WorldWideScience

Sample records for earth elements determination

  1. Determination of rare earth elements in plant protoplasts by MAA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A preliminary study on the speciation of rare earth elements in plant cells has been carried out by molecular activation analysis (MAA). Mesophyll protoplasts of Brassica napus were isolated by enzymatic digestion. After being washed with isosmotic solution containing EDTA for several times, the protoplasts were purified by gradient centrifugation. Then the concentration of rare earth elements (REEs) in the protoplasts was determined by neutron activation analysis. The result shows that REEs can enter the cells of the plant.

  2. Determination of thorium and of rare earth elements in cerium earth minerals and ores

    Science.gov (United States)

    Carron, M.K.; Skinner, D.L.; Stevens, R.E.

    1955-01-01

    The conventional oxalate method for precipitating thorium and the rare earth elements in acid solution exhibits definite solubilities of these elements. The present work was undertaken to establish conditions overcoming these solubilities and to find optimum conditions for precipitating thorium and the rare earth elements as hydroxides and sebacates. The investigations resulted in a reliable procedure applicable to samples in which the cerium group elements predominate. The oxalate precipitations are made from homogeneous solution at pH 2 by adding a prepared solution of anhydrous oxalic acid in methanol instead of the more expensive crystalline methyl oxalate. Calcium is added as a carrier. Quantitative precipitation of thorium and the rare earth elements is ascertained by further small additions of calcium to the supernatant liquid, until the added calcium precipitates as oxalate within 2 minutes. Calcium is removed by precipitating the hydroxides of thorium and rare earths at room temperature by adding ammonium hydroxide to pH > 10. Thorium is separated as the sebacate at pH 2.5, and the rare earths are precipitated with ammonium sebacate at pH 9. Maximum errors for combined weights of thorium and rare earth oxides on synthetic mixtures are ??0.6 mg. Maximum error for separated thoria is ??0.5 mg.

  3. Determination of rare-earth elements in Luna 16 regolith sample by chemical spectral method

    Science.gov (United States)

    Stroganova, N. S.; Ryabukhin, V. A.; Laktinova, N. V.; Ageyeva, L. V.; Galkina, I. P.; Gatinskaya, N. G.; Yermakov, A. N.; Karyakin, A. V.

    1974-01-01

    An analysis was made of regolith from layer A of the Luna 16 sample for rare earth elements, by a chemical spectral method. Chemical and ion exchange concentrations were used to determine the content of 12 elements and Y at the level 0.001 to 0.0001 percent with 10 to 15 percent reproducibility of the emission determination. Results within the limits of reproducibility agree with data obtained by mass spectra, activation, and X-ray fluorescent methods.

  4. Use of X-ray Fluorescence Analysis for the Determination of Rare Earth Elements

    Science.gov (United States)

    Schramm, Rainer

    2016-09-01

    X-ray fluorescence spectrometry (XRF) is a powerful tool for the analysis of solid material. That is the reason why the technique was applied for the determination of rare earth elements (REEs) since about 1970. At present, energy-dispersive XRF and wavelength-dispersive XRF are used for the analysis of pressed powder pellets or fused Li-borate beads containing REEs. The production of reliable results can only be achieved by careful optimization of the parameter, in particular the selection of spectral lines. The quantification is based on a calibration realized by using reference samples.

  5. Rare earth elements determination in medicinal plants by Neutron Activation Analisys

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Rodolfo D.M.R.; Francisconi, Lucilaine S.; Silva, Paulo S.C. da, E-mail: rdmrg89@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Rare Earth Elements (REEs) have been considered nontoxic for human health and for the environment; however, the use of REEs in the development of recent technologies has increased the interest un their biological effects. Some studies related to their concentration in foodstuffs were published but REEs levels in medicinal plants are still unknown. The objective of this study was to determine the Rees concentration in the set of 59 medicinal herbs commonly used by Brazilian folk. Results showed that plants can concentrate REEs in their aerial parts, but the amount transferred to the extract of these plants is relatively low, resulting in little ingestion of these elements by the population during the extract consumption. (author)

  6. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  7. A chemical-spectrochemical method for the determination of rare earth elements and thorium in cerium minerals

    Science.gov (United States)

    Rose, H.J.; Murata, K.J.; Carron, M.K.

    1954-01-01

    In a combined chemical-spectrochemical procedure for quantitatively determining rare earth elements in cerium minerals, cerium is determined volumetrically, a total rare earths plus thoria precipitate is separated chemically, the ceria content of the precipitate is raised to 80??0 percent by adding pure ceria, and the resulting mixture is analyzed for lanthanum, praseodymium, neodymium, samarium, gadolinium, yttrium, and thorium spectrochemically by means of the d.c. carbon arc. Spectral lines of singly ionized cerium are used as internal standard lines in the spectrochemical determination which is patterned after Fassel's procedure [1]. Results of testing the method with synthetic mixtures of rare earths and with samples of chemically analyzed cerium minerals show that the coefficient of variation for a quadruplicate determination of any element does not exceed 5??0 (excepting yttrium at concentrations less than 1 percent) and that the method is free of serious systematic error. ?? 1954.

  8. Determination of rare earth elements in high purity rare earth oxides by liquid chromatography, thermionic mass spectrometry and combined liquid chromatography/thermionic mass spectrometry

    Science.gov (United States)

    Stijfhoorn, D. E.; Stray, H.; Hjelmseth, H.

    1993-03-01

    A high-performance liquid Chromatographie (HPLC) method for the determination of rare earth elements in rocks has been modified and used for the determination of rare earth elements (REE) in high purity rare earth oxides. The detection limit was 1-1.5 ng or 2-3 mg/kg when a solution corresponding to 0.5 mg of the rare earth oxide was injected. The REE determination was also carried out by adding a mixture of selected REE isotopes to the sample and analysing the collected HPLC-fractions by mass spectrometry (MS) using a thermionic source. Since the matrix element was not collected, interference from this element during the mass spectrometric analysis was avoided. Detection limits as low as 0.5 mg/kg could then be obtained. Detection limits as low as 0.05 mg/kg were possible by MS without HPLC-pre-separation, but this approach could only be used for those elements that were not affected by the matrix. Commercial samples of high purity Nd 2O 3, Gd 2O 3 and Dy 2O 3 were analysed in this study, and a comparison of results obtained by HPLC, combined HPLC/MS and direct MS are presented.

  9. Collaborative study to improve the quality control of rare earth element determinations in environmental matrices

    NARCIS (Netherlands)

    Kramer, K.J.M.; Dorten, W.S.; Groenewoud, H. van het; Haan, E. de; Kramer, G.N.; Monteiro, L.; Muntau, H.; Quevauviller, P.

    1999-01-01

    In order to control the quality of rare earth determinations in environmental matrices, the Standards, Measurements and Testing Programme (formerly Community Bureau of Reference, BCR) of the European Commission has started a project, the final aim of which is to certify four types of matrices (tuna

  10. Determination of rare earth and refractory trace element abundances in early solar system objects by ion microprobe

    Indian Academy of Sciences (India)

    S Sahijpal; K K Marhas; J N Goswami

    2003-12-01

    Experimental and analytical procedures devised for measurement of rare earth element (REE) abundances using a secondary ion mass spectrometer (ion microprobe) are described. This approach is more versatile than the conventional techniques such as neutron activation analysis and isotope dilution mass spectrometry by virtue of its high spatial resolution that allows determination of REE abundances in small domains (10-20 micron) within individual mineral phases. The ion microprobe measurements are performed at a low mass-resolving power adopting the energy-filltering technique (Zinner and Crozaz 1986) for removal and suppression of unresolved complex molecular interferences in the REE masses of interest. Synthetic standards are used for determining various instrument specific parameters needed in the data deconvolution procedure adopted for obtaining REE abundances. Results obtained from analysis of standards show that our ion microprobe may be used for determining REE abundances down to ppm range with uncertainties of ∼10 to 15%. Abundances of rare earth and several other refractory trace elements in a set of early solar system objects isolated from two primitive carbonaceous chondrites were determined using the procedures devised by us. The results suggest that some of these objects could be high temperature nebular condensates, while others are products of melting and recrystallization of precursor nebular solids in a high temperature environment.

  11. Determination of Rare Earth Elements in Green River Shale By Inductively Coupled Plasma Mass Spectrometry Using a Desolvating Nebulizer System

    Science.gov (United States)

    Smith, F.; Clarke, D.; Moody, S.

    2014-12-01

    In this work, inductively coupled plasma mass spectrometry (ICP-MS) is applied to a geological sample for the determination of rare earth elements (REEs) using a specialized nebulizer system. The low flow desolvating nebulizer has been shown to decrease metal oxide formation which leads to a reduction in mass spectral interferences. Traditional nebulizers and spray chambers may be suitable for similar sample types, but reduction of water vapor loading to the plasma can improve REE detection limits for quadrupole-based ICP-MS. The Green River formation holds the largest oil shale deposits in the world and understanding the elemental composition of these samples is important in its study. A certified reference material, USGS Green River Shale (SGR-1), was microwave digested prior to analysis, and recoveries of REEs compared to historical values are discussed.

  12. Determination of trace rare earth elements in gadolinium aluminate by inductively coupled plasma time of flight mass spectrometry

    Science.gov (United States)

    Saha, Abhijit; Deb, S. B.; Nagar, B. K.; Saxena, M. K.

    An analytical methodology was developed for the precise quantification of ten trace rare earth elements (REEs), namely, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, and Tm, in gadolinium aluminate (GdAlO3) employing an ultrasonic nebulizer (USN)-desolvating device based inductively coupled plasma mass spectrometry (ICP-MS). A microwave digestion procedure was optimized for digesting 100 mg of the refractory oxide using a mixture of sulphuric acid (H2SO4), phosphoric acid (H3PO4) and water (H2O) with 1400 W power, 10 min ramp and 60 min hold time. An USN-desolvating sample introduction system was employed to enhance analyte sensitivities by minimizing their oxide ion formation in the plasma. Studies on the effect of various matrix concentrations on the analyte intensities revealed that precise quantification of the analytes was possible with matrix level of 250 mg L- 1. The possibility of using indium as an internal standard was explored and applied to correct for matrix effect and variation in analyte sensitivity under plasma operating conditions. Individual oxide ion formation yields were determined in matrix matched solution and employed for correcting polyatomic interferences of light REE (LREE) oxide ions on the intensities of middle and heavy rare earth elements (MREEs and HREEs). Recoveries of ≥ 90% were achieved for the analytes employing standard addition technique. Three real samples were analyzed for traces of REEs by the proposed method and cross validated for Eu and Nd by isotope dilution mass spectrometry (IDMS). The results show no significant difference in the values at 95% confidence level. The expanded uncertainty (coverage factor 1σ) in the determination of trace REEs in the samples were found to be between 3 and 8%. The instrument detection limits (IDLs) and the method detection limits (MDLs) for the ten REEs lie in the ranges 1-5 ng L- 1 and 7-64 μg kg- 1 respectively.

  13. Valence determination of rare earth elements in lanthanide silicates by L 3-XANES spectroscopy

    Science.gov (United States)

    Kravtsova, Antonina N.; Guda, Alexander A.; Goettlicher, Joerg; Soldatov, Alexander V.; Taroev, Vladimir K.; Kashaev, Anvar A.; Suvorova, Lyudmila F.; Tauson, Vladimir L.

    2016-05-01

    Lanthanide silicates have been hydrothermally synthesized using Cu and Ni containers. Chemical formulae of the synthesized compounds correspond to K3Eu[Si6O15] 2H2O, HK6Eu[Si10O25], K7Sm3[Si12O32], K2Sm[AlSi4O12] 0.375H2O, K4Yb2[Si8O21], K4Ce2[Al2Si8O24]. The oxidation state of lanthanides (Eu, Ce, Tb, Sm, Yb) in these silicates has been determined using XANES spectroscopy at the Eu, Ce, Tb, Sm, Yb, L 3- edges. The experimental XANES spectra were recorded using the synchrotron radiation source ANKA (Karlsruhe Institute of Technology) and the X-ray laboratory spectrometer Rigaku R- XAS. By comparing the absorption edge energies and white line intensities of the silicates with the ones of reference spectra the oxidation state of lanthanides Eu, Ce, Tb, Sm, Yb has been found to be equal to +3 in all investigated silicates except of the Ce-containing silicate from the run in Cu container where the cerium oxidation state ranges from +3 (Ce in silicate apatite and in a KCe silicate with Si12O32 layers) to +4 (starting CeO2 or oxidized Ce2O3).

  14. Determination of trace rare earth elements in gadolinium aluminate by inductively coupled plasma time of flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhijit; Deb, S.B.; Nagar, B.K.; Saxena, M.K., E-mail: saxenamk@barc.gov.in

    2014-04-01

    An analytical methodology was developed for the precise quantification of ten trace rare earth elements (REEs), namely, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, and Tm, in gadolinium aluminate (GdAlO{sub 3}) employing an ultrasonic nebulizer (USN)-desolvating device based inductively coupled plasma mass spectrometry (ICP-MS). A microwave digestion procedure was optimized for digesting 100 mg of the refractory oxide using a mixture of sulphuric acid (H{sub 2}SO{sub 4}), phosphoric acid (H{sub 3}PO{sub 4}) and water (H{sub 2}O) with 1400 W power, 10 min ramp and 60 min hold time. An USN-desolvating sample introduction system was employed to enhance analyte sensitivities by minimizing their oxide ion formation in the plasma. Studies on the effect of various matrix concentrations on the analyte intensities revealed that precise quantification of the analytes was possible with matrix level of 250 mg L{sup −1}. The possibility of using indium as an internal standard was explored and applied to correct for matrix effect and variation in analyte sensitivity under plasma operating conditions. Individual oxide ion formation yields were determined in matrix matched solution and employed for correcting polyatomic interferences of light REE (LREE) oxide ions on the intensities of middle and heavy rare earth elements (MREEs and HREEs). Recoveries of ≥ 90% were achieved for the analytes employing standard addition technique. Three real samples were analyzed for traces of REEs by the proposed method and cross validated for Eu and Nd by isotope dilution mass spectrometry (IDMS). The results show no significant difference in the values at 95% confidence level. The expanded uncertainty (coverage factor 1σ) in the determination of trace REEs in the samples were found to be between 3 and 8%. The instrument detection limits (IDLs) and the method detection limits (MDLs) for the ten REEs lie in the ranges 1–5 ng L{sup −1} and 7–64 μg kg{sup −1} respectively. - Highlights: • A

  15. Rare earth elements behavior in Peruibe black mud

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da, E-mail: jeffkoy@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  16. Determination of rare earth elements in red mud by ICP-OES%ICP-OES法测定铝厂赤泥中的稀土元素

    Institute of Scientific and Technical Information of China (English)

    白英彬; 白英奇

    2011-01-01

    应用ICP- OES法测定赤泥中的稀土元素,考察了谱线干扰对测定的影响,选取了适宜的仪器工作条件,对赤泥中的稀土元素进行了直接测定,各元素的加标回收率为91.6%~99.2%.%The rare earth elements in red mud were determined by ICP-OES. The spectral interferences were in-verstigated and the optimum operational conditions were selected. Under these conditions the rare earth elements in red mud were determined directly. The spiked recoveries of elements were in the range of 91.6% ~99.2%.

  17. Determination of rare-earth elements in rocks by isotope-excited X-ray fluorescence spectrometry

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar; Wollenberg, H.A.

    1970-01-01

    by the least-squares method to yield the fractions of La, Ce, Pr, and Nd in the samples. A calibration was established between the fractions of Ce and Nd and their abundances determined by mass spectrometry. Statistical considerations indicated that detection limits are of the order of 10 ppm. An X......-ray spectrometric scan of a longitudinally sliced drill core showed a close correlation between rare-earth abundances and appropriate minerals....

  18. Fast and simultaneously determination of light and heavy rare earth elements in monazite using combination of ultraviolet-visible spectrophotometry and multivariate analysis

    Science.gov (United States)

    Anggraeni, Anni; Arianto, Fernando; Mutalib, Abdul; Pratomo, Uji; Bahti, Husein H.

    2017-05-01

    Rare Earth Elements (REE) are elements that a lot of function for life, such as metallurgy, optical devices, and manufacture of electronic devices. Sources of REE is present in the mineral, in which each element has similar properties. Currently, to determining the content of REE is used instruments such as ICP-OES, ICP-MS, XRF, and HPLC. But in each instruments, there are still have some weaknesses. Therefore we need an alternative analytical method for the determination of rare earth metal content, one of them is by a combination of UV-Visible spectrophotometry and multivariate analysis, including Principal Component Analysis (PCA), Principal Component Regression (PCR), and Partial Least Square Regression (PLS). The purpose of this experiment is to determine the content of light and medium rare earth elements in the mineral monazite without chemical separation by using a combination of multivariate analysis and UV-Visible spectrophotometric methods. Training set created 22 variations of concentration and absorbance was measured using a UV-Vis spectrophotometer, then the data is processed by PCA, PCR, and PLSR. The results were compared and validated to obtain the mathematical equation with the smallest percent error. From this experiment, mathematical equation used PLS methods was better than PCR after validated, which has RMSE value for La, Ce, Pr, Nd, Gd, Sm, Eu, and Tb respectively 0.095; 0.573; 0.538; 0.440; 3.387; 1.240; 1.870; and 0.639.

  19. Rare earth elements: end use and recyclability

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  20. Determination of rare earth elements in dust deposited on tree leaves from Greater Cairo using inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Shaltout, Abdallah A; Khoder, M I; El-Abssawy, A A; Hassan, S K; Borges, Daniel L G

    2013-07-01

    This work aims at monitoring the rare earth elements (REEs) and Th in dust deposited on tree leaves collected inside and outside Greater Cairo (GC), Egypt. Inductively coupled plasma mass spectrometry (ICP-MS) was employed. The concentration of REEs in the collected dust samples was found to be in the range from 1 to 60 μg g(-1). The highest concentration of REEs was found in dust samples collected outside GC, in the middle of the Nile Delta. This would refer to the availability of black sands, due to desert wind occurrence during the sample collection, and anthropogenic activities. The limits of detection of the REEs ranged from 0.02 ng g(-1) for Tm to 3 ng g(-1) for Yb. There was an obvious variation in the concentration of REEs inside and outside GC due to variations of natural and anthropogenic sources. Strong correlations among all the REEs were found.

  1. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuefei [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Jiang Zucheng [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); He Man [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China)]. E-mail: binhu@whu.edu.cn

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3}(Eu) to 6.7 pg m{sup -3}(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c = 1 {mu}g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. - A new method for direct determination of trace rare earth elements in coal fly ash and atmospheric particulates by fluorination ETV-ICP-MS with slurry sampling.

  2. Recycling of Rare Earth Elements

    Science.gov (United States)

    Lorenz, Tom; Bertau, Martin

    2017-01-01

    Any development of an effective process for rare earth (RE) recycling has become more and more challenging, especially in recent years. Since 2011, when commodity prices of REs had met their all-time maximum, prices have dropped rapidly by more than 90 %. An economic process able to offset these fluctuations has to take unconventional methods into account beside well-known strategies like acid/basic leaching or solvent extraction. The solid-state chlorination provides such an unconventional method for mobilizing RE elements from waste streams. Instead of hydrochloric acid this kind of chlorination decomposes NH4Cl thermally to release up to 400 °C hot HCl gas. After cooling the resulting solid metal chlorides may be easily dissolved in pH-adjusted water. Without producing strongly acidic wastes and with NH4Cl as cheap source for hydrogen chloride, solid-state chlorination provides various advantages in terms of costs and disposal. In the course of the SepSELSA project this method was examined, adjusted and optimized for RE recycling from fluorescent lamp scraps as well as Fe14Nd2B magnets. Thereby many surprising influences and trends required various analytic methods to examine the reasons and special mechanisms behind them.

  3. Simultaneous Determination of Trace Rare Earth Elements and Other Elements in High Purity Terbium Oxide (Tb4O7) by ICP-AES After HPLC Separation Using P507 Resin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This article describes a new method for the simultaneous determination of trace rare earth elements (REEs) and non rare earth elements (NREEs) in high purity terbium oxide by ICP-AES after HPLC separation using P507 resin. The chromatographic separation of the analytes from the matrix using dilute nitric acid as mobile phase was studied. The experimental results showed that a favorable separation of trace metals (Cu and Gd) from the matrix (Tb) can easily be achieved by elution with dilute nitric acid within 25 min. The proposed method was applied to the determination of trace metals (Ca, Cu, Mg, Mn, Ni, Si, La, Ce, Pr, Nd, Sm, Eu and Gd) in high purity terbium oxide. The detection limits (DLs) for the analytes ranged from 0.4-4.0 μg\\5g-1, and the recoveries are from 78%-105%.

  4. Determination of rare-earths and other trace elements in neo proterozoic-neo paleozoic dykes from Ceara state, Brazil, by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Rafael Martins dos; Figueiredo, Ana M.G., E-mail: rafael.anjos@usp.b, E-mail: anamaria@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro do Reator Nuclear de Pesquisas. Lab. de Analise por Ativacao com Neutrons; Cardoso, Gustavo Luan; Marques, Leila S., E-mail: leila@iag.usp.b [Universidade de Sao Paulo (IAG/USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas

    2011-07-01

    Trace elements such as rare earths, U, Th, Ta, Ba and Hf can be very useful in petrogenetic studies of igneous and metamorphic rocks, giving information about the origin and evolution of magmas. Instrumental Neutron Activation Analysis (INAA) is an accurate and precise for trace element analysis in geological samples, and provides the information required for this kind of studies. In this study, rare earths and incompatible trace elements were determined by INAA in the geological reference materials GS-N and BE-N, to quality control, and for the investigation of acid dykes of neo proterozoic-neo paleozoic ages, which outcrop in the Medio Coreau and Ceara Central domains from the Borborema Province (Ceara State). The powdered samples (particle sizes less than 100 mesh), crushed by using a mechanical agate mortar grinder, were irradiated at the IEA-R1 nuclear reactor at IPEN-CNEN/SP, and the induced activity was measured by high resolution gamma-ray spectrometry. The accuracy and precision of the method were evaluated and preliminary results of dyke samples are presented. (author)

  5. Simultaneous determination of rare earth elements in ore and anti-corrosion coating samples using a portable capillary electrophoresis instrument with contactless conductivity detection.

    Science.gov (United States)

    Nguyen, Thi Anh Huong; Nguyen, Van Ri; Le, Duc Dung; Nguyen, Thi Thanh Binh; Cao, Van Hoang; Nguyen, Thi Kim Dung; Sáiz, Jorge; Hauser, Peter C; Mai, Thanh Duc

    2016-07-29

    The employment of an in-house-made capillary electrophoresis (CE) instrument with capacitively coupled contactless conductivity detection (C(4)D) as a simple and inexpensive solution for simultaneous determination of many rare earth elements (REEs) in ore samples from Vietnam, as well as in anti-corrosion coating samples is reported. 14 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) were determined using an electrolyte composed of 20mM arginine and 10mM α-hydroxyisobutyric acid adjusted to pH 4.2 with acetic acid. The best detection limit achieved was 0.24mg/L using the developed CE-C(4)D method. Good agreement between results from CE-C(4)D and the confirmation method (ICP-MS) was achieved, with a coefficient of determination (r(2)) for the two pairs of data of 0.998.

  6. Moving KML geometry elements within Google Earth

    Science.gov (United States)

    Zhu, Liang-feng; Wang, Xi-feng; Pan, Xin

    2014-11-01

    During the process of modeling and visualizing geospatial information on the Google Earth virtual globe, there is an increasing demand to carry out such operations as moving geospatial objects defined by KML geometry elements horizontally or vertically. Due to the absence of the functionality and user interface for performing the moving transformation, it is either hard or impossible to interactively move multiple geospatial objects only using the existing Google Earth desktop application, especially when the data sets are in large volume. In this paper, we present a general framework and associated implementation methods for moving multiple KML geometry elements within Google Earth. In our proposed framework, we first load KML objects into the Google Earth plug-in, and then extract KML geometry elements from the imported KML objects. Subsequently, we interactively control the movement distance along a specified orientation by employing a custom user interface, calculate the transformed geographic location for each KML geometry element, and adjust geographic coordinates of the points in each KML objects. And finally, transformed KML geometry elements can be displayed in Google Earth for 3D visualization and spatial analysis. A key advantage of the proposed framework is that it provides a simple, uniform and efficient user interface for moving multiple KML geometry elements within Google Earth. More importantly, the proposed framework and associated implementations can be conveniently integrated into other customizable Google Earth applications to support interactively visualizing and analyzing geospatial objects defined by KML geometry elements.

  7. Precise determination of rare earth elements, thorium and uranium in chondritic meteorites by inductively coupled plasma mass spectrometry. A comparative study with radiochemical neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shinotsuka, Kazunori; Ebihara, Mitsuru [Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Tokyo (Japan)

    1997-02-20

    An inductively coupled plasma mass spectrometry (ICP-MS) procedure for determining trace amounts of rare earth elements (REEs), Th and U in chondritic meteorites (chondrites) is presented. As chondrites have low contents of these elements (10{sup -2} to 10{sup -4}xcrustal rock averages), the procedure was designed to be performed in as small a scale as possible in order to reduce the procedural blank. Serious matrix effects (ion suppression) may be caused by high Fe contents (20-35 wt.), which could be eliminated by applying appropriate internal standards (Rh for Y, In and Tl for lanthanides, and Bi for Th and U) and dilution factors (10{sup 4} for Y and 10{sup 3} for the rest of elements). Radiochemical neutron activation analysis (RNAA) was also applied for determining 10 REEs (La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb and Lu) in chondrites. It is found that both ICP-MS and RNAA have comparable detection limits for REEs. ICP-MS, however, has the great advantage that all REEs (including Y), Th and U can be determined with similar precision. Three Antarctic chondrites for which some anomalous REE abundances had been reported by RNAA, were also analyzed by ICP-MS but no anomalies were found, which implies the limitation of RNAA data in discussing the REE abundances in detail.

  8. Rare earth elements determined in Antarctic ice by inductively coupled plasma-Time of flight, quadrupole and sector field-mass spectrometry: An inter-comparison study

    Energy Technology Data Exchange (ETDEWEB)

    Dick, D.; Wegner, A. [Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven (Germany); Gabrielli, P. [Institute for the Dynamics of Environmental Processes - CNR, 30123 Venice (Italy); School of Earth Science and Byrd Polar Research Center, Ohio State University, Columbus, OH 43210-1002 (United States); Ruth, U. [Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven (Germany); Barbante, C. [Institute for the Dynamics of Environmental Processes - CNR, 30123 Venice (Italy); Department of Environmental Sciences, University of Venice, Ca' Foscari, 30123 Venice (Italy); Kriews, M. [Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven (Germany)], E-mail: Michael.Kriews@awi.de

    2008-07-28

    Inductively coupled plasma mass spectrometry (ICP-MS) is a suitable tool for multi-element analysis at low concentration levels. Rare earth element (REE) determinations in standard reference materials and small volumes of molten ice core samples from Antarctica have been performed with an ICP-time of flight-MS (ICP-TOF-MS) system. Recovery rates for REE in e.g. SPS-SW1 amounted to {approx}103%, and the relative standard deviations were 3.4% for replicate analysis at REE concentrations in the lower ng L{sup -1} range. Analyses of REE concentrations in Antarctic ice core samples showed that the ICP-TOF-MS technique meets the demands of restricted sample mass. The data obtained are in good agreement with ICP-Quadrupole-MS (ICP-Q-MS) and ICP-Sector Field-MS (ICP-SF-MS) results. The ICP-TOF-MS system determines accurately and precisely REE concentrations exceeding 5 ng L{sup -1} while between 0.5 and 5 ng L{sup -1} accuracy and precision are element dependent.

  9. Anthropogenic Cycles of Rare Earth Elements

    Science.gov (United States)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  10. Rare earth elements in nuclear medicine

    OpenAIRE

    Kodina G.E.; Kulakov V.N.; Sheino I.N.

    2014-01-01

    The review focuses on the key applications of stable and radioactive isotopes of rare earth elements in the technology of nuclear medicine, radionuclide diagnostics and therapy, as well as magnetic resonance imaging and binary radiotherapy technologies.

  11. Rare earth elements in nuclear medicine

    Directory of Open Access Journals (Sweden)

    Kodina G.E.

    2014-12-01

    Full Text Available The review focuses on the key applications of stable and radioactive isotopes of rare earth elements in the technology of nuclear medicine, radionuclide diagnostics and therapy, as well as magnetic resonance imaging and binary radiotherapy technologies.

  12. Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Yokoyama, Takaomi D; Suzuki, Toshihiro; Kon, Yoshiaki; Hirata, Takafumi

    2011-12-01

    We have developed a new calibration technique for multielement determination and U-Pb dating of zircon samples using laser ablation-inductively coupled plasma mass spectrometry (ICPMS) coupled with galvanometric optics. With the galvanometric optics, laser ablation of two or more sample materials could be achieved in very short time intervals (~10 ms). The resulting sample aerosols released from different ablation pits or different solid samples were mixed and homogenized within the sample cell and then transported into the ICP ion source. Multiple spot laser ablation enables spiking of analytes or internal standard elements directly into the solid samples, and therefore the standard addition calibration method can be applied for the determination of trace elements in solid samples. In this study, we have measured the rare earth element (REE) abundances of two zircon samples (Nancy 91500 and Prešovice) based on the standard addition technique, using a direct spiking of analytes through a multispot laser ablation of the glass standard material (NIST SRM612). The resulting REE abundance data show good agreement with previously reported values within analytical uncertainties achieved in this study (10% for most elements). Our experiments demonstrated that nonspectroscopic interferences on 14 REEs could be significantly reduced by the standard addition technique employed here. Another advantage of galvanometric devices is the accumulation of sample aerosol released from multiple spots. In this study we have measured the U-Pb age of a zircon sample (LMR) using an accumulation of sample aerosols released from 10 separate ablation pits of low diameters (~8 μm). The resulting (238)U-(206)Pb age data for the LMR zircons was 369 ± 64 Ma, which is in good agreement with previously reported age data (367.6 ± 1.5 Ma). (1) The data obtained here clearly demonstrate that the multiple spot laser ablation-ICPMS technique can become a powerful approach for elemental and isotopic

  13. Rare earth elements and strategic mineral policy

    NARCIS (Netherlands)

    Kooroshy, J.; Korteweg, R.; Ridder, M. de

    2010-01-01

    Newspapers report almost daily on international tensions around ‘strategic’ or ‘critical’ minerals such as rare earth elements. The temporary freeze of rare earth exports from China to Japan in late 2010 in retaliation of the capture of a Chinese captain is but one example of the strategic use of no

  14. Determination of rare earth elements, uranium and thorium in geological samples by ICP-MS, using an automatic fusion machine as an alkaline digestion tool.

    Science.gov (United States)

    Granda, Luis; Rivera, Maria; Velasquez, Colon; Barona, Diego; Carpintero, Natalia

    2014-05-01

    At the present time, rare earth elements deposits have became in strategic resources for extraction of raw materials in order to manufacture high tech devices (computers, LCD, cell phones, batteries for hybrid vehicles, fiber optics and wind turbines) (1).The appropriate analytical determination of the REE ( rare earth elements) in sediment and rock samples , is important to find potential deposits and to recognize geological environments for identifying possible alterations and mineral occurrences. The alkaline fusion, which aim is to move the entire sample from solid to liquid state by forming water soluble complexes of boron and lithium, as a previous procedure for the determination of these elements, usually takes a lot of time due to the complexity of the analysis phase and by the addition of other reagents (Tm and HF ) (2) to compensate the lack of strict temperature control. The objective of this work is to develop an efficient alternative to alkaline digestion using an electrical fusion machine, which allows to create temperature programs with advanced process control and supports up to 5 samples simultaneously, which generates a reproducibility of the method and results during the melting step. Additionally, this new method permits the processing of a larger number of samples in a shorter time. The samples analyzed in this method were weighed into porcelain crucibles and subjected to calcination for 4 hours at 950 ° C in order to determine the Lost on Ignition (LOI ) , that serves to adjust the analytical results and to preserve the shelf life of the platinum ware. Subsequently, a fraction of the calcined sample was weighed into platinum crucibles and mixed with ultra-pure lithium metaborate ( flux ) 1:4 . The crucible was then placed in the fusion machine, which was programmed to take the sample from room temperature to 950 ° C in five minutes, make a small ramp to 970 ° C maintain that temperature for five minutes and download the melt in a 10 % v / v

  15. A back-arc setting for mafic rocks of the Honeysuckle Beds, southeastern N.S.W.: the use of trace and rare earth element abundances determined by INAA

    Energy Technology Data Exchange (ETDEWEB)

    Dadd, K.A. [University of Technology, Sydney, NSW (Australia)

    1993-12-31

    Major, trace and rare earth elements abundance in mafic rocks of the Honeysuckle Beds was determined by x-ray fluorescence and neutron activation analysis . A comparison with typical mid-ocean ridge basalt compositions reveals an enrichment in light rare earths elements (Ba, Rb, and Th) and depletion in Nb, Ta and Ti, consistent with modifications of the source by subduction-related fluids. 9 refs., 6 figs.

  16. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.F.; Jiang, Z.C.; He, M.; Hu, B. [Wuhan University, Wuhan (China). Dept. of Chemistry

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3} (Eu) to 6.7 Pg m{sup -3} (Nd) with the precisions of 4.1% (Yb) to 10% (La) = 1 {mu} g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  17. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling.

    Science.gov (United States)

    Zhang, Yuefei; Jiang, Zucheng; He, Man; Hu, Bin

    2007-07-01

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m(-3)(Eu) to 6.7 pg m(-3)(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c=1 microg L(-1), n=9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  18. Determination of rare earth elements in waters by inductively coupled plasma optical emission spectrometry after preconcentration with 6-(2-thienyl)-2-pyridinecarboxaldehyde functionalized Amberlite XAD-4 resin.

