WorldWideScience

Sample records for earth exploration toolbook

  1. Earth Exploration Toolbook Workshops: Helping Teachers and Students Analyze Web-based Scientific Data

    Science.gov (United States)

    McAuliffe, C.; Ledley, T.; Dahlman, L.; Haddad, N.

    2007-12-01

    One of the challenges faced by Earth science teachers, particularly in K-12 settings, is that of connecting scientific research to classroom experiences. Helping teachers and students analyze Web-based scientific data is one way to bring scientific research to the classroom. The Earth Exploration Toolbook (EET) was developed as an online resource to accomplish precisely that. The EET consists of chapters containing step-by-step instructions for accessing Web-based scientific data and for using a software analysis tool to explore issues or concepts in science, technology, and mathematics. For example, in one EET chapter, users download Earthquake data from the USGS and bring it into a geographic information system (GIS), analyzing factors affecting the distribution of earthquakes. The goal of the EET Workshops project is to provide professional development that enables teachers to incorporate Web-based scientific data and analysis tools in ways that meet their curricular needs. In the EET Workshops project, Earth science teachers participate in a pair of workshops that are conducted in a combined teleconference and Web-conference format. In the first workshop, the EET Data Analysis Workshop, participants are introduced to the National Science Digital Library (NSDL) and the Digital Library for Earth System Education (DLESE). They also walk through an Earth Exploration Toolbook (EET) chapter and discuss ways to use Earth science datasets and tools with their students. In a follow-up second workshop, the EET Implementation Workshop, teachers share how they used these materials in the classroom by describing the projects and activities that they carried out with students. The EET Workshops project offers unique and effective professional development. Participants work at their own Internet-connected computers, and dial into a toll-free group teleconference for step-by-step facilitation and interaction. They also receive support via Elluminate, a Web

  2. Commonwealth of Independent States Area Studies Toolbook

    National Research Council Canada - National Science Library

    Hadi, Zulkifli

    1996-01-01

    .... The authors of the ToolBook present and analyze this information on the leadership, system essentials, infraststructure, population, and military forces of each country in an attempt to inform...

  3. Virtual Exploration of Earth's Evolution

    Science.gov (United States)

    Anbar, A. D.; Bruce, G.; Semken, S. C.; Summons, R. E.; Buxner, S.; Horodyskyj, L.; Kotrc, B.; Swann, J.; Klug Boonstra, S. L.; Oliver, C.

    2014-12-01

    Traditional introductory STEM courses often reinforce misconceptions because the large scale of many classes forces a structured, lecture-centric model of teaching that emphasizes delivery of facts rather than exploration, inquiry, and scientific reasoning. This problem is especially acute in teaching about the co-evolution of Earth and life, where classroom learning and textbook teaching are far removed from the immersive and affective aspects of field-based science, and where the challenges of taking large numbers of students into the field make it difficult to expose them to the complex context of the geologic record. We are exploring the potential of digital technologies and online delivery to address this challenge, using immersive and engaging virtual environments that are more like games than like lectures, grounded in active learning, and deliverable at scale via the internet. The goal is to invert the traditional lecture-centric paradigm by placing lectures at the periphery and inquiry-driven, integrative virtual investigations at the center, and to do so at scale. To this end, we are applying a technology platform we devised, supported by NASA and the NSF, that integrates a variety of digital media in a format that we call an immersive virtual field trip (iVFT). In iVFTs, students engage directly with virtual representations of real field sites, with which they interact non-linearly at a variety of scales via game-like exploration while guided by an adaptive tutoring system. This platform has already been used to develop pilot iVFTs useful in teaching anthropology, archeology, ecology, and geoscience. With support the Howard Hughes Medical Institute, we are now developing and evaluating a coherent suite of ~ 12 iVFTs that span the sweep of life's history on Earth, from the 3.8 Ga metasediments of West Greenland to ancient hominid sites in East Africa. These iVFTs will teach fundamental principles of geology and practices of scientific inquiry, and expose

  4. Exploring Earth Systems Through STEM

    Science.gov (United States)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2015-04-01

    During the 2010 school year, grade 8 science teachers at Dwight D. Eisenhower Middle School in Wyckoff, New Jersey, began using the draft of A Framework for K-12 Science Education to transition to the Next Generation Science Standards. In an evolutionary process of testing and revising, teachers work collaboratively to develop problem-based science, technology, engineering, and mathematics (STEM) units that integrate earth science, physical science, and life science topics. Students explore the interconnections of Earth's atmosphere, lithosphere, hydrosphere, and biosphere through problem-based learning. Problem-based learning engages students in (1) direct observations in the field and classroom, (2) collection and analysis of data from remote sensors and hand-held sensors, and (3) analysis of physical, mathematical, and virtual models. Students use a variety of technologies and applications in their investigations, for example iPad apps, Google Classroom, and Vernier sensors. Data from NASA, NOAA, non-government organizations, and scientific research papers inspire student questions and spark investigations. Teachers create materials and websites to support student learning. Teachers curate reading, video, simulations, and other Internet resources for students. Because curriculum is standards-based as opposed to textbook-based, teacher participation in workshops and institutes frequently translates into new or improved study units. Recent programs include Toyota International Teacher Program to Costa Rica, Japan Society Going Global, Siemens STEM Academy, U.S. Naval Academy SET Sail, and NJSTA Maitland P. Simmons Memorial Award Summer Institute. Unit themes include weather and climate, introduction to general chemistry and biochemistry, and cells and heredity. Each if the three 12-week units has embedded engineering challenges inspired by current events, community needs, and/or the work of scientists. The unit segments begin with a problem, progress to

  5. Human Exploration of Near-Earth Asteroids

    Science.gov (United States)

    Abell, Paul

    2013-01-01

    A major goal for NASA's human spaceflight program is to send astronauts to near-Earth asteroids (NEA) in the coming decades. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. However, before sending human explorers to NEAs, robotic investigations of these bodies would be required to maximize operational efficiency and reduce mission risk. These precursor missions to NEAs would fill crucial strategic knowledge gaps concerning their physical characteristics that are relevant for human exploration of these relatively unknown destinations. Dr. Paul Abell discussed some of the physical characteristics of NEOs that will be relevant for EVA considerations, reviewed the current data from previous NEA missions (e.g., Near-Earth Asteroid Rendezvous (NEAR) Shoemaker and Hayabusa), and discussed why future robotic and human missions to NEAs are important from space exploration and planetary defense perspectives.

  6. Google Earth EC for Hydrocarbon Exploration

    Science.gov (United States)

    Thurmond, A. K.; Martinsen, O. J.; Haugland, J. I.; Johnsen, T. M.

    2008-12-01

    Within petroleum exploration research, a greater value has been placed on the acquisition and use of high resolution imagery, digital elevation models (DEM) and spatial vector data, which has led to a need for a technological solution that provides easy access to and rapid 3D viewing capabilities of large spatial datasets. However, to stay competitive, it is essential that this solution also have the capability to expand into an interpretation tool rather than exist as purely a visualization tool. The Google Earth Enterprise Solution software has led to the successful creation of a viewable database or globe that contains public and proprietary imagery, terrain and vector data that is relevant and applicable to our local and international interests. Though the database is viewed using the standard Google Earth client, the viewable database is proprietary, secured and only accessible from within our in-house network. This allows for access to company-relevant spatial data within seconds. The impact of the in-house Google Earth Enterprise Solution has led to its evolution from a visualization tool to an integration and application tool. Workflows are being established to automate the integration of proprietary GIS data into the system. Standalone GUI applications have been created to interface with the in-house flyable database for more dynamic interaction with and interpretation of the datasets. In this solution we have devised utilities that promote thinking "outside of the box" rather than just "off the shelf". Some of the applications of our solution include field campaign planning and tracking, onshore seismic planning, visualization of vertical section such as cross-sections or seismic data, visualization of photo- realistic outcrop models, and animations of geological time sequences. The integration of the proprietary high resolution imagery and terrain datasets with in-house specific vector data has become a powerful proven tool within research, exploration

  7. Exploring the Earth Using Deep Learning Techniques

    Science.gov (United States)

    Larraondo, P. R.; Evans, B. J. K.; Antony, J.

    2016-12-01

    Research using deep neural networks have significantly matured in recent times, and there is now a surge in interest to apply such methods to Earth systems science and the geosciences. When combined with Big Data, we believe there are opportunities for significantly transforming a number of areas relevant to researchers and policy makers. In particular, by using a combination of data from a range of satellite Earth observations as well as computer simulations from climate models and reanalysis, we can gain new insights into the information that is locked within the data. Global geospatial datasets describe a wide range of physical and chemical parameters, which are mostly available using regular grids covering large spatial and temporal extents. This makes them perfect candidates to apply deep learning methods. So far, these techniques have been successfully applied to image analysis through the use of convolutional neural networks. However, this is only one field of interest, and there is potential for many more use cases to be explored. The deep learning algorithms require fast access to large amounts of data in the form of tensors and make intensive use of CPU in order to train its models. The Australian National Computational Infrastructure (NCI) has recently augmented its Raijin 1.2 PFlop supercomputer with hardware accelerators. Together with NCI's 3000 core high performance OpenStack cloud, these computational systems have direct access to NCI's 10+ PBytes of datasets and associated Big Data software technologies (see http://geonetwork.nci.org.au/ and http://nci.org.au/systems-services/national-facility/nerdip/). To effectively use these computing infrastructures requires that both the data and software are organised in a way that readily supports the deep learning software ecosystem. Deep learning software, such as the open source TensorFlow library, has allowed us to demonstrate the possibility of generating geospatial models by combining information from

  8. Impacts on Explorer 46 from an Earth orbiting population

    Science.gov (United States)

    Kessler, D. J.

    1985-01-01

    Explorer 46 was launched into Earth orbit in August 1972 to evaluate the effectiveness of using double-wall structures to protect against meteoroids. The data from the Meteoroid Bumper Experiment on Explorer 46 is reexamined and it is concluded that most of the impacts originated from an Earth orbiting population. The probable source of this orbiting population is solid rocket motors fired in Earth orbit.

  9. Super earth explorer: a coronagraphic off-axis space telescope

    NARCIS (Netherlands)

    Stam, D.; Keller, C.U.

    2009-01-01

    The Super-Earth Explorer is an Off-Axis Space Telescope (SEE-COAST) designed for high contrast imaging. Its scientific objective is to make the physico-chemical characterization of exoplanets possibly down to 2 Earth radii. For that purpose it will analyze the spectral and polarimetric properties of

  10. Risk and Exploration: Earth, Sea and Stars

    Science.gov (United States)

    Dick, Steven J. (Editor); Cowing, Keith L. (Editor)

    2005-01-01

    The NASA History Division is pleased to present the record of a unique meeting on risk and exploration held under the auspices of the NASA Administrator, Sean O Keefe, at the Naval Postgraduate School in Monterey, California, from September 26-29, 2004. The meeting was the brainchild of Keith Cowing and astronaut John Grunsfeld, NASA's chief scientist at the time. Its goals, stated in the letter of invitation published herein, were precipitated by the ongoing dialogue on risk and exploration in the wake of the Columbia Shuttle accident, the Hubble Space Telescope servicing question, and, in a broader sense, by the many NASA programs that inevitably involve a balance between risk and forward-looking exploration. The meeting, extraordinarily broad in scope and participant experience, offers insights on why we explore, how to balance risk and exploration, how different groups defi ne and perceive risk differently, and the importance of exploration to a creative society. At NASA Headquarters, Bob Jacobs, Trish Pengra, and Joanna Adamus of NASA Public Affairs led the meeting's implementation. The Naval Postgraduate School, commanded by Rear Admiral Patrick W. Dunne, provided a congenial venue. The meeting was broadcast on NASA TV, and thanks are due in this regard to Al Feinberg, Tony Stewart, Jim Taylor, and the planners collaborative: Mark Shaddock and Spotlight Productions, Donovan Gates of Donovan Gates Production, and Michael Ditertay and his staff on this 30-person television crew. Thanks to their efforts, a DVD record of the meeting has also been produced. Thanks are also due to the moderators: Miles O Brien of CNN, Chris McKay of NASA Ames, David Halpern of the White House Office of Science and Technology Policy, and John Grunsfeld, NASA Headquarters. In order to maintain the informal flavor of the meetings, these proceedings are based on transcripts that have been lightly edited for grammar and punctuation. Most references to slides shown during the

  11. The 'glass earth' - geochemical frontiers in exploration through cover

    International Nuclear Information System (INIS)

    Carr, G.; Denton, G.; Giblin, A.; Korsch, M.; Andrew, A.; Whitford, D.

    1999-01-01

    'Glass Earth' represents a number of current and planned projects within CSIRO aimed at making 'transparent' the top 1000 m of the Earth's crust It builds upon current technologies developed within a number of CSIRO divisions as well as the Australian Mineral Exploration Technologies CRC (AMET CRC), the Australian Geodynamics CRC (AG CRC) and the CRC for Landscape Evolution and Mineral Exploration (CRC LEME). New geophysical and geochemical technologies will be developed to complement these, together with new capabilities in modelling, data integration and visualisation, including hydrogeochemistry, hydrogeology, surface geochemistry and isotope geochemistry, modelling of chemical, fluid and heat flows in rock and regolith, advanced visualisation and data fusion. This paper describes some recent work in the field of isotope geochemistry, with the principal aim of 'seeing through' cover to understand basement geology and detect hidden ore systems

  12. The esa earth explorer land surface processes and interactions mission

    Science.gov (United States)

    Labandibar, Jean-Yves; Jubineau, Franck; Silvestrin, Pierluigi; Del Bello, Umberto

    2017-11-01

    The European Space Agency (ESA) is defining candidate missions for Earth Observation. In the class of the Earth Explorer missions, dedicated to research and pre-operational demonstration, the Land Surface Processes and Interactions Mission (LSPIM) will acquire the accurate quantitative measurements needed to improve our understanding of the nature and evolution of biosphere-atmosphere interactions and to contribute significantly to a solution of the scaling problems for energy, water and carbon fluxes at the Earth's surface. The mission is intended to provide detailed observations of the surface of the Earth and to collect data related to ecosystem processes and radiation balance. It is also intended to address a range of issues important for environmental monitoring, renewable resources assessment and climate models. The mission involves a dedicated maneuvering satellite which provides multi-directional observations for systematic measurement of Land Surface BRDF (BiDirectional Reflectance Distribution Function) of selected sites on Earth. The satellite carries an optical payload : PRISM (Processes Research by an Imaging Space Mission), a multispectral imager providing reasonably high spatial resolution images (50 m over 50 km swath) in the whole optical spectral domain (from 450 nm to 2.35 μm with a resolution close to 10 nm, and two thermal bands from 8.1 to 9.1 μm). This paper presents the results of the Phase A study awarded by ESA, led by ALCATEL Space Industries and concerning the design of LSPIM.

  13. Goals for Near-Earth-Object Exploration Examined

    Science.gov (United States)

    Showstack, Randy

    2010-09-01

    With Japan's Hayabusa space probe having returned a sample of the Itokawa asteroid this past June, and with NASA's Deep Impact spacecraft impactor having successfully struck comet Tempel 1 in 2006, among other recent missions, the study of near-Earth objects (NEOs) recently has taken some major steps forward. The recent discovery of two asteroids that passed within the Moon's distance of Earth on 8 September is a reminder of the need to further understand NEOs. During NASA's Exploration of Near-Earth Objects (NEO) Objectives Workshop, held in August in Washington, D. C., scientists examined rationales and goals for studying NEOs. Several recent documents have recognized NEO research as important as a scientific precursor for a potential mission to Mars, to learn more about the origins of the solar system, for planetary defense, and for resource exploitation. The October 2009 Review of Human Space Flight Plans Committee report (known as the Augustine report), for example, recommended a “flexible path ” for human exploration, with people visiting sites in the solar system, including NEOs. The White House's National Space Policy, released in June, indicates that by 2025, there should be “crewed missions beyond the moon, including sending humans to an asteroid.” In addition, NASA's proposed budget for fiscal year 2011 calls for the agency to send robotic precursor missions to nearby asteroids and elsewhere and to increase funding for identifying and cataloging NEOs.

  14. A new trajectory concept for exploring the earth's geomagnetic tail

    Science.gov (United States)

    Farquhar, R. W.; Dunham, D. W.

    1981-01-01

    An innovative trajectory technique for a magnetotail mapping mission is described which can control the apsidal rotation of an elliptical earth orbit and keep its apogee segment inside the tail region. The required apsidal rotation rate of approximately 1 deg/day is achieved by using the moon to carry out a prescribed sequence of gravity-assist maneuvers. Apogee distances are alternately raised and lowered by the lunar-swingby maneuvers; several categories of the 'sun-synchronous' swingby trajectories are identified. The strength and flexibility of the new trajectory concept is demonstrated by using real-world simulations showing that a large variety of trajectory shapes can be used to explore the earth's geomagnetic tail between 60 and 250 R sub E.

  15. Earth cloud, aerosol, and radiation explorer optical payload development status

    Science.gov (United States)

    Hélière, A.; Wallace, K.; Pereira do Carmo, J.; Lefebvre, A.

    2017-09-01

    The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the ojective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. MSI is a compact instrument with a 150 km swath providing 500 m pixel data in seven channels, whose retrieved data will give context to the active instrument measurements, as well as providing cloud and aerosol information. BBR measures reflected solar and emitted thermal radiation from the scene. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol and molecular scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are measured on dedicated channels. This paper will provide a description of the optical payload implementation, the design and characterisation of the instruments.

  16. Innovations in mission architectures for exploration beyond low Earth orbit

    Science.gov (United States)

    Cooke, D. R.; Joosten, B. J.; Lo, M. W.; Ford, K. M.; Hansen, R. J.

    2003-01-01

    Through the application of advanced technologies and mission concepts, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to science driven; technology enabled human and robotic exploration. Numbers and masses of vehicles required are greatly reduced, yet the pursuit of a broader range of science objectives is enabled. The scope of human missions considered range from the assembly and maintenance of large aperture telescopes for emplacement at the Sun-Earth libration point L2, to human missions to asteroids, the moon and Mars. The vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities, which allows for future decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  17. The Earth Clouds and Radiation Explorer (EarthCARE) Mission and DSCOVR

    Science.gov (United States)

    Donovan, D. P.; EarthCARE joint mission advisory Group

    2011-12-01

    The Earth Clouds and Radiation Explorer (EarthCARE) mission is a combined ESA, JAXA mission to be flown in late 2015. It will be a polar sun-synchronous orbiting satellite with an orbit altitude of about 400 km and an equator crossing time of 13:45. EarthCARE's main focus is on providing data for better understanding the Earth's radiative balance. In order to do this, EarthCARE will carry four instruments: -A High Spectral resolution 355nm cloud/aerosol lidar(ATLID) -A 35 GHz cloud radar (CPR) -A multi-spectral imager (MSI) [0.67, 0.86, 1.65, 2.21, 8.8, 10.8, 12.0 um] -A long- and short-wave 3 view Broad-Band Radiometer (BBR) EarthCARE has been designed from the ground-up with the ideas of sensor-synergy playing a major role. For example, variational based retrievals are being developed which combine ATLID, CPR and MSI measurements in order to obtain `best-estimates' of 3-D cloud and aerosol properties on the 1-km scale. These fields will then be used as input to radiative transfer codes in order to predict TOA radiances and fluxes on the 10km scale. The predicted radiances will the then be compared against the actual BBR measurements. So far, the development of synergetic algorithms and data products has been limited to the EarthCARE instruments themselves. However, during the period of mission overlap between DISCOVR and EarthCARE, several useful opportunities for inter-platform synergy exist. The unique viewing geometry of DISCOVR means that data from any daytime EarthCARE orbit can be matched to DISCOVR observations. This opens up, for example, the possibility of both platforms benefiting from sharing of different broad-band radiance views. The lidar and radar measurements of cloud and aerosol vertical structure will also be a valuable source of data which can be used to evaluate the passive measurements of cloud height and optical thickness made by DSCOVR. In this presentation an overview of EarthCARE will be given. As well some preliminary ideas regarding how

  18. Human and Robotic Exploration of Near-Earth Objects

    Science.gov (United States)

    Abell, Paul A.

    2010-01-01

    A study in late 2006 was sponsored by the Advanced Projects Office within NASA's Constellation Program to examine the feasibility of sending the Orion Crew Exploration Vehicle to a near-Earth object (NEO). The ideal mission profile would involve two or three astronauts on a 90 to 180 day flight, which would include a 7 to 14 day stay for proximity operations at the target NEO. More recently U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for NEO exploration in order to follow U.S. space exploration policy. Prior to sending a human mission, a series of robotic spacecraft would be launched to reduce the risk to crew, and enhance the planning for the proximity and surface operations at the NEO. The human mission would ideally follow five or more years later. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other solar system destinations. Piloted missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. The main scientific advantage of sending piloted missions to NEOs would be the flexibility of the crew to perform tasks and to adapt to situations in real time. A crewed vehicle would be able to test several different sample collection techniques and target specific areas of interest via extra-vehicular activities (EVAs) more efficiently than robotic spacecraft. Such capabilities greatly enhance the scientific return from these missions to NEOs, destinations vital to understanding the evolution and thermal histories of primitive bodies during the formation of the

  19. Discovering Earth and space: Family fun at Exploration Station

    Science.gov (United States)

    Adamec, Bethany Holm

    2012-02-01

    The 2011 Fall Meeting started off with a bang (or at least a homemade construction paper rocket) at Exploration Station, a science exhibition geared toward children and families. This annual event, held on Sunday, 4 December, last year, featured members of the various AGU sections and focus groups who led interactive demonstrations on topics spanning the deep Earth to distant stars. The event was 4 hours long, free, and open to the public. Visitors made their way through 25 exhibits that offered a variety of easy, family friendly, and hands-on activities. Equally important, they had an opportunity to interact one-on-one with scientists and education specialists.

  20. Robots Explore the Farthest Reaches of Earth and Space

    Science.gov (United States)

    2008-01-01

    "We were the first that ever burst/Into that silent sea," the title character recounts in Samuel Taylor Coleridge s opus Rime of the Ancient Mariner. This famous couplet is equally applicable to undersea exploration today as surface voyages then, and has recently been applied to space travel in the title of a chronicle of the early years of human space flight ("Into That Silent Sea: Trailblazers of the Space Era, 1961-1965"), companion to the +n the Shadow of the Moon book and movie. The parallel is certainly fitting, considering both fields explore unknown, harsh, and tantalizingly inhospitable environments. For starters, exploring the Briny Deep and the Final Frontier requires special vehicles, and the most economical and safest means for each employ remotely operated vehicles (ROVs). ROVs have proven the tool of choice for exploring remote locations, allowing scientists to explore the deepest part of the sea and the furthest reaches of the solar system with the least weight penalty, the most flexibility and specialization of design, and without the need to provide for sustaining human life, or the risk of jeopardizing that life. Most NASA probes, including the historic Voyager I and II spacecraft and especially the Mars rovers, Spirit and Opportunity, feature remote operation, but new missions and new planetary environments will demand new capabilities from the robotic explorers of the future. NASA has an acute interest in the development of specialized ROVs, as new lessons learned on Earth can be applied to new environments and increasingly complex missions in the future of space exploration.

  1. Earth Camp: Exploring Earth Change through the Use of Satellite Images and Scientific Practices

    Science.gov (United States)

    Baldridge, A.; Buxner, S.; Crown, D. A.; Colodner, D.; Orchard, A.; King, B.; Schwartz, K.; Prescott, A.; Prietto, J.; Titcomb, A.

    2014-07-01

    Earth Camp is a NASA-funded program that gives students and teachers opportunities to explore local, regional, and global earth change through a combination of hands-on investigations and the use of satellite images. Each summer, 20 middle school and 20 high school students participate in a two-week leadership program investigating contemporary issues (e.g., changes in river sheds, water quality, and land use management) through hands-on investigations, analyzing remote sensing data, and working with experts. Each year, 20 teachers participate in a year-long professional development program that includes monthly workshops, field investigations on Mt. Lemmon in Tucson, Arizona, and a week-long summer design workshop. Teachers conduct investigations of authentic questions using satellite images and create posters to present results of their study of earth change. In addition, teachers design lesson plans to expand their students' ability to investigate earth change with 21st Century tools. Lessons can be used as classroom exercises or for after-school club programs. Independent evaluation has been an integral part of program development and delivery for all three audiences, enabling the program staff and participants to reflect on and continually improve their practice and learning over the three-year period.

  2. The BIOMASS mission — An ESA Earth Explorer candidate to measure the BIOMASS of the earth's forests

    DEFF Research Database (Denmark)

    Scipal, K.; Arcioni, M.; Chave, J.

    2010-01-01

    The European Space Agency (ESA) released a Call for Proposals for the next Earth Explorer Core Mission in March 2005, with the aim to select the 7th Earth Explorer (EE-7) mission for launch in the next decade. Twenty-four proposals were received and subject to scientific and technical assessment....

  3. Earth Orbiting Support Systems for commercial low Earth orbit data relay: Assessing architectures through tradespace exploration

    Science.gov (United States)

    Palermo, Gianluca; Golkar, Alessandro; Gaudenzi, Paolo

    2015-06-01

    As small satellites and Sun Synchronous Earth Observation systems are assuming an increased role in nowadays space activities, including commercial investments, it is of interest to assess how infrastructures could be developed to support the development of such systems and other spacecraft that could benefit from having a data relay service in Low Earth Orbit (LEO), as opposed to traditional Geostationary relays. This paper presents a tradespace exploration study of the architecture of such LEO commercial satellite data relay systems, here defined as Earth Orbiting Support Systems (EOSS). The paper proposes a methodology to formulate architectural decisions for EOSS constellations, and enumerate the corresponding tradespace of feasible architectures. Evaluation metrics are proposed to measure benefits and costs of architectures; lastly, a multicriteria Pareto criterion is used to downselect optimal architectures for subsequent analysis. The methodology is applied to two case studies for a set of 30 and 100 customer-spacecraft respectively, representing potential markets for LEO services in Exploration, Earth Observation, Science, and CubeSats. Pareto analysis shows how increased performance of the constellation is always achieved by an increased node size, as measured by the gain of the communications antenna mounted on EOSS spacecraft. On the other hand, nonlinear trends in optimal orbital altitude, number of satellites per plane, and number of orbital planes, are found in both cases. An upward trend in individual node memory capacity is found, although never exceeding 256 Gbits of onboard memory for both cases that have been considered, assuming the availability of a polar ground station for EOSS data downlink. System architects can use the proposed methodology to identify optimal EOSS constellations for a given service pricing strategy and customer target, thus identifying alternatives for selection by decision makers.

  4. Earth Matters: Promoting Science Exploration through Blogs and Social Media

    Science.gov (United States)

    Ward, K.; Voiland, A. P.; Carlowicz, M. J.; Simmon, R. B.; Allen, J.; Scott, M.; Przyborski, P. D.

    2012-12-01

    NASA's Earth Observatory (EO) is a 13-year old online publication focusing on the communication of NASA Earth science research, including climate change, weather, geology, oceanography, and solar flares. We serve two primary audiences: the "attentive public"--people interested in and willing to seek out information about science, technology, and the environment--and popular media. We use the EO website (earthobservatory.nasa.gov) to host a variety of content including image-driven stories (natural events and research-based), articles featuring NASA research and, more recently, blogs that give us the ability to increase interaction with our users. For much of our site's history, our communication has been largely one way, and we have relied primarily on traditional online marketing techniques such as RSS and email listservs. As the information ecosystem evolves into one in which many users expect to play a more active role in distributing and even developing content through social media, we've experimented with various social media outlets (blogs, Twitter, Facebook, Google+, etc.) that offer new opportunities for people to interact with NASA data, scientists, and the EO editorial team. As part of our explorations, we are learning about how, and to what extent, these outlets can be used for interaction and outright promotion and how to achieve those goals with existing personnel and resources.

  5. Exploring the geophysical signatures of microbial processes in the earth

    Energy Technology Data Exchange (ETDEWEB)

    Slater, L.; Atekwana, E.; Brantley, S.; Gorby, Y.; Hubbard, S. S.; Knight, R.; Morgan, D.; Revil, A.; Rossbach, S.; Yee, N.

    2009-05-15

    AGU Chapman Conference on Biogeophysics; Portland, Maine, 13-16 October 2008; Geophysical methods have the potential to detect and characterize microbial growth and activity in subsurface environments over different spatial and temporal scales. Recognition of this potential has resulted in the development of a new subdiscipline in geophysics called 'biogeophysics,' a rapidly evolving Earth science discipline that integrates environmental microbiology, geomicrobiology, biogeochemistry, and geophysics to investigate interactions that occur between the biosphere (microorganisms and their products) and the geosphere. Biogeophysics research performed over the past decade has confirmed the potential for geophysical techniques to detect microbes, microbial growth/biofilm formation, and microbe-mineral interactions. The unique characteristics of geophysical data sets (e.g., noninvasive data acquisition, spatially continuous properties retrieved) present opportunities to explore geomicrobial processes outside of the laboratory, at unique spatial scales unachievable with microbiological techniques, and possibly in remote environments such as the deep ocean. In response to this opportunity, AGU hosted a Chapman Conference with a mission to bring together geophysicists, biophysicists, geochemists, geomicrobiologists, and environmental microbiologists conducting multidisciplinary research with potential impact on biogeophysics in order to define the current state of the science, identify the critical questions facing the community, and generate a road map for establishing biogeophysics as a critical subdiscipline of Earth science research. For more information on the conference, see http://www.agu.org/meetings/chapman/2008/fcall/.

  6. The Scale of Exploration: Planetary Missions Set in the Context of Tourist Destinations on Earth

    Science.gov (United States)

    Garry, W. B.; Bleacher, L. V.; Bleacher, J. E.; Petro, N. E.; Mest, S. C.; Williams, S. H.

    2012-03-01

    What if the Apollo astronauts explored Washington, DC, or the Mars Exploration Rovers explored Disney World? We present educational versions of the traverse maps for Apollo and MER missions set in the context of popular tourist destinations on Earth.

  7. Cryosphere campaigns in support of ESA's Earth Explorers Missions

    Science.gov (United States)

    Casal, Tânia; Davidson, Malcolm; Plank, Gernot; Floberghagen, Rune; Parrinello, Tommaso; Mecklenburg, Susanne; Drusch, Matthias; Fernandez, Diego

    2014-05-01

    In the framework of its Earth Observation Programmes the European Space Agency (ESA) carries out ground based and airborne campaigns to support geophysical algorithm development, calibration/validation, simulation of future spaceborne Earth observation missions, and applications development related to land, oceans, atmosphere and solid Earth. ESA has conducted over 110 airborne and ground measurements campaigns since 1981 and this presentation will describe three campaigns in Antarctica and the Arctic. They were undertaken during the calibration/validation phase of Earth Explorer (EE) missions, such as SMOS (Soil Moisture and Ocean Salinity), GOCE (Gravity field and steady-state Ocean Circulation Explorer) and CryoSat-2. In support of SMOS and GOCE, the DOMECair airborne campaign took place in Antarctica, in the Dome C region in the middle of January 2013. The two main objectives were a) to quantify and document the spatial variability in the DOME C area (SMOS) and b) to fill a gap in the high-quality gravity anomaly maps in Antarctica where airborne gravity measurements are sparse (GOCE). Results from the campaign for the SMOS component, showed that the DOME C area is not as spatially homogenous as previously assumed, therefore comparisons of different missions (e.g. SMOS and NASA's Aquarius) with different footprints must be done with care, highlighting once again the importance of field work to test given assumptions. One extremely surprising outcome of this campaign was the pattern similarity between the gravity measurements and brightness temperature fields. To date, there has never been an indication that L-Band brightness temperatures could be correlated to gravity, but preliminary analysis showed coincident high brightness temperature with high gravity values, suggesting that topography may influence microwave emissions. Also in support of SMOS, the SMOSice airborne campaign has been planned in the Arctic. It was motived by a previous ESA SMOSice study that

  8. CarbonSat: ESA's Earth Explorer 8 Candidate Mission

    Science.gov (United States)

    Meijer, Y. J.; Ingmann, P.; Löscher, A.

    2012-04-01

    The CarbonSat candidate mission is part of ESA's Earth Explorer Programme. In 2010, two candidate opportunity missions had been selected for feasibility and preliminary definition studies. The missions, called FLEX and CarbonSat, are now in competition to become ESA's eighth Earth Explorer, both addressing key climate and environmental change issues. In this presentation we will provide a mission overview of CarbonSat with a focus on science. CarbonSat's primary mission objective is the quantification and monitoring of CO2 and CH4 sources and sinks from the local to the regional scale for i) a better understanding of the processes that control carbon cycle dynamics and ii) an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.) in the context of international treaties. A second priority objective is the monitoring/derivation of CO2 and CH4 fluxes on regional to global scale. These objectives will be achieved by a unique combination of frequent, high spatial resolution (2 x 2 km2) observations of XCO2 and XCH4 coupled to inverse modelling schemes. The required random error of a single measurement at ground-pixel resolution is of the order of between 1 and 3 ppm for XCO2 and between 9 and 17 ppb for XCH4. High spatial resolution is essential in order to maximize the probability for clear-sky observations and to identify flux hot spots. Ideally, CarbonSat shall have a wide swath allowing a 6-day global repeat cycle. The CarbonSat observations will enable CO2 emissions from coal-fired power plants, localized industrial complexes, cities, and other large emitters to be objectively assessed at a global scale. Similarly, the monitoring of natural gas pipelines and compressor station leakage will become feasible. The detection and quantification of the substantial geological greenhouse gas emission sources such as seeps, volcanoes and mud volcanoes will be achieved for the first time. CarbonSat's Greenhouse Gas instrument will

  9. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    Science.gov (United States)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  10. ExploreNEOs: The Warm Spitzer Near Earth Object Survey

    NARCIS (Netherlands)

    Trilling, D. E.; Hora, J. L.; Mueller, M.; Thomas, C. A.; Harris, A. W.; Hagen, A. R.; Mommert, M.; Benner, L.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Delbo, M.; Emery, J. P.; Fazio, G.; Kistler, J. L.; Mainzer, A.; Morbidelli, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.

    2012-01-01

    We have observed some 600 near Earth objects (NEOs) at 3.6 and 4.5 microns with the Warm Spitzer Space Telescope. We derive the albedo and diameter for each NEO to characterize global properties of the NEO population, among other goals.

  11. Near-Earth Asteroids: Destinations for Human Exploration

    Science.gov (United States)

    Barbee, Brent W.

    2014-01-01

    The Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) is a system that monitors the near-Earth asteroid (NEA) population to identify NEAs whose orbital characteristics may make them potential destinations for future round-trip human space flight missions. To accomplish this monitoring, Brent Barbee (GSFC) developed and automated a system that applies specialized trajectory processing to the orbits of newly discovered NEAs, and those for which we have updated orbit knowledge, obtained from the JPL Small Bodies Database (SBDB). This automated process executes daily and the results are distributed to the general public and the astronomy community. This aids in prioritizing telescope radar time allocations for obtaining crucial follow-up observations of highly accessible NEAs during the critical, because it is often fleeting, time period surrounding the time at which the NEAs are initially discovered.

  12. Studies of Life on Earth are Important for Mars Exploration

    Science.gov (United States)

    DesMarais, D. J.

    1998-01-01

    The search for evidence of the early martian environment and a martian biosphere is benefitted by diverse studies of life on Earth. Most fundamentally, origin-of-life research highlights the challenge in formulating a rigorous definition of life. Because such definitions typically list several of life's most basic properties, they also help to define those observable features that distinguish life and thus might be sought through telescopes, spacecraft, and analyses of extraterrestrial samples. Studies of prebiotic chemistry also help by defining the range of environments and processes that sustain prebiotic organic synthesis. These studies might indicate if and where prebiotic processes occur today on Earth and elsewhere. Such studies should also help to identify which localities are good candidates for the origin of life. A better understanding of the most fundamental principles by which molecules are assembled into living systems will help us to appreciate possible alternatives to the path followed by life on Earth. These perspectives will sharpen our ability to recognize exotic life and/or those environments that can sustain it.

  13. Growing Beyond Earth; Students Exploring Plant Varieties for Future Space Exploration

    Science.gov (United States)

    Litzinger, Marion; Massa, Gioia

    2017-01-01

    Future space exploration and long duration space flight will pose an array of challenges to the health and wellbeing of astronauts. Since 2015, Fairchild Tropical Botanic Garden (FTBG), in partnership with NASA's Veggie team, has been testing edible crops for space flight potential through a series of citizen science experiments. FTBG's interest in classroom-based science projects, along with NASA's successful operation of the Veggie system aboard the International Space Station (ISS), led to a NASA-FTBG partnership that gave rise to the Growing Beyond Earth STEM Initiative (GBE). Established in 2015, GBE now involves 131 middle and high school classrooms in South Florida, all conducting simultaneous plant science experiments. The results of those experiments (both numeric and visual) are directly shared with the space food production researchers at KSC. Through this session, we will explore the successful classroom implementation and integration into the curriculum, how the data is being used and the impact of the project on participating researchers, teachers, and students. Participating schools were supplied with specialized LED-lit growth chambers, mimicking the Veggie system on ISS, for growing edible plants under similar physical and environmental constraints. Research protocols were provided by KSC scientists, while edible plant varieties were selected mainly by the botanists at FTBG. In a jointly-led professional development workshop, participating teachers were trained to conduct GBE experiments in their classrooms. Teachers were instructed to not only teach basic botany concepts, but to also demonstrate practical applications of math, physics and chemistry. As experiments were underway, students shared data on plant germination, growth, and health in an online spreadsheet. Results from the students research show a promising selection of new plant candidates for possible further testing. Over a two year period, more than 5000 South Florida students, ages

  14. Layers: Places in Peril, An Art and Earth Science Exploration

    Science.gov (United States)

    Brey, J. A.; Waller, J. L.

    2013-12-01

    As an Earth scientist (former U.W. Geography/Geology Professor-now Director of the Education Program at The American Meteorological Society) and a painter (Professor of Art, University of Wisconsin - Fox Valley), we have together twenty years of collaborative teaching and scholarly work. We have produced an exhibition of paintings and accompanying explanatory essays focusing on layers, a nexus of our two disciplines. Our traveling exhibition, entitled Layers: Places in Peril, highlights natural and human caused threats to selected beloved and treasured cities and areas. The Earth and its atmosphere are composed of layers, paintings are often layered and the built environment is often constructed in layers. We feel that this notion of overlapping and interleaving strata gives texture to reality. This realization and acknowledgement is something we wish to share with those who design or study the built environment. This reality also provides an important opportunity to convey the reality of hazards to a new and important audience. In this session, we will first describe our professional history of collaboration and then feature Layers as a culmination of our collaborative teaching and professional work. Through the success of our first two showings of our Layers exhibition of large paintings and Earth science text panels (at the Aylward Gallery at the University of Wisconsin, Fox Valley in 2012, followed in 2013 at the Indiana University of Pennsylvania Museum) and, most recently, through our participation at the National Academy of Sciences 'DASER on Disasters' event at the Keck Center in Washington D.C., we witnessed the essential educational power of this type of collaborative activity. To conclude our presentation, we will lead a brief conversation about strategy and practice that illustrates how engaged colleagues can flourish across disciplines and institutions. The result will hopefully inspire those who study, teach, shape, build and care about future

  15. Exploring the limits of EDS microanalysis: rare earth element analyses

    Science.gov (United States)

    Ritchie, N. W. M.; Newbury, D. E.; Lowers, H.; Mengason, M.

    2018-01-01

    It is a great time to be a microanalyst. After a few decades of incremental progress in energy-dispersive X-ray spectrometry (EDS), the last decade has seen the accuracy and precision surge forward. Today, the question is not whether EDS is generally useful but to identify the types of problems for which wavelength-dispersive X-ray spectrometry remains the better choice. The full extent of EDS’s capabilities has surprised many. Low Z, low energy, and trace element detection have been demonstrated even in the presence of extreme peak interferences. In this paper, we will summarise the state-of-the-art and investigate a challenging problem domain, the analysis of minerals bearing multiple rare-earth elements.

  16. Rare earth elements as a by-catch of sedimentary deposits. Exploration program of rare earth elements

    International Nuclear Information System (INIS)

    Linhardt, E.; Gebhardt, A.

    2014-01-01

    The increasing demand for rare earth elements (REE) in the field of ''green technologies'' on the one hand and the shortage of raw materials on the world markets on the other hand confronted also Bavaria as an industrial location with growing supply problems in these ''high tech raw materials''. The aim of exploration was the clarification of the feedstock REE potential of heavy mineral concentrates which are obtained in the industrial extraction and processing of sand and kaolin in existing extraction operations in northern Bavaria as by catch and are potentially winnable or marketable. The in-depth investigation enabled the potential of found rare earth elements and other high-tech metal oxides that can be classified as very likely find it in terms of an economic recovery. [de

  17. Time and Energy, Exploring Trajectory Options Between Nodes in Earth-Moon Space

    Science.gov (United States)

    Martinez, Roland; Condon, Gerald; Williams, Jacob

    2012-01-01

    The Global Exploration Roadmap (GER) was released by the International Space Exploration Coordination Group (ISECG) in September of 2011. It describes mission scenarios that begin with the International Space Station and utilize it to demonstrate necessary technologies and capabilities prior to deployment of systems into Earth-Moon space. Deployment of these systems is an intermediate step in preparation for more complex deep space missions to near-Earth asteroids and eventually Mars. In one of the scenarios described in the GER, "Asteroid Next", there are activities that occur in Earth-Moon space at one of the Earth-Moon Lagrange (libration) points. In this regard, the authors examine the possible role of an intermediate staging point in an effort to illuminate potential trajectory options for conducting missions in Earth-Moon space of increasing duration, ultimately leading to deep space missions. This paper will describe several options for transits between Low Earth Orbit (LEO) and the libration points, transits between libration points, and transits between the libration points and interplanetary trajectories. The solution space provided will be constrained by selected orbital mechanics design techniques and physical characteristics of hardware to be used in both crewed missions and uncrewed missions. The relationships between time and energy required to transfer hardware between these locations will provide a better understanding of the potential trade-offs mission planners could consider in the development of capabilities, individual missions, and mission series in the context of the ISECG GER.

  18. ExploreNEOs. VIII. Dormant Short-period Comets in the Near-Earth Asteroid Population

    NARCIS (Netherlands)

    Mommert, M.; Harris, A. W.; Müller, M.; Hora, J. L.; Trilling, D. E.; Bottke, W. F.; Thomas, C. A.; Delbo, M.; Emery, J. P.; Fazio, G.; Smith, H. A.

    2015-01-01

    We perform a search for dormant comets, asteroidal objects of cometary origin, in the near-Earth asteroid (NEA) population based on dynamical and physical considerations. Our study is based on albedos derived within the ExploreNEOs program and is extended by adding data from NEOWISE and the Akari

  19. Human Exploration of Near-Earth Asteroids and Sample Collection Considerations

    Science.gov (United States)

    Abell, Paul

    2013-01-01

    In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. Subsequently, the U.S. presidential administration directed NASA on April 15, 2010 to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. Human Exploration Considerations: These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of these primitive objects. However, prior to sending human explorers to NEAs, robotic investigations of these bodies would be required in order to maximize operational efficiency and reduce mission risk. These precursor missions to NEAs would fill crucial strategic knowledge gaps concerning their physical characteristics that are relevant for human exploration of these relatively unknown destinations. Sample Science Benefits: Information obtained from a human investigation of a NEA, together with ground-based observations and prior spacecraft investigations of asteroids and comets, will also provide a real measure of ground truth to data obtained from terrestrial meteorite collections. Major advances in the areas of geochemistry, impact history, thermal history, isotope analyses, mineralogy, space weathering, formation ages, thermal inertias, volatile content, source regions, solar system formation, etc. can be expected from human NEA missions. Samples directly returned from a

  20. Exploring Best Practices for Research Data Management in Earth Science through Collaborating with University Libraries

    Science.gov (United States)

    Wang, T.; Branch, B. D.

    2013-12-01

    Earth Science research data, its data management, informatics processing and its data curation are valuable in allowing earth scientists to make new discoveries. But how to actively manage these research assets to ensure them safe and secure, accessible and reusable for long term is a big challenge. Nowadays, the data deluge makes this challenge become even more difficult. To address the growing demand for managing earth science data, the Council on Library and Information Resources (CLIR) partners with the Library and Technology Services (LTS) of Lehigh University and Purdue University Libraries (PUL) on hosting postdoctoral fellows in data curation activity. This inter-disciplinary fellowship program funded by the SLOAN Foundation innovatively connects university libraries and earth science departments and provides earth science Ph.D.'s opportunities to use their research experiences in earth science and data curation trainings received during their fellowship to explore best practices for research data management in earth science. In the process of exploring best practices for data curation in earth science, the CLIR Data Curation Fellows have accumulated rich experiences and insights on the data management behaviors and needs of earth scientists. Specifically, Ting Wang, the postdoctoral fellow at Lehigh University has worked together with the LTS support team for the College of Arts and Sciences, Web Specialists and the High Performance Computing Team, to assess and meet the data management needs of researchers at the Department of Earth and Environmental Sciences (EES). By interviewing the faculty members and graduate students at EES, the fellow has identified a variety of data-related challenges at different research fields of earth science, such as climate, ecology, geochemistry, geomorphology, etc. The investigation findings of the fellow also support the LTS for developing campus infrastructure for long-term data management in the sciences. Likewise

  1. Exploring spiritual value in earth science concept through learning using chain till unanswered questions

    Science.gov (United States)

    Johan, Henny; Suhandi, Andi; Samsudin, Ahmad; Ratna Wulan, Ana

    2017-08-01

    Now days, the youth's moral decline is an urgent problem in our country. Natural science especially earth and space science learning is potential to insert spirituality value in its learning activities. The aim of this study is to explore concept of planet earth to embed spirituality attitude through earth science learning. Interactive conceptual learning model using chain till unanswered questions (CTUQ) with help visualizations was implemented in this study. 23 pre-service physics teacher in Bengkulu, Indonesia participated in this study. A sixth indicator of spiritual aspect about awareness of divinity were used to identify the shifted of students' spirituality. Quasi experimental research design had been utilized to implement the learning model. The data were collected using a questionnaire in pretest and posttest. Open ended question was given at post-test only. Questionnaire was analyzed quantitative while open ended question was analyzed qualitatively. The results show that after implementation student's spiritual shifted to be more awareness of divinity. Students' response at scale 10 increased been 97.8% from 87.5% of total responses. Based on analysis of open ended question known that the shifted was influenced by spiritual value inserted in concepts, CTUQ, and media visualization used to show unobservable earth phenomenon during learning activities. It can be concluded that earth science concepts can be explored to embed spiritual aspect.

  2. Fun and Games: using Games and Immersive Exploration to Teach Earth and Space Science

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.

    2011-12-01

    We have been using games to teach Earth and Space Science for over 15 years. Our software "TicTacToe" has been used continuously at the Houston Museum of Natural Science since 2002. It is the single piece of educational software in the "Earth Forum" suite that holds the attention of visitors the longest - averaging over 10 minutes compared to 1-2 minutes for the other software kiosks. We now have question sets covering solar system, space weather, and Earth science. In 2010 we introduced a new game technology - that of immersive interactive explorations. In our "Tikal Explorer", visitors use a game pad to navigate a three-dimensional environment of the Classic Maya city of Tikal. Teams of students climb pyramids, look for artifacts, identify plants and animals, and site astronomical alignments that predict the annual return of the rains. We also have a new 3D exploration of the International Space Station, where students can fly around and inside the ISS. These interactive explorations are very natural to the video-game generation, and promise to bring educational objectives to experiences that had previously been used strictly for gaming. If space permits, we will set up our portable Discovery Dome in the poster session for a full immersive demonstration of these game environments.

  3. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    Science.gov (United States)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  4. The NASA GOLD Mission: Exploring the Interface between Earth and Space

    Science.gov (United States)

    Mason, T.; Costanza, B.

    2017-12-01

    NASA's Global-scale Observations of the Limb and Disk, or GOLD, mission will explore a little understood area close to home, but historically hard to observe: the interface between Earth and space, a dynamic area of near-Earth space that responds both to space weather above, and the lower atmosphere below. GOLD, scheduled to launch into geostationary orbit in early 2018, will collect observations with a 30-minute cadence, much higher than any mission that has come before it. This will enable GOLD to be the first mission to study the day-to-day weather of a region of space—the thermosphere and ionosphere—rather than its long-term climate. GOLD will explore the near-Earth space environment, which is home to astronauts, radio signals used to guide airplanes and ships, and satellites that provide our communications and GPS systems. GOLD's unprecedented images and data will enable research that can improve situational awareness to help protect astronauts, spacecraft, and humans on the ground. As part of the GOLD communications and outreach program, the Office of Communications & Outreach at the Laboratory for Atmospheric and Space Physics (LASP) is developing a suite of products and programs to introduce the science of the GOLD mission to a broad range of public audiences, including students, teachers, journalists, social media practitioners, and the wider planetary and Earth science communities. We plan to showcase with this poster some of the tools we are developing to achieve this goal.

  5. A Reflight of the Explorer-1 Science Mission: The Montana EaRth Orbiting Pico Explorer (MEROPE)

    Science.gov (United States)

    Klumpar, D. M.; Obland, M.; Hunyadi, G.; Jepsen, S.; Larsen, B.; Kankelborg, C.; Hiscock, W.

    2001-05-01

    Montana State University's interdisciplinary Space Science and Engineering Laboratory (SSEL) under support from the Montana NASA Space Grant Consortium is engaged in an earth orbiting satellite student design and flight project. The Montana EaRth Orbiting Pico Explorer (MEROPE) will carry a modern-day reproduction of the scientific payload carried on Explorer-1. On February 1, 1958 the United States launched its first earth orbiting satellite carrying a 14 kg scientific experiment built by Professor James Van Allen's group at the State University of Iowa (now The University of Iowa). The MEROPE student satellite will carry a reproduction, using current-day technology, of the scientific payload flown on Explorer-1. The CubeSat-class satellite will use currently available, low cost technologies to produce a payload-carrying satellite with a total orbital mass of 1 kg in a volume of 1 cubic liter. The satellite is to be launched in late 2001 into a 600 km, 65° inclination orbit. MEROPE will utilize passive magnetic orientation for 2-axis attitude control. A central microprocessor provides timing, controls on-board operations and switching, and enables data storage. Body mounted GaAs solar arrays are expected to provide in excess of 1.5 W. to maintain battery charge and operate the bus and payload. The Geiger counter will be operated at approximately 50% duty cycle, primarily during transits of the earth's radiation belts. Data will be stored on board and transmitted approximately twice per day to a ground station located on the Bozeman campus of the Montana State University. Owing to the 65° inclination, the instrument will also detect the higher energy portion of the electron spectrum responsible for the production of the Aurora Borealis. This paper describes both the technical implementation and design of the satellite and its payload as well as the not inconsiderable task of large team organization and management. As of March 2001, the student team consists of

  6. Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, and Planetary Defense

    Science.gov (United States)

    Abell, Paul A.

