with examples for STEM activities.

  7. Guiding Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  8. Near-Earth Asteroids: Destinations for Human Exploration

    Science.gov (United States)

    Barbee, Brent W.

    2014-01-01

    The Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) is a system that monitors the near-Earth asteroid (NEA) population to identify NEAs whose orbital characteristics may make them potential destinations for future round-trip human space flight missions. To accomplish this monitoring, Brent Barbee (GSFC) developed and automated a system that applies specialized trajectory processing to the orbits of newly discovered NEAs, and those for which we have updated orbit knowledge, obtained from the JPL Small Bodies Database (SBDB). This automated process executes daily and the results are distributed to the general public and the astronomy community. This aids in prioritizing telescope radar time allocations for obtaining crucial follow-up observations of highly accessible NEAs during the critical, because it is often fleeting, time period surrounding the time at which the NEAs are initially discovered.

  9. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine

    Science.gov (United States)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.

    2017-12-01

    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may

  10. Earth sciences: Uranium geology, exploration and mining, hydrology, 1986-1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with earth sciences and issued during the period of 1986-1996. These topics are mainly in the field of uranium geology, exploration and mining, isotope applications in hydrology, IAEA Yearbook 1996 on the developments in nuclear science and technology and meetings on atomic energy. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English but all of these papers have English abstracts. The prices of books are quoted in Austrian Schillings

  11. Technology Development to Support Human Health and Performance in Exploration Beyond Low Earth Orbit

    Science.gov (United States)

    Kundrot, C.E.; Steinberg, S. L.; Charles, J. B.

    2011-01-01

    In the course of defining the level of risks and mitigating the risks for exploration missions beyond low Earth orbit, NASA s Human Research Program (HRP) has identified the need for technology development in several areas. Long duration missions increase the risk of serious medical conditions due to limited options for return to Earth; no resupply; highly limited mass, power, volume; and communication delays. New space flight compatible medical capabilities required include: diagnostic imaging, oxygen concentrator, ventilator, laboratory analysis (saliva, blood, urine), kidney stone diagnosis & treatment, IV solution preparation and delivery. Maintenance of behavioral health in such an isolated, confined and extreme environment requires new sensory stimulation (e.g., virtual reality) technology. Unobtrusive monitoring of behavioral health and treatment methods are also required. Prolonged exposure to weightlessness deconditions bone, muscle, and the cardiovascular system. Novel exercise equipment or artificial gravity are necessary to prevent deconditioning. Monitoring of the degree of deconditioning is required to ensure that countermeasures are effective. New technologies are required in all the habitable volumes (e.g., suit, capsule, habitat, exploration vehicle, lander) to provide an adequate food system, and to meet human environmental standards for air, water, and surface contamination. Communication delays require the crew to be more autonomous. Onboard decision support tools that assist crew with real-time detection and diagnosis of vehicle and habitat operational anomalies will enable greater autonomy. Multi-use shield systems are required to provide shielding from solar particle events. The HRP is pursuing the development of these technologies in laboratories, flight analog environments and the ISS so that the human health and performance risks will be acceptable with the available resources.

  12. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  13. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  14. A Delphi-Based Framework for systems architecting of in-orbit exploration infrastructure for human exploration beyond Low Earth Orbit

    Science.gov (United States)

    Aliakbargolkar, Alessandro; Crawley, Edward F.

    2014-01-01

    The current debate in the U.S. Human Spaceflight Program focuses on the development of the next generation of man-rated heavy lift launch vehicles. While launch vehicle systems are of critical importance for future exploration, a comprehensive analysis of the entire exploration infrastructure is required to avoid costly pitfalls at early stages of the design process. This paper addresses this need by presenting a Delphi-Based Systems Architecting Framework for integrated architectural analysis of future in-orbit infrastructure for human space exploration beyond Low Earth Orbit. The paper is structured in two parts. The first part consists of an expert elicitation study to identify objectives for the in-space transportation infrastructure. The study was conducted between November 2011 and January 2012 with 15 senior experts involved in human spaceflight in the United States and Europe. The elicitation study included the formation of three expert panels representing exploration, science, and policy stakeholders engaged in a 3-round Delphi study. The rationale behind the Delphi approach, as imported from social science research, is discussed. Finally, a novel version of the Delphi method is presented and applied to technical decision-making and systems architecting in the context of human space exploration. The second part of the paper describes a tradespace exploration study of in-orbit infrastructure coupled with a requirements definition exercise informed by expert elicitation. The uncertainties associated with technical requirements and stakeholder goals are explicitly considered in the analysis. The outcome of the expert elicitation process portrays an integrated view of perceived stakeholder needs within the human spaceflight community. Needs are subsequently converted into requirements and coupled to the system architectures of interest to analyze the correlation between exploration, science, and policy goals. Pareto analysis is used to identify architectures

  15. In-Situ Resource Utilization for Space Exploration: Resource Processing, Mission-Enabling Technologies, and Lessons for Sustainability on Earth and Beyond

    Science.gov (United States)

    Hepp, A. F.; Palaszewski, B. A.; Landis, G. A.; Jaworske, D. A.; Colozza, A. J.; Kulis, M. J.; Heller, R. S.

    2015-01-01

    As humanity begins to reach out into the solar system, it has become apparent that supporting a human or robotic presence in transit andor on station requires significant expendable resources including consumables (to support people), fuel, and convenient reliable power. Transporting all necessary expendables is inefficient, inconvenient, costly, and, in the final analysis, a complicating factor for mission planners and a significant source of potential failure modes. Over the past twenty-five years, beginning with the Space Exploration Initiative, researchers at the NASA Glenn Research Center (GRC), academic collaborators, and industrial partners have analyzed, researched, and developed successful solutions for the challenges posed by surviving and even thriving in the resource limited environment(s) presented by near-Earth space and non-terrestrial surface operations. In this retrospective paper, we highlight the efforts of the co-authors in resource simulation and utilization, materials processing and consumable(s) production, power systems and analysis, fuel storage and handling, propulsion systems, and mission operations. As we move forward in our quest to explore space using a resource-optimized approach, it is worthwhile to consider lessons learned relative to efficient utilization of the (comparatively) abundant natural resources and improving the sustainability (and environment) for life on Earth. We reconsider Lunar (and briefly Martian) resource utilization for potential colonization, and discuss next steps moving away from Earth.

  16. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    Science.gov (United States)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  17. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  18. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    Science.gov (United States)

    Beaulieu, S. E.; Brickley, A.; Emery, M.; Spargo, A.; Patterson, K.; Joyce, K.; Silva, T.; Madin, K.

    2014-12-01

    Digital globes are new technologies increasingly used in both informal and formal education to display global datasets. By creating a narrative using multiple datasets, linkages between Earth systems - lithosphere, hydrosphere, atmosphere, and biosphere - can be conveyed. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question in developing new content for digital globes that interweaves imagery obtained by deep-diving vehicles with global datasets, including a new dataset locating the world's known hydrothermal vents. Our two narratives, "Life Without Sunlight" (LWS) and "Smoke and Fire Underwater" (SFU), each focus on STEM (science, technology, engineering, and mathematics) principles related to geology, biology, and exploration. We are preparing a summative evaluation for our content delivered on NOAA's Science on a Sphere as interactive presentations and as movies. We tested knowledge gained with respect to the STEM principles and the level of excitement generated by the virtual deep-sea exploration. We conducted a Post-test Only Design with quantitative data based on self-reporting on a Likert scale. A total of 75 adults and 48 youths responded to our questionnaire, distributed into test groups that saw either one of the two narratives delivered either as a movie or as an interactive presentation. Here, we report preliminary results for the youths, the majority (81%) of which live in towns with lower income and lower levels of educational attainment as compared to other towns in Massachusetts. For both narratives, there was knowledge gained for all 6 STEM principles and "Quite a Bit" of excitement. The mode in responses for knowledge gained was "Quite a Bit" for both the movie and the interactive presentation for 4 of the STEM principles (LWS geology, LWS biology, SFU geology, and SFU exploration) and "Some" for SFU biology. Only for LWS exploration was there a difference in mode between the

  19. Human Exploration Mission Capabilities to the Moon, Mars, and Near Earth Asteroids Using ''Bimodal'' NTR Propulsion

    International Nuclear Information System (INIS)

    Stanley K. Borowski; Leonard A. Dudzinski; Melissa L. McGuire

    2000-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human exploration missions because of its high specific impulse (Isp ∼ 850 to 1000 s) and attractive engine thrust-to-weight ratio (∼ 3 to 10). Because only a minuscule amount of enriched 235 U fuel is consumed in an NRT during the primary propulsion maneuvers of a typical Mars mission, engines configured both for propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, power-rich stage with efficient propulsive capture capability at the moon and near-earth asteroids (NEAs), where aerobraking cannot be utilized. A family of modular bimodal NTR (BNTR) space transfer vehicles utilize a common core stage powered by three ∼15-klb f engines that produce 50 kW(electric) of total electrical power for crew life support, high data rate communications with Earth, and an active refrigeration system for long-term, zero-boiloff liquid hydrogen (LH 2 ) storage. This paper describes details of BNTR engines and designs of vehicles using them for various missions

  20. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool; FINAL

    International Nuclear Information System (INIS)

    Scott A. Wood

    2002-01-01

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two

  1. LIDAR technology developments in support of ESA Earth observation missions

    Science.gov (United States)

    Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland

    2017-11-01

    Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.

  2. Early Earth(s) Across Time and Space

    Science.gov (United States)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  3. Exploring Global Patterns in Human Appropriation of Net Primary Production Using Earth Observation Satellites and Statistical Data

    Science.gov (United States)

    Imhoff, M.; Bounoua, L.

    2004-12-01

    A unique combination of satellite and socio-economic data were used to explore the relationship between human consumption and the carbon cycle. Biophysical models were applied to consumption data to estimate the annual amount of Earth's terrestrial net primary production humans require for food, fiber and fuel using the same modeling architecture as satellite-supported NPP measurements. The amount of Earth's NPP required to support human activities is a powerful measure of the aggregate human impacts on the biosphere and indicator of societal vulnerability to climate change. Equations were developed estimating the amount of landscape-level NPP required to generate all the products consumed by 230 countries including; vegetal foods, meat, milk, eggs, wood, fuel-wood, paper and fiber. The amount of NPP required was calculated on a per capita basis and projected onto a global map of population to create a spatially explicit map of NPP-carbon demand in units of elemental carbon. NPP demand was compared to a map of Earth's average annual net primary production or supply created using 17 years (1982-1998) of AVHRR vegetation index to produce a geographically accurate balance sheet of terrestrial NPP-carbon supply and demand. Globally, humans consume 20 percent of Earth's total net primary production on land. Regionally the NPP-carbon balance percentage varies from 6 to over 70 percent and locally from near 0 to over 30,000 percent in major urban areas. The uneven distribution of NPP-carbon supply and demand, indicate the degree to which various human populations rely on NPP imports, are vulnerable to climate change and suggest policy options for slowing future growth in NPP demand.

  4. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    Science.gov (United States)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  5. "Tormenta Espacial" - Exploring The Sun-earth Connection With A Spanish-language Planetarium Show

    Science.gov (United States)

    Elteto, Attila; Salas, F.; Duncan, D.; Traub-Metlay, S.

    2007-10-01

    Reaching out to Spanish speakers is increasingly vital to workforce development and public support of space science projects. Building on a successful partnership with NASA's TIMED mission, LASP and Space Science Institute, Fiske Planetarium has translated its original planetarium show - "Space Storm” - into "Tormenta Espacial". This show explores the Sun-Earth connection and explains how solar activity affects technology and life on Earth. Solar scientists from NOAA's Space Environment Center and the University of Colorado at Boulder contributed to provide scientific accuracy. Show content and accompanying educational materials are aligned with state and national science standards. While designed for students in grades 6-8, this show has been positively evaluated by students from grades 4-10 and shown to the general public with favorable responses. Curricular materials extend the planetarium experience into the K-12 classroom so that students inspired and engaged by the show continue to see real-life applications and workplace opportunities. Fiske Planetarium offers both "Space Storm” and "Tormenta Espacial” to other planetariums at a minimal rate, including technical support for the life of the show. Thanks to a request from a planetarium in Belgium, a version of "Space Storm” is available with no spoken dialogue so that languages other than English or Spanish may be accommodated. Collaborative projects among planetariums, NASA missions (planned as well as active), research scientists and other parties keep EPO activities healthy and well-funded. Fiske Planetarium staff strive to develop and maintain partnerships throughout the EPO and informal education communities.

  6. Data Prospecting Framework - a new approach to explore "big data" in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Rushing, J.; Lin, A.; Kuo, K.

    2012-12-01

    Due to advances in sensors, computation and storage, cost and effort required to produce large datasets have been significantly reduced. As a result, we are seeing a proliferation of large-scale data sets being assembled in almost every science field, especially in geosciences. Opportunities to exploit the "big data" are enormous as new hypotheses can be generated by combining and analyzing large amounts of data. However, such a data-driven approach to science discovery assumes that scientists can find and isolate relevant subsets from vast amounts of available data. Current Earth Science data systems only provide data discovery through simple metadata and keyword-based searches and are not designed to support data exploration capabilities based on the actual content. Consequently, scientists often find themselves downloading large volumes of data, struggling with large amounts of storage and learning new analysis technologies that will help them separate the wheat from the chaff. New mechanisms of data exploration are needed to help scientists discover the relevant subsets We present data prospecting, a new content-based data analysis paradigm to support data-intensive science. Data prospecting allows the researchers to explore big data in determining and isolating data subsets for further analysis. This is akin to geo-prospecting in which mineral sites of interest are determined over the landscape through screening methods. The resulting "data prospects" only provide an interaction with and feel for the data through first-look analytics; the researchers would still have to download the relevant datasets and analyze them deeply using their favorite analytical tools to determine if the datasets will yield new hypotheses. Data prospecting combines two traditional categories of data analysis, data exploration and data mining within the discovery step. Data exploration utilizes manual/interactive methods for data analysis such as standard statistical analysis and

  7. Studies of Life on Earth are Important for Mars Exploration

    Science.gov (United States)

    DesMarais, D. J.

    1998-01-01

    The search for evidence of the early martian environment and a martian biosphere is benefitted by diverse studies of life on Earth. Most fundamentally, origin-of-life research highlights the challenge in formulating a rigorous definition of life. Because such definitions typically list several of life's most basic properties, they also help to define those observable features that distinguish life and thus might be sought through telescopes, spacecraft, and analyses of extraterrestrial samples. Studies of prebiotic chemistry also help by defining the range of environments and processes that sustain prebiotic organic synthesis. These studies might indicate if and where prebiotic processes occur today on Earth and elsewhere. Such studies should also help to identify which localities are good candidates for the origin of life. A better understanding of the most fundamental principles by which molecules are assembled into living systems will help us to appreciate possible alternatives to the path followed by life on Earth. These perspectives will sharpen our ability to recognize exotic life and/or those environments that can sustain it.

  8. Our school's Earth and Space Sciences Club: 12 years promoting interdisciplinary explorations

    Science.gov (United States)

    Margarida Maria, Ana; Pereira, Hélder

    2017-04-01

    During the past 12 years, we have been engaging secondary level science students (15 to 18 years old) in the extracurricular activities of our school's Earth and Space Sciences Club, providing them with some of the skills needed to excel in science, technology, engineering, arts, and mathematics (STEAM). Our approach includes the use of authentic scientific data, project based learning, and inquiry-centred activities that go beyond the models and theories present in secondary level textbooks. Moreover, the activities and projects carried out, being eminently practical, also function as an extension of the curriculum and frequently enable the demonstration of the applicability of several concepts taught in the classroom in real life situations. The tasks carried out during these activities and research projects often require the combination of two or more subjects, promoting an interdisciplinary approach to learning. Outside of the traditional classroom settings, through interdisciplinary explorations, students also gain hands-on experience doing real science. Thereby, during this time, we have been able to promote meaningful and lasting experiences and spark students' interest in a wide diversity of topics.

  9. New Moon water, exploration, and future habitation

    CERN Document Server

    Crotts, Arlin

    2014-01-01

    Explore Earth's closest neighbor, the Moon, in this fascinating and timely book and discover what we should expect from this seemingly familiar but strange, new frontier. What startling discoveries are being uncovered on the Moon? What will these tell us about our place in the Universe? How can exploring the Moon benefit development on Earth? Discover the role of the Moon in Earth's past and present; read about the lunar environment and how it could be made more habitable for humans; consider whether continued exploration of the Moon is justified; and view rare Apollo-era photos and film still

  10. New Age for Lunar Exploration

    Science.gov (United States)

    Taylor, G. J.; Martel, L. M. V.

    2018-04-01

    Lunar-focused research and plans to return to the lunar surface for science and exploration have reemerged since the Space Policy Directive-1 of December 11, 2017 amended the National Space Policy to include the following, "Lead an innovative and sustainable program of exploration with commercial and international partners to enable human expansion across the solar system and to bring back to Earth new knowledge and opportunities. Beginning with missions beyond low-Earth orbit, the United States will lead the return of humans to the Moon for long-term exploration and utilization, followed by human missions to Mars and other destinations." In response to this revision, NASA proposes a Lunar Exploration and Discovery Program in the U.S. fiscal year 2019 Budget Request. It supports NASA's interests in commercial and international partnerships in Low-Earth Orbit (LEO), long-term exploration in Cislunar space beyond LEO, and research and exploration conducted on the Moon to inform future crewed missions, even to destinations beyond the Moon. (Cislunar refers to the volume of space between LEO and the Moon's orbital distance.) The lunar campaign strengthens the integration of human and robotic activities on the lunar surface with NASA's science, technology, and exploration goals.

  11. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...... and accepted. The European Space Agency mission Gaia is a proposed space observatory, designed to perform a highly accurate census of our galaxy, the Milky Way, and beyond. Through accurate measurement of star positions, Gaia is expected to discover thousands of extra-solar planets and follow the bending...... of starlight by the Sun, and therefore directly observe the structure of space-time. This thesis explores several aspects of the observation of NEOs with Gaia, emphasising detection of NEOs and the quality of orbits computed from Gaia observations. The main contribution is the work on motion detection...

  12. ExploreNEOs: The Warm Spitzer Near Earth Object Survey

    NARCIS (Netherlands)

    Trilling, D. E.; Hora, J. L.; Mueller, M.; Thomas, C. A.; Harris, A. W.; Hagen, A. R.; Mommert, M.; Benner, L.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Delbo, M.; Emery, J. P.; Fazio, G.; Kistler, J. L.; Mainzer, A.; Morbidelli, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.

    2012-01-01

    We have observed some 600 near Earth objects (NEOs) at 3.6 and 4.5 microns with the Warm Spitzer Space Telescope. We derive the albedo and diameter for each NEO to characterize global properties of the NEO population, among other goals.

  13. Risk and Exploration: Earth, Sea and Stars

    Science.gov (United States)

    Dick, Steven J. (Editor); Cowing, Keith L. (Editor)

    2005-01-01

    The NASA History Division is pleased to present the record of a unique meeting on risk and exploration held under the auspices of the NASA Administrator, Sean O Keefe, at the Naval Postgraduate School in Monterey, California, from September 26-29, 2004. The meeting was the brainchild of Keith Cowing and astronaut John Grunsfeld, NASA's chief scientist at the time. Its goals, stated in the letter of invitation published herein, were precipitated by the ongoing dialogue on risk and exploration in the wake of the Columbia Shuttle accident, the Hubble Space Telescope servicing question, and, in a broader sense, by the many NASA programs that inevitably involve a balance between risk and forward-looking exploration. The meeting, extraordinarily broad in scope and participant experience, offers insights on why we explore, how to balance risk and exploration, how different groups defi ne and perceive risk differently, and the importance of exploration to a creative society. At NASA Headquarters, Bob Jacobs, Trish Pengra, and Joanna Adamus of NASA Public Affairs led the meeting's implementation. The Naval Postgraduate School, commanded by Rear Admiral Patrick W. Dunne, provided a congenial venue. The meeting was broadcast on NASA TV, and thanks are due in this regard to Al Feinberg, Tony Stewart, Jim Taylor, and the planners collaborative: Mark Shaddock and Spotlight Productions, Donovan Gates of Donovan Gates Production, and Michael Ditertay and his staff on this 30-person television crew. Thanks to their efforts, a DVD record of the meeting has also been produced. Thanks are also due to the moderators: Miles O Brien of CNN, Chris McKay of NASA Ames, David Halpern of the White House Office of Science and Technology Policy, and John Grunsfeld, NASA Headquarters. In order to maintain the informal flavor of the meetings, these proceedings are based on transcripts that have been lightly edited for grammar and punctuation. Most references to slides shown during the

  14. The Earth as a Distant Planet A Rosetta Stone for the Search of Earth-Like Worlds

    CERN Document Server

    Vázquez, M; Montañés Rodríguez, P

    2010-01-01

    Is the Earth, in some way, special? Or is our planet but one of the millions of other inhabited planets within our galaxy? This is an exciting time to be asking this old question, because for the first time in history, the answer is within reach. In The Earth as a Distant Planet, the authors set themselves as external observers of our Solar System from an astronomical distance. From that perspective, the authors describe how the Earth, the third planet in distance to the central star, can be catalogued as having its own unique features and as capable of sustaining life. The knowledge gained from this original perspective is then applied to the ongoing search for planets outside the solar system, or exoplanets. Since the discovery in 1992 of the first exoplanet, the number of known planets has increased exponentially. Ambitious space missions are already being designed for the characterization of their atmospheres and to explore the possibility that they host life. The exploration of Earth and the rest of the ...

  15. Forging Inclusive Solutions: Experiential Earth Charter Education

    Science.gov (United States)

    Hill, Linda D.

    2010-01-01

    Forging Inclusive Solutions describes the aims, methodology and outcomes of Inclusive Leadership Adventures, an experiential education curriculum for exploring the Earth Charter. Experiential education builds meaningful relationships, skills, awareness and an inclusive community based on the Earth Charter principles. When we meet people where they…

  16. Our Mission to Planet Earth: A guide to teaching Earth system science

    Science.gov (United States)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  17. Exploring Secondary Science Teachers' Perceptions on the Goals of Earth Science Education in Taiwan

    Science.gov (United States)

    Chang, Chun-Yen; Chang, Yueh-Hsia; Yang, Fang-Ying

    2009-01-01

    The educational reform movement since the 1990s has led the secondary earth science curriculum in Taiwan into a stage of reshaping. The present study investigated secondary earth science teachers' perceptions on the Goals of Earth Science Education (GESE). The GESE should express the statements of philosophy and purpose toward which educators…

  18. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  19. Surface exploration geophysics applied to the moon

    International Nuclear Information System (INIS)

    Ander, M.E.

    1984-01-01

    With the advent of a permanent lunar base, the desire to explore the lunar near-surface for both scientific and economic purposes will arise. Applications of exploration geophysical methods to the earth's subsurface are highly developed. This paper briefly addresses some aspects of applying this technology to near surface lunar exploration. It is noted that both the manner of application of some techniques, as well as their traditional hierarchy as assigned on earth, should be altered for lunar exploration. In particular, electromagnetic techniques may replace seismic techniques as the primary tool for evaluating near-surface structure

  20. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  1. Rigidly framed earth retaining structures thermal soil structure interaction of buildings supporting unbalanced lateral earth pressures

    CERN Document Server

    Aboumoussa, Walid

    2014-01-01

    Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories....

  2. Orbital Dynamics of Low-Earth Orbit Laser-Propelled Space Vehicles

    International Nuclear Information System (INIS)

    Yamakawa, Hiroshi; Funaki, Ikkoh; Komurasaki, Kimiya

    2008-01-01

    Trajectories applicable to laser-propelled space vehicles with a laser station in low-Earth orbit are investigated. Laser vehicles are initially located in the vicinity of the Earth-orbiting laser station in low-earth orbit at an altitude of several hundreds kilometers, and are accelerated by laser beaming from the laser station. The laser-propelled vehicles start from low-earth orbit and finally escape from the Earth gravity well, enabling interplanetary trajectories and planetary exploration

  3. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  4. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  5. Explore the virtual side of earth science

    Science.gov (United States)

    ,

    1998-01-01

    Scientists have always struggled to find an appropriate technology that could represent three-dimensional (3-D) data, facilitate dynamic analysis, and encourage on-the-fly interactivity. In the recent past, scientific visualization has increased the scientist's ability to visualize information, but it has not provided the interactive environment necessary for rapidly changing the model or for viewing the model in ways not predetermined by the visualization specialist. Virtual Reality Modeling Language (VRML 2.0) is a new environment for visualizing 3-D information spaces and is accessible through the Internet with current browser technologies. Researchers from the U.S. Geological Survey (USGS) are using VRML as a scientific visualization tool to help convey complex scientific concepts to various audiences. Kevin W. Laurent, computer scientist, and Maura J. Hogan, technical information specialist, have created a collection of VRML models available through the Internet at Virtual Earth Science (virtual.er.usgs.gov).

  6. Lunar Science from and for Planet Earth

    Science.gov (United States)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    Our Moon Every person on Earth is familiar with the Moon. Every resident with nominal eyesight on each continent has seen this near-by planetary body with their own eyes countless times. Those fortunate enough to have binoculars or access to a telescope have explored the craters, valleys, domes, and plains across the lunar surface as changing lighting conditions highlight the mysteries of this marvellously foreign landscape. Schoolchildren learn that the daily rhythm and flow of tides along the coastlines of our oceans are due to the interaction of the Earth and the Moon. This continuous direct and personal link is but one of the many reasons lunar science is fundamental to humanity. The Earth-Moon System In the context of space exploration, our understanding of the Earth-Moon system has grown enormously. The Moon has become the cornerstone for most aspects of planetary science that relate to the terrestrial (rocky) planets. The scientific context for exploration of the Moon is presented in a recent report by a subcommittee of the Space Studies Board of the National Research Council [free from the website: http://books.nap.edu/catalog.php?record_id=11954]. Figure 1 captures the interwoven themes surrounding lunar science recognized and discussed in that report. In particular, it is now recognized that the Earth and the Moon have been intimately linked in their early history. Although they subsequently took very different evolutionary paths, the Moon provides a unique and valuable window both into processes that occurred during the first 600 Million years of solar system evolution (planetary differentiation and the heavy bombardment record) as well as the (ultimately dangerous) impact record of more recent times. This additional role of the Moon as keystone is because the Earth and the Moon share the same environment at 1 AU, but only the Moon retains a continuous record of cosmic events. An Initial Bloom of Exploration and Drought The space age celebrated its 50th

  7. Material engineering to fabricate rare earth erbium thin films for exploring nuclear energy sources

    Science.gov (United States)

    Banerjee, A.; Abhilash, S. R.; Umapathy, G. R.; Kabiraj, D.; Ojha, S.; Mandal, S.

    2018-04-01

    High vacuum evaporation and cold-rolling techniques to fabricate thin films of the rare earth lanthanide-erbium have been discussed in this communication. Cold rolling has been used for the first time to successfully fabricate films of enriched and highly expensive erbium metal with areal density in the range of 0.5-1.0 mg/cm2. The fabricated films were used as target materials in an advanced nuclear physics experiment. The experiment was designed to investigate isomeric states in the heavy nuclei mass region for exploring physics related to nuclear energy sources. The films fabricated using different techniques varied in thickness as well as purity. Methods to fabricate films with thickness of the order of 0.9 mg/cm2 were different than those of 0.4 mg/cm2 areal density. All the thin films were characterized using multiple advanced techniques to accurately ascertain levels of contamination as well as to determine their exact surface density. Detailed fabrication methods as well as characterization techniques have been discussed.

  8. Radiation chemistry in exploration of Mars

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    2005-01-01

    Problems of exploration of Mars are seldom connected with radiation research. Improvements in such approach, more and more visible, are reported in this paper, written by the present author working on prebiotic chemistry and origins of life on Earth. Objects on Mars subjected to radiation are very different from those on Earth. Density of the Martian atmosphere is by two orders smaller than over Earth and does not protect the surface of Mars from ionizing radiations, contrary to the case of Earth, shielded by the equivalent of ca. 3 meters of concrete. High energy protons from the Sun are diverted magnetically around Earth, and Mars is deprived of that protection. The radiolysis of martian '' air '' (95.3% of carbon dioxide) starts with the formation of CO 2 + , whereas the primary product over Earth is N 2 + ion radical. The lack of water vapor over Mars prevents the formation of many secondary products. The important feature of Martian regolith is the possibility of the presence of hydrated minerals, which could have been formed milliards years ago, when (probably) water was present on Mars. The interface of the atmosphere and the regolith can be the site of many chemical reactions, induced also by intensive UV, which includes part of the vacuum UV. Minerals like sodalite, discovered on Mars can contribute as reagents in many reactions. Conclusions are dedicated to questions of the live organisms connected with exploration of Mars; from microorganisms, comparatively resistant to ionizing radiation, to human beings, considered not to be fit to manned flight, survival on Mars and return to Earth. Pharmaceuticals proposed as radiobiological protection cannot improve the situation. Exploration over the distance of millions of kilometers performed successfully without presence of man, withstands more easily the presence of ionizing radiation. (author)

  9. Space and Earth Science Data Compression Workshop

    Science.gov (United States)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  10. Exploring Rare Earths supply constraints for the emerging clean energy technologies and the role of recycling

    DEFF Research Database (Denmark)

    Habib, Komal; Wenzel, Henrik

    2014-01-01

    by 2050 mainly due to the long lifetime of key end use products. However, on a longer term i.e. by 2100, secondary supply from recycling can meet almost 50% of the demand. Moreover, recycling, is found to play major role in reducing the geopolitical aspects of supply risk due to diversification......The dependency on critical resources like Rare Earth Elements (REEs) has been pronounced as a potential barrier to a wider implementation of emerging renewable energy technologies. This study explores the dependency of such technologies especially wind turbines and electric vehicles along...... with other background end-uses on two key REEs, i.e. neodymium (Nd) and dysprosium (Dy). Our study reveals that a Business As Usual Development (BAUD) projected primary supply is unable to meet the forecasted demand of Nd and Dy in all the four modelled demand scenarios by 2050. This means that a highly...

  11. ELF-VLF communications through-the-Earth

    Science.gov (United States)

    Buettner, H. M.; Burke, G. J.; Didwall, E. M.; Holladay, G.; Lytle, R. J.

    1985-06-01

    We use computer models and experiments to explore the feasibility of communication between points underground and on the Earth's surface. Emphasis is placed on ELF-VLF electromagnetic propagation through the Earth; nominally, we investigated propagation in the 200 Hz-30 kHz frequency range. The computer modeling included calculations of the fields of a point electric or magnetic source in a homogeneous half space or a stratified Earth. Initial results for an insulated antenna of finite length are also considered. The experiments involved through-the-Earth transmissions at two locations in Pennsylvania, both of which had large formations of limestone. Initial results indicate that information rates as high as kbits/s may be possible for subsurface depths of 300 m or less. Accuracy of these estimates depends on the electromagnetic propagation constants of the rock, the noise characteristics, and modulation scheme. Although a nuisance for evaluating through-the-Earth propagation, the existence of subsurface metal conductors can improve the transmission character of the site.

  12. Effects of primitive photosynthesis on Earth's early climate system

    Science.gov (United States)

    Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.

    2018-01-01

    The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

  13. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Geetha Selvarani. Articles written in Journal of Earth System Science. Volume 125 Issue 2 March 2016 pp 311-328. Groundwater resource exploration in Salem district, Tamil Nadu using GIS and remote sensing · G Maheswaran A Geetha Selvarani K Elangovan.

  15. HABEBEE: habitability of eyeball-exo-Earths.

    Science.gov (United States)

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira

    2013-03-01

    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.

  16. Exploration Augmentation Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Exploration Augmentation Module (EAM) project goal is to design and deliver a flight module that is to be deployed to Earth-Lunar Distant Retrograde Orbit (DRO)....

  17. Critical Spacecraft-to-Earth Communications for Mars Exploration Rover (MER) entry, descent and landing

    Science.gov (United States)

    Hurd, William J.; Estabrook, Polly; Racho, Caroline S.; Satorius, Edgar H.

    2002-01-01

    For planetary lander missions, the most challenging phase of the spacecraft to ground communications is during the entry, descent, and landing (EDL). As each 2003 Mars Exploration Rover (MER) enters the Martian atmosphere, it slows dramatically. The extreme acceleration and jerk cause extreme Doppler dynamics on the X-band signal received on Earth. When the vehicle slows sufficiently, the parachute is deployed, causing almost a step in deceleration. After parachute deployment, the lander is lowered beneath the parachute on a bridle. The swinging motion of the lander imparts high Doppler dynamics on the signal and causes the received signal strength to vary widely, due to changing antenna pointing angles. All this time, the vehicle transmits important health and status information that is especially critical if the landing is not successful. Even using the largest Deep Space Network antennas, the weak signal and high dynamics render it impossible to conduct reliable phase coherent communications. Therefore, a specialized form of frequency-shift-keying will be used. This paper describes the EDL scenario, the signal conditions, the methods used to detect and frequency-track the carrier and to detect the data modulation, and the resulting performance estimates.

  18. NASA Technology Area 07: Human Exploration Destination Systems Roadmap

    Science.gov (United States)

    Kennedy, Kriss J.; Alexander, Leslie; Landis, Rob; Linne, Diane; Mclemore, Carole; Santiago-Maldonado, Edgardo; Brown, David L.

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) Office of Chief Technologist (OCT) led Space Technology Roadmap definition efforts. This paper will given an executive summary of the technology area 07 (TA07) Human Exploration Destination Systems (HEDS). These are draft roadmaps being reviewed and updated by the National Research Council. Deep-space human exploration missions will require many game changing technologies to enable safe missions, become more independent, and enable intelligent autonomous operations and take advantage of the local resources to become self-sufficient thereby meeting the goal of sustained human presence in space. Taking advantage of in-situ resources enhances and enables revolutionary robotic and human missions beyond the traditional mission architectures and launch vehicle capabilities. Mobility systems will include in-space flying, surface roving, and Extra-vehicular Activity/Extravehicular Robotics (EVA/EVR) mobility. These push missions will take advantage of sustainability and supportability technologies that will allow mission independence to conduct human mission operations either on or near the Earth, in deep space, in the vicinity of Mars, or on the Martian surface while opening up commercialization opportunities in low Earth orbit (LEO) for research, industrial development, academia, and entertainment space industries. The Human Exploration Destination Systems (HEDS) Technology Area (TA) 7 Team has been chartered by the Office of the Chief Technologist (OCT) to strategically roadmap technology investments that will enable sustained human exploration and support NASA s missions and goals for at least the next 25 years. HEDS technologies will enable a sustained human presence for exploring destinations such as remote sites on Earth and beyond including, but not limited to, LaGrange points, low Earth orbit (LEO), high Earth orbit (HEO), geosynchronous orbit (GEO), the Moon, near-Earth

  19. Investigating Trojan Asteroids at the L4/L5 Sun-Earth Lagrange Points

    Science.gov (United States)

    John, K. K.; Graham, L. D.; Abell, P. A.

    2015-01-01

    Investigations of Earth's Trojan asteroids will have benefits for science, exploration, and resource utilization. By sending a small spacecraft to the Sun-Earth L4 or L5 Lagrange points to investigate near-Earth objects, Earth's Trojan population can be better understood. This could lead to future missions for larger precursor spacecraft as well as human missions. The presence of objects in the Sun-Earth L4 and L5 Lagrange points has long been suspected, and in 2010 NASA's Wide-field Infrared Survey Explorer (WISE) detected a 300 m object. To investigate these Earth Trojan asteroid objects, it is both essential and feasible to send spacecraft to these regions. By exploring a wide field area, a small spacecraft equipped with an IR camera could hunt for Trojan asteroids and other Earth co-orbiting objects at the L4 or L5 Lagrange points in the near-term. By surveying the region, a zeroth-order approximation of the number of objects could be obtained with some rough constraints on their diameters, which may lead to the identification of potential candidates for further study. This would serve as a precursor for additional future robotic and human exploration targets. Depending on the inclination of these potential objects, they could be used as proving areas for future missions in the sense that the delta-V's to get to these targets are relatively low as compared to other rendezvous missions. They can serve as platforms for extended operations in deep space while interacting with a natural object in microgravity. Theoretically, such low inclination Earth Trojan asteroids exist. By sending a spacecraft to L4 or L5, these likely and potentially accessible targets could be identified.

  20. Multi-source Geospatial Data Analysis with Google Earth Engine

    Science.gov (United States)

    Erickson, T.

    2014-12-01

    The Google Earth Engine platform is a cloud computing environment for data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog is a multi-petabyte archive of georeferenced datasets that include images from Earth observing satellite and airborne sensors (examples: USGS Landsat, NASA MODIS, USDA NAIP), weather and climate datasets, and digital elevation models. Earth Engine supports both a just-in-time computation model that enables real-time preview and debugging during algorithm development for open-ended data exploration, and a batch computation mode for applying algorithms over large spatial and temporal extents. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, and resampling, which facilitates writing algorithms that combine data from multiple sensors and/or models. Although the primary use of Earth Engine, to date, has been the analysis of large Earth observing satellite datasets, the computational platform is generally applicable to a wide variety of use cases that require large-scale geospatial data analyses. This presentation will focus on how Earth Engine facilitates the analysis of geospatial data streams that originate from multiple separate sources (and often communities) and how it enables collaboration during algorithm development and data exploration. The talk will highlight current projects/analyses that are enabled by this functionality.https://earthengine.google.org

  1. Rendezvous and Docking for Space Exploration

    Science.gov (United States)

    Machula, M. F.; Crain, T.; Sandhoo, G. S.

    2005-01-01

    To achieve the exploration goals, new approaches to exploration are being envisioned that include robotic networks, modular systems, pre-positioned propellants and in-space assembly in Earth orbit, Lunar orbit and other locations around the cosmos. A fundamental requirement for rendezvous and docking to accomplish in-space assembly exists in each of these locations. While existing systems and technologies can accomplish rendezvous and docking in low earth orbit, and rendezvous and docking with crewed systems has been successfully accomplished in low lunar orbit, our capability must extend toward autonomous rendezvous and docking. To meet the needs of the exploration vision in-space assembly requiring both crewed and uncrewed vehicles will be an integral part of the exploration architecture. This paper focuses on the intelligent application of autonomous rendezvous and docking technologies to meet the needs of that architecture. It also describes key technology investments that will increase the exploration program's ability to ensure mission success, regardless of whether the rendezvous are fully automated or have humans in the loop.

  2. Electromagnetic sounding of the Earth's interior

    CERN Document Server

    Spichak, Viacheslav V

    2015-01-01

    Electromagnetic Sounding of the Earth's Interior 2nd edition provides a comprehensive up-to-date collection of contributions, covering methodological, computational and practical aspects of Electromagnetic sounding of the Earth by different techniques at global, regional and local scales. Moreover, it contains new developments such as the concept of self-consistent tasks of geophysics and , 3-D interpretation of the TEM sounding which, so far, have not all been covered by one book. Electromagnetic Sounding of the Earth's Interior 2nd edition consists of three parts: I- EM sounding methods, II- Forward modelling and inversion techniques, and III - Data processing, analysis, modelling and interpretation. The new edition includes brand new chapters on Pulse and frequency electromagnetic sounding for hydrocarbon offshore exploration. Additionally all other chapters have been extensively updated to include new developments. Presents recently developed methodological findings of the earth's study, including seism...

  3. Earth2Class: Bringing the Earth to the Classroom-Innovative Connections between Research Scientists, Teachers, and Students

    Science.gov (United States)

    Passow, M. J.

    2017-12-01

    "Earth2Class" (E2C) is a unique program offered through the Lamont-Doherty Earth Observatory of Columbia University. It connects research scientists, classroom teachers, middle and high school students, and others in ways that foster broader outreach of cutting-edge discoveries. One key component are Saturday workshops offered during the school year. These provide investigators with a tested format for sharing research methods and results. Teachers and students learn more about "real"science than what is found in textbooks. They discover that Science is exciting, uncertain, and done by people not very different from themselves. Since 1998, we have offered more than 170 workshops, partnering with more than 90 LDEO scientists. E2C teachers establishe links with scientists that have led to participation in research projects, the LDEO Open House, and other programs. Connections developed between high school students and scientists resulted in authentic science research experiences. A second key component of the project is the E2C website, https://earth2class.org/site/. We provide archived versions of monthly workshops. The website hosts a vast array of resources geared to support learning Earth Science and other subjects. Resources created through an NSF grant to explore strategies which enhance Spatial Thinking in the NYS Regents Earth Science curriculum are found at https://earth2class.org/site/?page_id=2957. The site is well-used by K-12 Earth Science educators, averaging nearly 70k hits per month. A third component of the E2C program are week-long summer institutes offering opportunities to enhance content knowledge in weather and climate; minerals, rocks, and resources; and astronomy. These include exploration of strategies to implement NGSS-based approaches within the school curriculum. Participants can visit LDEO lab facilities and interact with scientists to learn about their research. In the past year, we have begun to create a "satellite" E2C program at UFVJM

  4. Human Health and Performance Considerations for Exploration of Near-Earth Asteroids (NEA)

    Science.gov (United States)

    Steinberg, Susan L.; Kundrot, Craig; Charles, John B.

    2011-01-01

    This poster paper reviews the Astronaut health and performance issues for a Near Earth Asteroid (NEA) mission. Risks and other considerations are grouped into four categories and they are characterized for criticality.

  5. Colors of extreme exo-Earth environments.

    Science.gov (United States)

    Hegde, Siddharth; Kaltenegger, Lisa

    2013-01-01

    The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 μm) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This paper explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures.

  6. A knowledge discovery approach to explore some Sun/Earth's climate relationships

    Science.gov (United States)

    Pou, A.; Valdes, J.

    2009-09-01

    Recent developments in data driven modeling and analysis including computational intelligence techniques may throw new light on the exploration of possible solar activity/Earth's climate relationships. Here we present three different examples of methodologies under development and some preliminary results. a) Multivariate Time Series Model Mining (MVTSMM) analysis [1] and Genetic Programming were applied to Greenland's CRETE Site-E ice core Delta O18/16 values (1721-1983, one year interval sampling) and with sunspots activity (International Sunspots Number) during the same time span [2]. According to the results (1771 to 1933 period) indicated by the lag importance spectrum obtained with MVTSMM analysis, the sun's activity itself shows high internal variability and is inhomogeneous. The Dalton minimum, a low activity period usually considered to occur between 1790 and 1830, is shown to be a complex structure beginning about 1778 and ending in 1840. Apparently, the system entered a new state in 1912. In the joint analysis, the analytical tool uses extensively the solar activity data to explain the Delta O18/16 data, showing areas of stable patterns, lag drifts and abrupt pattern disruptions, indicating changes of state in the solar processes of several kinds at different times. b) A similar MVTSMM analysis was conducted on Central England Temperature (CET) and solar activity data using Group Sunspots Number (GSN) with a useful interpretive span of time from 1771 to 1916. The joint analysis involved large amounts of solar activity variables, except for the 1843-1862 and 1877-1889 periods where the discovered models used much less information from GSN data. As with the Crete-E/ISN analysis the lag importance spectrum of CET/GSN shows a number of clear discontinuities. A quarter of them are present in both (1778-1779, 1806, 1860-1862, 1912-1913). These experiments were designed for testing methodologies and not for specific hypothesis testing. However, it seems that

  7. Uranium exploration

    International Nuclear Information System (INIS)

    De Voto, R.H.

    1984-01-01

    This paper is a review of the methodology and technology that are currently being used in varying degrees in uranium exploration activities worldwide. Since uranium is ubiquitous and occurs in trace amounts (0.2 to 5 ppm) in virtually all rocks of the crust of the earth, exploration for uranium is essentially the search of geologic environments in which geologic processes have produced unusual concentrations of uranium. Since the level of concentration of uranium of economic interest is dependent on the present and future price of uranium, it is appropriate here to review briefly the economic realities of uranium-fueled power generation. (author)

  8. Expedition Earth and Beyond: Using Crew Earth Observation Imagery from the International Space Station to Facilitate Student-Led Authentic Research

    Science.gov (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Student-led authentic research in the classroom helps motivate students in science, technology, engineering, and mathematics (STEM) related subjects. Classrooms benefit from activities that provide rigor, relevance, and a connection to the real world. Those real world connections are enhanced when they involve meaningful connections with NASA resources and scientists. Using the unique platform of the International Space Station (ISS) and Crew Earth Observation (CEO) imagery, the Expedition Earth and Beyond (EEAB) program provides an exciting way to enable classrooms in grades 5-12 to be active participants in NASA exploration, discovery, and the process of science. EEAB was created by the Astromaterials Research and Exploration Science (ARES) Education Program, at the NASA Johnson Space Center. This Earth and planetary science education program has created a framework enabling students to conduct authentic research about Earth and/or planetary comparisons using the captivating CEO images being taken by astronauts onboard the ISS. The CEO payload has been a science payload onboard the ISS since November 2000. ISS crews are trained in scientific observation of geological, oceanographic, environmental, and meteorological phenomena. Scientists on the ground select and periodically update a series of areas to be photographed as part of the CEO science payload.