    Science.gov (United States)

    Karadaş, Cennet; Kara, Derya

    2014-01-01

    A new method has been developed for the determination of rare earth elements (REEs) (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) in water samples based on preconcentration with a mini-column packed with 6-(2-thienyl)-2-pyridinecarboxaldehyde functionalized Amberlite XAD-4 resin prior to their determination using inductively coupled plasma optical emission spectrometry (ICP-OES). The optimum experimental parameters for preconcentration of REEs, such as pH of the sample, sample and eluent flow rates and sample volume, were investigated. The optimum pH values for quantitative (90-110%) sorption of the REE ions were between 6.0 and 8.0. The elution process was carried out using 2 mL of 1.0 mol L(-1) HNO3 solution. Under the optimum conditions, detection limits between 0.032 and 0.963 μg L(-1) for a 10 mL sample volume and 0.006 and 0.193 μg L(-1) for a 50 mL sample volume were determined. The proposed method was successfully applied to the determination of REEs in water samples with recoveries in the range of 90.1-110.5%.

  19. Preconcentration of Rare Earth Elements with 8-Hydroxyquinoline-5-sulfonic Acid Chelated Cellulose Filter Prior to Determination by Inductively Coupled Plasma Atomic Emission Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    8-Hydroxyquinoline-5-sulfonic acid,covalently bound to filter cellulose,was used for preconcentrating trace rare earth element(REE) ions from complex matrices and matrix separation,respectively.Multi-REE ions were preconcentrated on the column filled with 8-hydroxyquinoline-5-sulfonic acid cellulose filter and analysed by ICP-AES after being eluted with dilute HNO3.In the given pH range,alkali and alkaline earth metal ions can be separated as matrix elements;a high concentration factor is obtained and the eluates can be measured without interference.The usefulness of the method is shown by the control analyses of standard reference materials.

  20. Enhanced separation of rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenhalgh, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herbst, R. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Soderstrom, M. D. [Cytec Solvay Group, Tempe, AZ (United States); Jakovljevic, B. [Cytec Solvay Group, Niagara Falls, ON (Canada)

    2016-09-01

    Industrial rare earth separation processes utilize PC88A, a phosphonic acid ligand, for solvent extraction separations. The separation factors of the individual rare earths, the equipment requirements, and chemical usage for these flowsheets are well characterized. Alternative ligands such as Cyanex® 572 and the associated flowsheets are being investigated at the pilot scale level to determine if significant improvements to the current separation processes can be realized. These improvements are identified as higher separation factors, reduced stage requirements, or reduced chemical consumption. Any of these improvements can significantly affect the costs associated with these challenging separation proccesses. A mid/heavy rare earth element (REE) separations flowsheet was developed and tested for each ligand in a 30 stage mixer-settler circuit to compare the separation performance of PC88A and Cyanex® 572. The ligand-metal complex strength of Cyanex® 572 provides efficient extraction of REE while significantly reducing the strip acid requirements. Reductions in chemical consumption have a significant impact on process economics for REE separations. Partitioning results summarized Table 1 indicate that Cyanex® 572 offers the same separation performance as PC88A while reducing acid consumption by 30% in the strip section for the mid/heavy REE separation. Flowsheet Effluent Compositions PC88A Cyanex® 572 Raffinate Mid REE Heavy REE 99.40% 0.60% 99.40% 0.60% Rich Mid REE Heavy REE 2.20% 97.80% 0.80% 99.20% Liquor Strip Acid Required 3.4 M 2.3 M Table 1 – Flowsheet results comparing separation performance of PC88A and Cyanex® 572 for a mid/heavy REE separation.

  1. Determination of rare earth, major and trace elements in authigenic fraction of Andaman Sea (Northeastern Indian Ocean) sediments by inductively coupled plasma-mass spectrometry

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.; You, C.-F.; Nath, B.N.; SijinKumar, A.V.

    Downcore variation of rare earth elements (REEs) in the authigenic Fe-Mn oxides of a sediment core (covering a record of last approx. 40 kyr) from the Andaman Sea, a part of the Indian Ocean shows distinctive positive Ce and Eu anomalies...

  2. Method validation for high resolution sector field inductively coupled plasma mass spectrometry determination of the emerging contaminants in the open ocean: Rare earth elements as a case study

    Science.gov (United States)

    Wysocka, Irena; Vassileva, Emilia

    2017-02-01

    Analytical procedure for the determination of fourteen rare earth elements (REEs) in the seawater samples has been developed and validated. The elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) at ultra-trace level were measured by high resolution sector field inductively coupled plasma mass spectrometry (HR ICP-SFMS) after off-line analytes pre-concentration and matrix separation. The sample pre-treatment was carried out by commercially available automated system seaFAST-pico™, which is a low-pressure ion chromatography technique, based on solid phase extraction principles. Efficient elimination of seawater matrix and up to 50-fold pre-concentration of REEs enabled their accurate and precise quantification at ng L- 1 level. A validation approach in line with the requirements of ISO/IEC 17025 standard and Eurachem guidelines were followed. With this in mind, selectivity, working range, linearity, recovery (from 92% to 102%), repeatability (1%-4%), intermediate precision (2%-6%), limits of detection (0.001-0.08 ng L- 1) were systematically assessed. The total uncertainty associated to each result was estimated and the main sources of uncertainty sorted out. All major contributions to the combined uncertainty of the obtained results were identified and propagated together, following the ISO/GUM guidelines. The relative expanded uncertainty was estimated at range from 10.4% to 11.6% (k = 2). Demonstration of traceability of measurement results was also presented. Due to the low limits of detection, this method enables the determination of ultra-low levels of REEs in the open seawater as well as small variations in their concentrations. The potential of the proposed analytical procedure, based on combination of seaFAST-pico™ for sample preparation and HR ICP-SFMS, was demonstrated by direct analysis of seawater form different regions of the world.

  3. Earth Abundant Element Type I Clathrate Phases

    Directory of Open Access Journals (Sweden)

    Susan M. Kauzlarich

    2016-08-01

    Full Text Available Earth abundant element clathrate phases are of interest for a number of applications ranging from photovoltaics to thermoelectrics. Silicon-containing type I clathrate is a framework structure with the stoichiometry A8-xSi46 (A = guest atom such as alkali metal that can be tuned by alloying and doping with other elements. The type I clathrate framework can be described as being composed of two types of polyhedral cages made up of tetrahedrally coordinated Si: pentagonal dodecahedra with 20 atoms and tetrakaidecahedra with 24 atoms in the ratio of 2:6. The cation sites, A, are found in the center of each polyhedral cage. This review focuses on the newest discoveries in the group 13-silicon type I clathrate family: A8E8Si38 (A = alkali metal; E = Al, Ga and their properties. Possible approaches to new phases based on earth abundant elements and their potential applications will be discussed.

  4. Determination of rare earth elements in seawater by inductively coupled plasma mass spectrometry with off-line column preconcentration using 2,6-diacetylpyridine functionalized Amberlite XAD-4.

    Science.gov (United States)

    Karadaş, Cennet; Kara, Derya; Fisher, Andrew

    2011-03-18

    An off-line column preconcentration technique using a micro-column of 2,6 diacetylpyridine functionalized Amberlite XAD-4 with inductively coupled plasma mass spectrometry (ICP-MS) as a means of detection has been developed. The aim of the method was to determine rare earth elements (REEs) (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) in seawater. Sample solutions (2-10 mL) were passed through the column which was then washed with ultra-pure water to remove residual matrix. The adsorbed cations on the resin were eluted by using 2 mL of 0.1 mol L(-1) HNO(3) containing 10 ng mL(-1) indium as an internal standard. The eluent was analyzed for the metal concentrations using ICP-MS. Sample pH as well as the sample and eluent flow rates were optimized. The sorption capacity of resin was determined by the batch process, by equilibrating 0.05 g of the resin with solutions of 50 mL of 25 mg L(-1) of individual metal ions for 4h at pH 6.0 at 26°C. The sorption capacities for the resin were found to range between 47.3 μmol g(-1) (for Lu) and 136.7 μmol g(-1) (for Gd). Limits of detection (3σ), without any preconcentration, ranged from 2 ng L(-1) to 10.3 ng L(-1) (for Tm and Lu respectively). The proposed method was applied to the determination of REEs in seawater and tap water samples.

  5. Rare earth elements and permanent magnets (invited)

    Science.gov (United States)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  6. DEVELOPMENT OF CERTIFIED REFERENCE MATERIALS OF HEAT RESISTING NICKEL ALLOYS FOR DETERMINATION OF DETRIMENTAL IMPURITIES AND RARE EARTH ELEMENTS BY SPECTRAL METHODS

    Directory of Open Access Journals (Sweden)

    2015-01-01

    Full Text Available Results of development and certification of reference materials of composition of heat resisting nickel alloy with the certified values of content of detrimental impurities (Zn, Cd, Pb, Tl, Bi, In, Ag, Sb, Ga, Ge, As, Se, Sn, Te, Mn, Cu, rare earth elements (Pr, Nd, Dy, Gd, Ho, Er, Nb, Sc, Y, La, Ce, and also other impurities (P, B, Fe, Si, V, Ru, Zr, Hf, Ca, Mg are given. Developed CRMs are used for calibration of optical emission spectrometers, mass-spectrometers with glow discharge and laser sampling and others.

  7. Note: Portable rare-earth element analyzer using pyroelectric crystal

    Energy Technology Data Exchange (ETDEWEB)

    Imashuku, Susumu, E-mail: imashuku.susumu.2m@kyoto-u.ac.jp; Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun [Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)

    2013-12-15

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera.

  8. Molecular catalysis of rare-earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Roesky, Peter W. (ed.) [Karlsruhe Institute of Technology (KIT) (Germany). Inst. of Inorganic Chemistry

    2010-07-01

    This volume reviews the recent developments in the use of molecular rare-earth metal compounds in catalysis. Most of the applications deal with homogenous catalysis but in some cases, heterogeneous systems are also mentioned. The rare-earth elements, which are the lanthanides and their close relatives - scandium and yttrium - have not been in the focus of molecular chemistry for a long time and therefore have also not been considered as homogenous catalysts. Although the first organometallic compounds of the lanthanides, which are tris(cyclopentadienyl) lanthanide complexes, were already prepared in the 1950s, it was only in the late 1970s and early 1980s when a number of research groups began to focus on this class of compounds. One reason for the development was the availability of single crystal X-ray diffraction techniques, which made it possible to characterize these compounds.Moreover, new laboratory techniques to handle highly air and moisture sensitive compounds were developed at the same time. Concomitant with the accessibility of this new class of compounds, the application in homogenous catalysis was investigated. One of the first applications in this field was the use of lanthanide metallocenes for the catalytic polymerization of ethylene in the early 1980s. In the last two or three decades, a huge number of inorganic and organometallic compounds of the rare-earth elements were synthesized and some of them were also used as catalysts. Although early work in homogenous catalysis basically focused only on the hydrogenation and polymerization of olefins, the scope for catalytic application today is much broader. Thus, a large number of catalytic {sigma}-bond metathesis reactions, e.g. hydroamination, have been reported in the recent years. This book contains four chapters in which part of the recent development of the use of molecular rare-earth metal compounds in catalysis is covered. To keep the book within the given page limit, not all aspects could be

  9. A novel methodology for rapid digestion of rare earth element ores and determination by microwave plasma-atomic emission spectrometry and dynamic reaction cell-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Helmeczi, Erick; Wang, Yong; Brindle, Ian D

    2016-11-01

    Short-wavelength infrared radiation has been successfully applied to accelerate the acid digestion of refractory rare-earth ore samples. Determinations were achieved with microwave plasma-atomic emission spectrometry (MP-AES) and dynamic reaction cell - inductively coupled plasma-mass spectrometry (DRC-ICP-MS). The digestion method developed was able to tackle high iron-oxide and silicate matrices using only phosphoric acid in a time frame of only 8min, and did not require perchloric or hydrofluoric acid. Additionally, excellent recoveries and reproducibilities of the rare earth elements, as well as uranium and thorium, were achieved. Digestions of the certified reference materials OREAS-465 and REE-1, with radically different mineralogies, delivered results that mirror those obtained by fusion processes. For the rare-earth CRM OKA-2, whose REE data are provisional, experimental data for the rare-earth elements were generally higher than the provisional values, often exceeding z-values of +2. Determined values for Th and U in this reference material, for which certified values are available, were in excellent agreement. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Rare Earth Elements in Global Aqueous Media

    Science.gov (United States)

    Noack, C.; Karamalidis, A.; Dzombak, D. A.

    2012-12-01

    We are examining the occurrence and abundance of rare earth elements (REE) associated with produced waters from shale gas development, and factors controlling aqueous REE concentrations in geochemical environments, to provide information for: (1) potential recovery of REE as a valuable byproduct, and (2) utilization of unique REE signatures as a risk assessment tool. REE include the lanthanide series of elements - excluding short-lived, radioactive promethium - and yttrium. These elements are critical to a wide variety of high-tech, energy efficient applications such as phosphors, magnets, and batteries. Escalating costs of REE resulting from divergent supply and demand patterns motivates the first goal. The second goal relates to the search for a reliable, naturally occurring tracer to improve understanding of fluid migration and water-rock interactions during hydraulic fracturing and natural gas recovery. We compiled data from 100 studies of REE occurrence and concentrations in groundwaters, ocean waters, river waters, and lake waters. In the groundwater systems documented, total dissolved REE concentrations ranged over eight orders of magnitude; however the average concentrations across the lanthanides varied by less than two orders of magnitude. This leads to exceptional inter-element correlations, with a median correlation coefficient greater than 0.98, implying potential usefulness of REE ratios for groundwater signatures. Reports describing reactions governing REE solubilization were also investigated. We assembled information about important solution chemistries and performed equilibrium modeling using PHREEQC to examine common hypotheses regarding the factors controlling REE compositions. In particular, effects of pH, Eh, and common complexing ligands were evaluated. Produced and connate waters of the Marcellus shale are well characterized for their major chemical elements. There is a dearth of knowledge, however, regarding the occurrence of REE in

  11. Forms of Rare Earth Elements in Soils:II.Differentiation of Rare Earth Elements

    Institute of Scientific and Technical Information of China (English)

    ZHUJIAN-GUO; XINGGUANG-XI

    1992-01-01

    The present paper deals mainly with the relationships between the distribution of rare earth elements (REE) in different forms in soils and the atomic number and with the odd-even phenomenon in the distribution of ionic lanthanides in soils.The enrichment tendency of light REE relative to heavy REE in soils was pointed out on the experimental results about the proportions of Ce-group and Y-group elements in different REE forms in soils.Meanwhile,the differentiation of Tm in different soil REE forms was compared and the reasons why Tm is enriched in soils were preliminarily discussed.

  12. Rare earth elements in Hamersley BIF minerals

    Science.gov (United States)

    Alibert, Chantal

    2016-07-01

    Minerals from the Hamersley banded iron formation, Western Australia, were analyzed for Y and rare earth elements (YREEs) by laser ablation ICP-MS to investigate diagenetic pathways, from precursor phases to BIF minerals. One group of apatites carries the seawater REE signature, giving evidence that P and REEs, thoroughly scavenged from the water column by Si-ferrihydrite particles, were released upon microbial Fe3+ reductive dissolution of Si-ferrihydrite in pore-water and finally sequestered mainly in authigenic apatite. The absence of fractionation between apatite and seawater suggests that REE were first incorporated into an amorphous calcium phosphate as fully hydrated cations, i.e. as outer-sphere complexes. The iron oxides and carbonates carry only a small fraction of the whole-rock REE budget. Their REE patterns are distinctly enriched in Yb and show some M-type tetrad effect consistent with experimental Kd(REE) between solid and saline solution with low carbonate ion concentrations. It is deduced that hematite formed at an incipient stage of Fe2+-catalyzed dissolution of Si-ferrihydrite, via a dissolution-reprecipitation pathway. The REE pattern of greenalite, found as sub-micron particles in quartz in a chert-siderite sample, is consistent with its authigenic origin by precipitation in pore-water after dissolution of a small amount of Si-ferrihydrite. Magnetite carries very low YREEs (ppb-level), has an homogeneous pattern distinctly enriched in the mid-REEs compared to hematite, and includes a late population depleted in light-REEs, Ba and As. Magnetite forming aggregates and massive laminae is tentatively interpreted as reflecting some fluid-aided hematite-magnetite re-equilibration or transformation at low-grade metamorphic temperatures.

  13. [Content of rare earth elements in wild Hypericum japonicum Thunb].

    Science.gov (United States)

    Wei, Zhen-Lin; Rui, Yu-Kui; Tian, Zhi-Huan

    2009-06-01

    Rare earth elements are important nutritional elements for human health, and today more and more attention has been paid to the effective components in Chinese traditional medicine, especially to rare earth elements. Fifteen rare earth elements in wild hypericum japonicum Thunb were analyzed by the methods of ICP-MS. The results showed that the concentrations of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Tm, Lu and Y ranged from 6 ng x g(-1) x DW to 14 522 ng x g(-1) x DW, and among them the concentrations of La, Ce and Nd were higher than 2 000 ng x g(-1) x DW. Compared with the concentration of rare earth elements in rice, corn, wheat and barley, the total concentration of rare earth elements in hypericum japonicum Thunb was much higher, which could be the mechanism of curative effect of hypericum japonicum Thunb on liverish diseases. The character of elements and the content of rare earth elements in soil should be responsible for the difference, but the distributive mechanism of rare earth elements in hypericum japonicum Thunb should be further studied.

  14. Geochemistry of rare earth elements in the Baba Ali magnetite skarn deposit, western Iran – a key to determine conditions of mineralisation

    Directory of Open Access Journals (Sweden)

    Zamanian Hassan

    2016-03-01

    Full Text Available The Baba Ali skarn deposit, situated 39 km to the northwest of Hamadan (Iran, is the result of a syenitic pluton that intruded and metamorphosed the diorite host rock. Rare earth element (REE values in the quartz syenite and diorite range between 35.4 and 560 ppm. Although the distribution pattern of REEs is more and less flat and smooth, light REEs (LREEs in general show higher concentrations than heavy REEs (HREEs in different lithounits. The skarn zone reveals the highest REE-enriched pattern, while the ore zone shows the maximum depletion pattern. A comparison of the concentration variations of LREEs (La–Nd, middle REEs (MREEs; Sm–Ho and HREEs (Er–Lu of the ore zone samples to the other zones elucidates two important points for the distribution of REEs: 1 the distribution patterns of LREEs and MREEs show a distinct depletion in the ore zone while representing a great enrichment in the skarn facies neighbouring the ore body border and decreasing towards the altered diorite host rock; 2 HREEs show the same pattern, but in the exoskarn do not reveal any distinct increase as observed for LREEs and MREEs. The ratio of La/Y in the Baba Ali skarn ranges from 0.37 to 2.89. The ore zone has the highest La/Y ratio. In this regard the skarn zones exhibit two distinctive portions: 1 one that has La/Y >1 beingadjacent to the ore body and; 2 another one with La/Y < 1 neighbouring altered diorite. Accordingly, the Baba Ali profile, from the quartz syenite to the middle part of the exoskarn, demonstrates chiefly alkaline conditions of formation, with a gradual change to acidic towards the altered diorite host rocks. Utilising three parameters, Ce/Ce*, Eu/Eu* and (Pr/Ybn, in different minerals implies that the hydrothermal fluids responsible for epidote and garnet were mostly of magmatic origin and for magnetite, actinolite and phlogopite these were of magmatic origin with low REE concentration or meteoric water involved.

  15. Rare earth element mines, deposits, and occurrences

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains location, geologic and mineral economic data for world rare earth mines, deposits, and occurrences. The data in this compilation were derived...

  16. Rare earth element patterns of the Central Indian Basin sediments related to their lithology

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Roelandts, I.; Sudhakar, M.; Pluger, W.L.

    Rare earth element (REE) concentration have been determined in terrigenous, siliceous (nodule barren and nodule bearing), calcareous, and red clay from the Central Indian Basin. The bulk distribution of REE, and in particular the relative cerium...

  17. Characterization and recovery of rare earth elements from electronic scrap

    OpenAIRE

    Bristøl, Lene Marie Lysgaard

    2012-01-01

    The rare earth elements are a group of 17 elements consisting of the lantahnide series, scandium and yttrium. The application with the largest rare earth consumption is the permanent rare earth magnets. The neodymium-iron-boron magnets are the strongest permanent magnetic material known and are widely used. There is a concern that there will be a shortage in Nd-Fe-B magnets in short time. This has lead to an increased interest in the recycling of the rare earth magnets in the world.This proje...

  18. Earth, Air, Fire and Water in Our Elements

    Science.gov (United States)

    Lievesley, Tara

    2007-01-01

    The idea that everything is made of the four "elements", earth, air, fire and water, goes back to the ancient Greeks. In this article, the author talks about the origins of ideas about the elements. The author provides an account that attempts to summarise thousands of years of theoretical development of the elements in a thousand words or so.

  19. Geochemistry of Rare Earth Elements in Aktishikan Gold Deposit, Xinjiang

    Institute of Scientific and Technical Information of China (English)

    袁峰; 周涛发; 岳书仓

    2002-01-01

    The characteristics and the models of rare earth elements in the geolo gical bodies and the hydrothermal water balanced with the adamellite were compre h ensively studied in Aktishikan gold deposit,Nurt area of Altay,Xinjiang.And th e behavior of rare earth elements during metasomatic alteration was discussed by using the isocon method of Grant.The results show that the rare earth elements a re inert during metasomatic alteration,the hydrothermal water has no relation t o the magmatic water,and the gold material sources mainly stem from the wall rock.

  20. Separation of rare earth elements by tertiary pyridine type resin

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Tatsuya [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)]. E-mail: tasuzuki@nr.titech.ac.jp; Itoh, Keisuke [Graduate School of Material Science and Engineering, Shibaura Institute of Technology, Shibaura, Minato-ku, Tokyo 108-8584 (Japan); Ikeda, Atsushi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Aida, Masao [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ozawa, Masaki [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Oarai Engineering Center, Japan Nuclear Cycle Development Institute, Narita-machi, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Fujii, Yasuhiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2006-02-09

    The novel separation method of rare earth elements by using the tertiary pyridine type resin with methanol and nitric acid mixed solution was developed. The separating operation in this method is very simple and easy, and the waste generation in this method is expected to be low. The adsorption and separation behaviors of rare earth elements were investigated with changing the nitric acid concentration, the methanol concentration, and the alcoholic species. It was confirmed that the rare earth elements can be well separated mutually.

  1. Rare earth element enrichment using membrane based solvent extraction

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.; Zunita, M.; Wenten, I. G.

    2017-01-01

    The chemical, catalytic, electrical, magnetic, and optical properties of rare earth elements are required in broad applications. Rare earth elements have similar physical and chemical properties thus it is difficult to separate one from each other. Rare earth element is relatively abundant in earth's crust but rarely occur in high concentrated deposits. Traditionally, ion-exchange and solvent extraction techniques have been developed to separate and purify single rare earth solutions or compounds. Recently, membrane starts to gain attention for rare earth separation by combining membrane and proven technologies such as solvent extraction. Membrane-based process offers selective, reliable, energy efficient and easy to scale up separation. During membrane-based separation process, one phase passes through membrane pores while the other phase is rejected. There is no direct mixing of two phases thus the solvent loss is very low. Membrane can also lower solvent physical properties requirement (viscosity, density) and backmixing, eliminate flooding phenomenon and provide large interfacial area for mass transfer. This paper will summarize research efforts in developing membrane technology for rare earth element separation. Special attention will be given to solvent extraction related process as the commonly used method for rare earth element separation. Furthermore, membrane configuration and its potentials will also be discussed.

  2. Rare Earth Element Partition Coefficients from Enstatite/Melt Synthesis Experiments

    Science.gov (United States)

    Schwandt, Craig S.; McKay, Gordon A.

    1997-01-01

    Enstatite (En(80)Fs(19)Wo(01)) was synthesized from a hypersthene normative basaltic melt doped at the same time with La, Ce, Nd, Sm, Eu, Dy, Er, Yb and Lu. The rare earth element concentrations were measured in both the basaltic glass and the enstatite. Rare earth element concentrations in the glass were determined by electron microprobe analysis with uncertainties less than two percent relative. Rare earth element concentrations in enstatite were determined by secondary ion mass spectrometry with uncertainties less than five percent relative. The resulting rare earth element partition signature for enstatite is similar to previous calculated and composite low-Ca pigeonite signatures, but is better defined and differs in several details. The partition coefficients are consistent with crystal structural constraints.

  3. Determination of thorium and light rare-earth elements in soil water and its high molecular mass organic fractions by inductively coupled plasma mass spectrometry and on-line-coupled size-exclusion chromatography.

    Science.gov (United States)

    Casartelli, Evelton A; Miekeley, Norbert

    2003-09-01

    Inductively coupled plasma mass spectrometry (ICP-MS) has been used for the determination of thorium and light rare-earth elements (LREEs) in soil and soil water samples from a mineral deposit (Morro do Ferro, Minas Gerais, Brazil). Size-exclusion chromatography (SEC) on-line coupled to ICP-MS and UV-detection was applied to verify possible association/complexation of these elements with organic matter in soil water separated by a centrifugation technique. Concentrations of DOC in soil waters are in the range of 10 to 500 mg L(-1) and correlate with the organic carbon content of the soil (r=0.950; p10,000 Da, with a retention time of about 10 min; 7000 to 8000 Da with retention times of 13 to 15 min; and 2000 to 4000 Da with retention times around 23 min. Elemental peaks associated with dissolved organic matter below 1000 Da were not observed, suggesting that complexation with simple plant organic acids or inorganic ligands is of minor importance in the environment studied in this work.

  4. Core-Mantle Partitioning of Volatile Siderophile Elements and the Origin of Volatile Elements in the Earth

    Science.gov (United States)

    Nickodem, K.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2012-01-01

    There are currently several hypotheses on the origin of volatile siderophile elements in the Earth. One hypothesis is that they were added during Earth s accretion and core formation and mobilized into the metallic core [1], others claim multiple stage origin [2], while some hypothesize that volatiles were added after the core already formed [3]. Several volatile siderophile elements are depleted in Earth s mantle relative to the chondrites, something which continues to puzzle many scientists. This depletion is likely due to a combination of volatility and core formation. The Earth s core is composed of Fe and some lighter constituents, although the abundances of these lighter elements are unknown [4]. Si is one of these potential light elements [5] although few studies have analyzed the effect of Si on metal-silicate partitioning, in particular the volatile elements. As, In, Ge, and Sb are trace volatile siderophile elements which are depleted in the mantle but have yet to be extensively studied. The metal-silicate partition coefficients of these elements will be measured to determine the effect of Si. Partition coefficients depend on temperature, pressure, oxygen fugacity, and metal and silicate composition and can constrain the concentrations of volatile, siderophile elements found in the mantle. Reported here are the results from 13 experiments examining the partitioning of As, In, Ge, and Sb between metallic and silicate liquid. These experiments will examine the effect of temperature, and metal-composition (i.e., Si content) on these elements in or-der to gain a greater understanding of the core-mantle separation which occurred during the Earth s early stages. The data can then be applied to the origin of volatile elements in the Earth.

  5. MaRGEE: Move and Rotate Google Earth Elements

    Science.gov (United States)

    Dordevic, Mladen M.; Whitmeyer, Steven J.

    2015-12-01

    Google Earth is recognized as a highly effective visualization tool for geospatial information. However, there remain serious limitations that have hindered its acceptance as a tool for research and education in the geosciences. One significant limitation is the inability to translate or rotate geometrical elements on the Google Earth virtual globe. Here we present a new JavaScript web application to "Move and Rotate Google Earth Elements" (MaRGEE). MaRGEE includes tools to simplify, translate, and rotate elements, add intermediate steps to a transposition, and batch process multiple transpositions. The transposition algorithm uses spherical geometry calculations, such as the haversine formula, to accurately reposition groups of points, paths, and polygons on the Google Earth globe without distortion. Due to the imminent deprecation of the Google Earth API and browser plugin, MaRGEE uses a Google Maps interface to facilitate and illustrate the transpositions. However, the inherent spatial distortions that result from the Google Maps Web Mercator projection are not apparent once the transposed elements are saved as a KML file and opened in Google Earth. Potential applications of the MaRGEE toolkit include tectonic reconstructions, the movements of glaciers or thrust sheets, and time-based animations of other large- and small-scale geologic processes.

  6. Bioleaching of rare earth elements from monazite sand.

    Science.gov (United States)

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance.

  7. Modeling rammed earth wall using discrete element method

    Science.gov (United States)

    Bui, T.-T.; Bui, Q.-B.; Limam, A.; Morel, J.-C.

    2016-03-01

    Rammed earth is attracting renewed interest throughout the world thanks to its "green" characteristics in the context of sustainable development. Several research studies have thus recently been carried out to investigate this material. Some of them attempted to simulate the rammed earth's mechanical behavior by using analytical or numerical models. Most of these studies assumed that there was a perfect cohesion at the interface between earthen layers. This hypothesis proved to be acceptable for the case of vertical loading, but it could be questionable for horizontal loading. To address this problem, discrete element modeling seems to be relevant to simulate a rammed earth wall. To our knowledge, no research has been conducted thus far using discrete element modeling to study a rammed earth wall. This paper presents an assessment of the discrete element modeling's robustness for rammed earth walls. Firstly, a brief description of the discrete element modeling is presented. Then the parameters necessary for discrete element modeling of the material law of the earthen layers and their interfaces law following the Mohr-Coulomb model with a tension cut-off and post-peak softening were given. The relevance of the model and the material parameters were assessed by comparing them with experimental results from the literature. The results showed that, in the case of vertical loading, interfaces did not have an important effect. In the case of diagonal loading, model with interfaces produced better results. Interface characteristics can vary from 85 to 100% of the corresponding earthen layer's characteristics.

  8. Alkali elements in the Earth's core: Evidence from enstatite meteorites

    Science.gov (United States)

    Lodders, K.

    1995-01-01

    The abundances of alkali elements in the Earth's core are predicted by assuming that accretion of the Earth started from material similar in composition to enstatite chondrites and that enstatite achondrites (aubrites) provide a natural laboratory to study core-mantle differentiation under extremely reducing conditions. If core formation on the aubrite parent body is comparable with core formation on the early Earth, it is found that 2600 (+/- 1000) ppm Na, 550 (+/- 260) ppm K, 3.4 (+/- 2.1) ppm Rb, and 0.31 (+/- 0.24) ppm Cs can reside in the Earth's core. The alkali-element abundances are consistent with those predicted by independent estimates based on nebula condensation calculations and heat flow data.

  9. Determination of 16 Rare Earth Elements in Banana by Microwave Digestion and ICP-MS%微波消解ICP-MS法结合同时测定香蕉中的16种稀土元素含量

    Institute of Scientific and Technical Information of China (English)

    范稚莉; 范稚莲; 闫飞燕; 莫磊兴; 王天顺; 廖洁; 牙禹; 范业赓

    2013-01-01

    [Objective] This study aimed to investigate the residues of rare earth ele-ments in Guangxi banana from banana-producing area with application of rare earth fertilizers and evaluate the safety of using rare earth fertilizers in banana production. [Method] HNO3+H2O2 mixed acid system with high pressure airtight microwave di-gestion sample pretreatment method and ICP-MS technology were used, to establish a determination method of 16 rare earth elements in banana samples, including Sc45, Y89, La139, Ce140, Pr141, Sm147, Eu153, Gb157, Tb159, Nd144, Dy163, Ho165, Er166, Tm169, Yb172 and Lu175. [Result] Different standard curves present-ed good linearity. Detection limit of the instrument was 0.002-0.01 μg/L; detection limit of the method was 0.1-0.6 μg/kg; recovery rate of standard addition was 94.5%-116%; relative standard deviation was 2.02%-14.21%. [Conclusion] This method has many advantages, such as simple mass spectrogram, high sensitivity and high selectivity, accurate quantification, high precision and accuracy, simple operation, high reproducibility and high recovery rate, which is suitable for the detection of rare earth elements in banana and other fruits, with certain theoretical and applicable val-ue for guiding banana production and high-efficient planting.%[目的]旨在了解广西香蕉产区施用稀土农用肥的稀土元素残留情况,指导香蕉生产,评价稀土农用肥的安全性。[方法]采用ICP-MS等离子体质谱法和使用HNO3+H2O2混酸体系高压密闭微波前处理样品联合技术,建立测定香蕉样品中16种稀土元素(Sc45,Y89,La139,Ce140, Pr141,Sm147,Eu153,Gb157,Tb159,Nd144, Dy163,Ho165,Er166,Tm169,Yb172,Lu175)含量的方法。[结果]各曲线呈良好线性关系,仪器检出限为0.002~0.01μg/L,方法检出限为0.1~0.6μg/kg,加标回收率为94.5%~116%,相对标准偏差为2.02%~14.21%。[结论]该方法质谱图简单,选择性和灵敏度好,定量准确,

  10. Advanced Characterization of Rare Earth Elements in Coal Utilization Byproducts

    Science.gov (United States)

    Verba, C.; Scott, M.; Dieterich, M.; Poston, J.; Collins, K.

    2016-12-01

    Rare earth elements (REE) in various forms (e.g., crystalline mineral phases; adsorbed/absorbed state on and into organic macerals, neoformed glass from flyash or bottom ash) from domestic feedstocks such as coal deposits to coal utilization byproducts (CUB) have the potential to reduce foreign REE dependence and increase domestic resource security. Characterization is critical for understanding environmental risks related to their fate and transport as well as determining the most practical and economical techniques for concentrating the REE and converting them into chemical stocks for manufacturing. Several complementary electron microscopy (SEM-EDS, EPMA-WDS, FIB-SEM, cathodoluminescence, and XRD) and post image processing techniques were used to understand REE transition from coal to CUB. Sites of interest were identified and imaged and respective elemental x-ray maps acquired and montaged. Pixel classification of SEM imagers was completed using image analysis techniques to quantify the distribution of REE associated features. Quantitative elemental analysis of phases were completed using EMPA-WDS followed by FIB-SEM. The FIB-SEM results were reconstructed into 3D volumes and features of interest (e.g. monazite) were analyzed to determine the structure and volumetric estimation of REEs and thus predict detrital REE phases to ICP-MS results. Trace minerals were identified as pyrite, zircon, REE-phosphates' (monazite, xenotime), and barite within the coal tailings. In CUB, amorphous aluminosilicates, iron oxide cenospheres, and calcium oxides were present; monazite appear to be unaltered and unaffected by the combustion process in these samples. Thermal decomposition may have occurred due to presence of detrital zircon and xenotime and subsequent thin Ca-oxide coating enriched in trace REEs.