    2011-01-01

    Human exploration of near-Earth objects (NEOs) beginning circa 2025 - 2030 is one of the stated objectives of U.S. National Space Policy. Piloted missions to these bodies would further development of deep space mission systems and technologies, obtain better understanding of the origin and evolution of our Solar System, and support research for asteroid deflection and hazard mitigation strategies. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

  7. Human Expeditions to Near-Earth Asteroids: Implications for Exploration, Resource Utilization, Science, and Planetary Defense

    Science.gov (United States)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on human exploration of near-Earth asteroids (NEAs) and planetary defence. Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. With respect to planetary defence, in 2005 the U.S. Congress directed NASA to implement a survey program to detect, track, and characterize NEAs equal or greater than 140 m in diameter in order to access the threat from such objects to the Earth. The current goal of this survey is to achieve 90% completion of objects equal or greater than 140 m in diameter by 2020.

  8. Finding Near-Earth Asteroid (NEA) Destinations for Human Exploration: Implications for Astrobiology

    Science.gov (United States)

    Landis, Rob; Abell, Paul; Barbee, Brent; Johnson, Lindley

    2012-01-01

    The current number of known potential NEA targets for HSF is limited to those objects whose orbital characteristics are similar to that of the Earth. This is due to the projected capabilities of the exploration systems currently under consideration and development at NASA. However, NEAs with such orbital characteristics often have viewing geometries that place them at low solar elongations and thus are difficult to detect from the vicinity of Earth. While ongoing ground-based surveys and data archives maintained by the NEO Program Observation Program Office and the Minor Planet Center (MPC) have provided a solid basis upon which to build, a more complete catalog of the NEO population is required to inform a robust and sustainable HSF exploration program. Since all the present NEO observing assets are currently confined to the vicinity of the Earth, additional effort must be made to provide capabilities for detection of additional HSF targets via assets beyond Earth orbit. A space-based NEO survey telescope located beyond the vicinity of the Earth, has considerable implications for planetary science and astrobiology. Such a telescope will provide foundational knowledge of our Solar System small body population and detect targets of interest for both the HSF and scientific communities. Data from this asset will yield basic characterization data on the NEOs observed (i.e., albedo, size determination, potential for volatiles and organics, etc.) and help down select targets for future HSF missions. Ideally, the most attractive targets from both HSF and astrobiology perspectives are those NEAs that may contain organic and volatile materials, and which could be effectively sampled at a variety of locations and depths. Presented here is an overview of four space-based survey concepts; any one of which after just a few years of operation will discover many highly accessible NEO targets suitable for robotic and human exploration. Such a space-based survey mission will reveal

  9. Exploring Rare Earths supply constraints for the emerging clean energy technologies and the role of recycling

    DEFF Research Database (Denmark)

    Habib, Komal; Wenzel, Henrik

    with other background end-uses on two key REEs, i.e. neodymium (Nd) and dysprosium (Dy). Our study reveals that a highly accelerated rate of REEs mining is unavoidable in order to keep up with the pace of increasing demand from new technologies required in a renewable energy strategy for meeting the climate......The dependency on critical resources like Rare Earth Elements (REEs) has been pronounced as a potential barrier to a broader implementation of emerging renewable energy technologies. This study explores the dependency of such technologies especially wind turbines and electric vehicles along...

  10. Earth sciences: Uranium geology, exploration and mining, hydrology, 1986-1996. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1997-03-01

    This catalogue lists all sales publications of the International Atomic Energy Agency dealing with earth sciences and issued during the period of 1986-1996. These topics are mainly in the field of uranium geology, exploration and mining, isotope applications in hydrology, IAEA Yearbook 1996 on the developments in nuclear science and technology and meetings on atomic energy. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English but all of these papers have English abstracts. The prices of books are quoted in Austrian Schillings

  11. Missions to Near-Earth Asteroids: Implications for Exploration, Science, Resource Utilization, and Planetary Defense

    Science.gov (United States)

    Abell, P. A.; Sanders, G. B.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Drake, B. G.; Friedensen, V. P.

    2012-12-01

    Introduction: In 2009 the Augustine Commission identified near-Earth asteroids (NEAs) as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. NEA Space-Based Survey and Robotic Precursor Missions: The most suitable targets for human missions are NEAs in Earth-like orbits with long synodic periods. However, these mission candidates are often not observable from Earth until the timeframe of their most favorable human mission opportunities, which does not provide an appropriate amount of time for mission development. A space-based survey telescope could more efficiently find these targets in a timely, affordable manner. Such a system is not only able to discover new objects, but also track and characterize objects of interest for human space flight consideration. Those objects with characteristic signatures representative of volatile-rich or metallic materials will be considered as top candidates for further investigation due to their potential for resource utilization and scientific discovery. Once suitable candidates have been identified, precursor spacecraft are required to perform basic reconnaissance of a few NEAs under consideration for the human-led mission. Robotic spacecraft will assess targets for potential hazards that may pose a risk to the deep space transportation vehicle, its deployable assets, and the crew. Additionally, the information obtained about the NEA's basic physical characteristics will be crucial for planning operational activities, designing in-depth scientific/engineering investigations, and identifying sites on the NEA for sample collection. Human Exploration

  12. Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad

    2016-01-01

    NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  13. 60 Years of Studying the Earth-Sun System from Space: Explorer 1

    Science.gov (United States)

    Zurbuchen, T.

    2017-12-01

    The era of space-based observation of the Earth-Sun system initiated with the Explorer-1 satellite has revolutionized our knowledge of the Earth, Sun, and the processes that connect them. The space-based perspective has not only enabled us to achieve a fundamentally new understanding of our home planet and the star that sustains us, but it has allowed for significant improvements in predictive capability that serves to protect life, health, and property. NASA has played a leadership role in the United States in creating both the technology and science that has enabled and benefited from these new capabilities, and works closely with partner agencies and around the world to synergistically address these global challenges which are of sufficient magnitude that no one nation or organization can address on their own. Three areas are at the heart of NASA's comprehensive science program: Discovering the secrets of the universe, searching for life elsewhere, and safeguarding and improving life on Earth. Together, these tenets will help NASA lead on a civilization scale. In this talk, a review of these 60 years of advances, a status of current activities, and thoughts about their evolution into the future will be presented.

  14. New Dimensions of GIS Data: Exploring Virtual Reality (VR) Technology for Earth Science

    Science.gov (United States)

    Skolnik, S.; Ramirez-Linan, R.

    2016-12-01

    NASA's Science Mission Directorate (SMD) Earth Science Division (ESD) Earth Science Technology Office (ESTO) and Navteca are exploring virtual reality (VR) technology as an approach and technique related to the next generation of Earth science technology information systems. Having demonstrated the value of VR in viewing pre-visualized science data encapsulated in a movie representation of a time series, further investigation has led to the additional capability of permitting the observer to interact with the data, make selections, and view volumetric data in an innovative way. The primary objective of this project has been to investigate the use of commercially available VR hardware, the Oculus Rift and the Samsung Gear VR, for scientific analysis through an interface to ArcGIS to enable the end user to order and view data from the NASA Discover-AQ mission. A virtual console is presented through the VR interface that allows the user to select various layers of data from the server in both 2D, 3D, and full 4pi steradian views. By demonstrating the utility of VR in interacting with Discover-AQ flight mission measurements, and building on previous work done at the Atmospheric Science Data Center (ASDC) at NASA Langley supporting analysis of sources of CO2 during the Discover-AQ mission, the investigation team has shown the potential for VR as a science tool beyond simple visualization.

  15. Human Health and Performance Considerations for Exploration of Near-Earth Asteroids

    Science.gov (United States)

    Kundrot, Craig; Steinberg, Susan; Charles, John

    2010-01-01

    This presentation will describe the human health and performance issues that are anticipated for the human exploration of near-Earth asteroids (NEA). Humans are considered a system in the design of any such deep-space exploration mission, and exploration of NEA presents unique challenges for the human system. Key factors that define the mission are those that are strongly affected by distance and duration. The most critical of these is deep-space radiation exposure without even the temporary shielding of a nearby large planetary body. The current space radiation permissible exposure limits (PEL) restrict mission duration to 3-10 months depending on age and gender of crewmembers and stage of the solar cycle. Factors that affect mission architecture include medical capability; countermeasures for bone, muscle, and cardiovascular atrophy during continuous weightlessness; restricted food supplies; and limited habitable volume. The design of a habitat that can maintain the physical and psychological health of the crew and support mission operations with limited intervention from Earth will require an integrated research and development effort by NASA s Human Research Program, engineering, and human factors groups. Limited abort and return options for an NEA mission are anticipated to have important effects on crew psychology as well as influence medical supplies and training requirements of the crew. Other important factors are those related to isolation, confinement, communication delays, autonomous operations, task design, small crew size, and even the unchanging view outside the windows for most of the mission. Geological properties of the NEA will influence design of sample handling and containment, and extravehicular activity capabilities including suit ports and tools. A robotic precursor mission that collects basic information on NEA surface properties would reduce uncertainty about these aspects of the mission as well as aid in design of mission architecture and

  16. Divergent Evolution Among Earth-like Planets: The Case for Venus Exploration

    Science.gov (United States)

    Crisp, D.; Allen, M. A.; Anicich, V. G.; Arvidson, R. E.; Atreya, S. K.; Baines, K. H.; Banerdt, W. B.; Bjoraker, G. L.; Bougher, S. W.; Campbell, B. A.; Carlson, R. W.; Chin, G.; Chutjian, A.; Clancy, R. T.; Clark, B. C.; Cravens, T. E.; del Genio, A. D.; Esposito, L. W.; Fegley, B.; Flasar, M.; Fox, J. L.; Gierasch, P. J.; Goody, R. M.; Grinspoon, D. H.; Gulkis, S.; Hansen, V. L.; Herrick, R. R.; Huestis, D. L.; Hunten, D. M.; Janssen, M. A.; Jenkins, J.; Johnson, C. L.; Keating, G. M.; Kliore, A. J.; Limaye, S. S.; Luhmann, J. G.; Lunine, J. I.; Mahaffy, P.; McGovern, P. J.; Meadows, V. S.; Mills, F. P.; Niemann, H. B.; Owen, T. C.; Oyama, K. I.; Pepin, R. O.; Plaut, J. J.; Reuter, D. C.; Richardson, M. I.; Russell, C. T.; Saunders, R. S.; Schofield, J. T.; Schubert, G.; Senske, D. A.; Shepard, M. K.; Slanger, T. G.; Smrekar, S. E.; Stevenson, D. J.; Titov, D. V.; Ustinov, E. A.; Young, R. E.; Yung, Y. L.

    2002-08-01

    The planet Venus is our most Earth-like neighbor in size, mass, and distance from the sun. In spite of these similarities, and the intense scrutiny that it received early in the space age, the Venus surface and atmosphere are characterized by some of the most enigmatic features seen anywhere in the solar system. A reinvigorated Venus exploration program is essential to the development of a comprehensive understanding of the origin and evolution of Earth-like terrestrial planets. The present NASA inner planets strategy, which focuses exclusively on Mars, will provide an incomplete, and possibly misleading description of processes that produce these objects. If Venus-like terrestrial planets are common, this approach will also impede efforts to interpret observations of extrasolar terrestrial planets, which are expected to become available by the end of the decade. Here, we propose a Venus exploration program that has been designed to explain the origin and divergent evolution of the interiors, surfaces, and atmospheres of the terrestrial planets in our solar system, and provide greater insight into the conditions that may affect the habitability of terrestrial planets in other solar systems.

  17. Giovanni in the Cloud: Earth Science Data Exploration in Amazon Web Services

    Science.gov (United States)

    Petrenko, Maksym; Hegde, Mahabal; Smit, Christine; Zhang, Hailiang; Pilone, Paul; Zasorin, Andrey A.; Pham, Long

    2017-01-01

    Giovanni is an exploration tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), providing 22 analysis and visualization services for over 1600 Earth Science data variables. Owing to its popularity, Giovanni has experienced a consistent growth in overall demand, with periodic usage spikes attributed to trainings by education organizations, extensive data analysis in response to natural disasters, preparations for science meetings, etc. Furthermore, the new generation of spaceborne sensors and high resolution models have resulted in an exponential growth in data volume with data distributed across the traditional boundaries of data centers. Seamless exploration of data (without users having to worry about data center boundaries) has been a key recommendation of the GES DISC User Working Group. These factors have required new strategies for delivering acceptable performance. The cloud-based Giovanni, built on Amazon Web Services (AWS), evaluates (1) AWS native solutions to provide a scalable, serverless architecture; (2) open standards for data storage in the Cloud; (3) a cost model for operations; and (4) end-user performance. Our preliminary findings indicate that the use of serverless architecture has a potential to significantly reduce development and operational cost of Giovanni. The combination of using AWS managed services, storage of data in open standards, and schema-on-read data access strategy simplifies data access and analytics, in addition to making data more accessible to the end users of Giovanni through popular programming languages.

  18. Giovanni in the Cloud: Earth Science Data Exploration in Amazon Web Services

    Science.gov (United States)

    Hegde, M.; Petrenko, M.; Smit, C.; Zhang, H.; Pilone, P.; Zasorin, A. A.; Pham, L.

    2017-12-01

    Giovanni (https://giovanni.gsfc.nasa.gov/giovanni/) is a popular online data exploration tool at the NASA Goddard Earth Sciences Data Information Services Center (GES DISC), providing 22 analysis and visualization services for over 1600 Earth Science data variables. Owing to its popularity, Giovanni has experienced a consistent growth in overall demand, with periodic usage spikes attributed to trainings by education organizations, extensive data analysis in response to natural disasters, preparations for science meetings, etc. Furthermore, the new generation of spaceborne sensors and high resolution models have resulted in an exponential growth in data volume with data distributed across the traditional boundaries of datacenters. Seamless exploration of data (without users having to worry about data center boundaries) has been a key recommendation of the GES DISC User Working Group. These factors have required new strategies for delivering acceptable performance. The cloud-based Giovanni, built on Amazon Web Services (AWS), evaluates (1) AWS native solutions to provide a scalable, serverless architecture; (2) open standards for data storage in the Cloud; (3) a cost model for operations; and (4) end-user performance. Our preliminary findings indicate that the use of serverless architecture has a potential to significantly reduce development and operational cost of Giovanni. The combination of using AWS managed services, storage of data in open standards, and schema-on-read data access strategy simplifies data access and analytics, in addition to making data more accessible to the end users of Giovanni through popular programming languages.

  19. Using Google Earth to Explore Multiple Data Sets and Plate Tectonic Concepts

    Science.gov (United States)

    Goodell, L. P.

    2015-12-01

    Google Earth (GE) offers an engaging and dynamic environment for exploration of earth science data. While GIS software offers higher-level analytical capability, it comes with a steep learning curve and complex interface that is not easy for the novice, and in many cases the instructor, to negotiate. In contrast, the intuitive interface of GE makes it easy for students to quickly become proficient in manipulating the globe and independently exploring relationships between multiple data sets at a wide range of scales. Inquiry-based, data-rich exercises have been developed for both introductory and upper-level activities including: exploration of plate boundary characteristics and relative motion across plate boundaries; determination and comparison of short-term and long-term average plate velocities; crustal strain analysis (modeled after the UNAVCO activity); and determining earthquake epicenters, body-wave magnitudes, and focal plane solutions. Used successfully in undergraduate course settings, for TA training and for professional development programs for middle and high school teachers, the exercises use the following GE data sets (with sources) that have been collected/compiled by the author and are freely available for non-commercial use: 1) tectonic plate boundaries and plate names (Bird, 2003 model); 2) real-time earthquakes (USGS); 3) 30 years of M>=5.0 earthquakes, plotted by depth (USGS); 4) seafloor age (Mueller et al., 1997, 2008); 5) location and age data for hot spot tracks (published literature); 6) Holocene volcanoes (Smithsonian Global Volcanism Program); 7) GPS station locations with links to times series (JPL, NASA, UNAVCO); 8) short-term motion vectors derived from GPS times series; 9) long-term average motion vectors derived from plate motion models (UNAVCO plate motion calculator); 10) earthquake data sets consisting of seismic station locations and links to relevant seismograms (Rapid Earthquake Viewer, USC/IRIS/DELESE).

  20. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    Science.gov (United States)

    Graff, Paige; Stefanov, William; Willis, Kim; Runco, Susan

    2012-01-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide

  1. USGS Earth Explorer Client for Co-Discovery of Aerial and Satellite Data

    Science.gov (United States)

    Longhenry, R.; Sohre, T.; McKinney, R.; Mentele, T.

    2011-12-01

    The United States Geological Survey (USGS) Earth Resources Observation Science (EROS) Center is home to one of the largest civilian collections of images of the Earth's surface. These images are collected from recent satellite platforms such as the Landsat, Terra, Aqua and Earth Observer-1, historical airborne systems such as digital cameras and side-looking radar, and digitized historical aerial photography dating to the 1930's. The aircraft scanners include instruments such as the Advanced Solid State Array Spectrometer (ASAS). Also archived at EROS are specialized collections of aerial images, such as high-resolution orthoimagery, extensive collections over Antarctica, and historical airborne campaigns such as the National Aerial Photography Program (NAPP) and the National High Altitude Photography (NHAP) collections. These collections, as well as digital map data, declassified historical space-based photography, and variety of collections such as the Global Land Survey 2000 (GLS2000) and the Shuttle Radar Topography Mission (SRTM) are accessible through the USGS Earth Explorer (EE) client. EE allows for the visual discovery and browse of diverse datasets simultaneously, permitting the co-discovery and selection refinement of both satellite and aircraft imagery. The client, in use for many years was redesigned in 2010 to support requirements for next generation Landsat Data Continuity Mission (LDCM) data access and distribution. The redesigned EE is now supported by standards-based, open source infrastructure. EE gives users the capability to search 189 datasets through one interface, including over 8.4 million frames of aerial imagery. Since April 2011, NASA datasets archived at the Land Processes Distributed Active Archive Center (LP DAAC) including the MODIS land data products and ASTER Level-1B data products over the U.S. and Territories were made available via the EE client enabling users to co-discover aerial data archived at the USGS EROS along with USGS

  2. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  3. Rethinking Approaches to Exploration and Analysis of Big Data in Earth Science

    Science.gov (United States)

    Graves, S. J.; Maskey, M.

    2015-12-01

    With increasing amounts of data available for exploration and analysis, there are increasing numbers of users that need information extracted from the data for very specific purposes. Many of the specific purposes may not have even been considered yet so how do computational and data scientists plan for this diverse and not well defined set of possible users? There are challenges to be considered in the computational architectures, as well as the organizational structures for the data to allow for the best possible exploration and analytical capabilities. Data analytics need to be a key component in thinking about the data structures and types of storage of these large amounts of data, coming from a variety of sensing platforms that may be space based, airborne, in situ and social media. How do we provide for better capabilities for exploration and anaylsis at the point of collection for real-time or near real-time requirements? This presentation will address some of the approaches being considered and the challenges the computational and data science communities are facing in collaboration with the Earth Science research and application communities.

  4. Human Expeditions to Near-Earth Asteroids: An Update on NASA's Status and Proposed Activities for Small Body Exploration

    Science.gov (United States)

    Abell, Paul; Mazanek, Dan; Barbee, Brent; Landis, Rob; Johnson, Lindley; Yeomans, Don; Reeves, David; Drake, Bret; Friedensen, Victoria

    2013-01-01

    Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth- Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. The scientific and hazard mitigation benefits, along with the programmatic and operational benefits of a human venture beyond the Earth-Moon system, make a mission to a NEA using NASA s proposed exploration systems a compelling endeavor.

  5. Human Exploration Mission Capabilities to the Moon, Mars, and Near Earth Asteroids Using ''Bimodal'' NTR Propulsion

    International Nuclear Information System (INIS)

    Stanley K. Borowski; Leonard A. Dudzinski; Melissa L. McGuire

    2000-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human exploration missions because of its high specific impulse (Isp ∼ 850 to 1000 s) and attractive engine thrust-to-weight ratio (∼ 3 to 10). Because only a minuscule amount of enriched 235 U fuel is consumed in an NRT during the primary propulsion maneuvers of a typical Mars mission, engines configured both for propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, power-rich stage with efficient propulsive capture capability at the moon and near-earth asteroids (NEAs), where aerobraking cannot be utilized. A family of modular bimodal NTR (BNTR) space transfer vehicles utilize a common core stage powered by three ∼15-klb f engines that produce 50 kW(electric) of total electrical power for crew life support, high data rate communications with Earth, and an active refrigeration system for long-term, zero-boiloff liquid hydrogen (LH 2 ) storage. This paper describes details of BNTR engines and designs of vehicles using them for various missions

  6. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  7. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool; FINAL

    International Nuclear Information System (INIS)

    Scott A. Wood

    2002-01-01

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two

  8. Technology Development to Support Human Health and Performance in Exploration Beyond Low Earth Orbit

    Science.gov (United States)

    Kundrot, C.E.; Steinberg, S. L.; Charles, J. B.

    2011-01-01

    In the course of defining the level of risks and mitigating the risks for exploration missions beyond low Earth orbit, NASA s Human Research Program (HRP) has identified the need for technology development in several areas. Long duration missions increase the risk of serious medical conditions due to limited options for return to Earth; no resupply; highly limited mass, power, volume; and communication delays. New space flight compatible medical capabilities required include: diagnostic imaging, oxygen concentrator, ventilator, laboratory analysis (saliva, blood, urine), kidney stone diagnosis & treatment, IV solution preparation and delivery. Maintenance of behavioral health in such an isolated, confined and extreme environment requires new sensory stimulation (e.g., virtual reality) technology. Unobtrusive monitoring of behavioral health and treatment methods are also required. Prolonged exposure to weightlessness deconditions bone, muscle, and the cardiovascular system. Novel exercise equipment or artificial gravity are necessary to prevent deconditioning. Monitoring of the degree of deconditioning is required to ensure that countermeasures are effective. New technologies are required in all the habitable volumes (e.g., suit, capsule, habitat, exploration vehicle, lander) to provide an adequate food system, and to meet human environmental standards for air, water, and surface contamination. Communication delays require the crew to be more autonomous. Onboard decision support tools that assist crew with real-time detection and diagnosis of vehicle and habitat operational anomalies will enable greater autonomy. Multi-use shield systems are required to provide shielding from solar particle events. The HRP is pursuing the development of these technologies in laboratories, flight analog environments and the ISS so that the human health and performance risks will be acceptable with the available resources.

  9. NASA's Space Launch System: A Flagship for Exploration Beyond Earth's Orbit

    Science.gov (United States)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit in an austere economic climate. This fact drives the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. To arrive at the current SLS plan, government and industry experts carefully analyzed hundreds of architecture options and arrived at the one clear solution to stringent requirements for safety, affordability, and sustainability over the decades that the rocket will be in operation. This paper will explore ways to fit this major development within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017. It will explain the SLS Program s long-range plan to keep the budget within bounds, yet evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through a competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface over 4 decades ago. Astronauts train for long-duration voyages on the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. NASA is refining its mission manifest, guided by U.S. Space Policy and the Global Exploration Roadmap. Launching the Orion Multi-Purpose Crew Vehicle s (MPCV s) first autonomous certification flight in 2017, followed by a crewed flight in 2021, the SLS will offer a robust way to transport international crews and the air, water, food, and equipment they need for extended trips to asteroids, Lagrange Points, and Mars. In addition, the SLS will accommodate

  10. Desert RATS 2011: Human and robotic exploration of near-Earth asteroids

    Science.gov (United States)

    Abercromby, Andrew F. J.; Chappell, Steven P.; Gernhardt, Michael L.

    2013-10-01

    The Desert Research and Technology Studies (D-RATS) 2011 field test involved the planning and execution of a series of exploration scenarios under operational conditions similar to those expected during a human exploration mission to a near-Earth asteroid (NEA). The focus was on understanding the operations tempo during simulated NEA exploration and the implications of communications latency and limited data bandwidth. Anchoring technologies and sampling techniques were not evaluated due to the immaturity of those technologies and the inability to meaningfully test them at D-RATS. Reduced gravity analogs and simulations are being used to fully evaluate Space Exploration Vehicle (SEV) and extravehicular (EVA) operations and interactions in near-weightlessness at a NEA as part of NASA's integrated analogs program. Hypotheses were tested by planning and performing a series of 1-day simulated exploration excursions comparing test conditions all of which involved a single Deep Space Habitat (DSH) and either 0, 1, or 2 SEVs; 3 or 4 crewmembers; 1 of 2 different communications bandwidths; and a 50-second each-way communications latency between the field site and Houston. Excursions were executed at the Black Point Lava Flow test site with a remote Mission Control Center and Science Support Room at Johnson Space Center (JSC) being operated with 50-second each-way communication latency to the field. Crews were composed of astronauts and professional field geologists. Teams of Mission Operations and Science experts also supported the mission simulations each day. Data were collected separately from the Crew, Mission Operations, and Science teams to assess the test conditions from multiple perspectives. For the operations tested, data indicates practically significant benefits may be realized by including at least one SEV and by including 4 versus 3 crewmembers in the NEA exploration architecture as measured by increased scientific data quality, EVA exploration time

  11. EarthServer: Visualisation and use of uncertainty as a data exploration tool

    Science.gov (United States)

    Walker, Peter; Clements, Oliver; Grant, Mike

    2013-04-01

    software from the EarthServer project we can produce a novel data offering that allows the use of traditional exploration and access mechanisms such as WMS and WCS. However the real benefits can be seen when utilising WCPS to explore the data . We will show two major benefits to this infrastructure. Firstly we will show that the visualisation of the combined chlorophyll and uncertainty datasets through a web based GIS portal gives users the ability to instantaneously assess the quality of the data they are exploring using traditional web based plotting techniques as well as through novel web based 3 dimensional visualisation. Secondly we will showcase the benefits available when combining these data with the WCPS standard. The uncertainty data can be utilised in queries using the standard WCPS query language. This allows selection of data either for download or use within the query, based on the respective uncertainty values as well as the possibility of incorporating both the chlorophyll data and uncertainty data into complex queries to produce additional novel data products. By filtering with uncertainty at the data source rather than the client we can minimise traffic over the network allowing huge datasets to be worked on with a minimal time penalty.

  12. 300-kW Solar Electric Propulsion System Configuration for Human Exploration of Near-Earth Asteroids

    Science.gov (United States)

    Brophy, John R.; Gershman, Robert; Strange, Nathan; Landau, Damon; Merrill, Raymond Gabriel; Kerslake, Thomas

    2011-01-01

    The use of Solar Electric Propulsion (SEP) can provide significant benefits for the human exploration of near-Earth asteroids. These benefits include substantial cost savings - represented by a significant reduction in the mass required to be lifted to low Earth orbit - and increased mission flexibility. To achieve these benefits, system power levels of 100's of kW are necessary along with the capability to store and process tens of thousands of kilograms of xenon propellant. The paper presents a conceptual design of a 300-kW SEP vehicle, with the capability to store nearly 40,000 kg of xenon, to support human missions to near-Earth asteroids.

  13. Data Prospecting Framework - a new approach to explore "big data" in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Rushing, J.; Lin, A.; Kuo, K.

    2012-12-01

    Due to advances in sensors, computation and storage, cost and effort required to produce large datasets have been significantly reduced. As a result, we are seeing a proliferation of large-scale data sets being assembled in almost every science field, especially in geosciences. Opportunities to exploit the "big data" are enormous as new hypotheses can be generated by combining and analyzing large amounts of data. However, such a data-driven approach to science discovery assumes that scientists can find and isolate relevant subsets from vast amounts of available data. Current Earth Science data systems only provide data discovery through simple metadata and keyword-based searches and are not designed to support data exploration capabilities based on the actual content. Consequently, scientists often find themselves downloading large volumes of data, struggling with large amounts of storage and learning new analysis technologies that will help them separate the wheat from the chaff. New mechanisms of data exploration are needed to help scientists discover the relevant subsets We present data prospecting, a new content-based data analysis paradigm to support data-intensive science. Data prospecting allows the researchers to explore big data in determining and isolating data subsets for further analysis. This is akin to geo-prospecting in which mineral sites of interest are determined over the landscape through screening methods. The resulting "data prospects" only provide an interaction with and feel for the data through first-look analytics; the researchers would still have to download the relevant datasets and analyze them deeply using their favorite analytical tools to determine if the datasets will yield new hypotheses. Data prospecting combines two traditional categories of data analysis, data exploration and data mining within the discovery step. Data exploration utilizes manual/interactive methods for data analysis such as standard statistical analysis and

  14. Our school's Earth and Space Sciences Club: 12 years promoting interdisciplinary explorations

    Science.gov (United States)

    Margarida Maria, Ana; Pereira, Hélder

    2017-04-01

    During the past 12 years, we have been engaging secondary level science students (15 to 18 years old) in the extracurricular activities of our school's Earth and Space Sciences Club, providing them with some of the skills needed to excel in science, technology, engineering, arts, and mathematics (STEAM). Our approach includes the use of authentic scientific data, project based learning, and inquiry-centred activities that go beyond the models and theories present in secondary level textbooks. Moreover, the activities and projects carried out, being eminently practical, also function as an extension of the curriculum and frequently enable the demonstration of the applicability of several concepts taught in the classroom in real life situations. The tasks carried out during these activities and research projects often require the combination of two or more subjects, promoting an interdisciplinary approach to learning. Outside of the traditional classroom settings, through interdisciplinary explorations, students also gain hands-on experience doing real science. Thereby, during this time, we have been able to promote meaningful and lasting experiences and spark students' interest in a wide diversity of topics.

  15. International Space Station as a Platform for Exploration Beyond Low Earth Orbit

    Science.gov (United States)

    Raftery, Michael; Woodcock, Gordon

    2010-01-01

    The International Space Station (ISS) has established a new model for the achievement of the most difficult engineering goals in space: international collaboration at the program level with competition at the level of technology. This strategic shift in management approach provides long term program stability while still allowing for the flexible evolution of technology needs and capabilities. Both commercial and government sponsored technology developments are well supported in this management model. ISS also provides a physical platform for development and demonstration of the systems needed for missions beyond low earth orbit. These new systems at the leading edge of technology require operational exercise in the unforgiving environment of space before they can be trusted for long duration missions. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. We will describe representative mission profiles showing how ISS can support exploration missions to the Moon, Mars, asteroids and other potential destinations. Example missions would include humans to lunar surface and return, and humans to Mars orbit as well as Mars surface and return. ISS benefits include: international access from all major launch sites; an assembly location with crew and tools that could help prepare departing expeditions that involve more than one launch; a parking place for reusable vehicles; and the potential to add a propellant depot.

  16. The use of dual mode thermionic reactors in supporting Earth orbital and space exploration missions

    International Nuclear Information System (INIS)

    Zubrin, R.M.; Sulmeisters, T.K.

    1993-01-01

    Missions requiring large amounts of electric power to support their payload functions can be enabled through the employment of nuclear electric power reactors, which in some cases can also assist the mission by making possible the employment of high specific impulse electric propulsion. However it is found that the practicality and versality of using a power reactor to provide advanced propulsion is enormously enhanced if the reactor is configured in such a way to allow it to generate a certain amount of direct thrust as well. The use of such a system allows the creation of a common bus upper stage that can provide both high power and high impulse (with short orbit transfer times). It is shown that such a system, termed an Integral Power and Propulsion Stage (IPAPS), is optimal for supporting many Earth, Lunar, planetary and asteroidal observation, exploration, and communication support missions, and it is therefore recommended that the nuclear power reactor ultimately selected by the government for development and production be one that can be configured for such a function

  17. Material engineering to fabricate rare earth erbium thin films for exploring nuclear energy sources

    Science.gov (United States)

    Banerjee, A.; Abhilash, S. R.; Umapathy, G. R.; Kabiraj, D.; Ojha, S.; Mandal, S.

    2018-04-01

    High vacuum evaporation and cold-rolling techniques to fabricate thin films of the rare earth lanthanide-erbium have been discussed in this communication. Cold rolling has been used for the first time to successfully fabricate films of enriched and highly expensive erbium metal with areal density in the range of 0.5-1.0 mg/cm2. The fabricated films were used as target materials in an advanced nuclear physics experiment. The experiment was designed to investigate isomeric states in the heavy nuclei mass region for exploring physics related to nuclear energy sources. The films fabricated using different techniques varied in thickness as well as purity. Methods to fabricate films with thickness of the order of 0.9 mg/cm2 were different than those of 0.4 mg/cm2 areal density. All the thin films were characterized using multiple advanced techniques to accurately ascertain levels of contamination as well as to determine their exact surface density. Detailed fabrication methods as well as characterization techniques have been discussed.

  18. Human Missions to Near-Earth Asteroids: An Update on NASA's Current Status and Proposed Activities for Small Body Exploration

    Science.gov (United States)

    Abell, P. A.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Larman, K. T.; hide

    2012-01-01

    Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010.

  19. Using GIS in an Earth Sciences Field Course for Quantitative Exploration, Data Management and Digital Mapping

    Science.gov (United States)

    Marra, Wouter A.; van de Grint, Liesbeth; Alberti, Koko; Karssenberg, Derek

    2017-01-01

    Field courses are essential for subjects like Earth Sciences, Geography and Ecology. In these topics, GIS is used to manage and analyse spatial data, and offers quantitative methods that are beneficial for fieldwork. This paper presents changes made to a first-year Earth Sciences field course in the French Alps, where new GIS methods were…

  20. Using GIS in an Earth Sciences field course for quantitative exploration, data management and digital mapping

    NARCIS (Netherlands)

    Marra, Wouter A.; van de Grint, Liesbeth; Alberti, Koko; Karssenberg, Derek

    2017-01-01

    Field courses are essential for subjects like Earth Sciences, Geography and Ecology. In these topics, GIS is used to manage and analyse spatial data, and offers quantitative methods that are beneficial for fieldwork. This paper presents changes made to a first-year Earth Sciences field course in the

  1. ESAS-Derived Earth Departure Stage Design for Human Mars Exploration

    Science.gov (United States)

    Flaherty, Kevin; Grant, Michael; Korzun, Ashley; Malo-Molina, Faure; Steinfeldt, Bradley; Stahl, Benjamin; Wilhite, Alan

    2007-01-01

    The Vision for Space Exploration has set the nation on a course to have humans on Mars as early as 2030. To reduce the cost and risk associated with human Mars exploration, NASA is planning for the Mars architecture to leverage the lunar architecture as fully as possible. This study takes the defined launch vehicles and system capabilities from ESAS and extends their application to DRM 3.0 to design an Earth Departure Stage suitable for the cargo and crew missions to Mars. The impact of a propellant depot in LEO was assessed and sLzed for use with the EDS. To quantitatively assess and compare the effectiveness of alternative designs, an initial baseline architecture was defined using the ESAS launch vehicles and DRM 3.0. The baseline architecture uses three NTR engines, LH2 propellant, no propellant depot in LEO, and launches on the Ares I and Ares V. The Mars transfer and surface elements from DRM 3.0 were considered to be fixed payloads in the design of the EDS. Feasible architecture alternatives were identified from previous architecture studies and anticipated capabilities and compiled in a morphological matrix. ESAS FOMs were used to determine the most critical design attributes for the effectiveness of the EDS. The ESAS-derived FOMs used in this study to assess alternative designs are effectiveness and performance, affordability, reliability, and risk. The individual FOMs were prioritized using the AHP, a method for pairwise comparison. All trades performed were evaluated with respect to the weighted FOMs, creating a Pareto frontier of equivalently ideal solutions. Additionally, each design on the frontier was evaluated based on its fulfillment of the weighted FOMs using TOPSIS, a quantitative method for ordinal ranking of the alternatives. The designs were assessed in an integrated environment using physics-based models for subsystem analysis where possible. However, for certain attributes such as engine type, historical, performance-based mass estimating

  2. Laurel Clark Earth Camp: A Program for Teachers and Students to Explore Their World and Study Global Change Through Field-Experience and Satellite Images

    Science.gov (United States)

    Buxner, S.; Orchard, A.; Colodner, D.; Schwartz, K.; Crown, D. A.; King, B.; Baldridge, A.

    2012-03-01

    The Laurel Clark Earth Camp program provides middle and high school students and teachers opportunities to explore local environmental issues and global change through field-experiences, inquiry exercises, and exploring satellite images.

  3. Near-Earth Objects: Targets for Future Human Exploration, Solar System Science, Resource Utilization, and Planetary Defense

    Science.gov (United States)

    Abell, Paul A.

    2011-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. Space Exploration Policy. This mission would be the first human expedition to an interplanetary body beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and other Solar System destinations. Missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, and assist in the development of hazard mitigation techniques for planetary defense. This presentation will discuss some of the physical characteristics of NEOs and review some of the current plans for NEO research and exploration from both a human and robotic mission perspective.

  4. Human Missions to Near-Earth Asteroids: An Update on NASA's Current Status and Proposed Activities for Small Body Exploration

    Science.gov (United States)

    Abell, P. A.; Mazanek, D. D.; Barbee, B. W.; Mink, R. G.; Landis, R. R.; Adamo, D. R.; Johnson, L. N.; Yeomans, D. K.; Reeves, D. M.; Larman, K. T.; hide

    2012-01-01

    Introduction: Over the past several years, much attention has been focused on the human exploration of near-Earth asteroids (NEAs). Two independent NASA studies examined the feasibility of sending piloted missions to NEAs, and in 2009, the Augustine Commission identified NEAs as high profile destinations for human exploration missions beyond the Earth-Moon system as part of the Flexible Path. More recently the current U.S. presidential administration directed NASA to include NEAs as destinations for future human exploration with the goal of sending astronauts to a NEA in the mid to late 2020s. This directive became part of the official National Space Policy of the United States of America as of June 28, 2010. Dynamical Assessment: The current near-term NASA human spaceflight capability is in the process of being defined while the Multi-Purpose Crew Vehicle (MPCV) and Space Launch System (SLS) are still in development. Hence, those NEAs in more accessible heliocentric orbits relative to a minimal interplanetary exploration capability will be considered for the first missions. If total mission durations for the first voyages to NEAs are to be kept to less than one year, with minimal velocity changes, then NEA rendezvous missions ideally will take place within 0.1 AU of Earth (approx about 5 million km or 37 lunar distances). Human Exploration Considerations: These missions would be the first human expeditions to inter-planetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars, Phobos and Deimos, and other Solar System destinations. Missions to NEAs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting detailed scientific investigations of these primitive objects. Current analyses of operational concepts suggest that stay times of 15 to 30 days may be possible at these destinations. In addition, the

  5. Solar electric propulsion combined with earth gravity assist - A new potential for planetary exploration

    Science.gov (United States)

    Atkins, K. L.; Sauer, C. G.; Flandro, G. A.

    1976-01-01

    The need to shorten mission time (travel time to target planet) in missions to the outer planets prompts a search for alternatives to one-way minimum-energy transfers while continuing to minimize on-power thrusts. Gravity assists via swing-bys of inner planets are examined, with emphasis on a projected Venus-earth gravity assist (VEGA) and a combined solar electric propulsion and earth gravity assist (SEEGA). Gravity assists are also examined as essential for missions with sample returns back to earth. Possible use of such techniques in the Shuttle Interim Upper Stage (IUS) program is considered. Various SEEGA and VEGA trajectories are discussed and charted, and time lost in the launch orbit to earth re-encounter time is weighed against time gained by faster speed toward the mission destination.

  6. Collaborative Business Models for Exploration: - The Expansion of Public-Private Partnerships to Enable Exploration and Improve the Quality of Life on Earth

    Science.gov (United States)

    Davis, Jeffrey R.

    2012-01-01

    In May of 2007, The Space Life Sciences Strategy was published, launching a series of efforts aimed at driving human health and performance innovations that both meet space flight needs and benefit life on Earth. These efforts, led by the Space Life Science Directorate (SLSD) at the NASA Johnson Space Center, led to the development and implementation of the NASA Human Health and Performance Center (NHHPC) in October 2010. The NHHPC now has over 100 members including seven NASA centers; other federal agencies; some of the International Space Station partners; industry; academia and non-profits. The NHHPC seeks to share best practices, develop collaborative projects and experiment with open collaboration techniques such as crowdsourcing. Using this approach, the NHHPC collaborative projects are anticipated to be at the earliest possible stage of development utilizing the many possible public-private partnerships in this center. Two workshops have been successfully conducted in 2011 (January and October) with a third workshop planned for the spring of 2012. The challenges of space flight are similar in many respects to providing health care and environmental monitoring in challenging settings on the earth. These challenges to technology development include the need for low power consumption, low weight, in-situ analysis, operator independence (i.e., minimal training), robustness, and limited resupply or maintenance. When similar technology challenges are identified (such as the need to provide and monitor a safe water supply or develop a portable medical diagnostic device for remote use), opportunities arise for public-private partnerships to engage in co-creation of novel approaches for space exploration and health and environmental applications on earth. This approach can enable the use of shared resources to reduce costs, engage other organizations and the public in participatory exploration (solving real-world problems), and provide technologies with multiple uses

  7. Multi-Mission Space Exploration Vehicle Concept Simulation of Operations in Proximity to a Near Earth Object

    Science.gov (United States)

    Kline, Heather

    2011-01-01

    This paper details a project to simulate the dynamics of a proposed Multi-Mission Space Exploration Vehicle (MMSEV), and modeling the control of this spacecraft. A potential mission of the MMSEV would be to collect samples from a Near-Earth Object (NEO), a mission which would require the spacecraft to be able to navigate to an orbit keeping it stationary over an area of a spinning asteroid while a robotic arm interacts with the surface.

  8. High Earth Orbit Design for Lunar-Assisted Medium Class Explorer Missions

    Science.gov (United States)

    McGiffin, Daniel A.; Mathews, Michael; Cooley, Steven

    2001-01-01

    This study investigates the application of high-Earth orbit (HEO) trajectories to missions requiring long on-target integration times, avoidance of the Earth's radiation belt, and minimal effects of Earth and Lunar shadow periods which could cause thermal/mechanical stresses on the science instruments. As used here, a HEO trajectory is a particular solution to the restricted three-body problem in the Earth-Moon system with the orbit period being either 1/2 of, or 1/4 of, the lunar sidereal period. A primary mission design goal is to find HEO trajectories where, for a five-year mission duration, the minimum perigee radius is greater than seven Earth radii (R(sub E)). This minimum perigee radius is chosen so that, for the duration of the mission, the perigee is always above the relatively heavily populated geosynchronous radius of 6.6 R(sub E). A secondary goal is to maintain as high an ecliptic inclination as possible for the duration of the mission to keep the apsis points well out of the Ecliptic plane. Mission design analysis was completed for launch dates in the month of June 2003, using both direct transfer and phasing loop transfer techniques, to a lunar swingby for final insertion into a HEO. Also provided are analysis results of eclipse patterns for the trajectories studied, as well as the effects of launch vehicle errors and launch delays.

  9. Life Support and Habitation Systems: Crew Support and Protection for Human Exploration Missions Beyond Low Earth Orbit

    Science.gov (United States)

    Barta, Daniel J.; McQuillan, Jeffrey

    2011-01-01

    The National Aeronautics and Space Administration (NASA) has recently expanded its mission set for possible future human exploration missions. With multiple options there is interest in identifying technology needs across these missions to focus technology investments. In addition to the Moon and other destinations in cis-lunar space, other destinations including Near Earth Objects and Mars have been added for consideration. Recently, technology programs and projects have been re-organizing to better meet the Agency s strategic goals and address needs across these potential future missions. Life Support and Habitation Systems (LSHS) is one of 10 Foundational Domains as part of the National Aeronautics and Space Administration s Exploration Technology Development Program. The chief goal of LSHS is to develop and mature advanced technologies to sustain human life on missions beyond Low Earth Orbit (LEO) to increase reliability, reduce dependency on resupply and increase vehicle self-sufficiency. For long duration exploration missions, further closure of life support systems is of interest. Focus includes key technologies for atmosphere revitalization, water recovery, waste management, thermal control and crew accommodations. Other areas of focus include technologies for radiation protection, environmental monitoring and fire protection. The aim is to recover additional consumable mass, reduce requirements for power, volume, heat rejection, crew involvement, and meet exploration vehicle requirements. This paper provides a brief description of the LSHS Foundational Domain as defined for fiscal year 2011.

  10. ExploreNEOs: A Search for Near-Earth Objects of Cometary Origin

    NARCIS (Netherlands)

    Mommert, Michael; Harris, A. W.; Trilling, D. E.; Mueller, M.; Hora, J. L.; Delbo, M.; Bottke, W. F.; Emery, J. P.; Fazio, G.; Hagen, A. R.; Morbidelli, A.; Smith, H. A.; Thomas, C. A.

    2012-01-01

    The short dynamical lifetime of near-Earth objects (NEOs) compared to the age of the Solar System implies the existence of sources of replenishment in order to maintain the observed population of NEOs. Main belt asteroids and Jupiter family comets (JFCs), which can end up in typical NEO orbits via

  11. A Hands-on Exploration of the Retrograde Motion of Mars as Seen from the Earth

    Science.gov (United States)

    Pincelli, M. M.; Otranto, S.

    2013-01-01

    In this paper, we propose a set of activities based on the use of a celestial simulator to gain insights into the retrograde motion of Mars as seen from the Earth. These activities provide a useful link between the heliocentric concepts taught in schools and those tackled in typical introductory physics courses based on classical mechanics for…

  12. ExploreNEOs: Average albedo by taxonomic complex in the near-Earth asteroid population

    NARCIS (Netherlands)

    Thomas, C. A.; Trilling, D. E.; Emery, J. P.; Mueller, M.; Hora, J. L.; Benner, L. A. M.; Bhattacharya, B.; Bottke, W. F.; Chesley, S.; Delbo, M.; Fazio, G.; Harris, A. W.; Mainzer, A.; Mommert, M.; Morbidelli, A.; Penprase, B.; Smith, H. A.; Spahr, T. B.; Stansberry, J. A.

    2011-01-01

    Understanding the albedo distribution of the Near- Earth Object (NEO) population allows for a better understanding of the relationship between absolute magnitude and size, which impacts calculations of size frequency distribution and impact hazards. Examining NEO albedos also sheds light on the

  13. Human Exploration of Near-Earth Asteroids via Solar Electric Propulsion

    Science.gov (United States)

    Landau, Damon; Strange, N.; Adler, M.; Sherwood, B.; Polk, J.; Brophy, J.

    2010-10-01

    This poster will present an architecture for human missions to near-Earth asteroids in the mid 2020s using Solar Electric Propulsion (SEP). This concept relies on taking existing, flight-proven technologies from unmanned spaceflight and scaling them up to higher power levels for human spaceflight. When applied to human spaceflight, the robustness of SEP trajectories and the lack of time critical events significantly enhances mission safety for astronauts. This is accomplished by using SEP boost stages to pre-position a Deep Space Vehicle (DSV), supplies, and chemical boost stages in High Earth Orbit (HEO). Pre-placing these elements in HEO for later crew rendezvous avoids having the crew onboard the DSV during the 1-2 year long, low-thrust parts of the trajectory, while still taking advantage of the high fuel efficiency of solar electric propulsion systems. Once these assets are pre-placed in HEO, a lunar flyby is used to drop the perigee of the DSV to the altitude of International Space Station (ISS) orbit. Astronauts are then launched from the ISS to rendezvous with the DSV in an Orion Crew Module (CM) using a chemical boost stage. Once the crew establishes that the DSV is ready for departure from HEO the DSV performs an Earth escape burn with a chemical boost stage. After Earth departure, the crew uses the SEP stage as part of the DSV to rendezvous with a NEO and orbit it for 1-2 months. Following rendezvous, the DSV returns to Earth using the SEP stage and the astronauts depart in the Orion CM for a direct entry. After the crew returns, the unmanned DSV uses the SEP stage to return to HEO over the course of a year where it is refurbished for reuse on a subsequent mission.

  14. The Space Science Suitcase—Instruments for Exploring Near-Earth Space from the Classroom

    Science.gov (United States)

    Olafsson, Kjartan; Ostgaard, Nikolai; Tanskanen, Eija

    2009-04-01

    The aurora and other phenomena in near Earth space are becoming a considerable part of the science curriculum in upper secondary school (high school) in Norway. Introducing scientific methods to the young students is an important objective of the education, but experimental experience is mainly restricted to simple laboratory exercises under controlled conditions; observations of uncontrollable natural phenomena are generally left to academic scientists and researchers. The Space Physics Group and The Science Education and Outreach Group at The Department of Physics and Technology, University of Bergen, are constructing a Space Science Suitcase with a set of simple versions of instruments for monitoring solar and geophysical activity in near Earth space. The instruments will be lent to physics classes in upper secondary schools.

  15. Becoming Earth Independent: Human-Automation-Robotics Integration Challenges for Future Space Exploration

    Science.gov (United States)

    Marquez, Jessica J.

    2016-01-01

    Future exploration missions will require NASA to integrate more automation and robotics in order to accomplish mission objectives. This presentation will describe on the future challenges facing the human operator (astronaut, ground controllers) as we increase the amount of automation and robotics in spaceflight operations. It will describe how future exploration missions will have to adapt and evolve in order to deal with more complex missions and communication latencies. This presentation will outline future human-automation-robotic integration challenges.