  9. Estimating Attitude, Trajectory, and Gyro Biases in an Extended Kalman Filter using Earth Magnetic Field Data from the Rossi X-Ray Timing Explorer

    Science.gov (United States)

    Deutschmann, Julie; Bar-Itzhack, Itzhack

    1997-01-01

    Traditionally satellite attitude and trajectory have been estimated with completely separate systems, using different measurement data. The estimation of both trajectory and attitude for low earth orbit satellites has been successfully demonstrated in ground software using magnetometer and gyroscope data. Since the earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. This work further tests the single augmented Extended Kalman Filter (EKF) which simultaneously and autonomously estimates spacecraft trajectory and attitude with data from the Rossi X-Ray Timing Explorer (RXTE) magnetometer and gyro-measured body rates. In addition, gyro biases are added to the state and the filter's ability to estimate them is presented.

  10. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    Science.gov (United States)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  11. Human Exploration using Real-Time Robotic Operations (HERRO): A space exploration strategy for the 21st century

    Science.gov (United States)

    Schmidt, George R.; Landis, Geoffrey A.; Oleson, Steven R.

    2012-11-01

    This paper presents an exploration strategy for human missions beyond Low Earth Orbit (LEO) and the Moon that combines the best features of human and robotic spaceflight. This "Human Exploration using Real-time Robotic Operations" (HERRO) strategy refrains from placing humans on the surfaces of the Moon and Mars in the near-term. Rather, it focuses on sending piloted spacecraft and crews into orbit around Mars and other exploration targets of interest, and conducting astronaut exploration of the surfaces using telerobots and remotely-controlled systems. By eliminating the significant communications delay or "latency" with Earth due to the speed of light limit, teleoperation provides scientists real-time control of rovers and other sophisticated instruments. This in effect gives them a "virtual presence" on planetary surfaces, and thus expands the scientific return at these destinations. HERRO mitigates several of the major issues that have hindered the progress of human spaceflight beyond Low Earth Orbit (LEO) by: (1) broadening the range of destinations for near-term human missions; (2) reducing cost and risk through less complexity and fewer man-rated elements; (3) offering benefits of human-equivalent in-situ cognition, decision-making and field-work on planetary bodies; (4) providing a simpler approach to returning samples from Mars and planetary surfaces; and (5) facilitating opportunities for international collaboration through contribution of diverse robotic systems. HERRO provides a firm justification for human spaceflight—one that expands the near-term capabilities of scientific exploration while providing the space transportation infrastructure needed for eventual human landings in the future.

  12. Imaging of vertebral trauma

    International Nuclear Information System (INIS)

    Daffner, R.H.

    1999-01-01

    This translation of the toolbook published in the 'US-ART' series, offers invaluable help to medical radiologists in the diagnostic imaging and evaluation of complex vertebral traumas which are on the rise, inter alia due to increasingly dangerous leisure sports. (orig./CB) [de

  13. Rare earth elements as a by-catch of sedimentary deposits. Exploration program of rare earth elements; Selten Erd Elemente als Beifang sedimentaerer Lagerstaetten. Erkundungsprogramm Selten Erd Elemente

    Energy Technology Data Exchange (ETDEWEB)

    Linhardt, E.; Gebhardt, A. (comps.)

    2014-02-15

    The increasing demand for rare earth elements (REE) in the field of ''green technologies'' on the one hand and the shortage of raw materials on the world markets on the other hand confronted also Bavaria as an industrial location with growing supply problems in these ''high tech raw materials''. The aim of exploration was the clarification of the feedstock REE potential of heavy mineral concentrates which are obtained in the industrial extraction and processing of sand and kaolin in existing extraction operations in northern Bavaria as by catch and are potentially winnable or marketable. The in-depth investigation enabled the potential of found rare earth elements and other high-tech metal oxides that can be classified as very likely find it in terms of an economic recovery. [German] Der zunehmende Bedarf an Selten Erd Elementen (SEE) im Bereich der ''Gruenen Technologien'' zum Einen sowie die Rohstoffverknappung auf den Weltmaerkten zum Anderen konfrontiert auch Bayern als Industriestandort mit wachsenden Versorgungsproblemen bei diesen ''high tech-Grundstoffen''. Ziel der Erkundung war die Klaerung des rohstofflichen SEE-Potenzials von Schwermineralkonzentraten, die bei der grosstechnischen Gewinnung und Aufbereitung von Sand und Kaolin in vorhandenen Gewinnungsbetrieben Nordbayerns als Beifang anfallen und potenziell gewinn- bzw. vermarktbar sind. Im Zuge der Untersuchung konnten nutzbare Potenziale von Selten Erd Elementen und anderen high-tech - Metalloxiden gefunden werden, die sehr wahrscheinlich als fuendig im Hinblick auf eine wirtschaftliche Gewinnung eingestuft werden koennen.

  14. Keeping Earth at work: Using thermodynamics to develop a holistic theory of the Earth system

    Science.gov (United States)

    Kleidon, Axel

    2010-05-01

    The Earth system is unique among terrestrial planets in that it is maintained in a state far from thermodynamic equilibrium. Practically all processes are irreversible in their nature, thereby producing entropy, and these would act to destroy this state of disequilibrium. In order to maintain disequilibrium in steady state, driving forces are required that perform the work to maintain the Earth system in a state far from equilibrium. To characterize the functioning of the Earth system and the interactions among its subsystems we need to consider all terms of the first and second law of thermodynamics. While the global energy balance is well established in climatology, the global entropy and work balances receive little, if any, attention. Here I will present first steps in developing a holistic theory of the Earth system including quantifications of the relevant terms that is based on the first and second laws of thermodynamics. This theory allows us to compare the significance of different processes in driving and maintaining disequilibrium, allows us to explore interactions by investigating the role of power transfer among processes, and specifically illustrate the significance of life in driving planetary disequilibrium. Furthermore, the global work balance demonstrates the significant impact of human activity and it provides an estimate for the availability of renewable sources of free energy within the Earth system. Hence, I conclude that a holistic thermodynamic theory of the Earth system is not just some academic exercise of marginal use, but essential for a profound understanding of the Earth system and its response to change.

  15. Is the earth flat or round? Primary school children’s understandings of the planet earth: The case of Turkish children

    OpenAIRE

    Sibel Özsoy

    2017-01-01

    The purpose of this study is to explore primary school children’s understandings about the shape of the Earth. The sample is consisted of 124 first-graders from five primary schools located in an urban city of Turkey. The data of the study were collected through children’s drawings and semi-structured interviews. Results obtained from the drawings showed that only one third of the participants have drawn scientifically acceptable images of the earth. However, the subsequent semi-s...

  16. Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System (B) Past, Present and Future of Small Body Science and Exploration (B0.4)

    Science.gov (United States)

    Abell, Paul; Mazanek, Dan; Reeves, Dan; Chodas, Paul; Gates, Michele; Johnson, Lindley; Ticker, Ronald

    2016-01-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human space flight missions. Today, human flight experience extends only to Low- Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human space flight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM).

  17. The search for life on Earth and other planets.

    Science.gov (United States)

    Gross, Michael

    2012-04-10

    As the NASA rover Curiosity approaches Mars on its quest to look for signs of past or present life there and sophisticated instruments like the space telescopes Kepler and CoRoT keep discovering additional, more Earth-like planets orbiting distant stars, science faces the question of how to spot life on other planets. Even here on Earth biotopes remain to be discovered and explored.

  18. SWARM - An earth Observation Mission investigating Geospace

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, H.; Knudsen, D.

    2008-01-01

    The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. This mission aims at measuring the Earth's magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient...... of the magnetic field, and one satellite will fly at higher altitude. The measured magnetic field is the sum of many contributions including both magnetic fields and currents in the Earth's interior and electrical currents in Geospace. In order to separate all these sources electric field and plasma measurements...... will also be made to complement the primary magnetic field measurements. Together these will allow the deduction of information on a series of solid earth processes responsible for the creation of the fields measured. The completeness of the measurements on each satellite and the constellation aspect...

  19. NASA's Solar System Exploration Research Virtual Institute: Science and Technology for Lunar Exploration

    Science.gov (United States)

    Schmidt, Greg; Bailey, Brad; Gibbs, Kristina

    2015-01-01

    The NASA Solar System Exploration Research Virtual Institute (SSERVI) is a virtual institute focused on research at the intersection of science and exploration, training the next generation of lunar scientists, and development and support of the international community. As part of its mission, SSERVI acts as a hub for opportunities that engage the larger scientific and exploration communities in order to form new interdisciplinary, research-focused collaborations. The nine domestic SSERVI teams that comprise the U.S. complement of the Institute engage with the international science and exploration communities through workshops, conferences, online seminars and classes, student exchange programs and internships. SSERVI represents a close collaboration between science, technology and exploration enabling a deeper, integrated understanding of the Moon and other airless bodies as human exploration moves beyond low Earth orbit. SSERVI centers on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, with additional aspects of related technology development, including a major focus on human exploration-enabling efforts such as resolving Strategic Knowledge Gaps (SKGs). The Institute focuses on interdisciplinary, exploration-related science focused on airless bodies targeted as potential human destinations. Areas of study represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. This research profile integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies. New opportunities for both domestic and international partnerships are continually generated through these research and

  20. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  1. Visualizing Earth Materials

    Science.gov (United States)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  2. "We Put on the Glasses and Moon Comes Closer!" Urban Second Graders Exploring the Earth, the Sun and Moon through 3D Technologies in a Science and Literacy Unit

    Science.gov (United States)

    Isik-Ercan, Zeynep; Zeynep Inan, Hatice; Nowak, Jeffrey A.; Kim, Beomjin

    2014-01-01

    This qualitative case study describes (a) the ways 3D visualization, coupled with other science and literacy experiences, supported young children's first exploration of the Earth-Sun-Moon system and (b) the perspectives of classroom teachers and children on using 3D visualization. We created three interactive 3D software modules that simulate day…

  3. Is the Earth Flat or Round? Primary School Children’s Understandings of the Planet Earth: The Case of Turkish Children

    Directory of Open Access Journals (Sweden)

    Sibel OZSOY

    2012-03-01

    Full Text Available The purpose of this study is to explore primary school children’s understandings about the shape of the Earth. The sample is consisted of 124 first-graders from five primary schools located in an urbancity of Turkey. The data of the study were collected through children’s drawings and semi-structured interviews. Results obtained from the drawings showed that only one third of the participants havedrawn scientifically acceptable images of the earth. However, the subsequent semi-structured interviews revealed that more children have scientific knowledge about the shape of the Earth. The results also revealed that cartoons, story books and daily life experiences are the reasons for children’s misconceptions.

  4. Is the earth flat or round? Primary school children’s understandings of the planet earth: The case of Turkish children

    Directory of Open Access Journals (Sweden)

    Sibel Özsoy

    2017-12-01

    Full Text Available The purpose of this study is to explore primary school children’s understandings about the shape of the Earth. The sample is consisted of 124 first-graders from five primary schools located in an urban city of Turkey. The data of the study were collected through children’s drawings and semi-structured interviews. Results obtained from the drawings showed that only one third of the participants have drawn scientifically acceptable images of the earth. However, the subsequent semi-structured interviews revealed that more children have scientific knowledge about the shape of the Earth. The results also revealed that cartoons, story books and daily life experiences are the reasons for children’s misconceptions.

  5. Analyzing Earth Science Research Networking through Visualizations

    Science.gov (United States)

    Hasnain, S.; Stephan, R.; Narock, T.

    2017-12-01

    Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.

  6. Exploring uncertainty in the Earth Sciences - the potential field perspective

    Science.gov (United States)

    Saltus, R. W.; Blakely, R. J.

    2013-12-01

    Interpretation of gravity and magnetic anomalies is mathematically non-unique because multiple theoretical solutions are possible. The mathematical label of 'non-uniqueness' can lead to the erroneous impression that no single interpretation is better in a geologic sense than any other. The purpose of this talk is to present a practical perspective on the theoretical non-uniqueness of potential field interpretation in geology. There are multiple ways to approach and constrain potential field studies to produce significant, robust, and definitive results. For example, a smooth, bell-shaped gravity profile, in theory, could be caused by an infinite set of physical density bodies, ranging from a deep, compact, circular source to a shallow, smoothly varying, inverted bell-shaped source. In practice, however, we can use independent geologic or geophysical information to limit the range of possible source densities and rule out many of the theoretical solutions. We can further reduce the theoretical uncertainty by careful attention to subtle anomaly details. For example, short-wavelength anomalies are a well-known and theoretically established characteristic of shallow geologic sources. The 'non-uniqueness' of potential field studies is closely related to the more general topic of scientific uncertainty in the Earth sciences and beyond. Nearly all results in the Earth sciences are subject to significant uncertainty because problems are generally addressed with incomplete and imprecise data. The increasing need to combine results from multiple disciplines into integrated solutions in order to address complex global issues requires special attention to the appreciation and communication of uncertainty in geologic interpretation.

  7. Data-driven exploration of copper mineralogy and its application to Earth's near-surface oxidation

    Science.gov (United States)

    Morrison, S. M.; Eleish, A.; Runyon, S.; Prabhu, A.; Fox, P. A.; Ralph, J.; Golden, J. J.; Downs, R. T.; Liu, C.; Meyer, M.; Hazen, R. M.

    2017-12-01

    Earth's atmospheric composition has changed radically throughout geologic history.1,2 The oxidation of our atmosphere, driven by biology, began with the Great Oxidation Event (GOE) 2.5 Ga and has heavily influenced Earth's near surface mineralogy. Therefore, temporal trends in mineral occurrence elucidate large and small scale geologic and biologic processes. Cu, and other first-row transition elements, are of particular interest due to their variation in valance state and sensitivity to ƒO2. Widespread formation of oxidized Cu mineral species (Cu2+) would not have been possible prior to the GOE and we have found that the proportion of oxidized Cu minerals increased steadily with the increase in atmospheric O2 on Earth's surface (see Fig. 1). To better characterize the changes in Cu mineralogy through time, we have employed advanced analytical and visualization methods. These techniques rely on large and growing mineral databases (e.g., rruff.info, mindat.org, earthchem.org, usgs.gov) and allow us to quantify and visualize multi-dimensional trends.5

  8. Radar Images of the Earth and the World Wide Web

    Science.gov (United States)

    Chapman, B.; Freeman, A.

    1995-01-01

    A perspective of NASA's Jet Propulsion Laboratory as a center of planetary exploration, and its involvement in studying the earth from space is given. Remote sensing, radar maps, land topography, snow cover properties, vegetation type, biomass content, moisture levels, and ocean data are items discussed related to earth orbiting satellite imaging radar. World Wide Web viewing of this content is discussed.

  9. Our Place in Space: Exploring the Earth-Moon System and Beyond with NASA's CINDI E/PO Program

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M. R.

    2010-12-01

    Where does space begin? How far is the Moon? How far is Mars? How does our dynamic star, the Sun, affect its family of planets? All of these questions relate to exploration of our Solar System, and are also part of the Education/Public Outreach (E/PO) Program for NASA’s CINDI project, a space weather mission of opportunity. The Coupled Ion Neutral Dynamics Investigation has been flying aboard the US Air Force Communication/Navigation Outage Forecast System (C/NOFS) satellite in the upper atmosphere of the Earth since April 2008. The Earth’s ionosphere, the part of the atmosphere CINDI studies, is also in space. The CINDI E/PO program uses this fact in lessons designed to help students in middle schools and introductory astronomy classes develop a sense of their place in space. In the activity "How High is Space?" students’ start by building an 8-page scale model of the Earth’s atmosphere with 100 km/page. The peak of Mount Everest, commercial airplanes, and the tops of thunderheads all appear at the bottom of the first page of the model, with astronaut altitude -where space begins- at the top of the same sheet of paper. In "Where Would CINDI Be?" the idea of scale is further developed by modeling the Earth-Moon system to scale first in size, then in distance, using half of standard containers of play dough. With a lowest altitude of about 400 km, similar to that of the International Space Station and orbiting Space Shuttle, CINDI is close to the Earth when compared with the nearly thousand times greater distance to the Moon. Comparing and combining the atmosphere and Earth-Moon system models help reinforce ideas of scale and build student understanding of how far away the Moon actually is. These scale models have also been adapted for use in Family Science Nights, and to include the planet Mars. In this presentation, we will show how we use CINDI’s scale modeling activities and others from our broader space sciences E/PO program in formal and informal

  10. The New National Vision for Space Exploration

    Science.gov (United States)

    Sackheim, Robert L.; Geveden, Rex; King, David A.

    2004-01-01

    From the Apollo landings on the Moon, to robotic surveys of the Sun and the planets, to the compelling images captured by advanced space telescopes, U.S. achievements in space have revolutionized humanity s view of the universe and have inspired Americans and people around the world. These achievements also have led to the development of technologies that have widespread applications to address problems on Earth. As the world enters the second century of powered flight, it is appropriate to articulate a new vision that will define and guide U.S. space exploration activities for the next several decades. Today, humanity has the potential to seek answers to the most fundamental questions posed about the existence of life beyond Earth. Telescopes have found planets around other stars. Robotic probes have identified potential resources on the Moon, and evidence of water - a key ingredient for life - has been found on Mars and the moons of Jupiter. Direct human experience in space has fundamentally altered our perspective of humanity and our place in the universe. Humans have the ability to respond to the unexpected developments inherent in space travel and possess unique skills that enhance discoveries. Just as Mercury, Gemini, and Apollo challenged a generation of Americans, a renewed U.S. space exploration program with a significant human component can inspire us - and our youth - to greater achievements on Earth and in space. The loss of Space Shuttles Challenger and Columbia and their crews are a stark reminder of the inherent risks of space flight and the severity of the challenges posed by space exploration. In preparation for future human exploration, we must advance our ability to live and work safely in space and, at the same time, develop the technologies to extend humanity s reach to the Moon, Mars, and beyond. The new technologies required for further space exploration also will improve the Nation s other space activities and may provide applications that

  11. Exploring the isopycnal mixing and helium-heat paradoxes in a suite of Earth System Models

    OpenAIRE

    A. Gnanadesikan; R. Abernathey; M.-A. Pradal

    2014-01-01

    This paper uses a suite of Earth system models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science, each of which results from an inconsistency between theoretically motivated global energy balances and direct observations. The helium–heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to b...

  12. Digest of NASA earth observation sensors

    Science.gov (United States)

    Drummond, R. R.

    1972-01-01

    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  13. FINESSE Spaceward Bound - Teacher Engagement in NASA Science and Exploration Field Research

    Science.gov (United States)

    Jones, A. J. P.; Heldmann, J. L.; Sheely, T.; Karlin, J.; Johnson, S.; Rosemore, A.; Hughes, S.; Nawotniak, S. Kobs; Lim, D. S. S.; Garry, W. B.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.

  14. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    Science.gov (United States)

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  15. Using Digital Globes to Explore the Deep Sea and Advance Public Literacy in Earth System Science

    Science.gov (United States)

    Beaulieu, Stace E.; Emery, Emery; Brickley, Annette; Spargo, Abbey; Patterson, Kathleen; Joyce, Katherine; Silva, Tim; Madin, Katherine

    2015-01-01

    Digital globes are new technologies increasingly used in informal and formal education to display global datasets and show connections among Earth systems. But how effective are digital globes in advancing public literacy in Earth system science? We addressed this question by developing new content for digital globes with the intent to educate and…

  16. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    Science.gov (United States)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  17. Exploration Medical Cap Ability System Engineering Overview

    Science.gov (United States)

    McGuire, K.; Mindock, J.

    2018-01-01

    Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and

  18. Using GIS in an Earth Sciences Field Course for Quantitative Exploration, Data Management and Digital Mapping

    Science.gov (United States)

    Marra, Wouter A.; van de Grint, Liesbeth; Alberti, Koko; Karssenberg, Derek

    2017-01-01

    Field courses are essential for subjects like Earth Sciences, Geography and Ecology. In these topics, GIS is used to manage and analyse spatial data, and offers quantitative methods that are beneficial for fieldwork. This paper presents changes made to a first-year Earth Sciences field course in the French Alps, where new GIS methods were…

  19. The Role of Cis-Lunar Space in Future Global Space Exploration

    Science.gov (United States)

    Bobskill, Marianne R.; Lupisella, Mark L.

    2012-01-01

    Cis-lunar space offers affordable near-term opportunities to help pave the way for future global human exploration of deep space, acting as a bridge between present missions and future deep space missions. While missions in cis-lunar space have value unto themselves, they can also play an important role in enabling and reducing risk for future human missions to the Moon, Near-Earth Asteroids (NEAs), Mars, and other deep space destinations. The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Team (HAT) has been analyzing cis-lunar destination activities and developing notional missions (or "destination Design Reference Missions" [DRMs]) for cis-lunar locations to inform roadmap and architecture development, transportation and destination elements definition, operations, and strategic knowledge gaps. The cis-lunar domain is defined as that area of deep space under the gravitational influence of the earth-moon system. This includes a set of earth-centered orbital locations in low earth orbit (LEO), geosynchronous earth orbit (GEO), highly elliptical and high earth orbits (HEO), earth-moon libration or "Lagrange" points (E-ML1 through E-ML5, and in particular, E-ML1 and E-ML2), and low lunar orbit (LLO). To help explore this large possibility space, we developed a set of high level cis-lunar mission concepts in the form of a large mission tree, defined primarily by mission duration, pre-deployment, type of mission, and location. The mission tree has provided an overall analytical context and has helped in developing more detailed design reference missions that are then intended to inform capabilities, operations, and architectures. With the mission tree as context, we will describe two destination DRMs to LEO and GEO, based on present human space exploration architectural considerations, as well as our recent work on defining mission activities that could be conducted with an EML1 or EML2 facility, the latter of which will be an emphasis of this

  20. Comparison of Propulsion Options for Human Exploration of Mars

    Science.gov (United States)

    Drake, Bret G.; McGuire, Melissa L.; McCarty, Steven L.

    2018-01-01

    NASA continues to advance plans to extend human presence beyond low-Earth orbit leading to human exploration of Mars. The plans being laid out follow an incremental path, beginning with initial flight tests followed by deployment of a Deep Space Gateway (DSG) in cislunar space. This Gateway, will serve as the initial transportation node for departing and returning Mars spacecraft. Human exploration of Mars represents the next leap for humankind because it will require leaving Earth on a long mission with very limited return, rescue, or resupply capabilities. Although Mars missions are long, approaches and technologies are desired which can reduce the time that the crew is away from Earth. This paper builds off past analyses of NASA's exploration strategy by providing more detail on the performance of alternative in-space transportation options with an emphasis on reducing total mission duration. Key options discussed include advanced chemical, nuclear thermal, nuclear electric, solar electric, as well as an emerging hybrid propulsion system which utilizes a combination of both solar electric and chemical propulsion.

  1. Exploiting Untapped Information Resources in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Fox, P. A.; Kempler, S.; Maskey, M.

    2015-12-01

    One of the continuing challenges in any Earth science investigation is the amount of time and effort required for data preparation before analysis can begin. Current Earth science data and information systems have their own shortcomings. For example, the current data search systems are designed with the assumption that researchers find data primarily by metadata searches on instrument or geophysical keywords, assuming that users have sufficient knowledge of the domain vocabulary to be able to effectively utilize the search catalogs. These systems lack support for new or interdisciplinary researchers who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. There is clearly a need to innovate and evolve current data and information systems in order to improve data discovery and exploration capabilities to substantially reduce the data preparation time and effort. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. The challenge for any organization is to recognize, identify and effectively utilize the dark data stores in their institutional repositories to better serve their stakeholders. NASA Earth science metadata catalogs contain dark resources consisting of structured information, free form descriptions of data and pre-generated images. With the addition of emerging semantic technologies, such catalogs can be fully utilized beyond their original design intent of supporting current search functionality. In this presentation, we will describe our approach of exploiting these information resources to provide novel data discovery and exploration pathways to science and education communities

  2. Rare earth industry in India

    International Nuclear Information System (INIS)

    Singh, D.S.

    2016-01-01

    Rare Earths (RE) comprises of 17 elements i.e. elements from atomic No. 57-71 (lanthanide series) along with yttrium (atomic No. 39) and scandium (atomic No. 21). They exhibit special electronic, magnetic, optical and catalytic properties. The first 7 elements in the lanthanide series from atomic Nos. 57 to 63 (La to Eu) are called Light Rare Earths (LRE), while the remaining elements from atomic Nos. 64 to 71 (Gd to Lu) are grouped as Heavy Rare Earths (HRE). Scandium and Yttrium have properties similar to HRE. The concentration of the REs in the earth's crust is as high as some other elements including that of copper. The only difference is that REs do not occur as separate minerals amenable for easy exploration and mining and are widely distributed across the earth's surface, hence they are called as REs. Resources In India, monazite has been the principal source of RE. It occurs in association with other heavy minerals, such as ilmenite, rutile, zircon etc. in the beach sands and inland placer deposits. The monazite content in this assemblage varies from negligible quantity to as high as 5%. As per AMD resource estimation, the reported resource of monazite in India is about 11.93 million tons which corresponds with about 6.9 million tons of RE oxides. Although India possesses large deposits of monazite, the heavier RE are not present in sufficient quantities in this mineral. (author)

  3. Storytelling in Earth sciences: The eight basic plots

    Science.gov (United States)

    Phillips, Jonathan

    2012-11-01

    Reporting results and promoting ideas in science in general, and Earth science in particular, is treated here as storytelling. Just as in literature and drama, storytelling in Earth science is characterized by a small number of basic plots. Though the list is not exhaustive, and acknowledging that multiple or hybrid plots and subplots are possible in a single piece, eight standard plots are identified, and examples provided: cause-and-effect, genesis, emergence, destruction, metamorphosis, convergence, divergence, and oscillation. The plots of Earth science stories are not those of literary traditions, nor those of persuasion or moral philosophy, and deserve separate consideration. Earth science plots do not conform those of storytelling more generally, implying that Earth scientists may have fundamentally different motivations than other storytellers, and that the basic plots of Earth Science derive from the characteristics and behaviors of Earth systems. In some cases preference or affinity to different plots results in fundamentally different interpretations and conclusions of the same evidence. In other situations exploration of additional plots could help resolve scientific controversies. Thus explicit acknowledgement of plots can yield direct scientific benefits. Consideration of plots and storytelling devices may also assist in the interpretation of published work, and can help scientists improve their own storytelling.

  4. Systems Engineering for Space Exploration Medical Capabilities

    Science.gov (United States)

    Mindock, Jennifer; Reilly, Jeffrey; Rubin, David; Urbina, Michelle; Hailey, Melinda; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris; hide

    2017-01-01

    Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  5. How did Earth not End up like Venus?

    Science.gov (United States)

    Jellinek, M.; Lenardic, A.; Weller, M. B.

    2017-12-01

    Recent geodynamic calculations show that terrestrial planets forming with a chondritic initial bulk composition at order 1 AU can evolve to be either "Earth-like" or "Venus-like": Both mobile- and stagnant-lid tectonic regimes are permitted, neither solution is an explicitly stronger attractor and effects related to differences in Sun-Earth distance are irrelevant. What factors might then cause the thermal evolutionary paths of Earth and Venus to diverge dynamically at early times? At what point in Earth's evolution did plate tectonics emerge and when and how did this tectonic mode gain sufficient resilience to persist over much of Earth's evolution? What is the role of volatile cycling and climate: To what extent have the stable climate of Earth and the greenhouse runaway climate of Venus enforced their distinct tectonic regimes over time? In this talk I will explore some of the mechanisms potentially governing the evolutionary divergence of Earth and Venus. I will first review observational constraints that suggest that Earth's entry into the current stable plate tectonic mode was far from assured by 2 Ga. Next I will discuss how models have been used to build understanding of some key dynamical controls. In particular, the probability of "Earth-like" solutions is affected by: 1) small differences in the initial concentrations of heat producing elements (i.e., planetary initial conditions); 2) long-term climate change; and 3) the character of a planet's early evolutionary path (i.e., tectonic hysteresis).

  6. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  7. Making Geoscience Data Relevant for Students, Teachers, and the Public

    Science.gov (United States)

    Taber, M.; Ledley, T. S.; Prakash, A.; Domenico, B.

    2009-12-01

    The scientific data collected by government funded research belongs to the public. As such, the scientific and technical communities are responsible to make scientific data accessible and usable by the educational community. However, much geoscience data are difficult for educators and students to find and use. Such data are generally described by metadata that are narrowly focused and contain scientific language. Thus, data access presents a challenge to educators in determining if a particular dataset is relevant to their needs, and to effectively access and use the data. The AccessData project (EAR-0623136, EAR-0305058) has developed a model for bridging the scientific and educational communities to develop robust inquiry-based activities using scientific datasets in the form of Earth Exploration Toolbook (EET, http://serc.carleton.edu/eet) chapters. EET chapters provide step-by-step instructions for accessing specific data and analyzing it with a software analysis tool to explore issues or concepts in science, technology, and mathematics. The AccessData model involves working directly with small teams made up of data providers from scientific data archives or research teams, data analysis tool specialists, scientists, curriculum developers, and educators (AccessData, http://serc.carleton.edu/usingdata/accessdata). The process involves a number of steps including 1) building of the team; 2) pre-workshop facilitation; 3) face-to-face 2.5 day workshop; 4) post-workshop follow-up; 5) completion and review of the EET chapter. The AccessData model has been evolved over a series of six annual workshops hosting ~10 teams each. This model has been expanded to other venues to explore expanding its scope and sustainable mechanisms. These venues include 1) workshops focused on the data collected by a large research program (RIDGE, EarthScope); 2) a workshop focused on developing a citizen scientist guide to conducting research; and 3) facilitating a team on an annual basis

  8. EarthShape: A Strategy for Investigating the Role of Biota on Surface Processes

    Science.gov (United States)

    Übernickel, Kirstin; Ehlers, Todd Alan; von Blanckenburg, Friedhelm; Paulino, Leandro

    2017-04-01

    EarthShape - "Earth surface shaping by biota" is a 6-year priority research program funded by the German science foundation (DFG-SPP 1803) that performs soil- and landscape-scale critical zone research at 4 locations along a climate gradient in Chile, South America. The program is in its first year and involves an interdisciplinary collaboration between geologists, geomorphologists, ecologists, soil scientists, microbiologists, geophysicists, geochemists, hydrogeologists and climatologists including 18 German and 8 Chilean institutions. EarthShape is composed of 4 research clusters representing the process chain from weathering of substrate to deposition of eroded material. Cluster 1 explores micro-biota as the "weathering engine". Investigations in this cluster quantify different mechanisms of biogenic weathering whereby plants, fungi, and bacteria interact with rock in the production of soil. Cluster 2 explores bio-mediated redistribution of material within the weathering zone. Studies in this cluster focus on soil catenas along hill slope profiles to investigate the modification of matter along its transport path. Cluster 3 explores biotic modulation of erosion and sediment routing at the catchment scale. Investigations in this cluster explore the effects of vegetation cover on solute and sediment transport from hill slopes to the channel network. Cluster 4 explores the depositional legacy of coupled biogenic and Earth surface systems. This cluster investigates records of vegetation-land surface interactions in different depositional settings. A final component of EarthShape lies in the integration of results from these 4 clusters using numerical models to bridging between the diverse times scales used by different disciplines. The Chilean Coastal Cordillera between 25° and 40°S was selected to carry out this research because its north-south orientation captures a large ecological and climate gradient. This gradient ranges from hyper-arid (Atacama desert) to

  9. Radiological Impacts and Regulation of Rare Earth Elements in Non-Nuclear Energy Production

    Directory of Open Access Journals (Sweden)

    Timothy Ault

    2015-03-01

    Full Text Available Energy industries account for a significant portion of total rare earth usage, both in the US and worldwide. Rare earth minerals are frequently collocated with naturally occurring radioactive material, imparting an occupational radiological dose during recovery. This paper explores the extent to which rare earths are used by various non-nuclear energy industries and estimates the radiological dose which can be attributed to these industries on absolute and normalized scales. It was determined that typical rare earth mining results in an occupational collective dose of approximately 0.0061 person-mSv/t rare earth elements, amounting to a total of 330 person-mSv/year across all non-nuclear energy industries (about 60% of the annual collective dose from one pressurized water reactor operated in the US, although for rare earth mining the impact is spread out over many more workers. About half of the collective dose from non-nuclear energy production results from use of fuel cracking catalysts for oil refining, although given the extent of the oil industry, it is a small dose when normalized to the energy equivalent of the oil that is used annually. Another factor in energy industries’ reliance on rare earths is the complicated state of the regulation of naturally occurring radiological materials; correspondingly, this paper also explores regulatory and management implications.

  10. Concept Design of High Power Solar Electric Propulsion Vehicles for Human Exploration

    Science.gov (United States)

    Hoffman, David J.; Kerslake, Thomas W.; Hojnicki, Jeffrey S.; Manzella, David H.; Falck, Robert D.; Cikanek, Harry A., III; Klem, Mark D.; Free, James M.

    2011-01-01

    Human exploration beyond low Earth orbit will require enabling capabilities that are efficient, affordable and reliable. Solar electric propulsion (SEP) has been proposed by NASA s Human Exploration Framework Team as one option to achieve human exploration missions beyond Earth orbit because of its favorable mass efficiency compared to traditional chemical propulsion systems. This paper describes the unique challenges associated with developing a large-scale high-power (300-kWe class) SEP vehicle and design concepts that have potential to meet those challenges. An assessment of factors at the subsystem level that must be considered in developing an SEP vehicle for future exploration missions is presented. Overall concepts, design tradeoffs and pathways to achieve development readiness are discussed.

  11. NEOSURVEY 1: INITIAL RESULTS FROM THE WARM SPITZER EXPLORATION SCIENCE SURVEY OF NEAR-EARTH OBJECT PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Trilling, David E.; Mommert, Michael [Department of Physics and Astronomy, PO Box 6010, Northern Arizona University, Flagstaff, AZ 86011 (United States); Hora, Joseph; Fazio, Giovanni; Smith, Howard [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-65, Cambridge, MA 02138-1516 (United States); Chesley, Steve [Jet Propulsion Laboratory, California Institute of Technology, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Emery, Joshua [Department of Earth and Planetary Science, University of Tennessee, 306 EPS Building, 1412 Circle Drive, Knoxville, TN 37996 (United States); Harris, Alan [German Aerospace Center (DLR), Institute of Planetary Research, Rutherfordstrasse 2, 12489, Berlin (Germany); Mueller, Michael [SRON, Netherlands Institute for Space Research, PO Box 800, 9700AV Groningen (Netherlands)

    2016-12-01

    Near-Earth objects (NEOs) are small solar system bodies whose orbits bring them close to the Earth’s orbit. We are carrying out a Warm Spitzer Cycle 11 Exploration Science program entitled NEOSurvey—a fast and efficient flux-limited survey of 597 known NEOs in which we derive a diameter and albedo for each target. The vast majority of our targets are too faint to be observed by NEOWISE, though a small sample has been or will be observed by both observatories, which allows for a cross-check of our mutual results. Our primary goal is to create a large and uniform catalog of NEO properties. We present here the first results from this new program: fluxes and derived diameters and albedos for 80 NEOs, together with a description of the overall program and approach, including several updates to our thermal model. The largest source of error in our diameter and albedo solutions, which derive from our single-band thermal emission measurements, is uncertainty in η , the beaming parameter used in our thermal modeling; for albedos, improvements in solar system absolute magnitudes would also help significantly. All data and derived diameters and albedos from this entire program are being posted on a publicly accessible Web page at nearearthobjects.nau.edu.

  12. NEOSURVEY 1: INITIAL RESULTS FROM THE WARM SPITZER EXPLORATION SCIENCE SURVEY OF NEAR-EARTH OBJECT PROPERTIES

    International Nuclear Information System (INIS)

    Trilling, David E.; Mommert, Michael; Hora, Joseph; Fazio, Giovanni; Smith, Howard; Chesley, Steve; Emery, Joshua; Harris, Alan; Mueller, Michael

    2016-01-01

    Near-Earth objects (NEOs) are small solar system bodies whose orbits bring them close to the Earth’s orbit. We are carrying out a Warm Spitzer Cycle 11 Exploration Science program entitled NEOSurvey—a fast and efficient flux-limited survey of 597 known NEOs in which we derive a diameter and albedo for each target. The vast majority of our targets are too faint to be observed by NEOWISE, though a small sample has been or will be observed by both observatories, which allows for a cross-check of our mutual results. Our primary goal is to create a large and uniform catalog of NEO properties. We present here the first results from this new program: fluxes and derived diameters and albedos for 80 NEOs, together with a description of the overall program and approach, including several updates to our thermal model. The largest source of error in our diameter and albedo solutions, which derive from our single-band thermal emission measurements, is uncertainty in η , the beaming parameter used in our thermal modeling; for albedos, improvements in solar system absolute magnitudes would also help significantly. All data and derived diameters and albedos from this entire program are being posted on a publicly accessible Web page at nearearthobjects.nau.edu.

  13. VIP Data Explorer: A Tool for Exploring 30 years of Vegetation Index and Phenology Observations

    Science.gov (United States)

    Barreto-munoz, A.; Didan, K.; Rivera-Camacho, J.; Yitayew, M.; Miura, T.; Tsend-Ayush, J.

    2011-12-01

    Continuous acquisition of global satellite imagery over the years has contributed to the creation of long term data records from AVHRR, MODIS, TM, SPOT-VGT and other sensors. These records account for 30+ years, as these archives grow, they become invaluable tools for environmental, resources management, and climate studies dealing with trends and changes from local, regional to global scale. In this project, the Vegetation Index and Phenology Lab (VIPLab) is processing 30 years of daily global surface reflectance data into an Earth Science Data Record of Vegetation Index and Phenology metrics. Data from AVHRR (N07,N09,N11 and N14) and MODIS (AQUA and TERRA collection 5) for the periods 1981-1999 and 2000-2010, at CMG resolution were processed into one seamless and sensor independent data record using various filtering, continuity and gap filling techniques (Tsend-Ayush et al., AGU 2011, Rivera-Camacho et al, AGU 2011). An interactive online tool (VIP Data Explorer) was developed to support the visualization, qualitative and quantitative exploration, distribution, and documentation of these records using a simple web 2.0 interface. The VIP Data explorer (http://vip.arizona.edu/viplab_data_explorer) can display any combination of multi temporal and multi source data, enable the quickly exploration and cross comparison of the various levels of processing of this data. It uses the Google Earth (GE) model and was developed using the GE API for images rendering, manipulation and geolocation. These ESDRs records can be quickly animated in this environment and explored for visual trends and anomalies detection. Additionally the tool enables extracting and visualizing any land pixel time series while showing the different levels of processing it went through. User can explore this ESDR database within this data explorer GUI environment, and any desired data can be placed into a dynamic "cart" to be ordered and downloaded later. More functionalities are planned and will be

  14. Discovering the Library with Google Earth

    Directory of Open Access Journals (Sweden)

    Michaela Brenner

    2008-06-01

    Full Text Available Libraries need to provide attractive and exciting discovery tools to draw patrons to the valuable resources in their catalogs. The authors conducted a pilot project to explore the free version of Google Earth as such a discover tool for Portland State Library’s digital collection of urban planning documents. They created eye-catching placemarks with links to parts of this collection, as well as to other pertinent materials like books, images, and historical background information. The detailed how-to-do part of this article is preceded by a discussion about discovery of library materials and followed by possible applications of this Google Earth project.

  15. Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8

    Directory of Open Access Journals (Sweden)

    S. A. Buehler

    2012-07-01

    Full Text Available Passive submillimeter-wave sensors are a way to obtain urgently needed global data on ice clouds, particularly on the so far poorly characterized "essential climate variable" ice water path (IWP and on ice particle size. CloudIce was a mission proposal to the European Space Agency ESA in response to the call for Earth Explorer 8 (EE8, which ran in 2009/2010. It proposed a passive submillimeter-wave sensor with channels ranging from 183 GHz to 664 GHz. The article describes the CloudIce mission proposal, with particular emphasis on describing the algorithms for the data-analysis of submillimeter-wave cloud ice data (retrieval algorithms and demonstrating their maturity. It is shown that we have a robust understanding of the radiative properties of cloud ice in the millimeter/submillimeter spectral range, and that we have a proven toolbox of retrieval algorithms to work with these data. Although the mission was not selected for EE8, the concept will be useful as a reference for other future mission proposals.

  16. A finite world, earth sciences, and public trust.

    Science.gov (United States)

    Narasimhan, T N

    2003-01-01

    The beginning of the 21st century has coincided with our recognition that life-sustaining earth cycles are remarkably fine-tuned, and that humans have developed technological abilities to perturb these cycles. Also, inspired bythe gifts of freedom and democracy, humans have given themselves laws to exploit nature for profit. The upshot is that nature's balance, governed by immutable physical laws, is being confronted by social laws driven by human aspirations. This conflict and its implications to the human relevance of the earth sciences are explored in the context of an extraordinary tradition of European culture known as public trust.

  17. Rare-earth-free high energy product manganese-based magnetic materials.

    Science.gov (United States)

    Patel, Ketan; Zhang, Jingming; Ren, Shenqiang

    2018-06-14

    The constant drive to replace rare-earth metal magnets has initiated great interest in an alternative. Manganese (Mn) has emerged to be a potential candidate as a key element in rare-earth-free magnets. Its five unpaired valence electrons give it a large magnetocrystalline energy and the ability to form several intermetallic compounds. These factors have led Mn-based magnets to be a potential replacement for rare-earth permanent magnets for several applications, such as efficient power electronics, energy generators, magnetic recording and tunneling applications, and spintronics. For past few decades, Mn-based magnets have been explored in many different forms, such as bulk magnets, thin films, and nanoparticles. Here, we review the recent progress in the synthesis and structure-magnetic property relationships of Mn-based rare-earth-free magnets (MnBi, MnAl and MnGa). Furthermore, we discuss their potential to replace rare-earth magnetic materials through the control of their structure and composition to achieve the theoretically predicted magnetic properties.

  18. Enabling Analytics in the Cloud for Earth Science Data

    Science.gov (United States)

    Ramachandran, Rahul; Lynnes, Christopher; Bingham, Andrew W.; Quam, Brandi M.

    2018-01-01

    The purpose of this workshop was to hold interactive discussions where providers, users, and other stakeholders could explore the convergence of three main elements in the rapidly developing world of technology: Big Data, Cloud Computing, and Analytics, [for earth science data].

  19. 21st century early mission concepts for Mars delivery and earth return

    Science.gov (United States)

    Cruz, Manuel I.; Ilgen, Marc R.

    1990-01-01

    In the 21st century, the early missions to Mars will entail unmanned Rover and Sample Return reconnaissance missions to be followed by manned exploration missions. High performance leverage technologies will be required to reach Mars and return to earth. This paper describes the mission concepts currently identified for these early Mars missions. These concepts include requirements and capabilities for Mars and earth aerocapture, Mars surface operations and ascent, and Mars and earth rendezvous. Although the focus is on the unmanned missions, synergism with the manned missions is also discussed.

  20. Geolokit: An interactive tool for visualising and exploring geoscientific data in Google Earth

    Science.gov (United States)

    Triantafyllou, Antoine; Watlet, Arnaud; Bastin, Christophe

    2017-10-01

    Virtual globes have been developed to showcase different types of data combining a digital elevation model and basemaps of high resolution satellite imagery. Hence, they became a standard to share spatial data and information, although they suffer from a lack of toolboxes dedicated to the formatting of large geoscientific dataset. From this perspective, we developed Geolokit: a free and lightweight software that allows geoscientists - and every scientist working with spatial data - to import their data (e.g., sample collections, structural geology, cross-sections, field pictures, georeferenced maps), to handle and to transcribe them to Keyhole Markup Language (KML) files. KML files are then automatically opened in the Google Earth virtual globe and the spatial data accessed and shared. Geolokit comes with a large number of dedicated tools that can process and display: (i) multi-points data, (ii) scattered data interpolations, (iii) structural geology features in 2D and 3D, (iv) rose diagrams, stereonets and dip-plunge polar histograms, (v) cross-sections and oriented rasters, (vi) georeferenced field pictures, (vii) georeferenced maps and projected gridding. Therefore, together with Geolokit, Google Earth becomes not only a powerful georeferenced data viewer but also a stand-alone work platform. The toolbox (available online at http://www.geolokit.org) is written in Python, a high-level, cross-platform programming language and is accessible through a graphical user interface, designed to run in parallel with Google Earth, through a workflow that requires no additional third party software. Geolokit features are demonstrated in this paper using typical datasets gathered from two case studies illustrating its applicability at multiple scales of investigation: a petro-structural investigation of the Ile d'Yeu orthogneissic unit (Western France) and data collection of the Mariana oceanic subduction zone (Western Pacific).

  1. Earth Stewardship: An initiative by the Ecological Society of America to foster engagement to sustain Planet Earth

    Science.gov (United States)

    Chapin, F. Stuart; Pickett, S.T.A.; Power, Mary E.; Collins, Scott L.; Baron, Jill S.; Inouye, David W.; Turner, Monica G.