  11. Quantitative Analysis of Life Index of Electrothermal-Film Coated Ceramic Heating Elements with Rare-Earth Element Doped

    Institute of Scientific and Technical Information of China (English)

    He Ping

    2004-01-01

    For electrothermal-film heating elements for ceramics, the quantitative expression of the relation between the contents of multicomponent semiconductor dope and rare-earth element additive through the multivariate statistical regression analysis was presented, and the optimum control index of the multicomponent semiconductor dope and the rareearth element for the maximum life was also determined. The research shows that the life value ranging from 15 to 20 thousand hours can be ensured only if the evaluation grade of metal oxide dope in the compounding formula is controlled between grades 0.5 to 1.2. The relation of the content of multicomponent rare-earth element dope and the life index of electrothermal-film heating material for ceramics was determined theoretically.

  12. Trace Level Rare Earth Elements Separation From Gram Scale Uranium by Calcium Fluoride Coprecipitation

    Institute of Scientific and Technical Information of China (English)

    WANG; Xiu-feng

    2013-01-01

    In the fission yield measurement of rare earth elements of uranium induced by neutron,and the analysis of rare earth elements in spent fuel,the separation of trace rare earth elements from a large number of uranium has very important significance.We separated trace level rare earth elements from gram scale uranium by calcium fluoride coprecipitation in this paper.

  13. Rare Earth Elements - A New Challenge for the World Economy

    Directory of Open Access Journals (Sweden)

    Cristina Bumbac

    2013-01-01

    Full Text Available Rare Earth Elements or Rare Earth Metals (REM are a collection of seventeen chemical elements in the periodic table, namely scandium, yttrium and fifteen lanthanides. The term "rare earth" arises from the rare earth minerals from which they were first isolated. They are uncommon oxide-type minerals (earths found in Gandolinite extracted from one mine in Sweden. The first discovery was made in 1794, but it was only in 1940 that the scientist Frank Spedding developed an ion exchange procedure for separating and purifying the REM. For the next decades, they were hardly used in some "minor" industrial fields. Only after 2000 their importance grew, once the multitude of possibilities to use them was discovered due to technological progress. Now REM are incorporated into almost all modern technological devices: superconductors, magnets, electronic polishers, refining catalysts hybrid car components and military techniques. They are used in small quantities, but due to their extraordinary properties the prices are very high. The main problem is that China dominates this market, with 97% of total global supply. The highest concentration of rare earth metals are in Inner Mongolia in China, Mountain Pass in California U.S.A. and in Mount Weld in Australia. The developed countries are far behind China regarding production and are indeed depending on Chinese exports. Hence, there is a difficult situation on this particular market, with an uncertain future.

  14. Uncovering the end uses of the rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xiaoyue, E-mail: xiaoyue.du@empa.ch [Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Yale University, 195 Prospect Street, New Haven CT 06511 (United States); Graedel, T.E. [Yale University, 195 Prospect Street, New Haven CT 06511 (United States)

    2013-09-01

    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging and conventional established technologies. However, quantitative knowledge of REE remains sparse, despite the current heightened interest in future availability of the resources. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supply vulnerable to short term disruption. We have drawn upon the published literature and unpublished materials in different languages to derive the first quantitative annual domestic production by end use of individual rare earth elements from 1995 to 2007. The information is illustrated in Sankey diagrams for the years 1995 and 2007. Other years are available in the supporting information. Comparing 1995 and 2007, the production of the rare earth elements in China, Japan, and the US changed dramatically in quantities and structure. The information can provide a solid foundation for industries, academic institutions and governments to make decisions and develop strategies. - Highlights: • We have derived the first quantitative end use information of the rare earths (REE). • The results are for individual REE from 1995 to 2007. • The end uses of REE in China, Japan, and the US changed dramatically in quantities and structure. • This information can provide solid foundation for decision and strategy making.

  15. Rare earth element recycling from waste nickel-metal hydride batteries.

    Science.gov (United States)

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained.

  16. Determination of Rare-earth Element in Human Hair with ICP-MS%电感耦合等离子体质谱法(ICP—MS)测定人发中稀土元素

    Institute of Scientific and Technical Information of China (English)

    史军

    2012-01-01

    Rare-earth element in human is determined using microwave digestion sample with ICP-MS. The experiment shows that the method detection limit is 0.003-0.046 ng/mL, relative standard difference is 0.51%-4.58%. the experiment also shows that this method is easy, quick and accurate.%研究利用微波消解样品,在线加入内标,再用电感耦合等离子体质谱法(ICP—MS)测定人发中的稀土元素的方法。经试验测定:该方法检出限为0.003-0.046ng/mL,相对标准偏差(RSD)为0.51%~4.58%。该方法简单、快速,测定结果较为理想。

  17. Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Li Yingjie [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China); Hu Bin, E-mail: binhu@whu.edu.cn [Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2010-02-15

    The on-line incorporation of cloud point extraction (CPE) with/without 8-hydroxyquinoline (8-Ox) as chelating agent into flow injection analysis associated with inductively coupled plasma optical emission spectrometry (ICP-OES) for determining trace rare earth elements (REEs) is presented and evaluated. The significant parameters affecting on-line cloud point extraction of REEs such as sample pH, flow rate, 8-Ox concentration, Triton X-114 concentration were systematically studied. Under the optimized conditions, with the consumption of 3.0 mL sample solution, the limits of detection (3{sigma}) were ranged from 41.4 pg mL{sup -1} (Yb) to 448 pg mL{sup -1} (Gd) with relative standard deviations (RSDs) of 1.0% (Eu)-5.9% (Sm) for on-line CPE-ICP-OES with 8-Ox as chelating agent, and 69.0 pg mL{sup -1} (Sc) to 509.5 pg mL{sup -1} (Sm) with RSDs of 2.9% (Yb)-7.5% (Ho) for on-line CPE-ICP-OES without 8-Ox as chelating agent, respectively. The sample throughput of 17 samples h{sup -1} was obtained for both systems. The developed methods of on-line CPE-ICP-OES were validated by the analysis of certified reference material (GBW07605, tea leaves) and real biological samples of pig liver, Auricularia auricula and mushroom.

  18. Determination of trace/ultratrace rare earth elements in environmental samples by ICP-MS after magnetic solid phase extraction with Fe3O4@SiO2@polyaniline-graphene oxide composite.

    Science.gov (United States)

    Su, Shaowei; Chen, Beibei; He, Man; Hu, Bin; Xiao, Zuowei

    2014-02-01

    A novel Fe3O4@SiO2@polyaniline-graphene oxide composite (MPANI-GO) was prepared through a simple noncovalent method and applied to magnetic solid phase extraction (MSPE) of trace rare earth elements (REEs) in tea leaves and environmental water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The prepared MPANI-GO was characterized by transmission electron microscopy and vibrating sample magnetometer. Various parameters affecting MPANI-GO MSPE of REEs have been investigated. Under the optimized conditions, the limits of detection (LODs, 3σ) for REEs were in the range of 0.04-1.49 ng L(-1) and the relative standard deviations (RSDs, c=20 ng L(-1), n=7) were 1.7-6.5%. The accuracy of the proposed method was validated by analyzing a Certified Reference Material of GBW 07605 tea leaves. The method was also successfully applied for the determination of trace REEs in tea leaves and environmental water samples. The developed MPANI-GO MSPE-ICP-MS method has the advantages of simplicity, rapidity, high sensitivity, high enrichment factor and is suitable for the analysis of trace REEs in samples with complex matrix.

  19. Size distribution of rare earth elements in coal ash

    Science.gov (United States)

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  20. Effect of Rare Earths on Composition and Activities of Rare Earth Elements Binding Glycoprotein in Tea

    Institute of Scientific and Technical Information of China (English)

    汪东风; 李俊; 赵贵文; 王常红; 魏正贵; 尹明

    2001-01-01

    The effects of spraying rare earths(RE) on composition and activities of tea polysaccharide were measured by inductively coupled plasma mass spectrometry (ICP-MS), gas chromatography(GC), amino acid analyzer and animal models. The results show that there are rare earth elements binding glycoprotein in tea (REE-TGP). The effects of RE on composition and content of saccharides in REE-TGP are not obvious. The contents of Hypro and Ser in REE-TGP are evidently enhanced in comparison with that in control (not treated with rare earth), but the content of Glu is smaller than that from control. The content of La in REE-TGP from the tea garden sprayed rare earth is 193% higher than that in control. REE-TGP declines content of blood sugar in mice and enhances immunization of rat, which are very evident when the animals are treated by REE-TGP from the tea garden sprayed RE.

  1. Tracing sediment movement on semi-arid watershed using Rare Earth Elements 1988

    Science.gov (United States)

    A multi-tracer method employing rare earth elements (REE) was used to determine sediment yield and to track sediment movement in a small semiarid watershed. A 0.33 ha watershed near Tombstone, AZ was divided into five morphological units, each tagged with one of five REE oxides. Relative contributi...

  2. Evaluation of ultrasound-assisted extraction as sample pre-treatment for quantitative determination of rare earth elements in marine biological tissues by inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Costas, M.; Lavilla, I.; Gil, S.; Pena, F.; Calle, I.; Cabaleiro, N. de la [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, As Lagoas-Marcosende s/n, 36310 Vigo (Spain); Bendicho, C., E-mail: bendicho@uvigo.es [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, As Lagoas-Marcosende s/n, 36310 Vigo (Spain)

    2010-10-29

    In this work, the determination of rare earth elements (REEs), i.e. Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in marine biological tissues by inductively coupled-mass spectrometry (ICP-MS) after a sample preparation method based on ultrasound-assisted extraction (UAE) is described. The suitability of the extracts for ICP-MS measurements was evaluated. For that, studies were focused on the following issues: (i) use of clean up of extracts with a C18 cartridge for non-polar solid phase extraction; (ii) use of different internal standards; (iii) signal drift caused by changes in the nebulization efficiency and salt deposition on the cones during the analysis. The signal drift produced by direct introduction of biological extracts in the instrument was evaluated using a calibration verification standard for bracketing (standard-sample bracketing, SSB) and cumulative sum (CUSUM) control charts. Parameters influencing extraction such as extractant composition, mass-to-volume ratio, particle size, sonication time and sonication amplitude were optimized. Diluted single acids (HNO{sub 3} and HCl) and mixtures (HNO{sub 3} + HCl) were evaluated for improving the extraction efficiency. Quantitative recoveries for REEs were achieved using 5 mL of 3% (v/v) HNO{sub 3} + 2% (v/v) HCl, particle size <200 {mu}m, 3 min of sonication time and 50% of sonication amplitude. Precision, expressed as relative standard deviation from three independent extractions, ranged from 0.1 to 8%. In general, LODs were improved by a factor of 5 in comparison with those obtained after microwave-assisted digestion (MAD). The accuracy of the method was evaluated using the CRM BCR-668 (mussel tissue). Different seafood samples of common consumption were analyzed by ICP-MS after UAE and MAD.

  3. DETERMINATION OF IMPURITY ELEMENTS IN ALUMINIUM

    Institute of Scientific and Technical Information of China (English)

    侯小琳; 张永保

    1994-01-01

    Twenty five impurity elements in aluminium applied as reactor material are determined.Titanium and nickel are determined with epithermal neutron activation analysis(NAA),magnesium and silicon by inductance coupling plasma emission spectra(ICP),other elements by thermal NAA.The fission coefficient of uranium is given by an experiment,the interferences of uranium to Ce,Nd,Mo,Zr,La,Sm are subtracted.The detection limits of these methods to all of impurity elements in aluminium are calculated.

  4. Rare earth elements in CO2-fluid inclusions in mantle lherzolite

    Institute of Scientific and Technical Information of China (English)

    Jiuhua Xu; Yuling Xie; Lijun Wang; Heping Zhu; Liquan Wang

    2003-01-01

    Trace elements including REE (Rare Earth Elements) in fluid inclusions in lherzolite, olivine, orthopyroxene, and clinopy-roxene have been determined by heating-decrepitation and ICP-MS (Element Type Inductively Coupled Plasma-Mass Spectrometry)method. Normalized CO2 fluid/chondrite data show that mantle fluids are rich in REEs, especially LREEs (Light Rare Earth Ele-ments), several times or dozen times higher than mantle rocks and mantle mininerals. There are close relationships among the REEdata of olivine, orthopyroxene, clinopyroxene and lherzolite. Compared to the data of chemical dissolution method, it is believed thatREE data obtained from heating-decrepitation and ICP-MS technique are contributed by CO2 fluid inclusions. About 60% (massfraction) of tiny inclusions are observed not to be decrepitated above 1000℃, so REE data obtained are only contributed by decrepi-tated inclusions. Mantle fluids rich in LREE play an important role in mantle metasomatism, partial melting and mineralization.

  5. Investigating Rare Earth Element Systematics in the Marcellus Shale

    Science.gov (United States)

    Yang, J.; Torres, M. E.; Kim, J. H.; Verba, C.

    2014-12-01

    The lanthanide series of elements (the 14 rare earth elements, REEs) have similar chemical properties and respond to different chemical and physical processes in the natural environment by developing unique patterns in their concentration distribution when normalized to an average shale REE content. The interpretation of the REE content in a gas-bearing black shale deposited in a marine environment must therefore take into account the paleoredox conditions of deposition as well as any diagenetic remobilization and authigenic mineral formation. We analyzed 15 samples from a core of the Marcellus Shale (Whipkey ST1, Greene Co., PA) for REEs, TOC, gas-producing potential, trace metal content, and carbon isotopes of organic matter in order to determine the REE systematics of a black shale currently undergoing shale gas development. We also conducted a series of sequential leaching experiments targeting the phosphatic fractions in order to evaluate the dominant host phase of REEs in a black shale. Knowledge of the REE system in the Marcellus black shale will allow us to evaluate potential REE release and behavior during hydraulic fracturing operations. Total REE content of the Whipkey ST1 core ranged from 65-185 μg/g and we observed three distinct REE shale-normalized patterns: middle-REE enrichment (MREE/MREE* ~2) with heavy-REE enrichment (HREE/LREE ~1.8-2), flat patterns, and a linear enrichment towards the heavy-REE (HREE/LREE ~1.5-2.5). The MREE enrichment occurred in the high carbonate samples of the Stafford Member overlying the Marcellus Formation. The HREE enrichment occurred in the Union Springs Member of the Marcellus Formation, corresponding to a high TOC peak (TOC ~4.6-6.2 wt%) and moderate carbonate levels (CaCO3 ~4-53 wt%). Results from the sequential leaching experiments suggest that the dominant host of the REEs is the organic fraction of the black shale and that the detrital and authigenic fractions have characteristic MREE enrichments. We present our

  6. Modelling of Rare Earth Elements Complexation With Humic Acid

    Science.gov (United States)

    Pourret, O.; Davranche, M.; Gruau, G.; Dia, A.

    2006-12-01

    The binding of rare earth elements (REE) to humic acid (HA) was studied by combining Ultrafiltration and ICP- MS techniques. REE-HA complexation experiments were performed at various pH conditions (ranging from 2 to 10.5) using a standard batch equilibration method. Results show that the amount of REE bound to HA strongly increase with increasing pH. Moreover, a Middle REE (MREE) downward concavity is evidenced by REE distribution patterns at acidic pH. Modelling of the experimental data using Humic Ion Binding Model VI provided a set of log KMA values (i.e. the REE-HA complexation constants specific to Model VI) for the entire REE series. The log KMA pattern obtained displays a MREE downward concavity. Log KMA values range from 2.42 to 2.79. These binding constants are in good agreement with the few existing datasets quantifying the binding of REE with humic substances except a recently published study which evidence a lanthanide contraction effect (i.e. continuous increase of the constant from La to Lu). The MREE downward concavity displayed by REE-HA complexation pattern determined in this study compares well with results from REE-fulvic acid (FA) and REE-acetic acid complexation studies. This similarity in the REE complexation pattern shapes suggests that carboxylic groups are the main binding sites of REE in HA. This conclusion is further supported by a detailed review of published studies for natural, organic-rich, river- and ground-waters which show no evidence of a lanthanide contraction effect in REE pattern shape. Finally, application of Model VI using the new, experimentally determined log KMA values to World Average River Water confirms earlier suggestions that REE occur predominantly as organic complexes (> 60 %) in the pH range between 5-5.5 and 7-8.5 (i.e. in circumneutral pH waters). The only significant difference as compared to earlier model predictions made using estimated log KMA values is that the experimentally determined log KMA values

  7. Germanium and Rare Earth Element accumulation in woody bioenergy crops

    Science.gov (United States)

    Hentschel, Werner

    2016-04-01

    Germanium and REEs are strategic elements that are used for high tech devices and engineered systems, however these elements are hardly concentrated into mineable ore deposits. Since these elements occur widely dispersed in the earth crust with concentrations of several mgṡkg-1 (Ge 1.6 mgṡkg-1, Nd 25 mgṡkg-1) a new possibility to gain these elements could be phytomining, a technique that uses plants to extract elements from soils via their roots. Since knowledge about accumulating plant species is quite limited we conducted research on the concentrations of strategic elements in wood and leaves of fast growing tree species (Salix spec., Populus spec., Betula pendula, Alnus glutinosa, Fraxinus excelsior, Acer pseudoplatanus). In total 35 study sites were selected in the mining affected area around Freiberg (Saxony, Germany), differing in their species composition and degree of contamination with toxic trace metals (Pb, As, Cd). On each site plant tissues (wood and leaves, respectively) of different species were sampled. In addition soil samples were taken from a soil depth of 0 - 30 cm and 30 - 60 cm. The aim of our work was to investigate correlations between the concentrations of the target elements in plant tissues and soil characteristics like pH, texture, nutrients and concentrations in six operationally defined soil fractions (mobile, acid soluble, oxidizable, amorphic oxides, crystalline oxides, residual or siliceous). Concentrations of elements in soil extracts and plant tissues were measured with ICP-MS. The element Nd was selected as representative for the group of REEs, since this element showed a high correlation with the concentrations of the other REE We found that the concentration of Nd in the leaves (0.31 mgṡkg-1Nd) were several times higher than in herbaceous species (0.05 mgṡkg-1 Nd). The concentration of Ge in leaves were ten times lower than that of Nd whereas in herbaceous species Nd and Ge were in equal magnitude. Within the tree

  8. Investigation of Kpong carbonatite as a potential source for rare earth elements (REEs) using instrumental neutron activation analysis (INAA)

    Energy Technology Data Exchange (ETDEWEB)

    Hayford, M.S.; Akiti, T.T.; Serfor-Armah, Y.; Dampare, S.B. [Ghana Univ., Accra (Ghana). School of Nuclear and Allied Sciences; Ghana Atomic Energy Commission (GAEC), Legon-Accra (Ghana). Nuclear Chemistry and Environmental Research Centre

    2013-07-01

    Instrumental neutron activation analysis (INAA) was used to investigate REEs in carbonatite from Kpong southeastern, Ghana. Total rare earth element (TREEs) obtain were in the range of 540 mg/kg to 705 mg/kg. The total number of rare earth elements (REEs) determined by INAA in the carbonatite rocks from Kpong were 11, namely; La, Ce, Nd, Sm, Eu, Tb, Dy, Ho, Tm, Yb, Lu. The INAA results from the carbonatite show a high enrichment of light rare earth elements (LREEs) deposits, marking the Kpong carbonatite as a potential REE source. (orig.)

  9. A novel approach for acid mine drainage pollution biomonitoring using rare earth elements bioaccumulated in the freshwater clam Corbicula fluminea.

    Science.gov (United States)

    Bonnail, Estefanía; Pérez-López, Rafael; Sarmiento, Aguasanta M; Nieto, José Miguel; DelValls, T Ángel

    2017-09-15

    Lanthanide series have been used as a record of the water-rock interaction and work as a tool for identifying impacts of acid mine drainage (lixiviate residue derived from sulphide oxidation). The application of North-American Shale Composite-normalized rare earth elements patterns to these minority elements allows determining the origin of the contamination. In the current study, geochemical patterns were applied to rare earth elements bioaccumulated in the soft tissue of the freshwater clam Corbicula fluminea after exposure to different acid mine drainage contaminated environments. Results show significant bioaccumulation of rare earth elements in soft tissue of the clam after 14 days of exposure to acid mine drainage contaminated sediment (ΣREE=1.3-8μg/gdw). Furthermore, it was possible to biomonitor different degrees of contamination based on rare earth elements in tissue. The pattern of this type of contamination describes a particular curve characterized by an enrichment in the middle rare earth elements; a homologous pattern (EMREE=0.90) has also been observed when applied NASC normalization in clam tissues. Results of lanthanides found in clams were contrasted with the paucity of toxicity studies, determining risk caused by light rare earth elements in the Odiel River close to the Estuary. The current study purposes the use of clam as an innovative "bio-tool" for the biogeochemical monitoring of pollution inputs that determines the acid mine drainage networks affection. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.

    Science.gov (United States)

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.

  11. Application Progress of Chromatography in the Separation and Determination of Rare Earth Elements%色谱法在稀土元素分离分析研究中的应用进展

    Institute of Scientific and Technical Information of China (English)

    关瑾; 何传昌; 任丽艳; 牛秋玲; 阎峰; 石爽

    2012-01-01

    稀土作为一种重要的不可再生资源,在各行业的应用正逐渐被人们所重视.色谱技术以其快速、高效、自动化程度高等优势已成为稀土元素分离分析的主要方法.文章总结了纸色谱法、薄层色谱法、气相色谱法、超临界色谱法、高效液相色谱法、毛细管电泳法等色谱法在稀土元素分离分析中的应用及研究概况.其中,纸色谱法因展开时间过长,分离效果不理想已很少应用;薄层色谱法因其操作方便、设备简单、显色容易等优点,可用于稀土元素分离分析的初步检测;气相色谱法由于对样品热稳定性的限制,以及因常用的β -二酮类稀土螯合物配体存在分辨率差和吸附等问题也很少应用;超临界色谱法在分离稀土元素络合物中分离效果较好,但是仪器难以普及,限制了技术的发展;高效液相色谱法因分离效率高、重复性好、自动化操作等优点已成为目前稀土元素分离分析的主要方法;毛细管电泳法具有高效、样品及试剂用量少、操作模式灵活等优点,在稀土元素分离分析方面更具有广阔的发展空间.%Rare earth elements (REEs) as an important non-renewable resource are attracting more and more attention in many fields of industry. Chromatographic technology has become the main method in the separation and determination of REEs due to its obvious advantages, for example, high speed of analysis, high efficiency and ease of automation. In this review, application and research of the chromatographic approaches are introduced such as Paper Chromatography, Thin-Layer Chromatography, Gas Chromatography, Supercritical Fluid Chromatography, High Performance Liquid Chromatography and Capillary Electrophoresis for separation and determination of REEs. Paper Chromatography has been rarely used because of its long operation time and poor separation effect. Thin-Layer Chromatography could be used for preliminary

  12. Bacterial Cell Surface Adsorption of Rare Earth Elements

    Science.gov (United States)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  13. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y.; Barnes, J.; Fox, S.

    2016-09-01

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. We have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.

  14. Thorium and rare earth elements in crystal and brown sugar consumed in Brazil and Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Salles, Paula M.B. de; Campos, Tarcisio P. R. de, E-mail: pauladesalles@yahoo.com.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Human exposure to contaminants in foods is a matter of general health concern. There is a growing interest in determine and quantify contaminants in food chain including natural radionuclides and rare earth elements (REE). Irradiation effects of radioactive nuclides and REE may cause lesions from their interaction with the human body. This study aimed to identify the presence of thorium and rare earth elements in crystal and brown sugar samples available for consumption in Brazil and Argentina. To determine the chemical elements, the 5g-sample methodology established at CDTN/CNEN, in Belo Horizonte, using the neutron activation technique, k{sub 0}-method, was applied. The element Sm was determined in crystal sugar samples analyzed that were available to consumption in both countries. Similarly to the brown sugar samples which presented La, Sc and Sm. The elements Ce and Th were found in brown sugar sample available to consumption in Brazil. Thus, the detection of these elements in sugar samples is important insofar as the increasing consumption of sugar around the world. The presence of impurities and its concentration may contribute to health issues to consumers. (author)

  15. Accumulation of rare earth elements by siderophore-forming Arthrobacter luteolus isolated from rare earth environment of Chavara, India

    Indian Academy of Sciences (India)

    E S Challaraj Emmanuel; T Ananthi; B Anandkumar; S Maruthamuthu

    2012-03-01

    In this study, Arthrobacter luteolus, isolated from rare earth environment of Chavara (Quilon district, Kerala, India), were found to produce catechol-type siderophores. The bacterial strain accumulated rare earth elements such as samarium and scandium. The siderophores may play a role in the accumulation of rare earth elements. Catecholate siderophore and low-molecular-weight organic acids were found to be present in experiments with Arthrobacter luteolus. The influence of siderophore on the accumulation of rare earth elements by bacteria has been extensively discussed.

  16. The occurrence of rare earth elements in some Finnish mires

    Directory of Open Access Journals (Sweden)

    Yliruokanen, I.

    1995-12-01

    Full Text Available The content of the more abundant rare earths (RE (Y, La, Ce, Pr, Nd and Sm in the ash of 399 peat samples from 26 Finnish mires was determined by X-ray fluorescence spectrometry. The content of all rare earths (La-Lu, Y in 29 samples was also determined by spark source mass spectrometry. The median RE contents in peat ashes from areas where the bedrock consists of rapakivi granite, granite or archean gneiss are reported. Detailed data concerning the individual mires are also presented. The highest RE contents were found in samples from rapakivi granite areas where a strong negative Eu anomaly was also observed. The RE contents were in general highest at the basal peat layers.

  17. Diagenetic uptake of rare earth elements by conodont apatite

    Science.gov (United States)

    Zhang, L.; Algeo, T. J.; Cao, L.; Zhao, L.; Chen, Z. Q.; Li, Z.

    2015-12-01

    The rare earth element (REE) composition of bioapatite has long been used as a proxy for ancient seawater chemistry and paleomarine environmental reconstruction, based on the assumption of preservation of a hydrogenous (seawater-derived) REE signal. Recent work, however, has begun to question the provenance of REEs in conodonts, emphasizing the importance of REEs released by the lithogenous fraction of the sediment and subsequently adsorbed onto conodont apatite in the burial environment. Here, we investigate patterns of REE and trace-element abundance in conodonts and their host sediments from the Early to Late Ordovician Huanghuachang and Chenjiahe sections of Hubei Province, South China. Several lines of evidence indicate that REEs in the conodont samples were acquired mainly from clay minerals in the host sediment during burial diagenesis: (1) REEs in conodonts show a strong positive correlation to Th and other lithogenic elements; (2) conodonts and whole-rock samples show general patterns of REE and trace-element enrichment that are highly similar to each other and bear no resemblance to seawater elemental concentrations; (3) similar patterns are observed in Triassic conodonts and whole-rock samples; and (4) Y/Ho ratios in conodonts are mostly 90% of REEs from lithogenous sources. Conodonts show pronounced middle rare earth element (MREE) enrichment, a pattern that is unambiguously of diagenetic origin owing to its association with lower Y/Ho ratios. With increasing MREE enrichment of conodont samples, U concentrations and LaN/YbN ratios shift from high to low, and Mn concentrations from low to high. These patterns suggest that conodont diagenesis was initiated at shallow burial depths under suboxic conditions (i.e., in the zone of Mn(IV) and Fe(III) reduction) but continued at greater burial depths, with most acquisition of secondary REEs at later diagenetic stages. Our findings indicate that (1) conodont apatite frequently does not preserve a recognizable

  18. Rolling Element Bearing Stiffness Matrix Determination (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Parker, R.

    2014-01-01

    Current theoretical bearing models differ in their stiffness estimates because of different model assumptions. In this study, a finite element/contact mechanics model is developed for rolling element bearings with the focus of obtaining accurate bearing stiffness for a wide range of bearing types and parameters. A combined surface integral and finite element method is used to solve for the contact mechanics between the rolling elements and races. This model captures the time-dependent characteristics of the bearing contact due to the orbital motion of the rolling elements. A numerical method is developed to determine the full bearing stiffness matrix corresponding to two radial, one axial, and two angular coordinates; the rotation about the shaft axis is free by design. This proposed stiffness determination method is validated against experiments in the literature and compared to existing analytical models and widely used advanced computational methods. The fully-populated stiffness matrix demonstrates the coupling between bearing radial, axial, and tilting bearing deflections.

  19. Rare earth elements as a by-catch of sedimentary deposits. Exploration program of rare earth elements; Selten Erd Elemente als Beifang sedimentaerer Lagerstaetten. Erkundungsprogramm Selten Erd Elemente

    Energy Technology Data Exchange (ETDEWEB)

    Linhardt, E.; Gebhardt, A. (comps.)

    2014-02-15

    The increasing demand for rare earth elements (REE) in the field of ''green technologies'' on the one hand and the shortage of raw materials on the world markets on the other hand confronted also Bavaria as an industrial location with growing supply problems in these ''high tech raw materials''. The aim of exploration was the clarification of the feedstock REE potential of heavy mineral concentrates which are obtained in the industrial extraction and processing of sand and kaolin in existing extraction operations in northern Bavaria as by catch and are potentially winnable or marketable. The in-depth investigation enabled the potential of found rare earth elements and other high-tech metal oxides that can be classified as very likely find it in terms of an economic recovery. [German] Der zunehmende Bedarf an Selten Erd Elementen (SEE) im Bereich der ''Gruenen Technologien'' zum Einen sowie die Rohstoffverknappung auf den Weltmaerkten zum Anderen konfrontiert auch Bayern als Industriestandort mit wachsenden Versorgungsproblemen bei diesen ''high tech-Grundstoffen''. Ziel der Erkundung war die Klaerung des rohstofflichen SEE-Potenzials von Schwermineralkonzentraten, die bei der grosstechnischen Gewinnung und Aufbereitung von Sand und Kaolin in vorhandenen Gewinnungsbetrieben Nordbayerns als Beifang anfallen und potenziell gewinn- bzw. vermarktbar sind. Im Zuge der Untersuchung konnten nutzbare Potenziale von Selten Erd Elementen und anderen high-tech - Metalloxiden gefunden werden, die sehr wahrscheinlich als fuendig im Hinblick auf eine wirtschaftliche Gewinnung eingestuft werden koennen.

  20. Rare Earth elements as sediment tracers in Mangrove ecosystems

    Science.gov (United States)

    Ramanathan, A. L.; Swathi, S.

    2013-05-01

    Rare earth elements have been widely used as geochemical source fingerprints of rocks and sediments to study processes involving cosmo-chemistry, igneous petrology, tectonic setting and for investigations of water-rock interactions and weathering processes including transport of weathering products to the oceans.Many studies have addressed the use of REEs in investigating the environmental impact of human activity and demonstrated that the REE natural distribution in sediment from densely industrialised and populated regions can be altered by anthropogenic influences.The coastal wetlands like Mangroves are ultimate sinks for all the material derived from the terrestrial and marine environment.The high productivity and low ratio of sediment respiration to net primary production gives mangrove sediments the potential for long-term sequestration of these pollutants/metals before reaching the coastal ocean. Geochemical study of REE in these sedimentary systems is useful for determining the nature of the biogeochemical processes. In particular, REE show a great sensitivity to pH changes, redox conditions and adsorption/ desorption reactions. So, they may be used as markers of discharge provenance, weathering processes, changes in environmental conditions in the water and sediments of Mangrove/wetland systems. Our study aims to establish the abundance, distribution and enrichment of REEs to track the sediment sources and biogeochemical processes occurring in the mangrove environment.Core sediments were collected from the different environmental settings within the Pichavaram mangrove area.Higher REE concentration in Pichavaram sediments indicated greater input from sources like terrestrial weathering and anthropogenic activities which in turn are affected by saline mixing and dynamic physico-chemical processes occurring in the mangrove environment. REE enrichment order was attributed to the alkaline pH (7-8.5) and reducing conditions prevailing in the mangrove

  1. Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China.

    Science.gov (United States)

    Zhuang, Maoqiang; Zhao, Jinshan; Li, Suyun; Liu, Danru; Wang, Kebo; Xiao, Peirui; Yu, Lianlong; Jiang, Ying; Song, Jian; Zhou, Jingyang; Wang, Liansen; Chu, Zunhua

    2017-02-01

    To investigate the concentrations of rare earth elements in vegetables and assess human health risk through vegetable consumption, a total of 301 vegetable samples were collected from mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The total rare earth elements in vegetables from mining and control areas were 94.08 μg kg(-1) and 38.67 μg kg(-1), respectively, and the difference was statistically significant (p mining and control areas, respectively) and gourd vegetable had the lowest rare earth elements concentration (37.34 μg kg(-1) and 24.63 μg kg(-1) for mining and control areas, respectively). For both areas, the rare earth elements concentration in vegetables declined in the order of leaf vegetable > taproot vegetable > alliaceous vegetable > gourd vegetable. The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes (0.69 μg kg(-1) d(-1) and 0.28 μg kg(-1) d(-1) for mining and control areas, respectively) of rare earth elements through vegetable consumption were significantly lower than the acceptable daily intake (70 μg kg(-1) d(-1)). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to low levels of rare earth elements on children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Radiological Impacts and Regulation of Rare Earth Elements in Non-Nuclear Energy Production

    Directory of Open Access Journals (Sweden)

    Timothy Ault

    2015-03-01

    Full Text Available Energy industries account for a significant portion of total rare earth usage, both in the US and worldwide. Rare earth minerals are frequently collocated with naturally occurring radioactive material, imparting an occupational radiological dose during recovery. This paper explores the extent to which rare earths are used by various non-nuclear energy industries and estimates the radiological dose which can be attributed to these industries on absolute and normalized scales. It was determined that typical rare earth mining results in an occupational collective dose of approximately 0.0061 person-mSv/t rare earth elements, amounting to a total of 330 person-mSv/year across all non-nuclear energy industries (about 60% of the annual collective dose from one pressurized water reactor operated in the US, although for rare earth mining the impact is spread out over many more workers. About half of the collective dose from non-nuclear energy production results from use of fuel cracking catalysts for oil refining, although given the extent of the oil industry, it is a small dose when normalized to the energy equivalent of the oil that is used annually. Another factor in energy industries’ reliance on rare earths is the complicated state of the regulation of naturally occurring radiological materials; correspondingly, this paper also explores regulatory and management implications.