  16. Geolokit: An interactive tool for visualising and exploring geoscientific data in Google Earth

    Science.gov (United States)

    Triantafyllou, Antoine; Watlet, Arnaud; Bastin, Christophe

    2017-10-01

    Virtual globes have been developed to showcase different types of data combining a digital elevation model and basemaps of high resolution satellite imagery. Hence, they became a standard to share spatial data and information, although they suffer from a lack of toolboxes dedicated to the formatting of large geoscientific dataset. From this perspective, we developed Geolokit: a free and lightweight software that allows geoscientists - and every scientist working with spatial data - to import their data (e.g., sample collections, structural geology, cross-sections, field pictures, georeferenced maps), to handle and to transcribe them to Keyhole Markup Language (KML) files. KML files are then automatically opened in the Google Earth virtual globe and the spatial data accessed and shared. Geolokit comes with a large number of dedicated tools that can process and display: (i) multi-points data, (ii) scattered data interpolations, (iii) structural geology features in 2D and 3D, (iv) rose diagrams, stereonets and dip-plunge polar histograms, (v) cross-sections and oriented rasters, (vi) georeferenced field pictures, (vii) georeferenced maps and projected gridding. Therefore, together with Geolokit, Google Earth becomes not only a powerful georeferenced data viewer but also a stand-alone work platform. The toolbox (available online at http://www.geolokit.org) is written in Python, a high-level, cross-platform programming language and is accessible through a graphical user interface, designed to run in parallel with Google Earth, through a workflow that requires no additional third party software. Geolokit features are demonstrated in this paper using typical datasets gathered from two case studies illustrating its applicability at multiple scales of investigation: a petro-structural investigation of the Ile d'Yeu orthogneissic unit (Western France) and data collection of the Mariana oceanic subduction zone (Western Pacific).

  17. Earth sciences uranium geology, exploration and mining, hydrology, 1986-1998. International Atomic Energy Agency publications

    International Nuclear Information System (INIS)

    1998-09-01

    This catalogue lists sales publications of the International Atomic Energy Agency dealing with Earth Sciences issued during the period 1986-1998. Most publications are published in English. Proceedings of conferences, symposia and panels of experts may contain some papers in languages other than English (French, Russian or Spanish), but all these papers have abstracts in English. It should be noted that prices of books are quoted in Austrian Schillings. The prices do not include local taxes and are subject to change without notice. All books in this catalogue are 16 x 24 cm, paper-bound, unless otherwise stated

  18. GNSS Transpolar Earth Reflectometry exploriNg System (G-TERN): Mission Concept

    DEFF Research Database (Denmark)

    Cardellach, Estel; Wickert, Jens; Baggen, Rens

    2018-01-01

    -temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly...... for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025–2030 or optimally 2025–2035, covering key stages of the transition toward a nearly ice-free Arctic...

  19. Significant results from using earth observation satellites for mineral and energy resource exploration

    Science.gov (United States)

    Carter, William D.

    1981-01-01

    A large number of Earth-observation satellites orbit our world several times each day, providing new information about the land and sea surfaces and the overlying thin layer of atmosphere that makes our planet unique. Meteorological satellites have had the longest history of experimental use and most are now considered operational. The geologic information collected by the Landsat, Polar Orbiting Geophysical Observatory (POGO), Magsat, Heat Capacity Mapping Mission (HCMM) and Seasat land and ocean observation systems is being thoroughly tested, and some of these systems are now approaching operational use.

  20. Guiding Requirements for Designing Life Support System Architectures for Crewed Exploration Missions Beyond Low-Earth Orbit

    Science.gov (United States)

    Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad

    2016-01-01

    The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.

  1. ISECG Mission Scenarios and Their Role in Informing Next Steps for Human Exploration Beyond Low Earth Orbit

    Science.gov (United States)

    Culbert, Christopher J.; Mongrard, Olivier; Satoh, Naoki; Goodliff, Kandyce; Seaman, Calvin H.; Troutman, Patrick; Martin, Eric

    2011-01-01

    The International Space Exploration Coordination Group (ISECG) was established in response to The Global Exploration Strategy (GES): The Framework for Coordination developed by fourteen space agencies* and released in May 2007. This GES Framework Document recognizes that preparing for human space exploration is a stepwise process, starting with basic knowledge and culminating in a sustained human presence in deep space. ISECG has developed several optional global exploration mission scenarios enabling the phased transition from human operations in Low Earth Orbit (LEO) and utilization of the International Space Station (ISS) to human missions beyond LEO leading ultimately to human missions to cis-lunar space, the Moon, Near Earth Asteroids, Mars and its environs. Mission scenarios provide the opportunity for judging various exploration approaches in a manner consistent with agreed international goals and strategies. Each ISECG notional mission scenario reflects a series of coordinated human and robotic exploration missions over a 25-year horizon. Mission scenarios are intended to provide insights into next steps for agency investments, following on the success of the ISS. They also provide a framework for advancing the definition of Design Reference Missions (DRMs) and the concepts for capabilities contained within. Each of the human missions contained in the scenarios has been characterized by a DRM which is a top level definition of mission sequence and the capabilities needed to execute that mission. While DRMs are generally destination focused, they will comprise capabilities which are reused or evolved from capabilities used at other destinations. In this way, an evolutionary approach to developing a robust set of capabilities to sustainably explore our solar system is defined. Agencies also recognize that jointly planning for our next steps, building on the accomplishments of ISS, is important to ensuring the robustness and sustainability of any human

  2. Rare earth elements as a by-catch of sedimentary deposits. Exploration program of rare earth elements; Selten Erd Elemente als Beifang sedimentaerer Lagerstaetten. Erkundungsprogramm Selten Erd Elemente

    Energy Technology Data Exchange (ETDEWEB)

    Linhardt, E.; Gebhardt, A. (comps.)

    2014-02-15

    The increasing demand for rare earth elements (REE) in the field of ''green technologies'' on the one hand and the shortage of raw materials on the world markets on the other hand confronted also Bavaria as an industrial location with growing supply problems in these ''high tech raw materials''. The aim of exploration was the clarification of the feedstock REE potential of heavy mineral concentrates which are obtained in the industrial extraction and processing of sand and kaolin in existing extraction operations in northern Bavaria as by catch and are potentially winnable or marketable. The in-depth investigation enabled the potential of found rare earth elements and other high-tech metal oxides that can be classified as very likely find it in terms of an economic recovery. [German] Der zunehmende Bedarf an Selten Erd Elementen (SEE) im Bereich der ''Gruenen Technologien'' zum Einen sowie die Rohstoffverknappung auf den Weltmaerkten zum Anderen konfrontiert auch Bayern als Industriestandort mit wachsenden Versorgungsproblemen bei diesen ''high tech-Grundstoffen''. Ziel der Erkundung war die Klaerung des rohstofflichen SEE-Potenzials von Schwermineralkonzentraten, die bei der grosstechnischen Gewinnung und Aufbereitung von Sand und Kaolin in vorhandenen Gewinnungsbetrieben Nordbayerns als Beifang anfallen und potenziell gewinn- bzw. vermarktbar sind. Im Zuge der Untersuchung konnten nutzbare Potenziale von Selten Erd Elementen und anderen high-tech - Metalloxiden gefunden werden, die sehr wahrscheinlich als fuendig im Hinblick auf eine wirtschaftliche Gewinnung eingestuft werden koennen.

  3. International Space Station Accomplishments Update: Scientific Discovery, Advancing Future Exploration, and Benefits Brought Home to Earth

    Science.gov (United States)

    Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka; hide

    2013-01-01

    Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of "ocular syndrome" affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic, and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new "cold flame" phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28 million

  4. International space station accomplishments update: Scientific discovery, advancing future exploration, and benefits brought home to earth

    Science.gov (United States)

    Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Buckley, Nicole; Johnson-Green, Perry; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka; Sorokin, Igor V.; Zell, Martin; Istasse, Eric; Sabbagh, Jean; Pignataro, Salvatore

    2014-10-01

    Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of “ocular syndrome” affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new “cold flame” phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28

  5. Exploring Global Patterns in Human Appropriation of Net Primary Production Using Earth Observation Satellites and Statistical Data

    Science.gov (United States)

    Imhoff, M.; Bounoua, L.

    2004-12-01

    A unique combination of satellite and socio-economic data were used to explore the relationship between human consumption and the carbon cycle. Biophysical models were applied to consumption data to estimate the annual amount of Earth's terrestrial net primary production humans require for food, fiber and fuel using the same modeling architecture as satellite-supported NPP measurements. The amount of Earth's NPP required to support human activities is a powerful measure of the aggregate human impacts on the biosphere and indicator of societal vulnerability to climate change. Equations were developed estimating the amount of landscape-level NPP required to generate all the products consumed by 230 countries including; vegetal foods, meat, milk, eggs, wood, fuel-wood, paper and fiber. The amount of NPP required was calculated on a per capita basis and projected onto a global map of population to create a spatially explicit map of NPP-carbon demand in units of elemental carbon. NPP demand was compared to a map of Earth's average annual net primary production or supply created using 17 years (1982-1998) of AVHRR vegetation index to produce a geographically accurate balance sheet of terrestrial NPP-carbon supply and demand. Globally, humans consume 20 percent of Earth's total net primary production on land. Regionally the NPP-carbon balance percentage varies from 6 to over 70 percent and locally from near 0 to over 30,000 percent in major urban areas. The uneven distribution of NPP-carbon supply and demand, indicate the degree to which various human populations rely on NPP imports, are vulnerable to climate change and suggest policy options for slowing future growth in NPP demand.

  6. Understanding divergent evolution of Earth-like planets: the case for a Venus exploration program

    Science.gov (United States)

    Crisp, D.

    2002-01-01

    Here, we propose a Venus exploration program designed to explain the origin and divergent evolution of the interiors, surfaces, and atmospheres of the terrestrial planets in our solar system, and provide greater insight into the conditions that may affect the habitability of terrestrial planets in other solar systems.

  7. Deep Interior: Spacecraft Initiatives for Near-Earth Object Geophysical Exploration

    Science.gov (United States)

    Asphaug, E.; Belton, M.; Huebner, W.; Kakuda, R.; Yeomans, D.

    2002-12-01

    Near-Earth objects (NEOs) represent a superlative sampling of protoplanetary materials from throughout the solar system. They also have come to focus in recent years as potential natural disasters in need of careful assessment - not only the determination of NEO populations and detailed orbits, but also an understanding of how they are put together, and how they will behave during the course of energetic surface operations (from penetrometry to human visitation to diversion). We describe a concept for a robust multiple-rendezvous science mission to three representative near-Earth objects including a dormant or extinct comet nucleus. Key features include solar electric propulsion, autonomous navigation, stereogrammetric imaging, plus dual-wavelength radio tomography from orbit and small cratering science experiments for material and dynamical studies. The cratering experiments (conducted by instrumented blast payloads) will serve as precursors to future landed seismic investigations, and will enable the construction of realistic simulation environments for lowering the risk of future landed NEO missions. Mission science goals include: (1) definitive test of the rubble pile hypothesis for asteroids, (2) definitive test of the mantling hypothesis for comets, and whether primitive materials inhabit their interior, and (3) definitive study of the depth and mobility of regolith. This mission can be delivered for under the NASA Discovery cost cap. Significant payload margins allow for the addition of auxiliary landed instruments (penetrometer/seismometer) at each NEO visited, in which case the existing cratering experiments would serve as seismic signals. This combination of multiple wavelength radar tomography and seismic analysis would be an especially powerful probe of NEO interiors.

  8. Human exploration of near earth asteroids: Mission analysis for chemical and electric propulsion

    Science.gov (United States)

    Herman, Jonathan F. C.; Zimmer, Aline K.; Reijneveld, Johannes P. J.; Dunlop, Kathryn L.; Takahashi, Yu; Tardivel, Simon; Scheeres, Daniel J.

    2014-11-01

    This paper presents a mission analysis comparison of human missions to asteroids using two distinct architectures. The objective is to determine if either architecture can reduce launch mass with respect to the other, while not sacrificing other performance metrics such as mission duration. One architecture relies on chemical propulsion, the traditional workhorse of space exploration. The second combines chemical and electric propulsion into a hybrid architecture that attempts to utilize the strengths of each, namely the short flight times of chemical propulsion and the propellant efficiency of electric propulsion. The architectures are thoroughly detailed, and accessibility of the known asteroid population is determined for both. The most accessible asteroids are discussed in detail. Aspects such as mission abort scenarios and vehicle reusability are also discussed. Ultimately, it is determined that launch mass can be greatly reduced with the hybrid architecture, without a notable increase in mission duration. This demonstrates that significant performance improvements can be introduced to the next step of human space exploration with realistic electric propulsion system capabilities. This leads to immediate cost savings for human exploration and simultaneously opens a path of technology development that leads to technologies enabling access to even further destinations in the future.

  9. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth

    Science.gov (United States)

    Brantley, Susan L.; McDowell, William H.; Dietrich, William E.; White, Timothy S.; Kumar, Praveen; Anderson, Suzanne P.; Chorover, Jon; Lohse, Kathleen Ann; Bales, Roger C.; Richter, Daniel D.; Grant, Gordon; Gaillardet, Jérôme

    2017-12-01

    The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earth's materials are unweathered. The network of nine CZ observatories supported by the US National Science Foundation has made advances in three broad areas of CZ research relating to the co-evolving surfaces. First, monitoring has revealed how natural and anthropogenic inputs at the vegetation canopy and ground surface cause subsurface responses in water, regolith structure, minerals, and biotic activity to considerable depths. This response, in turn, impacts aboveground biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface of the CZ varies across landscapes, which in turn influences aboveground ecosystems. Third, several new mechanistic models now provide quantitative predictions of the spatial structure of the subsurface of the CZ.Many countries fund critical zone observatories (CZOs) to measure the fluxes of solutes, water, energy, gases, and sediments in the CZ and some relate these observations to the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each US observatory has succeeded in (i) synthesizing research across disciplines into convergent approaches; (ii) providing long-term measurements to compare across sites; (iii) testing and developing models; (iv) collecting and measuring baseline data for comparison to catastrophic events; (v) stimulating new process-based hypotheses; (vi) catalyzing development of new techniques and instrumentation; (vii) informing the public about the CZ; (viii) mentoring students and teaching about emerging multidisciplinary CZ science; and (ix) discovering new insights about the CZ. Many of these

  10. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth

    Directory of Open Access Journals (Sweden)

    S. L. Brantley

    2017-12-01

    Full Text Available The critical zone (CZ, the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earth's materials are unweathered. The network of nine CZ observatories supported by the US National Science Foundation has made advances in three broad areas of CZ research relating to the co-evolving surfaces. First, monitoring has revealed how natural and anthropogenic inputs at the vegetation canopy and ground surface cause subsurface responses in water, regolith structure, minerals, and biotic activity to considerable depths. This response, in turn, impacts aboveground biota and climate. Second, drilling and geophysical imaging now reveal how the deep subsurface of the CZ varies across landscapes, which in turn influences aboveground ecosystems. Third, several new mechanistic models now provide quantitative predictions of the spatial structure of the subsurface of the CZ.Many countries fund critical zone observatories (CZOs to measure the fluxes of solutes, water, energy, gases, and sediments in the CZ and some relate these observations to the histories of those fluxes recorded in landforms, biota, soils, sediments, and rocks. Each US observatory has succeeded in (i synthesizing research across disciplines into convergent approaches; (ii providing long-term measurements to compare across sites; (iii testing and developing models; (iv collecting and measuring baseline data for comparison to catastrophic events; (v stimulating new process-based hypotheses; (vi catalyzing development of new techniques and instrumentation; (vii informing the public about the CZ; (viii mentoring students and teaching about emerging multidisciplinary CZ science; and (ix discovering new insights about the CZ. Many

  11. Seismic imaging at the cross-roads: Active, passive, exploration and solid Earth

    Science.gov (United States)

    Rawlinson, N.; Stephenson, R.; Carbonell, R.

    2017-10-01

    Science has grown from our need to understand the world around us. Seismology is no different, with earthquakes and their destructive effect on society providing the motivation to understand the Earth's seismic wavefield. The question of when seismology as a science really began is an interesting one, but it is unlikely that there will ever be a universally agreed-upon date, partly because of the incompleteness of the historical record, and partly because the definition of what constitutes science varies from person to person. For instance, one could regard 1889 as the true birth of seismology, because that is when the first distant earthquake was detected by an instrument; in this case Ernst von Rebeur-Paschwitz detected an earthquake in Japan using a pendulum in Potsdam, Germany (Ben-Menahem, 1995). However, even the birth of instrumental seismology could be contested; the so-called Zhang Heng directional ;seismoscope; (detects ground motion but not as a function of time) was invented in 132 CE (Rui and Yan-xiang, 2006), and is said to have detected a four-hundred mile distant earthquake which was not felt at the location of the instrument (Needham, 1959; Dewey and Byerly, 1969). Prior to instrumental seismology, observations of earthquakes were not uncommon; for instance, Aristotle provided a classification of earthquakes based on the nature of observed ground motion (Ben-Menahem, 1995).

  12. Down-to-Earth Benefits of Space Exploration: Past, Present, Future

    Science.gov (United States)

    Neumann, Benjamin

    2005-01-01

    A ventricular device that helps a weakened heart keep pumping while awaiting a transplant. A rescue tool for extracting victims from dangerous situations such as car wrecks. A video analysis tool used to investigate the bombing at the 1996 Olympics in Atlanta. A sound-differentiation tool for safer air traffic control. A refrigerator that run without electricity or batteries. These are just a few of the spin-offs of NASA technology that have benefited society in recent years. Now, as NASA sets its vision on space exploration, particularly of the moon and Mars, even more benefits to society are possible. This expansion of societal benefits is tied to a new emphasis on technology infusion or spin-in. NASA is seeking partners with industry, universities, and other government laboratories to help the Agency address its specific space exploration needs in five areas: (1) advanced studies, concepts, and tools; (2) advanced materials; (3) communications, computing, electronics, and imaging; (4) software, intelligent systems, and modeling; and (5) power, propulsion, and chemical systems. These spin-in partnerships will offer benefits to U.S. economic development as well as new products for the global market. As a complement to these spin-in benefits, NASA also is examining the possible future spin-outs of the innovations related to its new space exploration mission. A matrix that charts NASA's needs against various business sectors is being developed to fully understand the implications for society and industry of spin-in and spin-out. This matrix already has been used to help guide NASA s efforts to secure spin-in partnerships. This paper presents examples of NASA spin-offs, discusses NASA s present spin-in/spin-out projects for pursuing partnerships, and considers some of the future societal benefits to be reaped from these partnerships. This paper will complement the proposed paper by Frank Schowengerdt on the Innovative Partnerships Program structure and how to work

  13. Exploring Earth's Atmospheric Biology using a Platform-Extensible Sampling Payload

    Science.gov (United States)

    Gentry, D.; Rothschild, L.

    2012-12-01

    The interactions between Earth's atmosphere and its biosphere, or aerobiology, remain a significant unknown. What few studies have been done conclusively show that Earth's atmosphere has a rich and dynamic microbial presence[Bowers et al., 2010]; that microbes suspended in air survive over long times (1-2 weeks)[Smith et al., 2010] and travel great distances (>5000 km)[Kellogg and Griffin, 2006]; that some airborne bacteria actively nucleate ice crystals, affecting meteorology[Delort et al., 2010]; and that the presence of microbes in the atmosphere has other planetary-scale effects[Delort et al., 2010]. Basic questions, however, such as the number of microbes present, their activity level and state, the different species present and their variance over time and space, remain largely unquantified. Compounding the significant physical and environmental challenges of reliable aerobiological sampling, collection and analysis of biological samples at altitudes above ~10-20 km has traditionally used ad hoc instrumentation and techniques, yielding primarily qualitative analytical results that lack a common basis for comparison[Bowers et al., 2010]. There is a strong need for broad-basis, repeatable, reliably comparable data about aerobiological basics. We describe here a high-altitude environmental and biological sampling project designed specifically to address these issues. The goal is a robust, reliable, re-usable sampling system, with open reproducibility and adaptability for multiple low-cost flight platforms (including ground-tethered systems, high-altitude balloons, and suborbital sounding rockets); by establishing a common modular payload structure for high-altitude sampling with appeal to a broad user base, we hope to encourage widespread collection of comparable aerobiological data. We are on our third prototype iteration, with demonstrated function of two sample capture modules, a support backbone (tracking, data logging, event response, etc.), a simple ground

  14. Exploring Earth's Ionosphere with CINDI: Bringing an Upper Atmosphere Mission into Pre-College Classrooms

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M. R.; Richardson, J. M.; Olson, C.

    2003-12-01

    We will present the Education and Public Outreach work in progress for the joint Air Force/NASA project CINDI (Coupled Ion Neutral Dynamic Investigation), which will launch in early 2004 on a US Air Force C/NOFS (Communications/Navigations Outage Forecast System) Satellite. CINDI, in conjunction with the other instruments on C/NOFS, will study how radio signals sent through the ionosphere are affected by variability with this layer of the atmosphere. The Educational outreach for CINDI is focused on helping students, educators, and the general public better understand the link between the ionosphere and our technological civilization. The ionosphere is typically neglected in pre-college science classes despite its impact on modern society and the substantial resources invested by funding agencies on furthering our understanding of this atmospheric layer. Our approach is to increase student understanding of the terrestrial ionosphere and Sun-Earth connections through strong connections to existing pre-college curricula and standards. We have created a partnership between the William B. Hanson Center for Space Sciences and the Science Education Program within the University of Texas at Dallas (UTD) to produce a quality Educator Guide and a Summer Educator Workshop. A senior graduate student in physics and an experienced middle school educator in UTD's Science Education Master of Science Teaching Program have been partnered to ensure that our the Educator Guide and Workshop will contain both science and pedagogy, and be easily integrated into secondary science classes. The summer 2004 workshop will be offered in the Dallas area, which has a significant population of minority and economically disadvantaged students. We will recruit teachers from districts that serve a large number of underserved/underrepresented students. The Educator Guide and workshop materials will be made available on the CINDI Web site for distribution to a national audience.

  15. Exploring near Earth object’s activity with cubesats: low surface brightness

    Science.gov (United States)

    Fuentes, Cesar; Diaz, Marcos; Falcon, Claudio; Clerc, Marcel

    2015-11-01

    Ever smaller Near Earth Objects (NEOs) continue to be discovered, with most potentially hazardous ones already surveyed and ongoing plans for space missions to deflect and mine them in the near future. These transitional objects in relatively unstable orbits have recently experienced collisional or dynamical encounters that have sent them to Earth’s vicinity. Finding comet-like activity (sublimation and ejected dust) is necessary to understand their origin, recent history, and evolution. Mommert et al (2014) have recently discovered cometary activity on the third largest NEO (3552) Don Quixote using near-Infrared imaging from Spitzer/IRAC they detect both a coma and tail as extended emission they identify as CO2 ice sublimation. This activity has gone unnoticed due to either sporadic activity or the relatively low surface brightness in optical wavelengths of light reflecting off dust, 26 mag/arcsec2 which necessarily imposes an extreme bias against detection. We propose to find this activity directly in the optical by going above the atmosphere.We are developing a 6U Cubesat to carry a 20cm aperture telescope. The volume restrictions impose a deployment system design for the telescope. We will study the optimal mission and optical setup for our goals, including the feasibility of a novel coronagraph to increase the sensitivity. Detecting NEO activity requires stability and low instrumental noise over many hours. Atmosphere’s varying point spread function (PSF), coupled with the extended PSF of reflective telescopes, lead us to propose to develop the concept and technology to manage a refractive telescope in space with the potential inclusion of a coronagraph, optimized for detecting faint features near bright targets. The experiment considers targeting nearby NEOs and optimizing observations for low surface brightness.

  16. Near Earth Asteroids Accessible to Human Exploration in 2020-2035

    Science.gov (United States)

    Strange, Nathan J.; Landau, D. F.; Yam, C.; Biscani, F.; Izzo, D.

    2010-10-01

    On April 15th, at the Kennedy Space Center, President Obama announced his new goals for NASA's human spaceflight activities. One of the most exciting challenges that he gave to NASA was a human journey to an asteroid in 2025 as part of a path the leads to human Mars missions in the 2030s. This poster presents the results from a trajectory search for candidate asteroids for human exploration missions in 2020-2035. This search was conducted using independent methodologies by astrodynamics researchers at the NASA/JPL and ESA/ESTEC research centers. Both chemical propulsion and Solar Electric Propulsion (SEP) trajectories are identified. Not much is known about the physical properties of many of these asteroids, and it is hoped that the asteroids identified in this search can be targets for both ground-based and space-based observations that will help to identify the most scientifically interesting targets for future human missions.

  17. Exploring uncertainty of Amazon dieback in a perturbed parameter Earth system ensemble.

    Science.gov (United States)

    Boulton, Chris A; Booth, Ben B B; Good, Peter

    2017-12-01

    The future of the Amazon rainforest is unknown due to uncertainties in projected climate change and the response of the forest to this change (forest resiliency). Here, we explore the effect of some uncertainties in climate and land surface processes on the future of the forest, using a perturbed physics ensemble of HadCM3C. This is the first time Amazon forest changes are presented using an ensemble exploring both land vegetation processes and physical climate feedbacks in a fully coupled modelling framework. Under three different emissions scenarios, we measure the change in the forest coverage by the end of the 21st century (the transient response) and make a novel adaptation to a previously used method known as "dry-season resilience" to predict the long-term committed response of the forest, should the state of the climate remain constant past 2100. Our analysis of this ensemble suggests that there will be a high chance of greater forest loss on longer timescales than is realized by 2100, especially for mid-range and low emissions scenarios. In both the transient and predicted committed responses, there is an increasing uncertainty in the outcome of the forest as the strength of the emissions scenarios increases. It is important to note however, that very few of the simulations produce future forest loss of the magnitude previously shown under the standard model configuration. We find that low optimum temperatures for photosynthesis and a high minimum leaf area index needed for the forest to compete for space appear to be precursors for dieback. We then decompose the uncertainty into that associated with future climate change and that associated with forest resiliency, finding that it is important to reduce the uncertainty in both of these if we are to better determine the Amazon's outcome. © 2017 John Wiley & Sons Ltd.

  18. Sustainable Systems for exploration, stays with increased duration in LEO and Earth application -an overview about life support activities

    Science.gov (United States)

    Slenzka, Klaus; Duenne, Matthias

    Solar system exploration with extended stays in totally closed habitats far away from Earth as well as longer stays in LEO requires intensive preparatory activities. Activities supporting life in a more or less close meaning are essential in this context -on a scientific as well as on a technical level. These needed activities are supporting life by e.g.: i) increasing knowledge about the impact of single and combined effects of different exploration related environmental conditions (e. g. microgravity, radiation, reduced pressure and temperature, lunar soil etc.) on biological systems. This is needed to enable safe life of humans itself as well as safe operating of required bioregenerative life support systems. Thus, different human cell types as well as representatives of bioregenerative life support system protagonists (algae, bacteria as well as higher organisms) needs to be addressed. ii) provision of required consumables (oxygen, food, energy equivalents etc.) on site, mainly via bioregenerative life support systems, Bio-ISRU-units etc. Preparation is needed on a scientific as well as technological level. iii) ensuring reduced negative effects on humans (and partially also equipment), which could be caused by living in a closed habitat in general (and thus being not space related per se): E. g. detection systems for the quality of water and air, antimicrobial and selfhealing as well as anti-icing materials without dangerous hazard substances, psychological health enhancing components etc. Referring payloads for above mentioned investigations (scientific evaluation and technology demonstration) must be developed. Extended stays and extended closure in habitats without the possibility of material transport into and out of the system are leading to the necessity of more autonomous technologies and sustainable processes. Latter one will rely mainly on biological processes and structures, which increases additionally the necessity of an intensive scientific and

  19. Learning GIS and exploring geolocated data with the all-in-one Geolokit toolbox for Google Earth

    Science.gov (United States)

    Watlet, A.; Triantafyllou, A.; Bastin, C.

    2016-12-01

    GIS software are today's essential tools to gather and visualize geological data, to apply spatial and temporal analysis and finally, to create and share interactive maps for further investigations in geosciences. Such skills are especially essential to learn for students who go through fieldtrips, samples collections or field experiments. However, time is generally missing to teach in detail all the aspects of visualizing geolocated geoscientific data. For these purposes, we developed Geolokit: a lightweight freeware dedicated to geodata visualization and written in Python, a high-level, cross-platform programming language. Geolokit software is accessible through a graphical user interface, designed to run in parallel with Google Earth, benefitting from the numerous interactive capabilities. It is designed as a very user-friendly toolbox that allows `geo-users' to import their raw data (e.g. GPS, sample locations, structural data, field pictures, maps), to use fast data analysis tools and to visualize these into the Google Earth environment using KML code; with no require of third party software, except Google Earth itself. Geolokit comes with a large number of geosciences labels, symbols, colours and placemarks and is applicable to display several types of geolocated data, including: Multi-points datasets Automatically computed contours of multi-points datasets via several interpolation methods Discrete planar and linear structural geology data in 2D or 3D supporting large range of structures input format Clustered stereonets and rose diagrams 2D cross-sections as vertical sections Georeferenced maps and grids with user defined coordinates Field pictures using either geo-tracking metadata from a camera built-in GPS module, or the same-day track of an external GPS In the end, Geolokit is helpful for quickly visualizing and exploring data without losing too much time in the numerous capabilities of GIS software suites. We are looking for students and teachers to

  20. Our Place in Space: Exploring the Earth-Moon System and Beyond with NASA's CINDI E/PO Program

    Science.gov (United States)

    Urquhart, M. L.; Hairston, M. R.

    2010-12-01

    Where does space begin? How far is the Moon? How far is Mars? How does our dynamic star, the Sun, affect its family of planets? All of these questions relate to exploration of our Solar System, and are also part of the Education/Public Outreach (E/PO) Program for NASA’s CINDI project, a space weather mission of opportunity. The Coupled Ion Neutral Dynamics Investigation has been flying aboard the US Air Force Communication/Navigation Outage Forecast System (C/NOFS) satellite in the upper atmosphere of the Earth since April 2008. The Earth’s ionosphere, the part of the atmosphere CINDI studies, is also in space. The CINDI E/PO program uses this fact in lessons designed to help students in middle schools and introductory astronomy classes develop a sense of their place in space. In the activity "How High is Space?" students’ start by building an 8-page scale model of the Earth’s atmosphere with 100 km/page. The peak of Mount Everest, commercial airplanes, and the tops of thunderheads all appear at the bottom of the first page of the model, with astronaut altitude -where space begins- at the top of the same sheet of paper. In "Where Would CINDI Be?" the idea of scale is further developed by modeling the Earth-Moon system to scale first in size, then in distance, using half of standard containers of play dough. With a lowest altitude of about 400 km, similar to that of the International Space Station and orbiting Space Shuttle, CINDI is close to the Earth when compared with the nearly thousand times greater distance to the Moon. Comparing and combining the atmosphere and Earth-Moon system models help reinforce ideas of scale and build student understanding of how far away the Moon actually is. These scale models have also been adapted for use in Family Science Nights, and to include the planet Mars. In this presentation, we will show how we use CINDI’s scale modeling activities and others from our broader space sciences E/PO program in formal and informal

  1. Observing ice clouds in the submillimeter spectral range: the CloudIce mission proposal for ESA's Earth Explorer 8

    Directory of Open Access Journals (Sweden)

    S. A. Buehler

    2012-07-01

    Full Text Available Passive submillimeter-wave sensors are a way to obtain urgently needed global data on ice clouds, particularly on the so far poorly characterized "essential climate variable" ice water path (IWP and on ice particle size. CloudIce was a mission proposal to the European Space Agency ESA in response to the call for Earth Explorer 8 (EE8, which ran in 2009/2010. It proposed a passive submillimeter-wave sensor with channels ranging from 183 GHz to 664 GHz. The article describes the CloudIce mission proposal, with particular emphasis on describing the algorithms for the data-analysis of submillimeter-wave cloud ice data (retrieval algorithms and demonstrating their maturity. It is shown that we have a robust understanding of the radiative properties of cloud ice in the millimeter/submillimeter spectral range, and that we have a proven toolbox of retrieval algorithms to work with these data. Although the mission was not selected for EE8, the concept will be useful as a reference for other future mission proposals.

  2. NEOSURVEY 1: INITIAL RESULTS FROM THE WARM SPITZER EXPLORATION SCIENCE SURVEY OF NEAR-EARTH OBJECT PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Trilling, David E.; Mommert, Michael [Department of Physics and Astronomy, PO Box 6010, Northern Arizona University, Flagstaff, AZ 86011 (United States); Hora, Joseph; Fazio, Giovanni; Smith, Howard [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-65, Cambridge, MA 02138-1516 (United States); Chesley, Steve [Jet Propulsion Laboratory, California Institute of Technology, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Emery, Joshua [Department of Earth and Planetary Science, University of Tennessee, 306 EPS Building, 1412 Circle Drive, Knoxville, TN 37996 (United States); Harris, Alan [German Aerospace Center (DLR), Institute of Planetary Research, Rutherfordstrasse 2, 12489, Berlin (Germany); Mueller, Michael [SRON, Netherlands Institute for Space Research, PO Box 800, 9700AV Groningen (Netherlands)

    2016-12-01

    Near-Earth objects (NEOs) are small solar system bodies whose orbits bring them close to the Earth’s orbit. We are carrying out a Warm Spitzer Cycle 11 Exploration Science program entitled NEOSurvey—a fast and efficient flux-limited survey of 597 known NEOs in which we derive a diameter and albedo for each target. The vast majority of our targets are too faint to be observed by NEOWISE, though a small sample has been or will be observed by both observatories, which allows for a cross-check of our mutual results. Our primary goal is to create a large and uniform catalog of NEO properties. We present here the first results from this new program: fluxes and derived diameters and albedos for 80 NEOs, together with a description of the overall program and approach, including several updates to our thermal model. The largest source of error in our diameter and albedo solutions, which derive from our single-band thermal emission measurements, is uncertainty in η , the beaming parameter used in our thermal modeling; for albedos, improvements in solar system absolute magnitudes would also help significantly. All data and derived diameters and albedos from this entire program are being posted on a publicly accessible Web page at nearearthobjects.nau.edu.

  3. Pictorial series of the manifestations of the dynamics of the Earth. 6. South Pacific and Antarctica - the last explored regions

    Czech Academy of Sciences Publication Activity Database

    Kozák, Jan; Guterch, A.; Venera, Z.

    2004-01-01

    Roč. 48, č. 3 (2004), s. 661-671 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z3012916 Keywords : Earth dynamics * South Pacific * Antarctica Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.447, year: 2004

  4. Exploration

    International Nuclear Information System (INIS)

    Lohrenz, J.

    1992-01-01

    Oil and gas exploration is a unique kind of business. Businesses providing a vast and ever-changing panoply of products to markets are a focus of several disciplines' energetic study and analysis. The product inventory problem is robust, pertinent, and meaningful, and it merits the voluminous and protracted attention received from keen business practitioners. Prototypical business practitioners, be they trained by years of business hurly-burly, or sophisticated MBAs with arrays of mathematical algorithms and computers, are not normally prepared, however, to recognize the unique nature of exploration's inventories. Put together such a business practitioner with an explorationist and misunderstandings, hidden and open, are inevitable and predictably rife. The first purpose of this paper is to articulate the inherited inventory handling paradigms of business practitioners in relation to exploration's inventories. To do so, standard pedagogy in business administration is used and a case study of an exploration venture is presented. A second purpose is to show the burdens that the misunderstandings create. The result is not just business plans that go awry, but public policies that have effects opposite from those intended

  5. Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard C.; Schier, James S.; Israel, David J.; Tai, Wallace; Liebrecht, Philip E.; Townes, Stephen A.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  6. Enabling Future Science and Human Exploration with NASA's Next Generation Near Earth and Deep Space Communications and Navigation Architecture

    Science.gov (United States)

    Reinhart, Richard; Schier, James; Israel, David; Tai, Wallace; Liebrecht, Philip; Townes, Stephen

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities

  7. Exploring the Relationship between Virtual Learning Environment Preference, Use, and Learning Outcomes in 10th Grade Earth Science Students

    Science.gov (United States)

    Lin, Ming-Chao; Tutwiler, M. Shane; Chang, Chun-Yen

    2011-01-01

    This study investigated the relationship between the use of a three-dimensional Virtual Reality Learning Environment for Field Trip (3DVLE[subscript (ft)]) system and the achievement levels of senior high school earth science students. The 3DVLE[subscript (ft)] system was presented in two separate formats: Teacher Demonstrated Based and Student…

  8. Mars Exploration: Is There Water on Mars? An Educator's Guide with Activities for Physical and Earth and Space Science.

    Science.gov (United States)

    TERC, Cambridge, MA.

    This educator's guide discusses whether there is water on the planet Mars. The activities, written for grades 9-12, concern physical, earth, and space sciences. By experimenting with water as it changes state and investigating some effects of air pressure, students not only learn core ideas in physical science but can also deduce the water…

  9. In-Situ Resource Utilization for Space Exploration: Resource Processing, Mission-Enabling Technologies, and Lessons for Sustainability on Earth and Beyond

    Science.gov (United States)

    Hepp, A. F.; Palaszewski, B. A.; Landis, G. A.; Jaworske, D. A.; Colozza, A. J.; Kulis, M. J.; Heller, R. S.

    2015-01-01

    As humanity begins to reach out into the solar system, it has become apparent that supporting a human or robotic presence in transit andor on station requires significant expendable resources including consumables (to support people), fuel, and convenient reliable power. Transporting all necessary expendables is inefficient, inconvenient, costly, and, in the final analysis, a complicating factor for mission planners and a significant source of potential failure modes. Over the past twenty-five years, beginning with the Space Exploration Initiative, researchers at the NASA Glenn Research Center (GRC), academic collaborators, and industrial partners have analyzed, researched, and developed successful solutions for the challenges posed by surviving and even thriving in the resource limited environment(s) presented by near-Earth space and non-terrestrial surface operations. In this retrospective paper, we highlight the efforts of the co-authors in resource simulation and utilization, materials processing and consumable(s) production, power systems and analysis, fuel storage and handling, propulsion systems, and mission operations. As we move forward in our quest to explore space using a resource-optimized approach, it is worthwhile to consider lessons learned relative to efficient utilization of the (comparatively) abundant natural resources and improving the sustainability (and environment) for life on Earth. We reconsider Lunar (and briefly Martian) resource utilization for potential colonization, and discuss next steps moving away from Earth.

  10. The National Aeronautics and Space Administration's Earth Science Applications Program: Exploring Partnerships to Enhance Decision Making in Public Health Practice

    Science.gov (United States)

    Vann, Timi S.; Venezia, Robert A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.

  11. Application of unsupervised pattern recognition approaches for exploration of rare earth elements in Se-Chahun iron ore, central Iran

    Science.gov (United States)

    Sarparandeh, Mohammadali; Hezarkhani, Ardeshir

    2017-12-01

    The use of efficient methods for data processing has always been of interest to researchers in the field of earth sciences. Pattern recognition techniques are appropriate methods for high-dimensional data such as geochemical data. Evaluation of the geochemical distribution of rare earth elements (REEs) requires the use of such methods. In particular, the multivariate nature of REE data makes them a good target for numerical analysis. The main subject of this paper is application of unsupervised pattern recognition approaches in evaluating geochemical distribution of REEs in the Kiruna type magnetite-apatite deposit of Se-Chahun. For this purpose, 42 bulk lithology samples were collected from the Se-Chahun iron ore deposit. In this study, 14 rare earth elements were measured with inductively coupled plasma mass spectrometry (ICP-MS). Pattern recognition makes it possible to evaluate the relations between the samples based on all these 14 features, simultaneously. In addition to providing easy solutions, discovery of the hidden information and relations of data samples is the advantage of these methods. Therefore, four clustering methods (unsupervised pattern recognition) - including a modified basic sequential algorithmic scheme (MBSAS), hierarchical (agglomerative) clustering, k-means clustering and self-organizing map (SOM) - were applied and results were evaluated using the silhouette criterion. Samples were clustered in four types. Finally, the results of this study were validated with geological facts and analysis results from, for example, scanning electron microscopy (SEM), X-ray diffraction (XRD), ICP-MS and optical mineralogy. The results of the k-means clustering and SOM methods have the best matches with reality, with experimental studies of samples and with field surveys. Since only the rare earth elements are used in this division, a good agreement of the results with lithology is considerable. It is concluded that the combination of the proposed

  12. C-MORE Scholars Program: Encouraging Hawaii`s Undergraduates to Explore the Ocean and Earth Sciences

    Science.gov (United States)

    Bruno, B. C.; Gibson, B.

    2008-05-01

    Hawaii residents make up 60% of the undergraduate student body at the University of Hawaii at Manoa (UHM), but they are not studying ocean and earth science. The UHM School of Ocean and Earth Science and Technology offers four undergraduate majors: Geology (22%), Geology & Geophysics (19%), Meteorology (16%), and Global Environmental Science (23%). The numbers in parentheses show the proportion of Hawaii residents in each major, based on 2006 data obtained from the UHM Institutional Research Office. The numbers of Native Hawaiians and Pacific Islanders (NHPI) are considerably smaller. The primary goal of the C-MORE Scholars Program, which will launch in Summer 2008, is to recruit and retain local Hawaii students (esp. NHPI) into earth and ocean science majors. To achieve this goal, the C-MORE Scholars Program will: 1. Actively recruit local students, partly by introducing them and their families to job opportunities in their community. Recruiting will be done in partnership with organizations that have successful track records in working with NHPI students; 2. Retain existing students through proactive counseling and course tutoring. Math and physics courses are stumbling blocks for many ocean and earth science majors, often delaying or even preventing graduation. By offering individual and group tutoring, we hope to help local students succeed in these courses; 3. Provide closely mentored, paid undergraduate research experiences at three different academic levels (trainee, intern, and fellow). This research is the cornerstone of the C-MORE Scholars Program. As students progress through the levels, they conduct higher level research with less supervision. Fellows (the highest level) may serve as peer advisors and tutors to underclassmen and assist with recruitment-related activities; and 4. Create a sense of community among the cohort of C-MORE scholars. A two-day summer residential experience will be instrumental in developing a strong cohort, emphasizing links

  13. From outer space to Earth-The social significance of isolated and confined environment research in human space exploration

    Science.gov (United States)

    Tachibana, Koji; Tachibana, Shoichi; Inoue, Natsuhiko

    2017-11-01

    Human space exploration requires massive budgets every fiscal year. Especially under severe financial constraint conditions, governments are forced to justify to society why spending so much tax revenue for human space exploration is worth the cost. The value of human space exploration might be estimated in many ways, but its social significance and cost-effectiveness are two key ways to gauge that worth. Since these measures should be applied country by country because sociopolitical conditions differ in each country and must be taken into consideration, the study on the social significance of human space exploration must take the coloration of a case-study. This paper, focusing on the case of Japan with surveying Japanese literary and national documents as well as taking its sociopolitical conditions into account, examines the social significance of human space exploration. First, we give an overview of the circumstances surrounding Japan's human space exploration program. Derived from the statements of such relevant parties as scholars, journalists, policy makers, and astronauts, this overview indicates that the main concerns about human space exploration in Japan are its social significance and cost-effectiveness (Section 1). Next, an overview of behavioral science-an essential field for human space exploration (referred to in this paper as space behavioral science) that provides support for astronauts-is presented from the perspective of stress research in isolated and confined environments (Section 2). We then give two examples of where such knowledge from space behavioral science research has been applied to terrestrial isolated and confined environments. One is JAXA's support in 2009 for people who were vulnerable to infection by a new strain of flu and accordingly placed in an isolated and confined facility under the Infectious Disease Law and the Quarantine Law. The other is NASA's support in 2010 for Chilean mine workers who were trapped 700 m

  14. Exploration of earth-abundant transition metals (Fe, Co, and Ni) as catalysts in unreactive chemical bond activations.

    Science.gov (United States)

    Su, Bo; Cao, Zhi-Chao; Shi, Zhang-Jie

    2015-03-17

    Activation of inert chemical bonds, such as C-H, C-O, C-C, and so on, is a very important area, to which has been drawn much attention by chemists for a long time and which is viewed as one of the most ideal ways to produce valuable chemicals. Under modern chemical bond activation logic, many conventionally viewed "inert" chemical bonds that were intact under traditional conditions can be reconsidered as novel functionalities, which not only avoids the tedious synthetic procedures for prefunctionalizations and the emission of undesirable wastes but also inspires chemists to create novel synthetic strategies in completely different manners. Although activation of "inert" chemical bonds using stoichiometric amounts of transition metals has been reported in the past, much more attractive and challenging catalytic transformations began to blossom decades ago. Compared with the broad application of late and noble transition metals in this field, the earth-abundant first-row transition-metals, such as Fe, Co, and Ni, have become much more attractive, due to their obvious advantages, including high abundance on earth, low price, low or no toxicity, and unique catalytic characteristics. In this Account, we summarize our recent efforts toward Fe, Co, and Ni catalyzed "inert" chemical bond activation. Our research first unveiled the unique catalytic ability of iron catalysts in C-O bond activation of both carboxylates and benzyl alcohols in the presence of Grignard reagents. The benzylic C-H functionalization was also developed via Fe catalysis with different nucleophiles, including both electron-rich arenes and 1-aryl-vinyl acetates. Cobalt catalysts also showed their uniqueness in both aromatic C-H activation and C-O activation in the presence of Grignard reagents. We reported the first cobalt-catalyzed sp(2) C-H activation/arylation and alkylation of benzo[h]quinoline and phenylpyridine, in which a new catalytic pathway via an oxidative addition process was demonstrated

  15. Research and Technology Development to Advance Environmental Monitoring, Food Systems, and Habitat Design for Exploration Beyond Low Earth Orbit

    Science.gov (United States)

    Sullivan, Thomas A.; Perchonek, M. H.; Ott, C. M.; Kaiser, M. K.

    2011-01-01

    Exploration missions will carry crews far beyond the relatively safe environs of cis-lunar space. Such trips will have little or no opportunity for resupply or rapid aborts and will be of a duration that far exceeds our experience to date. The challenges this imposes on the requirements of systems that monitor the life support and provide food and shelter for the crew are the focus of much research within the Human Research Program. Making all of these technologies robust and reliable enough for multi-year missions with little or no ability to run for home calls for a thorough understanding of the risks and impacts of failure. The way we currently monitor for microbial contamination of water, air, and surfaces, by sampling and growing cultures on nutrient media, must be reconsidered for exploration missions which have limited capacity for consumables. Likewise, the shelf life of food must be increased so that the nutrients required to keep the crewmembers healthy do not degrade over the life of the mission. Improved formulations, preservation, packaging, and storage technologies are all being investigated for ways slow this process or replace stowed food with key food items grown fresh in situ. Ensuring that the mass and volume of a spacecraft are used to maximum efficiency calls for infusing human factors into the design from its inception to increase efficiency, improve performance, and retain robustness toward operational realities. Integrating the human system with the spacecraft systems is the focus of many lines of investigation.

  16. Geophysical and geochemical exploration research on basic metallogenic conditions of unconformity-related uranium deposits in the south part of Kangdian earth's axis

    International Nuclear Information System (INIS)

    Zhang Shucheng; Bai Yunsheng; Wu Huishan; Wu Yue; Chang Guilan

    2001-01-01

    In order to find out the unconformity-related large and super large uranium-rich deposits and to explore the prospecting model for the unconformity-related uranium deposits, the geophysical and geochemical exploration on the basic metallogenic conditions of the unconformity-related uranium deposits in the south part of the Kangdian earth's axis has been carried out after the investigation and research into large amounts of information in combination with the analysis and contrasts of the aeromagnetic, aero-radiometric and gravity data. On the basis of synthesizing the airborne survey information, land-based geophysical and geochemical exploration, the physical nature of many types of rocks and the multi-element analytical and determining results of the U, Th, Au, Cu in the soil samples, the geophysical prospecting models on the unconformity-related uranium deposits in this area has been put forward, and two uranium metallogenic prospect areas and one uranium metallogenic prospect belt have been divided. These results have laid a good foundation for finding out the unconformity-related uranium deposits in this area

  17. `Teaching What I Learned': Exploring students' Earth and Space Science learning experiences in secondary school with a particular focus on their comprehension of the concept of `geologic time'

    Science.gov (United States)

    Yoon, Sae Yeol; Peate, David W.

    2015-06-01

    According to the national survey of science education, science educators in the USA currently face many challenges such as lack of qualified secondary Earth and Space Science (ESS) teachers. Less qualified teachers may have difficulty teaching ESS because of a lack of conceptual understanding, which leads to diminished confidence in content knowledge. More importantly, teachers' limited conceptual understanding of the core ideas automatically leads to a lack of pedagogical content knowledge. This mixed methods study aims to explore the ways in which current secondary schooling, especially the small numbers of highly qualified ESS teachers in the USA, might influence students' learning of the discipline. To gain a better understanding of the current conditions of ESS education in secondary schools, in the first phase, we qualitatively examined a sample middle and high school ESS textbook to explore how the big ideas of ESS, particularly geological time, are represented. In the second phase, we quantitatively analyzed the participating college students' conceptual understanding of geological time by comparing those who had said they had had secondary school ESS learning experience with those who did not. Additionally, college students' perceptions on learning and teaching ESS are discussed. Findings from both the qualitative and quantitative phases indicate participating students' ESS learning experience in their secondary schools seemed to have limited or little influence on their conceptual understandings of the discipline. We believe that these results reflect the current ESS education status, connected with the declining numbers of highly qualified ESS teachers in secondary schools.

  18. Exploring interoperability: The advancements and challenges of improving data discovery, access, and visualization of scientific data through the NOAA Earth Information System (NEIS). (Invited)

    Science.gov (United States)

    Stewart, J.; Lynge, J.; Hackathorn, E.; MacDermaid, C.; Pierce, R.; Smith, J.