    2017-01-01

    The Ecological Society of America (ESA) has responded to the growing commitment among ecologists to make their science relevant to society through a series of concerted efforts, including the Sustainable Biosphere Initiative (1991), scientific assessment of ecosystem management (1996), ESA’s vision for the future (2003), Rapid Response Teams that respond to environmental crises (2005), and the Earth Stewardship Initiative (2009). During the past 25 years, ESA launched five new journals, largely reflecting the expansion of scholarship linking ecology with broader societal issues. The goal of the Earth Stewardship Initiative is to raise awareness and to explore ways for ecologists and other scientists to contribute more effectively to the sustainability of our planet. This has occurred through four approaches: (1) articulation of the stewardship concept in ESA publications and Website, (2) selection of meeting themes and symposia, (3) engagement of ESA sections in implementing the initiative, and (4) outreach beyond ecology through collaborations and demonstration projects. Collaborations include societies and groups of Earth and social scientists, practitioners and policy makers, religious and business leaders, federal agencies, and artists and writers. The Earth Stewardship Initiative is a work in progress, so next steps likely include continued nurturing of these emerging collaborations, advancing the development of sustainability and stewardship theory, improving communication of stewardship science, and identifying opportunities for scientists and civil society to take actions that move the Earth toward a more sustainable trajectory.

  2. Structural variations in layered alkaline earth metal cyclohexyl ...

    Indian Academy of Sciences (India)

    Administrator

    because of the entrance of the guest molecules between the layers, there will be a change in the interlayer distance (Alberti 1978). Although M(IV) organo-phos- phonates are well documented, the chemistry of M(II) organophosphonates especially the alkaline earth metal organophosphonates has been explored marginally ...

  3. MR imaging of the abdominal and pelvic region

    International Nuclear Information System (INIS)

    Hamm, B.; Krestin, G.P.; Laniado, M.; Nicolas, V.

    1999-01-01

    The chapters of this toolbook deal with MR imaging aspects and techniques for visualization of: Focal and diffuse liver lesions - Biliary tract and pancreas - Spleen - Gastrointestinal tract - Kidneys, adrenal gland -Soft tissue tumors - Urinary tract - Male and female genitals - nmr imaging of vascular diseases, lymphatic system, and the abdomen of children.(orig./CB) [de

  4. Heavy mineral survey for rare earths in the Northern part of Palawan

    International Nuclear Information System (INIS)

    Reyes, R.Y.; Santos, G.P.; Magsambol, W.N.; Ramos, A.F.; Petrache, C.A.; Tabora, E.U.

    1992-01-01

    A reconnaissance geochemical survey for rare earths was carried out over the northern half of Palawan with considerable success. The survey represents the first systematic geochemical exploration effort to look for indigenous rare earth resources in the Philippines. Total area covered was about 5,000 sq km. The survey entailed the systematic collection of 740 heavy mineral panned concentrate and stream sediment samples along streams and rivers. The average sampling density was about one set of sample per 2-15 sq km. A total of 218 heavy mineral samples were analyzed for lathanum, cerium, praseodymium, neodymium and yttrium. Analysis of stream sediments for rare earths was discontinued due to the high detection limit of the X-ray fluorescence spectrometer. Results of the survey clearly indicated the effectiveness of heavy mineral sampling for rare earths at the reconnaissance level of exploration. Six anomalous and well-defined areas of interest were delineated for possible rare earth mineralization. Three priority zones were further outlined from the six prospective areas for possible follow-up surveys. Mineralogical examination of heavy minerals revealed the presence of major allanite and minor monazite as the potential hosts of rare earths in the priority zone number one. Gray monazite was identified in the priority zone number two as the rare earth mineral. Minute specks and grains of gold were visibly present in some of the heavy mineral samples taken in this area. A combined mineralization of rare earths and gold in this area is a possibility. The discovery of the first gray nodular monazite in Palawan may extend the age of the oldest rocks in the Philippines to Lower Paleozoic. A separate study to establish the age of the oldest rocks in the country is likewise necessary. (auth.). 27 refs.; 6 figs.; 8 tabs

  5. Information Technology Infusion Case Study: Integrating Google Earth(Trademark) into the A-Train Data Depot

    Science.gov (United States)

    Smith, Peter; Kempler, Steven; Leptoukh, Gregory; Chen, Aijun

    2010-01-01

    This poster paper represents the NASA funded project that was to employ the latest three dimensional visualization technology to explore and provide direct data access to heterogeneous A-Train datasets. Google Earth (tm) provides foundation for organizing, visualizing, publishing and synergizing Earth science data .

  6. Urban fifth graders' connections-making between formal earth science content and their lived experiences

    Science.gov (United States)

    Brkich, Katie Lynn

    2014-03-01

    Earth science education, as it is traditionally taught, involves presenting concepts such as weathering, erosion, and deposition using relatively well-known examples—the Grand Canyon, beach erosion, and others. However, these examples—which resonate well with middle- and upper-class students—ill-serve students of poverty attending urban schools who may have never traveled farther from home than the corner store. In this paper, I explore the use of a place-based educational framework in teaching earth science concepts to urban fifth graders and explore the connections they make between formal earth science content and their lived experiences using participant-driven photo elicitation techniques. I argue that students are able to gain a sounder understanding of earth science concepts when they are able to make direct observations between the content and their lived experiences and that when such direct observations are impossible they make analogies of appearance, structure, and response to make sense of the content. I discuss additionally the importance of expanding earth science instruction to include man-made materials, as these materials are excluded traditionally from the curriculum yet are most immediately available to urban students for examination.

  7. Spectrometry of the Earth using Neutrino Oscillations

    Science.gov (United States)

    Rott, C.; Taketa, A.; Bose, D.

    2015-01-01

    The unknown constituents of the interior of our home planet have provoked the human imagination and driven scientific exploration. We herein demonstrate that large neutrino detectors could be used in the near future to significantly improve our understanding of the Earth’s inner chemical composition. Neutrinos, which are naturally produced in the atmosphere, traverse the Earth and undergo oscillations that depend on the Earth’s electron density. The Earth’s chemical composition can be determined by combining observations from large neutrino detectors with seismic measurements of the Earth’s matter density. We present a method that will allow us to perform a measurement that can distinguish between composition models of the outer core. We show that the next-generation large-volume neutrino detectors can provide sufficient sensitivity to reject extreme cases of outer core composition. In the future, dedicated instruments could be capable of distinguishing between specific Earth composition models and thereby reshape our understanding of the inner Earth in previously unimagined ways. PMID:26489447

  8. Is the Earth Flat or Round? Primary School Children's Understandings of the Planet Earth: The Case of Turkish Children

    Science.gov (United States)

    Özsoy, Sibel

    2012-01-01

    The purpose of this study is to explore primary school children's understandings about the shape of the Earth. The sample is consisted of 124 first-graders from five primary schools located in an urban city of Turkey. The data of the study were collected through children's drawings and semi-structured interviews. Results obtained from the drawings…

  9. MID-INFRARED PROPERTIES OF DISK AVERAGED OBSERVATIONS OF EARTH WITH AIRS

    International Nuclear Information System (INIS)

    Hearty, Thomas; Song, Inseok; Kim, Sam; Tinetti, Giovanna

    2009-01-01

    We have investigated mid-infrared spectra of Earth obtained by the Atmospheric Infrared Sounder (AIRS) instrument on-board the AQUA spacecraft to explore the characteristics that may someday be observed in extrasolar terrestrial planets. We have used the AIRS infrared (R ∼ 1200; 3.75-15.4 μm) spectra to construct directly observed high-resolution spectra of the only known life bearing planet, Earth. The AIRS spectra are the first such spectra that span the seasons. We investigate the rotational and seasonal spectral variations that would arise due to varying cloud amount and viewing geometry and we explore what signatures may be observable in the mid-infrared by the next generation of telescopes capable of observing extrasolar terrestrial planets.

  10. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    Science.gov (United States)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  11. Exploring the Atmosphere Using Smartphones

    Science.gov (United States)

    Monteiro, Martin; Vogt, Patrik; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2016-01-01

    The characteristics of the inner layer of the atmosphere, the troposphere, are determinant for Earth's life. In this experience we explore the first hundreds of meters using a smartphone mounted on a quadcopter. Both the altitude and the pressure are obtained using the smartphone's sensors. We complement these measures with data collected from the…

  12. Science Driven Human Exploration of Mars

    Science.gov (United States)

    McKay, Christopher P.

    2004-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Fossils are not enough. We will want to determine if life on Mars was a separate genesis from life on Earth. For this determination we need to access intact martian life; possibly frozen in the deep old permafrost. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be the most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate. Additional information is contained in the original extended abstract.

  13. NASA's Astro-Venture Engages Exceptional Students in Earth System Science Using Inquiry

    Science.gov (United States)

    Oguinn, C.

    2003-12-01

    Astro-Venture is an educational, interactive, multimedia Web environment highlighting NASA careers and astrobiology research in the areas of Astronomy, Geology, Biology and Atmospheric Sciences. Students in grades 5-8 role-play NASA careers, as they search for and design a planet with the necessary characteristics for human habitation. Astro-Venture uses online multimedia activities and off-line inquiry explorations to engage students in guided inquiry aligned with the 5 E inquiry model. This model has proven to be effective with exceptional students. Students are presented with the intellectual confrontation of how to design a planet and star system that would be able to meet their biological survival needs. This provides a purpose for the online and off-line explorations used throughout the site. Students first explore "what" conditions are necessary to support human habitability by engaging in multimedia training modules, which allow them to change astronomical, atmospheric, geological and biological aspects of the Earth and our star system and to view the effects of these changes on Earth. By focusing on Earth, students draw on their prior knowledge, which helps them to connect their new knowledge to their existing schema. Cause and effect relationships of Earth provide a concrete model from which students can observe patterns and generalize abstract results to an imagined planet. From these observations, students draw conclusions about what aspects allowed Earth to remain habitable. Once students have generalized needed conditions of "what" we need for a habitable planet, they conduct further research in off-line, standards-based classroom activities that also follow the inquiry model and help students to understand "why" we need these conditions. These lessons focus on standards-based concepts such as states of matter and the structure and movement of the Earth's interior. These lessons follow the inquiry structure commonly referred to as the five E's as

  14. Gamma-Ray Bursts and the Earth: Exploration of Atmospheric, Biological, Climatic, and Biogeochemical Effects

    Science.gov (United States)

    Thomas, Brian C.; Melott, Adrian L.; Jackman, Charles H.; Laird, Claude M.; Medvedev, Mikhail V.; Stolarski, Richard S.; Gehrels, Neil; Cannizzo, John K.; Hogan, Daniel P.; Ejzak, Larissa M.

    2005-11-01

    Gamma-ray bursts (GRBs) are likely to have made a number of significant impacts on the Earth during the last billion years. The gamma radiation from a burst within a few kiloparsecs would quickly deplete much of the Earth's protective ozone layer, allowing an increase in solar UVB radiation reaching the surface. This radiation is harmful to life, damaging DNA and causing sunburn. In addition, NO2 produced in the atmosphere would cause a decrease in visible sunlight reaching the surface and could cause global cooling. Nitric acid rain could stress portions of the biosphere, but the increased nitrate deposition could be helpful to land plants. We have used a two-dimensional atmospheric model to investigate the effects on the Earth's atmosphere of GRBs delivering a range of fluences, at various latitudes, at the equinoxes and solstices, and at different times of day. We have estimated DNA damage levels caused by increased solar UVB radiation, reduction in solar visible light due to NO2 opacity, and deposition of nitrates through rainout of HNO3. For the ``typical'' nearest burst in the last billion years, we find globally averaged ozone depletion up to 38%. Localized depletion reaches as much as 74%. Significant global depletion (at least 10%) persists up to about 7 yr after the burst. Our results depend strongly on time of year and latitude over which the burst occurs. The impact scales with the total fluence of the GRB at the Earth but is insensitive to the time of day of the burst and its duration (1-1000 s). We find DNA damage of up to 16 times the normal annual global average, well above lethal levels for simple life forms such as phytoplankton. The greatest damage occurs at mid- to low latitudes. We find reductions in visible sunlight of a few percent, primarily in the polar regions. Nitrate deposition similar to or slightly greater than that currently caused by lightning is also observed, lasting several years. We discuss how these results support the

  15. Exploring Sustainability Using images from Space

    Science.gov (United States)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2016-04-01

    Sustainability is the integrating theme of grade 8 science at Dwight D. Eisenhower in Wyckoff, New Jersey. With a focus on science, technology, engineering, and mathematics (STEM), sustainability establishes relevance for students, connects course work to current news topics, and ties together trimester explorations of earth science, physical science, and life science. Units are organized as problem-based learning units centered on disciplinary core ideas. Sustainability education empowers students to think about human and natural systems on a broader scale as they collaboratively seek solutions to scientific or engineering problems. The STEM-related sustainability issues encompass both global and local perspectives. Through problem solving, students acquire and demonstrate proficiency in the three-dimensions of Next Generation Science Standards (disciplinary core ideas, science and engineering practices, and crosscutting concepts). During the earth science trimester, students explore causes, effects, and mitigation strategies associated with urban heat islands and climate change. As a transition to a trimester of chemistry (physical science), students investigate the sustainability of mobile phone technology from raw materials mining to end-of-life disposal. Students explore natural resource conservation strategies in the interdisciplinary context of impacts on the economy, society, and environment. Sustainability creates a natural context for chemical investigations of ocean-atmosphere interactions such as ocean acidification. Students conclude the eighth grade with an investigation of heredity and evolution. Sustainability challenges embedded in genetics studies include endangered species management (California condors) and predicting the effects of climate change on populations in specific environments (Arctic and Antarctic regions). At Dwight D. Eisenhower Middle School, science students have access to a variety of web-enabled devices (e.g., Chromebooks

  16. Sulfur in Earth's Mantle and Its Behavior During Core Formation

    Science.gov (United States)

    Chabot, Nancy L.; Righter,Kevin

    2006-01-01

    The density of Earth's outer core requires that about 5-10% of the outer core be composed of elements lighter than Fe-Ni; proposed choices for the "light element" component of Earth's core include H, C, O, Si, S, and combinations of these elements [e.g. 1]. Though samples of Earth's core are not available, mantle samples contain elemental signatures left behind from the formation of Earth's core. The abundances of siderophile (metal-loving) elements in Earth's mantle have been used to gain insight into the early accretion and differentiation history of Earth, the process by which the core and mantle formed, and the composition of the core [e.g. 2-4]. Similarly, the abundance of potential light elements in Earth's mantle could also provide constraints on Earth's evolution and core composition. The S abundance in Earth's mantle is 250 ( 50) ppm [5]. It has been suggested that 250 ppm S is too high to be due to equilibrium core formation in a high pressure, high temperature magma ocean on early Earth and that the addition of S to the mantle from the subsequent accretion of a late veneer is consequently required [6]. However, this earlier work of Li and Agee [6] did not parameterize the metalsilicate partitioning behavior of S as a function of thermodynamic variables, limiting the different pressure and temperature conditions during core formation that could be explored. Here, the question of explaining the mantle abundance of S is revisited, through parameterizing existing metal-silicate partitioning data for S and applying the parameterization to core formation in Earth.

  17. Exploring the anisotropic Kondo model in and out of equilibrium with alkaline-earth atoms

    Science.gov (United States)

    Kanász-Nagy, Márton; Ashida, Yuto; Shi, Tao; Moca, Cǎtǎlin Paşcu; Ikeda, Tatsuhiko N.; Fölling, Simon; Cirac, J. Ignacio; Zaránd, Gergely; Demler, Eugene A.

    2018-04-01

    We propose a scheme to realize the Kondo model with tunable anisotropy using alkaline-earth atoms in an optical lattice. The new feature of our setup is Floquet engineering of interactions using time-dependent Zeeman shifts, that can be realized either using state-dependent optical Stark shifts or magnetic fields. The properties of the resulting Kondo model strongly depend on the anisotropy of the ferromagnetic interactions. In particular, easy-plane couplings give rise to Kondo singlet formation even though microscopic interactions are all ferromagnetic. We discuss both equilibrium and dynamical properties of the system that can be measured with ultracold atoms, including the impurity spin susceptibility, the impurity spin relaxation rate, as well as the equilibrium and dynamical spin correlations between the impurity and the ferromagnetic bath atoms. We analyze the nonequilibrium time evolution of the system using a variational non-Gaussian approach, which allows us to explore coherent dynamics over both short and long timescales, as set by the bandwidth and the Kondo singlet formation, respectively. In the quench-type experiments, when the Kondo interaction is suddenly switched on, we find that real-time dynamics shows crossovers reminiscent of poor man's renormalization group flow used to describe equilibrium systems. For bare easy-plane ferromagnetic couplings, this allows us to follow the formation of the Kondo screening cloud as the dynamics crosses over from ferromagnetic to antiferromagnetic behavior. On the other side of the phase diagram, our scheme makes it possible to measure quantum corrections to the well-known Korringa law describing the temperature dependence of the impurity spin relaxation rate. Theoretical results discussed in our paper can be measured using currently available experimental techniques.

  18. NASA's Earth Science Flight Program overview

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  19. Rare gas systematics: Formation of the atmosphere, evolution and structure of the Earth's mantle

    International Nuclear Information System (INIS)

    Allegre, C.J.; Staudacher, T.; Sarda, P.; Paris-6 Univ., 75; Paris-7 Univ., 75

    1987-01-01

    To explain the rare gas content and isotopic composition measured in modern terrestrial materials we explore in this paper an Earth model based on four reservoirs: atmosphere, continental crust, upper mantle and lower mantle. This exploration employs three tools: mass balance equations, the concept of mean age of outgassing and the systematic use of all of the rare gases involving both absolute amount and isotopic composition. The results obtained are as follows: half of the Earth's mantle is 99% outgassed. Outgassing occurred in an early very intense stage within the first 50 Ma of Earth history and a slow continuous stage which continues to the present day. The mean age of the atmosphere is 4.4 Ga. Our model with four main reservoirs explains quantitatively both isotopic and chemical ratios, assuming that He migrates from the lower to the upper mantle whereas the heavy rare gases did not. Noble gas fluxes for He, Ar and Xe from different reservoirs have been estimated. The results constrain the K content in the earth to 278 ppm. Several geodynamic consequences are discussed. (orig.)

  20. A communal catalogue reveals Earth's multiscale microbial diversity.

    Science.gov (United States)

    Thompson, Luke R; Sanders, Jon G; McDonald, Daniel; Amir, Amnon; Ladau, Joshua; Locey, Kenneth J; Prill, Robert J; Tripathi, Anupriya; Gibbons, Sean M; Ackermann, Gail; Navas-Molina, Jose A; Janssen, Stefan; Kopylova, Evguenia; Vázquez-Baeza, Yoshiki; González, Antonio; Morton, James T; Mirarab, Siavash; Zech Xu, Zhenjiang; Jiang, Lingjing; Haroon, Mohamed F; Kanbar, Jad; Zhu, Qiyun; Jin Song, Se; Kosciolek, Tomasz; Bokulich, Nicholas A; Lefler, Joshua; Brislawn, Colin J; Humphrey, Gregory; Owens, Sarah M; Hampton-Marcell, Jarrad; Berg-Lyons, Donna; McKenzie, Valerie; Fierer, Noah; Fuhrman, Jed A; Clauset, Aaron; Stevens, Rick L; Shade, Ashley; Pollard, Katherine S; Goodwin, Kelly D; Jansson, Janet K; Gilbert, Jack A; Knight, Rob

    2017-11-23

    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.

  1. Prospects for trivalent rare earth molecular vapor lasers for fusion

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1976-01-01

    The dynamical properties of three types of RE 3+ molecular vapors were considered: (1) rare earth trihalogens, (2) rare earth trihalogens complexed with transition metal trihalogens, and (3) rare earth chelates. Radiative and nonradiative (unimolecular and bimolecular) transition probabilities have been calculated using phenomenological models predicted on the unique electronic structure of the triply ionized RE ion (well shielded ground electronic configuration of equivalent of electrons). Although all the lanthanide ions have been treated in some detail, specific results are presented for the Nd 3+ and Tb 3+ ions to illustrate the systematics of these vapors as a class of new laser media. Once verified, these phenomenological models will provide a powerful tool for the directed experimental exploration of these systems. Because of the structural similarity to the triply ionized actinides, comments offered here for the lanthanide rare earth series generally apply to gaseous actinide lasers which are also under consideration

  2. Design of a coil sensor for time domain electromagnetic system for uranium exploration

    International Nuclear Information System (INIS)

    Keshwani, R.T.; Bhattacharya, S.

    2011-01-01

    Time domain electromagnetic system is used for exploration of deep seated deposits under the Earth surface. The basic principle is to set up eddy currents in conductors using pulsed excited transmitter coil during on time of a pulse. The decay time of eddy currents during off time of a pulse is a function conductivity, permeability and depth of conductor located under the Earth surface. The technology is being developed to carry out exploration of mineral deposits (basically uranium) under the Earth surface. The decay of eddy currents is eddy using J coil sensor located coplanar with the transmitter coil. The depth upto which successful exploration can be carried is strong function of design of receiver coil. The design parameters include number of turns, bandwidth, stray capacitance and resistance of a coil. This paper describes various designs tried out and their characterization results. Field results for a ground based system developed are also described. (author)

  3. Transition in the Human Exploration of Space at NASA

    Science.gov (United States)

    Koch, Carla A.; Cabana, Robert

    2011-01-01

    NASA is taking the next step in human exploration, beyond low Earth orbit. We have been going to low Earth orbit for the past 50 years and are using this experience to work with commercial companies to perform this function. This will free NASA resources to develop the systems necessary to travel to a Near Earth Asteroid, the Moon, Lagrange Points, and eventually Mars. At KSC, we are positioning ourselves to become a multi-user launch complex and everything we are working on is bringing us closer to achieving this goal. A vibrant multi-use spaceport is to the 21st Century what the airport was to the 20th Century - an invaluable transportation hub that supports government needs while promoting economic development and commercial markets beyond Earth's atmosphere. This past year saw the end of Shuttle, but the announcements of NASA's crew module, Orion, and heavy-lift rocket, the SLS, as well as the establishment of the Commercial Crew Program. We have a busy, but very bright future ahead of us and KSC is looking forward to playing an integral part in the next era of human space exploration. The future is SLS, 21st Century Ground Systems Program, and the Commercial Crew Program; and the future is here.

  4. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    Science.gov (United States)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  5. Portraits of the earth a mathematician looks at maps

    CERN Document Server

    Feeman, Timothy G

    2002-01-01

    Maps are exciting, visual tools that we encounter on a daily basis: from street maps to maps of the world accompanying news stories to geologic maps depicting the underground structure of the earth. This book explores the mathematical ideas involved in creating and analyzing maps, a topic that is rarely discussed in undergraduate courses. It is the first modern book to present the famous problem of mapping the earth in a style that is highly readable and mathematically accessible to most students. Feeman's writing is inviting to the novice, yet also interesting to readers with more mathematica

  6. Solar sail trajectory design in the Earth-Moon circular restricted three body problem

    Science.gov (United States)

    Das, Ashwati

    The quest to explore the Moon has helped resolve scientific questions, has spurred leaps in technology development, and has revealed Earth's celestial companion to be a gateway to other destinations. With a renewed focus on returning to the Moon in this decade, alternatives to chemical propulsion systems are becoming attractive methods to efficiently use scarce resources and support extended mission durations. Thus, an investigation is conducted to develop a general framework, that facilitates propellant-free Earth-Moon transfers by exploiting sail dynamics in combination with advantageous transfer options offered in the Earth-Moon circular restricted multi-body dynamical model. Both periodic orbits in the vicinity of the Earth-Moon libration points, and lunar-centric long-term capture orbits are incorporated as target destinations to demonstrate the applicability of the general framework to varied design scanarios, each incorporating a variety of complexities and challenges. The transfers are comprised of three phases - a spiral Earth escape, a transit period, and, finally, the capture into a desirable orbit in the vicinity of the Moon. The Earth-escape phase consists of spiral trajectories constructed using three different sail steering strategies - locally optimal, on/off and velocity tangent. In the case of the Earth-libration point transfers, naturally occurring flow structures (e.g., invariant manifolds) arising from the mutual gravitational interaction of the Earth and Moon are exploited to link an Earth departure spiral with a destination orbit. In contrast, sail steering alone is employed to establish a link between the Earth-escape phase and capture orbits about the Moon due to a lack of applicable natural structures for the required connection. Metrics associated with the transfers including flight-time and the influence of operational constraints, such as occultation events, are investigated to determine the available capabilities for Earth

  7. Spaceship Earth: A partnership in curriculum writing

    Science.gov (United States)

    Lindstrom, Marilyn M.

    1993-01-01

    As the Apollo astronauts left Earth to venture onto the surface of another planetary body, they saw their home planet in a new global perspective. Unmanned NASA missions have given us a closer look at all the other planets in our solar system and emphasized the uniqueness of Earth as the only place in our solar system that can sustain life as we know it. Spaceship Earth is a new science curriculum which was developed to help students and teachers to explore the Earth, to see it in the global perspective, and to understand the relationships among life, the planet, and the sun. Astronaut photographs, especially shuttle pictures, are used as groundbased studies to help students to understand global Earth Science and integrate various aspects of physical, life, and social science. The Spaceship Earth curriculum was developed at by a team of JSC scientists working in collaboration with teachers from local school districts. This project was done under the auspices of Partner-In-Space, a local non-profit organization dedicated to improving science education and our general knowledge of space. The team met once a month for a year then assembled the curriculum during the summer. The project is now in the testing stage as the teachers try it out in their classrooms. It was supported by the Texas Education Agency and will be offered by the State of Texas as a supplemental curriculum for statewide use. Because the curriculum was developed by teachers, it is self contained and the lessons are easy to implement and give students concrete experiences. The three sub-units follow in a logical order, but may be used independently. If they are used separately, they may be tied together by the teacher returning to the basic theme of the global Earth as each unit is completed.

  8. An Earth-sized planet with an Earth-like density.

    Science.gov (United States)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  9. Towards earth AntineutRino TomograpHy (EARTH)

    NARCIS (Netherlands)

    De Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Wortche, H. J.; Mantovani, F.

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection.

  10. Astrobiology, Mars Exploration and Lassen Volcanic National Park

    Science.gov (United States)

    Des Marais, David J.

    2015-01-01

    The search for evidence of life beyond Earth illustrates how the charters of NASA and the National Park Service share common ground. The mission of NPS is to preserve unimpaired the natural and cultural resources of the National Park System for the enjoyment, education and inspiration of this and future generations. NASA's Astrobiology program seeks to understand the origins, evolution and distribution of life in the universe, and it abides by the principles of planetary stewardship, public outreach, and education. We cannot subject planetary exploration destinations to Earthly biological contamination both for ethical reasons and to preserve their scientific value for astrobiology. We respond to the public's interest in the mysteries of life and the cosmos by honoring their desire to participate in the process of discovery. We involve youth in order to motivate career choices in science and technology and to perpetuate space exploration. The search for evidence of past life on Mars illustrates how the missions of NASA and NPS can become synergistic. Volcanic activity occurs on all rocky planets in our Solar System and beyond, and it frequently interacts with water to create hydrothermal systems. On Earth these systems are oases for microbial life. The Mars Exploration Rover Spirit has found evidence of extinct hydrothermal system in Gusev crater, Mars. Lassen Volcanic National Park provides a pristine laboratory for investigating how microorganisms can both thrive and leave evidence of their former presence in hydrothermal systems. NASA scientists, NPS interpretation personnel and teachers can collaborate on field-oriented programs that enhance Mars mission planning, engage students and the public in science and technology, and emphasize the ethics of responsible exploration.

  11. Extreme magnetoresistance in magnetic rare-earth monopnictides

    Science.gov (United States)

    Ye, Linda; Suzuki, Takehito; Wicker, Christina R.; Checkelsky, Joseph G.

    2018-02-01

    The acute sensitivity of the electrical resistance of certain systems to magnetic fields known as extreme magnetoresistance (XMR) has recently been explored in a new materials context with topological semimetals. Exemplified by WTe2 and rare-earth monopnictide La(Sb,Bi), these systems tend to be nonmagnetic, nearly compensated semimetals and represent a platform for large magnetoresistance driven by intrinsic electronic structure. Here we explore electronic transport in magnetic members of the latter family of semimetals and find that XMR is strongly modulated by magnetic order. In particular, CeSb exhibits XMR in excess of 1.6 ×106% at fields of 9 T whereas the magnetoresistance itself is nonmonotonic across the various magnetic phases and shows a transition from negative magnetoresistance to XMR with fields above magnetic ordering temperature TN. The magnitude of the XMR is larger than in other rare-earth monopnictides including the nonmagnetic members and follows a nonsaturating power law to fields above 30 T. We show that the overall response can be understood as the modulation of conductivity by the Ce orbital state and for intermediate temperatures can be characterized by an effective medium model. Comparison to the orbitally quenched compound GdBi supports the correlation of XMR with the onset of magnetic ordering and compensation and highlights the unique combination of orbital inversion and type-I magnetic ordering in CeSb in determining its large response. These findings suggest a paradigm for magneto-orbital control of XMR and are relevant to the understanding of rare-earth-based correlated topological materials.

  12. Stamping the Earth from space

    CERN Document Server

    Dicati, Renato

    2017-01-01

    This unique book presents a historical and philatelic survey of Earth exploration from space. It covers all areas of research in which artificial satellites have contributed in designing a new image of our planet and its environment: the atmosphere and ionosphere, the magnetic field, radiation belts and the magnetosphere, weather, remote sensing, mapping of the surface, observation of the oceans and marine environments, geodesy, and the study of life and ecological systems. Stamping the Earth from Space presents the results obtained with the thousands of satellites launched by the two former superpowers, the Soviet Union and the United States, and also those of the many missions carried out by the ESA, individual European countries, Japan, China, India, and the many emerging space nations. Beautifully illustrated, it contains almost 1100 color reproductions of philatelic items. In addition to topical stamps and thematic postal documents, the book provides an extensive review of astrophilatelic items. The most...

  13. EarthCube: A Community Organization for Geoscience Cyberinfrastructure

    Science.gov (United States)

    Patten, K.; Allison, M. L.

    2014-12-01

    The National Science Foundation's (NSF) EarthCube initiative is a community-driven approach to building cyberinfrastructure for managing, sharing, and exploring geoscience data and information to better address today's grand-challenge science questions. The EarthCube Test Enterprise Governance project is a two-year effort seeking to engage diverse geo- and cyber-science communities in applying a responsive approach to the development of a governing system for EarthCube. During Year 1, an Assembly of seven stakeholder groups representing the broad EarthCube community developed a draft Governance Framework. Finalized at the June 2014 EarthCube All Hands Meeting, this framework will be tested during the demonstration phase in Year 2, beginning October 2014. A brief overview of the framework: Community-elected members of the EarthCube Leadership Council will be responsible for managing strategic direction and identifying the scope of EarthCube. Three Standing Committees will also be established to oversee the development of technology and architecture, to coordinate among new and existing data facilities, and to represent the academic geosciences community in driving development of EarthCube cyberinfrastructure. An Engagement Team and a Liaison Team will support communication and partnerships with internal and external stakeholders, and a central Office will serve a logistical support function to the governance as a whole. Finally, ad hoc Working Groups and Special Interest Groups will take on other issues related to EarthCube's goals. The Year 2 demonstration phase will test the effectiveness of the proposed framework and allow for elements to be changed to better meet community needs. It will begin by populating committees and teams, and finalizing leadership and decision-making processes to move forward on community-selected priorities including identifying science drivers, coordinating emerging technical elements, and coming to convergence on system architecture. A

  14. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Tai [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  15. Seismic exploration?scale velocities and structure from ambient seismic noise (>1?Hz)

    NARCIS (Netherlands)

    Draganov, D.S.; Campman, X.; Thorbecke, J.W.; Verdel, A.; Wapenaar, C.P.A.

    2013-01-01

    The successful surface waves retrieval in solid?Earth seismology using long?time correlations and subsequent tomographic images of the crust have sparked interest in extraction of subsurface information from noise in the exploration seismology. Subsurface information in exploration seismology is

  16. Seismic exploration-scale velocities and structure from ambient seismic noise (>1 Hz)

    NARCIS (Netherlands)

    Draganov, D.; Campman, X.; Thorbecke, J.; Verdel, A.; Wapenaar, K.

    2013-01-01

    The successful surface waves retrieval in solid-Earth seismology using long-time correlations and subsequent tomographic images of the crust have sparked interest in extraction of subsurface information from noise in the exploration seismology. Subsurface information in exploration seismology is

  17. Sun-Earth Day 2005: Ancient Observatories: Timeless Knowledge

    Science.gov (United States)

    Thieman, J. R.; Cline, T.; Lewis, E.; Hawkins, I.; Odenwald, S.; Mayo, L.

    2005-05-01

    The NASA Sun-Earth Connection Education Forum (SECEF) annually promotes an event called Sun-Earth Day. For Sun-Earth Day 2005 SECEF has selected a theme called "Ancient Observatories: Timeless Knowledge. This year's Sun-Earth Day theme is your ticket to a fascinating journey through time as we explore centuries of sun watching by a great variety of cultures. From ancient solar motion tracking to modern solar activity monitoring the Sun has always occupied an important spot in mankind's quest to understand the Universe. Sun-Earth Day events usually are centered on the spring equinox around March 21, but this year there has already been a webcast from the San Francisco Exploratorium and the Native American ruins at Chaco Canyon, New Mexico on the day of winter solstice 2004. There will be another webcast on March 20 live from Chichen Itza, Mexico highlighting the solar alignment that makes a serpent appear on one of the ancient pyramids. The website http://sunearthday.nasa.gov has been developed to provide the necessary resources and opportunities for participation by scientists and educators in giving school or general public programs about Sun-Earth Day. The goal is to involve as much of the student population and the public in this event as possible and to help them understand the importance of the Sun for ancient and modern peoples. Through engaging activities available on the website, classrooms and museums can create their own event or participate in one of the opportunities we make available. Scientists, educators, amateur astronomers, and museums are invited to register on the website to receive a free packet of materials about Sun-Earth Day for use in making presentations or programs about the event. Past and future Sun-Earth Days will be discussed as well.

  18. Potential climatic impact of organic haze on early Earth.

    Science.gov (United States)

    Hasenkopf, Christa A; Freedman, Miriam A; Beaver, Melinda R; Toon, Owen B; Tolbert, Margaret A

    2011-03-01

    We have explored the direct and indirect radiative effects on climate of organic particles likely to have been present on early Earth by measuring their hygroscopicity and cloud nucleating ability. The early Earth analog aerosol particles were generated via ultraviolet photolysis of an early Earth analog gas mixture, which was designed to mimic possible atmospheric conditions before the rise of oxygen. An analog aerosol for the present-day atmosphere of Saturn's moon Titan was tested for comparison. We exposed the early Earth aerosol to a range of relative humidities (RHs). Water uptake onto the aerosol was observed to occur over the entire RH range tested (RH=80-87%). To translate our measurements of hygroscopicity over a specific range of RHs into their water uptake ability at any RH 100%, we relied on the hygroscopicity parameter κ, developed by Petters and Kreidenweis. We retrieved κ=0.22 ±0.12 for the early Earth aerosol, which indicates that the humidified aerosol (RH 100%). In regions where the haze was dominant, it is expected that low particle concentrations, once activated into cloud droplets, would have created short-lived, optically thin clouds. Such clouds, if predominant on early Earth, would have had a lower albedo than clouds today, thereby warming the planet relative to current-day clouds. © Mary Ann Liebert, Inc.

  19. Space exploration

    CERN Document Server

    2009-01-01

    Space Exploration, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  20. "May the journey continue": Earth 2 fan fiction, or Filling in gaps to revive a canceled series

    Directory of Open Access Journals (Sweden)

    Francesca Musiani

    2010-09-01

    Full Text Available This essay explores writing practices in a fan community having to give life to a story deprived of an "official" version: the television series Earth 2. I argue that fan fiction writing for this prematurely canceled series exhibits peculiar features in comparison to fan writing for established series: for example, temporality, choice of protagonists, character pairings, and challenges to the original conception(s of the series. Writing fan fiction for a canceled series is not about creating alternatives to an existing story, but about filling in gaps; it brings to light the ways in which fan fiction deals with closure. I take as a case study Earth 2, a series aired by NBC in the United States in 1994–95, whose first and only season ended in a cliffhanger episode hinting that a mysterious ailment had struck the main and most popular character. Shortly afterward, a significant number of Earth 2 Web sites, online conventions, and especially fan stories started developing; they explored what could have happened next and bore nostalgic but combative mottoes and titles such as "May the Journey Continue." I explore the specific features of Earth 2 fan fiction production and sharing by analyzing the main Earth 2 fan fiction archives on the Web and the responses to my email interviews of fan writers. Exemplars of the Earth 2 case are compared to those of other science fiction TV series, both prematurely canceled (Firefly, Space: Above and Beyond and long-lived (Babylon 5, Star Trek: Deep Space 9.

  1. Mission Techniques for Exploring Saturn's icy moons Titan and Enceladus

    Science.gov (United States)

    Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John

    2010-05-01

    The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiѐre hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit within NASA's New Frontiers or ESA's Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, several mission concepts have been developed that potentially fit within various cost classes. Also, a clear blueprint has been laid out for early efforts critical toward reducing the risks inherent in such missions. The purpose of this paper is to provide a brief overview of potential Titan (and Enceladus) mission

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 1. Favourable uranium–phosphate exploration trends guided by the application of statistical factor analysis technique on the aerial gamma spectrometric data in Syrian desert (Area-1), Syria. J Asfahani R Al-Hent M Aissa. Volume 125 Issue 1 February ...

  3. Characteristics and genesis of Rare Earth Element (REE) in western Indonesia

    Science.gov (United States)

    Handoko, A. D.; Sanjaya, E.

    2018-02-01

    Rare Earth Element (REE) has unique properties that have been used in many hightech applications. The demand of REE increased recently in the world due to its special properties. Although REE concentration in the crust is higher than gold, economically viable deposits are still rare. Reduction of REE exports by China cause increased prices of REE. Due to this condition, exploration of potential REE mines emerged. Indonesia also participates in this phenomenon, and explore the possibility of REE mines in its area. This review will discuss the characteristics and genesis of REE and its occurrence in western Indonesia; focused in Sumatera, Tin Island, and Kalimantan. The review is done based on literature research from several resources about characteristics of rare earth element in general and in the given area. The research shows that the potential REE mines can be found in several different locations in Indonesia, such as Tin Island, Sumatera, and Kalimantan. Most of them are composed of monazite, zircon, and xenotime as rare earth minerals. Monazite iss known for its elevated number of radioactive elements, so study about radioactive content and more environment friendly ore processing becomes compulsory.

  4. From tectonics to tractors: New insight into Earth's changing surface

    Science.gov (United States)

    Larsen, I. J.

    2017-12-01

    Weathering and erosion of rock and the transport of sediment continually modify Earth's surface. The transformation and transfer of material by both natural and anthropogenic processes drives global cycles and influences the habitability of our planet. By quantitatively linking erosional and depositional landforms to the processes that form them, we better understand how Earth's surface will evolve in the future, and gain the ability to look into the past to recognize how planetary surfaces evolved when environments were drastically different than today. Many of the recent advances in our understanding of the processes that influence landscape evolution have been driven by the development and application of tools such as cosmogenic nuclides, computational models, and digital topographic data. Here I present results gleaned from applying these tools to a diverse set of landscapes, where erosion is driven by factors ranging from tectonics to tractors, to provide insight into the mechanics, chemistry, and history of Earth's changing surface. I will first examine the landslide response of hillslopes in the Himalaya to spatial gradients in tectonic forcing to assess the paradigm of threshold hillslopes. Second, I will present soil production and chemical weathering rates measured in the Southern Alps of New Zealand to determine the relationship between physical erosion and chemical weathering in one of Earth's most rapidly uplifting landscapes, and discuss the implications for proposed links between mountain uplift and global climate. Third, I will discuss results from numerical flood simulations used to explore the interplay between outburst flood hydraulics and canyon incision in the Channeled Scablands of eastern Washington, and explore the implications for reconstructing discharge in flood-carved canyons on Earth and Mars. Finally, I will present new work that couples high resolution spectral and topographic data to estimate the spatial extent of agriculturally

  5. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  6. Voyager Interactive Web Interface to EarthScope

    Science.gov (United States)

    Eriksson, S. C.; Meertens, C. M.; Estey, L.; Weingroff, M.; Hamburger, M. W.; Holt, W. E.; Richard, G. A.

    2004-12-01

    Visualization of data is essential in helping scientists and students develop a conceptual understanding of relationships among many complex types of data and keep track of large amounts of information. Developed initially by UNAVCO for study of global-scale geodynamic processes, the Voyager map visualization tools have evolved into interactive, web-based map utilities that can make scientific results accessible to a large number and variety of educators and students as well as the originally targeted scientists. A portal to these map tools can be found at: http://jules.unavco.org. The Voyager tools provide on-line interactive data visualization through pre-determined map regions via a simple HTML/JavaScript interface (for large numbers of students using the tools simultaneously) or through student-selectable areas using a Java interface to a Generic Mapping Tools (GMT) engine. Students can access a variety of maps, satellite images, and geophysical data at a range of spatial scales for the earth and other planets of the solar system. Students can also choose from a variety of base maps (satellite mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others) and can then add a number of geographic and geophysical overlays, for example coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, and observed and model plate motion, as well as deformation velocity vectors representing a compilation of over 5000 geodetic measurements from around the world. The related educational website, "Exploring our Dynamic Planet", (http://www.dpc.ucar.edu/VoyagerJr/jvvjrtool.html) incorporates background materials and curricular activities that encourage students to explore Earth processes. One of the present curricular modules is designed for high school students or introductory-level undergraduate non-science majors. The purpose of the module is for students to examine real data to investigate how plate

  7. Supporting Instruction By Defining Conceptual Relevance Of Materials: Alignment Of Resources To An Earth Systems Framework

    Science.gov (United States)

    Menicucci, A. J.; Bean, J. R.

    2017-12-01

    Environmental, geological, and climatological sciences are important facets of physical science education. However, it is often difficult for educators to acquire the necessary resources to facilitate content explanations, and demonstration of the conceptual links between individual lessons. The Understanding Global Change (UGC) Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley is aligning new and existing Earth systems educational resources that are high-quality, interactive and inquiry based. Learning resources are organized by the UGC framework topics (Causes of Change, How the Earth System Works, and Measurable Changes), and focus on exploring topic relationships. Resources are currently aligned with both the UGC framework and the Next Generation Science Standards (NGSS), facilitating broad utility among K-16 educators. The overarching goal of the UGC Project is to provide the necessary resources that guide the construction of coherent, interdisciplinary instructional units. These units can be reinforced through system models, providing visual learning scaffolds for assessments of student content knowledge. Utilizing the central framework of UGC alleviates the long-standing problem of creating coherent instructional units from multiple learning resources, each organized and categorized independently across multiple platforms that may not provide explicit connections among Earth science subjects UGC topic cross listing of learning modules establishes conceptual links. Each resource is linked across several Earth system components, facilitating exploration of relationships and feedbacks between processes. Cross listed topics are therefore useful for development of broad picture learning goals via targeted instructional units. We also anticipate cultivating summaries of the explicit conceptual links explored in each resource from both current teachers and content specialists. Insructional units currated and aligned under the UGC

  8. What Can Earth Paleoclimates Reveal About the Resiliency of Habitable States? An Example from the Neoproterozoic Snowball Earth

    Science.gov (United States)

    Sohl, L.

    2014-04-01

    The Neoproterozoic "Snowball Earth" glaciations ( 750-635 Ma) have been a special focus for outer habitable zone investigations, owing in large part to a captivating and controversial hypothesis suggesting that Earth may have only narrowly escaped a runaway icehouse state on multiple occasions (a.k.a. "the hard snowball"; Hoffman and Schrag 2001). A review of climate simulations exploring snowball inception (Godderis et al. 2011) reveals that a broad range of models (EBMs, EMICs and AGCMs) tend to yield hard snowball solutions, whereas models with greater 3-D dynamic response capabilities (AOGCMs) typically do not, unless some of their climate feedback responses (e.g., wind-driven ocean circulation, cloud forcings) are disabled (Poulsen and Jacobs 2004). This finding raises the likelihood that models incorporating dynamic climate feedbacks are essential to understanding how much flexibility there may be in the definition of a planet's habitable zone boundaries for a given point in its history. In the first of a series of new Snowball Earth simulations, we use the NASA/GISS ModelE2 Global Climate Model - a 3-D coupled atmosphere/ocean model with dynamic sea ice response - to explore the impacts of wind-driven ocean circulation, clouds and deep ocean circulation on the sea ice front when solar luminosity and atmospheric carbon dioxide are reduced to Neoproterozoic levels (solar = 94%, CO2 = 40 ppmv). The simulation includes a realistic Neoproterozoic land mass distribution, which is concentrated at mid- to tropical latitudes. After 300 years, the sea ice front is established near 30 degrees latitude, and after 600 years it remains stable. As with earlier coupled model simulations we conclude that runaway glacial states would have been difficult to achieve during the Neoproterozoic, and would be more likely to have occurred during earlier times in Earth history when solar luminosity was less. Inclusion of dynamic climate feedback capabilities in habitable zone

  9. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  10. Human Space Exploration: The Moon, Mars, and Beyond

    Science.gov (United States)

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  11. Apollo 11 Earth Training Exercises

    Science.gov (United States)

    1969-01-01

    In preparation of the nation's first lunar landing mission, Apollo 11 crew members underwent training to practice activities they would be performing during the mission. In this photograph, taken at the Manned Spacecraft Center in Houston, Texas, an engineer, Bob Mason, donned in a space suit, goes through some of those training exercises on the mock lunar surface. He performed activites similar to those planned for astronauts Neil Armstrong and Edwin Aldrin during their moon walk. The Apollo 11 mission launched from the Kennedy Space Center (KSC) in Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard the space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. (Buzz) Aldrin Jr., Lunar Module (LM) pilot. The CM, 'Columbia', piloted by Collins, remained in a parking orbit around the Moon while the LM, 'Eagle'', carrying astronauts Armstrong and Aldrin, landed on the Moon. On July 20, 1969, Armstrong was the first human to ever stand on the lunar surface, followed by Aldrin. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  12. Using Data in the Classroom: Resources for Undergraduate Faculty

    Science.gov (United States)

    Manduca, C. A.