  3. Distribution patterns of rare earth elements in various plant species

    Energy Technology Data Exchange (ETDEWEB)

    Wyttenbach, A.; Tobler, L.; Furrer, V. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs.

  4. Radiochemical neutron activation analysis of rare earth elements in peridotitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Joron, J.L. (Laboratoire d' Analyse par Activation Pierre Sue, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Ottonello, G. (Consiglio Nationale delle Ricerche, Pisa (Italy). Ist. di Petrografia)

    1985-02-01

    A radiochemical neutron activation analytical method based on various methods published earlier was used to determine rare earth elements (REE). The method involves a post-irradiation sample fusion, two separate ion-exchange chromatographic stages, and, finally, a fluoride precipitation. The RNAA procedure is capable of providing very precise REE data for peridotitic samples and was used for the analysis of rocks from several geodynamic environments.

  5. Hyperfine Magnetic Anomaly in the Atomic Spectra of the Rare-Earth Elements

    CERN Document Server

    Gangrsky, Yu P; Karaivanov, D V; Kolesnikov, N N; Marinova, K P; Markov, B N; Rostovsky, V S

    2001-01-01

    The constants of the hyperfine splitting in the atomic optical spectra of the rare-earth elements - Nd, Eu, Gd and Lu - were measured. The method of laser resonance fluorescence in the parallel atomic beam was used. The values of the hyperfine magnetic anomaly were determined from the comparison of magnetic dipole constant ratios of the neighbouring odd Z or N isotopes for the different atomic levels. The connection of these values and the parameters of atomic and nuclear structure is discussed.

  6. A review of fractionations of rare earth elements in plants

    Institute of Scientific and Technical Information of China (English)

    LIANG Tao; DING Shiming; SONG Wenchong; CHONG Zhongyi; ZHANG Chaosheng; LI Haitao

    2008-01-01

    Studies were carried out on several aspects of rare earth elements (REEs), such as the theory and practice of their applications in agriculture, their geochemical behaviors in natural and agricultural ecosystems, the mechanisms for the increase of crop yield using REE fertilizer, and their toxicology. However, limited knowledge was available for the transfer processes and the features and mechanisms of distribution and fractionatious of REEs inside plants. The characteristics of REE fractionations in plants can be used to "trace" the pathway of REE transportation from soils (solution) to plants. A better understanding of the mechanisms of REE fractionations was helpful to investigate the controlling factors, including both the internal and the external ones. The characteristics and mechanisms of REE fractionatious in plants and their significance were reviewed. Furthermore, the prospect for these fields was discussed, in hope of providing a new way in studying the bioavailability of REEs and heavy metals.

  7. Contents and distribution of rare earth elements in wheat seeds

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Contents of 15 rare earth elements (REEs) in the seeds of 60 breeds of wheat have been analyzed by the inductively-coupled plasma mass spectrometry (ICP-MS). The distribution pattern of contents of REEs in wheat seeds has been observed and compared with that in soils. Comparison with literature data has also been made. The results show that the background of REEs in wheat seeds is 10-11-10-8 g.g-1, 3-4 levels lower than in soils. The distribution pattern is light REEs higher in contents and slight Eu-anomaly, similar to that in soils. The data obtained in this study can accurately represent the background content of REEs in wheat seeds.

  8. Study on Adsorption of Rare Earth Elements by Kaolinite

    Institute of Scientific and Technical Information of China (English)

    Wan Yingxin; Liu Congqiang

    2005-01-01

    For better understanding the adsorption of rare earth elements (REEs) by clay minerals and its controlling factors, the experiments on adsorption of REEs in solutions with 1 g·L-1 kaolinite were performed at different conditions. The results are as follows: the REEs reach equilibrium in the adsorption-desorption process for 24; Langmuir's adsorption curve is used for modeling the adsorption of REEs by kaolinite; a general trend is that the higher the contents of REEs are, the less obvious the fractionation is. Furthermore, there is significant effect of pH on the adsorption and fractionation of REEs by kaolinite, and the REEs distribution coefficient increases with increasing pH. When pH is nearly neutral, as reaches 7, heavy REEs are more adsorbed than light REEs.

  9. Attenuation of rare earth elements in a boreal estuary

    Science.gov (United States)

    Åström, Mats E.; Österholm, Peter; Gustafsson, Jon Petter; Nystrand, Miriam; Peltola, Pasi; Nordmyr, Linda; Boman, Anton

    2012-11-01

    This study focuses on attenuation of rare earth elements (REE) when a boreal creek, acidified and loaded with REE and other metals as a result of wetland drainage, empties into a brackish-water estuary (salinity MINTEQ version 3.0 and the Stockholm Humic Model after revision and updating, predicted that the dissolved (<0.45 μm) REE pool in the estuary is bound almost entirely to humic substances. Acid sulphate soils, the source of the REE and other metals in the creek water, are widespread on coastal plains worldwide and therefore the REE attenuation patterns and mechanisms identified in the studied estuary are relevant for recognition of similar geochemical processes and conditions in a variety of coastal locations.

  10. Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon

    Science.gov (United States)

    Righter, K.; Pando, K.; Danielson, L.; Nickodem, K.

    2014-01-01

    Depletions of siderophile elements in mantles have placed constraints on the conditions on core segregation and differentiation in bodies such as Earth, Earth's Moon, Mars, and asteroid 4 Vesta. Among the siderophile elements there are a sub-set that are also volatile (volatile siderophile elements or VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd), and thus can help to constrain the origin of volatile elements in these bodies, and in particular the Earth and Moon. One of the fundamental observations of the geochemistry of the Moon is the overall depletion of volatile elements relative to the Earth, but a satisfactory explanation has remained elusive. Hypotheses for Earth include addition during accretion and core formation and mobilized into the metallic core, multiple stage origin, or addition after the core formed. Any explanation for volatile elements in the Earth's mantle must also be linked to an explanation of these elements in the lunar mantle. New metal-silicate partitioning data will be applied to the origin of volatile elements in both the Earth and Moon, and will evaluate theories for exogenous versus endogenous origin of volatile elements.

  11. Spacecraft Attitude Determination with Earth Albedo Corrected Sun Sensor Measurements

    DEFF Research Database (Denmark)

    Bhanderi, Dan

    This thesis focuses on advanced modeling of the Earth albedo experienced by satellites in Earth orbit. The model of the Earth albedo maintains directional information of the Earth albedo irradiance from each partition on the Earth surface. This allows enhanced modeling of Sun sensor current outputs......-Method, Extended Kalman Filter, and Unscented Kalman Filter algorithms are presented and the results are compared. Combining the Unscented Kalman Filter with Earth albedo and enhanced Sun sensor modeling allows for three-axis attitude determination from Sun sensor only, which previously has been perceived...

  12. Evaluation of matrix effect on the determination of rare earth elements and As, Bi, Cd, Pb, Se and In in honey and pollen of native Brazilian bees (Tetragonisca angustula - Jataí) by Q-ICP-MS.

    Science.gov (United States)

    de Oliveira, Fernanda Ataide; de Abreu, Adriana Trópia; de Oliveira Nascimento, Nathália; Froes-Silva, Roberta Eliane Santos; Antonini, Yasmine; Nalini, Hermínio Arias; de Lena, Jorge Carvalho

    2017-01-01

    Bees are considered the main pollinators in natural and agricultural environments. Chemical elements from honey and pollen have been used for monitoring the environment, the health of bees and the quality of their products. Nevertheless, there are not many studies on honey and pollen of native Brazilian bees. The goal of this work was to determine important chemical elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Lu and Yb) along with As, Bi, Cd, Pb, Se and In, in honey and pollen of native Brazilian bees, assessing analytical interferences from the matrix. A proposed analytical method was developed for these elements by quadrupole ICP-MS. Matrix effect was verified in honey matrix in the quantification of As, Bi and Dy; and in pollen matrix for Bi, Cd, Ce, Gd, La, Pb and Sc. The quality of the method was considered satisfactory taking into consideration the recovery rate of each element in the spiked solutions: honey matrix (91.6-103.9%) and pollen matrix (94.1-115.6%). The quantification limits of the method ranged between 0.00041 and 10.3μgL(-1) for honey and 0.00041-0.095μgL(-1) for pollen. The results demonstrate that the method is accurate, precise and suitable. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Rare earth elements exploitation, geopolitical implications and raw materials trading

    Science.gov (United States)

    Chemin, Marie-Charlotte

    2015-04-01

    Rare earth elements (REE) correspond to seventeen elements of the periodic table. They are used in high technology, cracking, electric cars' magnet, metal alloy for batteries, and also in phone construction or ceramics for electronic card. REEs are an important resource for high technology. This project targets 16 years old students in the subject "personalized aid" and will last six weeks. The purpose of this project is to develop autonomy and research in groups for a transdisciplinary work. This project gathers knowledge in geology, geography and economics. During the first session students analyze the geology applications of the REE. They begin the analysis with learning the composition in different rocks such as basalt and diorite to make the link with crystallization. Then they compare it with adakite to understand the formation of these rocks. In the second session, they study REE exploitation. We can find them as oxides in many deposits. The principal concentrations of rare earth elements are associated with uncommon varieties of igneous rocks, such as carbonatites. They can use Qgis, to localize this high concentration. In the third session, they study the environmental costs of REE exploitation. Indeed, the exploitation produces thorium and carcinogenic toxins: sulphates, ammonia and hydrochloric acid. Processing one ton of rare earths produces 2,000 tons of toxic waste. This session focuses, first, on Baotou's region, and then on an example they are free to choose. In the fourth session, they study the geopolitical issues of REE with a focus on China. In fact this country is the largest producer of REE, and is providing 95% of the overall production. REE in China are at the center of a geopolitical strategy. In fact, China implements a sort of protectionism. Indeed, the export tax on REE is very high so, as a foreign company, it is financially attractive to establish a manufacturing subsidiary in China in order to use REE. As a matter of fact

  14. 高分辨电感耦合等离子体质谱法测定地下水中稀土元素%Determination of Rare Earth Elements in Groundwater by High Resolution Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    程青; 蔡述伟; 李华玲; 蔡小虎; 白晓

    2015-01-01

    采用高分辨电感耦合等离子体质谱法测定地下水中14种稀土元素,并选择Rh作内标,可消除测定中的质谱干扰和非质谱干扰,使方法在0μg/L~100μg/L范围内线性良好。方法检出限为0.002μg/L~0.005μg/L,实际水样的加标回收率为80.0%~117%,RSD为2.1%~3.8%。%14 rare earth elements were detected by high resolution inductively coupled plasma mass spec-trometry (HR-ICP-MS),by choosing Rh as a internal standard,the mass spectral interference and non-interfer-ence in the detection could be eliminated and the result showed a good linearity in the range of 0 μg/L ~100 μg/L.The detection limits of this method were 0.002 μg/L~0.005 μg/L,the recoveries of actual water samples ranged from 80.0%to 117%,and the RSDs were 2.1%~3.8%.

  15. Rare earth elements in scleractinian cold-water corals

    Science.gov (United States)

    Raddatz, J.; Liebetrau, V.; Hathorne, E. C.; Rüggeberg, A.; Dullo, W.; Frank, M.

    2012-12-01

    The Rare Earth Elements (REE) have a great potential to trace continental input, particle scavenging and the oxidation state of seawater. These REE are recorded in the skeleton of the cosmopolitan cold-water corals Lophelia pertusa. Here we use an online preconcentration ICP-MS method (Hathorne et al. 2012) to measure REE concentrations in seawater and associated cold-water coral carbonates in order to investigate their seawater origin. Scleractinian cold-water corals were collected in-situ and alive and with corresponding seawater samples covering from the European Continental Margin. The seawater REE patterns are characterized by the typical negative cerium anomaly of seawater, but are distinct for the northern Norwegian Margin and the Oslo Fjord, probably related to continental input. Initial results for the corresponding coral samples suggest that these distinct REE patterns of ambient seawater are recorded by the coral skeletons although some fractionation during incorporation into the aragonite occurs. This indicates that scleractinian cold-water corals can serve as a valuable archive for seawater derived REE signatures, as well radiogenic Nd isotope compositions. In a second step we analysed fossil coral samples from various locations, which were oxidatively and reductively cleaned prior to analysis. Initial results reveal that sediment-buried fossil (early Pleistocene to Holocene) coral samples from the Norwegian Margin and the Porcupine Seabight (Challenger Mound, IODP Site 1317) do not show the expected seawater REE patterns. In particular, the fossil coral-derived REE patterns lack a negative cerium anomaly suggesting that fossil coral-REE patterns do not represent ambient seawater. Thus, we suggest that the oxidative-reductive cleaning method widely used for cleaning of marine carbonates such as foraminifera prior to measurements of seawater-derived trace metal and isotope compositions are not sufficient for REE and Nd isotopes in sediment-buried coral

  16. Geochemical behavior of rare earth elements and other trace elements in the Amazon River

    Science.gov (United States)

    Merschel, Gila; Bau, Michael; Dantas, Elton Luiz

    2014-05-01

    Rivers transport large amounts of dissolved and suspended particulate material from the catchment area to the oceans and are a major source of trace metals to seawater. The Amazon River is the world's largest river and supplies approximately 20% of the oceans' freshwater (Molinier et al., 1997). However, the behavior of trace elements, especially particle-reactive elements such as the rare earth elements (REE), within the river as well as in the estuary is not well constrained and rather little is known about their transport mechanisms. This study aims at understanding the transport properties of particle-reactive elements in the Amazon River and some of its major tributaries, including the Rio Solimões, Rio Negro, Tapajos, Xingu and Jari Rivers. Samples were taken at 12 stations, seven of which were located in the Amazon mainstream, while the other five stations sampled its tributaries. To account for the effects of variable discharge, the samples were collected during periods of high and low discharge. We present data for major and trace elements, including REE, of the dissolved and suspended load of these samples. First results indicate that the shale-normalized REE pattern of the dissolved load (filtered through 0.2 µm membranes) of the Amazon mainstream and the Rio Solimões confirm earlier studies (Elderfield et al., 1990; Gerard et al., 2003) and show an enrichment of the middle REE relative to the light and heavy REE (LaSN/GdSN: 0.25 - 0.32; GdSN/YbSN: 1.54 - 1.78). In contrast to the Amazon mainstream and the Rio Solimões, which are considered to be whitewater rivers, blackwater rivers, such as the Rio Negro, have a flat REE pattern with higher REE concentrations than whitewater rivers. The third water-type found in the Amazon Basin is clearwater, e.g. Rio Tapajos, with REE patterns in between those of the other two types, i.e. LaSN/GdSN: 0.55 - 0.70; GdSN/YbSN: 1.26 - 1.55. A similar behavior can be identified for other major and trace elements. While

  17. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy

    Science.gov (United States)

    Sindern, Sven; Meyer, F. Michael

    2016-09-01

    Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become

  18. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the earth's core

    Science.gov (United States)

    Newsom, H. E.; White, W. M.; Jochum, K. P.; Hofmann, A. W.

    1986-01-01

    The hypothesis that the mantle Pb isotope ratios reflect continued extraction of Pb into the earth's core over geologic time is evaluated by studying the depeletion of chalcophile and siderophile elements in the mantle. Oceanic basalt samples are analyzed in order to determine the Pb, Sr, and Nd isotropic compositions and the abundances of siderophile and chalcophile elements and incompatible lithophile elements. The data reveal that there is no systematic variation of siderophile or chalcophile element abundances relative to abundances of lithophile elements and the Pb/Ce ratio of the mantle is constant. It is suggested that the crust formation involves nonmagmatic and magmatic processes.

  19. An Integrated Rare Earth Elements Supply Chain Strategy

    Science.gov (United States)

    2011-02-24

    FL: CRC Press, 2005) 1, 61, 59. 7 Gupta and Krishnamurthy, Extractive Metallurgy of Rare Earths, 21, 22, 32; Cindy A. Hurst, ―China‘s Ace in the...Supply Chain, Briefing for Congressional Committees, 27. 17 Ibid, 24. 18 Gupta and Krishnamurthy, Extractive Metallurgy of Rare Earths, 57. 19 Ibid...Oct 12, 2010): 3. 38 Gupta and Krishnamurthy, Extractive Metallurgy of Rare Earths, 94. 39 U.S. Government Accountability Office, Rare Earth

  20. Distributions of rare-earth elements in two Chinese coals and their burnt products

    Institute of Scientific and Technical Information of China (English)

    YAO Duo-xi; ZHI Xia-chen

    2005-01-01

    The concentrations of two fresh Chinese coals (lignitie and fatty coal ) from different geological origin and the corresponding fly and bottom ashes were determined using inductively coupled plasma mass spectrometry(ICP-MS). The ranges and means of concentrations of these elemennts were given. Based on the combustion simulating experiment in the one-dismensional boiler, the contents of REE (rare-earth element) of 18samples in lignite, fatty coal and their fly and bottom ashes in different combustion condition were determined, and geochemical feature of REE were analyzed.

  1. Spacecraft attitude determination using the earth's magnetic field

    Science.gov (United States)

    Simpson, David G.

    1989-01-01

    A method is presented by which the attitude of a low-Earth orbiting spacecraft may be determined using a vector magnetometer, a digital Sun sensor, and a mathematical model of the Earth's magnetic field. The method is currently being implemented for the Solar Maximum Mission spacecraft (as a backup for the failing star trackers) as a way to determine roll gyro drift.

  2. Alkaline Earth Element Adsorption onto PAA-Coated Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2017-02-01

    Full Text Available In this paper, we present a study on the adsorption of calcium (Ca2+ onto polyacrylic acid-functionalized iron-oxide magnetic nanoparticles (PAA-MNPs to gain an insight into the adsorption behavior of alkaline earth elements at conditions typical of produced water from hydraulic fracturing. An aqueous co-precipitation method was employed to fabricate iron oxide magnetic nanoparticles, whose surface was first coated with amine and then by PAA. To evaluate the Ca2+ adsorption capacity by PAA-MNPs, the Ca2+ adsorption isotherm was measured in batch as a function of pH and sodium chlorite (electrolyte concentration. A surface complexation model accounting for the coulombic forces in the diffuse double layer was developed to describe the competitive adsorption of protons (H+ and Ca2+ onto the anionic carboxyl ligands of the PAA-MNPs. Measurements show that Ca2+ adsorption is significant above pH 5 and decreases with the electrolyte concentration. Upon adsorption, the nanoparticle suspension destabilizes and creates large clusters, which favor an efficient magnetic separation of the PAA-MNPs, therefore, helping their recovery and recycle. The model agrees well with the experiments and predicts that the maximum adsorption capacity can be achieved within the pH range of the produced water, although that maximum declines with the electrolyte concentration.

  3. Rare earth elements in some bottled waters of Serbia

    Directory of Open Access Journals (Sweden)

    Todorović Maja

    2013-01-01

    Full Text Available Twenty-one bottled mineral and spring waters from Serbia were analyzed for 16 inorganic chemical parameters, including lanthanides and yttrium which belong to the group of so-called rare earth elements (REE. REE concentrations in the bottled water samples varied over a broad range, from 5.39 to 1585.82 ng/L. Total concentrations in the bottled water samples were calculated taking into account the classification of lanthanides into heavy (HREE and light (LREE, with yttrium added to the HREE group. The LREE concentrations ranged from 3.62 to 1449.63 ng/L, while those of the HREE were from 0 to 136.19 ng/L. Distinct REE signatures were observed in waters that drained specific rocks. The REE patterns in groundwater from granitic and related rocks showed LREE and HREE enrichment, while groundwater with mafic rock influence exhibited slightly LREE enrichment. Several bottled water samples featured naturally-occurring carbon dioxide, whose solutional capacity contributed to the highest REE concentrations in the analyzed samples. High REE concentrations are also a result of sudden changes in oxidation-reduction conditions, which particularly affect La, Ce and Eu. Aquifers developed in granitic and related rocks (methamorphic and sedimentary rocks constitute favorable environments for HREE in groundwater, corroborated by the occurrence of HREE in bottled water samples. The bottled water samples largely exhibited a negative cerium anomaly and nearly all the samples showed a positive europium anomaly.

  4. Continental shelves as potential resource of rare earth elements.

    Science.gov (United States)

    Pourret, Olivier; Tuduri, Johann

    2017-07-19

    The results of this study allow the reassessment of the rare earth elements (REE) external cycle. Indeed, the river input to the oceans has relatively flat REE patterns without cerium (Ce) anomalies, whereas oceanic REE patterns exhibit strong negative Ce anomalies and heavy REE enrichment. Indeed, the processes at the origin of seawater REE patterns are commonly thought to occur within the ocean masses themselves. However, the results from the present study illustrate that seawater-like REE patterns already occur in the truly dissolved pool of river input. This leads us to favor a partial or complete removal of the colloidal REE pool during estuarine mixing by coagulation, as previously shown for dissolved humic acids and iron. In this latter case, REE fractionation occurs because colloidal and truly dissolved pools have different REE patterns. Thus, the REE patterns of seawater could be the combination of both intra-oceanic and riverine processes. In this study, we show that the Atlantic continental shelves could be considered potential REE traps, suggesting further that shelf sediments could potentially become a resource for REE, similar to metalliferous deep sea sediments.

  5. MICROBIALLY MEDIATED LEACHING OF RARE EARTH ELEMENTS FROM RECYCLABLE MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D. W.; Fujita, Y.; Daubaras, D. L.; Bruhn, D. F.; Reiss, J. H.; Thompson, V. S.; Jiao, Y.

    2016-09-01

    Bioleaching offers a potential approach for recovery of rare earth elements (REE) from recyclable materials, such as fluorescent lamp phosphors or degraded industrial catalysts. Microorganisms were enriched from REE-containing ores and recyclable materials with the goal of identifying strains capable of extracting REE from solid materials. Over 100 heterotrophic microorganisms were isolated and screened for their ability to produce organic acids capable of leaching REE. The ten most promising isolates were most closely related to Pseudomonas, Acinetobacter and Talaromyces. Of the acids produced, gluconic acid appeared to be the most effective at leaching REE (yttrium, lanthanum, cerium, europium, and terbium) from retorted phosphor powders (RPP), fluidized cracking catalyst (FCC), and europium-doped yttrium oxide (YOEu). We found that an Acinetobacter isolates, BH1, was the most capable strain and able to leach 33% of the total REE content from the FCC material. These results support the continuing evaluation of gluconic acid-producing microbes for large-scale REE recovery from recyclable materials.

  6. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact.

    Science.gov (United States)

    Jacobson, Seth A; Morbidelli, Alessandro; Raymond, Sean N; O'Brien, David P; Walsh, Kevin J; Rubie, David C

    2014-04-01

    According to the generally accepted scenario, the last giant impact on Earth formed the Moon and initiated the final phase of core formation by melting Earth's mantle. A key goal of geochemistry is to date this event, but different ages have been proposed. Some argue for an early Moon-forming event, approximately 30 million years (Myr) after the condensation of the first solids in the Solar System, whereas others claim a date later than 50 Myr (and possibly as late as around 100 Myr) after condensation. Here we show that a Moon-forming event at 40 Myr after condensation, or earlier, is ruled out at a 99.9 per cent confidence level. We use a large number of N-body simulations to demonstrate a relationship between the time of the last giant impact on an Earth-like planet and the amount of mass subsequently added during the era known as Late Accretion. As the last giant impact is delayed, the late-accreted mass decreases in a predictable fashion. This relationship exists within both the classical scenario and the Grand Tack scenario of terrestrial planet formation, and holds across a wide range of disk conditions. The concentration of highly siderophile elements (HSEs) in Earth's mantle constrains the mass of chondritic material added to Earth during Late Accretion. Using HSE abundance measurements, we determine a Moon-formation age of 95 ± 32 Myr after condensation. The possibility exists that some late projectiles were differentiated and left an incomplete HSE record in Earth's mantle. Even in this case, various isotopic constraints strongly suggest that the late-accreted mass did not exceed 1 per cent of Earth's mass, and so the HSE clock still robustly limits the timing of the Moon-forming event to significantly later than 40 Myr after condensation.

  7. Recovery and separation of rare Earth elements using salmon milt.

    Directory of Open Access Journals (Sweden)

    Yoshio Takahashi

    Full Text Available Recycling rare earth elements (REEs used in advanced materials such as Nd magnets is important for the efficient use of REE resources when the supply of several REEs is limited. In this work, the feasibility of using salmon milt for REE recovery and separation was examined, along with the identification of the binding site of REEs in salmon milt. Results showed that (i salmon milt has a sufficiently high affinity to adsorb REEs and (ii the adsorption capacity of the milt is 1.04 mEq/g, which is comparable with that of commercial cation exchange resin. Heavier REEs have higher affinity for milt. A comparison of stability constants and adsorption patterns of REEs discussed in the literature suggests that the phosphate is responsible for the adsorption of REE in milt. The results were supported by dysprosium (Dy and lutetium (Lu LIII-edge extended x-ray absorption fine structure (EXAFS spectroscopy. The REE-P shell was identified for the second neighboring atom, which shows the importance of the phosphate site as REE binding sites. The comparison of REE adsorption pattern and EXAFS results between the milt system and other adsorbent systems (cellulose phosphate, Ln-resin, bacteria, and DNA-filter hybrid revealed that the coordination number of phosphate is correlated with the slope of the REE pattern. The separation column loaded with milt was tested to separate REE for the practical use of salmon milt for the recovery and separation of REE. However, water did not flow through the column possibly because of the hydrophobicity of the milt. Thus, sequential adsorption-desorption approach using a batch-type method was applied for the separation of REE. As an example of the practical applications of REE separation, Nd and Fe(III were successfully separated from a synthetic solution of Nd magnet waste by a batch-type method using salmon milt.

  8. Accumulation of Rare Earth Elements in Various Microorganisms

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The removal of rare earth elements (REEs) from solution in various microorganisms was examined. Seventy-six strains from 69 species (22 bacteria, 20 actinomycetes, 18 fungi, and 16 yeasts) were tested. Initially, Sm was used to test the removal capabilities of the various organisms. Gram-positive bacteria, such as Bacillus licheniformis, B. subtilis, Brevibacterium helovolum, and Rhodococcus elythropolis, exhibited a particularly high capacity for accumulating Sm. In particular, the B. lichemiformis cells accumulated approximately 316 μmol Sm per gram dry wt. of microbial cells. A full suite of screenings was then conducted to compare the abilities of the organisms to remove Sc, Y, La, Er, and, Lu from solution. Tests were done with solutions containing one REE at a time. Accumulation was nearly identical for the various metals and organisms. However, when solutions with equimolar amounts of two REEs were used, preferential removal from solution was observed. When an Eu/Gd solution was used, gram-positive bacteria removed more Eu and Gd as compared to actinomycetes. When Eu/Sm combination was used, gram-positive bacteria removed equal mounts of both metals and some actinomycetes removed more Eu. The selective removal was quantified by calculating separation factors (S. F.), which indicated that Streptomyces levoris cells accumulated the greatest proportion of Eu. The removal of REEs from a solution containing five metals (Y, La, Sm, Er, and Lu) was then examined. Mucor javanicus preferentially accumulated Sm and S. flavoviridis preferentially accumulated Lu. The effects of pH and Sm concentration on the accumulation of Sm by B. licheniformis were also examined. Accumulation increased at higher pH and at greater solution concentrations.

  9. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  10. Effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    KaikunWang; KuiZhang; 等

    2002-01-01

    The effects of rare earth elements on the microstructure and properties of Magnesium alloy AZ91D alloy were studied.The different proportion of rare earth elements was added to the AZ91D and the tensile tests were carried out at different temperatures.The experimental results show that at room temperature or at 120℃ the AZ91D's decrease with the increasing amount of the rare earth elements.however,the ductility is improved.The influence of 0.14%Sb(mass fraction)on the AZ91D's strength is like that of rare earth elements(0.2%-0.4%)(mass fraction).Microstructure graphs demonstrate that appropriate amount of rare earth elements (0.1%-0.2%) can fine AZ91D's grain and improve its ductility.

  11. Effects of rare earth elements on the microstructureand properties of magnesium alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D alloy were studied. The different proportion of rare earth elements was added to the AZ91D and the tensile tests were carried out at different temperatures. The experimental results show that at room temperature or at 120℃ the AZ91D's strength decrease with the increasing amount of the rare earth elements. However, the ductility is improved. The influence of 0.14%Sb (mass fraction) on the AZ91D's strength is like that of rare earth elements (0.2%-0.4%) (mass fraction). Microstructure graphs demonstrate that appropriate amount of rare earth elements (0.1%-0.2%) can fine AZ91D's grain and improve its ductility.

  12. Effect of rare earth elements on the microstructure and property for magnesium alloy AM60B

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of rare earth elements on the microstructure and properties of magnesium alloy AM60B alloy were studied. Different proportions of rare earth elements were added to AM60B and the tensile tests were carried out under different temperatures. The experimental results show that at room temperature the tensile strength of AM60B can be improved with the addition of rare earth elements. The ductility of which at room or elevated temperature (120℃) can also be improved, and the ductility is to some extent in proportion with the amount of rare earth elements. The ductility at 120℃ is better than that at room temperature. The microstructure graphs demonstrate that appropriate amount of rare earth elements (0.1%-0.2%, mass fraction) can fine AM60B's grain and improve its ductility.

  13. Elemental analysis of samples of rare earths; Analisis elemental de muestras de tierras raras

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, J.; Ramirez T, J.J.; Sandoval J, R.A.; Aspiazu F, J.; Villasenor S, P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Lugo L, M.F. [IFUNAM, 04500 Mexico D.F. (Mexico)

    2003-07-01

    Applying the PIXE technique (Particle Induced X-Ray Emission) it was analyzed the purity of the samples that will be used to measure the production section of X rays with Li and B beams. It is not necessary to determine the concentrations of the pollutant elements. (Author)

  14. Biological availability and environmental behaviour of Rare Earth Elements in soils of Hesse, Central Germany

    Science.gov (United States)

    Loell, M.; Duering, R.-A.; Felix-Henningsen, P.

    2009-04-01

    Rare earth elements (REEs) comprise a group of 17 transition metals with very similar chemical and physical properties. They include the elements scandium (Sc), yttrium (Y) and lanthanum (La) and the 14 elements (cerium to lutetium) that follow La in the periodic table. Their average abundance in the earth's crust varies from 0,01 to 0,02% so they are as common as Cu and Pb. Beside their widespread use in industry, REEs are applied in Chinese agriculture. Their beneficial effects both on crop yield and on animal production are reported in various investigations. As a result - by using microelement fertilisers and manure - REEs enter the pedosphere while their fate and behaviour in the environment up to now remains unexamined. The first aim of our investigation was to evaluate the concentration of REEs in agricultural used soils in central Germany (Hesse) by ICP-MS. In addition to their total concentration (aqua regia digestion) their bioavailable contents - determined by EDTA (potentially available fraction) and ammonium nitrate extraction (mobile fraction) - were analysed. The occurrence of the three REE fractions in different soils will be discussed and influencing soil properties (e.g. pH-value, content of clay and organic carbon) will be revealed. Additionally the uptake of REEs by grassland plants was determined and resulting transfer factors will be presented.

  15. Examination of Sarikaya(Yozgat-Turkey) iron mineralization with rare earth element(REE) method

    Institute of Scientific and Technical Information of China (English)

    Nursel; OKSUZ; Sukru; KOC

    2010-01-01

    Iron mineralizations in the study area are found in amphibolites in the localities of Buyukoren,Uzunkuyu-Atkayasi,and Karabacak and they display a predominantly banded texture.Their paragenesis is dominated by magnetite and hematite.In this study,iron mineralizations in Sarikaya were examined in terms of rare earth element(REE) contents and attempts were made to determine some physicochemical conditions that had an impact upon their formation.For this purpose,42 ore samples and 17 enriched magnetite samples...

  16. Signatures of rare-earth elements in banded corals of Kalpeni atoll-Lakshadweep archipelago in response to monsoonal variations

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.A.S.; Nath, B.N.; Balaram, V.

    Concentrations of rare-earth elements (REE) have been determined in seasonal bands of Porites species collected from the Lakshadweep lagoon. Total REE (REE) are very low (less than 3 ppm) in these corals. Seasonal variations in REE appear to have...

  17. [Simultaneous determination of europium and copper in rare earth oxide by use AAS-PLS method].

    Science.gov (United States)

    Zhong, M; Qiu, X; Mo, C; Zheng, Y

    1999-02-01

    Partial least squares regression was used to compensate for spectral "overlap" interference of Eu 324. 753 nm with Cu 324.754 nm in atomic absorption spectrometry. We could only use the copper element hollow-cathode lamp to simultaneous determine Eu and Cu in synthetic samples and rare earth oxide, and obtained satisfactory results.

  18. RARE EARTH ELEMENTS: A REVIEW OF PRODUCTION, PROCESSING, RECYCLING, AND ASSOCIATED ENVIRONMENTAL ISSUES

    Science.gov (United States)

    Rare earth elements (REEs) are a group of 15 chemical elements in the periodic table, specifically the lanthanides. Two other elements, scandium and yttrium, have a similar physiochemistry to the lanthanides, are commonly found in the same mineral assemblages, and are often refe...