    2013-12-01

    Interoperability is a complex subject and often leads to different definitions in different environments. An interoperable framework of web services can improve the user experience by providing an interface for interaction with data regardless of it's format or physical location. This in itself improves accessibility to data, fosters data exploration and use, and provides a framework for new tools and applications. With an interoperable system you have: -- Data ready for action. Services model facilitates agile response to events. Services can be combined or reused quickly, upgraded or modified independently. -- Any data available through an interoperable framework can be operated on or combined with other data. Integrating standardized formats and access. -- New and existing systems have access to wide variety of data. Any new data added is easily incorporated with minimal changes required. The possibilities are limitless. The NOAA Earth Information System (NEIS) at the Earth System Research Laboratory (ESRL) is continuing research into an interoperable framework of layered services designed to facilitate the discovery, access, integration, visualization, and understanding of all NOAA (past, present, and future) data. An underlying philosophy of NEIS is to take advantage of existing off-the-shelf technologies and standards to minimize development of custom code allowing everyone to take advantage of the framework to meet these goals above. This framework, while built by NOAA are not limited to NOAA data or applications. Any other data available through similar services or applications that understand these standards can work interchangeably. Two major challenges are under active research at ESRL are data discoverability and fast access to big data. This presentation will provide an update on development of NEIS, including these challenges, the findings, and recommendations on what is needed for an interoperable system, as well as ongoing research activities

  19. What can we learn from the toughest animals of the Earth? Water bears (tardigrades) as multicellular model organisms in order to perform scientific preparations for lunar exploration

    Science.gov (United States)

    Guidetti, Roberto; Rizzo, Angela Maria; Altiero, Tiziana; Rebecchi, Lorena

    2012-12-01

    Space missions of long duration required a series of preliminary experiments on living organisms, validated by a substantial phase of ground simulation experiments, in the field of micro- and inter-mediate gravities, radiobiology, and, for planetary explorations, related to risks deriving from regolith and dust exposure. In this review, we present the tardigrades, whose characteristics that recommend them as an emerging model for space biology. They are microscopic animals but are characterized by a complex structural organization similar to that of larger animals; they can be cultured in lab in small facilities, having small size; they are able to produce clonal lineages by means of parthenogenesis; they can completely suspend their metabolism when entering in dormant states (anhydrobiosis induced by dehydration and cryobiosis induced by freezing); desiccated anhydrobiotic tardigrades are able to withstand chemical and physical extremes, but a large tolerance is showed also by active animals; they can be stored in dry state for many years without loss of viability. Tardigrades have already been exposed to space stressors on Low Earth Orbit several times. The relevance of ground-based and space studies on tardigrades rests on the presumption that results could suggest strategies to protect organisms, also humans, when exposed to the space and lunar environments.

  20. "We Put on the Glasses and Moon Comes Closer!" Urban Second Graders Exploring the Earth, the Sun and Moon through 3D Technologies in a Science and Literacy Unit

    Science.gov (United States)

    Isik-Ercan, Zeynep; Zeynep Inan, Hatice; Nowak, Jeffrey A.; Kim, Beomjin

    2014-01-01

    This qualitative case study describes (a) the ways 3D visualization, coupled with other science and literacy experiences, supported young children's first exploration of the Earth-Sun-Moon system and (b) the perspectives of classroom teachers and children on using 3D visualization. We created three interactive 3D software modules that simulate day…

  1. Farside explorer

    DEFF Research Database (Denmark)

    Mimoun, David; Wieczorek, Mark A.; Alkalai, Leon

    2012-01-01

    Farside Explorer is a proposed Cosmic Vision medium-size mission to the farside of the Moon consisting of two landers and an instrumented relay satellite. The farside of the Moon is a unique scientific platform in that it is shielded from terrestrial radio-frequency interference, it recorded...... the primary differentiation and evolution of the Moon, it can be continuously monitored from the Earth-Moon L2 Lagrange point, and there is a complete lack of reflected solar illumination from the Earth. Farside Explorer will exploit these properties and make the first radio-astronomy measurements from...... the most radio-quiet region of near-Earth space, determine the internal structure and thermal evolution of the Moon, from crust to core, and quantify impact hazards in near-Earth space by the measurement of flashes generated by impact events. The Farside Explorer flight system includes two identical solar...

  2. Lunar exploration

    Science.gov (United States)

    Crawford, I. A.; Joy, K. H.; Anand, M.

    The Moon has historically been at the forefront of the solar system exploration. Building on early telescopic discoveries, over the past half century lunar exploration by spacecraft has taught us much about the Moon as a planetary body, the early history of the solar system (including the origin and evolution of the Earth-Moon system), the geological evolution of rocky planets more generally, and the near-Earth cosmic environment throughout the solar system history. In this chapter, we review the rich history of lunar exploration and draw attention to the advances in scientific knowledge that have resulted from it. We also review the scientific arguments for continued lunar exploration and argue that these will be maximized in the context of a renewed program of human exploration of the Moon.

  3. Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System (B) Past, Present and Future of Small Body Science and Exploration (B0.4)

    Science.gov (United States)

    Abell, Paul; Mazanek, Dan; Reeves, Dan; Chodas, Paul; Gates, Michele; Johnson, Lindley; Ticker, Ronald

    2016-01-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human space flight missions. Today, human flight experience extends only to Low- Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human space flight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM).

  4. Exploring the challenges of habitation design for extended human presence beyond low-earth orbit: Are new requirements and processes needed?

    NARCIS (Netherlands)

    Robinson, D.K.R.; Sterenborg, Glenn; Häuplik, Sandra; Aguzzi, Manuela

    2008-01-01

    With the renewed interest in a sustained human presence beyond low-earth orbit, habitation in space, on planets and on moons is an area that requires re-evaluation in terms of mission and habitat design—there is a need for a paradigmatic move from a design focus on short-term LEO missions to that of

  5. Uranium exploration

    International Nuclear Information System (INIS)

    De Voto, R.H.

    1984-01-01

    This paper is a review of the methodology and technology that are currently being used in varying degrees in uranium exploration activities worldwide. Since uranium is ubiquitous and occurs in trace amounts (0.2 to 5 ppm) in virtually all rocks of the crust of the earth, exploration for uranium is essentially the search of geologic environments in which geologic processes have produced unusual concentrations of uranium. Since the level of concentration of uranium of economic interest is dependent on the present and future price of uranium, it is appropriate here to review briefly the economic realities of uranium-fueled power generation. (author)

  6. Sun-Earth Days

    Science.gov (United States)

    Thieman, J.; Ng, C.; Lewis, E.; Cline, T.

    2010-08-01

    Sun-Earth Day is a well-coordinated series of programs, resources and events under a unique yearly theme highlighting the fundamentals of heliophysics research and missions. A menu of activities, conducted throughout the year, inspire and educate participants. Sun-Earth Day itself can vary in date, but usually is identified by a celebration on or near the spring equinox. Through the Sun-Earth Day framework we have been able to offer a series of coordinated events that promote and highlight the Sun, its connection to Earth and the other planets. Sun-Earth Day events are hosted by educators, museums, amateur astronomers and scientists and occur at schools, community groups, parks, planetaria and science centers around the globe. Sun-Earth Day raises the awareness and knowledge of formal and informal education audiences concerning space weather and heliophysics. By building on the success of Sun-Earth Day yearly celebrations, we seek to affect people of all backgrounds and ages with the wonders of heliophysics science, discovery, and exploration in ways that are both tangible and meaningful to their lives.

  7. New Frontiers in Arctic Exploration: Autonomous Location and Sampling of Hydrothermal Vents Under the Ice at Earth's Slowest Spreading Ridge (IPY Project 173)

    Science.gov (United States)

    Edmonds, H. N.; Reves-Sohn, R.; Singh, H.; Shank, T. M.; Humphris, S.; Seewald, J.; Akin, D.; Bach, W.; Nogi, Y.; Pedersen, R.

    2006-12-01

    As part of IPY project #173, we are planning an international expedition for 2007 to locate and study hydrothermal vents on the ultraslow-spreading Gakkel Ridge, at depths greater than 4000 m beneath the permanent ice cap. This effort necessitates the development of novel exploration technologies, because the Gakkel Ridge rift valley is inaccessible to traditional deep submergence tools. With funding from NASA, NSF, and the private sector we have developed two new autonomous underwater vehicles that will find and map hydrothermal plumes in the water column, trace the buoyant plume stem to the seafloor source, and then map, photograph, and collect samples from the vent sites. The Gakkel Ridge is a key target for hydrothermal exploration not only because of its spreading rate but also because its geographic and hydrographic isolation from other portions of the mid-ocean ridge system have important implications for novel endemic vent fauna. Our major scientific themes are the geological diversity and biogeography of hydrothermal vents on the Arctic mid-ocean ridge system. Our major technology theme is autonomous exploration and sample return with an explicit mandate to develop techniques and methods for eventual use in astrobiology missions to search for life under the ice covered oceans of Europa, a moon of Jupiter. In addition to the US-led Gakkel Ridge expedition, a Norway-led expedition will target sites in seasonally ice-free water over the Mohns Ridge. The results of these two expeditions will be combined to reveal systematic patterns regarding biogeography (through both community-level and genetic-level investigations) of vent-endemic fauna, to study the differences between basalt vs. peridotite hosted vent fields, and to improve our understanding of hydrothermal circulation at ultra- slow spreading plate boundaries where amagmatic extension and long-lived faulting predominate. The expeditions will provide educational and outreach activities through the award

  8. Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics

    Science.gov (United States)

    Hobley, Daniel E. J.; Adams, Jordan M.; Nudurupati, Sai Siddhartha; Hutton, Eric W. H.; Gasparini, Nicole M.; Istanbulluoglu, Erkan; Tucker, Gregory E.

    2017-01-01

    The ability to model surface processes and to couple them to both subsurface and atmospheric regimes has proven invaluable to research in the Earth and planetary sciences. However, creating a new model typically demands a very large investment of time, and modifying an existing model to address a new problem typically means the new work is constrained to its detriment by model adaptations for a different problem. Landlab is an open-source software framework explicitly designed to accelerate the development of new process models by providing (1) a set of tools and existing grid structures - including both regular and irregular grids - to make it faster and easier to develop new process components, or numerical implementations of physical processes; (2) a suite of stable, modular, and interoperable process components that can be combined to create an integrated model; and (3) a set of tools for data input, output, manipulation, and visualization. A set of example models built with these components is also provided. Landlab's structure makes it ideal not only for fully developed modelling applications but also for model prototyping and classroom use. Because of its modular nature, it can also act as a platform for model intercomparison and epistemic uncertainty and sensitivity analyses. Landlab exposes a standardized model interoperability interface, and is able to couple to third-party models and software. Landlab also offers tools to allow the creation of cellular automata, and allows native coupling of such models to more traditional continuous differential equation-based modules. We illustrate the principles of component coupling in Landlab using a model of landform evolution, a cellular ecohydrologic model, and a flood-wave routing model.

  9. A Review of the Handheld X-Ray Fluorescence Spectrometer as a Tool for Field Geologic Investigations on Earth and in Planetary Surface Exploration

    Science.gov (United States)

    Young, Kelsey E.; Evans, Cynthia A.; Hodges, Kip V.; Bleacher, Jacob E.; Graff, Trevor G.

    2016-01-01

    X-ray fluorescence (XRF) spectroscopy is a well-established and commonly used technique in obtaining diagnostic compositional data on geological samples. Recently, developments in X-ray tube and detector technologies have resulted in miniaturized, field-portable instruments that enable new applications both in and out of standard laboratory settings. These applications, however, have not been extensively applied to geologic field campaigns. This study investigates the feasibility of using developing handheld XRF (hXRF) technology to enhance terrestrial field geology, with potential applications in planetary surface exploration missions. We demonstrate that the hXRF is quite stable, providing reliable and accurate data continuously over a several year period. Additionally, sample preparation is proved to have a marked effect on the strategy for collecting and assimilating hXRF data. While the hXRF is capable of obtaining data that are comparable to laboratory XRF analysis for several geologically-important elements (such as Si, Ca, Ti, and K), the instrument is unable to detect other elements (such as Mg and Na) reliably. While this limits the use of the hXRF, especially when compared to laboratory XRF techniques, the hXRF is still capable of providing the field user with significantly improved contextual awareness of a field site, and more work is needed to fully evaluate the potential of this instrument in more complex geologic environments.

  10. Exploration Augmentation Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Exploration Augmentation Module (EAM) project goal is to design and deliver a flight module that is to be deployed to Earth-Lunar Distant Retrograde Orbit (DRO)....

  11. Rare earths

    International Nuclear Information System (INIS)

    Cranstone, D.A.

    1980-01-01

    There has been no Canadian production of the rare earth oxides since 1977. World production in 1978, the last year for which figures are available, is estimated to have been about 41000 tonnes, mostly from Australia and the United States. The United States Bureau of Mines estimates that world reserves contain about 7 million tonnes of rare earth oxides and 35 million tonnes of yttrium. The largest yttrium reserves are in India, while China is believed to have the world's largest reserves of rare earth oxides. World consumption of rare aarths increased slightly in 1980, but is still only a small fraction of known reserves. Rare earths are used mainly in high-strength magnets, automobile exhaust systems, fluorescent tube and television screen phosphors, metallurgical applications, petroleum cracking catalysts, and glass polishing

  12. Central Africa Energy: Utilizing NASA Earth Observations to Explore Flared Gas as an Energy Source Alternative to Biomass in Central Africa

    Science.gov (United States)

    Jones, Amber; White, Charles; Castillo, Christopher; Hitimana, Emmanuel; Nguyen, Kenny; Mishra, Shikher; Clark, Walt

    2014-01-01

    significant number rely on oil production as their primary source of revenue. Relative to its size and population density, the continent has a wealth of natural resources, including oil and natural gas deposits. The exploration of these resources is not a new endeavor, but rather one that spans decades, up to a century in some places. Their resources, if realized, could provide a great means of economic and social mobility for the people of Africa. Currently, Africa represents about 12 % of the energy market, yet at the same time, consumes only 3 % of the world's energy (Kasekende 2009). The higher

  13. Earth Sciences

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The following papers were presented at the earth science session: earth science developments in support of water isolation; development of models and parameters for ground-water flow in fractured rock masses; isotope geochemistry as a tool for determining regional ground-water flow; natural analogs of radionuclide migration; nuclide retardation data: its use in the NWTS program; and ground-water geochemistry and interaction with basalt at Hanford

  14. Earth materials and earth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K; Shankland, T. [and others

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  15. Asteroid exploration and utilization: The Hawking explorer

    Science.gov (United States)

    Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian

    1991-01-01

    The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.

  16. Space exploration

    CERN Document Server

    2009-01-01

    Space Exploration, is one book in the Britannica Illustrated Science Library Series that is correlated to the science curriculum in grades 5-8. The Britannica Illustrated Science Library is a visually compelling set that covers earth science, life science, and physical science in 16 volumes.  Created for ages 10 and up, each volume provides an overview on a subject and thoroughly explains it through detailed and powerful graphics-more than 1,000 per volume-that turn complex subjects into information that students can grasp.  Each volume contains a glossary with full definitions for vocabulary help and an index.

  17. `We put on the glasses and Moon comes closer!' Urban Second Graders Exploring the Earth, the Sun and Moon Through 3D Technologies in a Science and Literacy Unit

    Science.gov (United States)

    Isik-Ercan, Zeynep; Zeynep Inan, Hatice; Nowak, Jeffrey A.; Kim, Beomjin

    2014-01-01

    This qualitative case study describes (a) the ways 3D visualization, coupled with other science and literacy experiences, supported young children's first exploration of the Earth-Sun-Moon system and (b) the perspectives of classroom teachers and children on using 3D visualization. We created three interactive 3D software modules that simulate day and night, Moon phases and seasons. These modules were used in a science and literacy unit for 35 second graders at an urban elementary school in Midwestern USA. Data included pre- and post-interviews, audio-taped lessons and classroom observations. Post-interviews demonstrated that children's knowledge of the shapes and the movements of the Earth and Moon, alternation of day and night, the occurrence of the seasons, and Moon's changing appearance increased. Second graders reported that they enjoyed expanding their knowledge through hands-on experiences; through its reality effect, 3D visualization enabled them to observe the space objects that move in the virtual space. The teachers noted that 3D visualization stimulated children's interest in space and that using 3D visualization in combination with other teaching methods-literacy experiences, videos and photos, simulations, discussions, and presentations-supported student learning. The teachers and the students still experienced challenges using 3D visualization due to technical problems with 3D vision and time constraints. We conclude that 3D visualization offers hands-on experiences for challenging science concepts and may support young children's ability to view phenomena that would typically be observed through direct, long-term observations in outer space. Results imply a reconsideration of assumed capabilities of young children to understand astronomical phenomena.

  18. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  19. Gravity gradiometer system for Earth Exploration

    NARCIS (Netherlands)

    Cuperus, R.; Flokstra, F.F.; Droogendijk, H.; Wiegerink, Remco J.; Flokstra, Jakob; Flokstra, Jan

    2009-01-01

    We develop a gravity gradiometer (GG) for use on planetary missions to planets like Mars and Jupiter. With some modifications this development is extended to include (airborne) applications for the Dutch exploratory industry. We adapt key technology of the space based GG for the use in an

  20. EarthScope Content Module for IRIS Active Earth Monitor

    Science.gov (United States)

    McQuillan, P. J.; Welti, R.; Johnson, J. A.; Shiffman, C. R.; Olds, S. E.

    2012-12-01

    The Active Earth Monitor (AEM) is an interactive computer-based display for university lobbies, museums, visitor centers, schools and libraries. AEM runs in a standard Internet web browser in full screen mode. The display consists of a customizable set of content pages about plate tectonics, earthquakes, volcanoes and tsunamis. Low-cost and simple-to-implement, the Active Earth Monitor provides a way to engage audiences with earth science information without spending resources on a large exhibit. The EarthScope Active Earth Monitor content set highlights the connections between the landscape and the research and monitoring being conducted by EarthScope in partnership with regional monitoring networks. Modules consist of chapters that focus on What is EarthScope?, EarthScope Observatories, and EarthScope Research Results. Content topics are easily explored using a web page button type navigation interface via a touch screen or mouse. A formative evaluation of general public users informed the interface design. Chapters in the modules start with a general overview and proceed to detailed specifics. Each chapter utilizes at least one set of live or near real-time research data (often more than one). This exposes the general public to active ongoing research that is engaging, relevant to the individual user, and explained in easy to understand terms. All live content is updated each time a user accesses the individual page displaying the live data. Leading questions are presented allowing the user to examine the content before accessing the answer via pop-up box. Diagrams and charts of research data have explanatory keys that allow users to self explore all content. Content pages can be created and inserted in the Active Earth Monitor by utilizing the simple HTML/CSS coding.;

  1. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  2. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  3. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    politics and offers an account of how this builds on older ways in which the natural world has made up part of the stuff of international politics. Second, it surveys the main traditions and approaches to studying International Relations of the environment, painting a picture of diversification in two......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  4. Sulfur Earth

    Science.gov (United States)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  5. Earthing Technology

    NARCIS (Netherlands)

    Blok, Vincent

    2017-01-01

    In this article, we reflect on the conditions under which new technologies emerge in the Anthropocene and raise the question of how to conceptualize sustainable technologies therein. To this end, we explore an eco-centric approach to technology development, called biomimicry. We discuss opposing

  6. Giants' earth

    International Nuclear Information System (INIS)

    2001-01-01

    Cusiana was one of the six bigger discoveries of petroleum in the world during the ninety. Cupiagua was among the scarce 19 discoveries with reserves between 500 and 1.000 million barrels. Colombia also had one of the twelve bigger fields of gas and the Piedemonte llanero; it was classified as one of the 10 more attractive basins of the planet. High potential and low exploration is the key

  7. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  8. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...

  9. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  10. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  11. The Earth We are Creating

    Directory of Open Access Journals (Sweden)

    Patrick Moriarty

    2014-04-01

    Full Text Available Over the past decade, a number of Earth System scientists have advocated that we need a new geological epoch, the Anthropocene, to describe the changes to Earth that have occurred since the 1800s. The preceding epoch, the Holocene (the period from the end of Earth's last glaciation about 12 millennia ago, has offered an unusually stable physical environment for human civilisations. In the new Anthropocene epoch, however, we can no longer count on this climate stability which we have long taken for granted. Paradoxically, it is our own actions that are undermining this stability—for the first time in history, human civilisation is now capable of decisively influencing the energy and material flows of our planet. Particularly since the 1950s, under the twin drivers of growth in population and per capita income, we have seen unprecedented growth in oil use and energy use overall, vehicle numbers, air travel and so on. This unprecedented growth has resulted in us heading toward physical thresholds or tipping points in a number of areas, points that once crossed could irreversibly lead to structural change in vital Earth systems such as climate or ecosystems. We may have already passed three limits: climate change; rate of biodiversity loss; and alterations to the global nitrogen and phosphorus cycles. The solutions usually proposed for our predicament are yet more technical fixes, often relying on greater use of the Earth's ecosystems, biomass for bioenergy being one example of this, and one we explore in this paper. We argue that these are unlikely to work, and will merely replace one set of problems by another. We conclude that an important approach for achieving a more sustainable and equitable world is to reorient our future toward satisfying the basic human needs of all humanity, and at the same time minimising both our use of non-renewable resources and pollution of the Earth's soil, air and water.

  12. SWARM - An earth Observation Mission investigating Geospace

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Lühr, H.; Knudsen, D.

    2008-01-01

    The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. This mission aims at measuring the Earth's magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient...... of the Swarm science objectives, the mission concept, the scientific instrumentation, and the expected contribution to the ILWS programme will be summarized. (C) 2007 Published by Elsevier Ltd on behalf of COSPAR....

  13. Cosmic Rays at Earth

    Science.gov (United States)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological

  14. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  15. EarthKAM

    Data.gov (United States)

    National Aeronautics and Space Administration — Sponsored by NASA, EarthKAM (Earth Knowledge Acquired by Middle School Students) is an educational outreach program allowing middle school students to take pictures...

  16. Rigidly framed earth retaining structures thermal soil structure interaction of buildings supporting unbalanced lateral earth pressures

    CERN Document Server

    Aboumoussa, Walid

    2014-01-01

    Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories....

  17. Space and Earth Science Data Compression Workshop

    Science.gov (United States)

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  18. New Moon water, exploration, and future habitation

    CERN Document Server

    Crotts, Arlin

    2014-01-01

    Explore Earth's closest neighbor, the Moon, in this fascinating and timely book and discover what we should expect from this seemingly familiar but strange, new frontier. What startling discoveries are being uncovered on the Moon? What will these tell us about our place in the Universe? How can exploring the Moon benefit development on Earth? Discover the role of the Moon in Earth's past and present; read about the lunar environment and how it could be made more habitable for humans; consider whether continued exploration of the Moon is justified; and view rare Apollo-era photos and film still

  19. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  20. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  1. Stamping the Earth from space

    CERN Document Server

    Dicati, Renato

    2017-01-01

    This unique book presents a historical and philatelic survey of Earth exploration from space. It covers all areas of research in which artificial satellites have contributed in designing a new image of our planet and its environment: the atmosphere and ionosphere, the magnetic field, radiation belts and the magnetosphere, weather, remote sensing, mapping of the surface, observation of the oceans and marine environments, geodesy, and the study of life and ecological systems. Stamping the Earth from Space presents the results obtained with the thousands of satellites launched by the two former superpowers, the Soviet Union and the United States, and also those of the many missions carried out by the ESA, individual European countries, Japan, China, India, and the many emerging space nations. Beautifully illustrated, it contains almost 1100 color reproductions of philatelic items. In addition to topical stamps and thematic postal documents, the book provides an extensive review of astrophilatelic items. The most...

  2. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine

    Science.gov (United States)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.

    2017-12-01

    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may

  3. Exploration Review

    Science.gov (United States)

    Wilburn, D.R.; Stanley, K.A.

    2013-01-01

    This summary of international mineral exploration activities for 2012 draws upon information from industry sources, published literature and U.S. Geological Survey (USGS) specialists. The summary provides data on exploration budgets by region and mineral commodity, identifies significant mineral discoveries and areas of mineral exploration, discusses government programs affecting the mineral exploration industry and presents analyses of exploration activities performed by the mineral industry. Three sources of information are reported and analyzed in this annual review of international exploration for 2012: 1) budgetary statistics expressed in U.S. nominal dollars provided by SNL Metals Economics Group (MEG) of Halifax, Nova Scotia; 2) regional and site-specific exploration activities that took place in 2012 as compiled by the USGS and 3) regional events including economic, social and political conditions that affected exploration activities, which were derived from published sources and unpublished discussions with USGS and industry specialists.

  4. Exploration Geophysics

    Science.gov (United States)

    Savit, Carl H.

    1978-01-01

    Expansion of activity and confirmation of new technological directions characterized several fields of exploration geophysics in 1977. Advances in seismic-reflection exploration have been especially important. (Author/MA)

  5. Exploration technology

    Energy Technology Data Exchange (ETDEWEB)

    Roennevik, H.C. [Saga Petroleum A/S, Forus (Norway)

    1996-12-31

    The paper evaluates exploration technology. Topics discussed are: Visions; the subsurface challenge; the creative tension; the exploration process; seismic; geology; organic geochemistry; seismic resolution; integration; drilling; value creation. 4 refs., 22 figs.

  6. Repository exploration

    International Nuclear Information System (INIS)

    Pentz, D.L.

    1984-01-01

    This paper discusses exploration objectives and requirements for a nuclear repository in the U.S.A. The importance of designing the exploration program to meet the system performance objectives is emphasized and some examples of the extent of exploration required before the License Application for Construction Authorization is granted are also discussed

  7. Digital Earth – A sustainable Earth

    International Nuclear Information System (INIS)

    Mahavir

    2014-01-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth

  8. Earth Science Information System (ESIS)

    Science.gov (United States)

    ,

    1982-01-01

    The Earth Science Information System (ESIS) was developed in 1981 by the U.S. Geological Survey's Office of the Data Administrator. ESIS serves as a comprehensive data management facility designed to support the coordination, integration, and standardization of scientific, technical, and bibliographic data of the U.S. Geological Survey (USGS). ESIS provides, through an online interactive computer system, referral to information about USGS data bases, data elements which are fields in the records of data bases, and systems. The data bases contain information about many subjects from several scientific disciplines such as: geology, geophysics, geochemistry, hydrology, cartography, oceanography, geography, minerals exploration and conservation, and satellite data sensing.

  9. Electromagnetic sounding of the Earth's interior

    CERN Document Server

    Spichak, Viacheslav V

    2015-01-01

    Electromagnetic Sounding of the Earth's Interior 2nd edition provides a comprehensive up-to-date collection of contributions, covering methodological, computational and practical aspects of Electromagnetic sounding of the Earth by different techniques at global, regional and local scales. Moreover, it contains new developments such as the concept of self-consistent tasks of geophysics and , 3-D interpretation of the TEM sounding which, so far, have not all been covered by one book. Electromagnetic Sounding of the Earth's Interior 2nd edition consists of three parts: I- EM sounding methods, II- Forward modelling and inversion techniques, and III - Data processing, analysis, modelling and interpretation. The new edition includes brand new chapters on Pulse and frequency electromagnetic sounding for hydrocarbon offshore exploration. Additionally all other chapters have been extensively updated to include new developments. Presents recently developed methodological findings of the earth's study, including seism...

  10. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  11. Lunar Daylight Exploration

    Science.gov (United States)

    Griffin, Brand Norman

    2010-01-01

    With 1 rover, 2 astronauts and 3 days, the Apollo 17 Mission covered over 30 km, setup 10 scientific experiments and returned 110 kg of samples. This is a lot of science in a short time and the inspiration for a barebones, return-to-the-Moon strategy called Daylight Exploration. The Daylight Exploration approach poses an answer to the question, What could the Apollo crew have done with more time and today s robotics? In contrast to more ambitious and expensive strategies that create outposts then rely on pressurized rovers to drive to the science sites, Daylight Exploration is a low-overhead approach conceived to land near the scientific site, conduct Apollo-like exploration then leave before the sun goes down. A key motivation behind Daylight Exploration is cost reduction, but it does not come at the expense of scientific exploration. As a goal, Daylight Exploration provides access to the top 10 science sites by using the best capabilities of human and robotic exploration. Most science sites are within an equatorial band of 26 degrees latitude and on the Moon, at the equator, the day is 14 Earth days long; even more important, the lunar night is 14 days long. Human missions are constrained to 12 days because the energy storage systems required to operate during the lunar night adds mass, complexity and cost. In addition, short missions are beneficial because they require fewer consumables, do not require an airlock, reduce radiation exposure, minimize the dwell-time for the ascent and orbiting propulsion systems and allow a low-mass, campout accommodations. Key to Daylight Exploration is the use of piloted rovers used as tele-operated science platforms. Rovers are launched before or with the crew, and continue to operate between crew visits analyzing and collecting samples during the lunar daylight

  12. Exploring the Atmosphere Using Smartphones

    Science.gov (United States)

    Monteiro, Martin; Vogt, Patrik; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.

    2016-01-01

    The characteristics of the inner layer of the atmosphere, the troposphere, are determinant for Earth's life. In this experience we explore the first hundreds of meters using a smartphone mounted on a quadcopter. Both the altitude and the pressure are obtained using the smartphone's sensors. We complement these measures with data collected from the…

  13. Surface exploration geophysics applied to the moon

    International Nuclear Information System (INIS)

    Ander, M.E.

    1984-01-01

    With the advent of a permanent lunar base, the desire to explore the lunar near-surface for both scientific and economic purposes will arise. Applications of exploration geophysical methods to the earth's subsurface are highly developed. This paper briefly addresses some aspects of applying this technology to near surface lunar exploration. It is noted that both the manner of application of some techniques, as well as their traditional hierarchy as assigned on earth, should be altered for lunar exploration. In particular, electromagnetic techniques may replace seismic techniques as the primary tool for evaluating near-surface structure

  14. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  15. EARTH FROM SPACE

    Indian Academy of Sciences (India)

    Table of contents. EARTH FROM SPACE · Slide 2 · Earth System · Slide 4 · Global water cycle · Slide 6 · Slide 7 · Direct Observations of Recent Climate Change · Slide 9 · Slide 10 · Snow cover and Arctic sea ice are decreasing · Polar Melting & Global Heat Transport · Antarctica: Melting and Thickening · Slide 14 · Slide 15.

  16. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  17. Earth Flyby Anomalies

    OpenAIRE

    Nieto, Michael Martin; Anderson, John D.

    2009-01-01

    In a reference frame fixed to the solar system's center of mass, a satellite's energy will change as it is deflected by a planet. But a number of satellites flying by Earth have also experienced energy changes in the Earth-centered frame -- and that's a mystery.

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. A Geetha Selvarani. Articles written in Journal of Earth System Science. Volume 125 Issue 2 March 2016 pp 311-328. Groundwater resource exploration in Salem district, Tamil Nadu using GIS and remote sensing · G Maheswaran A Geetha Selvarani K Elangovan.

  19. Radar Images of the Earth and the World Wide Web

    Science.gov (United States)

    Chapman, B.; Freeman, A.

    1995-01-01

    A perspective of NASA's Jet Propulsion Laboratory as a center of planetary exploration, and its involvement in studying the earth from space is given. Remote sensing, radar maps, land topography, snow cover properties, vegetation type, biomass content, moisture levels, and ocean data are items discussed related to earth orbiting satellite imaging radar. World Wide Web viewing of this content is discussed.

  20. Exploration Geochemistry.

    Science.gov (United States)

    Closs, L. Graham

    1983-01-01

    Contributions in mineral-deposit model formulation, geochemical exploration in glaciated and arid environments, analytical and sampling problems, and bibliographic research were made in symposia held and proceedings volumes published during 1982. Highlights of these symposia and proceedings and comments on trends in exploration geochemistry are…

  1. lunar exploration

    Indian Academy of Sciences (India)

    I am delighted to participate in the 6th International Conference on Exploration and Utilization of the Moon organized by the Physical Research Laboratory, Ahmedabad. I greet the organizers, eminent planetary exploration and space scientists from India and abroad, academicians, indus- trialists, engineers, entrepreneurs ...

  2. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    Science.gov (United States)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  3. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  4. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  5. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  6. Rare earth oxychalcogenides

    International Nuclear Information System (INIS)

    Eliseev, A.A.; Grizik, A.A.

    1977-01-01

    Considered are oxychalcogenides of rare earth elements: their nomenclature, general physico-chemical characteristics, methods of preparation. Considered in detail are chemistry and crystal chemistry of oxychalcogenides of Ln 2 O 2 S, Ln 2 O 2 Se, Ln 4 O 4 Se 3 , Ln 2 O 2 Te types, where Ln=La-Lu. Given are parameters of crystal lattices, elementary cells, interatomic distances and dependences of lattice periods on ion radii of rare earth elements. Described are the prospects of the practical application of rare-earth element oxychalcogenides as various luminophores

  7. Earth before life.

    Science.gov (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  8. Earth from Above

    Science.gov (United States)

    Parkinson, Claire L.

    Earth from Above provides an easy introduction to understanding and interpreting satellite images, using illustrative examples to instruct on the fantastically informative new global data sets. Beginning with two short chapters on visible satellite images and radiation, the book then covers six key Earth-atmosphere variables on such environmentally important topics as the Antarctic ozone hole, El Nino, deforestation, the missing carbon dilemma, and the effects of sea ice, snow cover, and volcanoes on atmospheric temperatures. A final chapter broadens the discussion to consider satellite Earth observations in general.

  9. Analyzing Earth Science Research Networking through Visualizations

    Science.gov (United States)

    Hasnain, S.; Stephan, R.; Narock, T.

    2017-12-01

    Using D3.js we visualize collaboration amongst several geophysical science organizations, such as the American Geophysical Union (AGU) and the Federation of Earth Science Information Partners (ESIP). We look at historical trends in Earth Science research topics, cross-domain collaboration, and topics of interest to the general population. The visualization techniques used provide an effective way for non-experts to easily explore distributed and heterogeneous Big Data. Analysis of these visualizations provides stakeholders with insights into optimizing meetings, performing impact evaluation, structuring outreach efforts, and identifying new opportunities for collaboration.

  10. Digest of NASA earth observation sensors

    Science.gov (United States)

    Drummond, R. R.

    1972-01-01

    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  11. Whole-Earth Decompression Dynamics

    OpenAIRE

    Herndon, J. Marvin

    2005-01-01

    The principles of Whole-Earth Decompression Dynamics are disclosed leading to a new way to interpret whole-Earth dynamics. Whole-Earth Decompression Dynamics incorporates elements of and unifies the two seemingly divergent dominant theories of continential displacement, plate tectonics theory and Earth expansion theory. Whole-Earth decompression is the consequence of Earth formation from within a Jupiter-like protoplanet with subsequent loss of gases and ices and concomitant rebounding. The i...

  12. Mars, earth, and ice

    International Nuclear Information System (INIS)

    Cordell, B.M.

    1986-01-01

    Possible mechanisms to explain the global ice covering of Mars, and previous ice ages on the earth, are considered. Evidence for the Milankovitch effect is found in the close correspondence of earth's past climate with its orbital variations, as recorded principally in ocean sediments, and the role of CO 2 is discussed. Mars' range of obliquity, 10 times that of the earth, and orbital eccentricity, fluctuating over a range 2 1/2 times that of the earth, could produce an important climate-driving cycle. Mathematical models of the Martian surface and atmosphere based on Viking data suggest that escaped CO 2 could create a surface pressure of 1-3 bars. Other factors such as the effect of continental drift, the increased brightness of the sun, and planetary reversals of magnetic field polarity are discussed, and the questions of where Martian water and CO 2 have gone are considered

  13. Near Earth Asteroid Scout

    Data.gov (United States)

    National Aeronautics and Space Administration — Near-Earth Asteroid Scout, or NEA Scout, is a 6U CubeSat developed jointly between NASA’s Marshall Space Flight Center and the Jet Propulsion Laboratory. NASA...

  14. Earliest life on earth

    CERN Document Server

    Golding, Suzanne D

    2010-01-01

    This volume integrates the latest findings on earliest life forms, identified and characterized in some of the oldest rocks on Earth. It places emphasis on the integration of analytical methods with observational techniques and experimental simulations.

  15. Gambling with the earth

    CERN Multimedia

    Muir, H

    2000-01-01

    The probability that dangerous Earth-devouring particles will be born at a new accelerator in the US may be tiny, but scientists have played down the devastating potential costs in their risk assessments according to a physicist (1 page).

  16. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  17. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1978-01-01

    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  18. Down to earth relativity

    Science.gov (United States)

    Shapiro, I. I.

    1978-01-01

    The basic concepts of the special and general theories of relativity are described. Simple examples are given to illustrate the effect of relativity on measurements of time and frequency in the near-earth environment.

  19. Earth retaining structures manual

    Science.gov (United States)

    2009-10-29

    The objectives of this policy are to obtain statewide uniformity, establish standard : procedures and delineate responsibility for the preparation and review of plans, : design and construction control of earth retaining structures. In addition, it i...

  20. Rare-earth elements

    Science.gov (United States)

    Van Gosen, Bradley S.; Verplanck, Philip L.; Seal, Robert R.; Long, Keith R.; Gambogi, Joseph; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    The rare-earth elements (REEs) are 15 elements that range in atomic number from 57 (lanthanum) to 71 (lutetium); they are commonly referred to as the “lanthanides.” Yttrium (atomic number 39) is also commonly regarded as an REE because it shares chemical and physical similarities and has affinities with the lanthanides. Although REEs are not rare in terms of average crustal abundance, the concentrated deposits of REEs are limited in number.Because of their unusual physical and chemical properties, the REEs have diverse defense, energy, industrial, and military technology applications. The glass industry is the leading consumer of REE raw materials, which are used for glass polishing and as additives that provide color and special optical properties to the glass. Lanthanum-based catalysts are used in petroleum refining, and cerium-based catalysts are used in automotive catalytic converters. The use of REEs in magnets is a rapidly increasing application. Neodymium-iron-boron magnets, which are the strongest known type of magnets, are used when space and weight are restrictions. Nickel-metal hydride batteries use anodes made of a lanthanum-based alloys.China, which has led the world production of REEs for decades, accounted for more than 90 percent of global production and supply, on average, during the past decade. Citing a need to retain its limited REE resources to meet domestic requirements as well as concerns about the environmental effects of mining, China began placing restrictions on the supply of REEs in 2010 through the imposition of quotas, licenses, and taxes. As a result, the global rare-earth industry has increased its stockpiling of REEs; explored for deposits outside of China; and promoted new efforts to conserve, recycle, and substitute for REEs. New mine production began at Mount Weld in Western Australia, and numerous other exploration and development projects noted in this chapter are ongoing throughout the world.The REE-bearing minerals are

  1. Rare earths crystal chemistry

    International Nuclear Information System (INIS)

    Wells, A.F.

    1988-01-01

    From the viewpoint of general crystal chemistry principles and on the basis of modern data the structural chemistry of rare earth compounds in different oxidation degrees (2,3,4) is briefly presented. The change of the structure type of oxides, halides and some other compounds of rare earths, as well as the coordination number of the central atom from lanthanide ionic radius is considered

  2. Optimal Safety EarthingEarth Electrode Sizing Using A ...

    African Journals Online (AJOL)

    In this paper a deterministic approach in the sizing of earth electrode using the permissible touch voltage criteria is presented. The deterministic approach is effectively applied in the sizing of the length of earth rod required for the safe earthing of residential and facility buildings. This approach ensures that the earthing ...

  3. Uranium exploration

    International Nuclear Information System (INIS)

    De Voto, R.H.

    1978-01-01

    This paper is a review of the methodology and technology currently being used in U exploration activities around the world. The bulk of the world's U has been produced historically from Lower Proterozoic uraninite placer deposits, epigenetic deposits in sandstones, and hydrothermal vein deposits. Exploration has been expanded to other geologic media such as granitic deposits, alkalic igneous-hydrothermal deposits, volcanic media, metamorphic-hydrothermal deposits, and calcrete deposits in deserts. U can also be recovered from syngenetic deposits in black shales and as a by-product in fertilizer production from phosphate rock. In-situ solution mining has been used to exploit low-grade deposits. Exploration techniques include geologic mapping, remote sensing, gamma-ray spectroscopy, geochemical surveys, radiometric surveys, radon and helium soil-gas surveys, stratigraphy, nonradiometric geophysical surveys, and drilling and logging. 52 references, 43 figures

  4. New approaches to explore the Earth's magnetic field

    DEFF Research Database (Denmark)

    Olsen, Nils; Moretto, T.; Friis-Christensen, Eigil

    2002-01-01

    New strategies are presented for the analysis of the high-precision geomagnetic data that are currently obtained by the low-orbiting satellites Orsted, CHAMP and Orsted-2/SAC-C. The measured magnetic field is the sum of contributions from various sources in the core, crust, ionosphere...... and magnetosphere, and the accuracy of core and crustal field models is affected by ionospheric and magnetospheric source contributions. A proper parameterization of these external sources, together with a careful data pre-selection, is necessary to avoid spurious effects. In addition, the advantage of having...

  5. New approaches to explore the Earth's magnetic field

    DEFF Research Database (Denmark)

    Olsen, Nils; Moretto, T.; Friis-Christensen, Eigil

    2002-01-01

    New strategies are presented for the analysis of the high-precision geomagnetic data that are currently obtained by the low-orbiting satellites Orsted, CHAMP and Orsted-2/SAC-C. The measured magnetic field is the sum of contributions from various sources in the core, crust, ionosphere...

  6. Exploring Size.

    Science.gov (United States)

    Brand, Judith, Ed.

    1995-01-01

    "Exploring" is a magazine of science, art, and human perception that communicates ideas museum exhibits cannot demonstrate easily by using experiments and activities for the classroom. This issue concentrates on size, examining it from a variety of viewpoints. The focus allows students to investigate and discuss interconnections among…

  7. The Sun and Earth

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  8. Monitoring the Earth

    Science.gov (United States)

    Vita-Finzi, Claudio

    2003-02-01

    Monitoring the Earth is the first book to review the recent advances in satellite technology, computing and mass spectrometry that are opening up completely new avenues of enquiry to Earth scientists. Among the geological changes that were previously considered too slow or too extensive for direct measurements and that can now be monitored directly are continental displacements, mountain uplift, the growth and decay of icesheets and glaciers, the faulting and folding of rocks, the progress of weathering and sedimentation, and the growth of coral reefs. In addition to these developments, the book assesses progress in fields not normally considered part of physical geology, such as the shape and orbit of the gravity and the terrestrial magnetic field. The results from the new findings are already helping Earth scientists analyze and explain the underlying mechanisms, notably with regard to the storage and release of strain during earthquakes and the interaction of glacial history with the Earth's rate of rotation. The outcoe is a foretaste of the physical geology of the space age.^Fully illustrated with line drawings and photographs, and with a bibliography that encompasses the scattered and disparate litarature, Monitoring the Earth is intended for undergraduates in geology, geomorphology, geomatic engineering and planetary science, but it should also be of interest to astronomers and historians of science.

  9. Crescent Earth and Moon

    Science.gov (United States)

    1977-01-01

    This picture of a crescent-shaped Earth and Moon -- the first of its kind ever taken by a spacecraft -- was recorded Sept. 18, 1977, by NASA's Voyager 1 when it was 7.25 million miles (11.66 million kilometers) from Earth. The Moon is at the top of the picture and beyond the Earth as viewed by Voyager. In the picture are eastern Asia, the western Pacific Ocean and part of the Arctic. Voyager 1 was directly above Mt. Everest (on the night side of the planet at 25 degrees north latitude) when the picture was taken. The photo was made from three images taken through color filters, then processed by the Jet Propulsion Laboratory's Image Processing Lab. Because the Earth is many times brighter than the Moon, the Moon was artificially brightened by a factor of three relative to the Earth by computer enhancement so that both bodies would show clearly in the print. Voyager 2 was launched Aug. 20, 1977, followed by Voyager 1 on Sept. 5, 1977, en route to encounters at Jupiter in 1979 and Saturn in 1980 and 1981. JPL manages the Voyager mission for NASA's Office of Space Science.

  10. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  11. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  12. Colors of Extreme Exo-Earth Environments

    Science.gov (United States)

    Hegde, Siddharth; Kaltenegger, Lisa

    2013-07-01

    The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this poster, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 microns) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This poster explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures.

  13. Colors of extreme exo-Earth environments.

    Science.gov (United States)

    Hegde, Siddharth; Kaltenegger, Lisa

    2013-01-01

    The search for extrasolar planets has already detected rocky planets and several planetary candidates with minimum masses that are consistent with rocky planets in the habitable zone of their host stars. A low-resolution spectrum in the form of a color-color diagram of an exoplanet is likely to be one of the first post-detection quantities to be measured for the case of direct detection. In this paper, we explore potentially detectable surface features on rocky exoplanets and their connection to, and importance as, a habitat for extremophiles, as known on Earth. Extremophiles provide us with the minimum known envelope of environmental limits for life on our planet. The color of a planet reveals information on its properties, especially for surface features of rocky planets with clear atmospheres. We use filter photometry in the visible as a first step in the characterization of rocky exoplanets to prioritize targets for follow-up spectroscopy. Many surface environments on Earth have characteristic albedos and occupy a different color space in the visible waveband (0.4-0.9 μm) that can be distinguished remotely. These detectable surface features can be linked to the extreme niches that support extremophiles on Earth and provide a link between geomicrobiology and observational astronomy. This paper explores how filter photometry can serve as a first step in characterizing Earth-like exoplanets for an aerobic as well as an anaerobic atmosphere, thereby prioritizing targets to search for atmospheric biosignatures.

  14. Rare-earth elements

    International Nuclear Information System (INIS)

    Leveque, A.; Maestro, P.

    1993-01-01

    Production process of rare earths come from hydro-metallurgy treatments including following successive steps from enrichment ores: ore etching by humid way, from obtained solutions separations and purifications using selective precipitation engineering (rare earths case with an oxidation degree different from III), sometimes exchange techniques of ion on resin but principally extraction techniques by solvent; obtaining final products (oxides, salts) or metals elaboration by electrolytic melt salts process at high temperature. About applications, specificity of rare earths is in their particular electronic structure which induces chemical, structural, and physical properties seen as unrivalled ones. These properties are used in industrial applications which are diversified and sophisticated as metallurgy, catalysis, glass, optics, ceramics, luminescence, magnetism, electronics... 44 refs., 6 figs., 7 tabs

  15. How Big is Earth?

    Science.gov (United States)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  16. LIDAR technology developments in support of ESA Earth observation missions

    Science.gov (United States)

    Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland

    2017-11-01

    Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.

  17. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  18. Lunar Science from and for Planet Earth

    Science.gov (United States)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    Our Moon Every person on Earth is familiar with the Moon. Every resident with nominal eyesight on each continent has seen this near-by planetary body with their own eyes countless times. Those fortunate enough to have binoculars or access to a telescope have explored the craters, valleys, domes, and plains across the lunar surface as changing lighting conditions highlight the mysteries of this marvellously foreign landscape. Schoolchildren learn that the daily rhythm and flow of tides along the coastlines of our oceans are due to the interaction of the Earth and the Moon. This continuous direct and personal link is but one of the many reasons lunar science is fundamental to humanity. The Earth-Moon System In the context of space exploration, our understanding of the Earth-Moon system has grown enormously. The Moon has become the cornerstone for most aspects of planetary science that relate to the terrestrial (rocky) planets. The scientific context for exploration of the Moon is presented in a recent report by a subcommittee of the Space Studies Board of the National Research Council [free from the website: http://books.nap.edu/catalog.php?record_id=11954]. Figure 1 captures the interwoven themes surrounding lunar science recognized and discussed in that report. In particular, it is now recognized that the Earth and the Moon have been intimately linked in their early history. Although they subsequently took very different evolutionary paths, the Moon provides a unique and valuable window both into processes that occurred during the first 600 Million years of solar system evolution (planetary differentiation and the heavy bombardment record) as well as the (ultimately dangerous) impact record of more recent times. This additional role of the Moon as keystone is because the Earth and the Moon share the same environment at 1 AU, but only the Moon retains a continuous record of cosmic events. An Initial Bloom of Exploration and Drought The space age celebrated its 50th

  19. Exploring quadrangulations

    KAUST Repository

    Peng, Chi-Han

    2014-02-04

    Here we presented a framework to explore quad mesh topologies. The core of our work is a systematic enumeration algorithm that can generate all possible quadrangular meshes inside a defined boundary with an upper limit of v3-v5 pairs. The algorithm is orders of magnitude more efficient than previous work. The combination of topological enumeration and shape-space exploration demonstrates that mesh topology has a powerful influence on geometry. The Fig. 18. A gallery of different quadrilateral meshes for a Shuriken. The quadrilaterals of the model were colored in a postprocess. Topological variations have distinctive, interesting patterns of mesh lines. © 2014 ACM 0730-0301/2014/01-ART3 15.00.

  20. Robotic explorer

    OpenAIRE

    Selva Macià, Josep

    2015-01-01

    Development of a small autonomous robot for exploration purposes. This final degree project was looking how to demonstrate all the knowledge learned during those years using different aspects of engineering such as programming in different languages, conducting electronic schemes, preparing and welding circuits and integrate different elements of wireless communication. The idea was quite ambitious because it was wanted to achieve a wireless control on a robot. With this wireless control t...

  1. New Paradigms for Human-Robotic Collaboration During Human Planetary Exploration

    Science.gov (United States)

    Parrish, J. C.; Beaty, D. W.; Bleacher, J. E.

    2017-02-01

    Human exploration missions to other planetary bodies offer new paradigms for collaboration (control, interaction) between humans and robots beyond the methods currently used to control robots from Earth and robots in Earth orbit.

  2. The Earth's Plasmasphere

    Science.gov (United States)

    Gallagher, D. L.