    2003-12-01

    .carleton.edu/introgeo/); Earth Exploration Toolbook providing step-by-step instructions for using Earth science datasets and software tools in educational settings. (serc.carleton.edu/eet/); and NSDL projects developing data access and tools including THREDDS (www.unidata.ucar.edu /projects/THREDDS/); Data Discovery Toolkit and Foundry (www.newmediastudio.org/DataDiscovery/index.html); Collection and Distribution of Geoscience (Solid Earth) Data Sets (atlas.geo.cornell.edu/nsdl/nsdl.html); and Atmospheric Visualization Collection (www.nsdl.arm.gov/index.shtml) These resources will be available for exploration at our poster.

  13. Soft X-ray imaging techniques for calculating the Earth's dayside boundaries

    Science.gov (United States)

    Connor, Hyunju; Kuntz, Kip; Sibeck, David; Collier, Michael; Aryan, Homayon; Branduardi-Raymont, Graziella; Collado-Vega, Yaireska; Porter, Frederick; Purucker, Michael; Snowden, Steven; Raeder, Joachim; Thomas, Nicholas; Walsh, Brian

    2016-04-01

    Charged particles and neutral atoms exchange electrons in many space plasma venues. Soft X-rays are emitted when highly charged solar wind ions, such as C6+. O7+, and Fe13+, interact with Hydrogen and Helium atoms. Soft X-ray images can be a powerful technique to remotely probe the plasma and neutral density structures created when the solar wind interacts with planetary exospheres, such as those at the Earth, Moon, Mars, Venus, and comets. The recently selected ESA-China joint spacecraft mission, "Solar wind - Magnetosphere - Ionosphere Link Explorer (SMILE)" will have a soft X-ray imager on board and provide pictures of the Earth's dayside system after its launch in 2021. In preparation for this future mission, we simulate soft X-ray images of the Earth's dayside system, using the OpenGGCM global magnetosphere MHD model and the Hodges model of the Earth's exosphere. Then, we discuss techniques to determine the location of the Earth's dayside boundaries (bow shock and magnetopause) from the soft X-ray images.

  14. Using Google Earth in Marine Research and Operational Decision Support

    Science.gov (United States)

    Blower, J. D.; Bretherton, D.; Haines, K.; Liu, C.; Rawlings, C.; Santokhee, A.; Smith, I.

    2006-12-01

    A key advantage of Virtual Globes ("geobrowsers") such as Google Earth is that they can display many different geospatial data types at a huge range of spatial scales. In this demonstration and poster display we shall show how marine data from disparate sources can be brought together in a geobrowser in order to support both scientific research and operational search and rescue activities. We have developed the Godiva2 interactive website for browsing and exploring marine data, mainly output from supercomputer analyses and predictions of ocean circulation. The user chooses a number of parameters (e.g. sea temperature at 100m depth on 1st July 2006) and can load an image of the resulting data in Google Earth. Through the use of an automatically-refreshing NetworkLink the user can explore the whole globe at a very large range of spatial scales: the displayed data will automatically be refreshed to show data at increasingly fine resolution as the user zooms in. This is a valuable research tool for exploring these terabyte- scale datasets. Many coastguard organizations around the world use SARIS, a software application produced by BMT Cordah Ltd., to predict the drift pattern of objects in the sea in order to support search and rescue operations. Different drifting objects have different trajectories depending on factors such as their buoyancy and windage and so a computer model, supported by meteorological and oceanographic data, is needed to help rescuers locate their targets. We shall demonstrate how Google Earth is used to display output from the SARIS model (including the search target location and associated error polygon) alongside meteorological data (wind vectors) and oceanographic data (sea temperature, surface currents) from Godiva2 in order to support decision-making. We shall also discuss the limitations of using Google Earth in this context: these include the difficulties of working with time- dependent data and the need to access data securely. essc

  15. Optimal Safety EarthingEarth Electrode Sizing Using A ...

    African Journals Online (AJOL)

    In this paper a deterministic approach in the sizing of earth electrode using the permissible touch voltage criteria is presented. The deterministic approach is effectively applied in the sizing of the length of earth rod required for the safe earthing of residential and facility buildings. This approach ensures that the earthing ...

  16. Scaling of Convection and Plate Tectonics in Super-Earths

    Science.gov (United States)

    Valencia, D. C.; O'Connell, R. J.; Sasselov, D. D.

    2006-12-01

    The discovery of three Super-Earths around different stars, possible only in the last year, prompts us to study the characteristics of our planet within a general context. The Earth, being the most massive terrestrial object in the solar system is the only planet that exhibits plate tectonics. We think this might not be a coincidence and explore the role that mass plays in determining the mode of convection. We use the scaling of convective vigor with Rayleigh number commonly used in parameterized convection. We study how the parameters controlling convection: Rayleigh number (Ra), boundary layer thickness (δ), internal temperature (T_i) and convective velocities (u) scale with mass. This is possible from the scaling of heat flux, mantle density, size and gravity with mass which we reported in Valencia, et. al 2006. The extrapolation to massive rocky planets is done from our knowledge of the Earth. Even though uncertainties arise from extrapolation and assumptions are needed we consider this simple scaling to be a first adequate step. As the mass of a planet increases, Ra increases, yielding a decrease in δ and an increase in u, while T_i increases very slightly. This is true for an isoviscous case and is more accentuated in a temperature dependent viscosity scenario. In a planet with vigorous convection (high u), a thin lithosphere (low δ) is easier to subduct and hence, initiate plate tectonics. The lithosphere also has to be dense enough (cold and thick) to have the bouyancy necessary for subduction. We calculate that a convective cycle for an isoviscous planet is τ ~ M^{-0.3} considering whole mantle convection. Meaning that if these planets have continents, the timescale for continental rearrangement is shorter (about half the Earth's for a 5 earth-mass planet). Additionally, we explore the negative feedback cycle between convection and temperature dependent viscosity and estimate a timescale for this effect.

  17. The Ultimate Destination: Choice of Interplanetary Exploration Path can define Future of Interstellar Spaceflight

    Science.gov (United States)

    Silin, D. V.

    Manned interstellar spaceflight is facing multiple challenges of great magnitude; among them are extremely large distances and the lack of known habitable planets other than Earth. Many of these challenges are applicable to manned space exploration within the Solar System to the same or lesser degree. If these issues are resolved on an interplanetary scale, better position to pursue interstellar exploration can be reached. However, very little progress (if any) was achieved in manned space exploration since the end of Space Race. There is no lack of proposed missions, but all of them require considerable technological and financial efforts to implement while yielding no tangible benefits that would justify their costs. To overcome this obstacle highest priority in future space exploration plans should be assigned to the creation of added value in outer space. This goal can be reached if reductions in space transportation, construction and maintenance of space-based structures costs are achieved. In order to achieve these requirements several key technologies have to be mastered, such as near-Earth object mining, space- based manufacturing, agriculture and structure assembly. To keep cost and difficulty under control next exploration steps can be limited to nearby destinations such as geostationary orbit, low lunar orbit, Moon surface and Sun-Earth L1 vicinity. Completion of such a program will create a solid foundation for further exploration and colonization of the Solar System, solve common challenges of interplanetary and interstellar spaceflight and create useful results for the majority of human population. Another important result is that perception of suitable destinations for interstellar missions will change significantly. If it becomes possible to create habitable and self-sufficient artificial environments in the nearby interplanetary space, Earth-like habitable planets will be no longer required to expand beyond our Solar System. Large fraction of the

  18. 2000 Survey of Distributed Spacecraft Technologies and Architectures for NASA's Earth Science Enterprise in the 2010-2025 Timeframe

    Science.gov (United States)

    Ticker, Ronald L.; Azzolini, John D.

    2000-01-01

    The study investigates NASA's Earth Science Enterprise needs for Distributed Spacecraft Technologies in the 2010-2025 timeframe. In particular, the study focused on the Earth Science Vision Initiative and extrapolation of the measurement architecture from the 2002-2010 time period. Earth Science Enterprise documents were reviewed. Interviews were conducted with a number of Earth scientists and technologists. fundamental principles of formation flying were also explored. The results led to the development of four notional distribution spacecraft architectures. These four notional architectures (global constellations, virtual platforms, precision formation flying, and sensorwebs) are presented. They broadly and generically cover the distributed spacecraft architectures needed by Earth Science in the post-2010 era. These notional architectures are used to identify technology needs and drivers. Technology needs are subsequently grouped into five categories: Systems and architecture development tools; Miniaturization, production, manufacture, test and calibration; Data networks and information management; Orbit control, planning and operations; and Launch and deployment. The current state of the art and expected developments are explored. High-value technology areas are identified for possible future funding emphasis.

  19. Earth System Science Education for the 21st Century: Progress and Plans

    Science.gov (United States)

    Ruzek, M.; Johnson, D. R.; Wake, C.; Aron, J.

    2005-12-01

    Earth System Science Education for the 21st Century (ESSE 21) is a collaborative undergraduate/graduate Earth system science education program sponsored by NASA offering small grants to colleges and universities with special emphasis on including minority institutions to engage faculty and scientists in the development of Earth system science courses, curricula, degree programs and shared learning resources. The annual ESSE 21 meeting in Fairbanks in August, 2005 provided an opportunity for 70 undergraduate educators and scientists to share their best classroom learning resources through a series of short presentations, posters and skills workshops. This poster will highlight meeting results, advances in the development of ESS learning modules, and describe a community-led proposal to develop in the coming year a Design Guide for Undergraduate Earth system Science Education to be based upon the experience of the 63 NASA-supported ESSE teams over the past 15 years. As a living document on the Web, the Design Guide would utilize and share ESSE experiences that: - Advance understanding of the Earth as a system - Apply ESS to the Vision for Space Exploration - Create environments appropriate for teaching and learning ESS - Improve STEM literacy and broaden career paths - Transform institutional priorities and approaches to ESS - Embrace ESS within Minority Serving Institutions - Build collaborative interdisciplinary partnerships - Develop ESS learning resources and modules The Design Guide aims to be a synthesis of just how ESS has been and is being implemented in the college and university environment, listing items essential for undergraduate Earth system education that reflect the collective wisdom of the ESS education community. The Design Guide will focus the vision for ESS in the coming decades, define the challenges, and explore collaborative processes that utilize the next generation of information and communication technology.

  20. A primary exploration to quasi-two-dimensional rare-earth ferromagnetic particles: holmium-doped MoS2 sheet as room-temperature magnetic semiconductor

    Science.gov (United States)

    Chen, Xi; Lin, Zheng-Zhe

    2018-05-01

    Recently, two-dimensional materials and nanoparticles with robust ferromagnetism are even of great interest to explore basic physics in nanoscale spintronics. More importantly, room-temperature magnetic semiconducting materials with high Curie temperature is essential for developing next-generation spintronic and quantum computing devices. Here, we develop a theoretical model on the basis of density functional theory calculations and the Ruderman-Kittel-Kasuya-Yoshida theory to predict the thermal stability of two-dimensional magnetic materials. Compared with other rare-earth (dysprosium (Dy) and erbium (Er)) and 3 d (copper (Cu)) impurities, holmium-doped (Ho-doped) single-layer 1H-MoS2 is proposed as promising semiconductor with robust magnetism. The calculations at the level of hybrid HSE06 functional predict a Curie temperature much higher than room temperature. Ho-doped MoS2 sheet possesses fully spin-polarized valence and conduction bands, which is a prerequisite for flexible spintronic applications.

  1. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  2. High-Rate Laser Communications for Human Exploration and Science

    Science.gov (United States)

    Robinson, B. S.; Shih, T.; Khatri, F. I.; King, T.; Seas, A.

    2018-02-01

    Laser communication links has been successfully demonstrated on recent near-Earth and lunar missions. We present a status of this development work and its relevance to a future Deep Space Gateway supporting human exploration and science activities.

  3. The Network Structure Underlying the Earth Observation Assessment

    Science.gov (United States)

    Vitkin, S.; Doane, W. E. J.; Mary, J. C.

    2017-12-01

    The Earth Observations Assessment (EOA 2016) is a multiyear project designed to assess the effectiveness of civil earth observation data sources (instruments, sensors, models, etc.) on societal benefit areas (SBAs) for the United States. Subject matter experts (SMEs) provided input and scored how data sources inform products, product groups, key objectives, SBA sub-areas, and SBAs in an attempt to quantify the relationships between data sources and SBAs. The resulting data were processed by Integrated Applications Incorporated (IAI) using MITRE's PALMA software to create normalized relative impact scores for each of these relationships. However, PALMA processing obscures the natural network representation of the data. Any network analysis that might identify patterns of interaction among data sources, products, and SBAs is therefore impossible. Collaborating with IAI, we cleaned and recreated a network from the original dataset. Using R and Python we explore the underlying structure of the network and apply frequent itemset mining algorithms to identify groups of data sources and products that interact. We reveal interesting patterns and relationships in the EOA dataset that were not immediately observable from the EOA 2016 report and provide a basis for further exploration of the EOA network dataset.

  4. Becoming Earth Independent: Human-Automation-Robotics Integration Challenges for Future Space Exploration

    Science.gov (United States)

    Marquez, Jessica J.

    2016-01-01

    Future exploration missions will require NASA to integrate more automation and robotics in order to accomplish mission objectives. This presentation will describe on the future challenges facing the human operator (astronaut, ground controllers) as we increase the amount of automation and robotics in spaceflight operations. It will describe how future exploration missions will have to adapt and evolve in order to deal with more complex missions and communication latencies. This presentation will outline future human-automation-robotic integration challenges.

  5. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  6. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    Science.gov (United States)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  7. Supporting EarthScope Cyber-Infrastructure with a Modern GPS Science Data System

    Science.gov (United States)

    Webb, F. H.; Bock, Y.; Kedar, S.; Jamason, P.; Fang, P.; Dong, D.; Owen, S. E.; Prawirodirjo, L.; Squibb, M.

    2008-12-01

    Building on NASA's investment in the measurement of crustal deformation from continuous GPS, we are developing and implementing a Science Data System (SDS) that will provide mature, long-term Earth Science Data Records (ESDR's). This effort supports NASA's Earth Surface and Interiors (ESI) focus area and provide NASA's component to the EarthScope PBO. This multi-year development is sponsored by NASA's Making Earth System data records for Use in Research Environments (MEaSUREs) program. The SDS integrates the generation of ESDRs with data analysis and exploration, product generation, and modeling tools based on daily GPS data that include GPS networks in western North America and a component of NASA's Global GPS Network (GGN) for terrestrial reference frame definition. The system is expandable to multiple regional and global networks. The SDS builds upon mature data production, exploration, and analysis algorithms developed under NASA's REASoN, ACCESS, and SENH programs. This SDS provides access to positions, time series, velocity fields, and strain measurements derived from continuous GPS data obtained at tracking stations in both the Plate Boundary Observatory and other regional Western North America GPS networks, dating back to 1995. The SDS leverages the IT and Web Services developments carried out under the SCIGN/REASoN and ACCESS projects, which have streamlined access to data products for researchers and modelers, and which have created a prototype an on-the-fly interactive research environment through a modern data portal, GPS Explorer. This IT system has been designed using modern IT tools and principles in order to be extensible to any geographic location, scale, natural hazard, and combination of geophysical sensor and related data. We have built upon open GIS standards, particularly those of the OGC, and have used the principles of Web Service-based Service Oriented Architectures to provide scalability and extensibility to new services and capabilities.

  8. Research Progress of the Gravity Field Application in Earth's Geodynamics and Interior Structure

    Directory of Open Access Journals (Sweden)

    SUN Heping

    2017-10-01

    Full Text Available The exploration of deep internal structure and internal dynamics of the earth has always been a hot topic in the field of basic geoscience research.Traditional approach relies mainly on seismic technology. However, in recent decades, the innovation of modern gravity observation technology (especially the successful application of high-precision superconducting gravity technology makes it possible to detect the earth's internal dynamics and physical information. In this paper, we summarize the research progress of Chinese group in detecting the earth's free oscillation, free core nutation, inner core translational oscillation, tidal model and polar tide and the internal structure by using modern high-precision gravity technology in recent years.

  9. NASA's Evolution to K(sub a)- Band Space Communications for Near-Earth Spacecraft

    Science.gov (United States)

    McCarthy, Kevin P.; Stocklin, Frank J.; Geldzahler, Barry J.; Friedman, Daniel E.; Celeste, Peter B.

    2010-01-01

    Over the next several years, NASA plans to launch multiple earth-science missions which will send data from low-Earth orbits to ground stations at 1-3 Gbps, to achieve data throughputs of 5-40 terabits per day. These transmission rates exceed the capabilities of S-band and X-band frequency allocations used for science probe downlinks in the past. Accordingly, NASA is exploring enhancements to its space communication capabilities to provide the Agency's first Ka-band architecture solution for next generation missions in the near-earth regime. This paper describes the proposed Ka-band solution's drivers and concept, constraints and analyses which shaped that concept, and expansibility for future needs

  10. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  11. The Earth's magnetic field yields its secrets

    International Nuclear Information System (INIS)

    Coates, Andrew; Smith, Mark

    1985-01-01

    The paper reviews the investigations of the earth's magnetosphere, and concentrates on the recent Active Magnetosphere Particle Tracer Explorer mission (AMPTE), which involves satellites from the U.S., West Germany and Britain. The purpose of the AMPTE mission is to examine complex movements of the solar wind and the movement of particles around the magnetosphere. Current results from the mission are briefly described, although some of the data is still being evaluated. (U.K.)

  12. Exploration Mission Benefits From Logistics Reduction Technologies

    Science.gov (United States)

    Broyan, James Lee, Jr.; Schlesinger, Thilini; Ewert, Michael K.

    2016-01-01

    Technologies that reduce logistical mass, volume, and the crew time dedicated to logistics management become more important as exploration missions extend further from the Earth. Even modest reductions in logical mass can have a significant impact because it also reduces the packing burden. NASA's Advanced Exploration Systems' Logistics Reduction Project is developing technologies that can directly reduce the mass and volume of crew clothing and metabolic waste collection. Also, cargo bags have been developed that can be reconfigured for crew outfitting and trash processing technologies to increase habitable volume and improve protection against solar storm events are under development. Additionally, Mars class missions are sufficiently distant that even logistics management without resupply can be problematic due to the communication time delay with Earth. Although exploration vehicles are launched with all consumables and logistics in a defined configuration, the configuration continually changes as the mission progresses. Traditionally significant ground and crew time has been required to understand the evolving configuration and locate misplaced items. For key mission events and unplanned contingencies, the crew will not be able to rely on the ground for logistics localization assistance. NASA has been developing a radio frequency identification autonomous logistics management system to reduce crew time for general inventory and enable greater crew self-response to unplanned events when a wide range of items may need to be located in a very short time period. This paper provides a status of the technologies being developed and there mission benefits for exploration missions.

  13. Mission analysis for the Martian Moons Explorer (MMX) mission

    Science.gov (United States)

    Campagnola, Stefano; Yam, Chit Hong; Tsuda, Yuichi; Ogawa, Naoko; Kawakatsu, Yasuhiro

    2018-05-01

    Mars Moon eXplorer (MMX) is JAXA's next candidate flagship mission to be launched in the early 2020s. MMX will explore the Martian moons and return a sample from Phobos. This paper presents the mission analysis work, focusing on the transfer legs and comparing several architectures, such as hybrid options with chemical and electric propulsion modules. The selected baseline is a chemical-propulsion Phobos sample return, which is discussed in detail with the launch- and return-window analysis. The trajectories are optimized with the jTOP software, using planetary ephemerides for Mars and the Earth; Earth re-entry constraints are modeled with simple analytical equations. Finally, we introduce an analytical approximation of the three-burn capture strategy used in the Mars system. The approximation can be used together with a Lambert solver to quickly determine the transfer Δ v costs.

  14. Extraction studies on rare earths using dinonyl phenyl phosphoric acid

    International Nuclear Information System (INIS)

    Anitha, M.; Singh, D.K.; Kotekar, M.K.; Vijayalakshmi, R.; Singh, H.

    2011-01-01

    Rare earths are widely used in phosphor materials, magnetic substances, alloys, catalyst, lasers, superconductors, solid oxide fuel cells and in nuclear applications. The high value of these elements depends on their effective separation into high purity compounds. The separation into individual rare earths is very difficult to achieve, due to the very low separation factors between two adjacent rare earths arising due to similar chemical properties. Taking the advantage of variation in basicity, the separation is generally accomplished by solvent extraction or ion exchange. There are several references on the separation of rare earth in different media employing various types of extractants such as 2-ethylhexyl 2-ethyhexylphosphonic acid (EHEHPA) and di-2-ethyl hexyl phosphoric acid (D2EHPA) which have been widely used for the separation and purification of rare earths. Dinonyl phenyl phosphoric acid (DNPPA) is an organo phosphorus extractant (pKa = 2.54) and is an aromatic analogue of D2EHPA, which extracts metal ion by cation exchange mechanism. DNPPA was explored to recover rare earths from phosphate media such as wet process phosphoric acid and merchant grade acid. However, there is no information available in literature on DNPPA for RE extraction from chloride medium. Therefore, an attempt has been made in the present study to investigate the feasibility of using DNPPA for extraction of La(III), Dy(III) and Y(III) from chloride medium

  15. arXiv Scanning the Earth with solar neutrinos and DUNE

    CERN Document Server

    Ioannisian, Ara; Wyler, Daniel

    2017-08-08

    We explore oscillations of the solar B8 neutrinos in the Earth in detail. The relative excess of night νe events (the day-night asymmetry) is computed as function of the neutrino energy and the nadir angle η of its trajectory. The finite energy resolution of the detector causes an important attenuation effect, while the layer-like structure of the Earth density leads to an interesting parametric suppression of the oscillations. Different features of the η- dependence encode information about the structure (such as density jumps) of the Earth density profile; thus measuring the η distribution allows the scanning of the interior of the Earth. We estimate the sensitivity of the DUNE experiment to such measurements. About 75 neutrino events are expected per day in 40 kt. For high values of Δm212 and Eν>11  MeV, the corresponding D-N asymmetry is about 4% and can be measured with 15% accuracy after 5 years of data taking. The difference of the D-N asymmetry between high and low values of Δm212 can be ...

  16. Low-energy near Earth asteroid capture using Earth flybys and aerobraking

    Science.gov (United States)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2018-04-01

    Since the Sun-Earth libration points L1 and L2 are regarded as ideal locations for space science missions and candidate gateways for future crewed interplanetary missions, capturing near-Earth asteroids (NEAs) around the Sun-Earth L1/L2 points has generated significant interest. Therefore, this paper proposes the concept of coupling together a flyby of the Earth and then capturing small NEAs onto Sun-Earth L1/L2 periodic orbits. In this capture strategy, the Sun-Earth circular restricted three-body problem (CRTBP) is used to calculate target Lypaunov orbits and their invariant manifolds. A periapsis map is then employed to determine the required perigee of the Earth flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with and without aerobraking are investigated to design a transfer trajectory capturing a small NEA from its initial orbit to the stable manifolds associated with Sun-Earth L1/L2 periodic orbits. Finally, a global optimization is carried out, based on a detailed design procedure for NEA capture using an Earth flyby. Results show that the NEA capture strategies using an Earth flyby with and without aerobraking both have the potential to be of lower cost in terms of energy requirements than a direct NEA capture strategy without the Earth flyby. Moreover, NEA capture with an Earth flyby also has the potential for a shorter flight time compared to the NEA capture strategy without the Earth flyby.

  17. Bridging the Gap: Use of Spaceflight Technologies for Earth-Based Problems

    Science.gov (United States)

    Brinley, Alaina; Vidlak, Carissa; Davis, Jeffrey R.

    2012-01-01

    Spaceflight is colloquially deemed, the final frontier, or the last area which humans have not yet explored in great depth. While this is true, there are still many regions on Earth that remain isolated from the urban, socially and electronically connected world. Because travelling to space requires a great deal of foresight, engineers are required to think creatively in order to invent technologies that are durable enough to withstand the rigors of the unique and often treacherous environment of outer space. The innovations that are a result of spaceflight designs can often be applied to life on Earth, particularly in the rural, isolated communities found throughout the world. The NASA Human Health and Performance Center (NHHPC) is a collaborative, virtual forum that connects businesses, non-profit organizations, academia, and government agencies to allow for better distribution of ideas and technology between these entities (http://www.nasa.gov/offices/NHHPC). There are many technologies that have been developed for spaceflight that can be readily applied to rural communities on Earth. For example, water filtration systems designed for spaceflight must be robust and easily repaired; therefore, a system with these qualifications may be used in rural areas on Earth. This particular initiative seeks to connect established, non-profit organizations working in isolated communities throughout the world with NASA technologies devised for spaceflight. These technologies could include water purification systems, solar power generators, or telemedicine techniques. Applying innovative, spaceflight technologies to isolated communities on Earth provides greater benefits from the same research dollars, thus fulfilling the Space Life Science motto at Johnson Space Center: Exploring Space and Enhancing Life. This paper will discuss this NHHPC global outreach initiative and give examples based on the recent work of the organization.

  18. Down-to-Earth Benefits of Space Exploration: Past, Present, Future

    Science.gov (United States)

    Neumann, Benjamin

    2005-01-01

    A ventricular device that helps a weakened heart keep pumping while awaiting a transplant. A rescue tool for extracting victims from dangerous situations such as car wrecks. A video analysis tool used to investigate the bombing at the 1996 Olympics in Atlanta. A sound-differentiation tool for safer air traffic control. A refrigerator that run without electricity or batteries. These are just a few of the spin-offs of NASA technology that have benefited society in recent years. Now, as NASA sets its vision on space exploration, particularly of the moon and Mars, even more benefits to society are possible. This expansion of societal benefits is tied to a new emphasis on technology infusion or spin-in. NASA is seeking partners with industry, universities, and other government laboratories to help the Agency address its specific space exploration needs in five areas: (1) advanced studies, concepts, and tools; (2) advanced materials; (3) communications, computing, electronics, and imaging; (4) software, intelligent systems, and modeling; and (5) power, propulsion, and chemical systems. These spin-in partnerships will offer benefits to U.S. economic development as well as new products for the global market. As a complement to these spin-in benefits, NASA also is examining the possible future spin-outs of the innovations related to its new space exploration mission. A matrix that charts NASA's needs against various business sectors is being developed to fully understand the implications for society and industry of spin-in and spin-out. This matrix already has been used to help guide NASA s efforts to secure spin-in partnerships. This paper presents examples of NASA spin-offs, discusses NASA s present spin-in/spin-out projects for pursuing partnerships, and considers some of the future societal benefits to be reaped from these partnerships. This paper will complement the proposed paper by Frank Schowengerdt on the Innovative Partnerships Program structure and how to work

  19. Significant results from using earth observation satellites for mineral and energy resource exploration

    Science.gov (United States)

    Carter, William D.

    1981-01-01

    A large number of Earth-observation satellites orbit our world several times each day, providing new information about the land and sea surfaces and the overlying thin layer of atmosphere that makes our planet unique. Meteorological satellites have had the longest history of experimental use and most are now considered operational. The geologic information collected by the Landsat, Polar Orbiting Geophysical Observatory (POGO), Magsat, Heat Capacity Mapping Mission (HCMM) and Seasat land and ocean observation systems is being thoroughly tested, and some of these systems are now approaching operational use.

  20. Commercialization is Required for Sustainable Space Exploration and Development

    Science.gov (United States)

    Martin, Gary L.; Olson, John M.

    2009-01-01

    The U.S. Space Exploration policy outlines an exciting new direction in space for human and robotic exploration and development beyond low Earth orbit. Pressed by this new visionary guidance, human civilization will be able to methodically build capabilities to move off Earth and into the solar system in a step-by-step manner, gradually increasing the capability for humans to stay longer in space and move further away from Earth. The new plans call for an implementation that would create an affordable and sustainable program in order to span over generations of explorers, each new generation pushing back the boundaries and building on the foundations laid by the earlier. To create a sustainable program it is important to enable and encourage the development of a selfsupporting commercial space industry leveraging both traditional and non-traditional segments of the industrial base. Governments will not be able to open the space frontier on their own because their goals change over relatively short timescales and because the large costs associated with human spaceflight cannot be sustained. A strong space development industrial sector is needed that can one day support the needs of commercial space enterprises as well as provide capabilities that the National Aeronautics and Space Administration (NASA) and other national space agencies can buy to achieve their exploration goals. This new industrial space sector will someday provide fundamental capabilities like communications, power, logistics, and even cargo and human space transportation, just as commercial companies are able to provide these services on Earth today. To help develop and bolster this new space industrial sector, NASA and other national space agencies can enable and facilitate it in many ways, including reducing risk by developing important technologies necessary for commercialization of space, and as a paying customer, partner, or anchor tenant. This transition from all or mostly government

  1. The AGI-ASU-NASA Triad Program for K-12 Earth and Space Science Education

    Science.gov (United States)

    Pacheco, H. A.; Semken, S. C.; Taylor, W.; Benbow, A. E.

    2011-12-01

    The NASA Triad program of the American Geological Institute (AGI) and Arizona State University School of Earth and Space Exploration (ASU SESE) is a three-part effort to promote Earth and space science literacy and STEM education at the national level, funded by NASA through a cooperative agreement starting in 2010. NASA Triad comprises (1) infusion of NASA STEM content into AGI's secondary Earth science curricula; (2) national lead teacher professional development workshops; and (3) an online professional development guide for teachers running NASA STEM workshops. The Triad collaboration draws on AGI's inquiry-based curriculum and teacher professional-development resources and workforce-building programs; ASU SESE's spectrum of research in Mars and Moon exploration, astrobiology, meteoritics, Earth systems, and cyberlearning; and direct access to NASA facilities and dynamic education resources. Triad milestones to date include integration of NASA resources into AGI's print and online curricula and two week-long, national-scale, teacher-leader professional development academies in Earth and space sciences presented at ASU Dietz Museum in Tempe and NASA Johnson Space Flight Center in Houston. Robust front-end and formative assessments of these program components, including content gains, teacher-perceived classroom relevance, teacher-cohort lesson development, and teacher workshop design, have been conducted. Quantitative and qualitative findings from these assessment activities have been applied to identify best and most effective practices, which will be disseminated nationally and globally through AGI and NASA channels.

  2. Space Biology and Medicine. Volume I; Space and Its Exploration

    Science.gov (United States)

    Nicogossian, Arnauld E.; Mohler, Stanley R.; Gazenko, Oleg G.; Grigoryev, Anatoliy I.

    1993-01-01

    Perhaps one of the greatest gifts that has been given to the people of the world in the last few hundred years has been an emerging sense of the place of our planet and its inhabitants within the context of the vast universe. Our knowledge of the rest of the universe has not come quickly, nor was the process of attaining it only recently begun; however, the unprecedented acceleration of that process has benefitted from a fundamental new aspect of our species that has only manifested itself in the last 30 years or so, the ability to travel in space. Before the space age, the Universe was studied only through observations from the Earth. All that has changed with the beginning of the space age. Machines built by humans have flown to all but one of the nine planets that revolve around our Sun, have ventured billions of miles from the Earth and looked back, and have landed on three other worlds. Spacecraft in orbit around the Earth have viewed the sky at a vast number of electromagnetic wavelengths, detecting the shape of the galaxy and the universe, and even measuring the remnants of the universe's beginning. Human explorers have ventured forth, first for short stays in orbit, then, later, walking upon the Moon and living for long periods in space. As they did so, billions of people on the Earth came to view the Earth in a fundamentally different way, not just as the familiar day to- day backdrop for their lives, but as a small oasis suspended in the night sky above an alien landscape. It is this new view of the Earth that is the true gift of space exploration. Space exploration has at once given us a new perspective on the value of our world, and a new perspective from which to understand how it operates. It has shown us that the Earth is by far the most precious place in the solar system in terms of supporting human life, while revealing that other destinations may still be compelling. The exploration of space has at once become a challenge for humanity to overcome

  3. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  4. Restrictions on the detection of the Super-Earth in Solar system

    Science.gov (United States)

    Vidmachenko, A. P.

    2018-05-01

    For assessment of visibility of possible 9th planet, we use the infrared observations obtained by the "Wide-Field Infrared Survey Explorer". It turned out that the telescope could not see an analog of the planet of the giant Saturn at a distance of up to 30000 AU. This circumstance allowed us to estimate that at distances up to 1000 AU it would be clearly visible planetary body with a radius of more than 11,000 km; that is, a planet with mass of about 10 Earth masses and "earth" density (5520 kg/m3). If we take into account that the density of the "average" TNO differs little from 2000 kg/m3, that the radius of such "Super-Earth" with a mass of about 10 Earth masses - will increase to 19200 km. Then the limit of detection of a possible 9th planet will increase by almost 4 times: up to 4000 AU. And since the "WISE" telescope did not "see" even Saturn, that our estimates unequivocally suggest that there is no "Super-Earth" at a distance up to 1000 AU in the Solar system.

  5. SinoProbe - A Multidisciplinary Research Program of Earth Sciences in China (Invited)

    Science.gov (United States)

    Dong, S.; Li, T.

    2010-12-01

    China occupies a large region of central and eastern Asia and holds keys to resolving several first-order problems in Earth Sciences. Besides the importance in Earth Science research, the rapid growth of Chinese economy also demands a comprehensive and systematic evaluation of its natural resources and the impacts of geohazards on its societal development. In order to address the above issues, the Chinese government had initiated a new multidisciplinary research project in Earth Sciences - the SinoProbe Program. Its fundamental goal is to determine the three-dimensional structure, composition distribution, and geological evolution of the Chinese continental lithosphere. The results of the SinoProbe Program are expected to have broad impacts on the Chinese society and economy. In particular, the program will greatly enhance our current understanding on (1) the forming and distribution of mineral resources in the nation, (2) the locations and recurrence histories of major active fault zones capable of generating large earthquakes in highly populated regions, and (3) the distribution of major hazard-prone regions induced by geological processes. In 2009, more than 720 investigators and 70 engineers from Chinese institutions are currently involved with the research program. Sinoprobe hope that the joint forces by Chinese and international researchers will bring in modern approaches, new analytical tools, and advanced exploration technology into the successful operation of the program. In past year, 1,960km long seismic reflection profiling with broadband seismological studies and MT surveys separated from 6 profiles in China continent have completed. MT array coved the North China craton by 1°×1° network and 3-D exploration in larger ore deposits in selected area were carried out. A scientific drilling area operated in Tibet. We started to establish a geochemical reference framework for the values of 76 elements in a grid network with data-point spacing of 160 km in

  6. Using immersive media and digital technology to communicate Earth Science

    Science.gov (United States)

    Kapur, Ravi

    2016-04-01

    A number of technologies in digital media and interactivity have rapidly advanced and are now converging to enable rich, multi-sensoral experiences which create opportunities for both digital art and science communication. Techniques used in full-dome film-making can now be deployed in virtual reality experiences; gaming technologies can be utilised to explore real data sets; and collaborative interactivity enable new forms of public artwork. This session will explore these converging trends through a number of emerging and forthcoming projects dealing with Earth science, climate change and planetary science.

  7. ISS EarthKam: Taking Photos of the Earth from Space

    Science.gov (United States)

    Haste, Turtle

    2008-01-01

    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  8. Human missions to Mars enabling technologies for exploring the red planet

    CERN Document Server

    Rapp, Donald

    2016-01-01

    A mission to send humans to explore the surface of Mars has been the ultimate goal of planetary exploration since the 1950s, when von Braun conjectured a flotilla of 10 interplanetary vessels carrying a crew of at least 70 humans. Since then, more than 1,000 studies were carried out on human missions to Mars, but after 60 years of study, we remain in the early planning stages. The second edition of this book now includes an annotated history of Mars mission studies, with quantitative data wherever possible. Retained from the first edition, Donald Rapp looks at human missions to Mars from an engineering perspective. He divides the mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO toward Mars; Mars orbit insertion and entry, descent and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth return. For each segment, he analyzes requirements for candidate technologies. In this connection, he discusses the status and potential of a wide range of el...

  9. What do the data show? Fostering physical intuition with ClimateBits and NASA Earth Observations

    Science.gov (United States)

    Schollaert Uz, S.; Ward, K.

    2017-12-01

    Through data visualizations using global satellite imagery available in NASA Earth Observations (NEO), we explain Earth science concepts (e.g. albedo, urban heat island effect, phytoplankton). We also provide examples of ways to explore the satellite data in NEO within a new blog series. This is an ideal tool for scientists and non-scientists alike who want to quickly check satellite imagery for large scale features or patterns. NEO analysis requires no software or plug-ins; only a browser and an internet connection. You can even check imagery and perform simple analyses from your smart phone. NEO can be used to create graphics for presentations and papers or as a first step before acquiring data for more rigorous analysis. NEO has potential application to easily explore large scale environmental and climate patterns that impact operations and infrastructure. This is something we are currently exploring with end user groups.

  10. The Search for Biosignatures on Mars: Using Predictive Geology to Optimize Exploration Targets

    Science.gov (United States)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2011-01-01

    Predicting geologic context from satellite data is a method used on Earth for exploration in areas with limited ground truth. The method can be used to predict facies likely to contain organic-rich shales. Such shales concentrate and preserve organics and are major repositories of organic biosignatures on Earth [1]. Since current surface conditions on Mars are unfavorable for development of abundant life or for preservation of organic remains of past life, the chances are low of encountering organics in surface samples. Thus, focusing martian exploration on sites predicted to contain organic-rich shales would optimize the chances of discovering evidence of life, if it ever existed on that planet.

  11. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  12. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  13. Telecommunications and navigation systems design for manned Mars exploration missions

    Science.gov (United States)

    Hall, Justin R.; Hastrup, Rolf C.

    1989-06-01

    This paper discusses typical manned Mars exploration needs for telecommunications, including preliminary navigation support functions. It is a brief progress report on an ongoing study program within the current NASA JPL Deep Space Network (DSN) activities. A typical Mars exploration case is defined, and support approaches comparing microwave and optical frequency performance for both local in situ and Mars-earth links are described. Optical telecommunication and navigation technology development opportunities in a Mars exploration program are also identified. A local Mars system telecommunication relay and navigation capability for service support of all Mars missions has been proposed as part of an overall solar system communications network. The effects of light-time delay and occultations on real-time mission decision-making are discussed; the availability of increased local mass data storage may be more important than increasing peak data rates to earth. The long-term frequency use plan will most likely include a mix of microwave, millimeter-wave and optical link capabilities to meet a variety of deep space mission needs.

  14. A Hands-on Exploration of the Retrograde Motion of Mars as Seen from the Earth

    Science.gov (United States)

    Pincelli, M. M.; Otranto, S.

    2013-01-01

    In this paper, we propose a set of activities based on the use of a celestial simulator to gain insights into the retrograde motion of Mars as seen from the Earth. These activities provide a useful link between the heliocentric concepts taught in schools and those tackled in typical introductory physics courses based on classical mechanics for…

  15. Geophysical Exploration Technologies for the Deep Lithosphere Research: An Education Materials for High School Students

    Science.gov (United States)

    Xu, H.; Xu, C.; Luo, S.; Chen, H.; Qin, R.

    2012-12-01

    The science of Geophysics applies the principles of physics to study of the earth. Geophysical exploration technologies include the earthquake seismology, the seismic reflection and refraction methods, the gravity method, the magnetic method and the magnetotelluric method, which are used to measure the interior material distribution, their structure and the tectonics in the lithosphere of the earth. Part of the research project in SinoProbe-02-06 is to develop suitable education materials for carton movies targeting the high school students and public. The carton movies include five parts. The first part includes the structures of the earth's interior and variation in their physical properties that include density, p-wave, s-wave and so on, which are the fundamentals of the geophysical exploration technologies. The second part includes the seismology that uses the propagation of elastic waves through the earth to study the structure and the material distribution of the earth interior. It can be divided into earthquake seismology and artifice seismics commonly using reflection and refraction. The third part includes the magnetic method. Earth's magnetic field (also known as the geomagnetic field)extends from the Earth's inner core to where it meets the solar wind, a stream of energetic particles emanating from the Sun. The aim of magnetic survey is to investigate subsurface geology on the basis of anomalies in the Earth's magnetic field resulting from the magnetic properties of the underlying rocks. The magnetic method in the lithosphere attempts to use magnetic disturbance to analyse the regional geological structure and the magnetic boundaries of the crust. The fourth part includes the gravity method. A gravity anomaly results from the inhomogeneous distribution of density of the Earth. Usually gravity anomalies contain superposed anomalies from several sources. The long wave length anomalies due to deep density contrasts are called regional anomalies. They are

  16. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  17. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    Science.gov (United States)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  18. Towards human exploration of space: the THESEUS review series on neurophysiology research priorities.

    Science.gov (United States)

    White, Olivier; Clément, Gilles; Fortrat, Jacques-Olivier; Pavy-LeTraon, Anne; Thonnard, Jean-Louis; Blanc, Stéphane; Wuyts, Floris L; Paloski, William H

    2016-01-01

    The THESEUS project (Towards Human Exploration of Space: a European Strategy), initiated within the seventh Framework Programme by the European Commission, aimed at providing a cross-cutting, life-science-based roadmap for Europe's strategy towards human exploration of long space missions, and its relevance to applications on Earth. This topic was investigated by experts in the field, in the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration. In particular, decades of research have shown that altered gravity impairs neurological responses at large, such as perception, sleep, motor control, and cognitive factors. International experts established a list of key issues that should be addressed in that context and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space.

  19. Petroleum exploration in Africa from space

    Science.gov (United States)

    Gianinetto, Marco; Frassy, Federico; Aiello, Martina; Rota Nodari, Francesco

    2017-10-01

    Hydrocarbons are nonrenewable resources but today they are the cheaper and easier energy we have access and will remain the main source of energy for this century. Nevertheless, their exploration is extremely high-risk, very expensive and time consuming. In this context, satellite technologies for Earth observation can play a fundamental role by making hydrocarbon exploration more efficient, economical and much more eco-friendly. Complementary to traditional geophysical methods such as gravity and magnetic (gravmag) surveys, satellite remote sensing can be used to detect onshore long-term biochemical and geochemical alterations on the environment produced by invisible small fluxes of light hydrocarbons migrating from the underground deposits to the surface, known as microseepage effect. This paper describes two case studies: one in South Sudan and another in Mozambique. Results show how remote sensing is a powerful technology for detecting active petroleum systems, thus supporting hydrocarbon exploration in remote or hardly accessible areas and without the need of any exploration license.

  20. Exploring earth system governance: A case study of floodplain management along the Tisza river in Hungary

    NARCIS (Netherlands)

    Werners, S.E.; Fachner, Z.; Matczak, P.; Falaleeva, M.; Leemans, R.

    2009-01-01

    This paper discusses a recently proposed conceptualisation of ‘earth system governance’ by applying it to floodplain management in the Hungarian Tisza river basin. By doing so it aims to improve our understanding of governance systems facilitating adaptation to a changing world. The

  1. Proceedings of 13. International Geochemical Exploration Symposium. 2. Brazilian Geochemical Congress

    International Nuclear Information System (INIS)

    1989-01-01

    Some works about geochemistry are presented, including themes about geochemical exploration, lithogeochemistry and isotope geochemistry, environmental geochemistry, analyical geochemistry, geochemistry of carbonatites and rare earth elements and organic geochemistry. (C.G.C.) [pt

  2. Exploration Medical System Demonstration Project

    Science.gov (United States)

    Chin, D. A.; McGrath, T. L.; Reyna, B.; Watkins, S. D.

    2011-01-01

    A near-Earth Asteroid (NEA) mission will present significant new challenges including hazards to crew health created by exploring a beyond low earth orbit destination, traversing the terrain of asteroid surfaces, and the effects of variable gravity environments. Limited communications with ground-based personnel for diagnosis and consultation of medical events require increased crew autonomy when diagnosing conditions, creating treatment plans, and executing procedures. Scope: The Exploration Medical System Demonstration (EMSD) project will be a test bed on the International Space Station (ISS) to show an end-to-end medical system assisting the Crew Medical Officers (CMO) in optimizing medical care delivery and medical data management during a mission. NEA medical care challenges include resource and resupply constraints limiting the extent to which medical conditions can be treated, inability to evacuate to Earth during many mission phases, and rendering of medical care by a non-clinician. The system demonstrates the integration of medical technologies and medical informatics tools for managing evidence and decision making. Project Objectives: The objectives of the EMSD project are to: a) Reduce and possibly eliminate the time required for a crewmember and ground personnel to manage medical data from one application to another. b) Demonstrate crewmember's ability to access medical data/information via a software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities. d) Develop a common data management architecture that allows for scalability, extensibility, and interoperability of data sources and data users. e) Lower total cost of ownership for development and sustainment of peripheral hardware and software that use EMSD for data management f) Provide

  3. Evaluating The Global Inventory of Planetary Analog Environments on Earth: An Ontological Approach

    Science.gov (United States)

    Conrad, P. G.