  19. Earth's moderately volatile element composition may not be chondritic: Evidence from In, Cd and Zn

    Science.gov (United States)

    Wang, Zaicong; Laurenz, Vera; Petitgirard, Sylvain; Becker, Harry

    2016-02-01

    Current models assume that siderophile volatile elements (SVE) are depleted in bulk Earth to the same extent as lithophile elements of similar volatility. The observed additional depletion of many SVE relative to lithophile elements in the bulk silicate Earth (BSE) is ascribed to partitioning of SVE into Earth's core. However, the assumption of similar volatility of moderately volatile elements during Earth formation processes as in solar gas is quite uncertain. Here, these assumptions will be tested by assessing abundances and ratios of indium and cadmium in the BSE using new data on mantle rocks, and the application of high- and low-pressure-temperature metal-silicate partitioning data. New bulk rock abundance data of In and Cd obtained on bulk rocks of peridotite tectonites and xenoliths by isotope dilution refine previous results inferred from basalts and in-situ analyses of silicate minerals in peridotite xenoliths. The CI chondrite-normalized abundance of In in the BSE is similar to zinc and is 3-4 times higher than Cd. New and published low- and high-P-T metal-silicate partitioning data indicate that, during core formation at a range of conditions, In is always more siderophile than Zn and Cd. Adding the fraction of these elements in Earth's core to the BSE results in bulk Earth compositions that yield higher CI chondrite normalized abundances of In in the bulk Earth compared to Zn and Cd. Because In is more volatile than Zn and Cd in gas of solar composition, suprachondritic In/Zn and In/Cd in the bulk Earth suggest that during formation of Earth or its building materials, the volatilities of these elements and perhaps other volatile elements likely have changed significantly (i.e. In became less volatile). The results also suggest that known carbonaceous chondrites likely did not deliver the main volatile element-rich fraction of the Earth. Various arguments suggest that the loss of moderately volatile elements during planetary accretion should be limited

  20. Geochemistry of Rare Earth Elements in Aktishikan Gold Deposit,Xinjiang

    Institute of Scientific and Technical Information of China (English)

    袁峰; 周涛发; 等

    2002-01-01

    The characteristics and the models of rare earth elements in the geological bodies and the hydrothermal water balancel with the adamellite were comprehensivealy studied in Aktishikan gold deposit,Nurt area of Altay,Xinjiang,And the behavior of rare earth elements during metasomatic alteration was discussed by using the isocon method of Grant,The results show that the rare earth elements are inert during metasomatic alteration,the hydrotheraml water has no relation to the magmatic water,and the gold material sources mainly stem from the wall rock.

  1. Effect of Rare Earth Elements on Exchange Performances of Cesium Ion-Sieve

    Institute of Scientific and Technical Information of China (English)

    张惠源; 王榕树; 林灿生; 张先业

    2003-01-01

    The exchange performances and the distribution coefficient of Cesium Ion-Sieve (Cs-IS) for cesium and for some rare earth elements were compared. In particular, the effects of neodymium on the cesium ion exchange and the Cs+ selectivity variation on Cs-IS owing to introduction of rare earth elements into HLLW were studied. Though rare earth elements exhibit a small influence on the distribution coefficient for Cs+, they impair Cs-exchange capacity of Cs-IS to some extent. This interruption on the selectivity to Cs+ can be significantly eliminated provided an appropriate ratio of liquid to solid V:m is used.

  2. Geochemical Implication of Rare Earth Elements in Process of Soil Development

    Institute of Scientific and Technical Information of China (English)

    黄成敏; 龚子同

    2001-01-01

    The geochemical characteristics and behavior of rare earth elements (REE) in soils developed on the basalts in the northern part of Hainan Island erupted in different time were studied as well as the REE partition in the soil-formation process and its implication on soil development degree. The results show that the total REE content in soils is correlative with soil age significantly and can be selected as the index to show soil evolution. With the soil developing intensively, light rare earth elements (LREE) gain and heavy rare earth elements (HREE) lose. The trends of positive Ce-anomaly and negative Eu-anomaly are remarkable with soil development.

  3. Investigation on the status of rare earth elements contained in the powder of spent fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Belardi, G. [Institute of Environmental Geology and Geoengineering (CNR) Area della Ricerca CNR, via Salaria km 29300, Monterotondo, Rome 00016 (Italy); Ippolito, N. [Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, via Eudossiana 84, Rome 00184 (Italy); Piga, L., E-mail: luigi.piga@uniroma1.it [Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, via Eudossiana 84, Rome 00184 (Italy); Serracino, M. [Institute of Environmental Geology and Geoengineering (CNR) Area della Ricerca CNR, via Salaria km 29300, Monterotondo, Rome 00016 (Italy)

    2014-09-10

    Highlights: • Most of rare earth elements are contained in particles of size finer than 7 μm. • Most of Si, K and Na are contained in the coarser size-fractions. • The phases in the size-fractions of the fluorescent powder have been determined. • Europium is contained in yttrium oxide and in vanadium–yttrium oxides. • The crystallo–chemical composition of all the phases has been determined. - Abstract: The aim of this study is to examine the status of rare earth elements (REE) contained in the chemical compounds that make up the powder of spent fluorescent lamps, with a view of their recovery. The status of REE in the as-received powder, as well as in a few size-class fractions of it, has been established. This way, only those size-class fractions containing high REE concentrations can be considered in a recovery process. The investigation has been carried out using particle-size, chemical, TGA/DTA, XRPD, SEM-EDS and EMPA analyses. The last technique enabled to establish the status of REE within the lattice of the chemical compounds present in the powder. The fineness of the as-received powder and the higher REE concentration in the finest size-classes suggest that physical methods of separation should not be used to separate the REE-containing chemical compounds from each other. Leaching methods seem more suitable with a material of such size.

  4. Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Mingyong [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Tan Shuduan [College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China); Dang Haishan [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China); Zhang Quanfa, E-mail: qzhang@wbgcas.cn [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China)

    2011-12-15

    A field experiment using rare earth elements (REEs) as tracers was conducted to investigate soil erosion processes on slope surfaces during rainfall events. A plot of 10 m x 2 m x 0.16 m with a gradient of 20{sup o} (36.4%) was established and the plot was divided into two layers and four segments. Various REE tracers were applied to the different layers and segments to determine sediment dynamics under natural rainfall. Results indicated that sheet erosion accounted for more than 90% of total erosion when the rainfall amount and density was not large enough to generate concentrated flows. Sediment source changed in different sections on the slope surface, and the primary sediment source area tended to move upslope as erosion progressed. In rill erosion, sediment discharge mainly originated from the toe-slope and moved upwards as erosion intensified. The results obtained from this study suggest that multi-REE tracer technique is valuable in understanding the erosion processes and determining sediment sources. - Highlights: > Soil erosion processes with rare earth elements was conducted under natural rainfall. > Experimental setup developed here has seldom implemented in the world. > Sheet erosion is the main erosion type and main contributor to sediment loss. > Sediment source changed in different sections on the slope surface. > The primary sediment source area tended to move upslope as erosion progressed.

  5. Determination of experimental conditions for the analysis of rare-earth elements by X-ray fluorescence spectrometry. Application to oxalates and potassium sulphate matrices; Establecimiento de varibles experimentales para la determinacion de tierras raras por espectrometria de fluorescencia de rayos X. Aplicacion a los concentrados de oxalatos y sulfatos

    Energy Technology Data Exchange (ETDEWEB)

    Bayon Fuentes, A.; Bermudez Polonio, J.

    1969-07-01

    A previous theoretical and experimental study is carried out in order to analyze the rare earths elements by X-ray florescence spectrometry. All possible spectral interferences are considered. The working conditions for each element were selected, taking into account the peak/background ratio values for the following parameters: tungsten, molybdenum and chromium targets, current and voltage, analyzing crystals, and scintillation and flow proportional counters. Calibration curves were plotted showing the concentration of rare earths elements in oxalates and potassium sulphate matrices, and the theoretical detection limits for each element: are calculated. (Author) 8 refs.

  6. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran

    Science.gov (United States)

    Shakeri, Ata; Ghoreyshinia, Sayedkazem; Mehrabi, Behzad; Delavari, Morteza

    2015-10-01

    Concentrations of rare earth elements (REEs) were determined in springs and andesitic-dacitic rocks of Taftan geothermal field. Hydrochemical results of major ions indicate that thermal springs are Na-SO4-Cl and Ca-SO4-Cl types. Concentrations of REEs are in ranges of 10- 4 to 1.2 and 49 to ~ 62 times of chondrite for springwater and rock samples, respectively. The thermal (STS and TTS) and the cold (APS) springs with low pH values exhibit a very high REE contents (0.64 to 3.15 mg/l). Saturation index indicates that Fe and Al phases can control dissolved REE concentration in FTS and PF cold springs. The speciation of REE complexes indicates dominant presence of LnSO4+ and free ion in the Taftan thermal springs. In APS cold spring with pH ~ 4, fluoride complexes are dominate over the free ion and sulfate species, while in PF and FTS cold springs with pH 6.4 and 7, respectively, carbonate complexes (LnCO3+) are predominant species. Chondrite-normalized pattern for the low-pH waters show very distinctive gull-wing patterns, characteristic feature of acid-sulfate geothermal systems, and are similar to those of the host rocks. Chemical characteristics of rare earth elements in spring and volcanic rock samples indicate that REEs are originated from the andesitic-dacitic host rocks. Whole-rock-normalized REE patterns and petrographic evidences show that rare earth elements leached mainly from marginal alteration of minerals and matrix decomposition in volcanic rocks. In chondrite-normalized REE patterns, significant negative Eu anomaly in the cold springs compare to the thermal and acidic springs indicates that alteration of plagioclase is more intense in the later, corresponding to increasing in temperature and acidic state of reactant water.

  7. Rare earth elements minimal harvest year variation facilitates robust geographical origin discrimination: The case of PDO "Fava Santorinis".

    Science.gov (United States)

    Drivelos, Spiros A; Danezis, Georgios P; Haroutounian, Serkos A; Georgiou, Constantinos A

    2016-12-15

    This study examines the trace and rare earth elemental (REE) fingerprint variations of PDO (Protected Designation of Origin) "Fava Santorinis" over three consecutive harvesting years (2011-2013). Classification of samples in harvesting years was studied by performing discriminant analysis (DA), k nearest neighbours (κ-NN), partial least squares (PLS) analysis and probabilistic neural networks (PNN) using rare earth elements and trace metals determined using ICP-MS. DA performed better than κ-NN, producing 100% discrimination using trace elements and 79% using REEs. PLS was found to be superior to PNN, achieving 99% and 90% classification for trace and REEs, respectively, while PNN achieved 96% and 71% classification for trace and REEs, respectively. The information obtained using REEs did not enhance classification, indicating that REEs vary minimally per harvesting year, providing robust geographical origin discrimination. The results show that seasonal patterns can occur in the elemental composition of "Fava Santorinis", probably reflecting seasonality of climate.

  8. Dissolved rare earth elements in the Black Sea

    NARCIS (Netherlands)

    Schijf, Johan; Baar, Hein J.W. de; Wijbrans, Jan R.; Landing, William M.

    1991-01-01

    Concentrations of rare earths in the deep anoxic Black Sea are about one order of magnitude higher than in normal open ocean waters. From a minimum at the suboxic-anoxic interface at about 107 m depth, concentrations increase strongly to a maximum at about 300–400 m depth. Concentrations of Ce range

  9. Diagenetic remobilization of rare earth elements in a sediment core from the central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Banakar, V.K.

    Rare earth elements (REE) distribution in a 36 cm long sediment box core from the Central Indian Basin is studied. REE concentration is generally higher in the upper oxic zone than in intermediate suboxic zone suggesting REE diffusion upwards...

  10. Rare earth element concentrations and Nd isotopes in the Southeast Pacific Ocean

    National Research Council Canada - National Science Library

    Jeandel, C; Delattre, H; Grenier, M; Pradoux, C; Lacan, F

    2013-01-01

    .... At this station Nd isotopic compositions are clearly more radiogenic than in the open ocean, suggesting that boundary exchange process is releasing lithogenic rare earth element from the volcanic Andes...

  11. Successively separation method of uranium and rare earth element having supercritical fluid as extracting medium

    Energy Technology Data Exchange (ETDEWEB)

    Iso, Shuichi; Meguro, Yoshihiro; Yoshida, Yoshiyuki

    1996-08-30

    In a method of separating by extraction of coolants uranium and rare earth elements by using supercritical fluid in a supercritical state and a hydrophobic organic chelating agent, a plurality of extraction steps having different extraction efficiencies are provided. As the fluid in the supercritical state, carbon dioxide, carbon monoxide, ammonia, sulfur tetrafluoride and nitrogen are mentioned. A hydrophobic organic chelating agent can form a chelating compound with uranium and rare earth elements, and the formed complex compounds are easily dissolved into the supercritical fluid thereby enabling to provide an excellent extraction effect. A suitable hydrophobic organic chelating agent includes organic phosphor compounds, {beta}-diketone compounds and microcyclic compounds. Then, there can be provided an extraction method using a supercritical liquid as an extraction medium capable of successively separating uranium and rare earth elements selectively having high safety and performed safely and also performed in a case where a plurality of rare earth elements exist together. (N.H.)

  12. Effects of rare earth element lanthanum on the microstructure of copper matrix diamond tool materials

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Effects of rare earth element La on the microstructure of Cu matrix diamond tools were researched under the conditions of various materials componentsand the process parameters in order to improve materials properties. SEM, XPS and X-ray were used to investigate the fracture section, microstructure and the element valence in materials. The results shown that the combination of rare earth element La and transition element Ti is advantageous to the bonding state between diamond particles and matrix, so it can improve the materials properties. Suitable sintering temperature is 790℃.

  13. Electronic Theoretical Study of the Interaction between Rare Earth Elements and Impurities at Grain Boundaries in Steel

    Institute of Scientific and Technical Information of China (English)

    刘贵立; 张国英; 李荣德

    2003-01-01

    The model of dislocations was used to construct the model of grain boundary (GB) with pure rare earths, and rare earth elements and impurities. The influence of the interaction between rare earth elements and impurities on the cohesive properties of 5.3° low angle GB of Fe was investigated by the recursion method. The calculated results of environment sensitive embeding energy(EESE) show that the preferential segregation of rare earth elements towards GBs exists. Calculations of bond order integrals (BOI) show that rare earth elements increase the cohesive strength of low angle GB, and impurities such as S, P weaken the intergranular cohesion of the GB. So rare earth element of proper quantity added in steel not only cleanses other harmful impurities off the GBs, but also enhances the intergranular cohesion. This elucidates the action mechanism of rare earth elements in steel from electronic level and offers theoretical evidence for applications of rare earth elements in steels.

  14. Rare earth element composition of Paleogene vertebrate fossils from Toadstool Geologic Park, Nebraska, USA

    Energy Technology Data Exchange (ETDEWEB)

    Grandstaff, D.E., E-mail: grand@temple.edu [Department of Earth and Environmental Science, Temple University, Philadelphia, PA 19122 (United States); Terry, D.O. [Department of Earth and Environmental Science, Temple University, Philadelphia, PA 19122 (United States)

    2009-04-15

    Fossil bones and teeth from terrestrial environments encode unique rare earth and trace element (REE and TE) signatures as a function of redox conditions, pH, concentrations of complexing ligands, and water-colloid interactions. This signature is set early in the fossilization process and serves as a paleoenvironmental and paleoclimatic proxy. These signatures can also be used to interpret temporal and spatial averaging within vertebrate accumulations, and can help relocate displaced fossil bones back into stratigraphic context. Rare earth elements in vertebrate fossils from upper Eocene and Oligocene strata of Toadstool Geologic Park, northwestern Nebraska, record mixing and evolution of Paleogene vadose or groundwaters and variations in paleoenvironments. REE signatures indicate that HREE-enriched alkaline groundwater reacted with LREE- and MREE-enriched sediments to produce 3-component mixtures. REE signatures become increasingly LREE- and MREE-enriched toward the top of the studied section as the paleoenvironment became cooler and drier, suggesting that REE signatures may be climate proxies. Time series analysis suggests that REE ratios are influenced by cycles of ca. 1050, 800, 570, 440, and 225 ka, similar to some previously determined Milankovitch astronomical and climate periodicities.

  15. 微波消解-电感耦合等离子体质谱法测定湿基草莓中 15 种微量稀土元素%Determination of 15 Trace Rare Earth Elements in the Fresh Strawberries by Inductively Coupled Plasma-Mass Spectrometry With Microwave Digestion

    Institute of Scientific and Technical Information of China (English)

    杨威

    2016-01-01

    The microwave digestion method was used to decompose the sample, and then 15 trace rare earth elements in the fresh strawberries were determined by inductively coupled plasma-mass spectrometry. The results show that correlation coefficient (r) of the method is between 0.999 5 ~ 1.000 0, recoveries of the method are between 94.2%~106.4%, the precision (RSD%) is less than 6.92%. The method has simple process, high accuracy and precision, the detection limit can meet the requirements, so it is suitable for the determination of trace determination of rare earth elements in the fresh strawberries.%应用微波消解进行样品前处理,电感耦合等离子体质谱法测定湿基草莓中的 15 种微量稀土元素.试验结果表明,该方法相关系数(r)在 0.999 5~1.000 0 之间,方法回收率在 94.2%~106.4%之间,方法精密度(RSD%)低于 6.92%.该方法具有前处理过程简单、引入干扰少、准确度、精密度、检出限满足要求,同时具有线性范围广、测试速度快等特点,适合湿基草莓样品中微量稀土元素的测定.

  16. Effect of Rare Earth Elements on Depositing Rate of Nickel Alloy Brush Plating Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositing rate of Ni-based alloy coatings, and Sm increases the depositing rate most obviously. There is an optimum amount of rare earth addition in the plating solution. With the change of plating voltage to a certain extent, the results reveal no differences. The mechanism of the increase of the depositing rate was analyzed.

  17. Effect of Rare Earth Elements on Quantity Growth of Ctrps

    Institute of Scientific and Technical Information of China (English)

    张自立; 常江; 等

    2002-01-01

    The effects of rare earth on the growth of rice,rape and soybean in three kinds of soils were studied with the method supposed by Economic Co-operation and Development organization(OECD),and the EC50(median growth concenrtation)values were obtained,The inhibition of RE on the growth of rice and rape in red soil and on the growth of soybeanin yellow fouvo-aquic soil is higher with stronger poison effects.Compared with other heavy metals such as Hg,Cd,Pb,As,the poison of RE on crops in weaker.

  18. Effect of Rare Earth Elements on Quantity Growth of Crops

    Institute of Scientific and Technical Information of China (English)

    张自立; 常江; 汪成胜; 柴绍明; 韩修明; 李瑞

    2002-01-01

    The effects of rare earth on the growth of rice, rape and soybean in three kinds of soils were studied with the method supposed by Economic Co-operation and De velopment organization (OECD), and the EC50(median growth concentration)value s were obtained . The inhibition of RE on the growth of rice and rape in red soil and on the gro wth of soybean in yellow fluvo-aquic soil is higher with stronger poison effect s. Compared with other heavy metals such as Hg, Cd, Pb, As, the poison of RE on crops is weaker.

  19. Thermal effects on rare earth element and strontium isotope chemistry in single conodont elements

    Science.gov (United States)

    Armstrong, H. A.; Pearson, D. G.; Griselin, M.

    2001-02-01

    A low-blank, high sensitivity isotope dilution, ICP-MS analytical technique has been used to obtain REE abundance data from single conodont elements weighing as little as 5 μg. Sr isotopes can also be measured from the column eluants enabling Sr isotope ratios and REE abundance to be determined from the same dissolution. Results are comparable to published analyses comprising tens to hundreds of elements. To study the effects of thermal metamorphism on REE and strontium mobility in conodonts, samples were selected from a single bed adjacent to a basaltic dyke and from the internationally used colour alteration index (CAI) "standard set." Our analyses span the range of CAI 1 to 8. Homogeneous REE patterns, "bell-shaped" shale-normalised REE patterns are observed across the range of CAI 1 to 6 in both sample sets. This pattern is interpreted as the result of adsorption during early diagenesis and could reflect original seawater chemistry. Above CAI 6 REE patterns become less predictable and perturbations from the typical REE pattern are likely to be due to the onset of apatite recrystallisation. Samples outside the contact aureole of the dyke have a mean 87Sr/ 86Sr ratio of 0.708165, within the broad range of published mid-Carboniferous seawater values. Our analysis indicates conodonts up to CAI 6 record primary geochemical signals that may be a proxy for ancient seawater.

  20. Modification Mechanism of Rare Earth Elements in ZA27 Casting Alloys

    Institute of Scientific and Technical Information of China (English)

    刘贵立; 李荣德

    2003-01-01

    The model of the liquid-phase ZA27 alloys was set up by molecular dynamics theory. The atomic structure of phase, RE-compounds, and the phase-liquid interface in ZA27 alloys were constructed by computer programming. Electronic structures of phase with rare earth elements dissolved and of phase-liquid interfaces with rare earth elements enrichment in ZA27 casting alloys were investigated by using the Recursion method. The ESE energy of RE elements and the structure energy of RE-compounds, phase, and the liquid-phase ZA27 alloys were calculated. The results show that rare earth elements are more stable to be in the phase interface than in phase, which explains the fact of very small solid so lubility of rare earth elements in phase, and the enrichment in the solid-liquid growth front. This makes dendrite melt and break down, dissociate and propagate. RE-compounds can act as heterogeneous nuclei for phase, leading to phase refinement. All above elucidates the modification mechanism of rare earth elements in zinc-aluminum casting alloys at electronic level.

  1. Mobile DNA Elements: The Seeds of Organic Complexity on Earth.

    Science.gov (United States)

    Habibi, Laleh; Pedram, Mehrdad; AmirPhirozy, Akbar; Bonyadi, Khadijeh

    2015-10-01

    Mobile DNA or transposable elements (TEs) are genomic sequences capable of moving themselves independently into different parts of the genome. Viral invasion of eukaryotic genomes is assumed to be the main source of TEs. Selfish transposition of these elements could be a serious threat to the host cell, as they can insert themselves into the middle of coding genes and/or induce genomic instability. In response, through millions of years of evolution, cells have come up with various mechanisms such as genomic imprinting, DNA methylation, heterochromatin formation, and RNA interference to deactivate them. Interestingly, these processes have also greatly contributed to important cellular functions involved in cell differentiation, development, and differential gene expression. Propagation of TE copies during the course of evolution have resulted in increasing the genome size and providing proper space and flexibility in shaping the genome by creating new genes and establishing essential cellular structures such as heterochromatin, centromere, and telomeres. Yet, these elements are mostly labeled for playing a role in pathogenesis of human diseases. Here, we attempt to introduce TEs as factors necessary for making us human rather than just selfish sequences or obligatory guests invading our DNA.

  2. Naturally occurring radionuclides and rare earth elements in weathered Japanese soil samples

    Science.gov (United States)

    Sahoo, Sarata; Hosoda, Masahiro; Prasad, Ganesh; Takahashi, Hiroyuki; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Uchida, Shigeo

    2013-08-01

    The activity concentrations of 226Ra and 228Ac in weathered Japanese soils from two selected prefectures have been measured using a γ-ray spectroscopy system with high purity germanium detector. The uranium, thorium, and rare earth elements (REEs) concentrations were determined from the same soil samples using inductively coupled plasma mass spectrometry (ICP-MS). For example, granitic rocks contain higher amounts of U, Th, and light REEs compared to other igneous rocks such as basalt and andesites. Therefore, it is necessary to understand the interaction between REEs and nature of soils since soils are complex heterogeneous mixture of organic and inorganic solids, water, and gases. In this paper, we will discuss about distribution pattern of 238U and 232Th along with REEs in soil samples of weathered acid rock (granite) collected from two prefectures of Japan: Hiroshima and Miyagi.

  3. Accumulation and Fractionation of Rare Earth Elements in a Soil-Wheat System

    Institute of Scientific and Technical Information of China (English)

    DING Shi-Ming; LIANG Tao; ZHANG Chao-Sheng; WANG Li-Jun; SUN Qin

    2006-01-01

    Time series bioaccumulation of rare earth elements (REEs) in field-grown wheat with and without a dressing of extraneous REE fertilizer at different growth stages and fractionation of REEs during their transport in a soil-wheat system were determined. Time-dependent accumulation of extraneous REEs was found in different parts of wheat. An upward transport of extraneous REEs from roots to shoots under a soil dressing and a downward transport from leaves to roots with a foliar dressing were also observed. Moreover, fractionation of REEs occurred in the soil-wheat system.Compared to the host soil a positive Eu anomaly in the stems and grains as well as heavy REE enrichment in the grains were found. The ability of the different wheat organs to fractionate Eu from the REE series was ranked in the order of stems ≥ grains > leaves > roots.

  4. Hyperspectral REE (Rare Earth Element Mapping of Outcrops—Applications for Neodymium Detection

    Directory of Open Access Journals (Sweden)

    Nina Kristine Boesche

    2015-04-01

    Full Text Available In this study, an in situ application for identifying neodymium (Nd enriched surface materials that uses multitemporal hyperspectral images is presented (HySpex sensor. Because of the narrow shape and shallow absorption depth of the neodymium absorption feature, a method was developed for enhancing and extracting the necessary information for neodymium from image spectra, even under illumination conditions that are not optimal. For this purpose, the two following approaches were developed: (1 reducing noise and analyzing changing illumination conditions by averaging multitemporal image scenes and (2 enhancing the depth of the desired absorption band by deconvolving every image spectrum with a Gaussian curve while the rest of the spectrum remains unchanged (Richardson-Lucy deconvolution. To evaluate these findings, nine field samples from the Fen complex in Norway were analyzed using handheld X-ray fluorescence devices and by conducting detailed laboratory-based geochemical rare earth element determinations. The result is a qualitative outcrop map that highlights zones that are enriched in neodymium. To reduce the influences of non-optimal illumination, particularly at the studied site, a minimum of seven single acquisitions is required. Sharpening the neodymium absorption band allows for robust mapping, even at the outer zones of enrichment. From the geochemical investigations, we found that iron oxides decrease the applicability of the method. However, iron-related absorption bands can be used as secondary indicators for sulfidic ore zones that are mainly enriched with rare earth elements. In summary, we found that hyperspectral spectroscopy is a noninvasive, fast and cost-saving method for determining neodymium at outcrop surfaces.

  5. Evaluation of rare earth elements in groundwater of Lagos and Ogun States, Southwest Nigeria.

    Science.gov (United States)

    Ayedun, H; Arowolo, T A; Gbadebo, A M; Idowu, O A

    2016-06-11

    Rare earth elements in our environment are becoming important because of their utilization in permanent magnets, lamp phosphors, superconductors, rechargeable batteries, catalyst, ceramics and other applications. This study was conducted to evaluate the level of rare earth elements (REE) and the variability of their anomalous behavior in groundwater samples collected from Lagos and Ogun States, Southwest, Nigeria. REE concentrations were determined in 170 groundwater samples using inductively coupled plasma-mass spectrometry, while the physicochemical parameters were determined using standard methods. Lagos State groundwater is enriched with REE [sum REEs range (mean ± SD)]; [0.365-488 (69.5 ± 117)] µg L(-1) than Ogun State groundwater [sum REEs range (mean ± SD)]; [1.14-232 (22.6 ± 41.1)] µg L(-1). Boreholes are more enriched with REEs than wells. Significant (P < 0.05) positive correlation (R = Pearson) was recorded in Lagos State groundwater between sum REEs and Fe (R = 0.55). However, there were no significant correlations between sum REEs, pH (R = 0.073) and HCO3(2-) (R = 0.157) in Ogun State groundwater. Chondrite-normalized plot shows that Lagos groundwater exhibits positive Ce anomaly, while Ogun State groundwater does not. The source of REE in Lagos State may be from the ocean and leaching from wastes dumpsites, while the source in Ogun State groundwater may be from the rocks.

  6. Orbit Propagation and Determination of Low Earth Orbit Satellites

    OpenAIRE

    Ho-Nien Shou

    2014-01-01

    This paper represents orbit propagation and determination of low Earth orbit (LEO) satellites. Satellite global positioning system (GPS) configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP). The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan t...

  7. Trace element determination in different milk slurries.

    Science.gov (United States)

    García, E M; Lorenzo, M L; Cabrera, C; López, M C; Sánchez, J

    1999-11-01

    We have studied the contents of trace elements of nutritional or toxicological interest in 90 samples of whole, low-fat, skim, condensed, evaporated and powdered milks. Slurries of the samples were prepared with Triton X-100 and analysed using electrothermal atomic absorption spectrometry. The temperature-time programme of the graphite oven was optimized for each element, and the accuracy, precision, selectivity and sensitivity of the method were verified. Concentrations of the trace elements we investigated were: Pb 0-0.211 microgram/g, Cd 0-28.985 ng/g, Al 0.528-4.025 micrograms/g, Cu 0.041-0.370 microgram/g, Cr 0-0.177 microgram/g, Mn 0.024-0.145 microgram/g, Se 0-23.333 ng/g, Zn 0.297-0.827 microgram/g and Ni 0.058-1.750 micrograms/g. (A value of zero indicates that the element was undetectable by our methods.) Concentrations of the pairs of elements Cu-Cd, Mn-Cd, Mn-Cu, Zn-Mn, Ni-Cu, Ni-Mn and Ni-Zn were significantly correlated (P milk analyzed.

  8. Systematic Effects in Earth Orientation Parameters Determined by VLBI

    Science.gov (United States)

    Schuh, H.; Heinkelmann, R.

    2015-12-01

    Very Long Baseline Interferometry (VLBI) is the only technique that directly connects on the observation level the realizations of ITRS and ICRS in terms of their orientation. Many applications in spacecraft navigation, fundamental astronomy, astrometry and geosciences depend on the Earth Orientation Parameters (EOP) determined by VLBI. Currently, under the IAG/IAU Joint Working Group on the Theory of Earth Rotation, activities are supported to advance the theory of Earth rotation. Some components of Earth Rotation, such as the free modes like the Free Core Nutation (FCN) are not predictable but rely entirely on the observation through VLBI. In our presentation we investigate the EOP when alternating various VLBI analysis options such as correction models, a priori parameters, and other choices with the aim to detect and quantify possible systematic effects. Our approach is purely empirical: we alternate certain analysis options and assess the differences with respect to the reference solution that adheres to the IERS Conventions (2010) and applies the standard parameterization. For demonstration we analyze the regular International VLBI Service for Geodesy and Astrometry (IVS) sessions IVS-R1 and IVS-R4.The IAG flagship component GGOS (Global Geodetic Observing System) aims to provide the EOP with an accuracy of 1 mm on the Earth surface (about 30 microarcseconds). This accuracy target will be applied as a limit to interpret the significance of the differences obtained in our comparisons.

  9. Direct Spectrophotometric Determination of the Total Amount of Light Rare Earths with Arsenazo-DBS as a Chelator

    Institute of Scientific and Technical Information of China (English)

    Yuan Fuzhen

    1999-01-01

      A direct spectrophotometric method for the determination of the total light rare earths has been developed. In this method, arsenazo-DBS is used as a chelating agent with light rare earth elements in strong acidic medium (0.04-0.48 mol l-1 of acidity). The concentrations of total rare earths in 0-15 μg /(25 ml) range can be determined accurately by this method. An absorption maximum was observed at 630 nm at which a molar absorptivity of 1.14x105 l mol-1 cm-1 was determined. The method offers high selectivity and good sensitivity towards light rare earths and features simplicity and rapidity in operation. It has been applied to the determination of light rare earths in cast iron and Ni-Fe alloys.

  10. Concepts of trace, determinant and inverse of Clifford algebra elements

    OpenAIRE

    Shirokov, Dmitry

    2011-01-01

    In our paper we consider the notion of determinant of Clifford algebra elements. We present some new formulas for determinant of Clifford algebra elements for the cases of dimension 4 and 5. Also we consider the notion of trace of Clifford algebra elements. We use the generalization of the Pauli's theorem for 2 sets of elements that satisfy the main anticommutation conditions of Clifford algebra.

  11. determination of essential elements in leptadenia lancefolia

    African Journals Online (AJOL)

    USER

    Nutritional, medicinal and distribution pattern of the elements in the plant are discussed. ... food items that contain all the components that make up a balanced diet. Reports ... such yadiya (Hausa) and iran-aji (Igbo) (Dalziel,. 1955). The young ...

  12. Tensile Properties of Surface-Treated Glass Fiber Reinforced PTFE Composite with Rare Earth Elements

    Institute of Scientific and Technical Information of China (English)

    薛玉君; 程先华

    2003-01-01

    The optimum amount of rare earth elements (RE) for treating glass fiber surface and its effect on the tensile properties of glass fiber reinforced polytetrafluoroethylene (GF/PTFE) composites were investigated. The tensile properties of GF/PTFE composites with different surface treatment conditions were measured. The fracture surface morphologies were observed and analyzed by SEM. The results indicate that rare earth elements can effectively promote the interfacial adhesion between the glass fiber and PTFE, owing to the effects of rare earth elements on the compatibility. The tensile properties of GF/PTFE composites can be improved considerably when the content of RE in surface modifier is 0.2%~0.4%, and the optimum performance of GF/PTFE composites is obtained at 0.3%RE content.

  13. The effect of rare earth elements on the microstructure of as-cast AM50 alloy

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2010-01-01

    Full Text Available As-cast Mg-5Al-0.4Mn-xRE (x = 0, 1, 2 wt.% magnesium alloys were prepared successfully and influence of rare earth (RE elements on the microstructure has been investigated by light microscopy and X-ray diffraction (XRD. The results revealed that the as-cast Mg-5Al-0.4Mn alloy consist of α - Mg matrix and eutectic α + γ (where γ is Mg17Al12. With the addition of rare earth elements Al11RE3 precipitates were formed. The amount of the Al11RE3 precipitates increased with increasing addition of RE, but the amount of γ - Mg17Al12 decreased. Additionally, in alloys with rare earth elements no aluminium-manganese precipitates were observed, instead of that ternary intermetallic compound Al10RE2Mn7 was formed.

  14. Effect of Rare Earth Element Ce on Microstructure and Properties of Aluminum Rod for Electrical Purpose

    Institute of Scientific and Technical Information of China (English)

    Li Pengfei; Wang Yunli; Gao Xizhu; Wang Zaiyun

    2004-01-01

    The effect of rare earth element Ce on microstructure, electrical conductivity and mechanical properties was studied.Using optical microscope, scanning electron microscope, transmission electron microscope and X-ray diffractometer, the microstructure and phase composition of aluminum rod for electrical purpose were measured and analyzed.The results indicate that rare earth element Ce can considerably refine grain size of aluminum rod for electrical purpose,improve the regular distribution pattern of the impurity, such as silicon and iron which present in the aluminum matrix,form stable metal compound with pernicious impurity.This metal compound precipitates on the crystal boundary.As a result, the solid solubility of impurity in aluminum reduce, and the electrical conductivity of aluminum rod for electrical purpose is improved.It is found that the mechanical properties of aluminum rod for electrical purpose are improved by rare earth element in certain range of RE addition.