    2015-01-01

    The Earth's plasmasphere is an inner part of the magneteosphere. It is located just outside the upper ionosphere located in Earth's atmosphere. It is a region of dense, cold plasma that surrounds the Earth. Although plasma is found throughout the magnetosphere, the plasmasphere usually contains the coldest plasma. Here's how it works: The upper reaches of our planet's atmosphere are exposed to ultraviolet light from the Sun, and they are ionized with electrons that are freed from neutral atmospheric particles. The results are electrically charged negative and positive particles. The negative particles are electrons, and the positive particles are now called ions (formerly atoms and molecules). If the density of these particles is low enough, this electrically charged gas behaves differently than it would if it were neutral. Now this gas is called plasma. The atmospheric gas density becomes low enough to support the conditions for a plasma around earth at about 90 kilometers above Earth's surface. The electrons in plasma gain more energy, and they are very low in mass. They move along Earth's magnetic field lines and their increased energy is enough to escape Earth's gravity. Because electrons are very light, they don't have to gain too much kinetic energy from the Sun's ultraviolet light before gravity loses its grip on them. Gravity is not all that holds them back, however. As more and more electrons begin to escape outward, they leave behind a growing net positive electric charge in the ionosphere and create a growing net negative electric charge above the ionosphere; an electric field begins to develop (the Pannekoek-Rosseland E-field). Thus, these different interacting charges result in a positively charged ionosphere and negatively charged region of space above it. Very quickly this resulting electric field opposed upward movement of the electrons out of the ionosphere. The electrons still have this increased energy, however, so the electric field doesn't just

  3. Earth's City Lights

    Science.gov (United States)

    2002-01-01

    This image of Earth's city lights was created with data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Originally designed to view clouds by moonlight, the OLS is also used to map the locations of permanent lights on the Earth's surface. The brightest areas of the Earth are the most urbanized, but not necessarily the most populated. (Compare western Europe with China and India.) Cities tend to grow along coastlines and transportation networks. Even without the underlying map, the outlines of many continents would still be visible. The United States interstate highway system appears as a lattice connecting the brighter dots of city centers. In Russia, the Trans-Siberian railroad is a thin line stretching from Moscow through the center of Asia to Vladivostok. The Nile River, from the Aswan Dam to the Mediterranean Sea, is another bright thread through an otherwise dark region. Even more than 100 years after the invention of the electric light, some regions remain thinly populated and unlit. Antarctica is entirely dark. The interior jungles of Africa and South America are mostly dark, but lights are beginning to appear there. Deserts in Africa, Arabia, Australia, Mongolia, and the United States are poorly lit as well (except along the coast), along with the boreal forests of Canada and Russia, and the great mountains of the Himalaya. The Earth Observatory article Bright Lights, Big City describes how NASA scientists use city light data to map urbanization. Image by Craig Mayhew and Robert Simmon, NASA GSFC, based on DMSP data

  4. Earth as art 4

    Science.gov (United States)

    ,

    2016-03-29

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  5. The Earth's Changing Climate

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. The Earth's Changing Climate. Man-Made Changes and Their Consequences. PKDas is a former Director. General of the Meteoro- logical Department of. India. After retiring in. 1983, he taught Meteorolo- gy at the University of. Nairobi in Kenya (1983·85) and later at the Indian. Institute of Technology.

  6. The Earth's Changing Climate

    Indian Academy of Sciences (India)

    wavelength range between 0.2 and 4.0 microns (p,m). ... from the earth is in the long wavelength range from 4.0 to 80/-Lm. .... turing industry. But, it is removed from the atmosphere by the photosynthesis of plants. The largest reservoirs of carbon are in the deep oceans. Some of this reaches the atmosphere when waters.

  7. Bones of the Earth

    Science.gov (United States)

    Correa, Jose Miguel

    2014-01-01

    The film "Bones of the Earth" (Riglin, Cunninham & Correa, 2014) is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective…

  8. Google Earth Science

    Science.gov (United States)

    Baird, William H.; Padgett, Clifford W.; Secrest, Jeffery A.

    2015-01-01

    Google Earth has made a wealth of aerial imagery available online at no cost to users. We examine some of the potential uses of that data in illustrating basic physics and astronomy, such as finding the local magnetic declination, using landmarks such as the Washington Monument and Luxor Obelisk as gnomons, and showing how airport runways get…

  9. Understanding Earth's Albedo Effect

    Science.gov (United States)

    Fidler, Chuck

    2012-01-01

    Earth and space science in the middle school classroom are composed of intricately intertwined sets of conceptual systems (AAAS 1993; NRC 1996). Some systems of study, such as the water and rock cycles, are quite explicit and often found as stand-alone middle school science units. Other phenomena are not so apparent, yet they play an extremely…

  10. How life shaped Earth.

    Science.gov (United States)

    Gross, Michael

    2015-10-05

    Earth is much more complex than all the other solar system objects that we know. Thanks to its rich and diverse geology, our planet can offer habitats to a wide range of living species. Emerging insights suggest that this is not just a happy coincidence, but that life itself has in many ways helped to shape the planet.

  11. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  12. Google Earth and Geo Applications: A Toolset for Viewing Earth's Geospatial Information

    Science.gov (United States)

    Tuxen-Bettman, K.

    2016-12-01

    Earth scientists measure and derive fundamental data that can be of broad general interest to the public and policy makers. Yet, one of the challenges that has always faced the Earth science community is how to present their data and findings in an easy-to-use and compelling manner. Google's Geo Tools offer an efficient and dynamic way for scientists, educators, journalists and others to both access data and view or tell stories in a dynamic three-dimensional geospatial context. Google Earth in particular provides a dense canvas of satellite imagery on which can be viewed rich vector and raster datasets using the medium of Keyhole Markup Language (KML). Through KML, Google Earth can combine the analytical capabilities of Earth Engine, collaborative mapping of My Maps, and storytelling of Tour Builder and more to make Google's Geo Applications a coherent suite of tools for exploring our planet.https://earth.google.com/https://earthengine.google.com/https://mymaps.google.com/https://tourbuilder.withgoogle.com/https://www.google.com/streetview/

  13. Exploring Science Through Polar Exploration

    Science.gov (United States)

    Pfirman, S. L.; Bell, R. E.; Zadoff, L.; Kelsey, R.

    2003-12-01

    Exploring the Poles is a First Year Seminar course taught at Barnard College, Columbia University. First Year Seminars are required of incoming students and are designed to encourage critical analysis in a small class setting with focused discussion. The class links historical polar exploration with current research in order to: introduce non-scientists to the value of environmental science through polar literature; discuss issues related to venturing into the unknown that are of relevance to any discipline: self-reliance, leadership, preparation, decisions under uncertainty; show students the human face of science; change attitudes about science and scientists; use data to engage students in exploring/understanding the environment and help them learn to draw conclusions from data; integrate research and education. These goals are met by bringing analysis of early exploration efforts together with a modern understanding of the polar environment. To date to class has followed the efforts of Nansen in the Fram, Scott and Amundsen in their race to the pole, and Shackleton's Endurance. As students read turn-of-the-century expedition journals, expedition progress is progressively revealed on an interactive map showing the environmental context. To bring the exploration process to life, students are assigned to expedition teams for specific years and the fates of the student "expeditions" are based on their own decisions. For example, in the Arctic, they navigate coastal sea ice and become frozen into the ice north of Siberia, re-creating Nansen's polar drift. Fates of the teams varied tremendously: some safely emerged at Fram Strait in 4 years, while others nearly became hopelessly lost in the Beaufort Gyre. Students thus learn about variability in the current polar environment through first hand experience, enabling them to appreciate the experiences, decisions, and, in some cases, the luck, of polar explorers. Evaluation by the Columbia Center for New Media, Teaching

  14. The Earth's Biosphere

    Science.gov (United States)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  15. Exploration Medical System Demonstration

    Science.gov (United States)

    Rubin, D. A.; Watkins, S. D.

    2014-01-01

    BACKGROUND: Exploration class missions will present significant new challenges and hazards to the health of the astronauts. Regardless of the intended destination, beyond low Earth orbit a greater degree of crew autonomy will be required to diagnose medical conditions, develop treatment plans, and implement procedures due to limited communications with ground-based personnel. SCOPE: The Exploration Medical System Demonstration (EMSD) project will act as a test bed on the International Space Station (ISS) to demonstrate to crew and ground personnel that an end-to-end medical system can assist clinician and non-clinician crew members in optimizing medical care delivery and data management during an exploration mission. Challenges facing exploration mission medical care include limited resources, inability to evacuate to Earth during many mission phases, and potential rendering of medical care by non-clinicians. This system demonstrates the integration of medical devices and informatics tools for managing evidence and decision making and can be designed to assist crewmembers in nominal, non-emergent situations and in emergent situations when they may be suffering from performance decrements due to environmental, physiological or other factors. PROJECT OBJECTIVES: The objectives of the EMSD project are to: a. Reduce or eliminate the time required of an on-orbit crew and ground personnel to access, transfer, and manipulate medical data. b. Demonstrate that the on-orbit crew has the ability to access medical data/information via an intuitive and crew-friendly solution to aid in the treatment of a medical condition. c. Develop a common data management framework that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all activities pertaining to crew health and life sciences. d. Ensure crew access to medical data during periods of restricted ground communication. e. Develop a common data management framework that

  16. How did Earth not End up like Venus?

    Science.gov (United States)

    Jellinek, M.; Lenardic, A.; Weller, M. B.

    2017-12-01

    Recent geodynamic calculations show that terrestrial planets forming with a chondritic initial bulk composition at order 1 AU can evolve to be either "Earth-like" or "Venus-like": Both mobile- and stagnant-lid tectonic regimes are permitted, neither solution is an explicitly stronger attractor and effects related to differences in Sun-Earth distance are irrelevant. What factors might then cause the thermal evolutionary paths of Earth and Venus to diverge dynamically at early times? At what point in Earth's evolution did plate tectonics emerge and when and how did this tectonic mode gain sufficient resilience to persist over much of Earth's evolution? What is the role of volatile cycling and climate: To what extent have the stable climate of Earth and the greenhouse runaway climate of Venus enforced their distinct tectonic regimes over time? In this talk I will explore some of the mechanisms potentially governing the evolutionary divergence of Earth and Venus. I will first review observational constraints that suggest that Earth's entry into the current stable plate tectonic mode was far from assured by 2 Ga. Next I will discuss how models have been used to build understanding of some key dynamical controls. In particular, the probability of "Earth-like" solutions is affected by: 1) small differences in the initial concentrations of heat producing elements (i.e., planetary initial conditions); 2) long-term climate change; and 3) the character of a planet's early evolutionary path (i.e., tectonic hysteresis).

  17. Swarm: A constellation to study the Earth's magnetic field

    DEFF Research Database (Denmark)

    Friis-Christensen, Eigil; Luhr, H.; Hulot, G.

    2006-01-01

    The Swarm mission was selected as the 5th mission in ESA's Earth Explorer Programme in 2004. The mission will provide the best ever survey of the geomagnetic field and its temporal evolution that will lead to new insights into the Earth system by improving our understanding of the Earth's interio......'s influence within the Earth system. In addition practical applications in many different areas, such as space weather, radiation hazards, navigation and resource management, will benefit from the Swarm concept....... field measurements, will provide the necessary observations that are required to separate and model the various Sources of the geomagnetic field. This results in it unique "view" inside the Earth from space to study the composition and processes of its interior. It also allows analysing the Sun...

  18. Inaugeral lecture - Meteorite impacts on Earth and on the Earth ...

    African Journals Online (AJOL)

    There is some controversial evidence for the theory that the first life on Earth itself may have been transported here on meteorites from Mars. The possibility of a major meteorite impact on Earth in the near future emphasizes the dramatic nature of these recent discoveries, which are having deep impacts in the Earth sciences ...

  19. Mission to Planet Earth's Geostationary Earth Observatories (GEO's)

    Science.gov (United States)

    Keller, V.; Beranek, R.; Herrmann, M.; Koczor, R.

    1992-01-01

    The Geostationary Earth Observatories (GEO's) are the space-based element of NASA's Mission to Planet Earth program which provide the excellent temporal resolution data required for a thorough understanding of earth processes and their role in global climate change. This paper discusses the scientific rationale, required instrumentation, observatory configuration, and data system of the GEO program.

  20. Towards earth AntineutRino TomograpHy (EARTH)

    NARCIS (Netherlands)

    De Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Wortche, H. J.; Mantovani, F.

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection.

  1. ESA Earth Observation missions at the service of geoscience

    Science.gov (United States)

    Aschbacher, Josef

    2017-04-01

    The intervention will present ESA's Earth Observation programmes and their relevance to geoscience. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and boundary conditions. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific endeavours. Meteorological satellites help to predict the weather and feature the most mature application of Earth observation. Over the last four decades satellites have been radically improving the accuracy of weather forecasts by providing unique and indispensable input data to numerical computation models. In addition, Essential Climate Variables (ECV) are constantly monitored within ESA's Climate Change Initiative in order to create a long-term record of key geophysical parameters. All of these activities can only be carried out in international cooperation. Accordingly, ESA maintains long-standing partnerships with other space agencies and relevant institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges as well as to requirements resulting from political priorities, such as the United Nations' Sustainable Development

  2. The search for life on Earth and other planets.

    Science.gov (United States)

    Gross, Michael

    2012-04-10

    As the NASA rover Curiosity approaches Mars on its quest to look for signs of past or present life there and sophisticated instruments like the space telescopes Kepler and CoRoT keep discovering additional, more Earth-like planets orbiting distant stars, science faces the question of how to spot life on other planets. Even here on Earth biotopes remain to be discovered and explored.

  3. Exploring ESASky

    Science.gov (United States)

    De Marchi, Guido; ESASky Team

    2017-06-01

    ESASky is a science-driven discovery portal for all ESA space astronomy missions. It also includes missions from international partners such as Suzaku and Chandra. The first public release of ESASky features interfaces for sky exploration and for single and multiple target searches. Using the application requires no prior-knowledge of any of the missions involved and gives users world-wide simplified access to high-level science-ready data products from space-based Astronomy missions, plus a number of ESA-produced source catalogues, including the Gaia Data Release 1 catalogue. We highlight here the latest features to be developed, including one that allows the user to project onto the sky the footprints of the JWST instruments, at any chosen position and orientation. This tool has been developed to aid JWST astronomers when they are defining observing proposals. We aim to include other missions and instruments in the near future.

  4. Hydrocarbon exploration

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, I. (South Carolina Univ., Columbia, SC (United States). Dept. of Geological Sciences)

    1993-01-01

    This special issue of the journal examines various aspects of the on-going search for hydrocarbons, ranging from frontier basins where little data are available, to more mature areas where considerable data are available. The incentives underlying the search for oil are roughly: the social, economic and industrial needs of a nation; the incentive of a corporation to be profitable; and the personal incentives of individuals in the oil industry and governments, which range from financial wealth to power and which are as diverse as the individuals who are involved. From a geopolitical perspective, the needs, requirements, goals, strategies, and philosophies of nations, and groups of nations, also impact on the oil exploration game. Strategies that have been employed have ranged from boycott to austerity and rationing, to physical intervention, to global ''flooding'' with oil by over-production. (author)

  5. Marketing Earth science education

    Science.gov (United States)

    Snieder, Roel; Spiers, Chris

    In the 1990s, the Department of Earth Sciences at Utrecht University in the Netherlands was struggling with a declining influx of students. For years, the department had been active in promoting its program, but this was insufficient to stem the decline in interest. To remedy the problem, the school's Earth science faculty carried out, with the help of consultants, a qualitative evaluation of its promotional activities. The faculty feared that their own image of the department might be in conflict with the image held by others; prospective students, in particular. The consultants interviewed secondary school students, parents, teachers, and study advisors in secondary schools. This article is a report on the results of this evaluation.

  6. Rare earth base superconducting composition

    International Nuclear Information System (INIS)

    Raveau, B.J.; Bourgault, D.M.; Hervieu, M.; Martin, C.Y.; Michel, C.M.A.E.; Provost, J.R.J.

    1991-01-01

    A superconductin mixed valence copper oxide with a perowskite structure is claimed. It comprises a valence 4 rare earth (Ce or Pr), an alkaline earth metal (Sr or Ba) and thallium. Chemical composition is given and synthesis is described [fr

  7. Mirador - Earth Surface and Interior

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. The goal of the Earth Surface and Interior focus area is to assess, mitigate and forecast the natural hazards that affect...

  8. EarthCache as a Tool to Promote Earth-Science in Public School Classrooms

    Science.gov (United States)

    Gochis, E. E.; Rose, W. I.; Klawiter, M.; Vye, E. C.; Engelmann, C. A.

    2011-12-01

    activities to EarthCache sites near their own urban communities, or in regional areas such as nature preserves and National Parks. By working together, MiTEP participants are developing a network of regional EarthCache sites and shared lesson plans which explore places that are meaningful to students while simultaneously connecting them to geologic concepts they are learning in school. We believe that the MiTEP EarthCaching model will help participants emerge as leaders of inquiry style, and virtual place-based educators within their districts.

  9. Measuring our changing Earth

    OpenAIRE

    Jones, Lee

    2014-01-01

    We live on an ever-changing planet. Volcanoes emerge from the oceans; land is torn apart by earthquakes; tsunamis and floods destroy vast areas of land; landslides transport millions of tonnes of material down hills and mountains causing billions of pounds of damage; coastlines and glaciers retreat at almost visible rates. But can we do anything to measure the changes these geological hazards are making to the earth? Lee Jones says we can.

  10. Earth Abides Arsenic Biotransformations

    OpenAIRE

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-01-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology ...

  11. Superhydrophobic diatomaceous earth

    Science.gov (United States)

    Simpson, John T [Clinton, TN; D& #x27; Urso, Brian R [Clinton, TN

    2012-07-10

    A superhydrophobic powder is prepared by coating diatomaceous earth (DE) with a hydrophobic coating on the particle surface such that the coating conforms to the topography of the DE particles. The hydrophobic coating can be a self assembly monolayer of a perfluorinated silane coupling agent. The DE is preferably natural-grade DE where organic impurities have been removed. The superhydrophobic powder can be applied as a suspension in a binder solution to a substrate to produce a superhydrophobic surface on the substrate.

  12. Venus Exploration opportunities within NASA's Solar System Exploration roadmap

    Science.gov (United States)

    Balint, Tibor; Thompson, Thomas; Cutts, James; Robinson, James

    2006-01-01

    Science goals to understand the origin, history and environment of Venus have been driving international space exploration missions for over 40 years. Past missions include the Magellan and Pioneer-Venus missions by the US; the Venera program by the USSR; and the Vega missions through international cooperation. Furthermore, the US National Research Council (NRC), in the 2003 Solar System Exploration (SSE) Decadal Survey, identified Venus as a high priority target, thus demonstrating a continuing interest in Earth's sister planet. In response to the NRC recommendation, the 2005 NASA SSE Roadmap included a number of potential Venus missions arching through all mission classes from small Discovery, to medium New Frontiers and to large Flagship class missions. While missions in all of these classes could be designed as orbiters with remote sensing capabilities, the desire for scientific advancements beyond our current knowledge - including what we expect to learn from the ongoing ESA Venus Express mission - point to in-situ exploration of Venus.

  13. Mental model construction in the "EarthView" classroom

    Science.gov (United States)

    Tallon, Rosaleen Jude

    EarthView Explorer is a CD-ROM developed to supplement topics covered in middle and high school earth science courses. The objective was to provide students with the opportunity to explore real scientific data using an interface that maximized flexibility in retrieval and analysis, while providing a consistent visual framework for students to use during learning. This exploratory case study of three suburban high school earth science classes examined the interaction of a teacher and his students with EarthView software to begin to understand its effects on teaching and learning. Observations, student journals, pre- and post-questions, and interviews were analyzed. In addition, this study explored the potential of mental model drawing to demonstrate students' mental images of the Earth including its component subsystems and related processes acquired through EarthView. A rubric was developed to assess diagrams on their ability to illustrate parts, connections, and the underlying mechanism of a system and to rate student groups as super, master, apprentice, and novice model builders. This research demonstrated that EarthView software influenced two aspects of learning. Students acquired a substantial amount of earth science content knowledge and were able to exercise science process skills such as graphing data, recognizing patterns, correlating and controlling variables, developing hypotheses, making inferences and forming generalizations. Students were able to "rediscover" various concepts and theories in much the same way as scientists. This "rediscovery" approach fostered by EarthView changed the nature of the classroom The teacher assumed the role of expert, guide, and facilitator. The student assumed the role of investigator. Topics that had been taught previously in a more traditional manner were turned over to students who learned by exploring, asking questions, sampling, gathering and interpreting data. Student mental model diagrams provided a means of

  14. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  15. Afganistan and rare earths

    Directory of Open Access Journals (Sweden)

    Emilian M. Dobrescu

    2013-05-01

    Full Text Available On our planet, over a quarter of new technologies for the economic production of industrial goods, are using rare earths, which are also called critical minerals and industries that rely on these precious items being worth of an estimated nearly five trillion dollars, or 5 percent of world gross domestic product. In the near future, competition will increase for the control of rare earth minerals embedded in high-tech products. Rare minerals are in the twenty-first century what oil accounted for in the twentieth century and coal in the nineteenth century: the engine of a new industrial revolution. Future energy will be produced increasingly by more sophisticated technological equipment based not just on steel and concrete, but incorporating significant quantities of metals and rare earths. Widespread application of these technologies will result in an exponential increase in demand for such minerals, and what is worrying is that minerals of this type are almost nowhere to be found in Europe and in other industrialized countries in the world, such as U.S. and Japan, but only in some Asian countries, like China and Afghanistan.

  16. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  17. The Far Infrared Earth

    Science.gov (United States)

    Harries, John; Carli, Bruno; Rizzi, Rolando; Serio, Carmine; Mlynczak, Martin G.; Palchetti, Luca; Maestri, T.; Brindley, H.; Masiello, Guido

    2007-01-01

    The paper presents a review of the far infrared (FIR) properties of the Earth's atmosphere, and the role of these properties in climate. These properties have been relatively poorly understood, and it is one of the purposes of this review to demonstrate that, in recent years, we have made great strides in improving this understanding. Seen from space, the Earth is a cool object, with an effective emitting temperature of about 255 K. This contrasts with a global mean surface temperature of 288 K, and is due primarily to strong absorption of outgoing longwave energy by water vapour, carbon dioxide and clouds (especially ice). A large fraction of this absorption occurs in the FIR, and so the Earth is effectively a FIR planet. The FIR is important in a number of key climate processes, for example the water vapour and cloud feedbacks (especially ice clouds). The FIR is also a spectral region which can be used to remotely sense and retrieve atmospheric composition in the presence of ice clouds. Recent developments in instrumentation have allowed progress in each of these areas, which are described, and proposals for a spaceborne FIR instrument are being formulated. It is timely to review the FIR properties of the clear and cloudy atmosphere, the role of FIR processes in climate, and its use in observing our planet from space.

  18. JPL Earth Science Center Visualization Multitouch Table

    Science.gov (United States)

    Kim, R.; Dodge, K.; Malhotra, S.; Chang, G.

    2014-12-01

    JPL Earth Science Center Visualization table is a specialized software and hardware to allow multitouch, multiuser, and remote display control to create seamlessly integrated experiences to visualize JPL missions and their remote sensing data. The software is fully GIS capable through time aware OGC WMTS using Lunar Mapping and Modeling Portal as the GIS backend to continuously ingest and retrieve realtime remote sending data and satellite location data. 55 inch and 82 inch unlimited finger count multitouch displays allows multiple users to explore JPL Earth missions and visualize remote sensing data through very intuitive and interactive touch graphical user interface. To improve the integrated experience, Earth Science Center Visualization Table team developed network streaming which allows table software to stream data visualization to near by remote display though computer network. The purpose of this visualization/presentation tool is not only to support earth science operation, but specifically designed for education and public outreach and will significantly contribute to STEM. Our presentation will include overview of our software, hardware, and showcase of our system.

  19. Sulfur in Earth's Mantle and Its Behavior During Core Formation

    Science.gov (United States)

    Chabot, Nancy L.; Righter,Kevin

    2006-01-01

    The density of Earth's outer core requires that about 5-10% of the outer core be composed of elements lighter than Fe-Ni; proposed choices for the "light element" component of Earth's core include H, C, O, Si, S, and combinations of these elements [e.g. 1]. Though samples of Earth's core are not available, mantle samples contain elemental signatures left behind from the formation of Earth's core. The abundances of siderophile (metal-loving) elements in Earth's mantle have been used to gain insight into the early accretion and differentiation history of Earth, the process by which the core and mantle formed, and the composition of the core [e.g. 2-4]. Similarly, the abundance of potential light elements in Earth's mantle could also provide constraints on Earth's evolution and core composition. The S abundance in Earth's mantle is 250 ( 50) ppm [5]. It has been suggested that 250 ppm S is too high to be due to equilibrium core formation in a high pressure, high temperature magma ocean on early Earth and that the addition of S to the mantle from the subsequent accretion of a late veneer is consequently required [6]. However, this earlier work of Li and Agee [6] did not parameterize the metalsilicate partitioning behavior of S as a function of thermodynamic variables, limiting the different pressure and temperature conditions during core formation that could be explored. Here, the question of explaining the mantle abundance of S is revisited, through parameterizing existing metal-silicate partitioning data for S and applying the parameterization to core formation in Earth.

  20. International Coordination of Exploring and Using Lunar Polar Volatiles

    Science.gov (United States)

    Gruener, J. E.; Suzuki, N. H.; Carpenter, J. D.

    2016-01-01

    Fourteen international space agencies are participating in the International Space Exploration Coordination Group (ISECG), working together to advance a long-range strategy for human and robotic space exploration beyond low earth orbit. The ISECG is a voluntary, non-binding international coordination mechanism through which individual agencies may exchange information regarding interests, objectives, and plans in space exploration with the goal of strengthening both individual exploration programs as well as the collective effort. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit, beginning with the Moon and cis-lunar space, and continuing to near-Earth asteroids, and Mars.

  1. Discovering the Library with Google Earth

    Directory of Open Access Journals (Sweden)

    Michaela Brenner

    2008-06-01

    Full Text Available Libraries need to provide attractive and exciting discovery tools to draw patrons to the valuable resources in their catalogs. The authors conducted a pilot project to explore the free version of Google Earth as such a discover tool for Portland State Library’s digital collection of urban planning documents. They created eye-catching placemarks with links to parts of this collection, as well as to other pertinent materials like books, images, and historical background information. The detailed how-to-do part of this article is preceded by a discussion about discovery of library materials and followed by possible applications of this Google Earth project.

  2. One-Meter Class Drilling for Planetary Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Robotic planetary exploration missions will need to perform in-situ analysis of rock and/or regolith samples or returning samples back to earth. Obtaining and...

  3. High-Rate Laser Communications for Human Exploration and Science

    Science.gov (United States)

    Robinson, B. S.; Shih, T.; Khatri, F. I.; King, T.; Seas, A.

    2018-02-01

    Laser communication links has been successfully demonstrated on recent near-Earth and lunar missions. We present a status of this development work and its relevance to a future Deep Space Gateway supporting human exploration and science activities.

  4. ESA's Earth Observation Programmes in the Changing Anthropocene

    Science.gov (United States)

    Liebig, Volker

    2016-07-01

    The intervention will present ESA's Earth Observation programmes and their relevance to studying the anthropocene. ESA's Earth observation missions are mainly grouped into three categories: The Sentinel satellites in the context of the European Copernicus Programme, the scientific Earth Explorers and the meteorological missions. Developments, applications and scientific results for the different mission types will be addressed, along with overall trends and strategies. The Earth Explorers, who form the science and research element of ESA's Living Planet Programme, focus on the atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior. The Earth Explorers also aim at learning more about the interactions between these components and the impact that human activity is having on natural Earth processes. The Sentinel missions provide accurate, timely, long term and uninterrupted data to provide key information services, improving the way the environment is managed, and helping to mitigate the effects of climate change. The operational Sentinel satellites can also be exploited for scientific studies of the anthropocene. In the anthropocene human activities affect the whole planet and space is a very efficient means to measure their impact, but for relevant endeavours to be successful they can only be carried out in international cooperation. ESA maintains long-standing partnerships with other space agencies and institutions worldwide. In running its Earth observation programmes, ESA responds to societal needs and challenges and to requirements resulting from political priorities set by decision makers. Activities related to Climate Change are a prime example. Within ESA's Climate Change Initiative, 13 Essential Climate Variables are constantly monitored to create a long-term record of key geophysical parameters.

  5. Stovetop Earth Pecan Pie

    Science.gov (United States)

    Robin, C. M.

    2005-12-01

    Many fluid mechanical experiments with direct applications to Earth Science are performed with sugary syrups using conceptually straightforward procedures. Corn syrup has indeed proven to be a godsend for those studying convection and related non-linear phenomena. In addition, however, it gives experimentalists a deep physical intuition for the interior workings of hot planets. The basic concepts behind plate tectonics and mantle convection are not difficult; indeed, although they may not be aware of it, most students probably have a basic intuitive understanding of fluid mechanics gained in their daily life. However, the large size and long time scale of geophysical processes may be quite intimidating to young students. Even a simple geophysical experiment requires a complicated array of coolers, heaters and measuring and recording equipment. It is of interest to introduce students to the geodynamical concepts that can be visualized in a high-tech lab using familiar processes and equipment. Using a homemade apparatus and grocery store supplies, I propose using a 'Stove-top Earth pecan pie' to introduce simple geodynamic concepts to middle- and high-school students. The initially cold syrup heats up and the pecans begin to float (continent formation), the syrup begins to convect (mantle convection), and convection slows down after the heat is removed (secular cooling). Even Wilson cycles can be simulated by moving the pan to one side or the other of the stovetop or heating element. The activity formally introduces students to convection and its application to the earth, and makes them think about plate motion, heat transfer, scaling, and experimental procedures. As an added bonus, they can eat their experiments after recess!

  6. Earth's ozone layer

    International Nuclear Information System (INIS)

    Lasa, J.

    1991-01-01

    The paper contain the actual results of investigations of the influence of the human activity on the Earth's ozone layer. History of the ozone measurements and of the changes in its concentrations within the last few years are given. The influence of the trace gases on both local and global ozone concentrations are discussed. The probable changes of the ozone concentrations are presented on the basis of the modelling investigations. The effect of a decrease in global ozone concentration on human health and on biosphere are also presented. (author). 33 refs, 36 figs, 5 tabs

  7. Climate in Earth history

    Science.gov (United States)

    Berger, W. H.; Crowell, J. C.

    1982-01-01

    Complex atmosphere-ocean-land interactions govern the climate system and its variations. During the course of Earth history, nature has performed a large number of experiments involving climatic change; the geologic record contains much information regarding these experiments. This information should result in an increased understanding of the climate system, including climatic stability and factors that perturb climate. In addition, the paleoclimatic record has been demonstrated to be useful in interpreting the origin of important resources-petroleum, natural gas, coal, phosphate deposits, and many others.

  8. Predicting earth's dynamic changes

    Science.gov (United States)

    Rasool, S. I.

    1986-01-01

    Given a suitable strategy for conducting measurements, satellite-based remote sensing of the earth can furnish valuable information on the dynamic changes of such planetary characteristics as ocean surface temperatures and atmospheric CO2. Observations must be global and synoptic, quantitatively validated, and consistent over the long term. A program spanning 20 years will study such critical variables as solar flux, stratospheric temperature, aerosols and ozone, cloud cover, tropospheric gases and aerosols, radiation balance, surface temperature, albedo, precipitation, vegetation cover, moisture, snow and ice, as well as oceanic color, topography, and wind stress.

  9. Magnetars Storm the Earth

    Science.gov (United States)

    Kaspi, Victoria

    2013-04-01

    Magnetars are a class of young neutron stars that appear to be powered by their ultrahigh magnetic fields, on the order of 10^14-10^15 G on their surfaces, the highest magnetic fields yet known in the Universe. These amazing sources produce erratic X-ray and gamma-ray bursts, the brightest of which have actually observably impacted the Earth's atmosphere from clear across the Galaxy. In this talk I will review what we know about magnetars, including their observational properties and the current thinking about the physical origins of their dramatic behavior.

  10. Bones of the Earth

    Directory of Open Access Journals (Sweden)

    Jose Miguel Correa

    2014-06-01

    Full Text Available The film Bones of the Earth (Riglin, Cunninham & Correa, 2014 is an experience in collective inquiry and visual creation based on arts-based research. Starting from the meeting of different subjectivities and through dialogue, planning, shooting and editing, an audiovisual text that reconstructs a reflexive process of collective creation is built. A sense of community, on-going inquiry, connections and social commitment inform the creative process. As a result, the video’s nearly five intense minutes are a metaphor for the search for personal meaning, connection with nature and intersubjective positioning in a world that undergoes constant change.

  11. NASA's Earth Science Flight Program overview

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2011-11-01

    NASA's Earth Science Division (ESD) conducts pioneering work in Earth system science, the interdisciplinary view of Earth that explores the interaction among the atmosphere, oceans, ice sheets, land surface interior, and life itself that has enabled scientists to measure global and climate changes and to inform decisions by governments, organizations, and people in the United States and around the world. The ESD makes the data collected and results generated by its missions accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster management, agricultural yield projections, and aviation safety. In addition to four missions now in development and 14 currently operating on-orbit, the ESD is now developing the first tier of missions recommended by the 2007 Earth Science Decadal Survey and is conducting engineering studies and technology development for the second tier. Furthermore, NASA's ESD is planning implementation of a set of climate continuity missions to assure availability of key data sets needed for climate science and applications. These include a replacement for the Orbiting Carbon Observatory (OCO), OCO-2, planned for launch in 2013; refurbishment of the SAGE III atmospheric chemistry instrument to be hosted by the International Space Station (ISS) as early as 2014; and the Gravity Recovery and Climate Experiment Follow-On (GRACE FO) mission scheduled for launch in 2016. The new Earth Venture (EV) class of missions is a series of uncoupled, low to moderate cost, small to medium-sized, competitively selected, full orbital missions, instruments for orbital missions of opportunity, and sub-orbital projects.

  12. Radiation chemistry in exploration of Mars

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    2005-01-01

    Problems of exploration of Mars are seldom connected with radiation research. Improvements in such approach, more and more visible, are reported in this paper, written by the present author working on prebiotic chemistry and origins of life on Earth. Objects on Mars subjected to radiation are very different from those on Earth. Density of the Martian atmosphere is by two orders smaller than over Earth and does not protect the surface of Mars from ionizing radiations, contrary to the case of Earth, shielded by the equivalent of ca. 3 meters of concrete. High energy protons from the Sun are diverted magnetically around Earth, and Mars is deprived of that protection. The radiolysis of martian '' air '' (95.3% of carbon dioxide) starts with the formation of CO 2 + , whereas the primary product over Earth is N 2 + ion radical. The lack of water vapor over Mars prevents the formation of many secondary products. The important feature of Martian regolith is the possibility of the presence of hydrated minerals, which could have been formed milliards years ago, when (probably) water was present on Mars. The interface of the atmosphere and the regolith can be the site of many chemical reactions, induced also by intensive UV, which includes part of the vacuum UV. Minerals like sodalite, discovered on Mars can contribute as reagents in many reactions. Conclusions are dedicated to questions of the live organisms connected with exploration of Mars; from microorganisms, comparatively resistant to ionizing radiation, to human beings, considered not to be fit to manned flight, survival on Mars and return to Earth. Pharmaceuticals proposed as radiobiological protection cannot improve the situation. Exploration over the distance of millions of kilometers performed successfully without presence of man, withstands more easily the presence of ionizing radiation. (author)

  13. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  14. Mapping Earth's electromagnetic dimensionality

    Science.gov (United States)

    Love, J. J.; Kelbert, A.; Bedrosian, P.

    2017-12-01

    The form of a magnetotelluric impedance tensor, obtained for a given geographic site through simultaneous measurement of geomagnetic and geoelectric field variation, is affected by electrical conductivity structure beneath the measurement site. Building on existing methods for characterizing the symmetry of magnetotelluric impedance tensors, a simple scalar measure is developed for measuring the (frequency dependent) proportion of the impedance tensor that is not just a one-dimensional (1D) function of depth ("non-1D-ness"). These measures are applied to nearly 1000 impedance tensors obtained during magnetotelluric surveys, those for the continental United States and obtained principally through the National Science Foundation's EarthScope project. Across geomagnetic/geoelectric variational periods ranging from 30 s to 3,000 s, corresponding to crustal and upper mantle depths, it is shown that local Earth structure is very often not simply 1D-depth-dependent - often less than 50% of magnetotelluric impedance is 1D. For selected variational frequencies, non-1D-ness is mapped and the relationship between electromagnetic dimensionality and known geological and tectonic structures is discussed. The importance of using realistic surface impedances to accurately evaluate magnetic-storm geoelectric hazards is emphasized.

  15. Destiny's Earth Observation Window

    Science.gov (United States)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  16. Copernicus Earth observation programme

    Science.gov (United States)

    Žlebir, Silvo

    European Earth observation program Copernicus is an EU-wide programme that integrates satellite data, in-situ data and modeling to provide user-focused information services to support policymakers, researchers, businesses and citizens. Land monitoring service and Emergency service are fully operational already, Atmosphere monitoring service and Marine environment monitoring service are preoperational and will become fully operational in the following year, while Climate change service and Security service are in an earlier development phase. New series of a number of dedicated satellite missions will be launched in the following years, operated by the European Space Agency and EUMETSAT, starting with Sentinel 1A satellite early this year. Ground based, air-borne and sea-borne in-situ data are provided by different international networks and organizations, EU member states networks etc. European Union is devoting a particular attention to secure a sustainable long-term operational provision of the services. Copernicus is also stated as a European Union’s most important contribution to Global Earth Observation System of Systems (GEOSS). The status and the recent development of the Copernicus programme will be presented, together with its future perspective. As Copernicus services have already demonstrated their usability and effectiveness, some interesting cases of their deployment will be presented. Copernicus free and open data policy, supported by a recently adopted EU legislative act, will also be presented.

  17. Diatomaceous Earths - Natural Insecticides

    Directory of Open Access Journals (Sweden)

    Zlatko Korunić

    2013-01-01

    Full Text Available The regulatory issues for diatomaceous earth (DE cover three fields: consumer safety,worker safety, and proof of efficacy against pests. For consumer safety, regulatory issuesare similar to those for other additives, and a principal benefit of DEs is their removal bynormal processing methods. For worker safety, regulatory issues are similar to those forother dusts, such as lime. The proof of potential insecticide values of DE may be assessedby using the analysis of physical and chemical properties of DE and its effect on grainproperties and the proof of efficacy may be regulated by bioassay of standard design.Integrated pest management (IPM, a knowledge-based system, is rapidly providing aframework to reduce dependence on synthetic chemical pesticides. The main principleof post-harvest IPM is to prevent problems rather than to react to them. The specificcurative measures using synthetic pesticides should be applied only when infestationoccurs. DE and enhanced diatomaceous earth (EDE formulations hold significant promiseto increase the effectiveness and broaden the adoption of IPM strategies, thereby reducingthe need for synthetic pesticides. By incorporating DE in an effective IPM program,grain is protected against infestation, loss caused by insects is prevented and grain qualityis maintained until the grain is processed. Cases study data on the use of DE for commodityand structural treatment show that DE is already a practical alternative to syntheticpesticides in some applications.

  18. Is dying the earth?

    International Nuclear Information System (INIS)

    Morales Garzon, Gustavo

    1994-01-01

    December 21 of 1968, on board the capsule Apollo 8, three astronauts, James A. Lovell, Frank Borman and William Anders, went toward what would be the first orbital flight around the moon. That experience like Lovell said, it makes us realize the insignificant that we are in comparison with the vastness of the universe. With the revolution lovelockiane, the life doesn't already consist on a group of organisms only adapted to its atmosphere by a certain action for external laws. The terrestrial environment, instead of being a physical world regulated by own autonomous laws, is part of an evolutionary system that contains the life and that it should to the phenomena vital part of its rules, its mechanisms and components. The alive beings connected to each other and to the atmosphere they manufacture and they maintain of continuous their atmosphere forming an everything at planetary level, according to Ricard Guerrero (1988). The theory of the earth then, he says, it has found their owner Darwin in James lovelock. The document treats topics like the science concept that it is the life, the earth and the contemporary environment

  19. Aurora europe's space exploration programme

    Science.gov (United States)

    Ongaro, F.; Swings, J. P.; Condessa, R.

    2003-04-01

    What will happen after the ISS in terms of space exploration, specifically to the human presence beyond Earth? What will be the role of Europe in the future international venture to explore space? What are the most immediate actions to be undertaken in Europe in order to best profit from the efforts made through the participation in the ISS and to position Europe's capabilities according to its interests? As approved by the Ministers at the Edinburgh Council in November 2001, the European Space Exploration Programme - Aurora - is ESA's programme in charge of defining and implementing the long term plan for human and robotic exploration of the Solar system. The Aurora programme started in 2002 and extends until the end goal of Aurora: the first human mission to Mars, expected in the 2025-2030 time-frame. The approach of Aurora is to implement a robust development of technologies and robotic missions, in parallel to the utilization phase of the ISS, to prepare for a continuous and sustainable future of human space exploration (which shall include the Moon, Mars and the asteroids as targets), in which Europe will be a valuable partner. Two classes of missions are foreseen in the programme's strategy: Flagships, defined as major missions driving to soft landing, in-situ analysis, sample return from other planetary bodies and eventually human missions; and Arrows, defined as cost-capped, short development time missions to demonstrate new technologies or mission approaches, or to exploit opportunities for payloads on European or international missions. So far the participating national delegations have approved two Flagships (ExoMars and Mars Sample Return) and two Arrows (Earth Re-entry and Mars Aerocapture) for phase A industrial studies. Although the last call for ideas of Aurora resulted in the definition of two Flagship missions targeted to Mars, the next one might be aimed to the Moon. At this stage the role of the Moon, on the path of Mars exploration is not

  20. School, Earth and Imagination

    Science.gov (United States)

    Merlini, Anna; Grieco, Giovanni; Oneta, Cristina

    2015-04-01

    Geology needs to be explained and narrated to the people, focusing on the goal of making that big change of mindset that will allow individuals and the entire community to tune into the timing and the ways in which the Earth evolves. In order to achieve these important goals it is necessary to educate children from an early age so that they learn to live an environmentally friendly life. With the project "School, Earth and imagination" we introduce, with a fun and new way, notions and topics in geological and environmental sciences in schools at all levels with the final goal of improving both knowledge and sensibility for these topics into the community. Through this project we start from the children (kindergarten and primary school, ages between 3 and 8 years) because they are the foundation of our society, and without foundations nothing can be built. The "School, Earth and imagination" project wants to give the children a real opportunity to approach reality and in general the surrounding environment, for the first time even before the traditional scholastic experience, with a scientific point of view, experimenting some basic physical concepts like temperature, weight, hardness and so on directly through their body. The project is structured and developed in modules that provide a high flexibility in order to meet needs and requirements of different schools in different situations. Each module is part of the journey of Mariolino, a character that represents a very curious child who introduces basic concepts associating them to geological processes. The Journey of Mariolino, as each module, follows an insistent scheme that starts from the presentation of the problem, follows with its discussion through direct questions and ends with experimentation of the hypotheses that children have proposed to validate the solution of the problem. Each module is independent and never ends without giving children a solution and is always structured with a practical activity

  1. Multi-source Geospatial Data Analysis with Google Earth Engine

    Science.gov (United States)

    Erickson, T.

    2014-12-01

    The Google Earth Engine platform is a cloud computing environment for data analysis that combines a public data catalog with a large-scale computational facility optimized for parallel processing of geospatial data. The data catalog is a multi-petabyte archive of georeferenced datasets that include images from Earth observing satellite and airborne sensors (examples: USGS Landsat, NASA MODIS, USDA NAIP), weather and climate datasets, and digital elevation models. Earth Engine supports both a just-in-time computation model that enables real-time preview and debugging during algorithm development for open-ended data exploration, and a batch computation mode for applying algorithms over large spatial and temporal extents. The platform automatically handles many traditionally-onerous data management tasks, such as data format conversion, reprojection, and resampling, which facilitates writing algorithms that combine data from multiple sensors and/or models. Although the primary use of Earth Engine, to date, has been the analysis of large Earth observing satellite datasets, the computational platform is generally applicable to a wide variety of use cases that require large-scale geospatial data analyses. This presentation will focus on how Earth Engine facilitates the analysis of geospatial data streams that originate from multiple separate sources (and often communities) and how it enables collaboration during algorithm development and data exploration. The talk will highlight current projects/analyses that are enabled by this functionality.https://earthengine.google.org

  2. Programmable wide field spectrograph for earth observation

    Science.gov (United States)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2017-11-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.

  3. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    Science.gov (United States)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; hide

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  4. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  5. Rare earth ferrosilicon alloy

    International Nuclear Information System (INIS)

    Caiquan, L.; Zeguang, T.; Zaizhang, L.

    1985-01-01

    In order to obtain RE ferrosilicon alloy with good quality and competitive price, it is essential that proper choice of raw materials, processing technology and equipments should be made based on the characteristics of Bai-Yun-Ebo mineral deposits. Experimental work and actual production practice indicate that pyrometallurgical method is suitable for the extraction and isolation of the rare earths and comprehensive utilization of the metal values contained in the feed material is capable of reducing cost of production of RE ferrosilicon alloy. In the Bai-Yun-Ebo deposit, the fluorite type medium lean ore (with respect to iron content) makes a reserve of considerable size. The average content of the chief constituents are given

  6. Earth's Magnetic Field

    DEFF Research Database (Denmark)

    research with the aim to better characterise the state and dynamics of Earth’s magnetic field. Advances in the exploitation of geomagnetic observations hold a huge potential not only for an improved quantitative description of the field source but also for a better understanding of the underlying processes...... and physics. Key is the separation of the field sources in the observations, especially, but not solely, during times of quiet geomagnetic conditions, when the most subtle geomagnetic effects can be identified and become significant. The collected articles are based on the current constellation of ground......This volume provides a comprehensive view on the different sources of the geomagnetic field both in the Earth’s interior and from the field’s interaction with the terrestrial atmosphere and the solar wind. It combines expertise from various relevant areas of geomagnetic and near Earth space...

  7. Rare earths and thorium

    International Nuclear Information System (INIS)

    Towner, R.R.

    1989-01-01

    In Australia, which is by far the Western world's largest producer of monazite, production is a by-product of the mineral-sands industry, mainly in the Midlands (Eneabba) and Southwest mineral-sands mining areas of Western Australia, and to a lesser extent on the east coast. Relatively small amounts of xenotime concentrate are a by-product of ilmenite mining in the Capel area of Western Australia. In 1987 a total of 12 813 t commercial-grade monazite was produced. At present monazite is not processed in Australia and all production is exported. In 1987 the Australian Bureau of Mineral Resources reassessed Australia's demonstrated resources of monazite upwards to 1.02 Mt, of which 237 800 t is regarded as economic at current prices for monazite, rutile, ilmenite and zircon. Production of rare-earth minerals in other countries is briefly reviewed. 4 tabs

  8. Earth's early biosphere

    Science.gov (United States)

    Des Marais, D. J.

    1998-01-01

    Understanding our own early biosphere is essential to our search for life elsewhere, because life arose on Earth very early and rocky planets shared similar early histories. The biosphere arose before 3.8 Ga ago, was exclusively unicellular and was dominated by hyperthermophiles that utilized chemical sources of energy and employed a range of metabolic pathways for CO2 assimilation. Photosynthesis also arose very early. Oxygenic photosynthesis arose later but still prior to 2.7 Ga. The transition toward the modern global environment was paced by a decline in volcanic and hydrothermal activity. These developments allowed atmospheric O2 levels to increase. The O2 increase created new niches for aerobic life, most notably the more advanced Eukarya that eventually spawned the megascopic fauna and flora of our modern biosphere.

  9. One Day on Earth

    CERN Multimedia

    2011-01-01

    In collaboration with the CineGlobe Film Festival, the One Day on Earth global film project invites you to share your story of scientific inspiration, scientific endeavors and technological advancement on 11 November 2011 (11.11.11).   Technology in the 21st century continuously inspires us to re-imagine the world. From outer-space to cyberspace, new ideas that we hope will improve the lives of future generations keep us in a state of change. However, these new technologies may alter the nature of our shared existence in ways not yet known. On 11.11.11, we invite you to record the exciting ways that science is a part of your life, together with people around the world who will be documenting their lives on this day of global creation. See www.onedayonearth.org for details on how to participate.

  10. Telephony Earth Station

    Science.gov (United States)

    Morris, Adrian J.; Kay, Stan

    The Telephony Earth Station (TES), a digital full-mesh SCPC (single channel per carrier) system designed for satellite voice and data transmission is described. As compared to companded FM, the advanced speech compression and forward error correction techniques used by TES better achieve the quality, power, and bandwidth ideal for each application. In addition, the TES offers a fully demand-assigned voice call setup, handles point-to-point data channels, supports a variety of signaling schemes, and does not require any separate pilot receivers at the station, while keeping costs low through innovative technology and packaging. The TES can be used for both C-band and Ku-band (domestic or international) applications, and is configurable either as an VSAT (very small aperture terminal) using an SSPA, or as a larger station depending on the capacity requirements. A centralized DAMA processor and network manager is implemented using a workstation.

  11. Earth System Environmental Literacy

    Science.gov (United States)

    Lowman, Margaret

    If every citizen could read the above quote and understand its underlying ecological concepts, economic challenges, social services, and spiritual heritage, then it is likely that sustainability education would be achieved. The notion of a tree and its ecosystem services illustrate sustainability in the simplest yet most robust sense. To plant and grow a tree, economists struggle with volatile currencies; ecologists juggle development and conservation; religious leaders advocate stewardship; and social scientists examine equity in a world of declining resources. Sustainability education requires an integrated approach between ecology, risk analyses, economics, social sciences, biological sciences, political sciences, languages, biotechnology, physical sciences, health sciences, and religion. All these practitioners (and many others) contribute to sustainability education, an emerging discipline that requires an interdisciplinary synthesis of knowledge, translated into practice, to insure the future of life on Earth.

  12. Earth Abides Arsenic Biotransformations

    Science.gov (United States)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  13. Theory of Earth

    Science.gov (United States)

    Anderson, D. L.

    2014-12-01

    Earth is an isolated, cooling planet that obeys the 2nd law. Interior dynamics is driven from the top, by cold sinking slabs. High-resolution broad-band seismology and geodesy has confirmed that mantle flow is characterized by narrow downwellings and ~20 broad slowly rising updrafts. The low-velocity zone (LVZ) consists of a hot melange of sheared peridotite intruded with aligned melt-rich lamellae that are tapped by intraplate volcanoes. The high temperature is a simple consequence of the thermal overshoot common in large bodies of convecting fluids. The transition zone consists of ancient eclogite layers that are displaced upwards by slabs to become broad passive, and cool, ridge feeding updrafts of ambient mantle. The physics that is overlooked in canonical models of mantle dynamics and geochemistry includes; the 2nd law, convective overshoots, subadiabaticity, wave-melt interactions, Archimedes' principle, and kinetics (rapid transitions allow stress-waves to interact with melting and phase changes, creating LVZs; sluggish transitions in cold slabs keep eclogite in the TZ where it warms up by extracting heat from mantle below 650 km, creating the appearance of slab penetration). Canonical chemical geodynamic models are the exact opposite of physics and thermodynamic based models and of the real Earth. A model that results from inverting the assumptions regarding initial and boundary conditions (hot origin, secular cooling, no external power sources, cooling internal boundaries, broad passive upwellings, adiabaticity and whole-mantle convection not imposed, layering and self-organization allowed) results in a thick refractory-yet-fertile surface layer, with ancient xenoliths and cratons at the top and a hot overshoot at the base, and a thin mobile D" layer that is an unlikely plume generation zone. Accounting for the physics that is overlooked, or violated (2nd law), in canonical models, plus modern seismology, undermines the assumptions and conclusions of these

  14. The Past Earth Network

    Science.gov (United States)

    Haywood, A.; Voss, J.; Dolan, A. M.; Yorke, E.