    2010-12-01

    Introduction: Field sites on Earth are routinely used to simulate planetary environments so that we can try to understand the evidence of processes such as sedimentary deposition, weathering, evolution of habitable environments, and behavior of spacecraft and instrumentation prior to selection of mission architectures, payload investigations and landing sites for in situ exploration of other planets. The rapid evolution of astrobiology science drivers for space exploration as well as increasing capability to explore planetary surfaces in situ has led to a proliferation of declarations that various Earth environments are analogs for less accessible planetary environments. We have not yet progressed to standardized measures of analog fidelity, and the analog value of field sites can be variable de-pending upon a variety of factors. Here we present a method of evaluating the fidelity and hence utility of analog environments by using an ontological approach to evaluating how well the analogs work. The use of ontologies as specification constructs is now quite common in artificial intelligence, systems engineering, business development and various informatics systems. We borrow from these developments just as they derive from the original use of ontology in philosophy, where it was meant as a systematic approach to describing the fundamental elements that define “being,” or existence [1]. An ontology is a framework for the specification of a concept or domain of interest. The knowledge regarding that domain, eg., inventory of objects, hierarchical classes, relationships and functions is what describes and defines the domain as a declarative formalism [2]. In the case of planetary environments, one can define a list of fundamen-tal attributes without which the domain (environment) in question must be defined (classified) otherwise. In particu-lar this is problematic when looking at ancient environments because of their alteration over time. In other words, their

  4. Enabling the exploration of the solar system with nuclear rockets and indigenous propellants

    International Nuclear Information System (INIS)

    Zubrin, R.M.

    1991-01-01

    This paper defines the concept of a coherent Space Exploration Initiative (SEI) architecture and shows that the requirements of coherency are largely unsatisfied by the conventional Earth-orbital assembly/Mars orbital rendezvous mission plan that has dominated most recent analyses. Coherency's primary requirements of simplicity, robustness, and cost-effectiveness are then used to derive a secondary set of mission features that converge on the Mars Direct architecture. In the Mars implementation of the Mars Direct architecture, two launches of a heavy lift booster optimized for earth escape are required to support each four-person mission. The first booster launch delivers an unfueled and unmanned earth return vehicle (ERV) to the martian surface, where it fills itself with methane/oxygen bipropellant manufactured primarily out of indigenous resources. After propellant production is completed, a second launch delivers the crew to the prepared site, where they conduct extensive regional exploration for 1.5 years and then return directly to Earth in the ERV. No on-orbit assembly or orbital rendezvous is required in any phase of the mission, and the same set of booster, crew habitat and ERV used to support Mars missions can also be used to support a lunar base

  5. Stability and anisotropy of (FexNi1-x)2O under high pressure and implications in Earth's and super-Earths' core.

    Science.gov (United States)

    Huang, Shengxuan; Wu, Xiang; Qin, Shan

    2018-01-10

    Oxygen is thought to be an important light element in Earth's core but the amount of oxygen in Earth's core remains elusive. In addition, iron-rich iron oxides are of great interest and significance in the field of geoscience and condensed matter physics. Here, static calculations based on density functional theory demonstrate that I4/mmm-Fe 2 O is dynamically and mechanically stable and becomes energetically favorable with respect to the assemblage of hcp-Fe and [Formula: see text]-FeO above 270 GPa, which indicates that I4/mmm-Fe 2 O can be a strong candidate phase for stable iron-rich iron oxides at high pressure, perhaps even at high temperature. The elasticity and anisotropy of I4/mmm-(Fe x Ni 1-x ) 2 O at high pressures are also determined. Based on these results, we have derived the upper limit of oxygen to be 4.3 wt% in Earth's lower outer core. On the other hand, I4/mmm-(Fe x Ni 1-x ) 2 O with high AV S is likely to exist in a super-Earth's or an ocean planet's solid core causing the locally seismic heterogeneity. Our results not only give some clues to explore and synthesize novel iron-rich iron oxides but also shed light on the fundamental information of oxygen in the planetary core.

  6. Digital Earth – A sustainable Earth

    International Nuclear Information System (INIS)

    Mahavir

    2014-01-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth

  7. Strange Curves, Counting Rabbits, & Other Mathematical Explorations

    CERN Document Server

    Ball, Keith

    2011-01-01

    How does mathematics enable us to send pictures from space back to Earth? Where does the bell-shaped curve come from? Why do you need only 23 people in a room for a 50/50 chance of two of them sharing the same birthday? In Strange Curves, Counting Rabbits, and Other Mathematical Explorations, Keith Ball highlights how ideas, mostly from pure math, can answer these questions and many more. Drawing on areas of mathematics from probability theory, number theory, and geometry, he explores a wide range of concepts, some more light-hearted, others central to the development of the field and used dai

  8. ELF-VLF communications through the Earth Project report for calendar year 1984, revision 1

    Science.gov (United States)

    Buettner, H. M.; Burker, G. J.; Didwall, E. M.; Holladay, G.; Lytle, R. J.

    1985-08-01

    We use computer models and experiments to explore the feasibility of communication between points underground and on the Earth's surface. Emphasis is placed on ELF-VLF electromagnetic propagation through the Earth; nominally, we investigated propagation in the 200 Hz-30 kHz frequency range. The computer modeling included calculations of the fields of a point electric or magnetic source in a homogeneous half space or a stratified earth. Initial results for an insulated antenna of finite length are also considered. The experiments involved through-the-Earth transmissions at two locations in Pennsylvania, both of which had large formations of limestone. Initial results indicate that information rates as high as kbits/s may be possible for subsurface depths of 300 m or less. Accuracy of these estimates depends on the electromagnetic propagation constant of the rock, the noise characteristics, and the modulation scheme. Although a nuisance for evaluating through-the-Earth propagation, the existence of subsurface metal conductors can improve the transmission character of the site.

  9. ELF-VLF Communications through the Earth Project report for calendar year 1984. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, H.M.; Burke, G.J.; Didwall, E.M.; Holladay, G.; Lytle, R.J.

    1985-08-01

    We use computer models and experiments to explore the feasibility of communication between points underground and on the Earth's surface. Emphasis is placed on ELF-VLF electromagnetic propagation through the Earth; nominally, we investigated propagation in the 200 Hz-30 kHz frequency range. The computer modeling included calculations of the fields of a point electric or magnetic source in a homogeneous half space or a stratified earth. Initial results for an insulated antenna of finite length are also considered. The experiments involved through-the-earth transmissions at two locations in Pennsylvania, both of which had large formations of limestone. Initial results indicate that information rates as high as kbits/s may be possible for subsurface depths of 300 m or less. Accuracy of these estimates depends on the electromagnetic propagation constant of the rock, the noise characteristics, and the modulation scheme. Although a nuisance for evaluating through-the-Earth propagation, the existence of subsurface metal conductors can improve the transmission character of the site.

  10. Why Earth Science?

    Science.gov (United States)

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  11. Agriculture production as a major driver of the earth system exceeding planetary boundaries

    DEFF Research Database (Denmark)

    Campbell, Bruce Morgan; Beare, Douglas J.; Bennett, Elena M.

    2017-01-01

    We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or “safe limits”: land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone...

  12. The Third Side of the Coin: Using Google Earth to Visualize Numismatic Data

    Directory of Open Access Journals (Sweden)

    Kristina Neumann

    2017-12-01

    Full Text Available This article presents one digital approach to ancient numismatics. The proposed methodology maps geo-referenced quantities of coin finds within the platform of Google Earth – a free virtual globe available through the Internet. Especially for the uninitiated scholar, Google Earth efficiently visualizes both the spatial and chronological distribution of thousands of coins and provides an intuitive and interactive space for exploring regional and empire-wide patterns in their movement. While the practical applications of this methodology are many, this article focuses on an ongoing study of Antioch-on-the-Orontes in northern Syria and its regional evolution after Roman annexation. This project draws upon Google Earth as an invaluable first step in synthesizing the wealth of disparate coin data available for the city. After outlining the methodology to achieve such a visualization, this article highlights several promising patterns revealed by Google Earth in the dataset.

  13. Giving Students Control over Their Learning; from Self-guided Museum Visits and Field Trips to Using Scanning Technology to Link Content to Earth Samples

    Science.gov (United States)

    Kirkby, K. C.; Phipps, M.

    2011-12-01

    While it may seem counterintuitive, sometimes stepping back is one of the more effective pedagogical approaches instructors can make. On museum visits, an instructor's presence fundamentally alters students' experiences and can curtail student learning by limiting questions or discouraging students from exploring their own interests. Students often rely on the instructor and become passive observers, rather than engaged learners. As an alternative to instructor-led visits, self-guided student explorations of museum exhibits proved to be both popular and pedagogically effective. On pre-instruction and post-instruction surveys, these ungraded, self-guided explorations match or exceed the efficacy of traditional graded lab instruction and completely eclipse gains normally achieved by traditional lecture instruction. In addition, these explorations achieve the remarkable goal of integrating undergraduate earth science instruction into students' social lives. Based on the success of the self-guided museum explorations, this fall saw the debut of an attempt to expand this concept to field experiences. A self-guided student field exploration of Saint Anthony Falls focuses on the intersections of geological processes with human history. Students explore the waterfalls' evolution, its early interpretation by 18th and 19th century Dakota and Euro-America societies, and its subsequent social and economic impacts on Upper Midwest societies. Self-guided explorations allow students to explore field settings on their own or with friends and family in a more relaxed manner. At the same time, these explorations give students control over, and responsibility for, their own learning - a powerful pedagogical approach. Student control over their learning is also the goal of an initiative to use scanning technologies, such as linear bar codes, 2D barcodes and radio-frequency identification (RFID), to revolutionize sample identification and study. Scanning technology allows students to

  14. Project Mapping to Build Capacity and Demonstrate Impact in the Earth Sciences

    Science.gov (United States)

    Hemmings, S. N.; Searby, N. D.; Murphy, K. J.; Mataya, C. J.; Crepps, G.; Clayton, A.; Stevens, C. L.

    2017-12-01

    Diverse organizations are increasingly using project mapping to communicate location-based information about their activities. NASA's Earth Science Division (ESD), through the Earth Science Data Systems and Applied Sciences' Capacity Building Program (CBP), has created a geographic information system of all ESD projects to support internal program management for the agency. The CBP's NASA DEVELOP program has built an interactive mapping tool to support capacity building for the program's varied constituents. This presentation will explore the types of programmatic opportunities provided by a geographic approach to management, communication, and strategic planning. We will also discuss the various external benefits that mapping supports and that build capacity in the Earth sciences. These include activities such as project matching (location-focused synergies), portfolio planning, inter- and intra-organizational collaboration, science diplomacy, and basic impact analysis.

  15. Earth Girl 2: Learning and Perfecting Tsunami Preparedness with a Casual Strategy Game

    Science.gov (United States)

    Kerlow, I.; Taisne, B.; Switzer, A.; Meltzner, A. J.; Hubbard, J.; Sieh, K.

    2014-12-01

    "Earth Girl 2: Preparing for the Tsunami" is an interactive game about making strategic decisions that can directly increase the survival rate in coastal communities during earthquake and tsunami scenarios. Earth Girl is the host and guide in this casual strategy game with social impact, and the player is the protagonist. The game was developed by an interdisciplinary team of scientists and game artists at the Earth Observatory of Singapore. Earth Girl 2 is based on real-life situations, with an emphasis on learning preparedness and survival skills. It was inspired by the kids who live in coastal communities throughout Asia, and by the stories told by survivors of recent tsunamis. The action takes place in four main areas: the Market, the Map, the Toolbox, and two dozen game levels with a variety of evacuation scenarios. The gameplay encourages proactive exploration and discovery of these scenarios, with Earth Girl providing knowledge, tips and feedback throughout the game. The basic game play includes: learning about tsunami hazards by talking to people at the market, choosing tools based on a budget, exploring the site and making strategic decisions, and learning from watching the simulation. The level of success of players in this game depends on their strategic decisions which is somewhat tied to their level of interaction with the virtual community. The game is currently being tested with children in Southeast Asian communities and is scheduled for release in late 2014. The presentation will demonstrate aspects of the game (played on an iPad connected to the projector), and will describe some of the challenges and solutions encountered by the interdisciplinary team.

  16. Earth observation from the manned low Earth orbit platforms

    Science.gov (United States)

    Guo, Huadong; Dou, Changyong; Zhang, Xiaodong; Han, Chunming; Yue, Xijuan

    2016-05-01

    The manned low Earth orbit platforms (MLEOPs), e.g., the U.S. and Russia's human space vehicles, the International Space Station (ISS) and Chinese Tiangong-1 experimental space laboratory not only provide laboratories for scientific experiments in a wide range of disciplines, but also serve as exceptional platforms for remote observation of the Earth, astronomical objects and space environment. As the early orbiting platforms, the MLEOPs provide humans with revolutionary accessibility to the regions on Earth never seen before. Earth observation from MLEOPs began in early 1960s, as a part of manned space flight programs, and will continue with the ISS and upcoming Chinese Space Station. Through a series of flight missions, various and a large amount of Earth observing datasets have been acquired using handheld cameras by crewmembers as well as automated sophisticated sensors onboard these space vehicles. Utilizing these datasets many researches have been conducted, demonstrating the importance and uniqueness of studying Earth from a vantage point of MLEOPs. For example, the first, near-global scale digital elevation model (DEM) was developed from data obtained during the shuttle radar topography mission (SRTM). This review intends to provide an overview of Earth observations from MLEOPs and present applications conducted by the datasets collected by these missions. As the ISS is the most typical representative of MLEOPs, an introduction to it, including orbital characteristics, payload accommodations, and current and proposed sensors, is emphasized. The advantages and challenges of Earth observation from MLEOPs, using the ISS as an example, is also addressed. At last, a conclusive note is drawn.

  17. Exploring Earth's Atmospheric Biology using a Platform-Extensible Sampling Payload

    Science.gov (United States)

    Gentry, D.; Rothschild, L.

    2012-12-01

    The interactions between Earth's atmosphere and its biosphere, or aerobiology, remain a significant unknown. What few studies have been done conclusively show that Earth's atmosphere has a rich and dynamic microbial presence[Bowers et al., 2010]; that microbes suspended in air survive over long times (1-2 weeks)[Smith et al., 2010] and travel great distances (>5000 km)[Kellogg and Griffin, 2006]; that some airborne bacteria actively nucleate ice crystals, affecting meteorology[Delort et al., 2010]; and that the presence of microbes in the atmosphere has other planetary-scale effects[Delort et al., 2010]. Basic questions, however, such as the number of microbes present, their activity level and state, the different species present and their variance over time and space, remain largely unquantified. Compounding the significant physical and environmental challenges of reliable aerobiological sampling, collection and analysis of biological samples at altitudes above ~10-20 km has traditionally used ad hoc instrumentation and techniques, yielding primarily qualitative analytical results that lack a common basis for comparison[Bowers et al., 2010]. There is a strong need for broad-basis, repeatable, reliably comparable data about aerobiological basics. We describe here a high-altitude environmental and biological sampling project designed specifically to address these issues. The goal is a robust, reliable, re-usable sampling system, with open reproducibility and adaptability for multiple low-cost flight platforms (including ground-tethered systems, high-altitude balloons, and suborbital sounding rockets); by establishing a common modular payload structure for high-altitude sampling with appeal to a broad user base, we hope to encourage widespread collection of comparable aerobiological data. We are on our third prototype iteration, with demonstrated function of two sample capture modules, a support backbone (tracking, data logging, event response, etc.), a simple ground

  18. Automation and Robotics for space operation and planetary exploration

    Science.gov (United States)

    Montemerlo, Melvin D.

    1990-01-01

    This paper presents a perspective of Automation and Robotics (A&R) research and developments at NASA in terms of its history, its current status, and its future. It covers artificial intelligence, telerobotics and planetary rovers, and it encompasses ground operations, operations in earth orbit, and planetary exploration.

  19. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  20. The NASA Earth Science Program and Small Satellites

    Science.gov (United States)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  1. Theoretical and Computational Studies of Rare Earth Substitutes: A Test-bed for Accelerated Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Lorin X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Hard permanent magnets in wide use typically involve expensive Rare Earth elements. In this effort, we investigated candidate permanent magnet materials which contain no Rare Earths, while simultaneously exploring improvements in theoretical methodology which enable the better prediction of magnetic properties relevant for the future design and optimization of permanent magnets. This included a detailed study of magnetocrystalline anisotropy energies, and the use of advanced simulation tools to better describe magnetic properties at elevated temperatures.

  2. Planetary exploration and science recent results and advances

    CERN Document Server

    Jin, Shuanggen; Ip, Wing-Huen

    2014-01-01

    This contributed monograph is the first work to present the latest results and findings on the new topic and hot field of planetary exploration and sciences, e.g., lunar surface iron content and mare orientale basalts, Earth's gravity field, Martian radar exploration, crater recognition, ionosphere and astrobiology, Comet ionosphere, exoplanetary atmospheres and planet formation in binaries. By providing detailed theory and examples, this book helps readers to quickly familiarize themselves with the field. In addition, it offers a special section on next-generation planetary exploration, which opens a new landscape for future exploration plans and missions. Prof. Shuanggen Jin works at the Shanghai Astronomical Observatory, Chinese Academy of Sciences, China. Dr. Nader Haghighipour works at the University of Hawaii-Manoa, USA. Prof. Wing-Huen Ip works at the National Central University, Taiwan.

  3. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    Science.gov (United States)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    the number of links looking above and below GEO; the detailed design of a GEO SSBS spacecraft bus and its accommodation of the communication payload, and a summary of the trade study that resulted in the selection of the Falcon 9 launch vehicle to deploy the SSBS and its impact on cost reductions per satellite. ======================================================================== Several initiatives have taken place within NASA1 and international space agencies2 to create a human exploration strategy for expanding human presence into the solar system; these initiatives have been driven by multiple factors to benefit Earth. Of the many elements in the strategy one stands out: to send robotic and human missions to destinations beyond Low Earth Orbit (LEO), including cis-lunar space, Near-Earth Asteroids (NEAs), the Moon, and Mars and its moons.3, 4 The time frame for human exploration to various destinations, based on the public information available,1,4 is shown in Figure 1. Advance planning is needed to define how future space communications services will be provided in the new budget environment to meet future space communications needs. The spacecraft for these missions can be dispersed anywhere from below LEO to beyond GEO, and to various destinations within the solar system. NASA's Space Communications and Navigation (SCaN) program office provides communication and tracking services to space missions during launch, in-orbit testing, and operation phases. Currently, SCaN's space networking relay satellites mainly provide services to users below GEO, at Near Earth Orbit (NEO), below LEO, and in deep space. The potential exists for using a space-based relay satellite, located in the vicinity of various solar system destinations, to provide communication space links to missions both below and above its orbit. Such relays can meet the needs of human exploration missions for maximum connectivity to Earth locations and for reduced latency. In the past, several studies

  4. Sensor Webs as Virtual Data Systems for Earth Science

    Science.gov (United States)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing

  5. An Earth-sized planet with an Earth-like density

    DEFF Research Database (Denmark)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W.

    2013-01-01

    significantly larger than the Earth. Recently, the planet Kepler-78b was discovered(8) and found to have a radius of only 1.16R(circle plus). Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth...

  6. Changes in Earth's core-generated magnetic field, as observed by Swarm

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Gillet, Nicolas

    By far the largest part of the Earth's magnetic field is generated by motions taking place within our planet's liquid metal outer core. Variations of this core-generated field thus provide us with a unique means of probing the dynamics taking place in the deepest reaches of the Earth....... In this contribution, we will present the core-generated magnetic field, and its recent time changes, as seen by ESA's Earth explorer mission Swarm. We will present a new time-dependent geomagnetic field model, called CHAOS-6, derived from satellite data collected by the Swarm constellation, as well as data from...... the previous missions CHAMP and Oersted together with ground observatory data. Advantage is taken of the constellation aspect of the Swarm mission by ingesting field differences along track and across track between the lower pair of Swarm satellites. Evaluating the global field model at the outer boundary...

  7. Exploration Architecture with Quantum Inertial Gravimetry and In Situ ChipSat Sensors

    Data.gov (United States)

    National Aeronautics and Space Administration — This will study an exploration architecture combining remote survey with in situ sampling, with example missions to Europa and a Near Earth Object. In particular for...

  8. Effect of crystalline electric fields and long-range magnetic order on superconductivity in rare earth alloys and compounds

    International Nuclear Information System (INIS)

    McCallum, R.W.

    1977-01-01

    The behavior of rare earth ions in a superconducting matrix has been studied in two distinct regimes. First, the effects of crystal field splitting of the 4f levels of a magnetic rare earth ion in the alloy system (LaPr)Sn 3 were investigated in the limit of low Pr 3+ concentration. In this system the rare earth impurity ions occupy random La sites in the crystal lattice. Second, the interaction of long-range magnetic order and superconductivity was explored in the ternary rare earth molybdenum chalcogenide systems. In these compounds the rare earth ions occupy periodic lattice sites in contrast to the random distribution of magnetic ions in dilute impurity alloy systems such as (LaPr)Sn 3

  9. The Tuskegee Experiment: The Tuskegee Airmen Toolbook (Update)

    National Research Council Canada - National Science Library

    Brown, Betty

    1997-01-01

    .... The Tuskegee Experiment is an example of effective leadership in the face of adversity. The experiment is a testimony of moral courage, where young black airmen served their country extremely well despite the "second class" treatment they received...

  10. Exploration Medical System Demonstration

    Science.gov (United States)

    Rubin, D. A.; Watkins, S. D.

    2014-01-01

    BACKGROUND: Exploration class missions will present significant new challenges and hazards to the health of the astronauts. Regardless of the intended destination, beyond low Earth orbit a greater degree of crew autonomy will be required to diagnose medical conditions, develop treatment plans, and implement procedures due to limited communications with ground-based personnel. SCOPE: The Exploration Medical System Demonstration (EMSD) project will act as a test bed on the International Space Station (ISS) to demonstrate to crew and ground personnel that an end-to-end medical system can assist clinician and non-clinician crew members in optimizing medical care delivery and data management during an exploration mission. Challenges facing exploration mission medical care include limited resources, inability to evacuate to Earth during many mission phases, and potential rendering of medical care by non-clinicians. This system demonstrates the integration of medical devices and informatics tools for managing evidence and decision making and can be designed to assist crewmembers in nominal, non-emergent situations and in emergent situations when they may be suffering from performance decrements due to environmental, physiological or other factors. PROJECT OBJECTIVES: The objectives of the EMSD project are to: a. Reduce or eliminate the time required of an on-orbit crew and ground personnel to access, transfer, and manipulate medical data. b. Demonstrate that the on-orbit crew has the ability to access medical data/information via an intuitive and crew-friendly solution to aid in the treatment of a medical condition. c. Develop a common data management framework that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all activities pertaining to crew health and life sciences. d. Ensure crew access to medical data during periods of restricted ground communication. e. Develop a common data management framework that

  11. Future spacecraft propulsion systems. Enabling technologies for space exploration. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Czysz, Paul A. [St. Louis Univ., MO (United States). Oliver L. Parks Endowed Chair in Aerospace Engineering; Bruno, Claudio [Univ. degli Studi di Roma (Italy). Dipt. di Meccanica e Aeronautica

    2009-07-01

    In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent 'presence' in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space. In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems. This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition. (orig.)

  12. Biomedical Aspects of Lunar and Mars Exploration Missions

    Science.gov (United States)

    Charles, John B.

    2006-01-01

    Recent long-range planning for exploration-class missions has emphasized the need for anticipating the medical and human factors aspects of such expeditions. Missions returning Americans to the moon for stays of up to 6 months at a time will provide the opportunity to demonstrate the means to function safely and efficiently on another planet. Details of mission architectures are still under study, but a typical Mars design reference mission comprises a six-month transit from Earth to Mars, eighteen months in residence on Mars, and a six-month transit back to Earth. Physiological stresses will come from environmental factors such as prolonged exposure to radiation, weightlessness en route to Mars and then back to Earth, and low gravity and a toxic atmosphere while on Mars. Psychological stressors will include remoteness from Earth, confinement, and potential interpersonal conflicts, all complicated by circadian alterations. Medical risks including trauma must be considered. The role of such risk-modifying influences as artificial gravity and improved propulsion technologies to shorten round-trip time will also be discussed. Results of planning for assuring human health and performance will be presented.

  13. Red-emitting alkaline-earth rare-earth pentaoxometallates powders ...

    Indian Academy of Sciences (India)

    Moisture-insensitive metal carboxylates that are mostly liquids at room temperature have been first applied to ... alkaline-earth ion, or possibly even a rare-earth ion and alkali metal ... sion spectra of the powders were recorded on a fluorescent.

  14. Earth - South America (first frame of Earth Spin Movie)

    Science.gov (United States)

    1990-01-01

    This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  15. Lunar Polar In Situ Resource Utilization (ISRU) as a Stepping Stone for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2013-01-01

    A major emphasis of NASA is to extend and expand human exploration across the solar system. While specific destinations are still being discussed as to what comes first, it is imperative that NASA create new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable exploration beyond low Earth orbit (LEO) are the development of technologies and approaches for advanced robotics, power, propulsion, habitats, life support, and especially, space resource utilization systems. Space resources and how to use them, often called In-Situ Resource Utilization (ISRU), can have a tremendous beneficial impact on robotic and human exploration of the Moon, Mars, Phobos, and Near Earth Objects (NEOs), while at the same time helping to solve terrestrial challenges and enabling commercial space activities. The search for lunar resources, demonstration of extraterrestrial mining, and the utilization of resource-derived products, especially from polar volatiles, can be a stepping stone for subsequent human exploration missions to other destinations of interest due to the proximity of the Moon, complimentary environments and resources, and the demonstration of critical technologies, processes, and operations. ISRU and the Moon: There are four main areas of development interest with respect to finding, obtaining, extracting, and using space resources: Prospecting for resources, Production of mission critical consumables like propellants and life support gases, Civil engineering and construction, and Energy production, storage, and transfer. The search for potential resources and the production of mission critical consumables are the primary focus of current NASA technology and system development activities since they provide the greatest initial reduction in mission mass, cost, and risk. Because of the proximity of the Moon, understanding lunar resources and developing, demonstrating, and implementing lunar ISRU

  16. Building a Dashboard of the Planet with Google Earth and Earth Engine

    Science.gov (United States)

    Moore, R. T.; Hancher, M.

    2016-12-01

    In 2005 Google Earth, a popular 3-D virtual globe, was first released. Scientists immediately recognized how it could be used to tell stories about the Earth. From 2006 to 2009, the "Virtual Globes" sessions of AGU included innovative examples of scientists and educators using Google Earth, and since that time it has become a commonplace tool for communicating scientific results. In 2009 Google Earth Engine, a cloud-based platform for planetary-scale geospatial analysis, was first announced. Earth Engine was initially used to extract information about the world's forests from raw Landsat data. Since then, the platform has proven highly effective for general analysis of georeferenced data, and users have expanded the list of use cases to include high-impact societal issues such as conservation, drought, disease, food security, water management, climate change and environmental monitoring. To support these use cases, the platform has continuously evolved with new datasets, analysis functions, and user interface tools. This talk will give an overview of the latest Google Earth and Earth Engine functionality that allow partners to understand, monitor and tell stories about of our living, breathing Earth. https://earth.google.com https://earthengine.google.com

  17. Inaugeral lecture - Meteorite impacts on Earth and on the Earth ...

    African Journals Online (AJOL)

    There is some controversial evidence for the theory that the first life on Earth itself may have been transported here on meteorites from Mars. The possibility of a major meteorite impact on Earth in the near future emphasizes the dramatic nature of these recent discoveries, which are having deep impacts in the Earth sciences ...

  18. Provenance Challenges for Earth Science Dataset Publication

    Science.gov (United States)

    Tilmes, Curt

    2011-01-01

    Modern science is increasingly dependent on computational analysis of very large data sets. Organizing, referencing, publishing those data has become a complex problem. Published research that depends on such data often fails to cite the data in sufficient detail to allow an independent scientist to reproduce the original experiments and analyses. This paper explores some of the challenges related to data identification, equivalence and reproducibility in the domain of data intensive scientific processing. It will use the example of Earth Science satellite data, but the challenges also apply to other domains.

  19. MOM-E: Moon-Orbiting Mothership Explorer

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    The National Aeronautics and Space Administration proposed that a new class of robotic space missions and spacecrafts be introduced to "ensure that future missions are safe, sustainable and affordable". Indeed, the United States space program aims for a return to manned space missions beyond Earth orbit, and robotic explorers are intended to pave the way. This vision requires that all future missions become less costly, provide a sustainable business plan, and increase in safety. Over the course of several fast feasibility studies that considered the 3 drivers above, the small-scale, consumer-driven Moon-Orbiting Mothership Explorer (MOM-E) mission was born. MOM-E's goals are to enable space exploration by offering a scaled down platform which carries multiple small space explorers to the Moon. Each payload will be dropped at their desired destination, offering a competitive price to customers. MOM-E's current scope of operations is limited to the Moon and will be used as a proof of concept mission. However, MOM-E is specifically designed with the idea that the platform is scalable.

  20. Revolutionizing Remote Exploration with ANTS

    Science.gov (United States)

    Clark, P. E.; Rilee, M. L.; Curtis, S.; Truszkowski, W.

    2002-05-01

    We are developing the Autonomous Nano-Technology Swarm (ANTS) architecture based on an insect colony analogue for the cost-effective, efficient, systematic survey of remote or inaccessible areas with multiple object targets, including planetary surface, marine, airborne, and space environments. The mission context is the exploration in the 2020s of the most compelling remaining targets in the solar system: main belt asteroids. Main belt asteroids harbor important clues to Solar System origins and evolution which are central to NASA's goals in Space Science. Asteroids are smaller than planets, but their number is far greater, and their combined surface area likely dwarfs the Earth's. An asteroid survey will dramatically increase our understanding of the local resources available for the Human Exploration and Development of Space. During the mission composition, shape, gravity, and orbit parameters could be returned to Earth for perhaps several thousand asteroids. A survey of this area will rival the great explorations that encircled this globe, opened up the New World, and laid the groundwork for the progress and challenges of the last centuries. The ANTS architecture for a main belt survey consists of a swarm of as many as a thousand or more highly specialized pico-spacecraft that form teams to survey as many as one hundred asteroids a month. Multi-level autonomy is critical for ANTS and the objective of the proposed study is to work through the implications and constraints this entails. ANTS couples biologically inspired autonomic control for basic functions to higher level artificial intelligence that together enable individual spacecraft to operate as specialized, cooperative, social agents. This revolutionary approach postulates highly advanced, but familiar, components integrated and operated in a way that uniquely transcends any evolutionary extrapolation of existing trends and enables thousand-spacecraft missions.

  1. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    OpenAIRE

    Quanyin Tan; Chao Deng; Jinhui Li

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation a...

  2. Mission to the Solar System: Exploration and Discovery. A Mission and Technology Roadmap

    Science.gov (United States)

    Gulkis, S. (Editor); Stetson, D. S. (Editor); Stofan, E. R. (Editor)

    1998-01-01

    Solar System exploration addresses some of humanity's most fundamental questions: How and when did life form on Earth? Does life exist elsewhere in the Solar System or in the Universe? - How did the Solar System form and evolve in time? - What can the other planets teach us about the Earth? This document describes a Mission and Technology Roadmap for addressing these and other fundamental Solar System Questions. A Roadmap Development Team of scientists, engineers, educators, and technologists worked to define the next evolutionary steps in in situ exploration, sample return, and completion of the overall Solar System survey. Guidelines were to "develop aa visionary, but affordable, mission and technology development Roadmap for the exploration of the Solar System in the 2000 to 2012 timeframe." The Roadmap provides a catalog of potential flight missions. (Supporting research and technology, ground-based observations, and laboratory research, which are no less important than flight missions, are not included in this Roadmap.)

  3. C3: A Collaborative Web Framework for NASA Earth Exchange

    Science.gov (United States)

    Foughty, E.; Fattarsi, C.; Hardoyo, C.; Kluck, D.; Wang, L.; Matthews, B.; Das, K.; Srivastava, A.; Votava, P.; Nemani, R. R.

    2010-12-01

    The NASA Earth Exchange (NEX) is a new collaboration platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing. NEX combines NASA advanced supercomputing resources, Earth system modeling, workflow management, NASA remote sensing data archives, and a collaborative communication platform to deliver a complete work environment in which users can explore and analyze large datasets, run modeling codes, collaborate on new or existing projects, and quickly share results among the Earth science communities. NEX is designed primarily for use by the NASA Earth science community to address scientific grand challenges. The NEX web portal component provides an on-line collaborative environment for sharing of Eearth science models, data, analysis tools and scientific results by researchers. In addition, the NEX portal also serves as a knowledge network that allows researchers to connect and collaborate based on the research they are involved in, specific geographic area of interest, field of study, etc. Features of the NEX web portal include: Member profiles, resource sharing (data sets, algorithms, models, publications), communication tools (commenting, messaging, social tagging), project tools (wikis, blogs) and more. The NEX web portal is built on the proven technologies and policies of DASHlink.arc.nasa.gov, (one of NASA's first science social media websites). The core component of the web portal is a C3 framework, which was built using Django and which is being deployed as a common framework for a number of collaborative sites throughout NASA.

  4. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  5. Space Exploration

    Science.gov (United States)

    Gallagher, Dennis

    2017-01-01

    New range Passage Tomb may be the first structure with known astronomical significance. It was built around 3,200 B.C. in Ireland. It's central passage allows light end-to-end for about 2 weeks around winter solstice. The Sun, Moon, Planets, and Stars held significance in early times due to the seasons, significance for food crops, and mythology. Citation: Corel Photography and Windows to the Universe The Greek may be among the first to pursue analytical interpretations of what they saw in the sky. In about 280 B.C. Aristarchus suggested Earth revolves around the Sun and estimated the distance between. Around 130 B.C. Hipparchus developed the first accurate star map. Today still seek to understand how the universe formed and how we came to be and are we alone. Understanding the causes and consequences of climate change using advanced space missions with major Earth science and applications research. center dotFire the public imagination and inspire students to pursue STEM fields. Train college and graduate students to create a U.S. technical workforce with employees that embody the values of competence, innovation, and service. center dotDrive the technical innovations that enable exploration and become the engine of National economic growth. center dotPartner domestically and internationally to leverage resources to extend the reach of research.

  6. Challenges in Modeling the Sun-Earth System

    Science.gov (United States)

    Spann, James

    2004-01-01

    The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales in time and space. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA Living With a Star (LWS) programs. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress. Our limited understanding of the underlying coupling physics is illustrated by the following example questions: how does the propagation of a typical CME/solar flare influence the measured properties of the solar wind at 1 AU? How does the solar wind compel the dynamic response of the Earth's magnetosphere? How is variability in the ionosphere-thermosphere system coupled to magnetospheric variations? Why do these and related important questions remain unanswered? What are the primary problems that need to be resolved to enable significant progress in comprehensive modeling of the Sun-Earth system? Which model/technique improvements are required and what new data coverage is required to enable full model advances? This poster opens the discussion for how these and other important questions can be addressed. A workshop scheduled for October 8-22, 2004 in Huntsville, Alabama, will be a forum for identifying ana exploring promising new directions and approaches for characterizing and understanding the system. To focus the discussion, the workshop will emphasize the genesis, evolution, propagation and interaction of high-speed solar wind streamers or CME/flares with geospace and the subsequent response of geospace from its outer reaches in the magnetosphere to the lower edge of the ionosphere-mesosphere-thermosphere. Particular emphasis will be placed on modeling the coupling aspects

  7. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  8. The origin of oil and gas in light of the latest achievements in earth sciences

    Energy Technology Data Exchange (ETDEWEB)

    Dolenko, G.N.

    1984-01-01

    A theory of mineralogical asthenospheric origin of oil and gas is justified from geological, geophysical and geochemical standpoints in light of the contemporary achievements of earth sciences. The conditions of formation of oil and gas bearing provinces and the formation of oil and gas deposits are characterized. Three eras of oil and gas formation and oil and gas accumulation in the earth's crust, which are associated with the Hercynian, Cimmerian and Alpine geotectonic cycles of development of geosynclinal regions, are identified in the evolutionary development of the earth. The presented opinions are supported by data from geological exploration practice and by current materials from hydrogeochemistry, thermobarogeologeochemistry, space geochemistry and from the study of volcanos.

  9. Developing an Earth system Inverse model for the Earth's energy and water budgets.

    Science.gov (United States)

    Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.

    2017-12-01

    The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing

  10. Near Earth Asteroid redirect missions based on gravity assist maneuver

    Science.gov (United States)

    Ledkov, Anton; Shustov, Boris M.; Eismont, Natan; Boyarsky, Michael; Nazirov, Ravil; Fedyaev, Konstantin

    gravity assist maneuver near Earth resulted by following impact with dangerous asteroid. As example of the last one the Apophis was chosen. The required delta-V pulse to be applied to the candidate projectile asteroid to fulfill mentioned change of initial trajectory was confirmed to be comparatively small: not exceeding 10 m/s, and the smallest is about 2 m/s. To fulfilled this maneuver it is necessary to land and to mount on the surface of the asteroid projectile the spacecraft with sufficient amount of propellant onboard. The possible trajectories and demanded maneuvers were explored and it was confirmed that for contemporary space technology it is doable for the small asteroids belonging to the determined by our studies list of candidates supposing some reservations, namely the mass of the found asteroids. This was not considered as decisive obstacle because up to now only about 1% of small enough asteroids are included in catalogue so the list of the appropriate ones is far from to be closed. The studies have been fulfilled aimed to develop the methods to reached required accuracies of asteroid projectile trajectory parameters determination. With existing methods used for the usual spacecraft the limits of achievable accuracies demand the corrections delta-V maneuvers which may exceed the nominal ones. As a result the proposed conception of hazardous asteroids deflection becomes problematic. To overcome this obstacle in the paper new method of trajectory parameters determination is proposed and explored. Practically it is radio interferometer method when one transponder is placed on the asteroid target and two others together with the asteroid projectile form tetrahedron. This system begins to operate in vicinity of target asteroid in autonomous regime and expected to allow reaching the demanded low enough correction maneuver values. Paper gives the estimations of the accuracy of these three bodies relative motion parameters and expected limit values of correction

  11. Separation of Rare Earths from Uranium and Thorium

    International Nuclear Information System (INIS)

    Krebs, Damien

    2014-01-01

    Greenland Minerals and Energy - Key Highlights – A unique world class mining project: 1. World-class, large scale development project: • Economically robust, proven technology, large-scale, long life production of rare earths concentrate and uranium; • Large JORC resource base to produce ~7kt HREO, 37kt LREO & 3Mlbs U_3O_8 per annum over 30 year mine life; • Ideally located near international airport, existing towns and potential hydro-electric power source. 2. Very attractive commodity portfolio: • Heavy rare earths and uranium are both recognised as strategically important commodities for the future; • Rare earths market characterised by limited capacity and increasing demand (particularly Dy, Nd, Tb, Eu and Y). 3. Strong management and technical team: • Experienced management team with proven track record; • Well-respected and knowledgeable technical/project team in place with exceptional local expertise. 4. Highly advantageous ore-type, makes for simple cost-effective processing, highly scalable production: • High upgrade through beneficiation brings optionality to Kvanefjeld project; • Leaching can be done in Greenland, or owing to the high-grade concentrate, can be shipped to other locations; • Allows to single concentrator in Greenland, multiple refineries/partners globally. 5. Globally significant, long life, low cost, multi-commodity asset: • Company to become one of the largest producers of rare earths globally and a significant U_3O_8 mine; • Potential to supply >20% of global critical (including heavy) rare earth element demand; • Company has low cost of production due to multiple by-product opportunities. 6. Low political risk: • Stable, low-risk operating environment with government looking to develop new industries and employment; • GME fully permitted to evaluate the project, exploration licence now includes radioactive elements; • Management and board have a solid working relationship with the government and are

  12. A preliminary research on characteristics of rare-earth elements in ancient pottery of neolithic age in Su Wan area

    International Nuclear Information System (INIS)

    Chen Shuyu; Lin Shuqin; Peng Zicheng; Liu Fangxin; Zhang Jingguo

    1995-01-01

    The content of rare-earth elements in the three ancient ruins of pottery of the Neolithic age along Yangtze River is analyzed by means of Inductively Coupled Plasma Atomic Emission Spectrometry and X-ray fluorescence Spectrometry. It is shown that the distribution of rare-earth elements varies with the sites where the ancient pottery samples were unearthed. Therefore the analysis of the content of the rate-earth elements may help explore the ancient pottery production sites and the route of the ancient culture exchange

  13. Fuel optimization for low-thrust Earth-Moon transfer via indirect optimal control

    Science.gov (United States)

    Pérez-Palau, Daniel; Epenoy, Richard

    2018-02-01

    The problem of designing low-energy transfers between the Earth and the Moon has attracted recently a major interest from the scientific community. In this paper, an indirect optimal control approach is used to determine minimum-fuel low-thrust transfers between a low Earth orbit and a Lunar orbit in the Sun-Earth-Moon Bicircular Restricted Four-Body Problem. First, the optimal control problem is formulated and its necessary optimality conditions are derived from Pontryagin's Maximum Principle. Then, two different solution methods are proposed to overcome the numerical difficulties arising from the huge sensitivity of the problem's state and costate equations. The first one consists in the use of continuation techniques. The second one is based on a massive exploration of the set of unknown variables appearing in the optimality conditions. The dimension of the search space is reduced by considering adapted variables leading to a reduction of the computational time. The trajectories found are classified in several families according to their shape, transfer duration and fuel expenditure. Finally, an analysis based on the dynamical structure provided by the invariant manifolds of the two underlying Circular Restricted Three-Body Problems, Earth-Moon and Sun-Earth is presented leading to a physical interpretation of the different families of trajectories.

  14. Average configuration of the distant (less than 220-earth-radii) magnetotail - Initial ISEE-3 magnetic field results

    Science.gov (United States)

    Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.

    1983-01-01

    Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.

  15. Deep Interior Mission: Imaging the Interior of Near-Earth Asteroids Using Radio Reflection Tomography

    Science.gov (United States)

    Safaeinili, A.; Asphaug, E.; Belton, M.; Klaasen, K.; Ostro, S.; Plaut, J.; Yeomans, D.

    2004-12-01

    Near-Earth asteroids are important exploration targets since they provide clues to the evolution of the solar system. They are also of interest since they present a clear danger to Earth in the future. Our mission objective is to image the internal structure of two NEOs using radio reflection tomography (RRT), in order to explore the record of asteroid origin and impact evolution, and to test the fundamental hypothesis that these important members of the solar system are rubble piles rather than consolidated bodies. Our mission's RRT technique is analogous to doing a ``CAT scan" of the asteroid from orbit. Closely sampled radar echoes are processed to yield volumetric maps of mechanical and compositional boundaries, and measure interior material dielectric properties. The RRT instrument is a radar that operates at 5 and 15 MHz with two 30-m (tip-to-tip) dipole antennas that are used in a cross-dipole configuration. The radar transmitter and receiver electronics have heritage from JPL's MARSIS contribution to Mars Express, and the antenna is similar to systems used in IMAGE and LACE missions. The 5-MHz channel is designed to penetrate >1 km of basaltic rock, and 15-MHz penetrates a few hundred meters or more. In addition to RRT volumetric imaging, we use a redundant color cameras to explore the surface expressions of unit boundaries, in order to relate interior radar imaging to what is observable from spacecraft imaging and from Earth. The camera also yields stereo color imaging for geology and RRT-related compositional analysis. Gravity and high fidelity geodesy are used to explore how interior structure is expressed in shape, density, mass distribution and spin. Deep interior has two targets (S-type 1999 ND43 and V-type Nyx ) whose composition bracket the diversity of solar system materials that we are likely to encounter, and are richly complementary.

  16. Transforming Water Management: an Emerging Promise of Integrated Earth Observations

    Science.gov (United States)

    Lawford, R. G.

    2011-12-01

    Throughout its history, civilization has relied on technology to facilitate many of its advances. New innovations and technologies have often provided strategic advantages that have led to transformations in institutions, economies and ultimately societies. Observational and information technologies are leading to significant developments in the water sector. After a brief introduction tracing the role of observational technologies in the areas of hydrology and water cycle science, this talk explores the existing and potential contributions of remote sensing data in water resource management around the world. In particular, it outlines the steps being undertaken by the Group on Earth Observations (GEO) and its Water Task to facilitate capacity building efforts in water management using Earth Observations in Asia, Africa and Latin and Caribbean America. Success stories on the benefits of using Earth Observations and applying GEO principles are provided. While GEO and its capacity building efforts are contributing to the transformation of water management through interoperability, data sharing, and capacity building, the full potential of these contributions has not been fully realized because impediments and challenges still remain.