  15. Alkali element depletion by core formation and vaporization on the early Earth

    Science.gov (United States)

    Lodders, K.; Fegley, B., Jr.

    1994-01-01

    The depletion of Na, K, Rb, and Cs in the Earth's upper mantle and crust relative to their abundances in chondrites is a long standing problem in geochemistry. Here we consider two commonly invoked mechanisms, namely core formation, and vaporization, for producing the observed depletions. Our models predict that a significant percentage of the Earth's bulk alkali element inventory is in the core (30 percent for Na, 52 percent for K, 74 percent for Rb, and 92 percent for Cs). These predictions agree with independent estimates from nebular volatility trends and (for K) from terrestrial heat flow data. Our models also predict that vaporization and thermal escape during planetary accretion are unlikely to produce the observed alkali element depletion pattern. However, loss during the putative giant impact which formed the Moon cannot be ruled out. Experimental, observational, and theoretical tests of our predictions are also described. Alkali element partitioning into the Earth's core was modeled by assuming that alkali element partitioning during core formation on the aubrite parent body (APB) is analogous to that on the early Earth. The analogy is reasonable for three reasons. First, the enstatite meteorites are the only known meteorites with the same oxygen isotope systematics as the Earth-Moon system. Second, the large core size of the Earth and the V depletion in the mantle requires accretion from planetesimals as reduced as the enstatite chondrites. Third, experimental studies of K partitioning between silicate and metal plus sulfide show that more K goes into the metal plus sulfide at higher pressures than at one atmosphere pressure. Thus partitioning in the relatively low pressure natural laboratory of the APB is a good guide to alkali elemental partitioning during the growth of the Earth.

  16. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology.

    Science.gov (United States)

    Allajbeu, Sh; Yushin, N S; Qarri, F; Duliu, O G; Lazo, P; Frontasyeva, M V

    2016-07-01

    Rare earth elements (REEs) are typically conservative elements that are scarcely derived from anthropogenic sources. The mobilization of REEs in the environment requires the monitoring of these elements in environmental matrices, in which they are present at trace level. The determination of 11 REEs in carpet-forming moss species (Hypnum cupressiforme) collected from 44 sampling sites over the whole territory of the country were done by using epithermal neutron activation analysis (ENAA) at IBR-2 fast pulsed reactor in Dubna. This paper is focused on REEs (lanthanides) and Sc. Fe as typical consistent element and Th that appeared good correlations between the elements of lanthanides are included in this paper. Th, Sc, and REEs were never previously determined in the air deposition of Albania. Descriptive statistics were used for data treatment using MINITAB 17 software package. The median values of the elements under investigation were compared with those of the neighboring countries such as Bulgaria, Macedonia, Romania, and Serbia, as well as Norway which is selected as a clean area. Geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. Geochemical behavior of REEs in moss samples has been studied by using the ternary diagram of Sc-La-Th, Spider diagrams and multivariate analysis. It was revealed that the accumulation of REEs in current mosses is associated with the wind-blowing metal-enriched soils that is pointed out as the main emitting factor of the elements under investigation.

  17. Rare earth elements in soil extracts by ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Tobler, L.; Furrer, V.; Wyttenbach, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burger, M.; Jakob, A. [AC-Laboratorium Spiez (Switzerland)

    1997-09-01

    Three different horizons of a soil profile were extracted with water and with a complexing solution. 14 REEs were determined in the extracts. The distribution patterns obtained from the different horizons were rather similar and did not show the large fractionations observed between different plant species growing on this soil. (author) 2 figs., 1 ref.

  18. Addressing Rare-Earth Element Criticality: An Example from the Aviation Industry

    Science.gov (United States)

    Ku, Anthony Y.; Dosch, Christopher; Grossman, Theodore R.; Herzog, Joseph L.; Maricocchi, Antonio F.; Polli, Drew; Lipkin, Don M.

    2014-11-01

    Rare-earth (RE) elements are enablers for a wide range of technologies, including high-strength permanent magnets, energy-efficient lighting, high-temperature thermal barrier coatings, and catalysts. While direct material substitution is difficult in many of these applications because of the specific electronic, optical, or electrochemical properties imparted by the individual rare-earth elements, we describe an example from the aviation industry where supply chain optimization may be an option. Ceramic matrix composite engine components require environmental barrier coatings (EBCs) to protect them from extreme temperatures and adverse reactions with water vapor in the hot gas path. EBC systems based on rare-earth silicates offer a unique combination of environmental resistance, thermal expansion matching, thermal conductivity, and thermal stability across the service temperature window. Several pure rare-earth silicates and solid solutions have been demonstrated in EBC applications. However, all rely on heavy rare-earth elements (HREEs) for phase stability. This article considers the possibility of using separation tailings containing a mixture of HREEs as a source material in lieu of using the high-purity HREE oxides. This option arises because the desired properties of RE-silicate EBCs derive from the average cation size rather than the electronic properties of the individual rare-earth cations. Because separation tailings have not incurred the costs associated with the final stages of separation, they offer an economical alternative to high-purity oxides for this emerging application.

  19. Role of multi-microalloying by rare earth elements in ductilization of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2014-03-01

    Full Text Available The present work investigates the influences of microalloying with rare earths on the mechanical properties of magnesium alloys. The amount of each rare earth element is controlled below 0.4 wt.% in order not to increase the cost of alloy largely. The synergic effects from the multi-microalloying with rare earths on the mechanical properties are explored. The obtained results show that the as-cast magnesium alloys multi-microalloying with rare earths possesses a quite high ductility with a tensile strain up to 25–30% at room temperature. Moreover, these alloys exhibit much better corrosion resistance than AZ31 alloy. The preliminary in situ neutron diffractions on the deformation of these alloys indicate that the multi-microalloying with rare earths seems to be beneficial for the activation of more slip systems. The deformation becomes more homogeneous and the resultant textures after deformation are weakened.

  20. Natural radioactivity and Rare Earth elements in feldspar samples, Central Eastern desert, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Walley El-Dine, Nadia, E-mail: nadia_walley5@hotmail.co [Department of physics, Faculty of girls for Art, Science and Education, Ain Shams University, Heliopolis, Cairo (Egypt); El-Shershaby, Amal [Department of physics, Faculty of girls for Art, Science and Education, Ain Shams University, Heliopolis, Cairo (Egypt); Afifi, Sofia [Nuclear Materials Authority (Egypt); Sroor, Amany; Samir, Eman [Department of physics, Faculty of girls for Art, Science and Education, Ain Shams University, Heliopolis, Cairo (Egypt)

    2011-05-15

    The pegmatite bodies of the Eastern Desert of Egypt are widely distributed especially along the Marsa-Alam-Idfu road. The Abu Dob area covers about 150 km{sup 2} of the Arabian Nubian shield at the central part of the Eastern Desert of Egypt. Most of the pegmatite is zoned; the zonation starts with milky quartz at the core followed by alkali feldspar at the margins. The feldspars vary in color from rose to milky and in composition from K-feldspar to Na-feldspar, sometimes interactions of both types are encountered. Thirteen feldspar samples were collected from different locations in the Abu Dob area for measuring the natural radioactivity of {sup 238}U, {sup 232}Th and {sup 40}K using an HPGe detector. The variation in concentration of radionuclides for the area under investigation can be classified into regions of high, medium and low natural radioactivity. The average concentration in BqKg{sup -1} has been observed to be from 9.5 to 183675.7 BqKg{sup -1} for {sup 238}U, between 6.1 and 94,314.2 BqKg{sup -1} for {sup 232}Th and from 0 to 7894.6 BqKg{sup -1} for {sup 40}K. Radium equivalent activities (Ra{sub eq}), dose rate (D{sub R}) and external hazard (H{sub ex}) have also been determined. In the present work, the concentration of rare earth elements are measured for two feldspar samples using two techniques, Environmental Scanning Electron microscope XIL 30 ESEM, Philips, and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The existence of rare earth elements in this area are very high and can be used in different important industries.

  1. Natural radioactivity and rare earth elements in feldspar samples, Central Eastern desert, Egypt.

    Science.gov (United States)

    Walley El-Dine, Nadia; El-Shershaby, Amal; Afifi, Sofia; Sroor, Amany; Samir, Eman

    2011-05-01

    The pegmatite bodies of the Eastern Desert of Egypt are widely distributed especially along the Marsa-Alam-Idfu road. The Abu Dob area covers about 150km(2) of the Arabian Nubian shield at the central part of the Eastern Desert of Egypt. Most of the pegmatite is zoned; the zonation starts with milky quartz at the core followed by alkali feldspar at the margins. The feldspars vary in color from rose to milky and in composition from K-feldspar to Na-feldspar, sometimes interactions of both types are encountered. Thirteen feldspar samples were collected from different locations in the Abu Dob area for measuring the natural radioactivity of (238)U, (232)Th and (40)K using an HPGe detector. The variation in concentration of radionuclides for the area under investigation can be classified into regions of high, medium and low natural radioactivity. The average concentration in BqKg(-1) has been observed to be from 9.5 to 183675.7BqKg(-1) for (238)U, between 6.1 and 94,314.2BqKg(-1) for (232)Th and from 0 to 7894.6BqKg(-1) for (40)K. Radium equivalent activities (Ra(eq)), dose rate (D(R)) and external hazard (H(ex)) have also been determined. In the present work, the concentration of rare earth elements are measured for two feldspar samples using two techniques, Environmental Scanning Electron microscope XIL 30 ESEM, Philips, and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The existence of rare earth elements in this area are very high and can be used in different important industries.

  2. INAA Application for Trace Element Determination in Biological Reference Material

    Science.gov (United States)

    Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.

    2017-06-01

    Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.

  3. Preparation and characterization of zirconium dioxide catalyst supports modified with rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Masakuni; Kimura, Mareo (Toyota Central Research and Development Labs., Inc., Aichi (Japan))

    1991-08-15

    ZrO{sub 2} catlyst supports modified with rare earth elements were prepared by coprecipitation from an aqueous solution of zirconium oxychloride and rare earth chlorides. The crystallization of amorphous hydrous ZrO{sub 2} was inhibited by doping with rare earths; the crystallization temperature was elevated as the amount and ionic radius of the rare earth modifiers was increased. Only modification using cerium had no effect on the crystallization process. The behavior of cerium was different from that of other rare earth elements with valency +3. A metastable cubic phase was formed for ZrO{sub 2} modified with 10 mol.% lanthanum, neodymium and samarium by heating at 600degC. X-ray diffraction and Raman data indicated that the metastable phase had large microstrain and short-range ordering similar to tetragonal symmetry. Rare earth modified ZrO{sub 2} showed a large surface area and good thermal stability as a catalyst support. The carbon monoxide oxidation activity of iron was enhanced by modification with neodymium of ZrO{sub 2} supports. The results suggest the effectiveness of rare earth modified ZrO{sub 2} as catalyst supports. (orig.).

  4. Rare earth elements stratigraphic significance in late Permian coal measure from Bijie City, Guizhou Province, China

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; YANG Ruidong; BAO Miao

    2008-01-01

    Rare earth elements (REEs) are good geological indicators. In order to understand REEs stratigraphic significance, REEs m Late Permian coal measure from Bijie City, western Guizhou Province, China were studied. The results showed that the contents of both light rare earth element (LREE) and ∑ REE were sharply increased in the boundary between Longtan Formation and Changxing Formation, which resulted from the gyration and discontinuity eruption of Emeishan basalt (REEs source) and frequent transgression-regression during forming coal. The coal measure and strata could be subdivided and correlate, and the sea-level change could be under stood by studying REEs content variation in coal measure.

  5. Effect of Rare Earth Elements on Powder Boro-Carbo-Nitriding at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The process of the co-cementation layers of low temperature powder multicomponent thermochemical treatment with B-C-N-RE and the structure and properties were studied and compared with those of conventional boro-carbo-nitriding (B-C-N) by X-ray diffractometer, potentiostat and wear machine. The results show that rare earth elements have significant catalytic effect within proper limits. Both wear resistance and corrosion resistance of the B-C-N-RE co-cementation layer are greatly increased in comparison with those of the B-C-N. The function mechanism of rare earth elements is also discussed.

  6. Precise Orbit Determination of Earth's Satellites for Climate Change Investigation

    Science.gov (United States)

    Vespe, Francesco

    The tremendous improvement of the gravity field models which we are achieving with the last Earth's satellite missions like, CHAMP, GRACE and GOCE devoted to its recovery could make feasibile the use of precise orbit determination (POD) of Earth satellites as a tool for sensing global changes of some key atmosphere parameters like refractivity and extinction. Such improvements indeed, coupled with the huge number of running Earth's satellites and combinations of their orbital parameters (namely the nodes) in a gravity field free fashion (hereafter GFF) can magnify the solar radiation pressure acting on medium earth orbit satellites :GPS, Etalon and, in near real future GALILEO and its smooth modulation through the Earth's atmosphere (penumbra). We would remind that The GFF technique is able to cancel out with "n" satellite orbital parameters the first n-1 even zonal harmonics of the gravity field. Previously it was demonstrated that the signal we want to detect could in principle emerge from the noise threshold but, more refined models of the atmosphere would be needed to perform a more subtle analysis. So we will re-compute the signal features of penumbra by applying more refined atmospheric models. The analysis will be performed by including in GFF Earth's satellites equipped with DORIS systems (Jason, Spot 2-3-4-5, ENVISAT etc.) other than those ranged with SLR and GPS. The introduction of DORIS tracked satellites indeed will allow to cancel higher and higher order of even zonal harmonics and will make still more favourable the signal to noise budget. The analysis will be performed over a time span of at least few tens of years just to enhance probable climate signatures.

  7. Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations?

    Science.gov (United States)

    Borovička, Jan; Kubrová, Jaroslava; Rohovec, Jan; Randa, Zdeněk; Dunn, Colin E

    2011-10-01

    Concentrations of uranium, thorium and rare earth elements (REE) in 36 species of ectomycorrhizal (26 samples) and saprobic (25 samples) macrofungi from unpolluted sites with differing bedrock geochemistry were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Analytical results are supported by use of certified reference materials (BCR-670, BCR-667, NIST-1575a) and the reliability of the determination of uranium was verified by epithermal neutron activation analysis (ENAA). It appears that data recently published on these elements are erroneous, in part because of use of an inappropriate analytical method; and in part because of apparent contamination by soil particles resulting in elevated levels of thorium and REE. Macrofungi from unpolluted areas, in general, did not accumulate high levels of the investigated metals. Concentrations of uranium and thorium were generally below 30 and 125 μg kg(-1) (dry weight), respectively. Concentrations of REE in macrofungi did not exceed 360 μg kg(-1) (dry weight) and their distribution more or less followed the trend observed in post-Archean shales and loess.

  8. Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. "Glera".

    Science.gov (United States)

    Pepi, Salvatore; Sansone, Luigi; Chicca, Milvia; Marrocchino, Elena; Vaccaro, Carmela

    2016-08-01

    The renowned Vitis vinifera L. cultivar "Glera" (Magnoliopsida Vitaceae) has been grown for hundreds of years in the Italian regions of Veneto and Friuli to produce the sparkling Prosecco wine, with controlled designation of origin (DOC). We evaluated the relationship among the concentrations of rare earth elements (REE) in soil and in "Glera" grape berries in vineyards belonging to five different localities in the Veneto alluvial plain, all included in the DOC area of Prosecco. The concentration of REE in samples of soil and juice or solid residues of grape berries was determined by inductively coupled plasma mass spectrometry (ICP-MS), and the index of bioaccumulation was calculated to define the specific assimilation of these elements from soil to grape berries. The concentration of REE in soil samples allowed an identification of each locality examined, and REE were mostly detected in solid grape berry residues in comparison to juice. These data may be useful to associate REE distribution in soil and grape berries to a specific geographical origin, in order to prevent fraudulent use of wine denomination labels.

  9. HV substation earth grid commissioning using current injection test (CIT method: Worst case scenario determination

    Directory of Open Access Journals (Sweden)

    M. Nassereddine, J. Rizk, M. Nagrial, A. Hellany

    2015-01-01

    Full Text Available The existing of the High Voltage (HV infrastructure creates a unique set of safety circumstances. The earthing system is one of the main elements to mitigate any unsafe conditions. Commissioning the earth grid certifies that the implemented system fulfills to the pertinent necessities. This paper endeavors to present vital information on how to perform the earth grid commissioning of an HV infrastructure. This paper will minutiae the minimum needs to guarantee the test will symbolize the actual fault case that the design was based on. A flow chart diagram is established and presented in this paper, which allows the determination of the most suitable injection route. The results of the case study are discussed, and the results are shown in this paper.

  10. Investigation on Behavior of Rare Earth Element Cerium in Aluminum-Lithium Alloys by Internal Friction Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The behavior of rare earth element Ce in 2090 Al-Li alloys was studied by the method of low frequency internal friction.The results showed that rare earth element Ce can increase the activation energy of grain boundary and improve the grain boundary strength of alloys.Rare earth element Ce can decrease the tendency of softening of elastic modulus of 2090 Al-Li alloys after heat cycle and keep high elastic modulus of initial state.

  11. The importance of sulfur for the behavior of highly-siderophile elements during Earth's differentiation

    Science.gov (United States)

    Laurenz, Vera; Rubie, David C.; Frost, Daniel J.; Vogel, Antje K.

    2016-12-01

    The highly siderophile elements (HSEs) are widely used as geochemical tracers for Earth's accretion and core formation history. It is generally considered that core formation strongly depleted the Earth's mantle in HSEs, which were subsequently replenished by a chondritic late veneer. However, open questions remain regarding the origin of suprachondritic Ru/Ir and Pd/Ir ratios that are thought to be characteristic for the primitive upper mantle. In most core-formation models that address the behavior of the HSEs, light elements such as S entering the core have not been taken into account and high P-T experimental data for S-bearing compositions are scarce. Here we present a comprehensive experimental study to investigate the effect of increasing S concentration in the metal on HSE metal-silicate partitioning at 2473 K and 11 GPa. We show that the HSEs become less siderophile with increasing S concentrations in the metal, rendering core-forming metal less efficient in removing the HSEs from the mantle if S is present. Furthermore, we investigated the FeS sulfide-silicate partitioning of the HSEs as a function of pressure (7-21 GPa) and temperature (2373-2673 K). The sulfide-silicate partition coefficient for Pt increases strongly with P, whereas those for Pd, Ru and Ir all decrease. The combined effect is such that above ∼20 GPa Ru becomes less chalcophile than Pt, which is opposite to their behavior in the metal-silicate system where Ru is always more siderophile than Pt. The newly determined experimental results are used in a simple 2-stage core formation model that takes into account the effect of S on the behavior of the HSEs during core formation. Results of this model show that segregation of a sulfide liquid to the core from a mantle with substantial HSE concentrations plays a key role in reproducing Earth's mantle HSE abundances. As Ru and Pd are less chalcophile than Pt and Ir at high P-T, some Ru and Pd remain in the mantle after sulfide segregation

  12. DYNAMIC ANALYSIS FOR THE DISCRETE PARTICLE MODEL BY DISTINCT ELEMENT METHOD : APPLICATION TO CALCULATION OF COEFFICIENT OF EARTH PRESSURE

    OpenAIRE

    大西, 泰史

    2017-01-01

    The purpose of this study is to perform to earth pressure coefficient calculation simulation using the Distinct Element Method (DEM). Earth pressure theory has been established since long ago and is still in use. Therefore, simulation based on Coulomb and Rankine's theory of earth pressure is carried out to confirm usability of DEM. As a result of the static earth pressure coefficient calculation simulation, good results were obtained. However, in the passive earth pressure coefficient calcul...

  13. Mechanochemical decomposition of monazite to assist the extraction of rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wantae; Bae, Inkook; Chae, Soochun [Korea Institute of Geoscience and Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Shin, Heeyoung, E-mail: hyshin@kigam.re.k [Korea Institute of Geoscience and Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2009-11-03

    Mechanochemical decomposition by milling a mixture of monazite and sodium hydroxide powder and subsequent leaching by sulfuric acid for the extraction of rare earth elements at room temperature has been investigated. The milling of the mixture allows the mechanochemical formation of rare earth hydroxides and sodium phosphate as milling progresses. Nearly all the monazite is decomposed within 120 min under the present milling conditions. A 0.05N sulfuric acid solution enables us to improve the yield of each of La, Nd and Sm to around 85% or more in the powder milled for 120 min. Also, respective Ce and Pr yields of about 20% and 70% remain un-dissolved since they are changed into oxide forms during and after the milling operation. These rare earth oxides are mostly dissolved as the acid concentration increases to 5N. The yield of rare earth elements increases with increasing milling time. Thus mechanochemical milling plays a significant role in achieving high yield of rare earth elements from the leaching of the milled powder.

  14. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.

    Science.gov (United States)

    Thomas, Philippe J; Carpenter, David; Boutin, Céline; Allison, Jane E

    2014-02-01

    The phytotoxicity of rare earth elements (REEs) is still poorly understood. The exposure-response relationships of three native Canadian plant species (common milkweed, Asclepias syriaca L., showy ticktrefoil, Desmodium canadense (L.) DC. and switchgrass, Panicum virgatum L.) and two commonly used crop species (radish, Raphanus sativus L., and tomato, Solanum lycopersicum L.) to the REEs lanthanum (La), yttrium (Y) and cerium (Ce) were tested. In separate experiments, seven to eight doses of each element were added to the soil prior to sowing seeds. Effects of REE dose on germination were established through measures of total percent germination and speed of germination; effects on growth were established through determination of above ground biomass. Ce was also tested at two pH levels and plant tissue analysis was conducted on pooled samples. Effects on germination were mostly observed with Ce at low pH. However, effects on growth were more pronounced, with detectable inhibition concentrations causing 10% and 25% reductions in biomass for the two native forb species (A. syriaca and D. canadense) with all REEs and on all species tested with Ce in both soil pH treatments. Concentration of Ce in aboveground biomass was lower than root Ce content, and followed the dose-response trend. From values measured in natural soils around the world, our results continue to support the notion that REEs are of limited toxicity and not considered extremely hazardous to the environment. However, in areas where REE contamination is likely, the slow accumulation of these elements in the environment could become problematic.

  15. Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, the Netherlands

    NARCIS (Netherlands)

    Janssen RPT; Verweij W; Versteegh JFM; LWD

    1997-01-01

    Speciation calculations were carried out on groundwater samples to shed more light on the chemical processes of rare earth elements (REE). These samples were taken from seven boreholes at several depths near the drinking water pumping station, Vierlingsbeek, The Netherlands. Complexation and precip

  16. Maximum Permissible Concentrations and Negligible Concentrations for Rare Earth Elements (REEs)

    NARCIS (Netherlands)

    Sneller FEC; Kalf DF; Weltje L; Wezel AP van; CSR

    2000-01-01

    In this report maximum permissible concentrations (MPCs) and negligible concentrations (NCs) are derived for Rare Earth Elements (REEs), which are also known as lanthanides. The REEs selected for derivation of environmental risk limits in this report are Yttrium (Y), Lanthanum (La), Cerium (Ce), Pra

  17. A CONTRIBUTION TO THE RESEARCH ON RARE EARTH ELEMENTS IN SEDIMENTARY ROCKS

    Directory of Open Access Journals (Sweden)

    Josip Crnički

    1989-12-01

    Full Text Available The main features of the geochemistry of rare earth elements (REE, REE mineralogy and the REE i contents and distributions in sedimentary rocks are presented. A new classification of REE minerals as well as a new systematic order of the REE behaviour in sedimentology is introduced and explained.

  18. Effect of Rare Earth Elements on Anisotropy and Microstructure of Al-Li Alloy 2195 Sheets

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    For the purpose of decreasing the applied limitation resulting from the anisotropic mechanical property of Al-Li alloy 2195, this study employed a complex heat treatment process, involving the pre-tension, thermo-infiltration of the rare earth element Ce, solution treatment, and artificial aging technology. The results indicate that the infiltration of rare earth element Ce benefits the abatement of anisotropy of Al-Li alloy 2195 sheet, in contrast with that of the normal heat treatment process. The gradient of the Vickers-hardness decreases at least 50% through the thickness, and the tensile strength in the rolling direction also increases significantly. If Ce was infiltrated into the alloy under the optimum pre-deformation, the yield strength (σ0.2) increased by 30 MPa while the tensile strength (σb) enhanced by 25 MPa compared to the rare earth free samples. Meanwhile, the fractography illustrated that the fracture surface of the sample became more desirable.

  19. Characteristics of Rare Earth Elements of Zircons from Mesozoic Volcanic Rocks in Luanping Region, Hebei

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong; Yuan Hongli; Hu Zhaochu; Liu Xiaoming

    2005-01-01

    Rare earth elements of the zircons from the Mesozoic volcanic rocks in Luanping region, Hebei, were analyzed the results reflect that the average values of δEu and (Lu/Gd)N are 0.49 and 21.8 respectively in the zircons from the top part of Tiaojishan Formation;but the average values of δEu and (Lu/Gd)N are 0.15, 0.06, 0.09 and 14.51, 15.66, 16.25 respectively in the zircons from the lower, and upper part of the Tuchengzi Formation and the bottom bed of the Zhangjiakou Formation. The results show that the characteristics of the zircons from the Tuchengzi Formation are coincident with those of the zircons from the Zhangjiakou Formation, but are different from those of the zircons from the Tiaojishan Formation, and imply that the Tuchengzi Formation has close relation with the Zhangjiakou Formation. Combining the results above with the former isotopic dating results of the volcanic rocks, the authors draw the conclusions as follows: The Tuchengzi Formation not only has a long interval period with the Tiaojishan Formation, but also is very different from the Tiaojishan Formation in zircon geochemical characteristics. The Tuchengzi Formation not only is nearly continuous with the Zhangjiakou Formation in time, but also is coincident with the Zhangjiakou Formation in geochemistry of zircons. The results imply that the Tuchengzi Formation and the Zhangjiakou Formation were formed in the same geological background, that is, there are not the boundary of the J3-K1 and the interface of the transition of tectonic framework between the Tuchengzi Formation and the Zhangjiakou Formation in the Luanping region. The research shows that the (Lu/Gd)N, δEu are two important parameters which are relatively stable in the analysis of zircons from Crust-source;but the values of ∑LREE of zircons from Crust-source change greatly, especially the abundance of La element, so some ratios of rare earth elements related with La (or ∑LREE) are not usable in determining the characteristics

  20. Using rare earth elements for the identification of the geographic origin of food

    Science.gov (United States)

    Meisel, T.; Bandoniene, D.; Joebstl, D.

    2009-04-01

    The European Union defined regimes within the Protected Geographical Status (PGS) framework to protect names of regional food specialities. Thus only food produced in a specific geographical area with a specific way of production or quality can be protected by a protected geographical indication (PGI) label. As such Styrian Pumpkin Seed Oil has been approved with this label, but as with many other high priced regional specialities, fraud cannot be excluded or nor identified. Thus the aim of this work is, to develop an analytical method for the control of the geographic origin of pumpkin seed oil and also to test the method for other protected products. The development of such a method is not only of interest for scientists, but also of importance for the consumer wanting to know the origin of the food products and the assurance of the purity and quality. The group of rare earth elements (REE) in plants also have a characteristic distribution pattern similar to upper crustal REE distributions. Since the REE concentrations are extremely low in pumpkin seed oil (ppt to low ppb), ICP-MS was the only sensitive tool able to produce validated results. The carrier of the REE are most likely small particles distributed within the pumpkin seed oil. Unlike, e.g., olive oil, pumpkin seed oil is bottled and sold unfiltered, which makes this Styrian speciality an interesting sampling target. As pumpkin seed oils from different geographic origin show variable trace element and rare earth distribution patterns, is should possible to trace the origin of these oils. In the current project pumpkin seeds from different regions in Austria and from abroad were sampled. The trace element patterns in the extracted oil of these seeds were determined and a preliminary classification with discriminate analysis was successfully done on a statistical basis. In addition to the study of the geographic origin it was demonstrated that REE distribution patterns can also be used for the

  1. A political economy of China's export restrictions on rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Pothen, Frank [Zentrum fuer Europaeische Wirtschaftsforschung GmbH (ZEW), Mannheim (Germany); Fink, Kilian [Frankfurt Univ. (Germany)

    2015-04-20

    We investigate why governments restrict exports of exotic raw materials taking rare earth elements as a case study. Trade restrictions on exotic materials do not have immediate macroeconomic effects. Relocating rare earth intensive industries is found to be the main reason behind China's export barriers. They are part of a more extensive strategy aiming at creating comparative advantages in these sectors and at overcoming path dependencies. Moreover, export barriers serve as a second-best instrument to reduce pollution and to slow down the depletion of exhaustible resources. Growing domestic rare earth consumption renders those increasingly ineffective. Rising reliance on mine-site regulation indicates that this fact is taken into account. Rare earth extraction is dominated by a few large companies; the demand side is dispersed. That speaks against successful lobbying for export restrictions. It appears as if the export barriers are set up to compensate mining firms.

  2. Effect of Rare Earth Elements on Quenching Crack Resistance of Steel 9Cr2Mo

    Institute of Scientific and Technical Information of China (English)

    杨庆祥; 李慧; 郭铁波; 张兰萍

    2001-01-01

    The effect of rare earth elements on quenching crack resistance of steel 9Cr2Mo was investigated by means of scanning electron microscopy (SEM) and optical microscopy. Experimental results show that, by adding RE elements to steel 9Cr2Mo, the number of quenching for crack initiation is increased. Meanwhile the propagation of quenching cracks is postponed and the paths of crack propagation are changed. Therefore, quenching crack resistance can be improved by adding RE elements to steel 9Cr2Mo.

  3. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    Science.gov (United States)

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  4. Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall.

    Science.gov (United States)

    Zhu, Mingyong; Tan, Shuduan; Dang, Haishan; Zhang, Quanfa

    2011-12-01

    A field experiment using rare earth elements (REEs) as tracers was conducted to investigate soil erosion processes on slope surfaces during rainfall events. A plot of 10m×2m×0.16m with a gradient of 20° (36.4%) was established and the plot was divided into two layers and four segments. Various REE tracers were applied to the different layers and segments to determine sediment dynamics under natural rainfall. Results indicated that sheet erosion accounted for more than 90% of total erosion when the rainfall amount and density was not large enough to generate concentrated flows. Sediment source changed in different sections on the slope surface, and the primary sediment source area tended to move upslope as erosion progressed. In rill erosion, sediment discharge mainly originated from the toe-slope and moved upwards as erosion intensified. The results obtained from this study suggest that multi-REE tracer technique is valuable in understanding the erosion processes and determining sediment sources.

  5. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    Science.gov (United States)

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  6. Developing alternative resources of rare earth elements in Europe - EURARE and the red mud challenge

    Science.gov (United States)

    Deady, Eimear; Mouchos, Evangelos; Goodenough, Kathryn; Wall, Frances; Williamson, Ben

    2015-04-01

    part of this study. Red muds from these deposits contain on average 900 ppm REE compared with typical values of red muds has been shown to be feasible [5,7] although it is challenging due to the heterogeneous spatial distribution of REE in the primary bauxite deposits [8], an unclear understanding of the mobility of REE in red mud tailings ponds, and the need for development of appropriate processing methods. However, the resource potential of red muds in Europe is significant with approximately 3.5 Mt of bauxite ore extracted in 2012 [2], resulting in approximately 1.4 Mt of red mud from the production of alumina. In addition a large volume of stockpiled red muds exists from historical processing of bauxites, the total of which is not well constrained. Understanding the REE potential of both bauxites and red muds is integral to an assessment of European REE resources. References [1] European Commission, "Report on critical raw materials for the EU. Report of the Ad hoc Working Group on defining critical raw materials". May 2014. [2] T. Brown, N. Idoine, E. Raycraft, R. Shaw, E. Deady, J. Rippingale, T. Bide, C. Wrighton, J. Rodley, "World Mineral Production 2008-12" British Geological Survey, Keyworth, Nottingham, 2014. [3] Z. Maksimović and G. Pantó, "Authigenic rare earth minerals in karst-bauxites and karstic nickel deposits". In: A.P. Jones, F. Wall and C.T. Williams, Rare earth minerals, chemistry, origin and ore deposits, Chapter 10, pp. 257-279, 1996. [4] G. Bárdossy, "Karst Bauxites, Bauxite Deposits on Carbonate Rocks". Elsevier, 444pp, 1982. [5] M. Ochsenkühn-Petropoulou, T. Lyberopoulou, and G. Parissakis, "Direct determination of lanthanides, yttium and scandium in bauxites and red mud from alumina production", Analytica Chimica Acta, vol. 296, no. 3, pp. 305-313, October 1994. [6] É. Deady, E. Mouchos, K. Goodenough, B. Williamson and F. Wall. "Rare Earth Elements in Karst-Bauxites: a Novel Untapped European Resource?" ERES 1st European Rare Earth

  7. Rubidium isotopes in primitive chondrites: Constraints on Earth's volatile element depletion and lead isotope evolution

    Science.gov (United States)

    Nebel, O.; Mezger, K.; van Westrenen, W.