    2016-12-01

    Forecasts of climate rely on model projections, but derivation of sophisticated climate models from first principles is not currently feasible. Therefore, evaluating climate models with observations is essential. The development and improvement of global climate models is currently only based on comparison with and tuning to historical observations of climate (the instrumental record). Models show a range of sensitivities when predicting the future climate response to the emission of greenhouse gases. This indicates that the evaluation of models using observations of historical climate is insufficient. A wide variety of different climate states are recorded in the geological record (spanning greenhouse to icehouse scenarios). The modelling of past climates, in combination with data from the geological record, provides a unique laboratory to evaluate the ability of models to forecast global change. The Past Earth Network is developing a shared, multi-disciplinary vision for addressing the challenges encompassed by the following four network themes: (1) Quantification of error and uncertainty of data: The uncertainties inherent in different forms of climate data must be well-understood. (2) Quantification of uncertainty in complex models: The uncertainties in the output of the (complex and high-dimensional) models in use must be well-understood. (3) Methodologies which enable robust model-data comparison: Appropriate methods for model-data comparison must be used. (4) Forecasting and future climate projections: This theme synthesizes the results from the first three themes in order to assess and ultimately improve the ability of climate models to forecast climate change. By addressing these four challenges, results produced by the Past Earth Network will help to better understand and reduce the uncertainties in climate forecasts and ultimately will contribute to the development of better climate forecasts.

  15. Earth Gravitational Model 2020

    Science.gov (United States)

    Barnes, Daniel; Holmes, Simon; Factor, John; Ingalls, Sarah; Presicci, Manny; Beale, James

    2017-04-01

    The National Geospatial-Intelligence Agency [NGA], in conjunction with its U.S. and international partners, has begun preliminary work on its next Earth Gravitational Model, to replace EGM2008. The new 'Earth Gravitational Model 2020' [EGM2020] has an expected public release date of 2020, and will likely retain the same harmonic basis and resolution as EGM2008. As such, EGM2020 will be essentially an ellipsoidal harmonic model up to degree (n) and order (m) 2159, but will be released as a spherical harmonic model to degree 2190 and order 2159. EGM2020 will benefit from new data sources and procedures. Updated satellite gravity information from the GOCE and GRACE mission, will better support the lower harmonics, globally. Multiple new acquisitions (terrestrial, airborne and ship borne) of gravimetric data over specific geographical areas, will provide improved global coverage and resolution over the land, as well as for coastal and some ocean areas. Ongoing accumulation of satellite altimetry data as well as improvements in the treatment of this data, will better define the marine gravity field, most notably in polar and near-coastal regions. NGA and partners are evaluating different approaches for optimally combining the new GOCE/GRACE satellite gravity models with the terrestrial data. These include the latest methods employing a full covariance adjustment. NGA is also working to assess systematically the quality of its entire gravimetry database, towards correcting biases and other egregious errors where possible, and generating improved error models that will inform the final combination with the latest satellite gravity models. Outdated data gridding procedures have been replaced with improved approaches. For EGM2020, NGA intends to extract maximum value from the proprietary data that overlaps geographically with unrestricted data, whilst also making sure to respect and honor its proprietary agreements with its data-sharing partners. Approved for Public Release

  16. The earth and the moon

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    The moon is the only body in the solar system outside of the Earth that has been visited by humans. More than 440 pounds of lunar material are brought by NASA and Soviet space missions to Earth for study. The information gleaned about the moon from this relatively small pile of rocks is mind-boggling and stands as the greatest proof that Martian planetary science would be greatly enhanced by returning samples to Earth. Compositional studies of lunar rocks show that the moon and the Earth are made of similar material, and because lunar material has not been reworked through erosion and plate te

  17. Near-Earth Asteroid (NEA) Scout

    Science.gov (United States)

    McNutt, Leslie; Johnson, Les; Kahn, Peter; Castillo-Rogez, Julie; Frick, Andreas

    2014-01-01

    Near-Earth asteroids (NEAs) are the most easily accessible bodies in the solar system, and detections of NEAs are expected to grow exponentially in the near future, offering increasing target opportunities. As NASA continues to refine its plans to possibly explore these small worlds with human explorers, initial reconnaissance with comparatively inexpensive robotic precursors is necessary. Obtaining and analyzing relevant data about these bodies via robotic precursors before committing a crew to visit a NEA will significantly minimize crew and mission risk, as well as maximize exploration return potential. The Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL) are jointly examining a potential mission concept, tentatively called 'NEAScout,' utilizing a low-cost platform such as CubeSat in response to the current needs for affordable missions with exploration science value. The NEAScout mission concept would be treated as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1), the first planned flight of the SLS and the second un-crewed test flight of the Orion Multi-Purpose Crew Vehicle (MPCV).

  18. Atmospheric Expression of Seasonality on the Early Earth and Earth-like Exoplanets

    Science.gov (United States)

    Olson, S. L.; Schwieterman, E. W.; Reinhard, C. T.; Ridgwell, A.; Lyons, T. W.

    2017-12-01

    Biologically modulated seasonality impacts nearly every chemical constituent of Earth's atmosphere. For example, seasonal shifts in the balance of photosynthesis and respiration manifest as striking oscillation in the atmospheric abundance of CO2 and O2. Similar temporal variability is likely on other inhabited worlds, and seasonality is often regarded as a potential exoplanetary biosignature. Seasonality is a particularly intriguing biosignature because it may allow us to identify life through the abundance of spectrally active gases that are not uniquely biological in origin (e.g., CO2 or CH4). To date, however, the discussion of seasonality as a biosignature has been exclusively qualitative. We lack both quantitative constraints on the likelihood of spectrally detectable seasonality elsewhere and a framework for evaluating potential false positive scenarios (e.g., seasonal CO2 ice sublimation). That is, we do not yet know for which gases, and under which conditions, we could expect to detect seasonality and reliably infer the presence of an active biosphere. The composition of Earth's atmosphere has changed dramatically through time, and consequently, the atmospheric expression of seasonality has necessarily changed throughout Earth history as well. Thus, Earth offers several case studies for examining the potential for observable seasonality on chemically and tectonically diverse exoplanets. We outline an approach for exploring the history of seasonality on Earth via coupled biogeochemical and photochemical models, with particular emphasis on the seasonal cycles of CO2, CH4, and O2/O3. We also discuss the remote detectability of these seasonal signals on directly imaged exoplanets via reflectance and emission spectra. We suggest that seasonality in O2 on the early Earth was biogeochemically significant—and that seasonal cycles in O3, an indirect biological product coupled to biogenic O2, may be a readily detectable fingerprint of life in the absence of

  19. A Dynamic Earth: 50 Years of Observations from Space

    Science.gov (United States)

    Evans, Cynthia A.

    2013-01-01

    Observations of the surface of the Earth began more than a half century ago with the earliest space missions. The global geopolitical environment at the beginning of the space age fueled advances in rocketry and human exploration, but also advances in remote sensing. At the same time that space-based Earth Observations were developing, global investments in infrastructure that were initiated after World War II accelerated large projects such as the construction of highways, the expansion of cities and suburbs, the damming of rivers, and the growth of big agriculture. These developments have transformed the Earth s surface at unprecedented rates. Today, we have a remarkable library of 50 years of observations of the Earth taken by satellite-based sensors and astronauts, and these images and observations provide insight into the workings of the Earth as a system. In addition, these observations record the footprints of human activities around the world, and illustrate how our activities contribute to the changing face of the Earth. Starting with the iconic "Blue Marble" image of the whole Earth taken by Apollo astronauts, we will review a timeline of observations of our planet as viewed from space.

  20. Beyond Kepler: Direct Imaging of Earth-like Planets

    Science.gov (United States)

    Belikov, Ruslan

    2012-01-01

    Is there another Earth out there? Is there life on it? People have been asking these questions for over two thousand years, and we finally stand on the verge of answering them. The Kepler space telescope is NASA's first mission designed to study Earthlike exoplanets (exo-Earths), and it will soon tell us how often exo-Earths occur in the habitable zones of their stars. The next natural step after Kepler is spectroscopic characterization of exo-Earths, which would tell us whether they possess an atmosphere, oxygen, liquid water, as well as other biomarkers. In order to do this, directly imaging an exo-Earth may be necessary (at least for Sun-like stars). Directly imaging an exo-Earth is challenging and likely requires a flagship-size optical space telescope with an unprecedented imaging system capable of achieving contrasts of 1(exp 10) very close to the diffraction limit. Several coronagraphs and external occulters have been proposed to meet this challenge and are in development. After first overviewing the history and current state of the field, my talk will focus on the work proceeding at the Ames Coronagraph Experiment (ACE) at the NASA Ames Research Center, where we are developing the Phase Induced Amplitude Apodization (PIAA) coronagraph in a collaboration with JPL. PIAA is a powerful technique with demonstrated aggressive performance that defines the state of the art at small inner working angles. At ACE, we have achieved contrasts of 2(exp -8) with an inner working angle of 2 lambda/D and 1(exp -6) at 1.4 lambda/D. On the path to exo-Earth imaging, we are also pursuing a smaller telescope concept called EXCEDE (EXoplanetary Circumstellar Environments and Disk Explorer), which was recently selected for technology development (Category III) by NASA's Explorer program. EXCEDE will do fundamental science on debris disks as well as serve as a technological and scientific pathfinder for an exo-Earth imaging mission.

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 114; Issue 6. Volume 114, Issue 6. December 2005, pages 573-841. Proceedings of the International Conference on Exploration and Utilization of the Moon 22 – 26 November 2004 Udaipur, Rajasthan, India. pp 573-575. Preface · Narendra Bhandari · More Details ...

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 117; Issue 4. Pattern of sedimentation during the ... Sanjoy Kumar Ghosh. Volume 117 Issue 4 August 2008 pp 499-519 ... Kolkata 700 108, India. Shell International Exploration and Production Inc. WCK#6380, 200 North Dairy Ashford, Houston, Texas 77079, USA.

  3. Structural variations in layered alkaline earth metal cyclohexyl ...

    Indian Academy of Sciences (India)

    Administrator

    because of the entrance of the guest molecules between the layers, there will be a change in the interlayer distance (Alberti 1978). Although M(IV) organo-phos- phonates are well documented, the chemistry of M(II) organophosphonates especially the alkaline earth metal organophosphonates has been explored marginally ...

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 125; Issue 1. Favourable uranium–phosphate exploration trends guided by the application of statistical factor analysis technique on the aerial gamma spectrometric data in Syrian desert (Area-1), Syria. J Asfahani R Al-Hent M Aissa. Volume 125 Issue 1 February ...

  5. Children's Cosmographies: Understanding the Earth's Shape and Gravity.

    Science.gov (United States)

    Sneider, Cary; Pulos, Steven

    1983-01-01

    Assessed Nussbaum's developmental model (SE 024 045) using a new sample given no special instructions in spherical earth/gravity concepts. Also identified distribution of notions among students (N=159 in grades three to eight), compared distribution of notions at each age level with those in other studies, and explored role of individual…

  6. Online Student Learning and Earth System Processes

    Science.gov (United States)

    Mackay, R. M.

    2002-12-01

    Many students have difficulty understanding dynamical processes related to Earth's climate system. This is particularly true in Earth System Science courses designed for non-majors. It is often tempting to gloss over these conceptually difficult topics and have students spend more study time learning factual information or ideas that require rather simple linear thought processes. Even when the professor is ambitious and tackles the more difficult ideas of system dynamics in such courses, they are typically greeted with frustration and limited success. However, an understanding of generic system concepts and processes is quite arguably an essential component of any quality liberal arts education. We present online student-centered learning modules that are designed to help students explore different aspects of Earth's climate system (see http://www.cs.clark.edu/mac/physlets/GlobalPollution/maintrace.htm for a sample activity). The JAVA based learning activities are designed to: be assessable to anyone with Web access; be self-paced, engaging, and hands-on; and make use of past results from science education research. Professors can use module activities to supplement lecture, as controlled-learning-lab activities, or as stand-alone homework assignments. Acknowledgement This work was supported by NASA Office of Space Science contract NASW-98037, Atmospheric and Environmental Research Inc. of Lexington, MA., and Clark College.

  7. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  8. Rare earths 1998 market update

    International Nuclear Information System (INIS)

    Tourre, J.M.

    1998-01-01

    The rare earth industry has always been a world of rapid change with the emergence of new markets, new ores and new players, as well as the disappearance of old applications. Rare earth based products are used in a great diversity of applications such as hard disk drives, CD drives, batteries, capacitors, pigments, ceramics, polishing powders, fuel cells, flints, catalyst converter, fluid cracking catalysts, etc. South East Asia holds the largest share of the known reserve of rare earth ores and is one of the major markets for rare earth compounds; in the last ten years, China has become the largest producer of rare earth intermediates as well as an important exporter of separated rare earth elements. Today, China has approximately 150 factories producing rare earth compounds, most of which are experiencing financial difficulties due to the lack of knowledge of true market needs, lack of control of their distribution channels and production over-capacity. Recently the Chinese rare earth producers have recognized the situation and efforts are underway to rationalize rare earth production. Japan has dominated many of the major application markets, and is by far the largest market for metal and alloy products. This will remain the case for the next five years; however, new countries are emerging as significant users of rare earth products such as Korea, Taiwan and Malaysia. During the last ten years rare earth producers adjusted to several radical changes that affected the raw materials, the application mix and the price structure. New producers have emerged, especially from China; some have subsequently stopped their activities while others have focused their efforts in a specific market segment

  9. Is the Earth Flat or Round? Primary School Children's Understandings of the Planet Earth: The Case of Turkish Children

    Science.gov (United States)

    Özsoy, Sibel

    2012-01-01

    The purpose of this study is to explore primary school children's understandings about the shape of the Earth. The sample is consisted of 124 first-graders from five primary schools located in an urban city of Turkey. The data of the study were collected through children's drawings and semi-structured interviews. Results obtained from the drawings…

  10. Testing Reproducibility in Earth Sciences

    Science.gov (United States)

    Church, M. A.; Dudill, A. R.; Frey, P.; Venditti, J. G.

    2017-12-01

    Reproducibility represents how closely the results of independent tests agree when undertaken using the same materials but different conditions of measurement, such as operator, equipment or laboratory. The concept of reproducibility is fundamental to the scientific method as it prevents the persistence of incorrect or biased results. Yet currently the production of scientific knowledge emphasizes rapid publication of previously unreported findings, a culture that has emerged from pressures related to hiring, publication criteria and funding requirements. Awareness and critique of the disconnect between how scientific research should be undertaken, and how it actually is conducted, has been prominent in biomedicine for over a decade, with the fields of economics and psychology more recently joining the conversation. The purpose of this presentation is to stimulate the conversation in earth sciences where, despite implicit evidence in widely accepted classifications, formal testing of reproducibility is rare.As a formal test of reproducibility, two sets of experiments were undertaken with the same experimental procedure, at the same scale, but in different laboratories. Using narrow, steep flumes and spherical glass beads, grain size sorting was examined by introducing fine sediment of varying size and quantity into a mobile coarse bed. The general setup was identical, including flume width and slope; however, there were some variations in the materials, construction and lab environment. Comparison of the results includes examination of the infiltration profiles, sediment mobility and transport characteristics. The physical phenomena were qualitatively reproduced but not quantitatively replicated. Reproduction of results encourages more robust research and reporting, and facilitates exploration of possible variations in data in various specific contexts. Following the lead of other fields, testing of reproducibility can be incentivized through changes to journal

  11. Heterogeneity of an earth

    Science.gov (United States)

    Litvinova, T.; Petrova, A.

    2009-04-01

    The study of magnetic anomaly field structure of the Barents Sea water area along seismic and extended profiles intersecting known fields is carried out. Geomagnetic and density sections down to 40 km depth are constructed. This allowed the estimation of heterogeneities of the Barents Sea water area deep structure. The analysis of geomagnetic and density sections along extended profiles showed the confinedness of oil-and-gas bearing provinces to deep permeable zones characterized by reduced magnetic and density features. Based on the analysis of permeable zones, regional diagnostic features similar to those obtained earlier in oil-and-gas bearing provinces in other regions, for example, in Timan-Pechora, Volga-Urals and Siberian, as well as in the Northern and Norwegian seas water areas, are revealed. The analysis of magnetic and gravity fields over the region area allowed the delineation of weakened zones as intersection areas of weakly magnetic areals with reduced density. Within the Barents Sea water area, permeable areas with lenticular-laminated structure of the upper and lower Earth's crust containing weakly magnetic areals with reduced rock density within the depth range of 8-12 and 15-20 km are revealed. Such ratio of magnetic and density heterogeneities in the Earth's crust is characteristic for zones with proved oil-and-gas content in the European part of the Atlantic Ocean water area. North Kildin field on 1 AR profile is confined to a trough with thick weakly magnetic stratum discontinuously traced to a depth of 6-10 km. At a depth of approximately 15 km, a lens of weakly magnetic and porous formations is observed. Ludlov field in the North Barents trough is confined to a zone of weakly magnetic rocks with reduced density traced to a depth of 8-9 km. Deeper, at Н=15 km, a lenticular areal of weakly magnetic formations with reduced density is observed. The profile transecting the Stockman field shows that it is located in the central part of a permeable

  12. DISCUS Ninth Grade, Earth Science.

    Science.gov (United States)

    Duval County School Board, Jacksonville, FL. Project DISCUS.

    Included are instructional materials designed for use with disadvantaged students who have a limited reading ability and poor command of English. The guide is the first volume of a two volume, one year program in earth science, and contains these four units and activities: Earth Materials, 8 activities; Weather, 10 activities; Water, 4 activities;…

  13. Teaching Waves with Google Earth

    Science.gov (United States)

    Logiurato, Fabrizio

    2012-01-01

    Google Earth is a huge source of interesting illustrations of various natural phenomena. It can represent a valuable tool for science education, not only for teaching geography and geology, but also physics. Here we suggest that Google Earth can be used for introducing in an attractive way the physics of waves. (Contains 9 figures.)

  14. The Engineering Model for the multi spectral imager of the EarthCARE spacecraft

    NARCIS (Netherlands)

    Albiñana, A.P.; Gelsthorpe, R.; Lefebvre, A.; Sauer, M.; Kruse, K.-W.; Münzenmayer, R.; Baister, G.; Chang, M.; Everett, J.; Barnes, A.; Bates, N.; Price, M.; Skipper, M.; Goeij, B.T.G. de; Meijer, E.A.; Knaap, F.G.P. van der; Hof, C.A. van 't

    2012-01-01

    The Multi-Spectral Imager (MSI) will be flown on board the EarthCARE spacecraft, under development by the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA). The fundamental objective of the EarthCARE mission is improving the understanding of the processes involving

  15. Study of rare earth local moment magnetism and strongly correlated phenomena in various crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Tai [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Benefiting from unique properties of 4f electrons, rare earth based compounds are known for offering a versatile playground for condensed matter physics research as well as industrial applications. This thesis focuses on three specific examples that further explore the rare earth local moment magnetism and strongly correlated phenomena in various crystal structures.

  16. Systems Engineering for Space Exploration Medical Capabilities

    Science.gov (United States)

    Mindock, Jennifer; Reilly, Jeffrey; Rubin, David; Urbina, Michelle; Hailey, Melinda; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris; hide

    2017-01-01

    Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  17. EarthObserver: Bringing the world to your fingertips

    Science.gov (United States)

    Ryan, W. B.; Goodwillie, A. M.; Coplan, J.; Carbotte, S. M.; Arko, R. A.; Ferrini, V.; O'hara, S. H.; Chan, S.; Bonczkowski, J.; Nitsche, F. O.; Morton, J. J.; McLain, K.; Weissel, R.

    2011-12-01

    EarthObserver (http://www.earth-observer.org/), developed by the Lamont-Doherty Earth Observatory of Columbia University, brings a wealth of geoscience data to Apple iPad, iPhone and iPod Touch mobile devices. Built around an easy-to-use interface, EarthObserver allows users to explore and visualise a wide range of data sets superimposed upon a detailed base map of land elevations and ocean depths - tapping the screen will instantly return the height or depth at that point. A simple transparency function allows direct comparison of built-in content. Data sets include high-resolution coastal bathymetry of bays, sounds, estuaries, harbors and rivers; geological maps of the US states and world - tapping the screen displays the rock type, and full legends can be viewed; US Topo sheets; and, geophysical content including seafloor crustal age and sediment thickness, earthquake and volcano data, gravity and magnetic anomalies, and plate boundary descriptions. The names of physiographic features are automatically displayed. NASA Visible Earth images along with ocean temperature, salinity and productivity maps and precipitation information expose data sets of interest to the atmospheric, oceanic and biological communities. Natural hazard maps, population information and political boundaries allow users to explore impacts upon society. EarthObserver, so far downloaded by more than 55,000 users, offers myriad ways for educators at all levels to bring research-quality geoscience data into the learning environment, whether for use as an in-class illustration or for extensive exploration of earth sciences data. By using cutting-edge mobile app technology, EarthObserver boosts access to relevant earth science content. The EarthObserver base map is the Global Multi-Resolution Topography digital elevation model (GMRT; http://www.marine-geo.org/portals/gmrt/), also developed at LDEO and updated regularly. It provides land elevations with horizontal resolution as high as 10m for

  18. Exploration Medical System Demonstration Project

    Science.gov (United States)

    Chin, D. A.; McGrath, T. L.; Reyna, B.; Watkins, S. D.

    2011-01-01

    A near-Earth Asteroid (NEA) mission will present significant new challenges including hazards to crew health created by exploring a beyond low earth orbit destination, traversing the terrain of asteroid surfaces, and the effects of variable gravity environments. Limited communications with ground-based personnel for diagnosis and consultation of medical events require increased crew autonomy when diagnosing conditions, creating treatment plans, and executing procedures. Scope: The Exploration Medical System Demonstration (EMSD) project will be a test bed on the International Space Station (ISS) to show an end-to-end medical system assisting the Crew Medical Officers (CMO) in optimizing medical care delivery and medical data management during a mission. NEA medical care challenges include resource and resupply constraints limiting the extent to which medical conditions can be treated, inability to evacuate to Earth during many mission phases, and rendering of medical care by a non-clinician. The system demonstrates the integration of medical technologies and medical informatics tools for managing evidence and decision making. Project Objectives: The objectives of the EMSD project are to: a) Reduce and possibly eliminate the time required for a crewmember and ground personnel to manage medical data from one application to another. b) Demonstrate crewmember's ability to access medical data/information via a software solution to assist/aid in the treatment of a medical condition. c) Develop a common data management architecture that can be ubiquitously used to automate repetitive data collection, management, and communications tasks for all crew health and life sciences activities. d) Develop a common data management architecture that allows for scalability, extensibility, and interoperability of data sources and data users. e) Lower total cost of ownership for development and sustainment of peripheral hardware and software that use EMSD for data management f) Provide

  19. When the earth shudders

    Energy Technology Data Exchange (ETDEWEB)

    Maltese, G.

    The enormous damage that can be caused by earthquakes (500,000 deaths in Tangshan, China, 1976) makes the art and science of earthquake predicting one of the principal objectives of modern geophysics. In this review of the state-of-the-art in earthquake predicting, brief notes are given on several topics: plate tectonics theory, geographic distribution of earthquakes, elastic potential energy storage of rocks, seismic wave typology, comparison of Mercalli and Richter scales, pre-warning signs in nature (strange behaviour of animals, preliminary reduction of seismic wave velocity, variations in local micro-seismicity and physical properties of rocks, etc.), comparison of earthquake energy release models, historical origin of the science of earthquake predicting, implication of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates, the time element in prediction making, analysis of examples of correct predictions, pattern recognition instrumentation, earthquake intensity control through fluid injection, correlations between water reservoir level and seismicity, the creation of government programs for the monitoring of the earth's crust and seismic data acquisition, comparison of earthquake prediction and preparedness approaches in Japan and the USA.

  20. Imaging earth`s interior: Tomographic inversions for mantle P-wave velocity structure

    Energy Technology Data Exchange (ETDEWEB)

    Pulliam, Robert Jay [Univ. of California, Berkeley, CA (United States)

    1991-07-01

    A formalism is developed for the tomographic inversion of seismic travel time residuals. The travel time equations are solved both simultaneously, for velocity model terms and corrections to the source locations, and progressively, for each set of terms in succession. The methods differ primarily in their treatment of source mislocation terms. Additionally, the system of equations is solved directly, neglecting source terms. The efficacy of the algorithms is explored with synthetic data as we perform simulations of the general procedure used to produce tomographic images of Earth`s mantle from global earthquake data. The patterns of seismic heterogeneity in the mantle that would be returned reliably by a tomographic inversion are investigated. We construct synthetic data sets based on real ray sampling of the mantle by introducing spherical harmonic patterns of velocity heterogeneity and perform inversions of the synthetic data.

  1. Fourteen Times the Earth

    Science.gov (United States)

    2004-08-01

    ESO HARPS Instrument Discovers Smallest Ever Extra-Solar Planet Summary A European team of astronomers [1] has discovered the lightest known planet orbiting a star other than the sun (an "exoplanet"). The new exoplanet orbits the bright star mu Arae located in the southern constellation of the Altar. It is the second planet discovered around this star and completes a full revolution in 9.5 days. With a mass of only 14 times the mass of the Earth, the new planet lies at the threshold of the largest possible rocky planets, making it a possible super Earth-like object. Uranus, the smallest of the giant planets of the Solar System has a similar mass. However Uranus and the new exoplanet differ so much by their distance from the host star that their formation and structure are likely to be very different. This discovery was made possible by the unprecedented accuracy of the HARPS spectrograph on ESO's 3.6-m telescope at La Silla, which allows radial velocities to be measured with a precision better than 1 m/s. It is another clear demonstration of the European leadership in the field of exoplanet research. PR Photo 25a/04: The HARPS Spectrograph and the 3.6m Telescope PR Photo 25b/04: Observed Velocity Variation of mu Arae (3.6m/HARPS, 1.2m Swiss/CORALIE, AAT/UCLES) PR Photo 25c/04: Velocity Variation of mu Arae Observed by HARPS (3.6m/HARPS) PR Photo 25d/04: "Velocity Curve" of mu Arae A unique planet hunting machine ESO PR Photo 25a/04 ESO PR Photo 25a/04 The HARPS Spectrograph and the 3.6m Telescope [Preview - JPEG: 602 x 400 pix - 211k] [Normal - JPEG: 1202 x 800 pix - 645k] Caption: ESO PR Photo 25a/04 represents a montage of the HARPS spectrograph and the 3.6m telescope at La Silla. The upper left shows the dome of the telescope, while the upper right illustrates the telescope itself. The HARPS spectrograph is shown in the lower image during laboratory tests. The vacuum tank is open so that some of the high-precision components inside can be seen. Since the first

  2. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  3. Our Sustainable Earth

    Science.gov (United States)

    Orbach, Raymond L.

    2013-03-01

    Recent evidence demonstrates that the Earth has been warming monotonically since 1980. Transient to equilibrium temperature changes take centuries to develop, as the upper levels of the ocean are slow to respond to atmospheric temperature changes. Atmospheric CO2 concentrations, from ice core and observatory measurements, display consistent increases from historical averages, beginning in about 1880. They can be associated with the use of coal ecause of the spread of the industrial revolution from Great Britain to the European continent and beyond. The climactic consequence of this human-dominated increase in atmospheric CO2 has been suggested to define a geologic epoch, termed the ``Anthropocene.'' This could be a short term, relatively minor change in global climate, or an extreme deviation that lasts for thousands of years. In order to stabilize global temperatures, sharp reductions in CO2 emissions are required: an 80% reduction beginning in 2050. U.S. emissions have declined sharply recently because of market conditions leading to the substitution of natural gas for coal for electricity generation. Whether this is the best use for this resource may be questioned, but it nevertheless reduces CO2 production by 67% from a coal-fired power plant, well on the way to the 80% reduction required for global temperature stabilization. Current methods for CO2 capture and storage are not cost effective, and have been slow (if not absent) to introduce at scale. This paper describes research into some potentially economically feasible approaches: cost-effective capture and storage of CO2 from injection of flue gas into subterranean methane-saturated aquifers at the surface; fuels from sunlight without CO2 production; and large-scale electrical energy storage for intermittent (and even constant) electricity generating sources.

  4. Experiencing Earth's inaudible symphony

    Science.gov (United States)

    Marlton, Graeme; Charlton-Perez, Andrew; Harrison, Giles; Robson, Juliet

    2017-04-01

    Everyday the human body is exposed to thousands of different sounds; smartphones, music, cars and overhead aircraft to name a few. There are some sounds however which we cannot hear as they are below our range of hearing, sound at this level is known as infrasound and is of very low frequency. Such examples of infrasound are the sounds made by glaciers and volcanos, distant mining activities and the sound of the ocean. These sounds are emitted by these sources constantly all over the world and are recorded at infrasound stations, thus providing a recording of Earth's inaudible symphony. The aim of this collaboration between artists and scientists is to create a proof of concept immersive experience in which members of the public are invited to experience and understand infrasound. Participants will sit in an installation and be shown images of natural infrasound sources whilst their seat is vibrated at with an amplitude modulated version of the original infrasound wave. To further enhance the experience, subwoofers will play the same amplitude modulated soundwave to place the feeling of the infrasound wave passing through the installation. Amplitude modulation is performed so that a vibration is played at a frequency that can be felt by the human body but its amplitude varies at the frequency of the infrasound wave. The aim of the project is to see how humans perceive sounds that can't be heard and many did not know were there. The second part of the project is educational in which that this installation can be used to educate the general public about infrasound and its scientific uses. A simple demonstration for this session could be the playing of amplitude modulated infrasound wave that can be heard as opposed to felt as the transport of an installation at this is not possible and the associated imagery.

  5. Near-Earth Asteroid Retrieval Mission (ARM) Study

    Science.gov (United States)

    Brophy, John R.; Muirhead, Brian

    2013-01-01

    The Asteroid Redirect Mission (ARM) concept brings together the capabilities of the science, technology, and the human exploration communities on a grand challenge combining robotic and human space exploration beyond low Earth orbit. This paper addresses the key aspects of this concept and the options studied to assess its technical feasibility. Included are evaluations of the expected number of potential targets, their expected discovery rate, the necessity to adequately characterize candidate mission targets, the process to capture a non-cooperative asteroid in deep space, and the power and propulsion technology required for transportation back to the Earth-Moon system. Viable options for spacecraft and mission designs are developed. Orbits for storing the retrieved asteroid that are stable for more than a hundred years, yet allow for human exploration and commercial utilization of a redirected asteroid, are identified. The study concludes that the key aspects of finding, capturing and redirecting an entire small, near-Earth asteroid to the Earth-Moon system by the first half of the next decade are technically feasible. The study was conducted from January 2013 through March 2013 by the Jet Propulsion Laboratory (JPL) in collaboration with Glenn Research Center (GRC), Johnson Space Center (JSC), Langley Research Center (LaRC), and Marshall Space Flight Center (MSFC).

  6. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  7. MAESTRO: Mathematics and Earth Science Teachers' Resource Organization

    Science.gov (United States)

    Courtier, A. M.; Pyle, E. J.; Fichter, L.; Lucas, S.; Jackson, A.

    2013-12-01

    The Mathematics and Earth Science Teachers' Resource Organization (MAESTRO) partnership between James Madison University and Harrisonburg City and Page County Public Schools, funded through NSF-GEO. The partnership aims to transform mathematics and Earth science instruction in middle and high schools by developing an integrated mathematics and Earth systems science approach to instruction. This curricular integration is intended to enhance the mathematical skills and confidence of students through concrete, Earth systems-based examples, while increasing the relevance and rigor of Earth science instruction via quantification and mathematical modeling of Earth system phenomena. MAESTRO draws heavily from the Earth Science Literacy Initiative (2009) and is informed by criterion-level standardized test performance data in both mathematics and Earth science. The project has involved two summer professional development workshops, academic year Lesson Study (structured teacher observation and reflection), and will incorporate site-based case studies with direct student involvement. Participating teachers include Grade 6 Science and Mathematics teachers, and Grade 9 Earth Science and Algebra teachers. It is anticipated that the proposed integration across grade bands will first strengthen students' interests in mathematics and science (a problem in middle school) and subsequently reinforce the relevance of mathematics and other sciences (a problem in high school), both in support of Earth systems literacy. MAESTRO's approach to the integration of math and science focuses on using box models to emphasize the interconnections among the geo-, atmo-, bio-, and hydrospheres, and demonstrates the positive and negative feedback processes that connect their mutual evolution. Within this framework we explore specific relationships that can be described both qualitatively and mathematically, using mathematical operations appropriate for each grade level. Site-based case studies

  8. Revolutionizing Remote Exploration with ANTS

    Science.gov (United States)

    Clark, P. E.; Rilee, M. L.; Curtis, S.; Truszkowski, W.

    2002-05-01

    We are developing the Autonomous Nano-Technology Swarm (ANTS) architecture based on an insect colony analogue for the cost-effective, efficient, systematic survey of remote or inaccessible areas with multiple object targets, including planetary surface, marine, airborne, and space environments. The mission context is the exploration in the 2020s of the most compelling remaining targets in the solar system: main belt asteroids. Main belt asteroids harbor important clues to Solar System origins and evolution which are central to NASA's goals in Space Science. Asteroids are smaller than planets, but their number is far greater, and their combined surface area likely dwarfs the Earth's. An asteroid survey will dramatically increase our understanding of the local resources available for the Human Exploration and Development of Space. During the mission composition, shape, gravity, and orbit parameters could be returned to Earth for perhaps several thousand asteroids. A survey of this area will rival the great explorations that encircled this globe, opened up the New World, and laid the groundwork for the progress and challenges of the last centuries. The ANTS architecture for a main belt survey consists of a swarm of as many as a thousand or more highly specialized pico-spacecraft that form teams to survey as many as one hundred asteroids a month. Multi-level autonomy is critical for ANTS and the objective of the proposed study is to work through the implications and constraints this entails. ANTS couples biologically inspired autonomic control for basic functions to higher level artificial intelligence that together enable individual spacecraft to operate as specialized, cooperative, social agents. This revolutionary approach postulates highly advanced, but familiar, components integrated and operated in a way that uniquely transcends any evolutionary extrapolation of existing trends and enables thousand-spacecraft missions.

  9. An Earth-Moon System Trajectory Design Reference Catalog

    Science.gov (United States)

    Folta, David; Bosanac, Natasha; Guzzetti, Davide; Howell, Kathleen C.

    2014-01-01

    As demonstrated by ongoing concept designs and the recent ARTEMIS mission, there is, currently, significant interest in exploiting three-body dynamics in the design of trajectories for both robotic and human missions within the Earth-Moon system. The concept of an interactive and 'dynamic' catalog of potential solutions in the Earth-Moon system is explored within this paper and analyzed as a framework to guide trajectory design. Characterizing and compiling periodic and quasi-periodic solutions that exist in the circular restricted three-body problem may offer faster and more efficient strategies for orbit design, while also delivering innovative mission design parameters for further examination.

  10. An Earth-Moon system trajectory design reference catalog

    Science.gov (United States)

    Folta, David C.; Bosanac, Natasha; Guzzetti, Davide; Howell, Kathleen C.

    2015-05-01

    As demonstrated by ongoing concept designs and the recent ARTEMIS mission, there is, currently, significant interest in exploiting three-body dynamics in the design of trajectories for both robotic and human missions within the Earth-Moon system. The concept of an interactive and 'dynamic' catalog of potential solutions in the Earth-Moon system is explored within this paper and analyzed as a framework to guide trajectory design. Characterizing and compiling periodic and quasi-periodic solutions that exist in the circular restricted three-body problem may offer faster and more efficient strategies for orbit design, while also delivering innovative mission design parameters for further examination.

  11. Portraits of the earth a mathematician looks at maps

    CERN Document Server

    Feeman, Timothy G

    2002-01-01

    Maps are exciting, visual tools that we encounter on a daily basis: from street maps to maps of the world accompanying news stories to geologic maps depicting the underground structure of the earth. This book explores the mathematical ideas involved in creating and analyzing maps, a topic that is rarely discussed in undergraduate courses. It is the first modern book to present the famous problem of mapping the earth in a style that is highly readable and mathematically accessible to most students. Feeman's writing is inviting to the novice, yet also interesting to readers with more mathematica

  12. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  13. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  14. Safety aspects in rare earths recovery

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2014-01-01

    Recovery of rare earths involves mining of beach sands, mineral separation to obtain monazite and its chemical processing to obtain rare earth composites. The composites are then subjected to further chemical treatment to obtain individual rare earths. Although the separated out rare earths are not radioactive, the process for recovery of rare earths involve both radiological as well as conventional hazards. This paper highlights the safety aspects in the mining, mineral separation and chemical processing of monazite to obtain rare earths

  15. Landslides on Earth, Mars, Moon and Mercury

    Science.gov (United States)

    Brunetti, Maria Teresa; Xiao, Zhiyong; Komatsu, Goro; Peruccacci, Silvia; Fiorucci, Federica; Cardinali, Mauro; Santangelo, Michele; Guzzetti, Fausto

    2015-04-01

    Landslides play an important role in the evolution of landscapes on Earth and on other solid planets of the Solar System. On Earth, landslides have been recognized in all continents, and in subaerial and submarine environments. The spatial and temporal range of the observed slope failures is extremely large on Earth. Surface gravity is the main factor driving landslides in solid planets. Comparison of landslide characteristics, e.g. the landslide types and sizes (area, volume, fall height, length) on various planetary bodies may help in understanding the effect of surface gravity on failure initiation and propagation. In the last decades, planetary exploration missions have delivered an increasing amount of high-resolution imagery, which enables to resolve and identify morphologic structures on planetary surfaces in great detail. Here, we present three geomorphological inventories of extraterrestrial landslides on Mars, Moon and Mercury. To recognize and map the landslides on the three Solar System bodies, we adopt the same visual criteria commonly used by geomorphologists to identify terrestrial slope failures in aerial photographs or satellite images. Landslides are classified based on the morphological similarity with terrestrial ones. In particular, we focus on rock slides mapped in Valles Marineris, Mars, and along the internal walls of impact craters on the Moon and Mercury. We exploit the three inventories to study the statistical distributions of the failure sizes (e.g., area, volume, fall height, length), and we compare the results with similar distributions obtained for terrestrial landslides. We obtain indications on the effect of the different surface gravity on landslides on Earth and Mars through the relationship between the landslide area and volume on the two planets. From the analysis of the area, we hypothesize that the lack of medium size landslides on Mars is due to the absence of erosive processes, which are induced on Earth chiefly by water

  16. Earth Charter and nuclear energy

    International Nuclear Information System (INIS)

    Grippi, Sidney

    2006-01-01

    The chapter presents Earth Charter, where are listed the principles in 4 sections: 1) respect and take care of the life community; 2) environmental integrity; social and economic welfare; 4) democracy, no-violence and peace

  17. Encyclopedia of earth system science

    National Research Council Canada - National Science Library

    Nierenberg, William Aaron

    1992-01-01

    .... The very diversity of the articles attests to the complexity of earth system science as a unique interdisciplinary venture to place humanity in a position to move wisely to protect the global habitat...

  18. Earth Day Illustrated Haiku Contest

    Science.gov (United States)

    2007-02-01

    As part of their 2007 Chemists Celebrate Earth Day Celebration, the American Chemical Society is sponsoring an illustrated haiku contest for students in grades K 12 around the theme, Recycling—Chemistry Can!

  19. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  20. NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  1. Process for rare earth separation

    International Nuclear Information System (INIS)

    Leveque, A.; Le Loarer, J.L.

    1987-01-01

    Separation process of neodymium and eventually praseodymium from rare earths contained in fluocarbonated ores and especially bastnaesite by calcination, leaching with nitric acid and liquid-liquid extraction [fr

  2. Children's knowledge of the Earth

    Science.gov (United States)

    Siegal, Michael; Nobes, Gavin; Panagiotaki, Georgia

    2011-03-01

    Children everywhere are fascinated by the sky, stars and Sun. Emerging evidence from cultures throughout the world suggests that even young children can acquire knowledge of the Earth and its place in the Universe.

  3. Sun-Earth Day 2005: Ancient Observatories: Timeless Knowledge

    Science.gov (United States)

    Thieman, J. R.; Cline, T.; Lewis, E.; Hawkins, I.; Odenwald, S.; Mayo, L.

    2005-05-01

    The NASA Sun-Earth Connection Education Forum (SECEF) annually promotes an event called Sun-Earth Day. For Sun-Earth Day 2005 SECEF has selected a theme called "Ancient Observatories: Timeless Knowledge. This year's Sun-Earth Day theme is your ticket to a fascinating journey through time as we explore centuries of sun watching by a great variety of cultures. From ancient solar motion tracking to modern solar activity monitoring the Sun has always occupied an important spot in mankind's quest to understand the Universe. Sun-Earth Day events usually are centered on the spring equinox around March 21, but this year there has already been a webcast from the San Francisco Exploratorium and the Native American ruins at Chaco Canyon, New Mexico on the day of winter solstice 2004. There will be another webcast on March 20 live from Chichen Itza, Mexico highlighting the solar alignment that makes a serpent appear on one of the ancient pyramids. The website http://sunearthday.nasa.gov has been developed to provide the necessary resources and opportunities for participation by scientists and educators in giving school or general public programs about Sun-Earth Day. The goal is to involve as much of the student population and the public in this event as possible and to help them understand the importance of the Sun for ancient and modern peoples. Through engaging activities available on the website, classrooms and museums can create their own event or participate in one of the opportunities we make available. Scientists, educators, amateur astronomers, and museums are invited to register on the website to receive a free packet of materials about Sun-Earth Day for use in making presentations or programs about the event. Past and future Sun-Earth Days will be discussed as well.

  4. Potential climatic impact of organic haze on early Earth.

    Science.gov (United States)

    Hasenkopf, Christa A; Freedman, Miriam A; Beaver, Melinda R; Toon, Owen B; Tolbert, Margaret A

    2011-03-01

    We have explored the direct and indirect radiative effects on climate of organic particles likely to have been present on early Earth by measuring their hygroscopicity and cloud nucleating ability. The early Earth analog aerosol particles were generated via ultraviolet photolysis of an early Earth analog gas mixture, which was designed to mimic possible atmospheric conditions before the rise of oxygen. An analog aerosol for the present-day atmosphere of Saturn's moon Titan was tested for comparison. We exposed the early Earth aerosol to a range of relative humidities (RHs). Water uptake onto the aerosol was observed to occur over the entire RH range tested (RH=80-87%). To translate our measurements of hygroscopicity over a specific range of RHs into their water uptake ability at any RH 100%, we relied on the hygroscopicity parameter κ, developed by Petters and Kreidenweis. We retrieved κ=0.22 ±0.12 for the early Earth aerosol, which indicates that the humidified aerosol (RH Earth atmosphere than previously modeled with dry aerosol. Such effects would have been of significance in regions where the humidity was larger than 50%, because such high humidities are needed for significant amounts of water to be on the aerosol. Additionally, Earth organic aerosol particles could have activated into CCN at reasonable-and even low-water-vapor supersaturations (RH > 100%). In regions where the haze was dominant, it is expected that low particle concentrations, once activated into cloud droplets, would have created short-lived, optically thin clouds. Such clouds, if predominant on early Earth, would have had a lower albedo than clouds today, thereby warming the planet relative to current-day clouds. © Mary Ann Liebert, Inc.

  5. Solar influence on Earth's climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties...... and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget....

  6. Rare earth industries: Downstream business

    International Nuclear Information System (INIS)

    2011-01-01

    The value chain of the rare earths business involves mining, extraction, processing, refining and the manufacture of an extensive range of downstream products which find wide applications in such industries including aerospace, consumer electronics, medical, military, automotive, renewable wind and solar energy and telecommunications. In fact the entire gamut of the high-tech industries depends on a sustainable supply of rare earths elements. The explosive demand in mobile phones is an excellent illustration of the massive potential that the rare earths business offers. In a matter of less than 20 years, the number of cell phones worldwide has reached a staggering 5 billion. Soon, going by the report of their growth in sales, the world demand for cell phones may even exceed the global population. Admittedly, the rare earths business does pose certain risks. Top among the risks are the health and safety risks. The mining, extraction and refining of rare earths produce residues and wastes which carry health and safety risks. The residues from the extraction and refining are radioactive, while their effluent waste streams do pose pollution risks to the receiving rivers and waterways. But, as clearly elaborated in a recent report by IAEA experts, there are technologies and systems available to efficiently mitigate such risks. The risks are Rare Earth manageable. However, it is crucial that the risk and waste management procedures are strictly followed and adhered to. This is where effective monitoring and surveillance throughout the life of all such rare earths facilities is crucial. Fortunately, Malaysia's regulatory standards on rare earths follow international standards. In some areas, Malaysia's regulatory regime is even more stringent than the international guidelines. (author)

  7. Scientific objectives of human exploration of Mars

    Science.gov (United States)

    Carr, M.H.

    1996-01-01

    While human exploration of Mars is unlikely to be undertaken for science reasons alone, science will be the main beneficiary. A wide range of science problems can be addressed at Mars. The planet formed in a different part of the solar system from the Earth and retains clues concerning compositional and environmental conditions in that part of the solar system when the planets formed. Mars has had a long and complex history that has involved almost as wide a range of processes as occurred on Earth. Elucidation of this history will require a comprehensive program of field mapping, geophysical sounding, in situ analyses, and return of samples to Earth that are representative of the planet's diversity. The origin and evolution of the Mars' atmosphere are very different from the Earth's, Mars having experienced major secular and cyclical changes in climate. Clues as to precisely how the atmosphere has evolved are embedded in its present chemistry, possibly in surface sinks of former atmosphere-forming volatiles, and in the various products of interaction between the atmosphere and surface. The present atmosphere also provides a means of testing general circulation models applicable to all planets. Although life is unlikely to be still extant on Mars, life may have started early in the planet's history. A major goal of any future exploration will, therefore, be to search for evidence of indigenous life.

  8. Silicon in the Earth's core.

    Science.gov (United States)

    Georg, R Bastian; Halliday, Alex N; Schauble, Edwin A; Reynolds, Ben C

    2007-06-28

    Small isotopic differences between the silicate minerals in planets may have developed as a result of processes associated with core formation, or from evaporative losses during accretion as the planets were built up. Basalts from the Earth and the Moon do indeed appear to have iron isotopic compositions that are slightly heavy relative to those from Mars, Vesta and primitive undifferentiated meteorites (chondrites). Explanations for these differences have included evaporation during the 'giant impact' that created the Moon (when a Mars-sized body collided with the young Earth). However, lithium and magnesium, lighter elements with comparable volatility, reveal no such differences, rendering evaporation unlikely as an explanation. Here we show that the silicon isotopic compositions of basaltic rocks from the Earth and the Moon are also distinctly heavy. A likely cause is that silicon is one of the light elements in the Earth's core. We show that both the direction and magnitude of the silicon isotopic effect are in accord with current theory based on the stiffness of bonding in metal and silicate. The similar isotopic composition of the bulk silicate Earth and the Moon is consistent with the recent proposal that there was large-scale isotopic equilibration during the giant impact. We conclude that Si was already incorporated as a light element in the Earth's core before the Moon formed.

  9. Greenhouse Earth: A Traveling Exhibition

    International Nuclear Information System (INIS)

    Booth, W.H.; Caesar, S.

    1992-09-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a ''demonstration cart,'' guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a ''satellite field trip.'' The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change

  10. Next-generation Digital Earth.

    Science.gov (United States)

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  11. Digital Earth Portals to DLESE

    Science.gov (United States)

    Raskin, R.

    2001-05-01

    Digital Earth offers the promise to push the envelope of accessibility and usability of georeferenced digital data and reach out to non-traditional users. To realize this promise within the context of an educational digital library, the library can take advantage of existing Digital Earth components: viewers, catalogs, and data products - all of which conform to emerging open standards. Viewers vary in level of sophistication from standard web browsers to immersive or 3-D visualization tools. Datasets are currently the limiting ingredient in the mix, as providers must make data available using the open standards. However, the Earth Science Information Partnership (ESIP) Federation has developed a Digital Earth Cluster to insure that its members provide a source of compliant data products within a short time frame. A Digital Earth portal integrates all of the above components and provides the look and feel appropriate to the target educational level and classroom interests. DLESE is currently developing such an early prototype using existing components that can be used as a model for future development. A live demonstration will show the use of a Digital Earth viewer adapted for use with DLESE.

  12. Birth Control Explorer

    Science.gov (United States)

    ... Relationships STIs Media Facebook Twitter Tumblr Shares · 582 Birth Control Explorer Sort by all methods most effective ... MORE You are here Home » Birth Control Explorer Birth Control Explorer If you’re having sex —or ...

  13. Exploration Medical Cap Ability System Engineering Overview

    Science.gov (United States)

    McGuire, K.; Mindock, J.

    2018-01-01

    Deep Space Gateway and Transport missions will change the way NASA currently practices medicine. The missions will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The ExMC Systems Engineering team's mission is to "Define, develop, validate, and manage the technical system design needed to implement exploration medical capabilities for Mars and test the design in a progression of proving grounds." The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is using Model-Based System Engineering (MBSE) to accomplish its integrative goals. The MBSE approach to medical system design offers a paradigm shift toward greater integration between vehicle and the medical system, and directly supports the transition of Earth-reliant ISS operations to the Earth-independent operations envisioned for Mars. This talk will discuss how ExMC is using MBSE to define operational needs, decompose requirements and architecture, and identify medical capabilities needed to support human exploration. How MBSE is being used to integrate across disciplines and NASA Centers will also be described. The medical system being discussed in this talk is one system within larger habitat systems. Data generated within the medical system will be inputs to other systems and vice versa. This talk will also describe the next steps in model development that include: modeling the different systems that comprise the larger system and interact with the medical system, understanding how the various systems work together, and

  14. Nuclear technologies for Moon and Mars exploration

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs

  15. Nuclear technologies for Moon and Mars exploration

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs.