  17. Exploring the isopycnal mixing and helium-heat paradoxes in a suite of Earth system models

    Science.gov (United States)

    Gnanadesikan, A.; Pradal, M.-A.; Abernathey, R.

    2015-07-01

    This paper uses a suite of Earth system models which simulate the distribution of He isotopes and radiocarbon to examine two paradoxes in Earth science, each of which results from an inconsistency between theoretically motivated global energy balances and direct observations. The helium-heat paradox refers to the fact that helium emissions to the deep ocean are far lower than would be expected given the rate of geothermal heating, since both are thought to be the result of radioactive decay in Earth's interior. The isopycnal mixing paradox comes from the fact that many theoretical parameterizations of the isopycnal mixing coefficient ARedi that link it to baroclinic instability project it to be small (of order a few hundred m2 s-1) in the ocean interior away from boundary currents. However, direct observations using tracers and floats (largely in the upper ocean) suggest that values of this coefficient are an order of magnitude higher. Helium isotopes equilibrate rapidly with the atmosphere and thus exhibit large gradients along isopycnals while radiocarbon equilibrates slowly and thus exhibits smaller gradients along isopycnals. Thus it might be thought that resolving the isopycnal mixing paradox in favor of the higher observational estimates of ARedi might also solve the helium paradox, by increasing the transport of mantle helium to the surface more than it would radiocarbon. In this paper we show that this is not the case. In a suite of models with different spatially constant and spatially varying values of ARedi the distribution of radiocarbon and helium isotopes is sensitive to the value of ARedi. However, away from strong helium sources in the southeastern Pacific, the relationship between the two is not sensitive, indicating that large-scale advection is the limiting process for removing helium and radiocarbon from the deep ocean. The helium isotopes, in turn, suggest a higher value of ARedi below the thermocline than is seen in theoretical

  18. A Small Spacecraft Swarm Deployment and Stationkeeping Strategy for Sun-Earth L1 Halo Orbits

    Science.gov (United States)

    Renea Conn, Tracie; Bookbinder, Jay

    2018-01-01

    Spacecraft orbits about the Sun-Earth librarian point L1 have been of interest since the 1950s. An L1 halo orbit was first achieved with the International Sun-Earth Explorer-3 (ISEE-3) mission, and similar orbits around Sun-Earth L1 were achieved in the Solar and Heliospheric Observatory (SOHO), Advanced Composition Explorer (ACE), Genesis, and Deep Space Climate Observatory (DSCOVR) missions. With recent advancements in CubeSat technology, we envision that it will soon be feasible to deploy CubeSats at L1. As opposed to these prior missions where one large satellite orbited alone, a swarm of CubeSats at L1 would enable novel science data return, providing a topology for intersatellite measurements of heliophysics phenomena both spatially and temporally, at varying spatial scales.The purpose of this iPoster is to present a flight dynamics strategy for a swarm of numerous CubeSats orbiting Sun-Earth L1. The presented method is a coupled, two-part solution. First, we present a deployment strategy for the CubeSats that is optimized to produce prescribed, time-varying intersatellite baselines for the purposes of collecting magnetometer data as well as radiometric measurements from cross-links. Second, we employ a loose control strategy that was successfully applied to SOHO and ACE for minimized stationkeeping propellant expenditure. We emphasize that the presented solution is practical within the current state-of-the-art and heritage CubeSat technology, citing capabilities of CubeSat designs that will launch on the upcoming Exploration Mission 1 (EM-1) to lunar orbits and beyond. Within this iPoster, we present animations of the simulated deployment strategy and resulting spacecraft trajectories. Mission design parameters such as total Δv required for long-term station keeping and minimum/maximum/mean spacecraft separation distances are also presented.

  19. The Path from Large Earth Science Datasets to Information

    Science.gov (United States)

    Vicente, G. A.

    2013-12-01

    The NASA Goddard Earth Sciences Data (GES) and Information Services Center (DISC) is one of the major Science Mission Directorate (SMD) for archiving and distribution of Earth Science remote sensing data, products and services. This virtual portal provides convenient access to Atmospheric Composition and Dynamics, Hydrology, Precipitation, Ozone, and model derived datasets (generated by GSFC's Global Modeling and Assimilation Office), the North American Land Data Assimilation System (NLDAS) and the Global Land Data Assimilation System (GLDAS) data products (both generated by GSFC's Hydrological Sciences Branch). This presentation demonstrates various tools and computational technologies developed in the GES DISC to manage the huge volume of data and products acquired from various missions and programs over the years. It explores approaches to archive, document, distribute, access and analyze Earth Science data and information as well as addresses the technical and scientific issues, governance and user support problem faced by scientists in need of multi-disciplinary datasets. It also discusses data and product metrics, user distribution profiles and lessons learned through interactions with the science communities around the world. Finally it demonstrates some of the most used data and product visualization and analyses tools developed and maintained by the GES DISC.

  20. The Astrobiology of the Subsurface: Caves and Rock Fracture Habitats on Earth, Mars and Beyond

    Science.gov (United States)

    Boston, Penelope J.

    2017-01-01

    The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond. We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can fluorish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a Field Guide to Unknown Organisms for developing life detection space missions.

  1. Atmospheric acceleration and Earth-expansion deceleration of the Earth rotation

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2017-11-01

    Full Text Available Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation deceleration. Atmospheric solar semi-diurnal tide has a small amplitude and certain amount of phase lead. This periodic global air-mass excess distribution exerts a quasi-constant torque to accelerate the Earth's spin rotation. Using an updated atmospheric tide model, we re-estimate the amounts of this atmospheric acceleration torque and corresponding energy input, of which the associated change rate in LOD (length of day is −0.1 ms/cy. In another aspect, evidences from space-geodesy and sea level rise observations suggest that Earth expands at a rate of 0.35 mm/yr in recent decades, which gives rise to the increase of LOD at rate of 1.0 ms/cy. Hence, if the previous estimate due to the tidal friction is correct, the secular Earth rotation deceleration due to tidal friction and Earth expansion should be 3.15 ms/cy.

  2. Discrete event simulation of NASA's Remote Exploration and Experimentation Project (REE)

    Science.gov (United States)

    Dunphy, J.; Rogstad, S.

    2001-01-01

    The Remote Exploration and Experimentation Project (REE) is a new initiative at JPL to be able to place a supercomputer on board a spacecraft and allow large amounts of data reduction and compression to be done before science results are returned to Earth.

  3. Near Earth Asteroid Scout: NASA's Solar Sail Mission to a NEA

    Science.gov (United States)

    Johnson, Les; Lockett, Tiffany

    2017-01-01

    NASA is developing a solar sail propulsion system for use on the Near Earth Asteroid (NEA) Scout reconnaissance mission and laying the groundwork for their use in future deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high Delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Near Earth Asteroid (NEA) Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the sail as primary propulsion allowing it to survey and image Asteroid 1991VG and, potentially, other NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 m(exp. 2) solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. The solar sail for NEA Scout will be based on the technology developed and flown by the NASA NanoSail-D and The Planetary Society's Lightsail-A. Four approximately 7 m stainless steel booms wrapped on two spools (two overlapping booms per spool) will be motor deployed and pull the sail from its stowed volume. The sail material is an aluminized polyimide approximately 2.5 microns thick. As the technology matures, solar sails will increasingly be used to enable science and exploration missions that are currently impossible or prohibitively expensive using traditional chemical and electric propulsion systems. This paper will summarize the status of the NEA Scout mission and solar sail technology in general.

  4. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  5. Modern Exploration of Galileo's New Worlds

    Science.gov (United States)

    Johnson, Torrence V.

    2010-01-01

    Four hundred years ago Galileo turned his telescope to the heavens and changed the way we view the cosmos forever. Among his discoveries in January of 1610 were four new 'stars', following Jupiter in the sky but changing their positions with respect to the giant planet every night. Galileo showed that these 'Medicean stars', as he named them, were moons orbiting Jupiter in the same manner that the Earth and planets revolve about the Sun in the Copernican theory of the solar system. Over the next three centuries these moons, now collectively named the Galilean satellites after their discoverer, remained tiny dots of light in astronomers' telescopes. In the latter portion of the twentieth century Galileo's new worlds became important targets of exploration by robotic spacecraft. This paper reviews the history of this exploration through the discoveries made by the Galileo mission from 1995 to 2003, setting the stage for on-going exploration in the new century.

  6. Synthetic Biology as an Enabling Technology for Space Exploration

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth.

  7. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Rugheimer, S.; Sasselov, D. [Harvard Smithsonian Center for Astrophysics, 60 Garden st., 02138 MA Cambridge (United States); Segura, A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, México (Mexico); Kaltenegger, L., E-mail: srugheimer@cfa.harvard.edu [Carl Sagan Institute, Cornell University, Ithaca, NY 14853 (United States)

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.

  8. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    International Nuclear Information System (INIS)

    Rugheimer, S.; Sasselov, D.; Segura, A.; Kaltenegger, L.

    2015-01-01

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UV flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments

  9. The Natural Charge On The Surface Of The Earth | Mamah | Global ...

    African Journals Online (AJOL)

    The natural electric charge or its artificial analogue as the fundamental unit of exploration has been fundamentally derived and compared for both the equatorial region and the polar region. The ratio of the unit charge on the surface of the earth at the equatorial region (ω ± ω0) = 0.59 rad where ω0 = 1.65; to that at the polar ...

  10. Electromagnetic forward modelling for realistic Earth models using unstructured tetrahedral meshes and a meshfree approach

    Science.gov (United States)

    Farquharson, C.; Long, J.; Lu, X.; Lelievre, P. G.

    2017-12-01

    Real-life geology is complex, and so, even when allowing for the diffusive, low resolution nature of geophysical electromagnetic methods, we need Earth models that can accurately represent this complexity when modelling and inverting electromagnetic data. This is particularly the case for the scales, detail and conductivity contrasts involved in mineral and hydrocarbon exploration and development, but also for the larger scale of lithospheric studies. Unstructured tetrahedral meshes provide a flexible means of discretizing a general, arbitrary Earth model. This is important when wanting to integrate a geophysical Earth model with a geological Earth model parameterized in terms of surfaces. Finite-element and finite-volume methods can be derived for computing the electric and magnetic fields in a model parameterized using an unstructured tetrahedral mesh. A number of such variants have been proposed and have proven successful. However, the efficiency and accuracy of these methods can be affected by the "quality" of the tetrahedral discretization, that is, how many of the tetrahedral cells in the mesh are long, narrow and pointy. This is particularly the case if one wants to use an iterative technique to solve the resulting linear system of equations. One approach to deal with this issue is to develop sophisticated model and mesh building and manipulation capabilities in order to ensure that any mesh built from geological information is of sufficient quality for the electromagnetic modelling. Another approach is to investigate other methods of synthesizing the electromagnetic fields. One such example is a "meshfree" approach in which the electromagnetic fields are synthesized using a mesh that is distinct from the mesh used to parameterized the Earth model. There are then two meshes, one describing the Earth model and one used for the numerical mathematics of computing the fields. This means that there are no longer any quality requirements on the model mesh, which

  11. Rare earths and rare earth alloys electrolytic preparation process and device for this process

    International Nuclear Information System (INIS)

    Seon, F.; Barthole, G.

    1986-01-01

    Electrolysis of a molten salt of rare earth or rare earth alloy for preparation of the metal or alloy is described. The molten salt bath comprises at least a rare earth chloride, at least an alkaline or alkaline earth chloride and at least an alkaline or alkaline earth fluoride [fr

  12. Emigrating Beyond Earth Human Adaptation and Space Colonization

    CERN Document Server

    Smith, Cameron M

    2012-01-01

    For four million years humankind has been actively expanding geographically and in doing so has adapted to a wide variety of hostile environments. Now we are looking towards the ultimate adaptation - the colonization of space. Emigrating Beyond Earth illustrates that this is not a technocratic endeavor, but a natural continuation of human evolution; a journey not just for the engineer and rocket scientist, but for everyman. Based on the most current understanding of our universe, human adaptation and evolution, the authors explain why space colonization must be planned as an adaptation to, rather than the conquest of, space. Emigrating Beyond Earth argues that space colonization is an insurance policy for our species, and that it isn't about rockets and robots, it's about humans doing what we've been doing for four million years: finding new places and new ways to live. Applying a unique anthropological approach, the authors outline a framework for continued human space exploration and offer a glimpse of a po...

  13. Rare-earth-metal nitridophosphates through high-pressure metathesis

    International Nuclear Information System (INIS)

    Kloss, Simon David; Schnick, Wolfgang

    2015-01-01

    Developing a synthetic method to target an broad spectrum of unknown phases can lead to fascinating discoveries. The preparation of the first rare-earth-metal nitridophosphate LiNdP_4N_8 is reported. High-pressure solid-state metathesis between LiPN_2 and NdF_3 was employed to yield a highly crystalline product. The in situ formed LiF is believed to act both as the thermodynamic driving force and as a flux to aiding single-crystal formation in dimensions suitable for crystal structure analysis. Magnetic properties stemming from Nd"3"+ ions were measured by SQUID magnetometry. LiNdP_4N_8 serves as a model system for the exploration of rare-earth-metal nitridophosphates that may even be expanded to transition metals. High-pressure metathesis enables the systematic study of these uncharted regions of nitride-based materials with unprecedented properties. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Strategies for the sustained human exploration of Mars

    Science.gov (United States)

    Landau, Damon Frederick

    A variety of mission scenarios are compared in this thesis to assess the strengths and weaknesses of options for Mars exploration. The mission design space is modeled along two dimensions: trajectory architectures and propulsion system technologies. Direct, semi-direct, stop-over, semi-cycler, and cycler architectures are examined, and electric propulsion, nuclear thermal rockets, methane and oxygen production on Mars, Mars water excavation, aerocapture, and reusable propulsion systems are included in the technology assessment. The mission sensitivity to crew size, vehicle masses, and crew travel time is also examined. The primary figure of merit for a mission scenario is the injected mass to low-Earth orbit (IMLEO), though technology readiness levels (TRL) are also included. Several elements in the architecture dimension are explored in more detail. The Earth-Mars semi-cycler architecture is introduced and five families of Earth-Mars semi-cycler trajectories are presented along with optimized itineraries. Optimized cycler trajectories are also presented. In addition to Earth-Mars semi-cycler and cycler trajectories, conjunction-class, free-return, Mars-Earth semi-cycler, and low-thrust trajectories are calculated. Design parameters for optimal DeltaV trajectories are provided over a range of flight times (from 120 to 270 days) and launch years (between 2009 and 2022). Unlike impulsive transfers, the mass-optimal low-thrust trajectory depends strongly on the thrust and specific impulse of the propulsion system. A low-thrust version of the rocket equation is provided where the initial mass or thrust may be minimized by varying the initial acceleration and specific impulse. Planet-centered operations are also examined. A method to rotate a parking orbit about the line of apsides to achieve the proper orientation at departure is discussed, thus coupling the effects of parking-orbit orientation with the interplanetary trajectories. Also, a guidance algorithm for

  15. Analysis of Advanced Modular Power Systems (AMPS) for Deep Space Exploration

    Science.gov (United States)

    Oeftering, Richard; Soeder, James F.; Beach, Ray

    2014-01-01

    The Advanced Modular Power Systems (AMPS) project is developing a modular approach to spacecraft power systems for exploration beyond Earth orbit. AMPS is intended to meet the need of reducing the cost of design development, test and integration and also reducing the operational logistics cost of supporting exploration missions. AMPS seeks to establish modular power building blocks with standardized electrical, mechanical, thermal and data interfaces that can be applied across multiple exploration vehicles. The presentation discusses the results of a cost analysis that compares the cost of the modular approach against a traditional non-modular approach.

  16. Interactive Exploration Robots: Human-Robotic Collaboration and Interactions

    Science.gov (United States)

    Fong, Terry

    2017-01-01

    For decades, NASA has employed different operational approaches for human and robotic missions. Human spaceflight missions to the Moon and in low Earth orbit have relied upon near-continuous communication with minimal time delays. During these missions, astronauts and mission control communicate interactively to perform tasks and resolve problems in real-time. In contrast, deep-space robotic missions are designed for operations in the presence of significant communication delay - from tens of minutes to hours. Consequently, robotic missions typically employ meticulously scripted and validated command sequences that are intermittently uplinked to the robot for independent execution over long periods. Over the next few years, however, we will see increasing use of robots that blend these two operational approaches. These interactive exploration robots will be remotely operated by humans on Earth or from a spacecraft. These robots will be used to support astronauts on the International Space Station (ISS), to conduct new missions to the Moon, and potentially to enable remote exploration of planetary surfaces in real-time. In this talk, I will discuss the technical challenges associated with building and operating robots in this manner, along with lessons learned from research conducted with the ISS and in the field.

  17. Understanding Global Change: Tools for exploring Earth processes and biotic change through time

    Science.gov (United States)

    Bean, J. R.; White, L. D.; Berbeco, M.

    2014-12-01

    Teaching global change is one of the great pedagogical challenges of our day because real understanding entails integrating a variety of concepts from different scientific subject areas, including chemistry, physics, and biology, with a variety of causes and impacts in the past, present, and future. With the adoption of the Next Generation Science Standards, which emphasize climate change and other human impacts on natural systems, there has never been a better time to provide instructional support to educators on these topics. In response to this clear need, the University of California Museum of Paleontology, in collaboration with the National Center for Science Education, developed a new web resource for teachers and students titled "Understanding Global Change" (UGC) that introduces the drivers and impacts of global change. This website clarifies the connections among deep time, modern Earth system processes, and anthropogenic influences, and provides K-16 instructors with a wide range of easy-to-use tools, strategies, and lesson plans for communicating these important concepts regarding global change and the basic Earth systems processes. In summer 2014, the UGC website was field-tested during a workshop with 25 K-12 teachers and science educators. Feedback from participants helped the UGC team develop and identify pedagogically sound lesson plans and instructional tools on global change. These resources are accessible through UGC's searchable database, are aligned with NGSS and Common Core, and are categorized by grade level, subject, and level of inquiry-based instruction (confirmation, structured, guided, open). Providing a range of content and tools at levels appropriate for teachers is essential because our initial needs assessment found that educators often feel that they lack the content knowledge and expertise to address complex, but relevant global change issues, such as ocean acidification and deforestation. Ongoing needs assessments and surveys of

  18. Exploration for uranium and other nuclear materials

    International Nuclear Information System (INIS)

    Hernandez, E.C.

    1975-05-01

    Prospecting and exploration for uranium and other nuclear minerals have one advantage over prospecting for other metals because of their inherent radioactivity. Radioactivity in the earth is not confined solely to these elements but also to radiations coming from cosmic rays and from fallouts from large-scale atomic and nuclear explosions. The primary uranium mineral is uranimite, however, concentrations of other uranium minerals may also lead to an economic deposit. Thorium is about three times more abundant than uranium in the earth's crust. Uranium is practically found in many types of geologic environment it being ubiquitous and very mobile. Uranium deposits are classified in a descriptive manner, owing to lack of basic information as to its origin. These classifications are peneconcordant, for deposits as conglomerates and sandstones, discordant for vein pegmatite and contact metamorphic deposits, concordant for deposits in shales and phosphate rocks, and miscellaneous for deposits in beach and placer sands containing mostly thorium minerals. The different exploration techniques and their associated instrumentations are discussed from a regional scale survey to a detailed survey. To date, only the Larap copper-molybdenum-magnetite deposit at the Paracale district, Camarines Norte in the Philippines, has been found to contain uranium as discrete uraninite grains in the ore mineral assemblage of the deposit

  19. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures

    Science.gov (United States)

    2018-01-01

    Abstract Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology—Biosignatures—Coevolution of Earth and life—Mars. Astrobiology 18, 1–27. PMID:29252008

  20. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures.

    Science.gov (United States)

    Cabrol, Nathalie A

    2018-01-01

    Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology-Biosignatures-Coevolution of Earth and life-Mars. Astrobiology 18, 1-27.

  1. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    Science.gov (United States)

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  2. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    Directory of Open Access Journals (Sweden)

    J. Dong

    2017-07-01

    Full Text Available An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achieve the scientific investigation of the terrain, soil characteristics, material composition, magnetic field, atmosphere, etc. The landing process is divided into three phases (entry phase, parachute descent phase and powered descent phase, which are full of risks. There exit lots of indefinite parameters and design constrain to affect the selection of the landing sites and phase switch (mortaring the parachute, separating the heat shield and cutting off the parachute. A number of new technologies (disk-gap-band parachute, guidance and navigation, etc. need to be developed. Mars and Earth have gravity and atmosphere conditions that are significantly different from one another. Meaningful environmental conditions cannot be recreated terrestrially on earth. A full-scale flight validation on earth is difficult. Therefore the end-to-end simulation and some critical subsystem test must be considered instead. The challenges above and the corresponding design solutions are introduced in this paper, which can provide reference for the Mars exploration mission.

  3. Learning in Earth and Space Science: A Review of Conceptual Change Instructional Approaches

    Science.gov (United States)

    Mills, Reece; Tomas, Louisa; Lewthwaite, Brian

    2016-01-01

    In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the…

  4. Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)

    Science.gov (United States)

    Kim, Yeong E.; Braswell, W. Danny

    1989-01-01

    Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.

  5. Mars exploration study workshop 2

    Science.gov (United States)

    Duke, Michael B.; Budden, Nancy Ann

    1993-11-01

    A year-long NASA-wide study effort has led to the development of an innovative strategy for the human exploration of Mars. The latest Mars Exploration Study Workshop 2 advanced a design reference mission (DRM) that significantly reduces the perceived high costs, complex infrastructure, and long schedules associated with previous Mars scenarios. This surface-oriented philosophy emphasizes the development of high-leveraging surface technologies in lieu of concentrating exclusively on space transportation technologies and development strategies. As a result of the DRM's balanced approach to mission and crew risk, element commonality, and technology development, human missions to Mars can be accomplished without the need for complex assembly operations in low-Earth orbit. This report, which summarizes the Mars Exploration Study Workshop held at the Ames Research Center on May 24-25, 1993, provides an overview of the status of the Mars Exploration Study, material presented at the workshop, and discussions of open items being addressed by the study team. The workshop assembled three teams of experts to discuss cost, dual-use technology, and international involvement, and to generate a working group white paper addressing these issues. The three position papers which were generated are included in section three of this publication.

  6. Role of light satellites in the high-resolution Earth observation domain

    Science.gov (United States)

    Fishman, Moshe

    1999-12-01

    Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.

  7. A New Vehicle for Planetary Surface Exploration: The Mars Tumbleweed

    Science.gov (United States)

    Antol, Jeffrey

    2005-01-01

    The surface of Mars is currently being explored with a combination of orbiting spacecraft, stationary landers and wheeled rovers. However, only a small portion of the Martian surface has undergone in-situ examination. Landing sites must be chosen to insure the safety of the vehicles (and human explorers) and provide the greatest opportunity for mission success. While wheeled rovers provide the ability to move beyond the landing sites, they are also limited in their ability to traverse rough terrain; therefore, many scientifically interesting sites are inaccessible by current vehicles. In order to access these sites, a capability is needed that can transport scientific instruments across varied Martian terrain. A new "rover" concept for exploring the Martian surface, known as the Mars Tumbleweed, will derive mobility through use of the surface winds on Mars, much like the Tumbleweed plant does here on Earth. Using the winds on Mars, a Tumbleweed rover could conceivably travel great distances and cover broad areas of the planetary surface. Tumbleweed vehicles would be designed to withstand repeated bouncing and rolling on the rock covered Martian surface and may be durable enough to explore areas on Mars such as gullies and canyons that are currently inaccessible by conventional rovers. Achieving Mars wind-driven mobility; however, is not a minor task. The density of the atmosphere on Mars is approximately 60-80 times less than that on Earth and wind speeds are typically around 2-5 m/s during the day, with periodic winds of 10 m/s to 20 m/s (in excess of 25 m/s during seasonal dust storms). However, because of the Martian atmosphere#s low density, even the strongest winds on Mars equate to only a gentle breeze on Earth. Tumbleweed rovers therefore need to be relatively large (4-6 m in diameter), very lightweight (10-20 kg), and equipped with lightweight, low-power instruments. This paper provides an overview of the Tumbleweed concept, presents several notional design

  8. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    Science.gov (United States)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  9. EarthLabs Climate Detectives: Using the Science, Data, and Technology of IODP Expedition 341 to Investigate the Earth's Past Climate

    Science.gov (United States)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Ledley, T. S.; Lynds, S. E.; McNeal, K.; Libarkin, J. C.

    2014-12-01

    EarthLabs, an exemplary series of lab-based climate science learning modules, is a model for high school Earth Science lab courses. Each module includes a variety of learning activities that allow students to explore the Earth's complex and dynamic climate history. The most recent module, Climate Detectives, uses data from IODP Expedition 341, which traveled to the Gulf of Alaska during the summer of 2013 to study past climate, sedimentation, and tectonics along the continental margin. At the onset of Climate Detectives, students are presented with a challenge engaging them to investigate how the Earth's climate has changed since the Miocene in southern Alaska. To complete this challenge, students join Exp. 341 to collect and examine sediments collected from beneath the seafloor. The two-week module consists of six labs that provide students with the content and skills needed to solve this climate mystery. Students discover how an international team collaborates to examine a scientific problem with the IODP, compete in an engineering design challenge to learn about scientific ocean drilling, and learn about how different types of proxy data are used to detect changes in Earth's climate. The NGSS Science and Engineering Practices are woven into the culminating activity, giving students the opportunity to think and act like scientists as they investigate the following questions: 1) How have environmental conditions in in the Gulf of Alaska changed during the time when the sediments in core U1417 were deposited? (2) What does the occurrence of different types of diatoms and their abundance reveal about the timing of the cycles of glacial advance and retreat? (3) What timeline is represented by the section of core? (4) How do results from the Gulf of Alaska compare with the global record of glaciations during this period based on oxygen isotopes proxies? Developed by educators in collaboration with Expedition 341 scientists, Climate Detectives is a strong example of

  10. Into the deep Earth: Using comics as a learning tool

    Science.gov (United States)

    Lee, K. K.; Wallenta, A.

    2012-12-01

    Illustrations make an ideal way to visualize what is not readily seen, especially for the deep Earth where photographs are impossible. To take this medium a step further, we use illustrations in the form of comics as a way to teach Earth science concepts. The comic book format lends itself to engaging reading for young and old alike and has been used recently by the American Physical Society (APS) and by NASA as an outreach teaching tool. Due to their sequential nature, comic books make it easy for readers to follow a story and grasp concepts that are covered. The limited text in each panel can also help those where reading is a challenge or for those who become nervous and/or discouraged with long text passages. The illustrations also add visual clues that can aid in understanding the concepts being laid out. We use the comic book format to introduce the extreme conditions reproduced in our experiments and used to "probe" the deep interior of the Earth. The exploration of such inaccessible regions is readily disseminated to the public through such a graphical approach. The comic books are aimed at middle school students in the New Haven Public Schools (NHPS) where Earth Science topics are covered in the curriculum. The first of two comics will be presented entitled, "The Adventures of GEO: Tackling Plate Tectonics."

  11. Understanding the Deep Earth: Slabs, Drips, Plumes and More - An On the Cutting Edge Workshop

    Science.gov (United States)

    Williams, M. L.; Mogk, D. W.; McDaris, J. R.

    2010-12-01

    Exciting new science is emerging from the study of the deep Earth using a variety of approaches: observational instrumentation (e.g. EarthScope’s USArray; IRIS), analysis of rocks (xenoliths, isotopic tracers), experimental methods (COMPRES facilities), and modeling (physical and computational, e.g. CIG program). New images and models of active faults, subducting plates, mantle drips, and rising plumes are spurring a new excitement about deep Earth processes and connections between Earth’s internal systems, the plate tectonic system, and the physiography of Earth’s surface. The integration of these lines of research presents unique opportunities and also challenges in geoscience education. How can we best teach about the architecture, composition, and processes of Earth where it is hidden from direct observation. How can we make deep Earth science relevant and meaningful to students across the geoscience curriculum? And how can we use the exciting new discoveries about Earth processes to attract new students into science? To explore the intersection of research and teaching about the deep Earth, a virtual workshop was convened in February 2010 for experts in deep Earth research and undergraduate geoscience education. The six-day workshop consisted of online plenary talks, large and small group discussions, asynchronous contributions using threaded listservs and web-based work spaces, as well as development and review of new classroom and laboratory activities. The workshop goals were to: 1) help participants stay current about data, tools, services, and research related to the deep earth, 2) address the "big science questions" related to deep earth (e.g. plumes, slabs, drips, post-perovskite, etc.) and explore exciting new scientific approaches, 3) to consider ways to effectively teach about "what can't be seen", at least not directly, and 4) develop and review classroom teaching activities for undergraduate education using these data, tools, services, and

  12. Raising awareness for research on earth walls, and earth scientific aspects

    Science.gov (United States)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Baas, Henk; Groenewoudt, Bert; Peen, Charlotte

    2013-04-01

    A conference to raise awareness In the Netherlands, little research on earth walls has been done. To improve attention for earth walls, a number of organisations, including Geoheritage NL, organized a conference at the RCE, the Cultural Heritage Agency of the Netherlands. The conference* presented a state-of-the-art of research done. The book with the presentations, and extra case studies added, was published in December 2012. The book concludes with a research action list, including earth science research, and can be downloaded freely from the internet. It has English summaries. The earth science aspects Historical earth walls do not only add cultural value to a landscape, but also geodiversity value. Apart from geomorphological aspects, the walls contain information about past land- and climate conditions: - They cover up a former topography, a past landscape. A relevant source of scientific information where lands are levelled, as is the case in many parts of The Netherlands; - The soil formation under the earth wall is a reference soil. The soil formation in the top of the wall gives insight in the rate of soil formation in relationship with the age and parent material of the wall; - The soil profiles of different age have ecological significance. Older walls with a more pronounced soil formation often hold forest flora that has disappeared from the surrounding environment, such as historical bush or tree species, autogenetic DNA material or a specific soil fauna; - The materials in the earth walls tell about the process of wall-building. Paleosols and sedimentary structures in the earth walls, in the gullies and colluvial fans along the walls contain information about past land management and climate. - The eroded appearance of the earth walls is part of their history, and contain information about past management and land conditions, has ecological relevance, for example for insects, and is often visually more interesting. Insight in the rates of erosion are

  13. Trailblazing Medicine Sustaining Explorers During Interplanetary Missions

    CERN Document Server

    Seedhouse, Erik

    2011-01-01

    To prepare for the day when astronauts leave low-Earth orbit for long-duration exploration missions, space medicine experts must develop a thorough understanding of the effects of microgravity on the human body, as well as ways of mitigating them. To gain a complete understanding of the effects of space on the human body and to create tools and technologies required for successful exploration, space medicince will become an increasingly collaborative discipline incorporating the skills of physicians, biomedical scientists, engineers, and mission planners. Trailblazing Medicine examines the future of space medicine in relation to human space exploration; describes what is necessary to keep a crew alive in space, including the use of surgical robots, surface-based telemedicine, and remote emergency care; discusses bioethical problems such as euthanasia, sex, and precautionary surgery; investigates the medical challenges faced by interplanetary astronauts; details the process of human hibernation.

  14. Topology optimization of reduced rare-earth permanent magnet arrays with finite coercivity

    Science.gov (United States)

    Teyber, R.; Trevizoli, P. V.; Christiaanse, T. V.; Govindappa, P.; Rowe, A.

    2018-05-01

    The supply chain risk of rare-earth permanent magnets has yielded research efforts to improve both materials and magnetic circuits. While a number of magnet optimization techniques exist, literature has not incorporated the permanent magnet failure process stemming from finite coercivity. To address this, a mixed-integer topology optimization is formulated to maximize the flux density of a segmented Halbach cylinder while avoiding permanent demagnetization. The numerical framework is used to assess the efficacy of low-cost (rare-earth-free ferrite C9), medium-cost (rare-earth-free MnBi), and higher-cost (Dy-free NdFeB) permanent magnet materials. Novel magnet designs are generated that produce flux densities 70% greater than the segmented Halbach array, albeit with increased magnet mass. Three optimization formulations are then explored using ferrite C9 that demonstrates the trade-off between manufacturability and design sophistication, generating flux densities in the range of 0.366-0.483 T.

  15. Extraction of rare earths from iron-rich rare earth deposits

    OpenAIRE

    Bisaka, K.; Thobadi, I.C.; Pawlik, C.

    2017-01-01

    Rare earth metals are classified as critical metals by the United Nations, as they have found wide application in the fabrication of magnets, particularly those used in green energy technologies which mitigate global warming. Processing of ores containing rare earth elements is complex, and differs according to the nature of each ore. In the conventional process, run of mine (ROM) ores are processed in a physical separation plant to produce a concentrate from which rare earth elements are ext...

  16. The dependence of magnetosphere-ionosphere system on the Earth's magnetic dipole moment

    Science.gov (United States)

    Ngwira, C. M.; Pulkkinen, A. A.; Sibeck, D. G.; Rastaetter, L.

    2017-12-01

    Space weather is increasingly recognized as an international problem affecting several different man-made technologies. The ability to understand, monitor and forecast Earth-directed space weather is of paramount importance for our highly technology-dependent society and for the current rapid developments in awareness and exploration within the heliosphere. It is well known that the strength of the Earth's magnetic field changes over long time scales. We use physics-based simulations with the University of Michigan Space Weather Modeling Framework (SWMF) to examine how the magnetosphere, ionosphere, and ground geomagnetic field perturbations respond as the geomagnetic dipole moment changes. We discuss the implication of these results for our community and the end-users of space weather information.

  17. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  18. Creating Deep Time Diaries: An English/Earth Science Unit for Middle School Students

    Science.gov (United States)

    Jordan, Vicky; Barnes, Mark

    2006-01-01

    Students love a good story. That is why incorporating literary fiction that parallels teaching goals and standards can be effective. In the interdisciplinary, thematic six-week unit described in this article, the authors use the fictional book "The Deep Time Diaries," by Gary Raham, to explore topics in paleontology, Earth science, and creative…

  19. Strategic Map for Exploring the Ocean-World Enceladus

    Science.gov (United States)

    Sherwood, Brent

    2015-01-01

    Among the many "ocean worlds" of our solar system, Enceladus appears unique in its combination of astrobiologically relevant, exploration-worthy attributes: extensive liquid-water ocean with high-temperature hydrothermal activity, containing salts and organics expressed predictably into space. The Enceladus south polar plume allows direct access to telltale molecules, ions, isotopes, and potential cytofragments in space. Plume mass spectroscopy and sample return, in situ investigation of surface fallback deposits, direct vent exploration, and eventually oceanographic exploration can all be envisioned. However, building consensus to fund such ambitious exploration hinges on acquiring key new data. A roadmap is essential. It could start with cost-capped onramps: 1) flythrough analysis of the plume, following up on Cassini measurements with modern instruments; 2) sample return of plume material for analysis on Earth. A methodical mission sequence in which each step depends on emergent results from prior missions would push in situ oceanographic exploration into the second half of this century. Even for this scenario, prioritization by the next planetary Decadal Survey would be pivotal.

  20. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  1. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  2. Touching the Earth: the Role of Art in Scientific Thinking

    Science.gov (United States)

    Cashman, K. V.; Stibbon, E.; Harris, R.

    2015-12-01

    Historically, geologists have used drawing as a tool not only to record observations but also to engage with the landscape and the materials from which it is constructed. Although geology students are still taught to keep field notebooks, the emphasis on drawing has given way to training in digital tools such as photography and GIS. Has this change altered our perception of our environment, and, thereby, affected the ways that we pursue scientific questions? We address this question through conversations - in the laboratory, studio and field - between artists and scientists that show that we (1) engage with the landscape both rationally and emotionally, (2) are attracted to earth materials because of their form, color, physical qualities and origin/history, (3) overcome technical challenges to realize an end result from an initial idea, (4) struggle to achieve a balance between critical faculties and creative insight, and (5) must communicate ideas, often before they are fully formed, to potential funders. Importantly, we find that the act of rendering (in 2D or 3D), and the ways in which the trace of the hand on paper (or manipulation of clay) engages a part of the brain that is not used in computer-based activities. At the same time, a geological understanding of earth materials enhances their metaphorical applications in the arts. Taken together, these conversations lead us to suggest that more cross-disciplinary training - training scientists in art and artists in science - would not only allow us to explore common themes from different perspectives, but could also create new ways of doing both art and science. Here we provide some examples, such as (1) the importance of drawing for moving from looking to seeing (observation to understanding), (2) ways of engaging perceptions through experimentation, (3) how to reveal the hidden by combining microscopic and macroscopic views of earth materials, and (4) using art as both a language and an interpretive tool

  3. Electromagnetic exploration of the oceanic mantle.

    Science.gov (United States)

    Utada, Hisashi

    2015-01-01

    Electromagnetic exploration is a geophysical method for examining the Earth's interior through observations of natural or artificial electromagnetic field fluctuations. The method has been in practice for more than 70 years, and 40 years ago it was first applied to ocean areas. During the past few decades, there has been noticeable progress in the methods of instrumentation, data acquisition (observation), data processing and inversion. Due to this progress, applications of this method to oceanic regions have revealed electrical features of the oceanic upper mantle down to depths of several hundred kilometers for different geologic and tectonic environments such as areas around mid-oceanic ridges, areas around hot-spot volcanoes, subduction zones, and normal ocean areas between mid-oceanic ridges and subduction zones. All these results estimate the distribution of the electrical conductivity in the oceanic mantle, which is key for understanding the dynamics and evolution of the Earth together with different physical properties obtained through other geophysical methods such as seismological techniques.

  4. Exploring the planets a memoir

    CERN Document Server

    Taylor, Fred

    2016-01-01

    This book is an informal, semi-autobiographical history, from the particular viewpoint of someone who was involved, of the exploration of the Solar System using spacecraft. The author is a Northumbrian, a Liverpudlian, a Californian, and an Oxford Don with half a century of experience of devising and deploying experiments to study the Earth and the planets, moons, and small bodies of the Solar System. Along with memories and anecdotes about his experiences as a participant in the space programme from its earliest days to the present, he describes in non-technical terms the science goals that drove the projects as well as the politics, pressures, and problems that had to be addressed and overcome on the way. The theme is the scientific intent of these ambitious voyages of discovery, and the joys and hardships of working to see them achieved. The narrative gives a first-hand account of things like how Earth satellites came to revolutionize weather forecasting, starting in the 1960s; how observations from space ...

  5. EarthServer: Cross-Disciplinary Earth Science Through Data Cube Analytics

    Science.gov (United States)

    Baumann, P.; Rossi, A. P.

    2016-12-01

    The unprecedented increase of imagery, in-situ measurements, and simulation data produced by Earth (and Planetary) Science observations missions bears a rich, yet not leveraged potential for getting insights from integrating such diverse datasets and transform scientific questions into actual queries to data, formulated in a standardized way.The intercontinental EarthServer [1] initiative is demonstrating new directions for flexible, scalable Earth Science services based on innovative NoSQL technology. Researchers from Europe, the US and Australia have teamed up to rigorously implement the concept of the datacube. Such a datacube may have spatial and temporal dimensions (such as a satellite image time series) and may unite an unlimited number of scenes. Independently from whatever efficient data structuring a server network may perform internally, users (scientist, planners, decision makers) will always see just a few datacubes they can slice and dice.EarthServer has established client [2] and server technology for such spatio-temporal datacubes. The underlying scalable array engine, rasdaman [3,4], enables direct interaction, including 3-D visualization, common EO data processing, and general analytics. Services exclusively rely on the open OGC "Big Geo Data" standards suite, the Web Coverage Service (WCS). Conversely, EarthServer has shaped and advanced WCS based on the experience gained. The first phase of EarthServer has advanced scalable array database technology into 150+ TB services. Currently, Petabyte datacubes are being built for ad-hoc and cross-disciplinary querying, e.g. using climate, Earth observation and ocean data.We will present the EarthServer approach, its impact on OGC / ISO / INSPIRE standardization, and its platform technology, rasdaman.References: [1] Baumann, et al. (2015) DOI: 10.1080/17538947.2014.1003106 [2] Hogan, P., (2011) NASA World Wind, Proceedings of the 2nd International Conference on Computing for Geospatial Research

  6. Spectral fingerprints of Earth-like planets around FGK stars.

    Science.gov (United States)

    Rugheimer, Sarah; Kaltenegger, Lisa; Zsom, Andras; Segura, Antígona; Sasselov, Dimitar

    2013-03-01

    We present model atmospheres for an Earth-like planet orbiting the entire grid of main sequence FGK stars with effective temperatures ranging from Teff=4250 K to Teff=7000 K in 250 K intervals. We have modeled the remotely detectable spectra of Earth-like planets for clear and cloudy atmospheres at the 1 AU equivalent distance from the VIS to IR (0.4 to 20 μm) to compare detectability of features in different wavelength ranges in accordance with the James Webb Space Telescope and future design concepts to characterize exo-Earths. We have also explored the effect of the stellar UV levels as well as spectral energy distribution on a terrestrial atmosphere, concentrating on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. The increase in UV dominates changes of O3, OH, CH4, N2O, and CH3Cl, whereas the increase in stellar temperature dominates changes in H2O. The overall effect as stellar effective temperatures and corresponding UV increase is a lower surface temperature of the planet due to a bigger part of the stellar flux being reflected at short wavelengths, as well as increased photolysis. Earth-like atmosphere models show more O3 and OH but less stratospheric CH4, N2O, CH3Cl, and tropospheric H2O (but more stratospheric H2O) with increasing effective temperature of main sequence stars. The corresponding detectable spectral features, on the other hand, show different detectability depending on the wavelength observed. We concentrate on directly imaged planets here as a framework to interpret future light curves, direct imaging, and secondary eclipse measurements of atmospheres of terrestrial planets in the habitable zone at varying orbital positions.

  7. Novel Rock Detection Intelligence for Space Exploration Based on Non-Symbolic Algorithms and Concepts

    Science.gov (United States)

    Yildirim, Sule; Beachell, Ronald L.; Veflingstad, Henning

    2007-01-01

    Future space exploration can utilize artificial intelligence as an integral part of next generation space rover technology to make the rovers more autonomous in performing mission objectives. The main advantage of the increased autonomy through a higher degree of intelligence is that it allows for greater utilization of rover resources by reducing the frequency of time consuming communications between rover and earth. In this paper, we propose a space exploration application of our research on a non-symbolic algorithm and concepts model. This model is based on one of the most recent approaches of cognitive science and artificial intelligence research, a parallel distributed processing approach. We use the Mars rovers. Sprit and Opportunity, as a starting point for proposing what rovers in the future could do if the presented model of non-symbolic algorithms and concepts is embedded in a future space rover. The chosen space exploration application for this paper, novel rock detection, is only one of many potential space exploration applications which can be optimized (through reduction of the frequency of rover-earth communications. collection and transmission of only data that is distinctive/novel) through the use of artificial intelligence technology compared to existing approaches.

  8. Magsat - A new satellite to survey the earth's magnetic field

    Science.gov (United States)

    Mobley, F. F.; Eckard, L. D.; Fountain, G. H.; Ousley, G. W.

    1980-01-01

    The Magsat satellite was launched on Oct. 30, 1979 into a sun-synchronous dawn-dusk orbit, of 97 deg inclination, 350 km perigee, and 550 km apogee. It contains a precision vector magnetometer and a cesium-vapor scalar magnetometer at the end of a 6-m long graphite epoxy scissors boom. The magnetometers are accurate to 2 nanotesla. A pair of star cameras are used to define the body orientation to 10 arc sec rms. An 'attitude transfer system' measures the orientation of the magnetometer sensors relative to the star cameras to approximately 5 arc sec rms. The satellite position is determined to 70 meters rms by Doppler tracking. The overall objective is to determine each component of the earth's vector magnetic field to an accuracy of 6 nanotesla rms. The Magsat satellite gathers a complete picture of the earth's magnetic field every 12 hours. The vector components are sampled 16 times per second with a resolution of 0.5 nanotesla. The data will be used by the U.S. Geological Survey to prepare 1980 world magnetic field charts and to detect large-scale magnetic anomalies in the earth's crust for use in planning resource exploration strategy.