    2011-05-01

    The bulk silicate Earth (BSE) shows substantial deficits in volatile elements compared to CI-chondrites and solar abundances. These deficits could be caused by pre-accretionary depletion in the solar nebula during condensation of solids, or by later heat-driven evaporation during collision of small bodies that later accreted to form the Earth. The latter is considered to result in isotope fractionation for elements with low condensation temperatures that correlates with the degree of depletion. Here, we report first high-precision isotope ratio measurements of the moderately volatile and lithophile trace element Rb. Data from seventeen chondrite meteorites show that their Rb isotope abundances are nearly indistinguishable from Earth, not deviating more than 1 per mil in their 87Rb/85Rb. The almost uniform solar system Rb isotope pool suggests incomplete condensation or evaporation in a single stage is unlikely to be the cause of the volatile element deficit of the Earth. As Rb and Pb have similar condensation temperatures, we use their different degrees of depletion in the BSE to address the mechanisms and timing of terrestrial volatile depletion. The Rb isotope data are consistent with a scenario in which the volatile budget of the Earth was generated by a mixture of a highly volatile-element depleted early Proto-Earth with undepleted material in the course of terrestrial accretion. Observed Pb and Rb abundances and U-Pb and Rb-Sr isotope systematics suggest that volatile addition occurred at approximately the same time at which last core-mantle equilibration was achieved. In line with previous suggestions, this last equilibration involved a second stage of Pb (but not Rb) depletion from the BSE. The timing of this second Pb loss event can be constrained to ~ 110 Ma after the start of the solar system. This model supports a scenario with core storage of Pb in the aftermath of a putative Moon forming giant impact that also delivered the bulk of the volatile

  8. Water—Soluble Rare Earth Elements in Some Soils of China

    Institute of Scientific and Technical Information of China (English)

    ZHUJIANGUO; SUNJUN; 等

    1997-01-01

    Water-soluble rare earth elements(WSREEs) of four typical soil profiles in China were determined by using a high-resolution inductively coupled plasma mass spectrometer, Results showed that the conents of WSREEs decreased from upper layer to lower layer of soils in the southern part of Chian with a high rainfall and low pH but increased for soils in the northern part of China with a low rainfall and relatively higher pH. Contents of WSREEs in soils were olwer than 100μg kg-1 in most cases ,and varied greatly with both different soils and different layers of the same profile .The highest content was 2816.3μg kg-1 but the lowest was 17.6μg kg-1 only.The content of individual rare earth lement(REE) in the soil solution also varied greatly with the highest one ranging from 8.4 to 1373μg kg-1 for Ce and the lowest one from 0.05 to 4.48μg kg-1 for Lu.The sum of WSREEs in the first soil layers ranged from 121.5 to 345.6μg kg-1.Great variaions existed among ratios of REEs in the first soil layers ranged from 121.5 to 345.6μg kg-1.Great variations existed among ratios of REEs extracted with water to the total REEs of soils,ranging from 0.02×10-3 to 13.2×0-3 .But as the upper layer was consiered,the ratio showed only a small difference, ranging from 0.79×10-3 to 1.69×10-3.

  9. Determination of Rare Earth and Thorium Elements in Geochemical Samples by Inductively Coupled Plasma Mass Spectrometry%电感耦合等离子体质谱法测定地质样品中的稀土、钍元素

    Institute of Scientific and Technical Information of China (English)

    王初丹; 侯明

    2011-01-01

    An analysis method is developed based on ICP - MS for the determination of 15 kinds of rare earth (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and thorium elements in soil and rock. In order to avoid deviation caused by matrix effect and instrument fluctuation effectively, Rh internal standard solution is introduced in analysis. Accurate isotope is selected to correct mass interference by experimental test and reference materials are tested by comparison. The correlation coefficients of standard curve for all the elements are more than 0. 999 0 and the detection limit of the method is less than 0. 008 9 μg/g. The relative standard deviations are between 0. 87% and 2. 92%.%建立了电感耦合等离子体质谱法测定土壤、岩石等地质样品中15种稀土(Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)元素和钍(Th)元素的分析方法.仪器分析过程应用Rh做内标溶液,有效地补偿基体效应和仪器波动所引起的测定偏差,选择正确的同位素以校正质谱干扰.对照分析了参考标准物质.所有待测元素的标准曲线相关系数r>0.999 0,方法检出限低于0.008 9μg/g,相对标准偏差范围在0.87%~2.92%.

  10. Origin of the earth's moon - Constraints from alkali volatile trace elements

    Science.gov (United States)

    Kreutzberger, M. E.; Drake, M. J.; Jones, J. H.

    1986-01-01

    Although the moon is depleted in volatile elements compared to the earth, these depletions are not in accord with simple volatility. For example, the Cs/Rb ratios of the earth and moon inferred from basalt are approximately one seventh and one half of the CI ratio, respectively. Volatility considerations alone predict that the lunar Cs/Rb ratio should be equal to or lower than the terrestrial ratio if the moon was derived entirely from earth mantle material. Thus hypotheses such as rotational fission which invoke derivation of lunar material entirely from the earth's mantle may be excluded. The collisional ejection hypothesis of lunar origin requires at least 18 percent of lunar material to be derived from a projectile with dehydrated CI composition to match the lunar Cs/Rb ratio, and 25-50 percent to match both the lunar Cs/Rb ratio and absolute concentrations of Cs and Rb. It remains to be demonstrated that this relatively large contribution of projectile material is consistent with other elemental abundances and element ratios in the moon.

  11. An Autonomous Orbit Determination System for Earth Satellites

    Science.gov (United States)

    1989-12-01

    these points is warranted. For example, low-Earth orbits ( LEO ) can be expected to approach e - 0 with time, so it is particularly useful to examine how...0.77887 e + 0.52875 e x y z 7 Canis Major A A A Cairs) M-0.18485 e + 0.93984 e - 0.28728 e (Sirus) -xyz A A A 8 a Leo -0.86275 e + 0.46061 e...Filters for Orbit Determination and Estimation, PhD Dissertation. University of Illinois, Urbana-Champaign IL, 1986 (AD-A170680). 12. Brouwer , Dirk

  12. Low-Earth Orbit Determination from Gravity Gradient Measurements

    CERN Document Server

    Sun, Xiucong; Macabiau, Christophe; Han, Chao

    2016-01-01

    An innovative orbit determination method which makes use of gravity gradients for Low-Earth-Orbiting satellites is proposed. The measurement principle of gravity gradiometry is briefly reviewed and the sources of measurement error are analyzed. An adaptive hybrid least squares batch filter based on linearization of the orbital equation and unscented transformation of the measurement equation is developed to estimate the orbital states and the measurement biases. The algorithm is tested with the actual flight data from the European Space Agency Gravity field and steady-state Ocean Circulation Explorer. The orbit determination results are compared with the GPS-derived orbits. The radial and cross-track position errors are on the order of tens of meters, whereas the along-track position error is over one order of magnitude larger. The gravity gradient based orbit determination method is promising for potential use in GPS-denied spacecraft navigation.

  13. Use of Phosphate Solubilizing Bacteria to Leach Rare Earth Elements from Monazite-Bearing Ore

    Directory of Open Access Journals (Sweden)

    Doyun Shin

    2015-04-01

    Full Text Available In the present study, the feasibility to use phosphate solubilizing bacteria (PSB to develop a biological leaching process of rare earth elements (REE from monazite-bearing ore was determined. To predict the REE leaching capacity of bacteria, the phosphate solubilizing abilities of 10 species of PSB were determined by halo zone formation on Reyes minimal agar media supplemented with bromo cresol green together with a phosphate solubilization test in Reyes minimal liquid media as the screening studies. Calcium phosphate was used as a model mineral phosphate. Among the test PSB strains, Pseudomonas fluorescens, P. putida, P. rhizosphaerae, Mesorhizobium ciceri, Bacillus megaterium, and Acetobacter aceti formed halo zones, with the zone of A. aceti being the widest. In the phosphate solubilization test in liquid media, Azospirillum lipoferum, P. rhizosphaerae, B. megaterium, and A. aceti caused the leaching of 6.4%, 6.9%, 7.5%, and 32.5% of calcium, respectively. When PSB were used to leach REE from monazite-bearing ore, ~5.7 mg/L of cerium (0.13% of leaching efficiency and ~2.8 mg/L of lanthanum (0.11% were leached by A. aceti, and Azospirillum brasilense, A. lipoferum, P. rhizosphaerae and M. ciceri leached 0.5–1 mg/L of both cerium and lanthanum (0.005%–0.01%, as measured by concentrations in the leaching liquor. These results indicate that determination of halo zone formation was found as a useful method to select high-capacity bacteria in REE leaching. However, as the leaching efficiency determined in our experiments was low, even in the presence of A. aceti, further studies are now underway to enhance leaching efficiency by selecting other microorganisms based on halo zone formation.

  14. ECONOMIC EFFICIENCY - DETERMINED ELEMENT IN INVESTMENT DECISION

    Directory of Open Access Journals (Sweden)

    Claudia MUNGIU-PUPAZAN

    2010-03-01

    Full Text Available Economic activity of a country are conducted by industry, under branches and production sectors, each with special characteristics and conditions of work, which, of course, put their imprint on the organization manner of the production process By an analysis of the concept of economic efficiency of investment is found that this is an amount of qualitative factors, which gives the latter a complex character, aimed to improving activity in the area where are taking place to the putting into service of such investment, which can be modernization, bringing new equipments, reconstruction and development. Study the economic efficiency of investment involves, as a base, an analysis of causal factors that determine the decision in the afferent medium of risk. Corresponding to peculiarities of the production process, it requires a proper methodology of assessment the economic efficiency of investment, with specification to maintain the general principles for calculating the economic efficiency indicators and specific indicators come only to complete the picture of indicators of general, basic and supplementary already calculated in order to provide additional clues, afferent to branch, under-branch or sector of activity.

  15. Rare Earth Elements and Geochemical Partitioning of Zn and Pb in Sediments of an Urban River

    Directory of Open Access Journals (Sweden)

    Shaila Sharmin

    2010-01-01

    Full Text Available Problem statement: Urban river sediment pollution due to Zn and Pb is a serious problem in all over the world. The source and level of Zn and Pb pollution in sediments of Nomi River of Ota Ward, one of the most industrialized areas in Tokyo, Japan is still lacking. Approach: The present study focused on Rare Earth Elements (REEs and geochemical partitioning of Zn and Pb in sediments of 19 sampling sites of Nomi River in order to examine the mobility pattern. The amounts of Zn and Pb in the liquid extract of 5 (five geochemical phases were measured by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS and the concentrations of REEs in sediments were determined by using X-ray Fluorescence Spectroscopy (XRF. Results: Speciation data indicate dominant labile fraction of Zn, which is related to the presence of several anthropogenic influence of the investigated area. Enrichment Factor (EFc and Index of geoaccumulation (Igeo value were compatible with the result, which confirm pollution status of Zn. Environmental risk of Zn and Pb were also evaluated using the Risk Assessment Code (RAC and sequential extraction results and found Zn poses high to very high risk (34-59, whereas Pb poses low to medium environmental risk (0-19. Conclusion: The mean values of REEs and other minor elements were lower or very close to average shale and Japanese river sediment value but Sr, Sn, Zr and Sb contents were little bit higher than average Japanese river sediment values. Anthropogenic activities, prevalent in the study area play a key role in the accumulation of Zn and Pb in aquatic system. Early warning on the sediment pollution to respective authorities help in preserving the aquatic system from further degradation of the river.

  16. Ab initio energetic study of oxide ceramics with rare-earth elements

    Institute of Scientific and Technical Information of China (English)

    WU Bo; Matvei Zinkevich; WANG Chong; Fritz Aldinger

    2006-01-01

    Ab initio energetic calculations based on the density functional theory (DFT) and the projector augmented wave method (PAW) for determining the polymorphisms of lanthanide sesquioxides Ln2O3 (where Ln = rare-earth element. Y,and Sc), LnMO3 perovskites (where M = Al and Ga), and Ln2B2O7 pyrochlores (where B = Ti, Zr, and Hf) were reported. The relative lattice stabilities agreed well with the critically assessed results or the experimental results except the C-type Ln2O3 with a cubic structure, for which the calculated total energies were considerably more negative. With the increase of the Ln3+-cation radius, the polymorphic structures showed a degenerative tendency. The tendencies and quantities of the enthalpies of formation of the ternary oxide ceramics synthesized from their constituent binary oxides reasonably agreed with the available experimental results, and valuable thermodynamic properties were afforded to the compound, for which no experimental data is available. The enthalpies of formation of both perovskites and pyrochlores tend to become more negative with the increase of the Ln3+-cation radius.

  17. Competition between humic acid and carbonates for rare earth elements complexation.

    Science.gov (United States)

    Pourret, Olivier; Davranche, Mélanie; Gruau, Gérard; Dia, Aline

    2007-01-01

    The competitive binding of rare earth elements (REE) to humic acid (HA) and carbonates was studied experimentally at various pH and alkalinity values by combining ultrafiltration and inductively coupled plasma mass spectrometry techniques. The results show that the REE species occur as binary humate or carbonate complexes but not as ternary REE-carbonate-humate as previously proposed. The results also reveal the strong pH and alkalinity dependence of the competition as well as the existence of a systematic fractionation across the REE series. Specifically, carbonate complexation is at a maximum at pH 10 and increase with increasing alkalinity and with the atomic number of the REE (LuCO(3)>LaCO(3)). Modeling of the data using Model VI and recently published stability constants for complexation of REE by humic acid well reproduced the experimental data, confirming the ability of Model VI to accurately determine REE speciation in natural waters. This modeling also confirms the reliability of recently published stability constants. This work shed more light not only on the competition between carbonates and HA for REE complexation but also on the reliability of WHAM 6 and Model VI for calculating the speciation of REE with organic matter in alkaline organic-rich water.

  18. Marine phosphorites as potential resources for heavy rare earth elements and yttrium

    Science.gov (United States)

    Hein, James; Koschinsky, Andrea; Mikesell, Mariah; Mizell, Kira; Glenn, Craig R.; Wood, Ray

    2016-01-01

    Marine phosphorites are known to concentrate rare earth elements and yttrium (REY) during early diagenetic formation. Much of the REY data available are decades old and incomplete, and there has not been a systematic study of REY distributions in marine phosphorite deposits that formed over a range of oceanic environments. Consequently, we initiated this study to determine if marine phosphorite deposits found in the global ocean host REY concentrations of high enough grade to be of economic interest. This paper addresses continental-margin (CM) and open-ocean seamount phosphorites. All 75 samples analyzed are composed predominantly of carbonate fluorapatite and minor detrital and authigenic minerals. CM phosphorites have low total REY contents (mean 161 ppm) and high heavy REY (HREY) complements (mean 49%), while seamount phosphorites have 4–6 times higher individual REY contents (except for Ce, which is subequal; mean ΣREY 727 ppm), and very high HREY complements (mean 60%). The predominant causes of higher concentrations and larger HREY complements in seamount phosphorites compared to CM phosphorites are age, changes in seawater REY concentrations over time, water depth of formation, changes in pH and complexing ligands, and differences in organic carbon content in the depositional environments. Potential ore deposits with high HREY complements, like the marine phosphorites analyzed here, could help supply the HREY needed for high-tech and green-tech applications without creating an oversupply of the LREY.

  19. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale.

    Science.gov (United States)

    Noack, Clinton W; Jain, Jinesh C; Stegmeier, John; Hakala, J Alexandra; Karamalidis, Athanasios K

    2015-01-01

    In this work, the geochemistry of the rare earth elements (REE) was studied in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In these samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.

  20. Effects of rare earth elements on properties of AB5-type electrode materials at different temperature

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Discharge property is an important factor to evaluate electrode materials. The discharge capacity of the hydrogen-storing alloys are not only influenced by its thermodynamic property but also closely related to its dynamic property. When the temperature changes, the degrees of influence of the above-mentioned two factors on the discharge performance vary accordingly. As a consequence, adjusting compositions of the alloys to make them have good discharge performance under a relatively wide range of temperature is of great significance. On the basis of great deal of experimental investigation, the optimum combination of rare earth elements in hydrogen-storing electrode materials using at-30-55℃ is determined and the relationships between the cell parameters and discharge performance of alloys at -30℃ are discussed. Additionally, the DFEC calculation method has been improved to predict the discharge capacities, which is in good agreement with the experimental ones. This is of theoretical significance in investigating new hydrogen-storing alloys of the AB5 type.

  1. Marine Phosphorites as Potential Resources for Heavy Rare Earth Elements and Yttrium

    Directory of Open Access Journals (Sweden)

    James R. Hein

    2016-08-01

    Full Text Available Marine phosphorites are known to concentrate rare earth elements and yttrium (REY during early diagenetic formation. Much of the REY data available are decades old and incomplete, and there has not been a systematic study of REY distributions in marine phosphorite deposits that formed over a range of oceanic environments. Consequently, we initiated this study to determine if marine phosphorite deposits found in the global ocean host REY concentrations of high enough grade to be of economic interest. This paper addresses continental-margin (CM and open-ocean seamount phosphorites. All 75 samples analyzed are composed predominantly of carbonate fluorapatite and minor detrital and authigenic minerals. CM phosphorites have low total REY contents (mean 161 ppm and high heavy REY (HREY complements (mean 49%, while seamount phosphorites have 4–6 times higher individual REY contents (except for Ce, which is subequal; mean ΣREY 727 ppm, and very high HREY complements (mean 60%. The predominant causes of higher concentrations and larger HREY complements in seamount phosphorites compared to CM phosphorites are age, changes in seawater REY concentrations over time, water depth of formation, changes in pH and complexing ligands, and differences in organic carbon content in the depositional environments. Potential ore deposits with high HREY complements, like the marine phosphorites analyzed here, could help supply the HREY needed for high-tech and green-tech applications without creating an oversupply of the LREY.

  2. Structural Responses and Finite Element Modeling of Hakka Tulou Rammed Earth Structures

    Science.gov (United States)

    Sranislawski, Daniel

    Hakka Tulous are rammed earth structures that have survived the effects of aging and natural elements upwards of even over a thousand years. These structures have housed the Hakka people of the Fujian Province, China in natural yet modern housing that has provided benefits over newer building materials. The key building material, rammed earth, which is used for the walls of the Hakka Tulou structures, has provided structural stability along with thermal comfort to the respective inhabitants of the Hakka Tulous. Through material testing and analysis this study has examined how the Tulou structures have maintained their structural stability while also providing thermal comfort. Reports of self healing cracks in the rammed earth walls were also analyzed for their validity in this study. The study has found that although the story of the self healing crack cannot be validated, there is reason to believe that with the existence of lime, some type of autogenous healing could occur on a small scale. The study has also found, through the use of nondestructive testing, that both the internal wooden systems (flooring, roof, and column support) and the rammed earth walls, are still structurally sound. Also, rammed earth's high thermal mass along with the use of sufficient shading has allowed for a delay release of heat energy from the walls of the Tulous, thus providing thermal comfort that can be felt during both night and day temperatures. The Hakka Tulou structures have been found to resist destruction from natural disasters such as strong earthquakes even when more modern construction has not. Through finite element modeling, this study has shown that the high volume of rammed earth used in the construction of the Hakka Tulous helps dissipate lateral force energy into much lower stresses for the rammed earth wall. This absorption of lateral force energy allows the rammed earth structures to survive even the strongest of earthquakes experienced in the region. The Hakka

  3. Formation of intermetallic compound at interface between rare earth elements and ferritic-martensitic steel by fuel cladding chemical interaction

    Institute of Scientific and Technical Information of China (English)

    Jun Hwan Kim; Byoung Oon Lee; Chan Bock Lee; Seung Hyun Jee; Young Soo Yoon

    2012-01-01

    The intermetallic compounds formation at interface between rare earth elements and clad material were investigated to demonstrate the effects of rare earth elements on fuel-cladding chemical interaction (FCCI) behavior.Mischmetal (70Ce-30La) and Nd were prepared as rare earth elements.Diffusion couple testing was performed on the rare earth elements and cladding (9Cr2W steel) near the operation temperature of(sodium-cooled fast reactor) SFR fuel.The performance of a diffusion barrier consisting of Zr and V metallic foil against the rare earth elements was also evaluated.Our results showed that Ce and Nd in the rare earth elements and Fe in the clad material interdiffused and reacted to form intermetallic species according to the parabolic rate law,describing the migration of the rare earth element.The diffusion of Fe limited the reaction progress such that the entire process was governed by the cubic rate law.Rare earth materials could be used as a surrogate for high burnup metallic fuels,and the performance of the barrier material was demonstrated to be effective.

  4. Highly siderophile elements were stripped from Earth's mantle by iron sulfide segregation

    CERN Document Server

    Rubie, David C; Jacobson, Seth A; Morbidelli, Alessandro; Palme, Herbert; Vogel, Antje K; Frost, Daniel J

    2016-01-01

    Highly siderophile elements (HSEs) are strongly depleted in the bulk silicate Earth (BSE) but are present in near-chondritic relative abundances. The conventional explanation is that the HSEs were stripped from the mantle by the segregation of metal during core formation but were added back in near-chondritic proportions by late accretion, after core formation had ceased. Here we show that metal-silicate equilibration and segregation during Earth's core formation actually increased HSE mantle concentrations because HSE partition coefficients are relatively low at the high pressures of core formation within Earth. The pervasive exsolution and segregation of iron sulfide liquid from silicate liquid (the "Hadean matte") stripped magma oceans of HSEs during cooling and crystallization, before late accretion, and resulted in slightly suprachondritic palladium/iridium and ruthenium/iridium ratios.

  5. determination of elemental constituents for three herbal plants that ...

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    DETERMINATION OF ELEMENTAL CONSTITUENTS FOR THREE HERBAL PLANTS THAT ARE. TRADITIONALLY ... transferred to a personal computer using USB code wire for ... that the intake conforms to the values in table 4. According to.

  6. Effects of Rare Earth Elements on Photocatalytic Antibacterial Properties of Nanometer TiO2 Powders

    Institute of Scientific and Technical Information of China (English)

    Gao Ning; Liang Jinsheng; Meng Junping; Ou Xiuqin

    2004-01-01

    Nanometer Ce/TiO2 functional materials with photocatalystic antibacterial properties were prepared by dipping TiO2 nanometer powders into RE( NO3 )·nH2O solutions, filtrating, drying and heat treatment, and the enhancement mechanisms of Ce on the nanometer TiO2 were studied by electronic spin resonance(ESR) The results show that TiO2 for photocatalystic antibacterial properties is strengthened evidently by adding Ce, which has a high efficiency of photocatalystic antibacterial properties with the light extent of visible light and ultraviolet radiation. The basic reason for obtaining the strengthened result is that the effective wave length of photocatalystic properties of TiO2 can be expanded to visible light area with the induction of the rare earth elements, whether or not ultraviolet light exists, nanometer TiO2 can produce a great deal of hydroxylic radical(·OH) by treating with rare earth elements.

  7. Evolution of Mg-5Al-0.4Mn microstructure after rare earth elements addition

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2011-04-01

    Full Text Available Mg-5Al-0.4Mn-xRE (x = 0, 1, 2, 3 wt.% magnesium alloys were prepared successfully by casting method. The microstructure wasinvestigated by light microscopy. The influence of rare earth (RE elements on the area fraction of eutectic was analysed. The obtainedresults revealed that the as-cast Mg-5Al-0.4Mn alloy consist of α - Mg matrix and eutectic α + γ (where γ is Mg17Al12. However, whilerare earth elements were added to the Mg-Al type alloy, Al11RE3 precipitates were formed. The amount of the Al11RE3 precipitatesincreased with increasing addition of RE, but the amount of γ - Mg17Al12 decreased.

  8. Analytical approach using KS elements to near-earth orbit predictions including drag

    Science.gov (United States)

    Sharma, Ram Krishnan

    1991-04-01

    An analytical theory for the motion of near-earth satellite orbits with the air drag effect is evolved in terms of the KS elements, using an analytical oblate exponential atmospheric density model. Due to the symmetry of the KS element equations, only one of the eight equations is integrated analytically to acquire the state vector at the close of each revolution. In the numerical studies performed, it is shown that after 100 revolutions, with a ballistic coefficient of 50, a maximum difference of 39 meters is found in the semimajor axis comparison for a very small eccentricity (0.001) instance having an initial perigee height of 391.425 km.

  9. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    OpenAIRE

    Opiela M.; Grajcar A.

    2012-01-01

    The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and...

  10. Major, Trace, and Rare Earth Element Abudances in Boninitic Lavas from the Ogasawara Forearc

    OpenAIRE

    1985-01-01

    Dredged andesites and dacites from the Ogasawara forearc contain high abundances of MgO at high SiO2, high K2O, low rare earth element abundances and flat patterns, and very low TiO2 contents. The chemical character and geologic setting support the interpretation that these lavas are evolved members of the boninite series formed by high degrees of partial melting of a previously depleted arc source, followed by enrichment in K, Th, and large-ion lithophile elements, and finally differentiated...

  11. Determination of Impurity Elements in Pure Cerium Oxide Product

    Institute of Scientific and Technical Information of China (English)

    Li Peizhong; Chen Limin; Li Jie

    2004-01-01

    Determination of the rare earth impurity in pure cerium oxide is done by ICP-MS.The interference and other factors which affect analytical results were discussed.The accuracy are between 0.81% ~ 11.98% and the recoveries of standard addition are 96% ~ 112.5%.This method can meet the demand for product inspection.

  12. Determination of a synchronous generator characteristics via Finite Element Analysis

    Directory of Open Access Journals (Sweden)

    Kolondzovski Zlatko

    2005-01-01

    Full Text Available In the paper a determination of characteristics of a small salient pole synchronous generator (SG is presented. Machine characteristics are determined via Finite Element Analysis (FEA and for that purpose is used the software package FEMM Version 3.3. After performing their calculation and analysis, one can conclude that most of the characteristics presented in this paper can be obtained only by using the Finite Element Method (FEM.

  13. Modeling viscoelastic deformation of the earth due to surface loading by commercial finite element package - ABAQUS

    Science.gov (United States)

    Kit Wong, Ching; Wu, Patrick

    2017-04-01

    Wu (2004) developed a transformation scheme to model viscoelatic deformation due to glacial loading by commercial finite element package - ABAQUS. Benchmark tests confirmed that this method works extremely well on incompressible earth model. Bangtsson & Lund (2008),however, showed that the transformation scheme would lead to incorrect results if compressible material parameters are used. Their study implies that Wu's method of stress transformation is inadequate to model the load induced deformation of a compressible earth under the framework of ABAQUS. In light of this, numerical experiments are carried out to find if there exist other methods that serve this purpose. All the tested methods are not satisfying as the results failed to converge through iterations, except at the elastic limit. Those tested methods will be outlined and the results will be presented. Possible reasons of failure will also be discussed. Bängtsson, E., & Lund, B. (2008). A comparison between two solution techniques to solve the equations of glacially induced deformation of an elastic Earth. International journal for numerical methods in engineering, 75(4), 479-502. Wu, P. (2004). Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress. Geophysical Journal International, 158(2), 401-408.

  14. SUSTAINABLE ALLOY DESIGN: SEARCHING FOR RARE EARTH ELEMENT ALTERNATIVES THROUGH CRYSTAL ENGINEERING

    Science.gov (United States)

    2016-02-26

    Force Base, Dayton OH, March 20th 2013 23. Informatics Aided Discovery of Energy Materials 2013 Kentucky Workshop on Renewable Energy and Energy ...AFRL-AFOSR-VA-TR-2016-0122 Sustainable Alloy Design Searching for Rare Earth Element Alternatives through Crystal Engineering Krishna Rajan IOWA...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching

  15. Extended defects in Si wafers implanted with ions of rare-earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V.I. E-mail: icpm@mail.girmet.ru; Yugova, T.G.; Sobolev, N.A.; Shek, E.I.; Makovijchuk, M.I.; Parshin, E.O

    1999-01-01

    Structural defects arising in Cz-Si wafers after implantation with high-energy ions of rare-earth elements (Er, Ho, Dy) and annealing in a chlorine-containing ambience were studied by transmission electron microscopy and chemical etching/Nomarski microscopy. Regularities of extended defect formation in dependence on implant and annealing conditions as well as evolution of structural defect patterns during thermal annealing have been established.

  16. ICP-AES Determination of Rare Earth Elements in Water Sample After Separation and Enrichment by Amphiprotic Ion Exchange Fiber Column%两性离子交换纤维柱富集-电感耦合等离子体原子发射光谱法测定水样中稀土元素

    Institute of Scientific and Technical Information of China (English)

    洪欣; 龚琦

    2011-01-01

    提出了两性离子交换纤维柱吸附富集镧、钕、铕、钆、铒和镱,1.5 mol·L(-1)硝酸溶液作洗脱剂,电感耦合等离子体原子发射光谱法测定水样中上述痕量稀土元素含量的方法.在优化的试验条件下,两性离子交换纤维柱对镧、钕、铕、钆、铒和镱的吸附容量分别为7.32,7.61,8.04,7.95,9.12,8.49 mg·g(-1);镧、钕、铕、钆、铒和镱的检出限(3S/N)分别为0.032,0.068,0.033,0.053,0.045,0.019μg·L(-1).方法用于水样中镧、钕、铕、钆、铒和镱含量的测定,回收率在90.0%-101.0%之间,相对标准偏差(n=5)在1.7%~5.4%之间.%Trace amounts of rare earth (RE) elements, including La, Nd, Eu, Gd, Er and Yb in water sample were adsorbed and enriched by amphiprotic ion exchange fiber column, and desorbed from the column by eluting with 1.5 mol · L-1 HNO3.The solution obtained was used for ICP-AES determination of the RE elements mentioned above.Under the optimum conditions, the adsorption capacity of the amphiprotic ion exchange fiber column toward La, Nd, Eu, Gd, Er and Yb were found to be 7.32, 7.61, 8.04, 7.95, 9.12 and 8.49 mg · g-1 respectively.Values of detection limits (3S/N) of this method were 0.032 , 0.068, 0.033, 0.053, 0.045 and 0.019 μg · L-1 respectively.The proposed method was applied to the determination of trace amounts of the RE's in water samples, giving the values of recovery.in the range of 90.0%-101% and RSD's (n=5) ranged from 1.7% to 5.4%.

  17. The Mobility of Rare—Earth Elements During Hydrothermal Activity:A Review

    Institute of Scientific and Technical Information of China (English)

    熊永良; 翟裕生

    1991-01-01

    The mobility of the rare-earth elements(REE)during hydrothermal activities is increasingly documented.Geological and experimental evidence suggests that REE may be mobile in solutions rich in F-,Cl-,HCO3-,CO2- 3,HPO42-,PO43-,or in combinations of the above ligands,even though little has been known about which ligand or which combination is most effective in mobilizing REE. The fractionation of REE resulting from hydrothermal activities is inconsistent.One set of field data implies the prererential mobility of the light rare-earth elements(LREE).whereas another set of field observations indicates the dominant mobilization of the heavy rare earth elements(HREE),and some theoretical prediction is comtradictory to the field evidence.The Eu anomalies due to hydrothermal activities are complex and plausible explanation is not available.The existing experimental approaches dealing with REE are not adequate for explanation ofREE behaviour in aqueous solutions.Systematic experimental approaches are suggested.

  18. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies.

    Science.gov (United States)

    Alonso, Elisa; Sherman, Andrew M; Wallington, Timothy J; Everson, Mark P; Field, Frank R; Roth, Richard; Kirchain, Randolph E

    2012-03-20

    The future availability of rare earth elements (REEs) is of concern due to monopolistic supply conditions, environmentally unsustainable mining practices, and rapid demand growth. We present an evaluation of potential future demand scenarios for REEs with a focus on the issue of comining. Many assumptions were made to simplify the analysis, but the scenarios identify some key variables that could affect future rare earth markets and market behavior. Increased use of wind energy and electric vehicles are key elements of a more sustainable future. However, since present technologies for electric vehicles and wind turbines rely heavily on dysprosium (Dy) and neodymium (Nd), in rare-earth magnets, future adoption of these technologies may result in large and disproportionate increases in the demand for these two elements. For this study, upper and lower bound usage projections for REE in these applications were developed to evaluate the state of future REE supply availability. In the absence of efficient reuse and recycling or the development of technologies which use lower amounts of Dy and Nd, following a path consistent with stabilization of atmospheric CO(2) at 450 ppm may lead to an increase of more than 700% and 2600% for Nd and Dy, respectively, over the next 25 years if the present REE needs in automotive and wind applications are representative of future needs.

  19. Enhancement Effects of Three Rare Earth Elements on the Growth of Chaetoceros Mulleri

    Institute of Scientific and Technical Information of China (English)

    曲克明; 辛福言

    2001-01-01

    Enhancement effects of rare earth elements on the growth of Chaetoceros mulleri is studied in this paper. The results show that all of the light, middle and heavy rare earth elements have similar enhancement effect on the growth of Chaetoceros mulleri, with the beneficial concentrations of La, Gd and Yb being 7.28~87.40 μ mol/L, 6.36~57.23 μ mol/L and 5.78~17.34 μ mol/L. The optimum concentrations of La, Gd and Yb are 7.28 ~50.98 μ mol/L,31.80~44.52 μ m ol/L and 5.78~17.34 1μ mol/L, respectively. When the concentrations of La, Gd and Yb are 7.28~87.40 μ mol/L, 6.36~57.23 μ mol/L and 5.78~ 17,34 μ mol/L, the concentrations of chlorophyll have increased by 9.3~47.0%, 33.4~44.3%, and 36.5~40.3%, respectively as compared with the control group. The mechanism of enhancement of rare earth elements on the growth ot Chaetoceros mulleri is also discussed in this paper.

  20. Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: a review.

    Science.gov (United States)

    Khan, Aysha Masood; Bakar, Nor Kartini Abu; Bakar, Ahmad Farid Abu; Ashraf, Muhammad Aqeel

    2016-10-10

    Rare earths (RE), chemically uniform group of elements due to similar physicochemical behavior, are termed as lanthanides. Natural occurrence depends on the geological circumstances and has been of long interest for geologist as tools for further scientific research into the region of ores, rocks, and oceanic water. The review paper mainly focuses to provide scientific literature about rare earth elements (REEs) with potential environmental and health effects in understanding the research. This is the initial review of RE speciation and bioavailability with current initiative toward development needs and research perceptive. In this paper, we have also discussed mineralogy, extraction, geochemistry, analytical methods of rare earth elements. In this study, REEs with their transformation and vertical distribution in different environments such as fresh and seawater, sediments, soil, weathering, transport, and solubility have been reported with most recent literature along key methods of findings. Speciation and bioavailability have been discussed in detail with special emphasis on soil, plant, and aquatic ecosystems and their impacts on the environment. This review shows that REE gained more importance in last few years due to their detrimental effects on living organisms, so their speciation, bioavailability, and composition are much more important to evaluate their health risks and are discussed thoroughly as well.