  16. New horizons exploring jupiter, pluto, and beyond

    CERN Document Server

    Hamilton, John

    2017-01-01

    Simple text and "out-of-this-world" photography introduce readers to NASA's New Horizons space probe, and its mission to explore Jupiter, Pluto, and the mysterious objects of the Kuiper Belt. Important details include planning and construction of New Horizons, its launch from Earth, flybys of Jupiter and Pluto, and its continuing mission beyond our solar system. Aligned to Common Core Standards and correlated to state standards. A&D Xtreme is an imprint of Abdo Publishing, a division of ABDO.

  17. Rare earths as a future resource

    International Nuclear Information System (INIS)

    Cornell, D.H.

    1988-01-01

    The fourteen rare earth or lanthanide elements have recently emerged as an important natural resource because of the rapidly growing demand in the electronic, chemical and metallurgical industries. The Symposium on rare earth elements as a future resource presented a multidisciplinary review of rare earth chemistry, geology, beneficiation, industrial applications and marketing. Papers by experts in many fields were presented on the following topics: chemical properties of the rare earth elements; the analysis of rare earth elements and minerals; beneficiation and extraction of rare earth elements; economic geochemistry and mineralogy of rare earths; present industrial uses of rare earth elements; the role of rare earth elements in high-temperature superconductors; the technical application of high-temperature superconductors; supply and demand for rare earth products - now and in the future, and the geology of rare earth deposits

  18. Baltic Earth - Earth System Science for the Baltic Sea Region

    Science.gov (United States)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  19. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    Science.gov (United States)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; hide

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  20. Near-Earth Object Survey Simulation Software

    Science.gov (United States)

    Naidu, Shantanu P.; Chesley, Steven R.; Farnocchia, Davide

    2017-10-01

    There is a significant interest in Near-Earth objects (NEOs) because they pose an impact threat to Earth, offer valuable scientific information, and are potential targets for robotic and human exploration. The number of NEO discoveries has been rising rapidly over the last two decades with over 1800 being discovered last year, making the total number of known NEOs >16000. Pan-STARRS and the Catalina Sky Survey are currently the most prolific NEO surveys, having discovered >1600 NEOs between them in 2016. As next generation surveys such as Large Synoptic Survey Telescope (LSST) and the proposed Near-Earth Object Camera (NEOCam) become operational in the next decade, the discovery rate is expected to increase tremendously. Coordination between various survey telescopes will be necessary in order to optimize NEO discoveries and create a unified global NEO discovery network. We are collaborating on a community-based, open-source software project to simulate asteroid surveys to facilitate such coordination and develop strategies for improving discovery efficiency. Our effort so far has focused on development of a fast and efficient tool capable of accepting user-defined asteroid population models and telescope parameters such as a list of pointing angles and camera field-of-view, and generating an output list of detectable asteroids. The software takes advantage of the widely used and tested SPICE library and architecture developed by NASA’s Navigation and Ancillary Information Facility (Acton, 1996) for saving and retrieving asteroid trajectories and camera pointing. Orbit propagation is done using OpenOrb (Granvik et al. 2009) but future versions will allow the user to plug in a propagator of their choice. The software allows the simulation of both ground-based and space-based surveys. Performance is being tested using the Grav et al. (2011) asteroid population model and the LSST simulated survey “enigma_1189”.

  1. Global visions for space exploration education

    Science.gov (United States)

    MacLeish, Marlene Y.; Thomson, William A.

    2010-04-01

    The National Space Biomedical Research Institute (NSBRI), established in 1997 through a National Aeronautics and Space Administration (NASA) competition, is a 12-university consortium dedicated to space life science research and education. NSBRI's Education and Public Outreach Program (EPOP) has partnered with Morehouse School of Medicine (MSM) to support NSBRI-NASA's education mission, which is to strengthen the nation's future science workforce through initiatives that communicate space exploration biology research findings to schools; support undergraduate and graduate programs; fund postdoctoral fellowships; and engage national and international audiences in collegial exchanges that promote global visions for space exploration education. This paper describes select MSM-NSBRI-EPOP activities, including scholarly interchanges with audiences in Austria, Canada, France, China, Greece, Italy, Scotland and Spain. The paper also makes the case for a global space exploration education vision that inspires students, engages educators and informs general audiences about the benefits that space exploration holds for life on Earth.

  2. Modeling the Earth: Climate on an Icosphere

    Science.gov (United States)

    Fouts, Stephanie; Cook, L. Jonathan

    The totally asymmetric simple exclusion process with Langmuir kinetics is a one-dimensional transport model used to study the motion of particles through a lattice. Its applications include systems in the fields of biology, climatology, mathematics, civil engineering, and physics. In our research, we examine the temporal dynamics through the power spectra, as well as the time-averaged particle distribution on the lattice via Monte Carlo simulations. We have applied our particle transport model to an icosahedron in an attempt to model Earth's changing climate. In our research, we examine the temporal dynamics of the particle distribution on the lattice, as they correspond to seasonal heat fluctuations in the polar and equatorial regions of the globe. Using Monte Carlos simulations, we alter the input parameters of the system to explore the resultant actions of the Earth-system model. Our findings include seasonal oscillations consistent with those seen in reality. We also built a mathematical framework for our model which, when solved numerically, matches the oscillations seen in our physical system.

  3. Intro to Google Maps and Google Earth

    Directory of Open Access Journals (Sweden)

    Jim Clifford

    2013-12-01

    Full Text Available Google My Maps and Google Earth provide an easy way to start creating digital maps. With a Google Account you can create and edit personal maps by clicking on My Places. In My Maps you can choose between several different base maps (including the standard satellite, terrain, or standard maps and add points, lines and polygons. It is also possible to import data from a spreadsheet, if you have columns with geographical information (i.e. longitudes and latitudes or place names. This automates a formerly complex task known as geocoding. Not only is this one of the easiest ways to begin plotting your historical data on a map, but it also has the power of Google’s search engine. As you read about unfamiliar places in historical documents, journal articles or books, you can search for them using Google Maps. It is then possible to mark numerous locations and explore how they relate to each other geographically. Your personal maps are saved by Google (in their cloud, meaning you can access them from any computer with an internet connection. You can keep them private or embed them in your website or blog. Finally, you can export your points, lines, and polygons as KML files and open them in Google Earth or Quantum GIS.

  4. Exploring the planets a memoir

    CERN Document Server

    Taylor, Fred

    2016-01-01

    This book is an informal, semi-autobiographical history, from the particular viewpoint of someone who was involved, of the exploration of the Solar System using spacecraft. The author is a Northumbrian, a Liverpudlian, a Californian, and an Oxford Don with half a century of experience of devising and deploying experiments to study the Earth and the planets, moons, and small bodies of the Solar System. Along with memories and anecdotes about his experiences as a participant in the space programme from its earliest days to the present, he describes in non-technical terms the science goals that drove the projects as well as the politics, pressures, and problems that had to be addressed and overcome on the way. The theme is the scientific intent of these ambitious voyages of discovery, and the joys and hardships of working to see them achieved. The narrative gives a first-hand account of things like how Earth satellites came to revolutionize weather forecasting, starting in the 1960s; how observations from space ...

  5. Towards Big Earth Data Analytics: The EarthServer Approach

    Science.gov (United States)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  6. Smarter Earth Science Data System

    Science.gov (United States)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  7. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    Science.gov (United States)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  8. C3: A Collaborative Web Framework for NASA Earth Exchange

    Science.gov (United States)

    Foughty, E.; Fattarsi, C.; Hardoyo, C.; Kluck, D.; Wang, L.; Matthews, B.; Das, K.; Srivastava, A.; Votava, P.; Nemani, R. R.

    2010-12-01

    The NASA Earth Exchange (NEX) is a new collaboration platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing. NEX combines NASA advanced supercomputing resources, Earth system modeling, workflow management, NASA remote sensing data archives, and a collaborative communication platform to deliver a complete work environment in which users can explore and analyze large datasets, run modeling codes, collaborate on new or existing projects, and quickly share results among the Earth science communities. NEX is designed primarily for use by the NASA Earth science community to address scientific grand challenges. The NEX web portal component provides an on-line collaborative environment for sharing of Eearth science models, data, analysis tools and scientific results by researchers. In addition, the NEX portal also serves as a knowledge network that allows researchers to connect and collaborate based on the research they are involved in, specific geographic area of interest, field of study, etc. Features of the NEX web portal include: Member profiles, resource sharing (data sets, algorithms, models, publications), communication tools (commenting, messaging, social tagging), project tools (wikis, blogs) and more. The NEX web portal is built on the proven technologies and policies of DASHlink.arc.nasa.gov, (one of NASA's first science social media websites). The core component of the web portal is a C3 framework, which was built using Django and which is being deployed as a common framework for a number of collaborative sites throughout NASA.

  9. Revolutions that made the earth

    CERN Document Server

    Lenton, Tim

    2013-01-01

    The Earth that sustains us today was born out of a few remarkable, near-catastrophic revolutions, started by biological innovations and marked by global environmental consequences. The revolutions have certain features in common, such as an increase in the complexity, energy utilization, and information processing capabilities of life. This book describes these revolutions, showing the fundamental interdependence of the evolution of life and its non-living environment. We would not exist unless these upheavals had led eventually to 'successful' outcomes - meaning that after each one, at length, a new stable world emerged. The current planet-reshaping activities of our species may be the start of another great Earth system revolution, but there is no guarantee that this one will be successful. This book explains what a successful transition through it might look like, if we are wise enough to steer such a course. This book places humanity in context as part of the Earth system, using a new scientific synthe...

  10. Lidar instruments for ESA Earth observation missions

    Science.gov (United States)

    Hélière, Arnaud; Armandillo, Errico; Durand, Yannig; Culoma, Alain; Meynart, Roland

    2017-11-01

    The idea of deploying a lidar system on an Earthorbiting satellite stems from the need for continuously providing profiles of our atmospheric structure with high accuracy and resolution and global coverage. Interest in this information for climatology, meteorology and the atmospheric sciences in general is huge. Areas of application range from the determination of global warming and greenhouse effects, to monitoring the transport and accumulation of pollutants in the different atmospheric regions (such as the recent fires in Southeast Asia), to the assessment of the largely unknown microphysical properties and the structural dynamics of the atmosphere itself. Spaceborne lidar systems have been the subject of extensive investigations by the European Space Agency since mid 1970's, resulting in mission and instrument concepts, such as ATLID, the cloud backscatter lidar payload of the EarthCARE mission, ALADIN, the Doppler wind lidar of the Atmospheric Dynamics Mission (ADM) and more recently a water vapour Differential Absorption Lidar considered for the WALES mission. These studies have shown the basic scientific and technical feasibility of spaceborne lidars, but they have also demonstrated their complexity from the instrument viewpoint. As a result, the Agency undertook technology development in order to strengthen the instrument maturity. This is the case for ATLID, which benefited from a decade of technology development and supporting studies and is now studied in the frame of the EarthCARE mission. ALADIN, a Direct Detection Doppler Wind Lidar operating in the Ultra -Violet, will be the 1st European lidar to fly in 2007 as payload of the Earth Explorer Core Mission ADM. WALES currently studied at the level of a phase A, is based upon a lidar operating at 4 wavelengths in near infrared and aims to profile the water vapour in the lower part of the atmosphere with high accuracy and low bias. Lastly, the European Space Agency is extending the lidar instrument field

  11. Mt. Kilimanjaro expedition in earth science education

    Science.gov (United States)

    Sparrow, Elena; Yoshikawa, Kenji; Narita, Kenji; Brettenny, Mark; Yule, Sheila; O'Toole, Michael; Brettenny, Rogeline

    2010-05-01

    Mt. Kilimanjaro, Africa's highest mountain is 5,895 meters above sea level and is located 330 km south of the equator in Tanzania. In 1976 glaciers covered most of Mt. Kilimanjaro's summit; however in 2000, an estimated eighty percent of the ice cap has disappeared since the last thorough survey done in 1912. There is increased scientific interest in Mt. Kilimanjaro with the increase in global and African average temperatures. A team of college and pre-college school students from Tanzania, South Africa and Kenya, teachers from South Africa and the United States, and scientists from the University of Alaska Fairbanks in the United States and Akita University in Japan, climbed to the summit of Mt Kilimanjaro in October 2009. They were accompanied by guides, porters, two expedition guests, and a videographer. This expedition was part of the GLOBE Seasons and Biomes Earth System Science Project and the GLOBE Africa science education initiative, exploring and contributing to climate change studies. Students learned about earth science experientially by observing their physical and biological surroundings, making soil and air temperature measurements, participating in discussions, journaling their experience, and posing research questions. The international trekkers noted the change in the biomes as the altitude, temperature and conditions changed, from cultivated lands, to rain forest, heath zone, moorland, alpine desert, and summit. They also discovered permafrost, but not at the summit as expected. Rather, it was where the mountain was not covered by a glacier and thus more exposed to low extreme temperatures. This was the first report of permafrost on Mt. Kilimanjaro. Classrooms from all over the world participated in the expedition virtually. They followed the trek through the expedition website (http://www.xpeditiononline.com/) where pictures and journals were posted, and posed their own questions which were answered by the expedition and base camp team members

  12. Copernican Astronomy and Oceanic Exploration

    Science.gov (United States)

    McKittrick, Paul

    2014-01-01

    This paper examines the relationships between the century long development of the “New Astronomy” (Copernicus’ axially rotating and solar orbiting earth, governed by Kepler’s laws of planetary motion) of the sixteenth and early seventeenth centuries and the emerging astronomical navigation technologies of the fifteenth and sixteenth century Iberian oceanic explorers and their sixteenth and seventeenth century Protestant competitors. Since the first breakthroughs in Portuguese astronomical navigation in ascertaining latitude at sea were based upon the theories and observations of classically trained Ptolemaic astronomers and cosmographers, it can be argued that the new heliocentric astronomy was not necessary for future developments in early modern navigation. By examining the history of the concurrent revolutions in early modern navigation and astronomy and focusing upon commonalities, we can identify the period during which the old astronomy provided navigators with insufficient results - perhaps hastening the acceptance of the new epistemology championed by Galileo and rejected by Bellarmine. Even though this happened during the period of northern protestant ascendancy in exploration, its roots can be seen during pre-Copernican acceptance in both Lutheran and Catholic Europe. Copernican mathematics was used to calculate Reinhold’s Prutenic Tables despite the author’s ontological rejection of the heliocentric hypothesis. These tables became essential for ascertaining latitude at sea. Kepler’s Rudophine Tables gained even more widespread currency across Europe. His theories were influenced by Gilbert’s work on magnetism - a work partially driven by the requirements of English polar exploration. Sailors themselves never needed to accept a heliocentric cosmography, but the data they brought back to the metropolis undermined Ptolemy, as better data kept them alive at sea. This exchange between theoretician and user in the early modern period drove both

  13. EarthCube: A Community Organization for Geoscience Cyberinfrastructure

    Science.gov (United States)

    Patten, K.; Allison, M. L.

    2014-12-01

    The National Science Foundation's (NSF) EarthCube initiative is a community-driven approach to building cyberinfrastructure for managing, sharing, and exploring geoscience data and information to better address today's grand-challenge science questions. The EarthCube Test Enterprise Governance project is a two-year effort seeking to engage diverse geo- and cyber-science communities in applying a responsive approach to the development of a governing system for EarthCube. During Year 1, an Assembly of seven stakeholder groups representing the broad EarthCube community developed a draft Governance Framework. Finalized at the June 2014 EarthCube All Hands Meeting, this framework will be tested during the demonstration phase in Year 2, beginning October 2014. A brief overview of the framework: Community-elected members of the EarthCube Leadership Council will be responsible for managing strategic direction and identifying the scope of EarthCube. Three Standing Committees will also be established to oversee the development of technology and architecture, to coordinate among new and existing data facilities, and to represent the academic geosciences community in driving development of EarthCube cyberinfrastructure. An Engagement Team and a Liaison Team will support communication and partnerships with internal and external stakeholders, and a central Office will serve a logistical support function to the governance as a whole. Finally, ad hoc Working Groups and Special Interest Groups will take on other issues related to EarthCube's goals. The Year 2 demonstration phase will test the effectiveness of the proposed framework and allow for elements to be changed to better meet community needs. It will begin by populating committees and teams, and finalizing leadership and decision-making processes to move forward on community-selected priorities including identifying science drivers, coordinating emerging technical elements, and coming to convergence on system architecture. A

  14. Inaugeral lecture - Meteorite impacts on Earth and on the Earth ...

    African Journals Online (AJOL)

    These discoveries indicate that large meteorite impacts have had enormous effects on the Earth, perhaps most dramatically illustrated 65 million years ago, when an impact at Chicxulub in the Caribbean may have been responsible for mass extinctions (including the dinosaurs) on a global scale. The evidence for these ...

  15. the unsung earth: man's regeneration and rediscovery of the earth ...

    African Journals Online (AJOL)

    User

    A person looks at the world in a specific way, he smiles with specific eyes, he walks with a specific step, because he is the son of what happened to him and of the .... machine age, leading away from what is vital and organic and turning .... There is nothing to eat, the earth has hardened, it cannot immediately bear fruits.

  16. The Earth as a Distant Planet A Rosetta Stone for the Search of Earth-Like Worlds

    CERN Document Server

    Vázquez, M; Montañés Rodríguez, P

    2010-01-01

    Is the Earth, in some way, special? Or is our planet but one of the millions of other inhabited planets within our galaxy? This is an exciting time to be asking this old question, because for the first time in history, the answer is within reach. In The Earth as a Distant Planet, the authors set themselves as external observers of our Solar System from an astronomical distance. From that perspective, the authors describe how the Earth, the third planet in distance to the central star, can be catalogued as having its own unique features and as capable of sustaining life. The knowledge gained from this original perspective is then applied to the ongoing search for planets outside the solar system, or exoplanets. Since the discovery in 1992 of the first exoplanet, the number of known planets has increased exponentially. Ambitious space missions are already being designed for the characterization of their atmospheres and to explore the possibility that they host life. The exploration of Earth and the rest of the ...

  17. Setting to earth for computer

    International Nuclear Information System (INIS)

    Gallego V, Luis Eduardo; Montana Ch, Johny Hernan; Tovar P, Andres Fernando; Amortegui, Francisco

    2000-01-01

    The program GMT allows the analysis of setting to earth for tensions DC and AC (of low frequency) of diverse configurations composed by cylindrical electrodes interconnected, in a homogeneous land or stratified (two layers). This analysis understands among other aspects: calculation of the setting resistance to earth, elevation of potential of the system (GPR), calculation of current densities in the conductors, potentials calculation in which point on the land surface (profile and surfaces), tensions calculation in passing and of contact, also, it carries out the interpretation of resistivity measures for Wenner and Schlumberger methods, finding a model of two layers

  18. Physical Processes Controlling Earth's Climate

    Science.gov (United States)

    Genio, Anthony Del

    2013-01-01

    As background for consideration of the climates of the other terrestrial planets in our solar system and the potential habitability of rocky exoplanets, we discuss the basic physics that controls the Earths present climate, with particular emphasis on the energy and water cycles. We define several dimensionless parameters relevant to characterizing a planets general circulation, climate and hydrological cycle. We also consider issues associated with the use of past climate variations as indicators of future anthropogenically forced climate change, and recent advances in understanding projections of future climate that might have implications for Earth-like exoplanets.

  19. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    Science.gov (United States)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  20. Rare earths and rare earth alloys electrolytic preparation process and device for this process

    International Nuclear Information System (INIS)

    Seon, F.; Barthole, G.

    1986-01-01

    Electrolysis of a molten salt of rare earth or rare earth alloy for preparation of the metal or alloy is described. The molten salt bath comprises at least a rare earth chloride, at least an alkaline or alkaline earth chloride and at least an alkaline or alkaline earth fluoride [fr

  1. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    Science.gov (United States)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  2. Science Driven Human Exploration of Mars

    Science.gov (United States)

    McKay, Christopher P.

    2004-01-01

    Mars appears to be cold dry and dead world. However there is good evidence that early in its history it had liquid water, more active volcanism, and a thicker atmosphere. Mars had this earth-like environment over three and a half billion years ago, during the same time that life appeared on Earth. The main question in the exploration of Mars then is the search for a independent origin of life on that planet. Ecosystems in cold, dry locations on Earth - such as the Antarctic - provide examples of how life on Mars might have survived and where to look for fossils. Fossils are not enough. We will want to determine if life on Mars was a separate genesis from life on Earth. For this determination we need to access intact martian life; possibly frozen in the deep old permafrost. Human exploration of Mars will probably begin with a small base manned by a temporary crew, a necessary first start. But exploration of the entire planet will require a continued presence on the Martian surface and the development of a self sustaining community in which humans can live and work for very long periods of time. A permanent Mars research base can be compared to the permanent research bases which several nations maintain in Antarctica at the South Pole, the geomagnetic pole, and elsewhere. In the long run, a continued human presence on Mars will be the most economical way to study that planet in detail. It is possible that at some time in the future we might recreate a habitable climate on Mars, returning it to the life-bearing state it may have enjoyed early in its history. Our studies of Mars are still in a preliminary state but everything we have learned suggests that it may be possible to restore Mars to a habitable climate. Additional information is contained in the original extended abstract.

  3. Using immersive media and digital technology to communicate Earth Science

    Science.gov (United States)

    Kapur, Ravi

    2016-04-01

    A number of technologies in digital media and interactivity have rapidly advanced and are now converging to enable rich, multi-sensoral experiences which create opportunities for both digital art and science communication. Techniques used in full-dome film-making can now be deployed in virtual reality experiences; gaming technologies can be utilised to explore real data sets; and collaborative interactivity enable new forms of public artwork. This session will explore these converging trends through a number of emerging and forthcoming projects dealing with Earth science, climate change and planetary science.

  4. Earth Stewardship: An initiative by the Ecological Society of America to foster engagement to sustain Planet Earth

    Science.gov (United States)

    Chapin, F. Stuart; Pickett, S.T.A.; Power, Mary E.; Collins, Scott L.; Baron, Jill S.; Inouye, David W.; Turner, Monica G.

    2017-01-01

    The Ecological Society of America (ESA) has responded to the growing commitment among ecologists to make their science relevant to society through a series of concerted efforts, including the Sustainable Biosphere Initiative (1991), scientific assessment of ecosystem management (1996), ESA’s vision for the future (2003), Rapid Response Teams that respond to environmental crises (2005), and the Earth Stewardship Initiative (2009). During the past 25 years, ESA launched five new journals, largely reflecting the expansion of scholarship linking ecology with broader societal issues. The goal of the Earth Stewardship Initiative is to raise awareness and to explore ways for ecologists and other scientists to contribute more effectively to the sustainability of our planet. This has occurred through four approaches: (1) articulation of the stewardship concept in ESA publications and Website, (2) selection of meeting themes and symposia, (3) engagement of ESA sections in implementing the initiative, and (4) outreach beyond ecology through collaborations and demonstration projects. Collaborations include societies and groups of Earth and social scientists, practitioners and policy makers, religious and business leaders, federal agencies, and artists and writers. The Earth Stewardship Initiative is a work in progress, so next steps likely include continued nurturing of these emerging collaborations, advancing the development of sustainability and stewardship theory, improving communication of stewardship science, and identifying opportunities for scientists and civil society to take actions that move the Earth toward a more sustainable trajectory.

  5. Astrobiological benefits of human space exploration.

    Science.gov (United States)

    Crawford, Ian A

    2010-01-01

    An ambitious program of human space exploration, such as that envisaged in the Global Exploration Strategy and considered in the Augustine Commission report, will help advance the core aims of astrobiology in multiple ways. In particular, a human exploration program will confer significant benefits in the following areas: (i) the exploitation of the lunar geological record to elucidate conditions on early Earth; (ii) the detailed study of near-Earth objects for clues relating to the formation of the Solar System; (iii) the search for evidence of past or present life on Mars; (iv) the provision of a heavy-lift launch capacity that will facilitate exploration of the outer Solar System; and (v) the construction and maintenance of sophisticated space-based astronomical tools for the study of extrasolar planetary systems. In all these areas a human presence in space, and especially on planetary surfaces, will yield a net scientific benefit over what can plausibly be achieved by autonomous robotic systems. A number of policy implications follow from these conclusions, which are also briefly considered.

  6. Earth Day 2012: Greening Government

    Centers for Disease Control (CDC) Podcasts

    2012-04-19

    This podcast describes sustainability efforts at CDC in relation to Earth Day celebrations and details agency greenhouse gas reduction strategies and successes.  Created: 4/19/2012 by Office of the Chief Operating Officer (OCOO)/ Chief Sustainability Office (CSO).   Date Released: 4/23/2012.

  7. NASA Earth Science Education Collaborative

    Science.gov (United States)

    Schwerin, T. G.; Callery, S.; Chambers, L. H.; Riebeek Kohl, H.; Taylor, J.; Martin, A. M.; Ferrell, T.

    2016-12-01

    The NASA Earth Science Education Collaborative (NESEC) is led by the Institute for Global Environmental Strategies with partners at three NASA Earth science Centers: Goddard Space Flight Center, Jet Propulsion Laboratory, and Langley Research Center. This cross-organization team enables the project to draw from the diverse skills, strengths, and expertise of each partner to develop fresh and innovative approaches for building pathways between NASA's Earth-related STEM assets to large, diverse audiences in order to enhance STEM teaching, learning and opportunities for learners throughout their lifetimes. These STEM assets include subject matter experts (scientists, engineers, and education specialists), science and engineering content, and authentic participatory and experiential opportunities. Specific project activities include authentic STEM experiences through NASA Earth science themed field campaigns and citizen science as part of international GLOBE program (for elementary and secondary school audiences) and GLOBE Observer (non-school audiences of all ages); direct connections to learners through innovative collaborations with partners like Odyssey of the Mind, an international creative problem-solving and design competition; and organizing thematic core content and strategically working with external partners and collaborators to adapt and disseminate core content to support the needs of education audiences (e.g., libraries and maker spaces, student research projects, etc.). A scaffolded evaluation is being conducted that 1) assesses processes and implementation, 2) answers formative evaluation questions in order to continuously improve the project; 3) monitors progress and 4) measures outcomes.

  8. A Spector over the Earth.

    Science.gov (United States)

    Murphy, Michael E.

    1990-01-01

    Discusses the disciplinary make up of the study of the greenhouse effect, suggesting that physics, chemistry, earth science, social studies, and religion classes are all appropriate arenas for discussions of the topic. Highlights resources available to teach this complex multidisciplinary topic. (DMM)

  9. A journey through Earth climates

    International Nuclear Information System (INIS)

    Ramstein, Gilles; Brunet, Michel

    2015-01-01

    The author proposes a history of climates all along Earth's history, describes how cold and warm periods have been alternating during these billions of years. He also tries to highlight lessons learned from this long evolution of climate in order to better understand the current global warming. He discusses whether this disruption is unique in Earth's history, and how it threatens our environment and therefore our survival. The chapters describe how Earth could escape a global glaciation, the thermal regulation by greenhouse effect gases in a world without oxygen, the empowerment of oxygen and the first thermal accident, a new oxygenated and warm world, the second accident or how Earth entered and escaped from periods of total glaciation, the possible stabilisation, the succession of deregulations, crisis and extinctions, the slow way down to the cold, the various paleo-indicators during the Quaternary, the high frequency oscillations of climate during the last million of years, and the uncertain projections

  10. Scarcity of rare earth elements

    NARCIS (Netherlands)

    de Boer, M.A.; Lammertsma, K.

    2013-01-01

    Rare earth elements (REEs) are important for green and a large variety of high-tech technologies and are, therefore, in high demand. As a result, supply with REEs is likely to be disrupted (the degree of depends on the REE) in the near future. The 17 REEs are divided into heavy and light REEs. Other

  11. Variability of the earth's climate

    International Nuclear Information System (INIS)

    Duplessy, J.C.

    1991-01-01

    In this paper, the global evolution of the Earth's climate since the Precambrian is described and the reconstruction of the last major oscillations generally referred to as the last climatic cycles which occurred during the Quarternary is presented: isotope geochemistry, micropaleontological transfer functions; ice volume and sea level, temperatures, deep water circulation of the last climatic cycle

  12. The origin of the Earth.

    Science.gov (United States)

    Taylor, S R

    1997-01-01

    It is not possible to consider the formation of the Earth in isolation without reference to the formation of the rest of the solar system. A brief account is given of the current scientific consensus on that topic, explaining the origin of an inner solar system rocky planet depleted in most of the gaseous and icy components of the original solar nebula. Volatile element depletion occurred at a very early stage in the nebula, and was probably responsible for the formation of Jupiter before that of the inner planets. The Earth formed subsequently from accumulation of a hierarchy of planetesimals. Evidence of these remains in the ancient cratered surfaces and the obliquities (tilts) of most planets. Earth melting occurred during this process, as well as from the giant Moon-forming impact. The strange density and chemistry of the Moon are consistent with an origin from the mantle of the impactor. Core-mantle separation on the Earth was coeval with accretion. Some speculations are given on the origin of the hydrosphere.

  13. Availability of Earth resources data

    Science.gov (United States)

    ,

    1976-01-01

    The purpose of this booklet is to help the reader to become aware of the volume of Earth resources data that have been collected by agencies of the United States Government and to find out where and how these data may be obtained. Earth resources data as discussed here are those obtained by remote-sensing instruments, including aerial cameras, multispectral cameras, multispectral scanners, and radar. They are obtained by spacecraft and high-altitude aircraft. Also, various agencies have been acquiring vast quantities of conventional aerial mapping photography from low and medium altitudes for more than 50 years. There is also brief information to assist the reader in locating published references and identifying research projects relating to application of Earth resources data to a variety of purposes. In all cases, it is not the intent to say what data are needed or how the data are to be used, but to describe where an interested person can begin to locate Earth resources data.

  14. The Dynamic Earth: Recycling Naturally!

    Science.gov (United States)

    Goldston, M. Jenice; Allison, Elizabeth; Fowler, Lisa; Glaze, Amanda

    2013-01-01

    This article begins with a thought-provoking question: What do you think of when you hear the term "recycle?" Many think about paper, glass, aluminum cans, landfills, and reducing waste by reusing some of these materials. How many of us ever consider the way the systems of Earth dynamically recycle its materials? In the following…

  15. Earth observation for rangeland monitoring

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2012-10-01

    Full Text Available of rangeland quality, showed together with the study area map (top). Nutrient maps extracted from a published paper: Ramoelo et al. 2012, International Journal of Applied Earth Observation and Geoinformation, 19, pp. 151-162 Photo courtesy of Mr Mafuza Maya... Photo courtesy of Mr Mafuza Maya ...

  16. Earth Pressure on Tunnel Crown

    DEFF Research Database (Denmark)

    Andersen, Lars

    Two different analyses have been carried out in order to find the vertical earth pressure, or overburden pressure, at the crown of a tunnel going through a dike. Firstly, a hand calculation is performed using a simple dispersion of the stresses over depth. Secondly, the finite‐element program...

  17. Paleoseismology: evidence of earth activity

    Czech Academy of Sciences Publication Activity Database

    Nováková, Lucie

    2016-01-01

    Roč. 105, č. 5 (2016), 1467-1469 ISSN 1437-3254 Institutional support: RVO:67985891 Keywords : Paleoseismology * Colluvial wedge * White Creek Fault _ * Greendale Fault * San Andreas Fault * Paganica Fault Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.283, year: 2016

  18. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  19. OIL EXPLORATION AND PRODUCTION IN CROATIA

    Directory of Open Access Journals (Sweden)

    Josip Sečen

    1996-12-01

    Full Text Available Organized exploration of "earth oil" shows started in the 16th century, and the oil production in the middle of the 20th century. The exploration area of the Republic of Croatia is divided into three basins: Pannonian, Dinarides and Adriatic. The most explored is the Panonian Basin, where most oil and gas reserves have been discovered that are continuously being produced. In the Adriatic basin gas reserves have heen discovered but because of the commercial reasons they haven't been used yet. Along with the exploration at home, the perspective areas in foreign contries are being explored more and more with the considerable oil and gas reserves discoveries. Two main products, oil and gas, generate the production of other fuels and raw materials necessary in petrochemical industry: propane, butane, industrial spirit, ethylene, propylene etc. The major part of those products is directly included into the power-supply programme of the Republic of Croatia and they supply 45% of total power needs. Good results in exploration and a high participation of domestic oil and gas in total primary energy supply, direct to the further intense investments in explorations of domestic and perspective foreign areas (the paper is published in Croatian.

  20. Joint Interdisciplinary Earth Science Information Center

    Science.gov (United States)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  1. Rare earths: occurrence, production and applications

    International Nuclear Information System (INIS)

    Murthy, T.K.S.; Mukherjee, T.K.

    2002-01-01

    The mining and processing of rare earth minerals, particularly of monazite, began in a modest way in 1880s for commercialized production of mantle for gas lighting. For all major applications up to mid-twentieth century- production of lighter flints, misch metal as a metallurgical alloying agent, colouring, decolourizing and polishing agents for glass, petroleum cracking catalysts and arc-carbons, unseparated or partially separated rare earths were adequate. These applications continue till today. With the development and industrial application of powerful techniques like ion exchange and solvent extraction for the separation of rare earths, the decades after 1960 saw increasing utilization of the specific properties of the individual rare earths. Some of these advanced technological applications include: special glass for optical systems including camera lenses, phosphors for colour television, cathode ray tubes and fluorescent lighting, X-ray intensification screens, high intensity permanent magnets, electro optical devices, lasers, hydrogen storage materials, hydride rechargeable batteries, photomagnetic data storage systems, autoexhaust catalysts, special ceramics of unusual toughness, artificial diamonds and nonpoisonous plastic colorants. The topics covered in the book include rare earths: their story identity, rare earth resources, processing of ores and recovery of mixed rare earths products, separation and purification of rare earths, nonmetallic applications of rare earths, rare earth metals: production and applications, rare earth alloys and their applications, analysis of rare earth, processing of rare earth resources in India by Indian Rare Earth Ltd. and availability and market conditions

  2. WAVE TECTONICS OF THE EARTH

    Directory of Open Access Journals (Sweden)

    Tatiana Yu. Tveretinova

    2010-01-01

    Full Text Available In the Earth's lithosphere, wavy alternation of positive and negative heterochronous structures is revealed; such structures are variable in ranks and separated by vergence zones of fractures and folds. In the vertical profile of the lithosphere, alternating are layers characterized by relatively plastic or fragile rheological properties and distinguished by different states of stress. During the Earth’s evolution, epochs of compression and extension are cyclically repeated, including planetary-scale phenomena which are manifested by fluctuating changes of the planet’s volume. Migration of geological and geophysical (geodynamic processes takes place at the Earth's surface and in its interior. The concept of the wave structure and evolution of the Earth's lithosphere provides explanations to the abovementioned regularities. Wavy nature of tectonic structures of the lithosphere, the cyclic recurrence of migration and geological processes in space and time can be described in terms of the multiple-order wave geodynamics of the Earth's lithosphere that refers to periodical variations of the state of stress. Effects of structure-forming tectonic forces are determined by «interference» of tangential and radial stresses of the Earth. The tangential stresses, which occur primarily due to the rotational regime of the planet, cause transformations of the Earth’s shape, redistributions of its substance in depths, the westward drift of the rock mass in its upper levels, and changes of structural deformation plans. The radial stresses, which are largely impacted by gravity, determine the gravitational differentiation of the substance, vertical flattening and sub-horizontal flow of the rock masses, and associated fold-rupture deformation. Under the uniform momentum geodynamic concept proposed by [Vikulin, Tveritinova, 2004, 2005, 2007, 2008], it is possible to provide consistent descriptions of seismic and volcanic, tectonic and geological processes

  3. Earth's inner core nucleation paradox

    Science.gov (United States)

    Huguet, Ludovic; Van Orman, James A.; Hauck, Steven A.; Willard, Matthew A.

    2018-04-01

    The conventional view of Earth's inner core is that it began to crystallize at Earth's center when the temperature dropped below the melting point of the iron alloy and has grown steadily since that time as the core continued to cool. However, this model neglects the energy barrier to the formation of the first stable crystal nucleus, which is commonly represented in terms of the critical supercooling required to overcome the barrier. Using constraints from experiments, simulations, and theory, we show that spontaneous crystallization in a homogeneous liquid iron alloy at Earth's core pressures requires a critical supercooling of order 1000 K, which is too large to be a plausible mechanism for the origin of Earth's inner core. We consider mechanisms that can lower the nucleation barrier substantially. Each has caveats, yet the inner core exists: this is the nucleation paradox. Heterogeneous nucleation on a solid metallic substrate tends to have a low energy barrier and offers the most straightforward solution to the paradox, but solid metal would probably have to be delivered from the mantle and such events are unlikely to have been common. A delay in nucleation, whether due to a substantial nucleation energy barrier, or late introduction of a low energy substrate, would lead to an initial phase of rapid inner core growth from a supercooled state. Such rapid growth may lead to distinctive crystallization texturing that might be observable seismically. It would also generate a spike in chemical and thermal buoyancy that could affect the geomagnetic field significantly. Solid metal introduced to Earth's center before it reached saturation could also provide a nucleation substrate, if large enough to escape complete dissolution. Inner core growth, in this case, could begin earlier and start more slowly than standard thermal models predict.

  4. Development of an earth pressure model for design of earth retaining structures in piedmont soil.

    Science.gov (United States)

    2008-10-01

    Anecdotal evidence suggests that earth pressure in Piedmont residual soils is typically over estimated. Such estimates of earth pressure impact the design of earth retaining structures used on highway projects. Thus, the development of an appropriate...

  5. Information Technology Infusion Case Study: Integrating Google Earth(Trademark) into the A-Train Data Depot

    Science.gov (United States)

    Smith, Peter; Kempler, Steven; Leptoukh, Gregory; Chen, Aijun

    2010-01-01

    This poster paper represents the NASA funded project that was to employ the latest three dimensional visualization technology to explore and provide direct data access to heterogeneous A-Train datasets. Google Earth (tm) provides foundation for organizing, visualizing, publishing and synergizing Earth science data .

  6. Exploration and Mining Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2002-09-01

    This Exploration and Mining Technology Roadmap represents the third roadmap for the Mining Industry of the Future. It is based upon the results of the Exploration and Mining Roadmap Workshop held May 10 ñ 11, 2001.

  7. Earth2Class: Bringing the Earth to the Classroom-Innovative Connections between Research Scientists, Teachers, and Students

    Science.gov (United States)

    Passow, M. J.

    2017-12-01

    "Earth2Class" (E2C) is a unique program offered through the Lamont-Doherty Earth Observatory of Columbia University. It connects research scientists, classroom teachers, middle and high school students, and others in ways that foster broader outreach of cutting-edge discoveries. One key component are Saturday workshops offered during the school year. These provide investigators with a tested format for sharing research methods and results. Teachers and students learn more about "real"science than what is found in textbooks. They discover that Science is exciting, uncertain, and done by people not very different from themselves. Since 1998, we have offered more than 170 workshops, partnering with more than 90 LDEO scientists. E2C teachers establishe links with scientists that have led to participation in research projects, the LDEO Open House, and other programs. Connections developed between high school students and scientists resulted in authentic science research experiences. A second key component of the project is the E2C website, https://earth2class.org/site/. We provide archived versions of monthly workshops. The website hosts a vast array of resources geared to support learning Earth Science and other subjects. Resources created through an NSF grant to explore strategies which enhance Spatial Thinking in the NYS Regents Earth Science curriculum are found at https://earth2class.org/site/?page_id=2957. The site is well-used by K-12 Earth Science educators, averaging nearly 70k hits per month. A third component of the E2C program are week-long summer institutes offering opportunities to enhance content knowledge in weather and climate; minerals, rocks, and resources; and astronomy. These include exploration of strategies to implement NGSS-based approaches within the school curriculum. Participants can visit LDEO lab facilities and interact with scientists to learn about their research. In the past year, we have begun to create a "satellite" E2C program at UFVJM

  8. Human space exploration the next fifty years.

    Science.gov (United States)

    Williams, David R; Turnock, Matthew

    2011-06-01

    Preparation for the fiftieth anniversary of human spaceflight in the spring of 2011 provides the space faring nations with an opportunity to reflect on past achievements as well as consider the next fifty years of human spaceflight. The International Space Station is a unique platform for long duration life science research that will play a critical role in preparing for future human space exploration beyond low earth orbit. Some feel the future path back to the Moon and on to Mars may be delayed with the current commitment of the United States to support the development of human-rated commercial spacecraft. Others see this as a unique opportunity to leverage the capability of the private sector in expanding access to space exploration. This article provides an overview of the past achievements in human spaceflight and discusses future missions over the next fifty years and the role space medicine will play in extending the time-distance constant of human space exploration.

  9. Trailblazing Medicine Sustaining Explorers During Interplanetary Missions

    CERN Document Server

    Seedhouse, Erik

    2011-01-01

    To prepare for the day when astronauts leave low-Earth orbit for long-duration exploration missions, space medicine experts must develop a thorough understanding of the effects of microgravity on the human body, as well as ways of mitigating them. To gain a complete understanding of the effects of space on the human body and to create tools and technologies required for successful exploration, space medicince will become an increasingly collaborative discipline incorporating the skills of physicians, biomedical scientists, engineers, and mission planners. Trailblazing Medicine examines the future of space medicine in relation to human space exploration; describes what is necessary to keep a crew alive in space, including the use of surgical robots, surface-based telemedicine, and remote emergency care; discusses bioethical problems such as euthanasia, sex, and precautionary surgery; investigates the medical challenges faced by interplanetary astronauts; details the process of human hibernation.

  10. Rare Earth Garnet Selective Emitter

    Science.gov (United States)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  11. Earth materials and health: research priorities for earth science and public health

    National Research Council Canada - National Science Library

    Committee on Research Priorities for Earth Science and Public Health; National Research Council; Board on Health Sciences Policy; Division on Earth and Life Studies; Institute of Medicine; National Research Council; National Academy of Sciences

    2007-01-01

    .... Improved understanding of the pervasive and complex interactions between earth materials and human health will require creative collaborations between earth scientists and public health professionals...

  12. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    Science.gov (United States)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  13. Accretion of Moon and Earth and the emergence of life

    Science.gov (United States)

    Arrhenius, G.; Lepland, A.

    2000-01-01

    The discrepancy between the impact records on the Earth and Moon in the time period, 4.0-3.5 Ga calls for a re-evaluation of the cause and localization of the late lunar bombardment. As one possible explanation, we propose that the time coverage in the ancient rock record is sufficiently fragmentary, so that the effects of giant, sterilizing impacts throughout the inner solar system, caused by marauding asteroids, could have escaped detection in terrestrial and Martian records. Alternatively, the lunar impact record may reflect collisions of the receding Moon with a series of small, original satellites of the Earth and their debris in the time period about 4.0-3.5 Ga. The effects on Earth of such encounters could have been comparatively small. The location of these tellurian moonlets has been estimated to have been in the region around 40 Earth radii. Calculations presented here, indicate that this is the region that the Moon would traverse at 4.0-3.5 Ga, when the heavy and declining lunar bombardment took place. The ultimate time limit for the emergence of life on Earth is determined by the effects of planetary accretion--existing models offer a variety of scenarios, ranging from low average surface temperature at slow accretion of the mantle, to complete melting of the planet followed by protracted cooling. The choice of accretion model affects the habitability of the planet by dictating the early evolution of the atmosphere and hydrosphere. Further exploration of the sedimentary record on Earth and Mars, and of the chemical composition of impact-generated ejecta on the Moon, may determine the choice between the different interpretations of the late lunar bombardment and cast additional light on the time and conditions for the emergence of life.

  14. Design and development of the backscatter LIDAR ATLID for EarthCARE

    Science.gov (United States)

    Le Hors, L.; Toulemont, Y.; Hélière, A.

    2017-11-01

    In the frame of the EarthCARE programme, Astrium France is currently developing one of the mission core instruments: the backscatter lidar ATLID. The EarthCARE mission is the third Earth Explorer Core Missions of the ESA Living Planet Programme, with a launch date planned in 2013. It addresses the interaction and impact of clouds and aerosols on the Earth's radiative budget. ATLID (ATmospheric LIDar), one of the four instruments of EarthCARE, shall determine vertical profiles of clouds and aerosols physical parameters (altitude, optical depth, backscatter ratio and depolarisation ratio) in synergy with other instruments. This paper presents the design and performance of the ATLID instrument, and relates the main development issues. The technical challenges and the main innovations are highlighted.

  15. The position and shape of the neutral sheet at 30-earth radii distance

    Science.gov (United States)

    Bowling, S. B.; Russell, C. T.

    1976-01-01

    An examination of Explorer 34 encounters with the neutral sheet reveals a much broader arching of the neutral sheet at 30 earth radii than closer to the earth at 20 earth radii. The location of the neutral sheet hinging point in the geomagnetic equatorial plane is found to be a strong function of geomagnetic activity. For Kp less than 2 the apparent hinging distance is close to 11 earth radii. For Kp greater than 4 the apparent hinging distance is close to zero. This dependency reflects a negligible return of the neutral sheet to the solar magnetospheric equatorial plane with distance behind the earth at quiet times but reflects a rapid return at disturbed times, in addition to possible variations in the location of the hinging point in the geomagnetic equatorial plane.

  16. Theoretical and Computational Studies of Rare Earth Substitutes: A Test-bed for Accelerated Materials Development

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Lorin X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Hard permanent magnets in wide use typically involve expensive Rare Earth elements. In this effort, we investigated candidate permanent magnet materials which contain no Rare Earths, while simultaneously exploring improvements in theoretical methodology which enable the better prediction of magnetic properties relevant for the future design and optimization of permanent magnets. This included a detailed study of magnetocrystalline anisotropy energies, and the use of advanced simulation tools to better describe magnetic properties at elevated temperatures.

  17. The EarthCARE Simulator (Invited)

    Science.gov (United States)

    Donovan, D. P.; van Zadellhoff, G.; Lajas, D.; Eisinger, M.; Franco, R.

    2009-12-01

    In recent years, the value of multisensor remote sensing techniques applied to cloud, aerosol, radiation and precipitation studies has become clear. For example, combinations of instruments including lidars and/or radars have proved very useful for profile retrievals of cloud macrophysical and microphysical properties. This is amply illustrated by various results from the ARM (and similar) sites as well as from results derived using the Cloudsat/CALIPSO/A-train combination of instruments. The Earth Clouds Aerosol and Radiation Explorer (EarthCARE) mission is a combined ESA/JAXA mission scheduled for launch in 2013 and has been designed with sensor-synergy playing a driving role in its scientific applications. The EarthCARE mission consists of a cloud profiling Doppler radar, a high-spectral-resolution lidar, a cloud/aerosol imager and a three-view broadband radiometer. As part of the mission development process, a detailed end-to-end multisensor simulation system has been developed. The EarthCARE Simulator (ECSIM) consists of a modular general framework populated by various models. The models within ECSIM are grouped according to the following scheme: 1) Scene creation models (3D atmospheric scene definition) 2) Orbit models (orbit and orientation of the platform as it overflies the scene) 3) Forward models (calculate the signal impinging on the telescope/antenna of the instrument(s) in question) 4) Instrument models (calculate the instrument response to the signals calculated by the Forward models) 5) Retrieval models (invert the instrument signals to recover relevant geophysical information) Within the default ECSIM models crude instrument specific parameterizations (i.e. empirically based Z vs IWC relationships) are avoided. Instead, the radiative transfer forward models are kept as separate as possible from the instrument models. In order to accomplish this, the atmospheric scenes are specified in high detail (i.e. bin resolved cloud size distribution are

  18. Exploration Architecture with Quantum Inertial Gravimetry and In Situ ChipSat Sensors

    Data.gov (United States)

    National Aeronautics and Space Administration — This will study an exploration architecture combining remote survey with in situ sampling, with example missions to Europa and a Near Earth Object. In particular for...

  19. Proceedings of 13. International Geochemical Exploration Symposium. 2. Brazilian Geochemical Congress

    International Nuclear Information System (INIS)

    1989-01-01

    Some works about geochemistry are presented, including themes about geochemical exploration, lithogeochemistry and isotope geochemistry, environmental geochemistry, analyical geochemistry, geochemistry of carbonatites and rare earth elements and organic geochemistry. (C.G.C.) [pt

  20. Solar influence on Earth's climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2003-01-01

    An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties...... via cosmic ray ionisation (the latter being modulated by solar activity). Support for this idea is found from satellite observations of cloud cover. Such data have revealed a striking correlation between the intensity of galactic cosmic rays (GCR) and low liquid clouds (... and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget....

  1. Studying the Earth with Geoneutrinos

    Directory of Open Access Journals (Sweden)

    L. Ludhova

    2013-01-01

    Full Text Available Geoneutrinos, electron antineutrinos from natural radioactive decays inside the Earth, bring to the surface unique information about our planet. The new techniques in neutrino detection opened a door into a completely new interdisciplinary field of neutrino geoscience. We give here a broad geological introduction highlighting the points where the geoneutrino measurements can give substantial new insights. The status-of-art of this field is overviewed, including a description of the latest experimental results from KamLAND and Borexino experiments and their first geological implications. We performed a new combined Borexino and KamLAND analysis in terms of the extraction of the mantle geo-neutrino signal and the limits on the Earth's radiogenic heat power. The perspectives and the future projects having geo-neutrinos among their scientific goals are also discussed.

  2. Academic Earth science in transition

    Science.gov (United States)

    Navrotsky, Alexandra

    During the past 5 years, I have served on visiting committees for Earth science departments at Stanford, Harvard, the Massachusetts Institute of Technology, Columbia, Cal-Tech, and the Geophysical Lab of the Carnegie Institution in Washington, D.C. As chair of Princeton's department, I have also experienced external review from the other side of the process. These committees attempt to diagnose major problems, supply appropriate remedies, and target opportunities for improvement in matters ranging from faculty hiring to curriculum. One very useful service provided by a visiting committee is to help distinguish dilemmas that are truly local and unique to the institution from those common to science and society as a whole. A snapshot of the tensions and opportunities common to academic Earth science has emerged from these experiences.