  9. Nuclear technologies for Moon and Mars exploration

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs

  10. Towards Big Earth Data Analytics: The EarthServer Approach

    Science.gov (United States)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  11. Marshall Space Flight Center - Launching the Future of Science and Exploration

    Science.gov (United States)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  12. Detailed exploration of Titan with a Montgolfiere aerobot

    Science.gov (United States)

    Spilker, T.; Tipex Team

    The International Cassini/Huygens (CH) mission has verified the expectation that Saturn's moon Titan offers many opportunities for studying high-priority planetary and astrobiology science objectives. CH results to date show that this world, though entirely alien in its frigid environment, presents an Earth-like and diverse appearance due to the relative balance of competing forces such as geology/tectonics, meteorology, aeronomy, and cosmic impacts. But with the limitations of a single Huygens probe, and a finite number of Cassini flybys limited in proximity and remote sensing resolution by Titan's thick atmosphere and hazes, there is much science to be done there after the CH mission has ended. Detailed exploration of Titan's surface and lower atmosphere, especially for astrobiological objectives, is best addressed by in situ investigations. The atmosphere and its hazes severely restrict orbital remote sensing: Titan cannot be mapped from orbit in the same manner as Mars, at (essentially) arbitrarily high resolution, and limited infrared (IR) windows allow only gross compositional interpretations. After CH indeed there will be further orbital investigations to be carried out, notably completion of the global mapping by Synthetic Aperture Radar and IR mapping spectrometry begun by CH, at the best resolutions practical from orbit. But to fully understand Titan as an evolving, planetary-scale body and an abode of preserved protobiological chemistry will require a platform that has access to, and mobility at, the surface and the lowest few kilometers of the atmosphere. The TiPEx study team weighed the options for Titan in situ exploration, and finds that a mission based on a Montgolfiere (a type of hot-air balloon) aerobot is the best candidate for post-CH exploration. Ground-based platforms of the type used to date on Mars are far too limited in range to sample the diversity of Titan, and do not adequately investigate the lower atmosphere. Titan's cold, dense

  13. Enabling the Use of Authentic Scientific Data in the Classroom--Lessons Learned from the AccessData and Data Services Workshops

    Science.gov (United States)

    Lynds, S. E.; Buhr, S. M.; Ledley, T. S.

    2007-12-01

    Enabling the Use of Authentic Scientific Data in the Classroom--Lessons Learned from the AccessData and Data Services Workshops Since 2004, the annual AccessData and DLESE Data Services workshops have gathered scientists, data managers, technology specialists, teachers, and curriculum developers to work together creating classroom- ready scientific data modules. Teams of five (one participant from each of the five professions) develop topic- specific online educational units of the Earth Exploration Toolbook (serc.carleton.edu/eet/). Educators from middle schools through undergraduate colleges have been represented, as have scientific data professionals from many organizations across the United States. Extensive evaluation has been included in the design of each workshop. The evaluation results have been used each year to improve subsequent workshops. In addition to refining the format and process of the workshop itself, evaluation data collected reveal attendees' experiences using scientific data for educational purposes. Workshop attendees greatly value the opportunity to network with those of other professional roles in developing a real-world education project using scientific data. Educators appreciate the opportunity to work directly with scientists and technology specialists, while researchers and those in technical fields value the classroom expertise of the educators. Attendees' data use experiences are explored every year. Although bandwidth and connectivity were problems for data use in 2004, that has become much less common over time. The most common barriers to data use cited now are discoverability, data format problems, incomplete data sets, and poor documentation. Most attendees agree that the most useful types of online documentation and user support for scientific data are step-by-step instructions, examples, tutorials, and reference manuals. Satellite imagery and weather data were the most commonly used types of data, and these were often

  14. Exploring interoperability: The advancements and challenges of improving data discovery, access, and visualization of scientific data through the NOAA Earth Information System (NEIS). (Invited)

    Science.gov (United States)

    Stewart, J.; Lynge, J.; Hackathorn, E.; MacDermaid, C.; Pierce, R.; Smith, J.

    2013-12-01

    Interoperability is a complex subject and often leads to different definitions in different environments. An interoperable framework of web services can improve the user experience by providing an interface for interaction with data regardless of it's format or physical location. This in itself improves accessibility to data, fosters data exploration and use, and provides a framework for new tools and applications. With an interoperable system you have: -- Data ready for action. Services model facilitates agile response to events. Services can be combined or reused quickly, upgraded or modified independently. -- Any data available through an interoperable framework can be operated on or combined with other data. Integrating standardized formats and access. -- New and existing systems have access to wide variety of data. Any new data added is easily incorporated with minimal changes required. The possibilities are limitless. The NOAA Earth Information System (NEIS) at the Earth System Research Laboratory (ESRL) is continuing research into an interoperable framework of layered services designed to facilitate the discovery, access, integration, visualization, and understanding of all NOAA (past, present, and future) data. An underlying philosophy of NEIS is to take advantage of existing off-the-shelf technologies and standards to minimize development of custom code allowing everyone to take advantage of the framework to meet these goals above. This framework, while built by NOAA are not limited to NOAA data or applications. Any other data available through similar services or applications that understand these standards can work interchangeably. Two major challenges are under active research at ESRL are data discoverability and fast access to big data. This presentation will provide an update on development of NEIS, including these challenges, the findings, and recommendations on what is needed for an interoperable system, as well as ongoing research activities

  15. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  16. An Expert System toward Buiding An Earth Science Knowledge Graph

    Science.gov (United States)

    Zhang, J.; Duan, X.; Ramachandran, R.; Lee, T. J.; Bao, Q.; Gatlin, P. N.; Maskey, M.

    2017-12-01

    In this ongoing work, we aim to build foundations of Cognitive Computing for Earth Science research. The goal of our project is to develop an end-to-end automated methodology for incrementally constructing Knowledge Graphs for Earth Science (KG4ES). These knowledge graphs can then serve as the foundational components for building cognitive systems in Earth science, enabling researchers to uncover new patterns and hypotheses that are virtually impossible to identify today. In addition, this research focuses on developing mining algorithms needed to exploit these constructed knowledge graphs. As such, these graphs will free knowledge from publications that are generated in a very linear, deterministic manner, and structure knowledge in a way that users can both interact and connect with relevant pieces of information. Our major contributions are two-fold. First, we have developed an end-to-end methodology for constructing Knowledge Graphs for Earth Science (KG4ES) using existing corpus of journal papers and reports. One of the key challenges in any machine learning, especially deep learning applications, is the need for robust and large training datasets. We have developed techniques capable of automatically retraining models and incrementally building and updating KG4ES, based on ever evolving training data. We also adopt the evaluation instrument based on common research methodologies used in Earth science research, especially in Atmospheric Science. Second, we have developed an algorithm to infer new knowledge that can exploit the constructed KG4ES. In more detail, we have developed a network prediction algorithm aiming to explore and predict possible new connections in the KG4ES and aid in new knowledge discovery.

  17. Diamond exploration and mantle structure imaging using PIXE microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, C G; Griffin, W L; Win, T T [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1997-12-31

    Geochemical methods of diamond exploration rely on recognizing indicator minerals that formed in the earth`s upper mantle, within the diamond stability field, and were entrained in rapidly rising volatile-rich magmas and emplaced in or on the crust. Diamond is only stable at high pressure. Therefore, diamond exploration commonly targets prospects containing high pressure minerals, such as low-Ca, high-Cr (`G10`) garnets and high-Cr chromites, similar to inclusions in diamonds. However, this procedure can be ambiguous; some barren pipes contain abundant `G10` garnets. while such garnets are extremely rare in the Argyle pipe, the world`s largest diamond producer. Similarly, high-Cr chromites are shed by a wide variety of barren rock types. PIXE microanalysis of trace elements in concentrate garnets and chromites from kimberlites and other volcanic rocks helps to remove the ambiguities by pinning down the source temperature (T), pressure (P) and local (paleo)geotherm (P-T relation), which permits the rich store of trace element information in these minerals, reflecting rock chemistry and metasomatic processes, to be placed in a stratigraphic context. 11 refs., 4 figs.

  18. Diamond exploration and mantle structure imaging using PIXE microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, C.G.; Griffin, W.L.; Win, T.T. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1996-12-31

    Geochemical methods of diamond exploration rely on recognizing indicator minerals that formed in the earth`s upper mantle, within the diamond stability field, and were entrained in rapidly rising volatile-rich magmas and emplaced in or on the crust. Diamond is only stable at high pressure. Therefore, diamond exploration commonly targets prospects containing high pressure minerals, such as low-Ca, high-Cr (`G10`) garnets and high-Cr chromites, similar to inclusions in diamonds. However, this procedure can be ambiguous; some barren pipes contain abundant `G10` garnets. while such garnets are extremely rare in the Argyle pipe, the world`s largest diamond producer. Similarly, high-Cr chromites are shed by a wide variety of barren rock types. PIXE microanalysis of trace elements in concentrate garnets and chromites from kimberlites and other volcanic rocks helps to remove the ambiguities by pinning down the source temperature (T), pressure (P) and local (paleo)geotherm (P-T relation), which permits the rich store of trace element information in these minerals, reflecting rock chemistry and metasomatic processes, to be placed in a stratigraphic context. 11 refs., 4 figs.

  19. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    Science.gov (United States)

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  20. International space station accomplishments update: Scientific discovery, advancing future exploration, and benefits brought home to earth

    Science.gov (United States)

    Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Buckley, Nicole; Johnson-Green, Perry; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka; Sorokin, Igor V.; Zell, Martin; Istasse, Eric; Sabbagh, Jean; Pignataro, Salvatore

    2014-10-01

    Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of “ocular syndrome” affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new “cold flame” phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28

  1. Defining Medical Capabilities for Exploration Missions

    Science.gov (United States)

    Hailey, M.; Antonsen, E.; Blue, R.; Reyes, D.; Mulcahy, R.; Kerstman, E.; Bayuse, T.

    2018-01-01

    Exploration-class missions to the moon, Mars and beyond will require a significant change in medical capability from today's low earth orbit centric paradigm. Significant increases in autonomy will be required due to differences in duration, distance and orbital mechanics. Aerospace medicine and systems engineering teams are working together within ExMC to meet these challenges. Identifying exploration medical system needs requires accounting for planned and unplanned medical care as defined in the concept of operations. In 2017, the ExMC Clinicians group identified medical capabilities to feed into the Systems Engineering process, including: determining what and how to address planned and preventive medical care; defining an Accepted Medical Condition List (AMCL) of conditions that may occur and a subset of those that can be treated effectively within the exploration environment; and listing the medical capabilities needed to treat those conditions in the AMCL. This presentation will discuss the team's approach to addressing these issues, as well as how the outputs of the clinical process impact the systems engineering effort.

  2. Rare earth octacyanomolybdates(4)

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Sergeeva, A.N.; Pisak, Yu.V.

    1980-01-01

    Optimal conditions for synthesis of rare-earth octacyanomolybdates(4) of the Ln 4 [Mo(CN) 8 ] 3 xnH 2 O composition (where Ln is a rare-earth element, other than Pr, Pm, Lu, Tb) have been worked out. The synthesis has been accomplished by neutralization with octacianomolybdic acid with rare-earth carbonates. The composition and structure of the compounds synthesized have been studied by infrared-spectroscopy. It has been established that rare-earth octacyanomolybdates(4) form three isostructural groups

  3. Cosmochemistry and Human Exploration

    Science.gov (United States)

    Taylor, G. J.

    2004-12-01

    About 125 scientists, engineers, business men and women, and other specialists attended the sixth meeting of the Space Resources Roundtable, held at the Colorado School of Mines in Golden, Colorado. The meeting was co-sponsored by the Space Resources Roundtable, Inc. (a nonprofit organization dedicated to the use of space resources for the benefit of humankind), the Lunar and Planetary Institute, and the Colorado School of Mines. Presentations and discussions during the meeting made it clear that the knowledge gained from cosmochemical studies of the Moon and Mars is central to devising ways to use in situ resources. This makes cosmochemistry central to the human exploration and development of space, which cannot happen without extensive in situ resource utilization (ISRU). Cosmochemists at the meeting reported on an array of topics: the nature of lunar surface materials and our lack of knowledge about surface materials in permanently shadowed regions at the lunar poles; how to make reasonable simulated lunar materials for resource extraction testbeds, vehicle design tests, and construction experiments on Earth; and how to explore for resources on the Moon and Mars.

  4. Earth sciences uranium geology, exploration and mining, hydrology, 1986-1998. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1998-09-01

    This catalogue lists sales publications of the International Atomic Energy Agency dealing with Earth Sciences issued during the period 1986-1998. Most publications are published in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all these papers have abstracts in English. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 16 x 24 cm, paper-bound, unless otherwise stated

  5. Rare earths as a future resource

    International Nuclear Information System (INIS)

    Cornell, D.H.

    1988-01-01

    The fourteen rare earth or lanthanide elements have recently emerged as an important natural resource because of the rapidly growing demand in the electronic, chemical and metallurgical industries. The Symposium on rare earth elements as a future resource presented a multidisciplinary review of rare earth chemistry, geology, beneficiation, industrial applications and marketing. Papers by experts in many fields were presented on the following topics: chemical properties of the rare earth elements; the analysis of rare earth elements and minerals; beneficiation and extraction of rare earth elements; economic geochemistry and mineralogy of rare earths; present industrial uses of rare earth elements; the role of rare earth elements in high-temperature superconductors; the technical application of high-temperature superconductors; supply and demand for rare earth products - now and in the future, and the geology of rare earth deposits

  6. Application of unsupervised pattern recognition approaches for exploration of rare earth elements in Se-Chahun iron ore, central Iran

    Science.gov (United States)

    Sarparandeh, Mohammadali; Hezarkhani, Ardeshir

    2017-12-01

    The use of efficient methods for data processing has always been of interest to researchers in the field of earth sciences. Pattern recognition techniques are appropriate methods for high-dimensional data such as geochemical data. Evaluation of the geochemical distribution of rare earth elements (REEs) requires the use of such methods. In particular, the multivariate nature of REE data makes them a good target for numerical analysis. The main subject of this paper is application of unsupervised pattern recognition approaches in evaluating geochemical distribution of REEs in the Kiruna type magnetite-apatite deposit of Se-Chahun. For this purpose, 42 bulk lithology samples were collected from the Se-Chahun iron ore deposit. In this study, 14 rare earth elements were measured with inductively coupled plasma mass spectrometry (ICP-MS). Pattern recognition makes it possible to evaluate the relations between the samples based on all these 14 features, simultaneously. In addition to providing easy solutions, discovery of the hidden information and relations of data samples is the advantage of these methods. Therefore, four clustering methods (unsupervised pattern recognition) - including a modified basic sequential algorithmic scheme (MBSAS), hierarchical (agglomerative) clustering, k-means clustering and self-organizing map (SOM) - were applied and results were evaluated using the silhouette criterion. Samples were clustered in four types. Finally, the results of this study were validated with geological facts and analysis results from, for example, scanning electron microscopy (SEM), X-ray diffraction (XRD), ICP-MS and optical mineralogy. The results of the k-means clustering and SOM methods have the best matches with reality, with experimental studies of samples and with field surveys. Since only the rare earth elements are used in this division, a good agreement of the results with lithology is considerable. It is concluded that the combination of the proposed

  7. Programmable wide field spectrograph for earth observation

    Science.gov (United States)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2017-11-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.

  8. Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons

    International Nuclear Information System (INIS)

    Chevalier, G.; Chevalier, G.; Sinatra, S.T.; Oschman, J.L.; Sokal, K.; Sokal, P.

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and un wellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits including better sleep and reduced pain from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance

  9. Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth).

    Science.gov (United States)

    Rothschild, Lynn J

    2016-08-15

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth. © 2016 The Author(s).

  10. Next-generation Digital Earth.

    Science.gov (United States)

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  11. Lunar planetary exploration of Japan; Nippon no tsuki wakusei tansa

    Energy Technology Data Exchange (ETDEWEB)

    Haruyama, J. [Research Development Corporation of Japan, Tokyo (Japan)

    1996-05-01

    This paper describes lunar planetary exploration of Japan as a result of success in launching the H-II rocket. Under the cooperation between the Space Chemistry Research Institute (ISAS) of the Ministry of Education and the National Aerospace Development Association (NASDA), discussions have begun on launching an orbital satellite for lunar planetary exploration early in the 2000`s. The objective includes a study on origin and evolution of the moon, feasibility study on moon utilization, and learning the moon surface soft landing technology. Explorations on objects other than moon may be conceived by using such a large rocket as H-II. Exploration on living organisms on Mars may be one of them. Light emitting monitors that operate on the living organism dying identification method could be used on places where living organisms are likely to exist on Mars. Then, samples may be brought back, and it might be possible to pursue the mystery of life origin. A comet has no internal melting by heat as in planets, and keeps composing substances as they have been generated. In other words, it could be said a fossil in the solar system that retains initial substances in the solar system. Samples, if they can be brought back, could be keys to solve the mystery of the solar system formation. The Halley comet is said covered with organic substances. There is a theory that life originating substances on the earth were made on a comet, which were supplied to the earth as a result of collision.

  12. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Johnson, Benjamin W.; Goldblatt, Colin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth's biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  13. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  14. MoonBEAM: A Beyond Earth-Orbit Gamma-Ray Burst Detector for Gravitational-Wave Astronomy

    Science.gov (United States)

    Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.

    2018-01-01

    Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between different orbits. We present here a gamma-ray SmallSat concept in Earth-Moon L3 halo orbit that is capable of rapid response and provide a timing baseline for localization improvement when partnered with an Earth-orbit instrument. Such an instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.

  15. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  16. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  17. Studies with the EC-Earth seamless Earth system prediction model

    NARCIS (Netherlands)

    Hazeleger, W.; Bintanja, R.

    2012-01-01

    EC-Earth is a new Earth System Model (ESM) based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF). Climate and weather forecasting applications share a common ancestry and are build on the same physical principles. The emerging concept of

  18. Evolution of telemedicine in the space program and earth applications

    Science.gov (United States)

    Nicogossian, A. E.; Pober, D. F.; Roy, S. A.

    2001-01-01

    Remote monitoring of crew, spacecraft, and environmental health has always been an integral part of the National Aeronautics and Space Administration's (NASA's) operations. Crew safety and mission success face a number of challenges in outerspace, including physiological adaptations to microgravity, radiation exposure, extreme temperatures and vacuum, and psychosocial reactions to space flight. The NASA effort to monitor and maintain crew health, system performance, and environmental integrity in space flight is a sophisticated and coordinated program of telemedicine combining cutting-edge engineering with medical expertise. As missions have increased in complexity, NASA telemedicine capabilities have grown apace, underlying its role in the field. At the same time, the terrestrial validation of telemedicine technologies to bring healthcare to remote locations provides feedback, improvement, and enhancement of the space program. As NASA progresses in its space exploration program, astronauts will join missions lasting months, even years, that take them millions of miles from home. These long-duration missions necessitate further technological breakthroughs in tele-operations and autonomous technology. Earth-based monitoring will no longer be real-time, requiring telemedicine capabilities to advance with future explorers as they travel deeper into space. The International Space Station will serve as a testbed for the telemedicine technologies to enable future missions as well as improve the quality of healthcare delivery on Earth.

  19. EarthLabs Modules: Engaging Students In Extended, Rigorous Investigations Of The Ocean, Climate and Weather

    Science.gov (United States)

    Manley, J.; Chegwidden, D.; Mote, A. S.; Ledley, T. S.; Lynds, S. E.; Haddad, N.; Ellins, K.

    2016-02-01

    EarthLabs, envisioned as a national model for high school Earth or Environmental Science lab courses, is adaptable for both undergraduate middle school students. The collection includes ten online modules that combine to feature a global view of our planet as a dynamic, interconnected system, by engaging learners in extended investigations. EarthLabs support state and national guidelines, including the NGSS, for science content. Four modules directly guide students to discover vital aspects of the oceans while five other modules incorporate ocean sciences in order to complete an understanding of Earth's climate system. Students gain a broad perspective on the key role oceans play in fishing industry, droughts, coral reefs, hurricanes, the carbon cycle, as well as life on land and in the seas to drive our changing climate by interacting with scientific research data, manipulating satellite imagery, numerical data, computer visualizations, experiments, and video tutorials. Students explore Earth system processes and build quantitative skills that enable them to objectively evaluate scientific findings for themselves as they move through ordered sequences that guide the learning. As a robust collection, EarthLabs modules engage students in extended, rigorous investigations allowing a deeper understanding of the ocean, climate and weather. This presentation provides an overview of the ten curriculum modules that comprise the EarthLabs collection developed by TERC and found at http://serc.carleton.edu/earthlabs/index.html. Evaluation data on the effectiveness and use in secondary education classrooms will be summarized.

  20. Evaluation of Earth's Geobiosphere Emergy Baseline and the Emergy of Crustal Cycling

    Science.gov (United States)

    De Vilbiss, Chris

    This dissertation quantitatively analyzed the exergy supporting the nucleosynthesis of the heavy isotopes, Earth's geobiosphere, and its crustal cycling. Exergy is that portion of energy that is available to drive work. The exergy sources that drive the geobiosphere are sunlight, Earth's rotational kinetic energy and relic heat, and radionuclides in Earth's interior. These four exergy sources were used to compute the Earth's geobiosphere emergy baseline (GEB), expressed as a single unit, solar equivalent joules (seJ). The seJ of radionuclides were computed by determining the quantity of gravitational exergy that dissipated in the production of both sunlight and heavy isotopes. This is a new method of computing solar equivalences also was applied to Earth's relic heat and rotational energy. The equivalent quantities of these four exergy sources were then added to express the GEB. This new baseline was compared with several other contemporary GEB methods. The new GEB is modeled as the support to Earth's crustal cycle and ultimately to the economical mineral deposits used in the US economy. Given the average annual cycling of crustal material and its average composition, specific emergies were calculated to express the average emergy per mass of particular crustal minerals. Chemical exergies of the minerals were used to develop transformities and specific emergies of minerals at heightened concentrations, i.e. minable concentrations. The effect of these new mineral emergy values were examined using the US economy as an example. The final result is an 83% reduction in the emergy of limestone, a 91% reduction in the aggregated emergy of all other minerals, and a 23% reduction in the emergy of the US economy. This dissertation explored three unique and innovative methods to compute the emergy of Earth's exergy sources and resources. First was a method for computing the emergy of radionuclides. Second was a method to evaluate the Earth's relic heat and dissipation of

  1. The National Aeronautics and Space Administration's Earth Science Applications Program: Exploring Partnerships to Enhance Decision Making in Public Health Practice

    Science.gov (United States)

    Vann, Timi S.; Venezia, Robert A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.

  2. Study on the light-color mixing of rare earth luminescent materials for anti-counterfeiting application

    Science.gov (United States)

    Zhang, Jishu; Zhang, Yingzi; Tao, Jin; Zhu, Yanan

    2018-04-01

    In order to find out the light color mixing mechanism of rare earth luminescent materials used in anti-counterfeiting fibers, we prepared three kinds of rare earth luminescent materials according to RGB tri-primary color, and mixed it together to form different mixtures in certain proportion. The phase structures of the luminescent material monomers were measured by x-ray diffractometer. The photochromic properties of the luminescent materials were tested and analyzed by fluorescence spectrophotometer. The results show that the light color mixing was consistent with the blending principle of additive color, but not the same because of the photochromic properties of rare earth luminescent materials, and we explored the reasons in the light wavelength and intensity. It was found that the enhancement of the luminescence intensity of the mixture on account of the superimposing of luminescence.

  3. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  4. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures

    Science.gov (United States)

    Cabrol, Nathalie A.

    2018-01-01

    Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration.

  5. Search for shape coexistence in odd - Z rare earth proton emitters

    International Nuclear Information System (INIS)

    Aggarwal, Mamta

    2015-01-01

    Nuclear shapes are very sensitive to the structural effects and can change with isospin and from one nucleus to its neighbour and in some cases configurations corresponding to different shapes may coexist at similar energies which may arise from intruder excitations. Search for such interesting phenomena of shape coexistence and rapidly changing shapes in the less explored region of rare earth odd Z nuclei from Z = 51 to 75 are the focus of present work

  6. Abstracts of the GAC-MAC annual meeting : planet Earth

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A broad range of issues dealing with geosciences were discussed at this joint meeting of the Geological Association of Canada and the Mineralogical Association of Canada, with particular emphasis on resource exploration. Other topics of discussion included economic geology; structural geology and tectonics; mineralogy, crystallography and mineral chemistry; igneous petrology, volcanology and metamorphic petrology; and, sedimentology, paleontology and micropaleontology. The challenges facing the Canadian geoscience community regarding greenhouse gases and global change were outlined along with new tools and technologies for mineral exploration. Over a thousand specialists in Earth sciences from Canada, the United States and Europe participated in the general session as well as conference exhibits, symposia, special courses, workshops, poster sessions, field trips and an outreach program. The conference featured more than 150 presentations, of which 8 have been catalogued separately for inclusion in this database.

  7. The challenges and benefits of lunar exploration

    Science.gov (United States)

    Cohen, Aaron

    1992-01-01

    Three decades into the Space Age, the United States is experiencing a fundamental shift in space policy with the adoption of a broad national goal to expand human presence and activity beyond Earth orbit and out into the Solar System. These plans mark a turning point in American space exploration, for they entail a shift away from singular forays to a long-term, evolutionary program of exploration and utilization of space. No longer limited to the technical and operational specifics of any one vehicle or any one mission plan, this new approach will involve a fleet of spacecraft and a stable of off-planet research laboratories, industrial facilities, and exploration programs. The challenges inherent in this program are immense, but so too are the benefits. Central to this new space architecture is the concept of using a lunar base for in-situ resource utilization, and for the development of planetary surface exploration systems, applicable to the Moon, Mars, and other planetary bodies in the Solar System. This paper discusses the technical, economic, and political challenges involved in this new approach, and details the latest thinking on the benefits that could come from bold new endeavors on the final frontier.

  8. EarthServer - 3D Visualization on the Web

    Science.gov (United States)

    Wagner, Sebastian; Herzig, Pasquale; Bockholt, Ulrich; Jung, Yvonne; Behr, Johannes

    2013-04-01

    EarthServer (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, is a project to enable the management, access and exploration of massive, multi-dimensional datasets using Open GeoSpatial Consortium (OGC) query and processing language standards like WCS 2.0 and WCPS. To this end, a server/client architecture designed to handle Petabyte/Exabyte volumes of multi-dimensional data is being developed and deployed. As an important part of the EarthServer project, six Lighthouse Applications, major scientific data exploitation initiatives, are being established to make cross-domain, Earth Sciences related data repositories available in an open and unified manner, as service endpoints based on solutions and infrastructure developed within the project. Clients technology developed and deployed in EarthServer ranges from mobile and web clients to immersive virtual reality systems, all designed to interact with a physically and logically distributed server infrastructure using exclusively OGC standards. In this contribution, we would like to present our work on a web-based 3D visualization and interaction client for Earth Sciences data using only technology found in standard web browsers without requiring the user to install plugins or addons. Additionally, we are able to run the earth data visualization client on a wide range of different platforms with very different soft- and hardware requirements such as smart phones (e.g. iOS, Android), different desktop systems etc. High-quality, hardware-accelerated visualization of 3D and 4D content in standard web browsers can be realized now and we believe it will become more and more common to use this fast, lightweight and ubiquitous platform to provide insights into big datasets without requiring the user to set up a specialized client first. With that in mind, we will also point out some of the limitations we encountered using current web technologies. Underlying the EarthServer web client

  9. The International Year of Planet Earth (2007-2009):Earth Sciences for Society

    Institute of Scientific and Technical Information of China (English)

    Eduardo F.J.de Mulder; Ted Nield; Edward Derbyshire

    2006-01-01

    Natural disasters like the 2004 tsunami bear graphic testimony to the Earth's incredible power. More effective use of geoscientific knowledge can save lives and protect property. Such knowledge also enables us to satisfy, in a sustainable manner,the growing need for Earth's resources by an expanding human population. Such knowledge is readily available in the practical experience and publications of some half a million Earth scientists all over the world, a professional community that is ready and willing to contribute to a safer, healthier and wealthier society if called upon by politicians and decision makers. Professional guidance by Earth scientists is available in many aspects of everyday life including, for example, identification of the best areas for urban expansion, sites to avoid for waste disposal, the location of new underground fresh water resources, and where certain toxic agents implicated in Earth-related diseases may be located, etc.The International Year of Planet Earth (2007-2009) aims to build on existing knowledge and make it more available for the improvement of everyday life, especially in the less developed countries, as expressed in the Year's subtitle: Earth sciences for Society. Ambitious outreach and science programmes constitute the backbone of the International Year, now politically endorsed by all 191 member states of the United Nations Organisation which has proclaimed 2008, the central year of the triennium, as the UN Year of Planet Earth. This paper describes who is behind the initiative,how it will work, and how the political process leading to United Nations proclamation proceeded. It also describes the financial and organisational aspects of the International Year, sets out the commitments necessary for the realization of the Year's ambitions by all nations, and explains how the raising of US$ 20 million will be approached.

  10. OpenEarth : Using Google Earth as outreach for NCK's data

    NARCIS (Netherlands)

    de Boer, G.J.; Baart, F.; Bruens, A.; Damsma, T.; van Geer, P.; Grasmeijer, B.; den Heijer, C.; van Koningsveld, M.; Santinelli, G.

    2012-01-01

    In 2003 various projects at Deltares and the TU-Delft merged their toolboxes for marine and coastal science and engineering into one toolbox, culminating in 2008 in an open source release, known as OpenEarthTools (OET). OpenEarth adopts the wikipedia approach to growth: web 2.0 crowd sourcing. All

  11. Rare earths: occurrence, production and applications

    International Nuclear Information System (INIS)

    Murthy, T.K.S.; Mukherjee, T.K.

    2002-01-01

    The mining and processing of rare earth minerals, particularly of monazite, began in a modest way in 1880s for commercialized production of mantle for gas lighting. For all major applications up to mid-twentieth century- production of lighter flints, misch metal as a metallurgical alloying agent, colouring, decolourizing and polishing agents for glass, petroleum cracking catalysts and arc-carbons, unseparated or partially separated rare earths were adequate. These applications continue till today. With the development and industrial application of powerful techniques like ion exchange and solvent extraction for the separation of rare earths, the decades after 1960 saw increasing utilization of the specific properties of the individual rare earths. Some of these advanced technological applications include: special glass for optical systems including camera lenses, phosphors for colour television, cathode ray tubes and fluorescent lighting, X-ray intensification screens, high intensity permanent magnets, electro optical devices, lasers, hydrogen storage materials, hydride rechargeable batteries, photomagnetic data storage systems, autoexhaust catalysts, special ceramics of unusual toughness, artificial diamonds and nonpoisonous plastic colorants. The topics covered in the book include rare earths: their story identity, rare earth resources, processing of ores and recovery of mixed rare earths products, separation and purification of rare earths, nonmetallic applications of rare earths, rare earth metals: production and applications, rare earth alloys and their applications, analysis of rare earth, processing of rare earth resources in India by Indian Rare Earth Ltd. and availability and market conditions

  12. Near-Earth Object Survey Simulation Software

    Science.gov (United States)

    Naidu, Shantanu P.; Chesley, Steven R.; Farnocchia, Davide

    2017-10-01

    There is a significant interest in Near-Earth objects (NEOs) because they pose an impact threat to Earth, offer valuable scientific information, and are potential targets for robotic and human exploration. The number of NEO discoveries has been rising rapidly over the last two decades with over 1800 being discovered last year, making the total number of known NEOs >16000. Pan-STARRS and the Catalina Sky Survey are currently the most prolific NEO surveys, having discovered >1600 NEOs between them in 2016. As next generation surveys such as Large Synoptic Survey Telescope (LSST) and the proposed Near-Earth Object Camera (NEOCam) become operational in the next decade, the discovery rate is expected to increase tremendously. Coordination between various survey telescopes will be necessary in order to optimize NEO discoveries and create a unified global NEO discovery network. We are collaborating on a community-based, open-source software project to simulate asteroid surveys to facilitate such coordination and develop strategies for improving discovery efficiency. Our effort so far has focused on development of a fast and efficient tool capable of accepting user-defined asteroid population models and telescope parameters such as a list of pointing angles and camera field-of-view, and generating an output list of detectable asteroids. The software takes advantage of the widely used and tested SPICE library and architecture developed by NASA’s Navigation and Ancillary Information Facility (Acton, 1996) for saving and retrieving asteroid trajectories and camera pointing. Orbit propagation is done using OpenOrb (Granvik et al. 2009) but future versions will allow the user to plug in a propagator of their choice. The software allows the simulation of both ground-based and space-based surveys. Performance is being tested using the Grav et al. (2011) asteroid population model and the LSST simulated survey “enigma_1189”.

  13. A detailed view of Earth across space and time: our changing planet through a 32-year global Landsat and Sentinel-2 timelapse video

    Science.gov (United States)

    Herwig, C.

    2017-12-01

    The Landsat program offers an unparalleled record of our changing planet, with satellites that have been observing the Earth since 1972 to the present day. However, clouds, seasonal variation, and technical challenges around access to large volumes of data make it difficult for researchers and the public to understand global and regional scale changes across time through the planetary dataset. Earth Timelapse is a global, zoomable video that has helped revolutionize how users - millions of which have never been capable of utilizing Landsat data before - monitor and understand a changing planet. It is made from 33 cloud-free annual mosaics, one for each year from 1984 to 2016, which are made interactively explorable by Carnegie Mellon University CREATE Lab's Time Machine library, a technology for creating and viewing zoomable and pannable timelapses over space and time. Using Earth Engine, we combined over 5 million satellite images acquired over the past three decades by 5 different satellites. The majority of the images come from Landsat, a joint USGS/NASA Earth observation program that has observed the Earth since the 1970s. For 2015 and 2016, we combined Landsat 8 imagery with imagery from Sentinel-2A, part of the European Commission and European Space Agency's Copernicus Earth observation program. Along with the interactive desktop Timelapse application, we created a 200-video YouTube playlist highlighting areas across the world exhibiting change in the dataset.Earth Timelapse is an example that illustrates the power of Google Earth Engine's cloud-computing platform, which enables users such as scientists, researchers, and journalists to detect changes, map trends, and quantify differences on the Earth's surface using Google's computational infrastructure and the multi-petabyte Earth Engine data catalog. Earth Timelapse also highlights the value of data visualization to communicate with non-scientific audiences with varied technical and internet connectivity

  14. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  15. Volcano-ice interaction as a microbial habitat on Earth and Mars.

    Science.gov (United States)

    Cousins, Claire R; Crawford, Ian A

    2011-09-01

    Volcano-ice interaction has been a widespread geological process on Earth that continues to occur to the present day. The interaction between volcanic activity and ice can generate substantial quantities of liquid water, together with steep thermal and geochemical gradients typical of hydrothermal systems. Environments available for microbial colonization within glaciovolcanic systems are wide-ranging and include the basaltic lava edifice, subglacial caldera meltwater lakes, glacier caves, and subsurface hydrothermal systems. There is widespread evidence of putative volcano-ice interaction on Mars throughout its history and at a range of latitudes. Therefore, it is possible that life on Mars may have exploited these habitats, much in the same way as has been observed on Earth. The sedimentary and mineralogical deposits resulting from volcano-ice interaction have the potential to preserve evidence of any indigenous microbial populations. These include jökulhlaup (subglacial outflow) sedimentary deposits, hydrothermal mineral deposits, basaltic lava flows, and subglacial lacustrine deposits. Here, we briefly review the evidence for volcano-ice interactions on Mars and discuss the geomicrobiology of volcano-ice habitats on Earth. In addition, we explore the potential for the detection of these environments on Mars and any biosignatures these deposits may contain.

  16. The Lunar Space Tug: A sustainable bridge between low Earth orbits and the Cislunar Habitat

    Science.gov (United States)

    Mammarella, M.; Paissoni, C. A.; Viola, N.; Denaro, A.; Gargioli, E.; Massobrio, F.

    2017-09-01

    The International Space Station is the first space human outpost and over the last 15 years, it has represented a peculiar environment where science, technology and human innovation converge together in a unique microgravity and space research laboratory. With the International Space Station entering the second part of its life and its operations running steadily at nominal pace, the global space community is starting planning how the human exploration could move further, beyond Low-Earth-Orbit. According to the Global Exploration Roadmap, the Moon represents the next feasible path-way for advances in human exploration towards the nal goal, Mars. Based on the experience of the ISS, one of the most widespread ideas is to develop a Cislunar Station in preparation of long duration missions in a deep space environment. Cislunar space is de ned as the area of deep space under the influence of Earth-Moon system, including a set of special orbits, e.g. Earth-Moon Libration points and Lunar Retrograde Orbit. This habitat represents a suitable environment for demonstrating and testing technologies and capabilities in deep space. In order to achieve this goal, there are several crucial systems and technologies, in particular related to transportation and launch systems. The Orion Multi-Purpose Crew Vehicle is a reusable transportation capsule designed to provide crew transportation in deep space missions, whereas NASA is developing the Space Launch System, the most powerful rocket ever built, which could provide the necessary heavy-lift launch capability to support the same kind of missions. These innovations would allow quite-fast transfers from Earth to the Cislunar Station and vice versa, both for manned and unmanned missions. However, taking into account the whole Concept of Operations for both the growth and sustainability of the Cislunar Space Station, the Lunar Space Tug can be considered as an additional, new and fundamental element for the mission architecture. The

  17. Astrobiology and the Possibility of Life on Earth and Elsewhere…

    Science.gov (United States)

    Cottin, Hervé; Kotler, Julia Michelle; Bartik, Kristin; Cleaves, H. James; Cockell, Charles S.; de Vera, Jean-Pierre P.; Ehrenfreund, Pascale; Leuko, Stefan; Ten Kate, Inge Loes; Martins, Zita; Pascal, Robert; Quinn, Richard; Rettberg, Petra; Westall, Frances

    2017-07-01

    Astrobiology is an interdisciplinary scientific field not only focused on the search of extraterrestrial life, but also on deciphering the key environmental parameters that have enabled the emergence of life on Earth. Understanding these physical and chemical parameters is fundamental knowledge necessary not only for discovering life or signs of life on other planets, but also for understanding our own terrestrial environment. Therefore, astrobiology pushes us to combine different perspectives such as the conditions on the primitive Earth, the physicochemical limits of life, exploration of habitable environments in the Solar System, and the search for signatures of life in exoplanets. Chemists, biologists, geologists, planetologists and astrophysicists are contributing extensively to this interdisciplinary research field. From 2011 to 2014, the European Space Agency (ESA) had the initiative to gather a Topical Team of interdisciplinary scientists focused on astrobiology to review the profound transformations in the field that have occurred since the beginning of the new century. The present paper is an interdisciplinary review of current research in astrobiology, covering the major advances and main outlooks in the field. The following subjects will be reviewed and most recent discoveries will be highlighted: the new understanding of planetary system formation including the specificity of the Earth among the diversity of planets, the origin of water on Earth and its unique combined properties among solvents for the emergence of life, the idea that the Earth could have been habitable during the Hadean Era, the inventory of endogenous and exogenous sources of organic matter and new concepts about how chemistry could evolve towards biological molecules and biological systems. In addition, many new findings show the remarkable potential life has for adaptation and survival in extreme environments. All those results from different fields of science are guiding our

  18. Toward a global space exploration program: A stepping stone approach

    Science.gov (United States)

    Ehrenfreund, Pascale; McKay, Chris; Rummel, John D.; Foing, Bernard H.; Neal, Clive R.; Masson-Zwaan, Tanja; Ansdell, Megan; Peter, Nicolas; Zarnecki, John; Mackwell, Steve; Perino, Maria Antionetta; Billings, Linda; Mankins, John; Race, Margaret

    2012-01-01

    In response to the growing importance of space exploration in future planning, the Committee on Space Research (COSPAR) Panel on Exploration (PEX) was chartered to provide independent scientific advice to support the development of exploration programs and to safeguard the potential scientific assets of solar system objects. In this report, PEX elaborates a stepwise approach to achieve a new level of space cooperation that can help develop world-wide capabilities in space science and exploration and support a transition that will lead to a global space exploration program. The proposed stepping stones are intended to transcend cross-cultural barriers, leading to the development of technical interfaces and shared legal frameworks and fostering coordination and cooperation on a broad front. Input for this report was drawn from expertise provided by COSPAR Associates within the international community and via the contacts they maintain in various scientific entities. The report provides a summary and synthesis of science roadmaps and recommendations for planetary exploration produced by many national and international working groups, aiming to encourage and exploit synergies among similar programs. While science and technology represent the core and, often, the drivers for space exploration, several other disciplines and their stakeholders (Earth science, space law, and others) should be more robustly interlinked and involved than they have been to date. The report argues that a shared vision is crucial to this linkage, and to providing a direction that enables new countries and stakeholders to join and engage in the overall space exploration effort. Building a basic space technology capacity within a wider range of countries, ensuring new actors in space act responsibly, and increasing public awareness and engagement are concrete steps that can provide a broader interest in space exploration, worldwide, and build a solid basis for program sustainability. By engaging

  19. Rare earths 1998 market update

    International Nuclear Information System (INIS)

    Tourre, J.M.

    1998-01-01

    The rare earth industry has always been a world of rapid change with the emergence of new markets, new ores and new players, as well as the disappearance of old applications. Rare earth based products are used in a great diversity of applications such as hard disk drives, CD drives, batteries, capacitors, pigments, ceramics, polishing powders, fuel cells, flints, catalyst converter, fluid cracking catalysts, etc. South East Asia holds the largest share of the known reserve of rare earth ores and is one of the major markets for rare earth compounds; in the last ten years, China has become the largest producer of rare earth intermediates as well as an important exporter of separated rare earth elements. Today, China has approximately 150 factories producing rare earth compounds, most of which are experiencing financial difficulties due to the lack of knowledge of true market needs, lack of control of their distribution channels and production over-capacity. Recently the Chinese rare earth producers have recognized the situation and efforts are underway to rationalize rare earth production. Japan has dominated many of the major application markets, and is by far the largest market for metal and alloy products. This will remain the case for the next five years; however, new countries are emerging as significant users of rare earth products such as Korea, Taiwan and Malaysia. During the last ten years rare earth producers adjusted to several radical changes that affected the raw materials, the application mix and the price structure. New producers have emerged, especially from China; some have subsequently stopped their activities while others have focused their efforts in a specific market segment

  20. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    Science.gov (United States)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  1. 'One physical system': Tansley's ecosystem as Earth's critical zone.

    Science.gov (United States)

    Richter, Daniel deB; Billings, Sharon A

    2015-05-01

    Integrative concepts of the biosphere, ecosystem, biogeocenosis and, recently, Earth's critical zone embrace scientific disciplines that link matter, energy and organisms in a systems-level understanding of our remarkable planet. Here, we assert the congruence of Tansley's (1935) venerable ecosystem concept of 'one physical system' with Earth science's critical zone. Ecosystems and critical zones are congruent across spatial-temporal scales from vegetation-clad weathering profiles and hillslopes, small catchments, landscapes, river basins, continents, to Earth's whole terrestrial surface. What may be less obvious is congruence in the vertical dimension. We use ecosystem metabolism to argue that full accounting of photosynthetically fixed carbon includes respiratory CO₂ and carbonic acid that propagate to the base of the critical zone itself. Although a small fraction of respiration, the downward diffusion of CO₂ helps determine rates of soil formation and, ultimately, ecosystem evolution and resilience. Because life in the upper portions of terrestrial ecosystems significantly affects biogeochemistry throughout weathering profiles, the lower boundaries of most terrestrial ecosystems have been demarcated at depths too shallow to permit a complete understanding of ecosystem structure and function. Opportunities abound to explore connections between upper and lower components of critical-zone ecosystems, between soils and streams in watersheds, and between plant-derived CO₂ and deep microbial communities and mineral weathering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Comments about "Earth 3.0"

    Science.gov (United States)

    Dator, Jim

    2006-01-01

    Dr. Christopher P. McKay, Planetary Scientist with the Space Science Division of NASA Ames. Chris received his Ph.D. in AstroGeophysics from the University of Colorado in 1982 and has been a research scientist with the NASA Ames Research Center since that time. His current research focuses on the evolution of the solar system and the origin of life. He is also actively involved in planning for future Mars missions including human exploration. Chris been involved in research in Mars-like environments on Earth, traveling to the Antarctic dry valleys, Siberia, the Canadian Arctic, and the Atacama desert to study life in these Mars-like environments. His was a co-I on the Titan Huygen s probe in 2005, the Mars Phoenix lander mission for 2007, and the Mars Science Lander mission for 2009.

  3. Earth and Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kosygin, Yu A

    1986-12-01

    Rocks, the age of which according to certain data exceeds considerably the recognized age of the Earth and approximates the age of the Universe, have been detected on the Earth. There is a necessity to coordinate the geological data with cosmological structures.

  4. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    Science.gov (United States)

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.

  5. Baltic Earth - Earth System Science for the Baltic Sea Region

    Science.gov (United States)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  6. Biological and geophysical feedbacks with fire in the Earth system

    Science.gov (United States)

    Archibald, S.; Lehmann, C. E. R.; Belcher, C. M.; Bond, W. J.; Bradstock, R. A.; Daniau, A.-L.; Dexter, K. G.; Forrestel, E. J.; Greve, M.; He, T.; Higgins, S. I.; Hoffmann, W. A.; Lamont, B. B.; McGlinn, D. J.; Moncrieff, G. R.; Osborne, C. P.; Pausas, J. G.; Price, O.; Ripley, B. S.; Rogers, B. M.; Schwilk, D. W.; Simon, M. F.; Turetsky, M. R.; Van der Werf, G. R.; Zanne, A. E.

    2018-03-01

    Roughly 3% of the Earth’s land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels—namely plants and their litter—that are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants have evolved traits that both tolerate and promote fire numerous times and across diverse clades. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemical and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences.