  3. Tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.

    1981-01-01

    The periodic variations of the earths' rotation resulting from the tidal deformation of the earth by the sun and moon were rederived including terms with amplitudes of 0.002 millisec and greater. The series applies to the mantle, crust, and oceans which rotate together for characteristic tidal periods; the scaling parameter is the ratio of the fraction of the Love number producing tidal variations in the moment of inertia of the coupled mantle and oceans (k) to the dimensionless polar moment of inertia of the coupled moments (C). The lunar laser ranging data shows that k/C at monthly and fortnightly frequencies equals 0.99 + or - 0.15 and 0.99 + or - 0.20 as compared to the theoretical value of 0.94 + or - 0.04.

  4. Pingos on Earth and Mars

    Science.gov (United States)

    Burr, D.M.; Tanaka, K.L.; Yoshikawa, K.

    2009-01-01

    Pingos are massive ice-cored mounds that develop through pressurized groundwater flow mechanisms. Pingos and their collapsed forms are found in periglacial and paleoperiglacial terrains on Earth, and have been hypothesized for a wide variety of locations on Mars. This literature review of pingos on Earth and Mars first summarizes the morphology of terrestrial pingos and their geologic contexts. That information is then used to asses hypothesized pingos on Mars. Pingo-like forms (PLFs) in Utopia Planitia are the most viable candidates for pingos or collapsed pingos. Other PLFs hypothesized in the literature to be pingos may be better explained with other mechanisms than those associated with terrestrial-style pingos. ?? 2008 Elsevier Ltd.

  5. Mapping Near-Earth Hazards

    Science.gov (United States)

    Kohler, Susanna

    2016-06-01

    How can we hunt down all the near-Earth asteroids that are capable of posing a threat to us? A new study looks at whether the upcoming Large Synoptic Survey Telescope (LSST) is up to the job.Charting Nearby ThreatsLSST is an 8.4-m wide-survey telescope currently being built in Chile. When it goes online in 2022, it will spend the next ten years surveying our sky, mapping tens of billions of stars and galaxies, searching for signatures of dark energy and dark matter, and hunting for transient optical events like novae and supernovae. But in its scanning, LSST will also be looking for asteroids that approach near Earth.Cumulative number of near-Earth asteroids discovered over time, as of June 16, 2016. [NASA/JPL/Chamberlin]Near-Earth objects (NEOs) have the potential to be hazardous if they cross Earths path and are large enough to do significant damage when they impact Earth. Earths history is riddled with dangerous asteroid encounters, including the recent Chelyabinsk airburst in 2013, the encounter that caused the kilometer-sized Meteor Crater in Arizona, and the impact thought to contribute to the extinction of the dinosaurs.Recognizing the potential danger that NEOs can pose to Earth, Congress has tasked NASA with tracking down 90% of NEOs larger than 140 meters in diameter. With our current survey capabilities, we believe weve discovered roughly 25% of these NEOs thus far. Now a new study led by Tommy Grav (Planetary Science Institute) examines whether LSST will be able to complete this task.Absolute magnitude, H, of asynthetic NEO population. Though these NEOs are all larger than 140 m, they have a large spread in albedos. [Grav et al. 2016]Can LSST Help?Based on previous observations of NEOs and resulting predictions for NEO properties and orbits, Grav and collaborators simulate a synthetic population of NEOs all above 140 m in size. With these improved population models, they demonstrate that the common tactic of using an asteroids absolute magnitude as a

  6. Rare earth industries: Upstream business

    International Nuclear Information System (INIS)

    2011-01-01

    Evidently, many factors contribute to the rush to invest in the unprecedented revival of rare earths. One major reason has to do with the rapidly growing world demand. The other reason relates to the attractive price of rare earths which is projected to stay strong in the coming years. This is because supply is predicted to have difficulty keeping pace with demand. Experts believe a major driver of global rare earths demand is the forecasted expansion in the green economy. Climate change is a major driver of the green economy. With climate change, there is concern that the uncontrolled emission of the greenhouse gases, especially carbon dioxide, can lead to catastrophic consequences for the world. This has been documented in countless studies and reports. Another important driver of the green economy is the growing shortfall in many resources. The world is now experiencing declines in key resources to meet a growing global demand. With more than 6 billion people now in the world and growing, the pressure exerted on global resources including energy, water and food is a major concern. Recent demand surge in China and India has dented the supply position of major world resources. The much quoted Stern Report from the UK has warned that, unless immediate steps are taken to reduce greenhouse gas emissions, it may be a costly exercise to undertake the corrections later. Since energy use, especially fossil fuels, is a major contributor to climate change, greener options are being sought. Add to that the fact that the fossil energy resources of the world are declining, the need to seek alternatives becomes even more urgent. One option is to change to renewable energy sources. These include such potentials as solar, wind and biomass. Rare earths have somehow become a critical feature of the technologies in such renewable. Another option is to improve the efficient use of energy in transport, buildings and all the other energy intensive industries. Again the technologies in

  7. Production method for making rare earth compounds

    Science.gov (United States)

    McCallum, R. William; Ellis, Timothy W.; Dennis, Kevin W.; Hofer, Robert J.; Branagan, Daniel J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  8. Earth Observing System Covariance Realism Updates

    Science.gov (United States)

    Ojeda Romero, Juan A.; Miguel, Fred

    2017-01-01

    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  9. Physics of the earth crust

    International Nuclear Information System (INIS)

    Lauterbach, R.

    1977-01-01

    This book deals in 12 chapters, amongst other things, with the subjects: Structure of the crust and the upper earth mantle, geology and geophysics of sea beds, satellite and aero-methods of geophysics, state of the art of geothermal research, geophysical potential fields and their anomalies, applied seismology, electrical methods of geophysics, geophysics in engineering and rock engineering, borehole geophysics, petrophysics, and geochemistry. (RW) [de

  10. Earth's Paleomagnetosphere and Planetary Habitability

    Science.gov (United States)

    Tarduno, J. A.; Blackman, E. G.; Oda, H.; Bono, R. K.; Carroll-Nellenback, J.; Cottrell, R. D.; Nimmo, F.

    2017-12-01

    The geodynamo is thought to play an important role in protecting Earth's hydrosphere, vital for life as we know it, from loss due to the erosive potential of the solar wind. Here we consider the mechanisms and history of this shielding. A larger core dynamo magnetic field strength provides more pressure to abate the solar wind dynamic pressure, increasing the magnetopause radius. However, the larger magnetopause also implies a larger collecting area for solar wind flux during phases of magnetic reconnection. The important variable is not mass capture but energy transfer, which does not scale linearly with magnetosphere size. Moreover, the ordered field provides the magnetic topology for recapturing atmospheric components in the opposite hemisphere such that the net global loss might not be greatly affected. While a net protection role for magnetospheres is suggested, forcing by the solar wind will change with stellar age. Paleomagnetism utilizing the single silicate crystal approach, defines a relatively strong field some 3.45 billion years ago (the Paleoarchean), but with a reduced magnetopause of 5 Earth radii, implying the potential for some atmospheric loss. Terrestrial zircons from the Jack Hills (Western Australia) and other localities host magnetic inclusions, whose magnetization has now been recorded by a new generation of ultra-sensitive 3-component SQUID magnetometer (U. Rochester) and SQUID microscope (GSJ/AIST). Paleointensity data suggest the presence of a terrestrial dynamo and magnetic shielding for Eoarchean to Hadean times, at ages as old as 4.2 billion years ago. However, the magnetic data suggest that for intervals >100,000 years long, magnetopause standoff distances may have reached 3 to 4 Earth radii or less. The early inception of the geodynamo, which probably occurred shortly after the lunar-forming impact, its continuity, and an early robust hydrosphere, appear to be key ingredients for Earth's long-term habitability.

  11. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  12. Magnetic Rare-Earth Superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Gibbs, D.; Böni, P.

    1988-01-01

    The magnetic structures of several single‐crystal, magnetic rare‐earth superlattice systems grown by molecular‐beam epitaxy are reviewed. In particular, the results of recent neutron diffraction investigations of long‐range magnetic order in Gd‐Y, Dy‐Y, Gd‐Dy, and Ho‐Y periodic superlattices...... mechanisms recently proposed to account for the magnetic states of these novel materials. © 1988 American Institute of Physics...

  13. The Role and Usage of Libration Point Orbits in the Earth - Moon System

    OpenAIRE

    Alessi, Elisa Maria

    2010-01-01

    In this dissertation, we show the effectiveness of the exploitation of the Circular Restricted Three - Body Problem (CR3BP) in the Earth - Moon framework. We study the motion of a massless particle under the gravitational attraction of Earth and Moon, either to design missions in the new era of lunar exploration and simulate the behaviour of minor bodies that get close to the Earth.A fundamental role is played by the five equilibrium, or libration, points that appear in the rotating reference...

  14. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    Science.gov (United States)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  15. Radiological Impacts and Regulation of Rare Earth Elements in Non-Nuclear Energy Production

    Directory of Open Access Journals (Sweden)

    Timothy Ault

    2015-03-01

    Full Text Available Energy industries account for a significant portion of total rare earth usage, both in the US and worldwide. Rare earth minerals are frequently collocated with naturally occurring radioactive material, imparting an occupational radiological dose during recovery. This paper explores the extent to which rare earths are used by various non-nuclear energy industries and estimates the radiological dose which can be attributed to these industries on absolute and normalized scales. It was determined that typical rare earth mining results in an occupational collective dose of approximately 0.0061 person-mSv/t rare earth elements, amounting to a total of 330 person-mSv/year across all non-nuclear energy industries (about 60% of the annual collective dose from one pressurized water reactor operated in the US, although for rare earth mining the impact is spread out over many more workers. About half of the collective dose from non-nuclear energy production results from use of fuel cracking catalysts for oil refining, although given the extent of the oil industry, it is a small dose when normalized to the energy equivalent of the oil that is used annually. Another factor in energy industries’ reliance on rare earths is the complicated state of the regulation of naturally occurring radiological materials; correspondingly, this paper also explores regulatory and management implications.

  16. Space exercise and Earth benefits.

    Science.gov (United States)

    Macias, Brandon R; Groppo, Eli R; Eastlack, Robert K; Watenpaugh, Donald E; Lee, Stuart M C; Schneider, Suzanne M; Boda, Wanda L; Smith, Scott M; Cutuk, Adnan; Pedowitz, Robert A; Meyer, R Scott; Hargens, Alan R

    2005-08-01

    The detrimental impact of long duration space flight on physiological systems necessitates the development of exercise countermeasures to protect work capabilities in gravity fields of Earth, Moon and Mars. The respective rates of physiological deconditioning for different organ systems during space flight has been described as a result of data collected during and after missions on the Space Shuttle, International Space Station, Mir, and bed rest studies on Earth. An integrated countermeasure that simulates the body's hydrostatic pressure gradient, provides mechanical stress to the bones and muscles, and stimulates the neurovestibular system may be critical for maintaining health and well being of crew during long-duration space travel, such as a mission to Mars. Here we review the results of our studies to date of an integrated exercise countermeasure for space flight, lower body negative pressure (LBNP) treadmill exercise, and potential benefits of its application to athletic training on Earth. Additionally, we review the benefits of Lower Body Positive Pressure (LBPP) exercise for rehabilitation of postoperative patients. Presented first are preliminary data from a 30-day bed rest study evaluating the efficacy of LBNP exercise as an integrated exercise countermeasure for the deconditioning effects of microgravity. Next, we review upright LBNP exercise as a training modality for athletes by evaluating effects on the cardiovascular system and gait mechanics. Finally, LBPP exercise as a rehabilitation device is examined with reference to gait mechanics and safety in two groups of postoperative patients.

  17. Hydrogen in the Deep Earth

    Science.gov (United States)

    Mookherjee, M.; Hermann, A.; Bajgain, S.; Shukla, G.

    2017-12-01

    Water is crucial for the sustenance of planetary activities. For instance, water reduces melting temperatures and affects the density and elasticity of minerals and melts. It also influences the transport properties of minerals and melts, including their diffusion, electrical conductivity, and rheology. The solid-state mantle convection for the water-free, dry silicate mantle is likely to be extremely sluggish and may not be sustainable over geological timescales. Therefore, it is important to identify the potential hosts for water and estimate the size of the hidden reservoir of water in the deep Earth. Also, it is important to correlate how the deep Earth water reservoir, i.e., the degree of mantle hydration, influences the global sea level over geological time scales. Constraining the degree of mantle hydration is not straightforward. It requires understanding and linking atomistic scale behavior of minerals and melts to large-scale geophysical and geochemical observations. High-pressure experiments and first-principles simulations based on density functional theory (DFT) have been crucial in enhancing our understanding of hydrogen bearing mineral phases that are likely to be present in the Earth's mantle and subduction zone settings. In this study we present DFT results on hydrous phases and provide constraints on the crystal structure, thermodynamic stability, elasticity, and transport properties of proton bearing mineral phases. Acknowledgements: MM acknowledges US NSF awards EAR-1639552 and EAR-1634422.

  18. Scarcity of rare earth elements.

    Science.gov (United States)

    de Boer, M A; Lammertsma, K

    2013-11-01

    Rare earth elements (REEs) are important for green and a large variety of high-tech technologies and are, therefore, in high demand. As a result, supply with REEs is likely to be disrupted (the degree of depends on the REE) in the near future. The 17 REEs are divided into heavy and light REEs. Other critical elements besides REEs, identified by the European Commission, are also becoming less easily available. Although there is no deficiency in the earth's crust of rare earth oxides, the economic accessibility is limited. The increased demand for REEs, the decreasing export from China, and geopolitical concerns on availability contributed to the (re)opening of mines in Australia and the USA and other mines are slow to follow. As a result, short supply of particularly terbium, dysprosium, praseodymium, and neodymium is expected to be problematic for at least the short term, also because they cannot be substituted. Recycling REEs from electronic waste would be a solution, but so far there are hardly any established REE recycling methods. Decreasing the dependency on REEs, for example, by identifying possible replacements or increasing their efficient use, represents another possibility. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. THE EARTH OBSERVATION TECHNOLOGY CLUSTER

    Directory of Open Access Journals (Sweden)

    P. Aplin

    2012-07-01

    Full Text Available The Earth Observation Technology Cluster is a knowledge exchange initiative, promoting development, understanding and communication about innovative technology used in remote sensing of the terrestrial or land surface. This initiative provides an opportunity for presentation of novel developments from, and cross-fertilisation of ideas between, the many and diverse members of the terrestrial remote sensing community. The Earth Observation Technology Cluster involves a range of knowledge exchange activities, including organisation of technical events, delivery of educational materials, publication of scientific findings and development of a coherent terrestrial EO community. The initiative as a whole covers the full range of remote sensing operation, from new platform and sensor development, through image retrieval and analysis, to data applications and environmental modelling. However, certain topical and strategic themes have been selected for detailed investigation: (1 Unpiloted Aerial Vehicles, (2 Terrestrial Laser Scanning, (3 Field-Based Fourier Transform Infra-Red Spectroscopy, (4 Hypertemporal Image Analysis, and (5 Circumpolar and Cryospheric Application. This paper presents general activities and achievements of the Earth Observation Technology Cluster, and reviews state-of-the-art developments in the five specific thematic areas.

  20. Mineral evolution and Earth history

    Science.gov (United States)

    Bradley, Dwight C.

    2015-01-01

    The field of mineral evolution—a merger of mineralogy and Earth history—coalesced in 2008 with the first of several global syntheses by Robert Hazen and coworkers in the American Mineralogist. They showed that the cumulative abundance of mineral species has a stepwise trend with first appearances tied to various transitions in Earth history such as the end of planetary accretion at ca. 4.55 Ga and the onset of bio-mediated mineralogy at ca. >2.5 Ga. A global age distribution is best established for zircon. Observed abundance of zircon fluctuates through more than an order of magnitude during successive supercontinent cycles. The pulse of the Earth is also recorded, albeit imperfectly, by the 87Sr/86Sr composition of marine biogenic calcite; the Sr-isotopic ratio of this mineral reflects the balance of inputs of primitive strontium at mid-ocean ridges and evolved strontium that drains off the continents. A global mineral evolution database, currently in the works, will greatly facilitate the compilation and analysis of extant data and the expansion of research in mineralogy outside its traditional bounds and into more interdisciplinary realms.

  1. Rare earth niobate coordination polymers

    Science.gov (United States)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May

    2018-03-01

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.

  2. Low cost Earth attitude sensor

    Science.gov (United States)

    Liberati, Fabrizio; Perrotta, Giorgio; Verzegnassi, Fulvia

    2017-11-01

    A patent-pending, low-cost, moderate performance, Earth Attitude Sensor for LEO satellites is described in this paper. The paper deals with the system concepts, the technology adopted and the simulation results. The sensor comprises three or four narrow field of view mini telescopes pointed towards the Earth edge to detect and measure the variation of the off-nadir angle of the Earth-to-black sky transition using thermopile detectors suitably placed in the foci of the optical min telescopes. The system's innovation consists in the opto-mechanical configuration adopted that is sturdy and has no moving parts being , thus, inherently reliable. In addition, with a view to reducing production costs, the sensor does without hi-rel and is instead mainly based on COTS parts suitably chosen. Besides it is flexible and can be adapted to perform attitude measurement onboard spacecraft flying in orbits other than LEO with a minimum of modifications to the basic design. At present the sensor is under development by IMT and OptoService.

  3. Advanced Earth Observing Satellite (ADEOS)

    Science.gov (United States)

    The objectives of the ADEOS mission are as follows: to acquire data on worldwide environmental changes such as the green house effect, ozone layer depletion, tropical rain forest deforestation, and abnormal climatic conditions; to contribute to international global environmental monitoring; and to further the development of platform bus technology, interorbital data relay technology, etc., which are necessary for the future earth observation systems. To make continuous, thorough observations of the entire earth's surface and its atmosphere, the spacecraft carries two core sensors: the Advanced Visible and Near Infrared Radiometer (AVNIR) and the Ocean Color and Temperature Sensor (OCTS). The two sensors were developed by NASDA. Additionally, the spacecraft carries six (6) Announcement of Opportunity (AO) sensors: the NASA Scatterometer (NSCAT) and Total Ozone Mapping Spectrometer (TOMS); the Polarization and Directionality of the Earth's Surface (POLDER) system; the Interferometric Monitor for Greenhouse Gases (IMG); the Improved Limb Atmospheric Spectrometer (ILAS); and the Retroreflector in Space (RIS). In early 1996, ADEOS will be launched into a sun synchronous sub-recurrent orbit at an altitude of approximately 797 km by an H-2 launcher.

  4. Metallothermic reduction of rare earth oxides

    International Nuclear Information System (INIS)

    Sharma, R.A.

    1986-01-01

    Rare earth oxides can be reduced to rare earth metals by a novel, high yield, metallothermic process. The oxides are dispersed in a suitable, molten, calcium chloride bath along with sodium metal. The sodium reacts with the calcium chloride to produce calcium metal which reduces the rare earth oxides to rare earth metals. The metals are collected in a discrete layer in the reaction vessel

  5. International exploration by independent

    International Nuclear Information System (INIS)

    Bertragne, R.G.

    1992-01-01

    Recent industry trends indicate that the smaller U.S. independents are looking at foreign exploration opportunities as one of the alternatives for growth in the new age of exploration. Foreign finding costs per barrel usually are accepted to be substantially lower than domestic costs because of the large reserve potential of international plays. To get involved in overseas exploration, however, requires the explorationist to adapt to different cultural, financial, legal, operational, and political conditions. Generally, foreign exploration proceeds at a slower pace than domestic exploration because concessions are granted by a country's government, or are explored in partnership with a national oil company. First, the explorationist must prepare a mid- to long-term strategy, tailored to the goals and the financial capabilities of the company; next, is an ongoing evaluation of quality prospects in various sedimentary basins, and careful planning and conduct of the operations. To successfully explore overseas also requires the presence of a minimum number of explorationists and engineers thoroughly familiar with the various exploratory and operational aspects of foreign work. Ideally, these team members will have had a considerable amount of on-site experience in various countries and climates. Independents best suited for foreign expansion are those who have been financially successful in domestic exploration. When properly approached, foreign exploration is well within the reach of smaller U.S. independents, and presents essentially no greater risk than domestic exploration; however, the reward can be much larger and can catapult the company into the 'big leagues.'

  6. Earth-Mars transfers through Moon Distant Retrograde Orbits

    Science.gov (United States)

    Conte, Davide; Di Carlo, Marilena; Ho, Koki; Spencer, David B.; Vasile, Massimiliano

    2018-02-01

    This paper focuses on the trajectory design which is relevant for missions that would exploit the use of asteroid mining in stable cis-lunar orbits to facilitate deep space missions, specifically human Mars exploration. Assuming that a refueling "gas station" is present at a given lunar Distant Retrograde Orbit (DRO), ways of departing from the Earth to Mars via that DRO are analyzed. Thus, the analysis and results presented in this paper add a new cis-lunar departure orbit for Earth-Mars missions. Porkchop plots depicting the required C3 at launch, v∞ at arrival, Time of Flight (TOF), and total Δ V for various DRO departure and Mars arrival dates are created and compared with results obtained for low Δ V Low Earth Orbit (LEO) to Mars trajectories. The results show that propellant-optimal trajectories from LEO to Mars through a DRO have higher overall mission Δ V due to the additional stop at the DRO. However, they have lower Initial Mass in LEO (IMLEO) and thus lower gear ratio as well as lower TOF than direct LEO to Mars transfers. This results in a lower overall spacecraft dry mass that needs to be launched into space from Earth's surface.

  7. Into the deep Earth: Using comics as a learning tool

    Science.gov (United States)

    Lee, K. K.; Wallenta, A.

    2012-12-01

    Illustrations make an ideal way to visualize what is not readily seen, especially for the deep Earth where photographs are impossible. To take this medium a step further, we use illustrations in the form of comics as a way to teach Earth science concepts. The comic book format lends itself to engaging reading for young and old alike and has been used recently by the American Physical Society (APS) and by NASA as an outreach teaching tool. Due to their sequential nature, comic books make it easy for readers to follow a story and grasp concepts that are covered. The limited text in each panel can also help those where reading is a challenge or for those who become nervous and/or discouraged with long text passages. The illustrations also add visual clues that can aid in understanding the concepts being laid out. We use the comic book format to introduce the extreme conditions reproduced in our experiments and used to "probe" the deep interior of the Earth. The exploration of such inaccessible regions is readily disseminated to the public through such a graphical approach. The comic books are aimed at middle school students in the New Haven Public Schools (NHPS) where Earth Science topics are covered in the curriculum. The first of two comics will be presented entitled, "The Adventures of GEO: Tackling Plate Tectonics."

  8. Process for lead removal from rare earth

    International Nuclear Information System (INIS)

    Bollat, A.; Sabot, J.L.

    1987-01-01

    An aqueous solution of rare earth chlorides and lead chlorides, with a chloride concentration of at least 2 moles/liter and a pH between 2 and 4, is extracted by an alkylphosphonic acid ester and rare earth(s) is (are) recovered from the organic phase [fr

  9. Dimension of the Earth's general ellipsoid

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Raděj, K.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2002-01-01

    Roč. 91, č. 1 (2002), s. 31-41 ISSN 0167-9295 Institutional research plan: CEZ:AV0Z1003909 Keywords : Earth's dimensions * Earth's ellipsoid * fundamental constants Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.364, year: 2002

  10. In the Red Shadow of the Earth

    Science.gov (United States)

    Hughes, Stephen W.; Hosokawa, Kazuyuki; Carroll, Joshua; Sawell, David; Wilson, Colin

    2015-01-01

    A technique is described for calculating the brightness of the atmosphere of the Earth that shines into the Earth's umbra during a total lunar eclipse making the Moon red. This "Rim of Fire" is due to refracted unscattered light from all the sunrises and sunsets rimming the Earth. In this article, a photograph of the totally eclipsed…

  11. Earth Science: It's All about the Processes

    Science.gov (United States)

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  12. Common Earth Science Misconceptions in Science Teaching

    Science.gov (United States)

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  13. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    This Technical Report is designed mainly to introduce the methods and techniques of uranium geochemical exploration to exploration geologists who may not have had experience with geochemical exploration methods in their uranium programmes. The methods presented have been widely used in the uranium exploration industry for more than two decades. The intention has not been to produce an exhaustive, detailed manual, although detailed instructions are given for a field and laboratory data recording scheme and a satisfactory analytical method for the geochemical determination of uranium. Rather, the intention has been to introduce the concepts and methods of uranium exploration geochemistry in sufficient detail to guide the user in their effective use. Readers are advised to consult general references on geochemical exploration to increase their understanding of geochemical techniques for uranium

  14. The NASA Earth Science Flight Program: an update

    Science.gov (United States)

    Neeck, Steven P.

    2015-10-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the space based observing systems and infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions and selected instruments to assure availability of key climate data sets, operational missions to ensure sustained land imaging provided by the Landsat system, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Some

  15. The NASA Earth Science Program and Small Satellites

    Science.gov (United States)

    Neeck, Steven P.

    2015-01-01

    Earth's changing environment impacts every aspect of life on our planet and climate change has profound implications on society. Studying Earth as a single complex system is essential to understanding the causes and consequences of climate change and other global environmental concerns. NASA's Earth Science Division (ESD) shapes an interdisciplinary view of Earth, exploring interactions among the atmosphere, oceans, ice sheets, land surface interior, and life itself. This enables scientists to measure global and climate changes and to inform decisions by Government, other organizations, and people in the United States and around the world. The data collected and results generated are accessible to other agencies and organizations to improve the products and services they provide, including air quality indices, disaster prediction and response, agricultural yield projections, and aviation safety. ESD's Flight Program provides the spacebased observing systems and supporting infrastructure for mission operations and scientific data processing and distribution that support NASA's Earth science research and modeling activities. The Flight Program currently has 21 operating Earth observing space missions, including the recently launched Global Precipitation Measurement (GPM) mission, the Orbiting Carbon Observatory-2 (OCO-2), the Soil Moisture Active Passive (SMAP) mission, and the International Space Station (ISS) RapidSCAT and Cloud-Aerosol Transport System (CATS) instruments. The ESD has 22 more missions and instruments planned for launch over the next decade. These include first and second tier missions from the 2007 Earth Science Decadal Survey, Climate Continuity missions to assure availability of key climate data sets, and small-sized competitively selected orbital missions and instrument missions of opportunity belonging to the Earth Venture (EV) Program. Small satellites (500 kg or less) are critical contributors to these current and future satellite missions

  16. The Search for Extraterrestrial Intelligence in Earth's Solar Transit Zone.

    Science.gov (United States)

    Heller, René; Pudritz, Ralph E

    2016-04-01

    Over the past few years, astronomers have detected thousands of planets and candidate planets by observing their periodic transits in front of their host stars. A related method, called transit spectroscopy, might soon allow studies of the chemical imprints of life in extrasolar planetary atmospheres. Here, we address the reciprocal question, namely, from where is Earth detectable by extrasolar observers using similar methods. We explore Earth's transit zone (ETZ), the projection of a band around Earth's ecliptic onto the celestial plane, where observers can detect Earth transits across the Sun. ETZ is between 0.520° and 0.537° wide due to the noncircular Earth orbit. The restricted Earth transit zone (rETZ), where Earth transits the Sun less than 0.5 solar radii from its center, is about 0.262° wide. We first compile a target list of 45 K and 37 G dwarf stars inside the rETZ and within 1 kpc (about 3260 light-years) using the Hipparcos catalogue. We then greatly enlarge the number of potential targets by constructing an analytic galactic disk model and find that about 10(5) K and G dwarf stars should reside within the rETZ. The ongoing Gaia space mission can potentially discover all G dwarfs among them (several 10(4)) within the next 5 years. Many more potentially habitable planets orbit dim, unknown M stars in ETZ and other stars that traversed ETZ thousands of years ago. If any of these planets host intelligent observers, they could have identified Earth as a habitable, or even as a living, world long ago, and we could be receiving their broadcasts today. The K2 mission, the Allen Telescope Array, the upcoming Square Kilometer Array, or the Green Bank Telescope might detect such deliberate extraterrestrial messages. Ultimately, ETZ would be an ideal region to be monitored by the Breakthrough Listen Initiatives, an upcoming survey that will constitute the most comprehensive search for extraterrestrial intelligence so far.

  17. Developing an Earth system Inverse model for the Earth's energy and water budgets.

    Science.gov (United States)

    Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.

    2017-12-01

    The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing

  18. Visual explorer facilitator's guide

    CERN Document Server

    Palus, Charles J

    2010-01-01

    Grounded in research and practice, the Visual Explorer™ Facilitator's Guide provides a method for supporting collaborative, creative conversations about complex issues through the power of images. The guide is available as a component in the Visual Explorer Facilitator's Letter-sized Set, Visual Explorer Facilitator's Post card-sized Set, Visual Explorer Playing Card-sized Set, and is also available as a stand-alone title for purchase to assist multiple tool users in an organization.

  19. FINESSE Spaceward Bound - Teacher Engagement in NASA Science and Exploration Field Research

    Science.gov (United States)

    Jones, A. J. P.; Heldmann, J. L.; Sheely, T.; Karlin, J.; Johnson, S.; Rosemore, A.; Hughes, S.; Nawotniak, S. Kobs; Lim, D. S. S.; Garry, W. B.

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team of NASA's Solar System Exploration Research Virtual Institute (SSERVI) is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, Near Earth Asteroids, and the moons of Mars. The FINESSE science program is infused with leading edge exploration concepts since "science enables exploration and exploration enables science." The FINESSE education and public outreach program leverages the team's field investigations and educational partnerships to share the excitement of lunar, Near Earth Asteroid, and martian moon science and exploration locally, nationally, and internationally. The FINESSE education plan is in line with all of NASA's Science Mission Directorate science education objectives, particularly to enable STEM (science, technology, engineering, and mathematics) education and leverage efforts through partnerships.

  20. Undergraduate students' earth science learning: relationships among conceptions, approaches, and learning self-efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-06-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to explore the relationships among undergraduates' conceptions of, approaches to, and self-efficacy for learning earth science by adopting the structural equation modeling technique. A total of 268 Taiwanese undergraduates (144 females) participated in this study. Three instruments were modified to assess the students' conceptions of, approaches to, and self-efficacy for learning earth science. The results indicated that students' conceptions of learning made a significant contribution to their approaches to learning, which were consequently correlated with their learning self-efficacy. More specifically, students with stronger agreement that learning earth science involves applying the knowledge and skills learned to unknown problems were prone to possess higher confidence in learning earth science. Moreover, students viewing earth science learning as understanding earth science knowledge were more likely to adopt meaningful strategies to learn earth science, and hence expressed a higher sense of self-efficacy. Based on the results, practical implications and suggestions for future research are discussed.

  1. Ecology and exploration of the rare biosphere.

    Science.gov (United States)

    Lynch, Michael D J; Neufeld, Josh D

    2015-04-01

    The profound influence of microorganisms on human life and global biogeochemical cycles underlines the value of studying the biogeography of microorganisms, exploring microbial genomes and expanding our understanding of most microbial species on Earth: that is, those present at low relative abundance. The detection and subsequent analysis of low-abundance microbial populations—the 'rare biosphere'—have demonstrated the persistence, population dynamics, dispersion and predation of these microbial species. We discuss the ecology of rare microbial populations, and highlight molecular and computational methods for targeting taxonomic 'blind spots' within the rare biosphere of complex microbial communities.

  2. Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets

    Science.gov (United States)

    Schultz, Colin

    2013-07-01

    The dancing glow of the aurorae, the long tendrils of light that seem to reach up into space, has mesmerized scientists for centuries. More than a beautiful display, the aurorae tell us about the Earth—about its atmosphere, its magnetic field, and its relationship with the Sun. As technology developed, researchers looking beyond Earth's borders discovered an array of auroral processes on planets throughout the solar system. In the AGU monograph Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, editors Andreas Keiling, Eric Donovan, Fran Bagenal, and Tomas Karlsson explore the many open questions that permeate the science of auroral physics and the relatively recent field of extraterrestrial aurorae. In this interview, Eos talks to Karlsson about extraterrestrial aurorae, Alfvén waves, and the sounds of the northern lights.

  3. NASA's Earth Data Coherent Web

    Science.gov (United States)

    Gonzalez, R.; Murphy, K. J.; Cechini, M. F.

    2011-12-01

    NASA Earth Science Data Systems are a large and continuing investment in science data management activities. The Earth Science Data and Information System (ESDIS) project manages the science systems of the Earth Observing System Data and Information System (EOSDIS). EOSDIS provides science data to a wide community of users. Websites are the front door to data and services for users (science, programmatic, missions, citizen scientist, etc...), but these are disparate and disharmonious. Earth science is interdisciplinary thus, EOSDIS must enable users to discover and use the information, data and services they need in an easy and coherent manner. Users should be able to interact with each EOSDIS element in a predictable way and see EOSDIS as a program of inter-related but distinct systems each with expertise in a different science and/or information technology domain. Additionally, users should be presented with a general search capability that can be customized for each research discipline. Furthermore, the array of domain specific expertise along with crosscutting capabilities should be harmonized so users are presented with a common language and information framework to efficiently perform science investigations. The Earthdata Coherent Web Project goals are (1) to present NASA's EOSDIS as a coherent yet transparent system of systems that provide a highly functioning, integrated web presence that ties together information content and web services throughout EOSDIS so science users can easily find, access, and use data collected by NASA's Earth science missions. (2) Fresh, engaging and continually updated and coordinated content. (3) Create an active and immersive science user experience leveraging Web Services (e.g. W*S, SOAP, RESTful) from remote and local data centers and projects to reduce barriers to using EOSDIS data. Goals will be reached through a phased approach where functionality and processes are incrementally added. Phase I focused on the following main

  4. The Earth: A Changing Planet

    Science.gov (United States)

    Ribas, Núria; Màrquez, Conxita

    2013-04-01

    text: We describe a didactic unit that rises from our own living impression about our experience on the planet. Most of us feel the Earth to be a very static place. Rocks don't easily move and most landscapes always look the same over time. Anyone would say (the same way most scientists believed until the beginning of the last century) that our planet has always remained unchanged, never transformed. But then, all of a sudden, as a misfortune for so many humans, natural hazards appear on the scene: an earthquake causing so many disasters, a tsunami carrying away everything in its path, an eruption that can destroy huge surrounding areas but also bring new geographical relief. Science cannot remain oblivious to these events, we must wonder beyond. What does an earthquake mean? Why does it happen? What about an eruption? If it comes from the inside, what can we guess from it? Researching about all of these events, scientists have been able to arrive to some important knowledge of the planet itself: It has been possible to theorize about Earth's interior. It has also been confirmed that the planet has not always been the quiet and stable place we once thought. Continents, as Wegener supposed, do move about and the Tectonic Plates Theory, thanks to the information obtained through earthquakes and eruption, can provide some interesting explanations. But how do we know about our planet's past? How can we prove that the Earth has always been moving and that its surface changes? The Earth's rocks yield the answer. Rocks have been the only witnesses throughout millions of years, since the planet first came to existence. Let's learn how to read them… Shouldn't we realize that rocks are to Geology what books are to History? This discursive process has been distributed in four learning sequences: 1. Land is not as solid nor firm as it would seem, 2. The Earth planet: a puzzle, 3. The rocks also recycle , 4. Field trip to "Sant Miquel del Fai". The subjects take about 30

  5. Cyberlearning for Climate Literacy: Challenges and Opportunities

    Science.gov (United States)

    McCaffrey, M. S.; Buhr, S. M.; Gold, A. U.; Ledley, T. S.; Mooney, M. E.; Niepold, F.

    2010-12-01

    Cyberlearning tools provide cost and carbon-efficient avenues for fostering a climate literate society through online engagement with learners. With climate change education becoming a Presidential Priority in 2009, funding for grants from NSF, NASA and NOAA is leading to a new generation of cyberlearning resources that supplement existing online resources. This paper provides an overview of challenges and opportunities relating to the online delivery of high quality, often complex climate science by examining several existing and emerging efforts, including the Climate Literacy and Energy Awareness Network (CLEAN,) a National Science Digital Library Pathway, the development by CIRES Education and Outreach of the Inspiring Climate Education Excellence (ICEE) online course, TERC’s Earth Exploration Toolbook (EET,) DataTools, and EarthLab modules, the NOAA Climate Stewards Education Program (CSEP) that utilizes the NSTA E-Learning Center, online efforts by members of the Federation of Earth Science Information Partners (ESIP), UCAR’s Climate Discovery program, and the Climate Adaptation, Mitigation e-Learning (CAMeL) project. In addition, we will summarize outcomes of the Cyberlearning for Climate Literacy workshop held in Washington DC in the Fall of 2009 and examine opportunities for teachers to develop and share their own lesson plans based on climate-related web resources that currently lack built-in learning activities, assessments or teaching tips.

  6. On Markov Earth Mover's Distance.

    Science.gov (United States)

    Wei, Jie

    2014-10-01

    In statistics, pattern recognition and signal processing, it is of utmost importance to have an effective and efficient distance to measure the similarity between two distributions and sequences. In statistics this is referred to as goodness-of-fit problem . Two leading goodness of fit methods are chi-square and Kolmogorov-Smirnov distances. The strictly localized nature of these two measures hinders their practical utilities in patterns and signals where the sample size is usually small. In view of this problem Rubner and colleagues developed the earth mover's distance (EMD) to allow for cross-bin moves in evaluating the distance between two patterns, which find a broad spectrum of applications. EMD-L1 was later proposed to reduce the time complexity of EMD from super-cubic by one order of magnitude by exploiting the special L1 metric. EMD-hat was developed to turn the global EMD to a localized one by discarding long-distance earth movements. In this work, we introduce a Markov EMD (MEMD) by treating the source and destination nodes absolutely symmetrically. In MEMD, like hat-EMD, the earth is only moved locally as dictated by the degree d of neighborhood system. Nodes that cannot be matched locally is handled by dummy source and destination nodes. By use of this localized network structure, a greedy algorithm that is linear to the degree d and number of nodes is then developed to evaluate the MEMD. Empirical studies on the use of MEMD on deterministic and statistical synthetic sequences and SIFT-based image retrieval suggested encouraging performances.

  7. Astronaut Clothing for Exploration Missions

    Science.gov (United States)

    Poritz, Darwin H.; Orndoff, Evelyne; Kaspranskiy, Rustem R.; Schesinger, Thilini; Byrne, Vicky

    2016-01-01

    Astronaut clothes for exploration missions beyond low Earth orbit need to satisfy several challenges not met by the currently-used mostly-cotton clothing. A laundering system is not expected to be available, and thus soiled garments must be trashed. Jettisoning waste does not seem feasible at this time. The cabin oxygen concentration is expected to be higher than standard, and thus fabrics must better resist ignition and burning. Fabrics need to be identified that reduce logistical mass, that can be worn longer before disposal, that are at least as comfortable as cotton, and that resist ignition or that char immediately after ignition. Human factors and psychology indicate that crew well-being and morale require a variety of colors and styles to accommodate personal identity and preferences. Over the past four years, the Logistics Reduction Project under NASA's Advanced Exploration Systems Program has sponsored the Advanced Clothing System Task to conduct several ground studies and one ISS study. These studies have evaluated length of wear and personal preferences of commercially-available exercise- and routine-wear garments made from several fabrics (cotton, polyester, Merino wool, and modacrylic), woven and knitted. Note that Merino wool and modacrylic char like cotton in ambient air, while polyester unacceptably melts. This paper focuses on the two components of an International Space Station study, onboard and on the ground, with astronauts and cosmonauts. Fabrics were randomized to participants. Length of wear was assessed by statistical survival analysis, and preference by exact binomial confidence limits. Merino wool and modacrylic t-shirts were worn longer on average than polyester t-shirts. Interestingly, self-assessed preferences were inconsistent with length-of-wear behavior, as polyester was preferred to Merino wool and modacrylic.

  8. New Tools to Explore Troy

    Science.gov (United States)

    2002-01-01

    During the Golden Age of Greece the poet Homer wrote of the epic battles between Agamemnon and Priam-the fabled Trojan War. Although the city of Troy was a tourist attraction in Greek and Roman times, by the 1800s its location was lost, and many believed the story was only a myth. Frank Calvert and Heinrich Schliemann thought otherwise, and in the 1870s began excavating an earthen mound in western Turkey, near the Dardanelles. The site did indeed turn out to be the legendary city of Troy, and much more. Different layers-each corresponding to a different city-revealed evidence of a sequence (progression) of human habitation stretching back almost 5000 years. Although the ruins of Troy have been explored for 130 years, archaeologists have only excavated 10 percent of the site. To help them, NASA scientists are exploring new ways of using remote sensing data. The image above shows Troy and the surrounding image in true color. Taken by the Advanced Land Imager (ALI) aboard the EO-1 satellite, the full-size image has a resolution of 10 meters. The city of Troy is circled, and the body of water to the north is the Dardanelles. These and other sensors may help find the boundaries of a harbor near Trojan-war era Troy that has since filled with sediment, trace the route of a Roman aqueduct that carried water to the city 2000 years ago, locate an ancient cemetary, and map the outer walls. A high-resolution image of Troy from the Ikonos satellite, posted previously on the Earth Observatory, reveals more details of the city. Image courtesy Konstantinos Stefanidis, EO-1 team

  9. Earthing the Human Body Influences Physiologic Processes

    Science.gov (United States)

    Sokal, Karol

    2011-01-01

    Abstract Objectives This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments Five (5) experiments are presented: experiment 1—effect of earthing on calcium–phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2—effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3—effect of earthing on thyroid function (N = 12); experiment 4—effect of earthing on glucose concentration (N = 12); experiment 5—effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Results Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Conclusions Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium–phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems. PMID:21469913

  10. Earth Science Data for a Mobile Age

    Science.gov (United States)

    Oostra, D.; Chambers, L. H.; Lewis, P. M.; Baize, R.; Oots, P.; Rogerson, T.; Crecelius, S.; Coleman, T.

    2012-12-01

    /needs and generate new data combinations--targeting users with a web 3.0 methodology. We will examine applications that give users direct access to data in near real-time and find solutions for the educational community. MND and S'COOL will identify trends in the mobile and web application sectors to provide the greatest effect upon relevant audiences within the science and educational communities. Greater access is the goal, with an acute focus on educating our future explorers and scientists with tools and data that will provide the most efficacy, use, and enriching science experiences. Current trends point to cross-platform web applications as being the most effective and efficient means of delivering content, data, and ideas to end users. Universal availability of key datasets on any device will encourage users to continue to use data and attract potential data users and providers. Projected Outcomes Initially, the outcome for this work is to increase the effectiveness of the MND and S'COOL projects by learning more about our users needs and anticipating how data will be used in the future. Through our work we will increase exposure and ease of access to NASA datasets relevant to our communities. Our goal is to focus on our participants mobile usage in the classroom, thereby gaining a greater understanding on how data is being used to teach students about the Earth and begin to develop better tools and technologies.

  11. Parachute satellites for earth observation

    Science.gov (United States)

    Massonnet, Didier

    2008-07-01

    The "parachute" concept presented here is a generic definition for earth observation systems essentially made of a reflector under which a detector associated with a telemetry antenna is suspended [D. Massonnet, (Applicant), Satellite, method and a fleet of satellites for observing a celestial body, Patent 0509-1112, 2006. [1]; D. Massonnet, (Déposant), Satellite, procédé et flotte de satellites d'observation d'un corps céleste, Priorité 04-04327, 2004. [2

  12. Planet earth a beginner's guide

    CERN Document Server

    Gribbin, John

    2012-01-01

    In this incredible expedition into the origins, workings, and evolution of our home planet, John Gribbin, bestselling author of In Search of Schrödinger's Cat, The Scientists, and In Search of the Multiverse, does what he does best: taking four and a half billion years of mind-boggling science and digging out the best bits. From the physics of Newton and the geology of Wegener, to the environmentalism of Lovelock, this is a must read for Earth's scientists and residents alike. Trained as an astrophysicist at Cambridge University, John Gribbin is currently Visiting Fellow in Astronomy at the University of Sussex, England.

  13. Earth Sciences annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J. (eds.)

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications.

  14. Earth Sciences annual report, 1987

    International Nuclear Information System (INIS)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J.

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications

  15. Geostationary earth science platform concepts

    Science.gov (United States)

    Herardian, M. M.

    1989-01-01

    The new concepts are presented for the Geostationary Earth Science Platform. Bus and payload arrangements, with instrument locations on the payload module and basic payload dimensions, are depicted and compared for each concept. The Titan 4 SRMU (with solid rocket motor upgrage) launch vehicle is described and compared to the standard Titan 4. The upgraded Titan 4 is capable of launching a 13,500 lb payload to GEO. The launch configuration showing each concept packaged within the 16 ft diameter payload envelope is presented. This presentation is represented by viewgraph only.

  16. Exploring Technology Education.

    Science.gov (United States)

    Van Duzer, Eric

    Modular middle school technology programs, generically called Exploring Technology Education (ETE) courses, are described and analyzed to determine their strengths and weaknesses and their appropriate role in middle school curricula. Interviews were conducted with teachers, officers of the Exploring Technology Educators Association, vendors and…

  17. Uranium exploration in Ecuador

    International Nuclear Information System (INIS)

    Severne, B.; Penaherrera, P.F.; Fiallos, V.S.

    1981-01-01

    The 600-km segment of the Andean Cordillera in Ecuador includes zones that can be correlated, geologically, with uranium districts elsewhere in the Andes. It is believed that these essentially unexplored zones have the potential for economic uranium mineralization. Exploration activity to date has been limited, although it has involved both geochemical and radiometric techniques to evaluate geological concepts. Minor uranium occurrences (with chemical analyses up to 100 ppm) have been encountered, which provide further incentive to commence large-scale systematic exploration. It is recognized that a very large exploration budget and considerable technical expertise will be required to ensure exploration success. Consequently, participation by groups of proven capability from other countries will be sought for Ecuador's national exploration programme. (author)

  18. The meaning of liberty beyond earth

    CERN Document Server

    2015-01-01

    The purpose of this book is to initiate a new discussion on liberty focusing on the infinite realms of space. The discussion of the nature of liberty and what it means for a human to be free has occupied the minds of thinkers since the Enlightenment. However, without exception, every one of these discussions has focused on the character of liberty on the Earth.The emergence of human space exploration programs in the last 40-50 years raise a fundamental and new question: what will be the future of liberty in space? This book takes the discussion of liberty into the extraterrestrial environment. In this book, new questions will be addressed such as: Can a person be free when the oxygen the individual breathes is the result of a manufacturing process controlled by someone else? Will the interdependence required to survive in the extremities of the extraterrestrial environment destroy individualism? What are the obligations of the individual to the extraterrestrial state? How can we talk of extraterrestrial li...

  19. An Expert System toward Buiding An Earth Science Knowledge Graph

    Science.gov (United States)

    Zhang, J.; Duan, X.; Ramachandran, R.; Lee, T. J.; Bao, Q.; Gatlin, P. N.; Maskey, M.

    2017-12-01

    In this ongoing work, we aim to build foundations of Cognitive Computing for Earth Science research. The goal of our project is to develop an end-to-end automated methodology for incrementally constructing Knowledge Graphs for Earth Science (KG4ES). These knowledge graphs can then serve as the foundational components for building cognitive systems in Earth science, enabling researchers to uncover new patterns and hypotheses that are virtually impossible to identify today. In addition, this research focuses on developing mining algorithms needed to exploit these constructed knowledge graphs. As such, these graphs will free knowledge from publications that are generated in a very linear, deterministic manner, and structure knowledge in a way that users can both interact and connect with relevant pieces of information. Our major contributions are two-fold. First, we have developed an end-to-end methodology for constructing Knowledge Graphs for Earth Science (KG4ES) using existing corpus of journal papers and reports. One of the key challenges in any machine learning, especially deep learning applications, is the need for robust and large training datasets. We have developed techniques capable of automatically retraining models and incrementally building and updating KG4ES, based on ever evolving training data. We also adopt the evaluation instrument based on common research methodologies used in Earth science research, especially in Atmospheric Science. Second, we have developed an algorithm to infer new knowledge that can exploit the constructed KG4ES. In more detail, we have developed a network prediction algorithm aiming to explore and predict possible new connections in the KG4ES and aid in new knowledge discovery.

  20. Astrobiology and the Possibility of Life on Earth and Elsewhere…

    Science.gov (United States)

    Cottin, Hervé; Kotler, Julia Michelle; Bartik, Kristin; Cleaves, H. James; Cockell, Charles S.; de Vera, Jean-Pierre P.; Ehrenfreund, Pascale; Leuko, Stefan; Ten Kate, Inge Loes; Martins, Zita; Pascal, Robert; Quinn, Richard; Rettberg, Petra; Westall, Frances

    2017-07-01

    Astrobiology is an interdisciplinary scientific field not only focused on the search of extraterrestrial life, but also on deciphering the key environmental parameters that have enabled the emergence of life on Earth. Understanding these physical and chemical parameters is fundamental knowledge necessary not only for discovering life or signs of life on other planets, but also for understanding our own terrestrial environment. Therefore, astrobiology pushes us to combine different perspectives such as the conditions on the primitive Earth, the physicochemical limits of life, exploration of habitable environments in the Solar System, and the search for signatures of life in exoplanets. Chemists, biologists, geologists, planetologists and astrophysicists are contributing extensively to this interdisciplinary research field. From 2011 to 2014, the European Space Agency (ESA) had the initiative to gather a Topical Team of interdisciplinary scientists focused on astrobiology to review the profound transformations in the field that have occurred since the beginning of the new century. The present paper is an interdisciplinary review of current research in astrobiology, covering the major advances and main outlooks in the field. The following subjects will be reviewed and most recent discoveries will be highlighted: the new understanding of planetary system formation including the specificity of the Earth among the diversity of planets, the origin of water on Earth and its unique combined properties among solvents for the emergence of life, the idea that the Earth could have been habitable during the Hadean Era, the inventory of endogenous and exogenous sources of organic matter and new concepts about how chemistry could evolve towards biological molecules and biological systems. In addition, many new findings show the remarkable potential life has for adaptation and survival in extreme environments. All those results from different fields of science are guiding our