  7. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1978-01-01

    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  8. Ocean World Exploration and SLS: Enabling the Search for Life

    Science.gov (United States)

    Creech, Stephen D.; Vane, Greg

    2016-01-01

    Whether life exists on worlds other than Earth is one of the most compelling questions facing space science today. Given that, on Earth, life exists wherever water is found, worlds harboring large amounts of water are prime targets in the search for an answer to this question. Jovian moons Europa, Callisto, and Ganymede; Saturnian moons Enceladus and Titan; and possibly Neptune's Triton are all worlds in the outer solar system on which large quantities of water can be found in solid and liquid form. So compelling are these worlds as targets for scientific study that the United States Congress recently initiated a directive to NASA to create an "Ocean Worlds Exploration Program, comprised of frequent small, medium and large missions that poses the potential to revolutionize our understanding of the solar system and life within it, perhaps more profoundly event than the modern-day search for past or extant life on Mars. Any life detected at the remote "ocean worlds" in the outer solar system would likely have formed and evolved along an independent path from life on Earth itself, giving us a deeper understanding of the potential for broad variety amongst life in the universe. In NASA's robotic study of Mars, a key to the success of the "search for water" was the ability to conduct iterative exploration via a series of missions launched on a regular cadence based on 26-month cycles of prime planetary-alignment windows of reduced transit time. Through this cadence, NASA was able to send to Mars a series of orbiters and landers, using the knowledge gained from each mission to inform and refine the goals of the next. The ability to conduct iterative exploration in this manner could have a substantial impact on exploration of the "ocean worlds," allowing scientists to narrow their targets of interest in the search for life based on data sent back by successive missions. This ability is currently limited by the transit periods available from contemporary evolved expendable

  9. The Chinese Society of Rare Earth is Studying The Feasibility of Marketing Rare Earth Futures

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Lin Donglu,secretary-general of the Chinese Society of Rare Earth recently said,the Chinese Society of Rare Earth undertook the research on subject of the National Social Science Fund Foundation on the reform of Chinese rare earth trading pricing mechanism on promoting RMB globalization,and is focusing on studying the feasibility of marketing rare earth futures variety.

  10. Frontiers of Life Sciences: The Human Exploration of the Moon and Mars

    Science.gov (United States)

    North, Regina M.; Pellis, Neal R.

    2005-01-01

    The rapid development of the productive processes after World War II extended human settlements into new ecological niches. Advances in Life Sciences played a decisive role supporting the establishment of human presence in areas of the planet where human life could have not existed otherwise. The evolution of life support systems, and the fabrication of new materials and technologies has enabled humans to inhabit Polar Regions, ocean surfaces and depths; and to leave Earth and occupy Low Earth Orbit. By the end of the 20 th Century, stations in the Antarctic and Arctic, off shore oil platforms, submarines, and space stations had become the ultimate demonstration of human ability to engineer habitats at Earth extreme environments and outer space. As we enter the 21st Century, the next development of human settlements will occur through the exploration of the Moon, Mars, and beyond. The major risks of space exploration derive from long exposure of humans and other life systems to radiation, microgravity, isolation and confinement, dependence on artificial life support systems, and unknown effects (e.g., altered magnetic fields, ultrahigh vacuum on bacteria, fungi, etc.). Countermeasures will require a complete characterization of human and other biological systems adaptation processes. To sustain life in transit and on the surface of the Moon and Mars will require a balance of spacecraft, cargo, astronaut crews, and the use of in situ resources. Limitations on the number of crewmembers, payloads, and the barrenness of the terrain require a novel design for the capabilities needed in transit and at exploration outpost sites. The planned destinations have resources that may be accessed to produce materials, food, shelter, power, and to provide an environment compatible with successful occupation of longterm exploration sites. Once more, the advancements of Life Sciences will be essential for the design of interplanetary voyages and planetary surface operations. This

  11. Human Exploration Science Office (KX) Overview

    Science.gov (United States)

    Calhoun, Tracy A.

    2014-01-01

    expertise in the application of engineering imagery to spaceflight. The team links NASA programs and private industry with imagery capabilities developed and honed through decades of human spaceflight, including imagery integration, imaging assets, imagery data management, and photogrammetric analysis. The team is currently supporting several NASA programs, including commercial demonstration missions. The Earth Science and Remote Sensing Team is responsible for integrating the scientific use of Earth-observation assets onboard the ISS, which consist of externally mounted sensors and crew photography capabilities. This team facilitates collaboration on remote sensing and participates in research with academic organizations and other Government agencies, not only in conjunction with ISS science, but also for planetary exploration and regional environmental/geological studies. Human exploration science focuses on science strategies for future human exploration missions to the Moon, Mars, asteroids, and beyond. This function provides communication and coordination between the science community and mission planners. ARES scientists support the operation of robotic missions (i.e., Mars Exploration Rovers and the Mars Science Laboratory), contribute to the interpretation of returned mission data, and translate robotic mission technologies and techniques to human spaceflight.

  12. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  13. Scientific rationale for Uranus and Neptune in situ explorations

    Science.gov (United States)

    Mousis, O.; Atkinson, D. H.; Cavalié, T.; Fletcher, L. N.; Amato, M. J.; Aslam, S.; Ferri, F.; Renard, J.-B.; Spilker, T.; Venkatapathy, E.; Wurz, P.; Aplin, K.; Coustenis, A.; Deleuil, M.; Dobrijevic, M.; Fouchet, T.; Guillot, T.; Hartogh, P.; Hewagama, T.; Hofstadter, M. D.; Hue, V.; Hueso, R.; Lebreton, J.-P.; Lellouch, E.; Moses, J.; Orton, G. S.; Pearl, J. C.; Sánchez-Lavega, A.; Simon, A.; Venot, O.; Waite, J. H.; Achterberg, R. K.; Atreya, S.; Billebaud, F.; Blanc, M.; Borget, F.; Brugger, B.; Charnoz, S.; Chiavassa, T.; Cottini, V.; d'Hendecourt, L.; Danger, G.; Encrenaz, T.; Gorius, N. J. P.; Jorda, L.; Marty, B.; Moreno, R.; Morse, A.; Nixon, C.; Reh, K.; Ronnet, T.; Schmider, F.-X.; Sheridan, S.; Sotin, C.; Vernazza, P.; Villanueva, G. L.

    2018-06-01

    The ice giants Uranus and Neptune are the least understood class of planets in our solar system but the most frequently observed type of exoplanets. Presumed to have a small rocky core, a deep interior comprising ∼70% heavy elements surrounded by a more dilute outer envelope of H2 and He, Uranus and Neptune are fundamentally different from the better-explored gas giants Jupiter and Saturn. Because of the lack of dedicated exploration missions, our knowledge of the composition and atmospheric processes of these distant worlds is primarily derived from remote sensing from Earth-based observatories and space telescopes. As a result, Uranus's and Neptune's physical and atmospheric properties remain poorly constrained and their roles in the evolution of the Solar System not well understood. Exploration of an ice giant system is therefore a high-priority science objective as these systems (including the magnetosphere, satellites, rings, atmosphere, and interior) challenge our understanding of planetary formation and evolution. Here we describe the main scientific goals to be addressed by a future in situ exploration of an ice giant. An atmospheric entry probe targeting the 10-bar level, about 5 scale heights beneath the tropopause, would yield insight into two broad themes: i) the formation history of the ice giants and, in a broader extent, that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. In addition, possible mission concepts and partnerships are presented, and a strawman ice-giant probe payload is described. An ice-giant atmospheric probe could represent a significant ESA contribution to a future NASA ice-giant flagship mission.

  14. International Planning for Subglacial Lake Exploration

    Science.gov (United States)

    Kennicutt, M.; Priscu, J.

    2003-04-01

    As one of the last unexplored frontiers on our planet, subglacial lakes offer a unique and exciting venue for exploration and research. Over the past several years, subglacial lakes have captured the imagination of the scientific community and public, evoking images of potential exotic life forms surviving under some of the most extreme conditions on earth. Various planning activities have recognized that due to the remote and harsh conditions, that a successful subglacial lake exploration program will entail a concerted effort for a number of years. It will also require an international commitment of major financial and human resources. To begin a detailed planning process, the Scientific Committee on Antarctic Research (SCAR) convened the Subglacial Antarctic Lake Exploration Group of Specialists (SALEGOS) in Tokyo in 2000. The group was asked to build on previous workshops and meetings to develop a plan to explore subglacial lake environments. Its mandate adopted the guiding principles as agreed in Cambridge in 1999 that the program would be interdisciplinary in scope, be designed for minimum contamination and disturbance of the subglacial lake environment, have as a goal lake entry and sample retrieval, and that the ultimate target of the program should be Lake Vostok exploration. Since its formation SALEGOS has met three times and addressed some of the more intractable issues related to subglacial lake exploration. Topics under discussion include current state-of-the-knowledge of subglacial environments, technological needs, international management and organizational strategies, a portfolio of scientific projects, "clean" requirements, and logistical considerations. In this presentation the actvities of SALEGOS will be summarized and recommendations for an international subglacial lake exploration program discussed.

  15. Rare earth metals in North America; Zeldzame aardmetalen in Noord-Amerika

    Energy Technology Data Exchange (ETDEWEB)

    Louzada, K.

    2012-11-15

    The uncertain supply of rare earth metals (Rare Earth Elements) from China for the high tech industry in the U.S. is a barrier for innovation and the high-tech manufacturing industry. Many rare earths are applied in permanent magnets for sustainable energy generation and for energy storage systems in for example electric cars. Also other sectors feel the pressure of shortages. The federal government in the USA and US companies use the opportunity to encourage research into recycling, reducing the use and finding alternatives for rare earths. Canada sees in the uncertain supply and dwindling reserves in the USA and elsewhere an economic opportunity. Canada can start the development of hitherto unprofitable reserves of valuable materials. Both in the USA and Canada, the number of exploration projects in the mining industry has grown significantly [Dutch] De onzekere aanvoer van zeldzame aardmetalen (Rare Earth Elements) uit China voor de hightechindustrie vormt in de VS een hindernis voor innovatie en voor de hightech maakindustrie. Met name in permanente magneten voor duurzame energieopwekking en energieopslagsystemen voor bijvoorbeeld elektrische auto's worden veel zeldzame aardmetalen verwerkt. Ook andere sectoren staan onder druk. De federale overheid en bedrijven in de VS maken van de gelegenheid gebruik om onderzoek naar de recycling, vermindering van het gebruik en alternatieven voor zeldzame aardmetalen te stimuleren. Canada ziet de onzekere aanvoer en slinkende reserves in de VS en elders als een economische kans. Het land kan tot nu toe onrendabele voorkomens van de waardevolle materialen gaan ontwikkelen. Zowel in de VS als in Canada is het aantal exploratieprojecten in de mijnbouw aanzienlijk gegroeid.

  16. NASA's Solar System Exploration Research Virtual Institute: Merging Science and Exploration

    Science.gov (United States)

    Pendleton, Y. J.; Schmidt, G. K.; Bailey, B. E.; Minafra, J. A.

    2016-01-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration, and was created to enable a deeper understanding of the Moon and other airless bodies. SSERVI is supported jointly by NASA's Science Mission Directorate and Human Exploration and Operations Mission Directorate. The institute currently focuses on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars, but the institute goals may expand, depending on NASA's needs, in the future. The 9 initial teams, selected in late 2013 and funded from 2014-2019, have expertise across the broad spectrum of lunar, NEA, and Martian moon sciences. Their research includes various aspects of the surface, interior, exosphere, near-space environments, and dynamics of these bodies. NASA anticipates a small number of additional teams to be selected within the next two years, with a Cooperative Agreement Notice (CAN) likely to be released in 2016. Calls for proposals are issued every 2-3 years to allow overlap between generations of institute teams, but the intent for each team is to provide a stable base of funding for a five year period. SSERVI's mission includes acting as a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. The SSERVI central office is located at NASA Ames Research Center in Mountain View, CA. The administrative staff at the central office forms the organizational hub for the domestic and international teams and enables the virtual collaborative environment. Interactions with geographically dispersed teams across the U.S., and global partners, occur easily and frequently in a collaborative virtual environment. This poster will provide an overview of the 9 current US teams and

  17. Lunar exploration: opening a window into the history and evolution of the inner Solar System.

    Science.gov (United States)

    Crawford, Ian A; Joy, Katherine H

    2014-09-13

    The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Geomagnetic field of earth

    International Nuclear Information System (INIS)

    Delipetrev, Marjan; Delipetrev, Blagoj; Panovska, Sanja

    2008-01-01

    In this paper is introduced the theory of geomagnetic field of the Earth. A homogenous and isotropic sphere is taken for a model of Earth with a bar magnet at its center as a magnetic potential. The understanding of the real origin of geomagnetic field produced from differential rotation of inner core with respect to the outer core of Earth is here presented. Special attention is given to the latest observed data of the established net of geomagnetic repeat stations in the Republic of Macedonia. Finally, the maps of elements of geomagnetic field and the equation for calculation of normal magnetic field of Earth are provided. (Author)

  19. Heterogeniety and Heterarchy: How far can network analyses in Earth and space sciences?

    Science.gov (United States)

    Prabhu, A.; Fox, P. A.; Eleish, A.; Li, C.; Pan, F.; Zhong, H.

    2017-12-01

    The vast majority of explorations of Earth systems are limited in their ability to effectively explore the most important (often most difficult) problems because they are forced to interconnect at the data-element, or syntactic, level rather than at a higher scientific, or conceptual/ semantic, level. Recent successes in the application of complex network theory and algorithms to minerology, fossils and proteins over billions of years of Earth's history, raise expectations that more general graph-based approaches offer the opportunity for new discoveries = needles instead of haystacks. In the past 10 years in the natural sciences there has substantial progress in providing both specialists and non-specialists the ability to describe in machine readable form, geophysical quantities and relations among them in meaningful and natural ways, effectively breaking the prior syntax barrier. The corresponding open-world semantics and reasoning provide higher-level interconnections. That is, semantics provided around the data structures, using open-source tools, allow for discovery at the knowledge level. This presentation will cover the fundamentals of data-rich network analyses for geosciences, provide illustrative examples in mineral evolution and offer future paths for consideration.

  20. Super Global Projects and Environmentally Friendly Technologies Used in Space Exploration: Realities and Prospects of the Space Age

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2018-02-01

    Full Text Available The 60th anniversary of the Space Age is an important intermediate finishing point on the way of a man and the whole humanity to space. Along with the outstanding achievements, there are a number of challenges and contradictions in space exploration due to the aggravation of the global crisis on Earth, low efficiency and the backlog of space research in the transition to a new technology based reality and clean technologies. Both the international astronautics and the space exploration area nowadays face difficulties in choosing a new paradigm and a development strategy that is becoming even more complicated due to the current unstable and turbulent situation on Earth. The article reveals the optimistic scenario of further space exploration, as well as the methodological and practical aspects of new projects and technologies. The periodization of the Space Age history has been conducted. It has been also proposed a new classification of the “space” phenomenon due to concretizing the concept of “global” in the form of a three-scale structure encompassing the following levels: 1 planetary global; 2 super global; 3 universally global. The notion of “super global space exploration project” has been introduced. The concept of further space exploration is proposed, which includes four interrelated super global projects:1 Earth Protection System from Asteroid and Comet Threat; 2 Moon Exploration; 3 Mars Exploration; 4 Cosmic Humanity. Since the humanity is embarking on the practical implementation of these super global projects, it is urgent to make a transition towards a new technology based order, as well as up-to-date technologies. A couple of ecological projects and space exploration technologies of the 20th and 21st centuries have been exemplified and analyzed. It has been also worked out the list of new environmentally friendly space technologies and projects. The research makes an emphasis upon a great potential of clean and green

  1. Global partnerships: Expanding the frontiers of space exploration education

    Science.gov (United States)

    MacLeish, Marlene Y.; Akinyede, Joseph O.; Goswami, Nandu; Thomson, William A.

    2012-11-01

    Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the "inspirational and educational value of space exploration" [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics' (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2]. Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives. This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed

  2. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  3. Safety aspects in rare earths recovery

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2014-01-01

    Recovery of rare earths involves mining of beach sands, mineral separation to obtain monazite and its chemical processing to obtain rare earth composites. The composites are then subjected to further chemical treatment to obtain individual rare earths. Although the separated out rare earths are not radioactive, the process for recovery of rare earths involve both radiological as well as conventional hazards. This paper highlights the safety aspects in the mining, mineral separation and chemical processing of monazite to obtain rare earths

  4. EarthCube Cyberinfrastructure: The Importance of and Need for International Strategic Partnerships to Enhance Interconnectivity and Interoperability

    Science.gov (United States)

    Ramamurthy, M. K.; Lehnert, K.; Zanzerkia, E. E.

    2017-12-01

    The United States National Science Foundation's EarthCube program is a community-driven activity aimed at transforming the conduct of geosciences research and education by creating a well-connected cyberinfrastructure for sharing and integrating data and knowledge across all geoscience disciplines in an open, transparent, and inclusive manner and to accelerate our ability to understand and predict the Earth system. After five years of community engagement, governance, and development activities, EarthCube is now transitioning into an implementation phase. In the first phase of implementing the EarthCube architecture, the project leadership has identified the following architectural components as the top three priorities, focused on technologies, interfaces and interoperability elements that will address: a) Resource Discovery; b) Resource Registry; and c) Resource Distribution and Access. Simultaneously, EarthCube is exploring international partnerships to leverage synergies with other e-infrastructure programs and projects in Europe, Australia, and other regions and discuss potential partnerships and mutually beneficial collaborations to increase interoperability of systems for advancing EarthCube's goals in an efficient and effective manner. In this session, we will present the progress of EarthCube on a number of fronts and engage geoscientists and data scientists in the future steps toward the development of EarthCube for advancing research and discovery in the geosciences. The talk will underscore the importance of strategic partnerships with other like eScience projects and programs across the globe.

  5. Solar system exploration

    International Nuclear Information System (INIS)

    Briggs, G.A.; Quaide, W.L.

    1986-01-01

    Two fundamental goals lie at the heart of U.S. solar system exploration efforts: first, to characterize the evolution of the solar system; second, to understand the processes which produced life. Progress in planetary science is traced from Newton's definition of the principles of gravitation through a variety of NASA planetary probes in orbit, on other planets and traveling beyond the solar system. It is noted that most of the planetary data collected by space probes are always eventually applied to improving the understanding of the earth, moon, Venus and Mars, the planets of greatest interest to humans. Significant data gathered by the Mariner, Viking, Apollo, Pioneer, and Voyager spacecraft are summarized, along with the required mission support capabilities and mission profiles. Proposed and planned future missions to Jupiter, Saturn, Titan, the asteroids and for a comet rendzvous are described

  6. Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Alex R.; Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544 (United States); Verne, Wesley, E-mail: arhowe@astro.princeton.edu, E-mail: burrows@astro.princeton.edu [Department of Computer Science, Princeton University, Princeton, NJ 08544 (United States)

    2014-06-01

    Many exoplanets have been discovered with radii of 1-4 R {sub ⊕}, between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are 'sub-Neptunes' likely to have significant H{sub 2}-He envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, H{sub 2}-He envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both ''Earth-like'' rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.

  7. Mass-radius relations and core-envelope decompositions of super-Earths and sub-Neptunes

    International Nuclear Information System (INIS)

    Howe, Alex R.; Burrows, Adam; Verne, Wesley

    2014-01-01

    Many exoplanets have been discovered with radii of 1-4 R ⊕ , between that of Earth and Neptune. A number of these are known to have densities consistent with solid compositions, while others are 'sub-Neptunes' likely to have significant H 2 -He envelopes. Future surveys will no doubt significantly expand these populations. In order to understand how the measured masses and radii of such planets can inform their structures and compositions, we construct models both for solid layered planets and for planets with solid cores and gaseous envelopes, exploring a range of core masses, H 2 -He envelope masses, and associated envelope entropies. For planets in the super-Earth/sub-Neptune regime for which both radius and mass are measured, we estimate how each is partitioned into a solid core and gaseous envelope, associating a specific core mass and envelope mass with a given exoplanet. We perform this decomposition for both ''Earth-like'' rock-iron cores and pure ice cores, and find that the necessary gaseous envelope masses for this important sub-class of exoplanets must range very widely from zero to many Earth masses, even for a given core mass. This result bears importantly on exoplanet formation and envelope evaporation processes.

  8. Moving Closer to EarthScope: A Major New Initiative for the Earth Sciences*

    Science.gov (United States)

    Simpson, D.; Blewitt, G.; Ekstrom, G.; Henyey, T.; Hickman, S.; Prescott, W.; Zoback, M.

    2002-12-01

    EarthScope is a scientific research and infrastructure initiative designed to provide a suite of new observational facilities to address fundamental questions about the evolution of continents and the processes responsible for earthquakes and volcanic eruptions. The integrated observing systems that will comprise EarthScope capitalize on recent developments in sensor technology and communications to provide Earth scientists with synoptic and high-resolution data derived from a variety of geophysical sensors. An array of 400 broadband seismometers will spend more than ten years crossing the contiguous 48 states and Alaska to image features that make up the internal structure of the continent and underlying mantle. Additional seismic and electromagnetic instrumentation will be available for high resolution imaging of geological targets of special interest. A network of continuously recording Global Positioning System (GPS) receivers and sensitive borehole strainmeters will be installed along the western U.S. plate boundary. These sensors will measure how western North America is deforming, what motions occur along faults, how earthquakes start, and how magma flows beneath active volcanoes. A four-kilometer deep observatory bored directly into the San Andreas fault will provide the first opportunity to observe directly the conditions under which earthquakes occur, to collect fault rocks and fluids for laboratory study, and to monitor continuously an active fault zone at depth. All data from the EarthScope facilities will be openly available in real-time to maximize participation from the scientific community and to provide on-going educational outreach to students and the public. EarthScope's sensors will revolutionize observational Earth science in terms of the quantity, quality and spatial extent of the data they provide. Turning these data into exciting scientific discovery will require new modes of experimentation and interdisciplinary cooperation from the Earth

  9. Alenia Spazio: Space Programs for Solar System Exploration .

    Science.gov (United States)

    Ferri, A.

    Alenia Spazio is the major Italian space industry and one of the largest in Europe, with 2,400 highly skilled employees and 16,000 square meters of clean rooms and laboratories for advanced technological research that are among the most modern and well-equipped in Europe. The company has wide experience in the design, development, assembly, integration, verification and testing of complete space systems: satellites for telecommunications and navigation, remote sensing, meteorology and scientific applications; manned systems and space infrastructures; launch, transport and re-entry systems, and control centres. Alenia Spazio has contributed to the construction of over 200 satellites and taken part in the most important national and international space programmes, from the International Space Station to the new European global navigation system Galileo. Focusing on Solar System exploration, in the last 10 years the Company took part, with different roles, to the major European and also NASA missions in the field: Rosetta, Mars Express, Cassini; will soon take part in Venus Express, and is planning the future with Bepi Colombo, Solar Orbiter, GAIA and Exomars. In this paper, as in the presentation, a very important Earth Observation mission is also presented: GOCE. All in all, the Earth is by all means part of the Solar system as well and we like to see it as a planet to be explored.

  10. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    Science.gov (United States)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  11. ESIP's Earth Science Knowledge Graph (ESKG) Testbed Project: An Automatic Approach to Building Interdisciplinary Earth Science Knowledge Graphs to Improve Data Discovery

    Science.gov (United States)

    McGibbney, L. J.; Jiang, Y.; Burgess, A. B.

    2017-12-01

    Big Earth observation data have been produced, archived and made available online, but discovering the right data in a manner that precisely and efficiently satisfies user needs presents a significant challenge to the Earth Science (ES) community. An emerging trend in information retrieval community is to utilize knowledge graphs to assist users in quickly finding desired information from across knowledge sources. This is particularly prevalent within the fields of social media and complex multimodal information processing to name but a few, however building a domain-specific knowledge graph is labour-intensive and hard to keep up-to-date. In this work, we update our progress on the Earth Science Knowledge Graph (ESKG) project; an ESIP-funded testbed project which provides an automatic approach to building a dynamic knowledge graph for ES to improve interdisciplinary data discovery by leveraging implicit, latent existing knowledge present within across several U.S Federal Agencies e.g. NASA, NOAA and USGS. ESKG strengthens ties between observations and user communities by: 1) developing a knowledge graph derived from various sources e.g. Web pages, Web Services, etc. via natural language processing and knowledge extraction techniques; 2) allowing users to traverse, explore, query, reason and navigate ES data via knowledge graph interaction. ESKG has the potential to revolutionize the way in which ES communities interact with ES data in the open world through the entity, spatial and temporal linkages and characteristics that make it up. This project enables the advancement of ESIP collaboration areas including both Discovery and Semantic Technologies by putting graph information right at our fingertips in an interactive, modern manner and reducing the efforts to constructing ontology. To demonstrate the ESKG concept, we will demonstrate use of our framework across NASA JPL's PO.DAAC, NOAA's Earth Observation Requirements Evaluation System (EORES) and various USGS

  12. The Earth System Prediction Suite: Toward a Coordinated U.S. Modeling Capability

    Science.gov (United States)

    Theurich, Gerhard; DeLuca, C.; Campbell, T.; Liu, F.; Saint, K.; Vertenstein, M.; Chen, J.; Oehmke, R.; Doyle, J.; Whitcomb, T.; hide

    2016-01-01

    The Earth System Prediction Suite (ESPS) is a collection of flagship U.S. weather and climate models and model components that are being instrumented to conform to interoperability conventions, documented to follow metadata standards, and made available either under open source terms or to credentialed users.The ESPS represents a culmination of efforts to create a common Earth system model architecture, and the advent of increasingly coordinated model development activities in the U.S. ESPS component interfaces are based on the Earth System Modeling Framework (ESMF), community-developed software for building and coupling models, and the National Unified Operational Prediction Capability (NUOPC) Layer, a set of ESMF-based component templates and interoperability conventions. This shared infrastructure simplifies the process of model coupling by guaranteeing that components conform to a set of technical and semantic behaviors. The ESPS encourages distributed, multi-agency development of coupled modeling systems, controlled experimentation and testing, and exploration of novel model configurations, such as those motivated by research involving managed and interactive ensembles. ESPS codes include the Navy Global Environmental Model (NavGEM), HYbrid Coordinate Ocean Model (HYCOM), and Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS); the NOAA Environmental Modeling System (NEMS) and the Modular Ocean Model (MOM); the Community Earth System Model (CESM); and the NASA ModelE climate model and GEOS-5 atmospheric general circulation model.

  13. Seismological evidence for a localized mushy zone at the Earth?s inner core boundary

    OpenAIRE

    Tian, Dongdong; Wen, Lianxing

    2017-01-01

    Although existence of a mushy zone in the Earth?s inner core has been hypothesized several decades ago, no seismic evidence has ever been reported. Based on waveform modeling of seismic compressional waves that are reflected off the Earth?s inner core boundary, here we present seismic evidence for a localized 4?8?km thick zone across the inner core boundary beneath southwest Okhotsk Sea with seismic properties intermediate between those of the inner and outer core and of a mushy zone. Such a ...

  14. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    Science.gov (United States)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  15. Rare earths and actinides

    International Nuclear Information System (INIS)

    Coqblin, B.

    1982-01-01

    This paper reviews the different properties of rare-earths and actinides, either as pure metals or as in alloys or compounds. Three different cases are considered: (i) First, in the case of 'normal' rare-earths which are characterized by a valence of 3, we discuss essentially the magnetic ordering, the coexistence between superconductivity and magnetism and the properties of amorphous rare-earth systems. (ii) Second, in the case of 'anomalous' rare-earths, we distinguish between either 'intermediate-valence' systems or 'Kondo' systems. Special emphasis is given to the problems of the 'Kondo lattice' (for compounds such as CeAl 2 ,CeAl 3 or CeB 6 ) or the 'Anderson lattice' (for compounds such as TmSe). The problem of neutron diffraction in these systems is also discussed. (iii) Third, in the case of actinides, we can separate between the d-f hybridized and almost magnetic metals at the beginning of the series and the rare-earth like the metals after americium. (orig.)

  16. Challenges in Clinical Management of Radiation-Induced Illnesses in Exploration Spaceflight

    Science.gov (United States)

    Blue, Rebecca; Chancellor, Jeffery; Suresh, Rahul; Carnell, Lisa; Reyes, David; Nowadly, Craig; Antonsen, Erik

    2018-01-01

    Historical solar particle events (SPEs) provide context for some understanding of acute radiation exposure risk to astronauts traveling outside of low Earth orbit. Modeling of potential doses delivered to exploration crewmembers anticipates limited radiation-induced health impacts, including prodromal symptoms of nausea, emesis, and fatigue, but suggests that more severe clinical manifestations are unlikely. Recent large animal-model research in space-analogs closely mimicking SPEs has identified coagulopathic events independent of the hematopoietic sequelae of higher radiation doses, similar in manifestation to disseminated intravascular coagulation (DIC). We explored the challenges of clinical management of radiation-related clinical manifestations, using currently accepted modeling techniques and anticipated physiological sequelae, to identify medical capabilities needed to successfully manage SPE-induced radiation illnesses during exploration spaceflight.

  17. Earth before life.

    Science.gov (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  18. Development of an earth pressure model for design of earth retaining structures in piedmont soil.

    Science.gov (United States)

    2008-10-01

    Anecdotal evidence suggests that earth pressure in Piedmont residual soils is typically over estimated. Such estimates of earth pressure impact the design of earth retaining structures used on highway projects. Thus, the development of an appropriate...

  19. NEOview: Near Earth Object Data Discovery and Query

    Science.gov (United States)

    Tibbetts, M.; Elvis, M.; Galache, J. L.; Harbo, P.; McDowell, J. C.; Rudenko, M.; Van Stone, D.; Zografou, P.

    2013-10-01

    Missions to Near Earth Objects (NEOs) figure prominently in NASA's Flexible Path approach to human space exploration. NEOs offer insight into both the origins of the Solar System and of life, as well as a source of materials for future missions. With NEOview scientists can locate NEO datasets, explore metadata provided by the archives, and query or combine disparate NEO datasets in the search for NEO candidates for exploration. NEOview is a software system that illustrates how standards-based interfaces facilitate NEO data discovery and research. NEOview software follows a client-server architecture. The server is a configurable implementation of the International Virtual Observatory Alliance (IVOA) Table Access Protocol (TAP), a general interface for tabular data access, that can be deployed as a front end to existing NEO datasets. The TAP client, seleste, is a graphical interface that provides intuitive means of discovering NEO providers, exploring dataset metadata to identify fields of interest, and constructing queries to retrieve or combine data. It features a powerful, graphical query builder capable of easing the user's introduction to table searches. Through science use cases, NEOview demonstrates how potential targets for NEO rendezvous could be identified by combining data from complementary sources. Through deployment and operations, it has been shown that the software components are data independent and configurable to many different data servers. As such, NEOview's TAP server and seleste TAP client can be used to create a seamless environment for data discovery and exploration for tabular data in any astronomical archive.

  20. Children's Concepts of the Shape and Size of the Earth, Sun and Moon

    Science.gov (United States)

    Bryce, T. G. K.; Blown, E. J.

    2013-02-01

    Children's understandings of the shape and relative sizes of the Earth, Sun and Moon have been extensively researched and in a variety of ways. Much is known about the confusions which arise as young people try to grasp ideas about the world and our neighbouring celestial bodies. Despite this, there remain uncertainties about the conceptual models which young people use and how they theorise in the process of acquiring more scientific conceptions. In this article, the relevant published research is reviewed critically and in-depth in order to frame a series of investigations using semi-structured interviews carried out with 248 participants aged 3-18 years from China and New Zealand. Analysis of qualitative and quantitative data concerning the reasoning of these subjects (involving cognitive categorisations and their rank ordering) confirmed that (a) concepts of Earth shape and size are embedded in a 'super-concept' or 'Earth notion' embracing ideas of physical shape, 'ground' and 'sky', habitation of and identity with Earth; (b) conceptual development is similar in cultures where teachers hold a scientific world view and (c) children's concepts of shape and size of the Earth, Sun and Moon can be usefully explored within an ethnological approach using multi-media interviews combined with observational astronomy. For these young people, concepts of the shape and size of the Moon and Sun were closely correlated with their Earth notion concepts and there were few differences between the cultures despite their contrasts. Analysis of the statistical data used Kolmogorov-Smirnov Two-Sample Tests with hypotheses confirmed at K-S alpha level 0.05; rs : p < 0.01.

  1. Optimal Earth's reentry disposal of the Galileo constellation

    Science.gov (United States)

    Armellin, Roberto; San-Juan, Juan F.

    2018-02-01

    Nowadays there is international consensus that space activities must be managed to minimize debris generation and risk. The paper presents a method for the end-of-life (EoL) disposal of spacecraft in Medium Earth Orbit (MEO). The problem is formulated as a multiobjective optimisation one, which is solved with an evolutionary algorithm. An impulsive manoeuvre is optimised to reenter the spacecraft in Earth's atmosphere within 100 years. Pareto optimal solutions are obtained using the manoeuvre Δv and the time-to-reentry as objective functions to be minimised. To explore at the best the search space a semi-analytical orbit propagator, which can propagate an orbit for 100 years in few seconds, is adopted. An in-depth analysis of the results is carried out to understand the conditions leading to a fast reentry with minimum propellant. For this aim a new way of representing the disposal solutions is introduced. With a single 2D plot we are able to fully describe the time evolution of all the relevant orbital parameters as well as identify the conditions that enables the eccentricity build-up. The EoL disposal of the Galileo constellation is used as test case.

  2. Ground Radar Polarimetric Observations of High-Frequency Earth-Space Communication Links

    Science.gov (United States)

    Bolen, Steve; Chandrasekar, V.; Benjamin, Andrew

    2002-01-01

    Strategic roadmaps for NASA's Human Exploration and Development of Space (REDS) enterprise support near-term high-frequency communication systems that provide moderate to high data rates with dependable service. Near-earth and human planetary exploration will baseline Ka-Band, but may ultimately require the use of even higher frequencies. Increased commercial demand on low-frequency earth-space bands has also led to increased interest in the use of higher frequencies in regions like K u - and K,- band. Data is taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), which operates at 13.8 GHz, and the true radar reflectivity profile is determined along the PR beam via low-frequency ground based polarimetric observations. The specific differential phase (Kdp) is measured along the beam and a theoretical model is used to determine the expected specific attenuation (k). This technique, called the k-Kdp method, uses a Fuzzy-Logic model to determine the hydrometeor type along the PR beam from which the appropriate k-Kdp relationship is used to determine k and, ultimately, the total path-integrated attenuation (PIA) on PR measurements. Measurements from PR and the NCAR S-POL radar were made during the TEFLUN-B experiment that took place near Melbourne, FL in 1998, and the TRMM-LBA campaign near Ji-Parana, Brazil in 1999.

  3. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  4. Seismic imaging at the cross-roads: Active, passive, exploration and solid Earth

    Science.gov (United States)

    Rawlinson, N.; Stephenson, R.; Carbonell, R.

    2017-10-01

    Science has grown from our need to understand the world around us. Seismology is no different, with earthquakes and their destructive effect on society providing the motivation to understand the Earth's seismic wavefield. The question of when seismology as a science really began is an interesting one, but it is unlikely that there will ever be a universally agreed-upon date, partly because of the incompleteness of the historical record, and partly because the definition of what constitutes science varies from person to person. For instance, one could regard 1889 as the true birth of seismology, because that is when the first distant earthquake was detected by an instrument; in this case Ernst von Rebeur-Paschwitz detected an earthquake in Japan using a pendulum in Potsdam, Germany (Ben-Menahem, 1995). However, even the birth of instrumental seismology could be contested; the so-called Zhang Heng directional ;seismoscope; (detects ground motion but not as a function of time) was invented in 132 CE (Rui and Yan-xiang, 2006), and is said to have detected a four-hundred mile distant earthquake which was not felt at the location of the instrument (Needham, 1959; Dewey and Byerly, 1969). Prior to instrumental seismology, observations of earthquakes were not uncommon; for instance, Aristotle provided a classification of earthquakes based on the nature of observed ground motion (Ben-Menahem, 1995).

  5. PREFACE: The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014)

    Science.gov (United States)

    Lumban Gaol, Ford; Soewito, Benfano

    2015-01-01

    The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014), was held at Discovery Kartika Plaza Hotel, Kuta, Bali, Indonesia during 11 - 12 October 2014. The AeroEarth 2014 conference aims to bring together researchers and engineers from around the world. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 98 papers and after rigorous review, 17 papers were accepted. The participants come from eight countries. There are four Parallel Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee

  6. COMPASS Final Report: Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER)

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2009-01-01

    In this study, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team completed a design for a multi-asteroid (Nereus and 1996 FG3) sample return capable spacecraft for the NASA In-Space Propulsion Office. The objective of the study was to support technology development and assess the relative benefits of different electric propulsion systems on asteroid sample return design. The design uses a single, heritage Orion solar array (SA) (approx.6.5 kW at 1 AU) to power a single NASA Evolutionary Xenon Thruster ((NEXT) a spare NEXT is carried) to propel a lander to two near Earth asteroids. After landing and gathering science samples, the Solar Electric Propulsion (SEP) vehicle spirals back to Earth where it drops off the first sample s return capsule and performs an Earth flyby to assist the craft in rendezvousing with a second asteroid, which is then sampled. The second sample is returned in a similar fashion. The vehicle, dubbed Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER), easily fits in an Atlas 401 launcher and its cost estimates put the mission in the New Frontier s (NF's) class mission.

  7. The future of Earth's oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation

    NARCIS (Netherlands)

    Duarte, J.C.; Schellart, W.P.; Rosas, F.M.

    2016-01-01

    Subduction initiation is a cornerstone in the edifice of plate tectonics. It marks the turning point of the Earth's Wilson cycles and ultimately the supercycles as well. In this paper, we explore the consequences of subduction zone invasion in the Atlantic Ocean, following recent discoveries at the

  8. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  9. Network Analysis of Earth's Co-Evolving Geosphere and Biosphere

    Science.gov (United States)

    Hazen, R. M.; Eleish, A.; Liu, C.; Morrison, S. M.; Meyer, M.; Consortium, K. D.

    2017-12-01

    A fundamental goal of Earth science is the deep understanding of Earth's dynamic, co-evolving geosphere and biosphere through deep time. Network analysis of geo- and bio- `big data' provides an interactive, quantitative, and predictive visualization framework to explore complex and otherwise hidden high-dimension features of diversity, distribution, and change in the evolution of Earth's geochemistry, mineralogy, paleobiology, and biochemistry [1]. Networks also facilitate quantitative comparison of different geological time periods, tectonic settings, and geographical regions, as well as different planets and moons, through network metrics, including density, centralization, diameter, and transitivity.We render networks by employing data related to geographical, paragenetic, environmental, or structural relationships among minerals, fossils, proteins, and microbial taxa. An important recent finding is that the topography of many networks reflects parameters not explicitly incorporated in constructing the network. For example, networks for minerals, fossils, and protein structures reveal embedded qualitative time axes, with additional network geometries possibly related to extinction and/or other punctuation events (see Figure). Other axes related to chemical activities and volatile fugacities, as well as pressure and/or depth of formation, may also emerge from network analysis. These patterns provide new insights into the way planets evolve, especially Earth's co-evolving geosphere and biosphere. 1. Morrison, S.M. et al. (2017) Network analysis of mineralogical systems. American Mineralogist 102, in press. Figure Caption: A network of Phanerozoic Era fossil animals from the past 540 million years includes blue, red, and black circles (nodes) representing family-level taxa and grey lines (links) between coexisting families. Age information was not used in the construction of this network; nevertheless an intrinsic timeline is embedded in the network topology. In

  10. Earth Science Enterprise Technology Strategy

    Science.gov (United States)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  11. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    Science.gov (United States)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  12. Earth Science Outreach: A Move in the Right Direction

    Science.gov (United States)

    McLarty Halfkenny, B.; Schröder Adams, C.

    2009-05-01

    science and global issues such as climate science and stewardship of our natural resources. A new initiative for Science and Technology Week, 'Explore Geoheritage Day' introduced the public to the geological history of the National Capital Region. We have found collaborations with other agencies very effective. We work with PDAC's "Mining Matters", LTS, the Ottawa Gatineau Geoheritage Project, Ottawa Heritage, STAO, local school boards, naturalist groups, and other community organizations to promote Earth Science education. Our efforts over the last 5 years have brought tangible results in: a) a considerable increase in student enrolment at the university level in our department; b) increased teaching of the Grade 12 Earth and Space Sciences course at local high schools through teachers who were inspired by our workshops; c) a flourishing network of enthusiastic earth science educators sharing ideas with us to define each other's needs; and d) a growing interaction with the general public. Future initiatives need to consider lobbying for curriculum changes to give Earth Science a prominent place in the public education system. As well, only few university education departments currently allow Earth Science graduates into their programs, requiring them to first take additional courses in other "teachable" subjects. This must change. University graduates with an Earth Science degree and an interest in teaching must be permitted direct entry into these programs so that their skills will be passed on to the next generation of science students.

  13. Nuclear power technology requirements for NASA exploration missions

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1990-01-01

    This paper discusses how future exploration of the Moon and Mars will mandate developments in many areas of technology. In particular, major advances will be required in planet surface power systems and space transportation systems. Critical nuclear technology challenges that can enable strategic self-sufficiency, acceptable operational costs and cost-effective space transportation goals for NASA exploration missions have been identified. Critical technologies for surface power systems include stationary and mobile nuclear reactor and radio-isotope heat sources coupled to static and dynamic power conversion devices. These technologies can provide dramatic reductions in mass leading to operational and transportation cost savings. Critical technologies for space transportation systems include nuclear thermal rocket and nuclear electric propulsion options which present compelling concepts for significantly reducing mass, cost or travel time required for Earth-Mars transport

  14. Comparison of high-energy trapped particle environments at the Earth and Jupiter.

    Science.gov (United States)

    Jun, Insoo; Garrett, Henry B

    2005-01-01

    The 'Van Allen belts' of the trapped energetic particles in the Earth's magnetosphere were discovered by the Explorer I satellite in 1958. In addition, in 1959, it was observed that UHF radio emissions from Jupiter probably had a similar source--the Jovian radiation belts. In this paper, the global characteristics of these two planets' trapped radiation environments and respective magnetospheres are compared and state-of-the-art models used to generate estimates of the high-energy electron (> or = 100 keV) and proton (> or = 1 MeV) populations--the dominant radiation particles in these environments. The models used are the AP8/AE8 series for the Earth and the Divine-Garrett/GIRE model for Jupiter. To illustrate the relative magnitude of radiation effects at each planet, radiation transport calculations were performed to compute the total ionising dose levels at the geosynchronous orbit for the Earth and at Europa (Jupiter's 4th largest moon) for Jupiter. The results show that the dose rates are -0.1 krad(Si) d(-1) at the geosynchronous orbit and -30 krad(Si) d((-1) at Europa for a 2.5 mm spherical shell aluminium shield--a factor of -300 between the two planets.

  15. The Earth is a Planet Too!

    Science.gov (United States)

    Cairns, Brian

    2014-01-01

    When the solar system formed, the sun was 30 dimmer than today and Venus had an ocean. As the sun brightened, a runaway greenhouse effect caused the Venus ocean to boil away. At times when Earth was younger, the sun less bright, and atmospheric CO2 less, Earth froze over (snowball Earth). Earth is in the sweet spot today. Venus is closer to sun than Earth is, but cloud-covered Venus absorbs only 25 of incident sunlight, while Earth absorbs 70. Venus is warmer because it has a thick carbon dioxide atmosphere causing a greenhouse effect of several hundred degrees. Earth is Goldilocks choice among the planets, the one that is just right for life to exist. Not too hot. Not too cold. How does the Earth manage to stay in this habitable range? Is there a Gaia phenomenon keeping the climate in bounds? A nice idea, but it doesnt work. Today, greenhouse gas levels are unprecedented compared to the last 450,000 years.

  16. A Strategic Approach to Medical Care for Exploration Missions

    Science.gov (United States)

    Canga, Michael A.; Shah, Ronak V.; Mindock, Jennifer A.; Antonsen, Erik L.

    2016-01-01

    Exploration missions will present significant new challenges to crew health, including effects of variable gravity environments, limited communication with Earth-based personnel for diagnosis and consultation for medical events, limited resupply, and limited ability for crew return. Providing health care capabilities for exploration class missions will require system trades be performed to identify a minimum set of requirements and crosscutting capabilities, which can be used in design of exploration medical systems. Medical data, information, and knowledge collected during current space missions must be catalogued and put in formats that facilitate querying and analysis. These data are used to inform the medical research and development program through analysis of risk trade studies between medical care capabilities and system constraints such as mass, power, volume, and training. Medical capability as a quantifiable variable is proposed as a surrogate risk metric and explored for trade space analysis that can improve communication between the medical and engineering approaches to mission design. The resulting medical system design approach selected will inform NASA mission architecture, vehicle, and subsystem design for the next generation of spacecraft.

  17. Space Mobile Network: A Near Earth Communication and Navigation Architecture

    Science.gov (United States)

    Israel, Dave J.; Heckler, Greg; Menrad, Robert J.

    2016-01-01

    This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.

  18. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  19. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  20. The Earth System Model

    Science.gov (United States)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.