  1. Trace element and rare earth element of cap carbonate in Ediacaran Doushantuo Formation in Yangtze Gorges

    Institute of Scientific and Technical Information of China (English)

    HUANG Jing; CHU XueLei; CHANG HuaJin; FENG LianJun

    2009-01-01

    For the Doushantuo cap carbonate at the Jiulongwan section in the Yangtze Gorges,its concentrations of redox sensitive elements suggest two distinct enrichments in stratigraphy. These enrichments occur at about 0.8 m and 3.3 m above the bottom of cap carbonate,respectively. They are interpreted as the temporary anoxic depositional conditions due to the oxidation of seeped methane. REE+Y patterns of the cap carbonate are classified into three types with different styles:(1) from the bottom to 2.45 m,representing the behaviors of freshwater and suggesting that massive meltwater swarmed into surface oceans during the deglaciation; (2) from 2.45 m to 3.3 m,indicating the pattern of ancient seawater possibly due to upwelling of deep water; and (3) from 3.3 m to the top,showing "MREE bulge"pattern with HREE-depletion as a result of diagenesis. The three-stage REE+Y patterns represent the transformations of shallow water in the wake of the Marinoan glaciation in this region:the fresh meltwater was dominant first,end then it interfused into the oceanic basin by the transgression and upwelling.Bloom of plankton further introduced anoxia near the water-sediment interface.

  2. A reference Earth model for the heat producing elements and associated geoneutrino flux

    CERN Document Server

    Huang, Yu; Mantovani, Fabio; Rudnick, Roberta L; McDonough, William F

    2013-01-01

    The recent geoneutrino experimental results from KamLAND and Borexino detectors reveal the usefulness of analyzing the Earth geoneutrino flux, as it provides a constraint on the strength of the radiogenic heat power and this, in turn, provides a test of compositional models of the bulk silicate Earth (BSE). This flux is dependent on the amount and distribution of heat producing elements (HPEs: U, Th and K) in the Earth interior. We have developed a geophysically-based, three-dimensional global reference model for the abundances and distributions of HPEs in the BSE. The structure and composition of the outermost portion of the Earth, the crust and underlying lithospheric mantle, is detailed in the reference model, this portion of the Earth has the greatest influence on the geoneutrino fluxes. The reference model combines three existing geophysical models of the global crust and yields an average crustal thickness of 34.4+-4.1 km in the continents and 8.0+-2.7 km in the oceans. In situ seismic velocity provided...

  3. Adsorption ability of rare earth elements on clay minerals and its practical performance

    Institute of Scientific and Technical Information of China (English)

    肖燕飞; 龙志奇; 黄莉; 冯宗玉; 王良士

    2016-01-01

    The adsorption behaviors of rare earth elements on clay minerals would have great influence on the mineralization process and the leaching process of the ion-adsorption type rare earths ore. In this work, the adsorption thermodynamics of REEs on kaolin were investigated thoroughly and systematically. The experimental results showed that the adsorption characteristics of La, Nd, Y on kaolin did fit well with the Langmuir isotherm model and their saturated adsorption capacities were 1.731, 1.587 and 0.971 mg/g, re-spectively. The free energy change (ΔG) values were –16.91 kJ/mol (La), –16.05 kJ/mol (Nd) and –15.58 kJ/mol (Y), respectively. The negative values ofΔG demonstrated that the adsorption of rare earth on kaolin was a spontaneously physisorption process. The deposit characteristic of the volcanic ion-adsorption type rare earths ore and the behavior of the rare earth in the column leaching process were also developed here. With the increase of the ore body depth, the distribution of the LREEs decreased and the HREEs increased. And the slight differences in the adsorption ability of REEs on clay minerals led to the fractionation effect in the column leaching process. These developed more evidences and better understanding of metallogenic regularity, and provided a theoretical ba-sis and scientific approach to separation of the HREEs and LREEs in the leaching process.

  4. Standard practice for determining rail-to-Earth resistance

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice covers the procedures necessary to follow for measuring resistance-to-earth of the running rails which are used as the conductors for returning the train operating current to the substation in electric mass transit systems. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  5. Geochemical behavior of rare-earth elements and other major and minor elements in sound-producing and silent beach sands in Japan

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The major element composition of sound-producing sand is reported together with rare-earth elements (REE) and other selected elements for the first time. Rare-earth element concentrations in beach sands from Miyagi and Tottori in Japan were determined by induction-coupled, argon-plasma spectrometry (ICP-MS) to characterize the REE of sound-producing and silent sands relative to the parental rocks. Sound-producing sand beaches are very common and all over in Japan: five beaches in Miyagi and 2 in Tottori are selected with other silent sand beaches in the areas. Both sound-producing sand and silent sand samples from Miyagi and Tottori contain more than 60wt% of SiO2 and are composed mainly of quartz and feldspar. Miyagi sand samples are characterized by light REE enrichment and flat chondrite-normalized patterns that are similar to those of local source sandstone. However, all sand samples from Miyatojima in Miyagi show positive Eu anomalies, a characteristic feature not shown in other sand samples from Miyagi. Tottori sand samples also are characterized by high REE contents and remarkable positive Eu anomalies. The sands containing lower REE contents are due to high quartz and feldspar contents. Miyatojima sand samples and Tottori sand samples have high REE contents and show remarkable positive Eu anomalies due to the presence of feldspar.The best results are obtained using all of the geological methods and the Principal Component Analysis (PCA) as a measure of the similarity between sound-producing sand and silent sand. The difference between sound-producing sand and silent sand is obtained from the PCA results.

  6. Interaction of rare earth elements and components of the Horonobe deep groundwater.

    Science.gov (United States)

    Kirishima, Akira; Kuno, Atsushi; Amamiya, Hiroshi; Kubota, Takumi; Kimuro, Shingo; Amano, Yuki; Miyakawa, Kazuya; Iwatsuki, Teruki; Mizuno, Takashi; Sasaki, Takayuki; Sato, Nobuaki

    2017-02-01

    To better understand the migration behavior of minor actinides in deep groundwater, the interactions between doped rare earth elements (REEs) and components of Horonobe deep groundwater were investigated. Approximately 10 ppb of the REEs, i.e. Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, and Yb were doped into a groundwater sample collected from a packed section in a borehole drilled at 140 m depth in the experiment drift of Horonobe Underground Research Laboratory in Hokkaido, Japan. The groundwater sample was sequentially filtered with a 0.2 μm pore filter, and 10 kDa, 3 kDa and 1 kDa nominal molecular weight limit (NMWL) ultrafilters with conditions kept inert. Next, the filtrate solutions were analyzed with inductively coupled plasma mass spectrometry (ICP-MS) to determine the concentrations of the REEs retained in solution at each filtration step, while the used filters were analyzed through neutron activation analysis (NAA) and TOF-SIMS element mapping to determine the amounts and chemical species of the trapped fractions of REEs on each filter. A strong relationship between the ratios of REEs retained in the filtrate solutions and the ionic radii of the associated REEs was observed; i.e. smaller REEs occur in larger proportions dissolved in the solution phase under the conditions of the Horonobe groundwater. The NAA and TOF-SIMS analyses revealed that portions of the REEs were trapped by the 0.2 μm pore filter as REE phosphates, which correspond to the species predicted to be predominant by chemical equilibrium calculations for the conditions of the Horonobe groundwater. Additionally, small portions of colloidal REEs were trapped by the 10 kDa and 3 kDa NMWL ultrafilters. These results suggest that phosphate anions play an important role in the chemical behavior of REEs in saline (seawater-based) groundwater, which may be useful for predicting the migration behavior of trivalent actinides released from radioactive waste repositories in the far

  7. Rare—Earth Elements and Genesis of Lamprophyres in the Laowangzhai Gold Orefield,Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    黄智龙; 朱成明; 等

    1996-01-01

    The Laowangzhai super-large gold orefield,which is situated in northern Mt.Ailao tectonic zone,Yunnan Province,is a typical gold orefield where lamprophyres are temporally and spatially related to gold mineralization.Major element data show that lamprophyres in the orefield are of alkalic series and can be divided into potassic and K-rich calc-alkaline lamprophyres.The rocks are enriched in rare-earth elements as compared with the primary mantle and mid-ocean ridge basalts(MORB).Modelled calculations by the least squares method of Petrological Mixing show that the mantle-source for the lamprophyres in enriched in rarc earth elemeots.The geotectonic development of western Yunnan,Sr and Nd isotopic compositions,incompatible element patterns and linear programing calculations indicate that the fluids were derived from dehydration of submaine sediments which are enriched in ALK,LREE and incompatible elements and then were carried to mantle wedges as a result of plate subduction.That is the main factor leading to the formation of a metasonatic fertile mantle in the area studied.

  8. Recovery of rare earth elements from El-Sela effluent solutions

    Directory of Open Access Journals (Sweden)

    Y.M. Khawassek

    2015-10-01

    Full Text Available The study area of Gabal El Sela at Halaib environ is located at about 20 km west of Abu Ramad City, Egypt. An uraniferous ore material associated with REE was subjected to sulphuric acid leaching for the extraction of uranium mainly and REEs as a by-product. 93.9% of U and 60% of REEs content were leached using −0.5 mm ground ore with 100 g/l sulfuric acid, acid/ore ratio of 2.0 and agitate for 6 h at 40 °C. After uranium extraction, effluent solutions containing 135 ppm rare earths were treated with 30% ammonium hydroxide to pH of 9.3 to enhance the rare earth elements concentration. The precipitated cake was filtered then dried at 110 °C. The dried cake containing 16.2% rare earth elements was dissolved by hydrochloric acid at pH 1.0. The rare earths precipitated cakes of 36.9, 45.7 and 48.7% REEs were recovered successfully from the chloride leach liquor of 900 ppm rare earths by using 5% v/v from 50% HF, 6% wt/v oxalic acid and 4.8% wt/v oxalic acid to chloride solution with heating for one hour which respectively. 73.5% REEs precipitated cake was achieved by double precipitation, firstly by hydrofluoric acid followed by oxalic acid precipitation.

  9. Orbit Propagation and Determination of Low Earth Orbit Satellites

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available This paper represents orbit propagation and determination of low Earth orbit (LEO satellites. Satellite global positioning system (GPS configured receiver provides position and velocity measures by navigating filter to get the coordinates of the orbit propagation (OP. The main contradictions in real-time orbit which is determined by the problem are orbit positioning accuracy and the amount of calculating two indicators. This paper is dedicated to solving the problem of tradeoffs. To plan to use a nonlinear filtering method for immediate orbit tasks requires more precise satellite orbit state parameters in a short time. Although the traditional extended Kalman filter (EKF method is widely used, its linear approximation of the drawbacks in dealing with nonlinear problems was especially evident, without compromising Kalman filter (unscented Kalman Filter, UKF. As a new nonlinear estimation method, it is measured at the estimated measurements on more and more applications. This paper will be the first study on UKF microsatellites in LEO orbit in real time, trying to explore the real-time precision orbit determination techniques. Through the preliminary simulation results, they show that, based on orbit mission requirements and conditions using UKF, they can satisfy the positioning accuracy and compute two indicators.

  10. Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions

    Science.gov (United States)

    Piper, David Z.; Bau, Michael

    2013-01-01

    The concentrations of the rare earth elements (REE) in surface waters and sediments, when normalized on an element-by-element basis to one of several rock standards and plotted versus atomic number, yield curves that reveal their partitioning between different sediment fractions and the sources of those fractions, for example, between terrestrial-derived lithogenous debris and seawater-derived biogenous detritus and hydrogenous metal oxides. The REE of ancient sediments support their partitioning into these same fractions and further contribute to the identification of the redox geochemistry of the sea water in which the sediments accumulated. The normalized curves of the REE that have been examined in several South American wine varietals can be interpreted to reflect the lithology of the bedrock on which the vines may have been grown, suggesting limited fractionation during soil development.

  11. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10.

    Science.gov (United States)

    Qu, Yang; Lian, Bin

    2013-05-01

    The aim of this work is to investigate biological leaching of rare earth elements (REEs) and radioactive elements from red mud, and to evaluate the radioactivity of the bioleached red mud used for construction materials. A filamentous, acid-producing fungi named RM-10, identified as Penicillium tricolor, is isolated from red mud. In our bioleaching experiments by using RM-10, a total concentration of 2% (w/v) red mud under one-step bioleaching process was generally found to give the maximum leaching ratios of the REEs and radioactive elements. However, the highest extraction yields are achieved under two-step bioleaching process at 10% (w/v) pulp density. At pulp densities of 2% and 5% (w/v), red mud processed under both one- and two-step bioleaching can meet the radioactivity regulations in China.

  12. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Fox, Dr. Richard V [Idaho National Laboratory (INL); Miziolek, Andrzej W [United States Army Research Laboratory; DeLucia, Frank C [United States Army Research Laboratory; Andre, Nicolas O [ORNL

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  13. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Fox, Dr. Richard V [Idaho National Laboratory (INL); Miziolek, Andrzej W [United States Army Research Laboratory; DeLucia, Frank C [United States Army Research Laboratory; Andre, Nicolas O [ORNL

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  14. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Madhavi Z. Martin; Robert V. Fox; Andrzej W. Miziolek; Frank C. DeLucia, Jr.; Nicolas Andre

    2001-05-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  15. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution.

    Science.gov (United States)

    Liu, Hu; Zhang, Shengen; Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin; Volinsky, Alex A

    2014-05-15

    This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y0.95Eu0.05)2O3 in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce0.67Tb0.33MgAl11O19) and the Blue phosphor (Ba0.9Eu0.1MgAl10O17) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO2 are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications.

  16. Photosynthetic Characterization of the Plant Dicranopteris dichotoma Bernh. in a Rare Earth Elements Mine

    Institute of Scientific and Technical Information of China (English)

    Li-Feng WANG; Hong-Bing JI; Ke-Zhi BAI; Liang-Bi LI; Ting-Yun KUANG

    2005-01-01

    In order to investigate the distribution of rare earth elements (REEs) in the natural hyperaccumulator fern Dicranopteris dichotoma Bernh. and to characterize this plant photosynthetically,concentrations of REEs in D. dichotoma from mines mining heavy and light REEs (HREEs and LREEs,respectively), as well as in D. dichotoma from an area in which no mining occurred, in southern Jiangxi Province were determined using inductively coupled plasma-mass spectrometry. The REE concentrations in the lamina of D. dichotoma were in the order LREEs mine > HREEs mine > non-mining area. The maximum REE content in the lamina of D. dichotoma from the LREE mine was approximately 2 648 mg/kg dry weight.The photosynthetic activity of D. dichotoma from areas of HREE and LREE mines was improved by the presence of high concentrations of REEs in the lamina compared with D. dichotoma from the non-mining area. However, this enhancement varied according to the concentrations of the REEs, as well as their type.In addition, 77K fluorescence, electron transport rate, and chlorophyll-protein complex studies showed that the enhancement of the photosynthetic activity of D. dichotoma from HREE mines was mainly due to an increase in the chlorophyll-protein complex of the reaction center of photosystem (PS) I, whereas the enhancement observed in D. dichotoma from LREE mines was due to an increase in the internal antennae chlorophyll-protein complex of PS Ⅱ and greater light energy distribution to the light-harvesting chlorophyll-protein complex of PS Ⅱ.

  17. Temporal variation and fluxes of dissolved rare earth elements in the lower Orinoco River

    Science.gov (United States)

    Mora, Abrahan; Laraque, Alain; Mahlknecht, Jürgen; Moreau, Cristina

    2017-04-01

    On a global scale, the Orinoco River ranks third in terms of water discharged to the oceans, with an annual mean discharge of about 37.000 m3/s; its basin covers an area of 990.000 km2 and the length of its main channel reaches 2000 km. Although the seasonal dynamics of dissolved rare earth elements (REE) has been documented in large rivers such as the Amazon and Yangtze, this issue has not yet been documented in the Orinoco River. Thus, we present a comprehensive dissolved REE data set for the Orinoco River in its lower section. Water samples of the Orinoco River were taken monthly between January 2007 and December 2008 in the Ciudad Bolivar gauging station. These water samples were filtered through 0.22 µm pore size membranes and preserved for REE determination. The concentrations of dissolved La, Ce, Pr, Nd, Sm, Gd, Dy, Er, and Yb were measured using an ICP-MS on a spectrometer equipped by collision cell. The two-year time series show that dissolved REE vary seasonally with discharge in the lower Orinoco, and indicate a hydrological dominated control. The higher concentrations of REE were observed during the high discharge period and the lower concentrations during the low water stage. The annual dissolved fluxes of REE from the Orinoco River to the Atlantic Ocean were 240 ± 67 T/yr for La, 628 ± 174 T/yr for Ce, 76 ± 20 T/yr for Pr, 336 ± 84 T/yr for Nd, 83 ± 20 T/yr for Sm, 92 ± 29 T/yr for Gd, 70 ± 17 T/yr for Dy, 35 ± 8 T/yr for Er, and 28 ± 7 T/yr for Yb. These results constitute the first estimate of dissolved REE fluxes from the Orinoco River to the Atlantic Ocean.

  18. Comparative study on rare earth elements from Flos Sophorae and Fructus Sophorae

    Institute of Scientific and Technical Information of China (English)

    LI Yumei; ZHONG Hao; LU Yuanqi

    2012-01-01

    Flos Sophorae and Fructus Sophorae are two kinds of traditional Chinese medicines.In this work,the two kinds of traditional Chinese medicines collected from eleven areas of Dezhou,were analyzed by inductively couple plasma-mass spectrometry (ICP-MS) to compare the content and distribution of 14 kinds of rare earth elements (REEs).The method was verified by analyzing GBW07605 certified reference material.The results showed that ICP-MS is an accurate,sensitive and reliable technique for determining REEs in traditional Chinese medicine.There were big differences in contents for REEs in Flos Sophorae and Fructus Sophorae from different areas.The contents of total REEs in Flos Sophorae samples from different areas ranged from 1.0785 to 2.2659 μg/g,while those in Fructus Sophorae from 0.6826 to 1.0527μg/g.The contents of total REEs in Flos Sophorae samples from different areas were obviously higher than those in Fructus Sophorae of the same area and there was big difference between various Flos Sophorae samples.Interestingly,the higher the content of total REEs in Flos Sophorae samples,the lower the content of total REEs in Fructus Sophorae samples of the same area.The plots of normalized dement concentration versus atomic number showed some characteristic distribution trends.The distribution trend of light REEs (La-Gd) was relatively flat except a positive Eu anomaly,however,that was steep and discrepant for heavy REEs (Tb-Lu).The results could provide a valuable reference for understanding the relationship between the crrative mechanism,pharmacology characteristics and their geological condition for the two traditional Chinese medicines investigated.

  19. ETAAS Determination of Some Trace Elements in Wine

    OpenAIRE

    Stafilov, T.; Cvetković, J.; Arpadjan, S.; Karadjova, I.

    2002-01-01

    Methods for trace elements determination in wine by electrothermal atomic absorption spectrometry (ETAAS) directly in untreated wines and in previously decomposed wines are given. The investigations on the atomization behaviour of the microelements in wine, on the reasons for strong wine matrix interferences, on the accuracy of the calibration procedures are presented. Appropriate procedures for preliminary separation and preconcentration of ultra trace elements from wine matrix are compared ...

  20. LiF - a spectroscopic method for rare earth elements identification

    Science.gov (United States)

    Fuchs, Margret; Gloaguen, Richard; Beyer, Jan; Jacob, Sandra; Heitmann, Johannes

    2016-04-01

    Laser-induced fluorescence (LiF) has a great potential for the exploration and identification of rare earth elements (REE) in natural environments. This spectroscopic technique can provide an efficient way to secure resource availability, while the economic and ecological costs are reduced. No time-consuming sample preparation and analysis is needed prior to decisions along the raw material processing chain. Such non-destructive approaches allow for a fast access to analytical results and hence, are the basis for an immediate adjustment of processing steps. The method uses the material-specific luminescence emissions that are induced by laser-stimulation of a certain wavelength. The distinct emission lines of REE make them well suited for the development of a LiF-based exploration technique. However, typical REE emission peaks known from the free elements may shift or be masked in natural materials due to their position in the crystal lattice, varying compositions of minerals or other natural conditions such as water content. The natural variability therefore, demands for comprehensive investigations of REE and their spectral characteristics in minerals. To identify those spectral information that are robust and unequivocal, we analyse spectra of REE standards measured in different matrix minerals including phosphates and fluorides. We use variable laser wavelengths from UV (325 nm) to green (532 nm) and a detection range from 340 nm to 1080 nm. Results show spectral characteristics that sort REE in three groups due to: no distinct emission lines, absorption features, distinct luminescence emission lines. Measured in different matrix minerals, we determine shifts for some of the spectral features and some disappear or decline in intensity. Changing the wavelength of the laser allows for a more selective stimulation of REE emissions, especially wavelengths longer than UV can reduce the unspecific emission of all luminescent components of a sample and thus enhance

  1. Enhanced phytoextraction of germanium and rare earth elements - a rhizosphere-based approach

    Science.gov (United States)

    Wiche, Oliver

    2016-04-01

    Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that have become an integral part of our modern high tech society. While most of these elements are not actually rare in terms of general amounts in the earth's crust, they are rarely found in sufficient abundances in single locations for their mining to be economically viable. The average concentration of Ge in soils is estimated at 1.6 μg g-1. The REEs comprise a group of 16 elements including La, the group of lanthanides and Y that are abundant in the earth crust with concentrations varying from 35 μg g-1 (La), 40 μg g-1 (Nd), 6 μg g-1 (Gd) and 3.5 μg g-1 (Er) to 0.5 μg g-1 in Tm. Thus, a promising chance to improve supply of these elements could be phytomining. Unfortunately, bioavailability of Ge and REEs in soils appears to be low, in particular in neutral or alkaline soils. A sequential dissolution analysis of 120 soil samples taken from the A-horizons of soils in the area of Freiberg (Saxony, Germany) revealed that only 0.2% of total Ge and about 0.5% of La, Nd, Gd and Er of bulk concentrations were easily accessible by leaching with NH4-acetate (pH 7). Most of the investigated elements were bound to Fe-/Mn-oxides and silicates and were therefore only poorly available for plant uptake. Here we report an environmentally friendly approach for enhanced phytoextraction of Ge and REEs from soils using mixed cultures of plant species with efficient mechanisms for the acquisition of nutrients in the rhizosphere. The rhizosphere is characterized as the zone in soil sourrounding a plant root that consists of a gradient in chemical, physical and biological soil properties driven by rhizodeposits like carboxylates and protons. Some species like white lupin (Lupinus albus) are able to excrete large amounts of organic acid anions(predominantly citrate and malate) and show a particularly high potential for the acidification of the rhizosphere. In our experiments, mixed cultures

  2. Effect of Rare Earth Elements Burning Loss on Microstructure and Properties in TbDyFe

    Directory of Open Access Journals (Sweden)

    DENG Zhong-hua

    2016-08-01

    Full Text Available In order to simulate low vacuum experimental environment,Tb0.27Dy0.73Fe1.91 alloy round bars were prepared through melting with Tb, Dy and Fe elements, directional solidification and heat treatment in low vacuum environment. The magnetostriction of the alloy rods was tested. The microstructures and the causes of defects in the alloy were investigated. The results indicate that under the low vacuum experimental environment, there are plenty of twin dendritic lamellar microstructures and ordinary twin microstructures are generated in alloy, among which the mechanical properties and "jump" effect of twin dendritic lamellar structures are good, while the ordinary twins are bad to the magnetostrictive property in the alloy. REFe2 and REFe3 coupling phase is the main phase in the matrix, the burning loss of rare earth elements lead variations in chemical composition, resulting coupling growth with REFe3 phase and REFe2 phase. The thermal stress and the burning loss of rare earth elements segregate at grain boundaries resulting in the presence of micro-cracks and micro-holes. These microstructures and defects generate bad impact on mechanical properties and magnetostriction of TbDyFe alloy rods.

  3. Neutron Activation Analysis of the Rare Earth Elements (REE) - With Emphasis on Geological Materials

    Science.gov (United States)

    Stosch, Heinz-Günter

    2016-08-01

    Neutron activation analysis (NAA) has been the analytical method of choice for rare earth element (REE) analysis from the early 1960s through the 1980s. At that time, irradiation facilitieswere widely available and fairly easily accessible. The development of high-resolution gamma-ray detectors in the mid-1960s eliminated, formany applications, the need for chemical separation of the REE from the matrix material, making NAA a reliable and effective analytical tool. While not as precise as isotopedilution mass spectrometry, NAA was competitive by being sensitive for the analysis of about half of the rare earths (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu). The development of inductively coupled plasma mass spectrometry since the 1980s, together with decommissioning of research reactors and the lack of installation of new ones in Europe and North America has led to the rapid decline of NAA.

  4. Oxygen Evolution at Nickel Hydroxide Films Co-deposited Light Rare Earth Elements

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Composite nickel hydroxide films were prepared by cathodic co-electrodeposition from metal nitrate solution and characterized by cyclic voltammetry in 1.0 mol/L KOH solution. The codeposited light rare earth elements were lanthanum, cerium, praseodymium and neodymium. The films were analyzed by spectrophotometry and optical transmission. The results of the cyclic voltammetry in 1.0 mol/L KOH solution showed that the current density for oxygen evolution at the film electrode was affected by the co-deposited rare earth metal ions in the film. About 20 mA/cm2 increase of current density for oxygen evolution was found when the film was obtained from the solution with cerium (7% v/v) and nickel (93% v/v) nitrate. The effects of galvanostatic cathodic current density for the film formation on the oxygen evolution at the film electrodes from the alkaline were discussed.

  5. Rare earth element geochemistry of shallow carbonate outcropping strata in Saudi Arabia: Application for depositional environments prediction

    Science.gov (United States)

    Eltom, Hassan A.; Abdullatif, Osman M.; Makkawi, Mohammed H.; Eltoum, Isam-Eldin A.

    2017-03-01

    The interpretation of depositional environments provides important information to understand facies distribution and geometry. The classical approach to interpret depositional environments principally relies on the analysis of lithofacies, biofacies and stratigraphic data, among others. An alternative method, based on geochemical data (chemical element data), is advantageous because it can simply, reproducibly and efficiently interpret and refine the interpretation of the depositional environment of carbonate strata. Here we geochemically analyze and statistically model carbonate samples (n = 156) from seven sections of the Arab-D reservoir outcrop analog of central Saudi Arabia, to determine whether the elemental signatures (major, trace and rare earth elements [REEs]) can be effectively used to predict depositional environments. We find that lithofacies associations of the studied outcrop (peritidal to open marine depositional environments) possess altered REE signatures, and that this trend increases stratigraphically from bottom-to-top, which corresponds to an upward shallowing of depositional environments. The relationship between REEs and major, minor and trace elements indicates that contamination by detrital materials is the principal source of REEs, whereas redox condition, marine and diagenetic processes have minimal impact on the relative distribution of REEs in the lithofacies. In a statistical model (factor analysis and logistic regression), REEs, major and trace elements cluster together and serve as markers to differentiate between peritidal and open marine facies and to differentiate between intertidal and subtidal lithofacies within the peritidal facies. The results indicate that statistical modelling of the elemental composition of carbonate strata can be used as a quantitative method to predict depositional environments and regional paleogeography. The significance of this study lies in offering new assessments of the relationships between

  6. 电感耦合等离子体质谱法测定成人全血、膳食、尿样和粪便中轻稀土元素及相关性分析%Determination and Correlation Analysis of Light Rare Earth Elements in Human's Blood, Food, Urine and Feces by ICP-MS

    Institute of Scientific and Technical Information of China (English)

    解清; 欧阳荔; 王京宇

    2012-01-01

    The light rare earth element(REEs) contents in the blood, food, urine and feces of human bodies were determined by ICP-MS. All the samples were obtained from healthy adult men who lived in the four areas (Chengdu, Taiyuan, Tianjin and Zhenjiang) with different dietary patterns in China. All the individual samples were digested by mixed acid and determined by ICP-MS. Descending order of the light REEs concentrations were in feces, food, blood and urine. There was no significant difference on concentrations of the samples among the four cities. And the distribution pattern of the light REEs in blood, food and feces were similar to that in the nature, while the Sm in the urine was abnormal(REEs).%为了全面分析人体内稀土元素通过膳食摄取、血液蓄积、尿粪排出之间的关系,应用等离子体质谱法测定成人全血、膳食、尿样及粪便中轻稀土元素含量,比较4个不同膳食类型的城市人体摄取轻稀土元素的差异,并对相同个体的膳食、全血、尿样及粪便中的轻稀土元素进行相关性分析.分别在天津、成都、镇江、太原4个城市采集30名健康成年男性的全血、72 h膳食、72 h尿样和72 h粪便,膳食、尿样和粪便做冷冻干燥处理后经湿法消解,并采用电感耦合等离子体质谱法测定轻稀土元素含量.4城市采样人体中的稀土含量由高至低依次为粪便、膳食、血液,尿液,但上述样品在4城市人群之间没有显著性差异;同体血、膳食和粪便中轻稀土元素的分布特征符合自然分布特征规律,但尿样中的Sm存在正异常.

  7. Behavior of rare earth elements in coexisting manganese macronodules, micronodules, and sediments from the central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Colley, S.; Higgs, N.C.

    Associated manganese macronodules, micronodules, and sediments from the Central Indian Basin (CIB) were analyzed for major, trace, and rare earth elements (REE) to understand REE carrier phases and their fractionation pattern among three...

  8. Investigation of recovery and recycling of rare earth elements from waste fluorescent lamp phosphors

    Science.gov (United States)

    Eduafo, Patrick Max

    Characterization techniques and experimental measurements were used to evaluate a process for recycling rare earth elements (REEs) from spent fluorescent lamp phosphors. QEMSCAN analysis revealed that over 60% of the rare earth bearing minerals was less than 10 microm. A representative sample of the as-received feed contained 14.59 wt% total rare earth elements (TREE) and upon sieving to below 75 microm, the grade increased to 19.60 wt% REE with 98.75% recovery. Based on experimental work, a new process for extracting the chief REEs from end of life fluorescent lamps has been developed. The proposed flowsheet employs a three-stage leaching and precipitation process for selective extraction and recovery of the REEs. Hydrochloric acid was used as lixiviant in batch leach experiments on the phosphor powder. The maximum extraction obtained was 100% for both yttrium and europium under the following leaching conditions: 2.5 M HCl, 70°C, 1 hour, 180 g/L and 600 rpm. However, the solubility of cerium, lanthanum and terbium remained low at these conditions. Kinetic data of the leaching of yttrium and europium showed best fit to the logarithmic rate expression of the empirical model of leaching. Activation energy was calculated to be 77.49 kJ/mol for Y and 72.75 kJ/mol for Eu in the temperature range of 298 to 343 K. Precipitation tests demonstrate that at least 50% excess the stoichiometric amount of oxalic acid is needed to recover yttrium and europium efficiently to produce a pure (Y, Eu) mixed oxide. Total recovery of the REEs was achieved even at very low pH or without any base added. Over 99% pure mixed rare earth oxide at 99% recovery has been attained. An economic assessment of the developed process using operating and capital cost have be undertaken and based on the analysis of the three economic scenarios, two are economic and one is non-economic.

  9. Fast preconcentration of trace rare earth elements from environmental samples by di(2-ethylhexyl)phosphoric acid grafted magnetic nanoparticles followed by inductively coupled plasma mass spectrometry detection

    Science.gov (United States)

    Yan, Ping; He, Man; Chen, Beibei; Hu, Bin

    2017-10-01

    In this work, di(2-ethylhexyl)phosphoric acid (P204) grafted magnetic nanoparticles were synthesized by fabricating P204 onto Fe3O4@TiO2 nanoparticles based on Lewis acid-base interaction between Ti and phosphate group under weakly acidic condition. The prepared Fe3O4@TiO2@P204 nanoparticles exhibited excellent selectivity for rare earth elements, and good anti-interference ability. Based on it, a method of magnetic solid phase extraction (MSPE) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for fast preconcentration and determination of trace rare earth elements in environmental samples. Under the optimal conditions, the detection limits of rare earth elements were in the range of 0.01 (Tm)-0.12 (Nd) ng L- 1 with an enrichment factor of 100-fold, and the relative standard deviations ranged from 4.9 (Pr) to 10.7% (Er). The proposed method was successfully applied to the determination of rare earth elements in environmental samples, including river water, lake water, seawater and sediment.

  10. New Rare Earth Element Abundance Distributions for the Sun and Five r-Process-Rich Very Metal-Poor Stars

    CERN Document Server

    Sneden, Christopher; Cowan, John J; Ivans, Inese I; Hartog, Elizabeth A Den

    2009-01-01

    We have derived new abundances of the rare-earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally-consistent Ba, rare-earth, and Hf (56<= Z <= 72) element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.

  11. Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    Science.gov (United States)

    Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.

    2015-01-01

    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.

  12. Mining and Exploitation of Rare Earth Elements in Africa as an Engagement Strategy in US Africa Command

    Science.gov (United States)

    2011-06-17

    extraction difficult and costly, since they pose the risk of radiation leaks.”8 “In the few cases in which the rare-earth ion can be oxidized or... solvents are then applied to the bastnaesite to separate out the rare earths. Once separated, they are reprocessed to increase the purity level...material was the rare earth element flourocarbonate bastnaesite.29 The discouraged miners moved on. The Molybdenum Corporation laid claim to the

  13. Mechanism of interaction relation between the rare-earth element Ce and impurity elements Pb and Bi in Ag-based filler metal

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can be easily produced between these three elements in the filler metal, which greatly limited the formation of the isolated phase Pb or Bi and also eliminated the bad effect of impurity elements Pb and Bi on the spreading property of Ag-based filler metal. The metallurgical and quantum-mechanical bond formation analysis show that a strong chemical affinity was existed between the rare-earth element Ce and impurity elements Pb and Bi, which was proved by the XRD analysis results.

  14. TO DETERMINATION OF DAMPING COEFFICIENT OF VERTICAL DEAD STRESS OF EARTH DAMS ON A DEPTH

    Directory of Open Access Journals (Sweden)

    NESTEROVA E. V.

    2015-12-01

    Full Text Available Raising of problem. At the problem solving about determination of deflected mode (DM of build constructions by the finite element method (FEM on accuracy of solving substantial influence is rendered by the sizes of effective area of foundation. It is suggested to develop the criteria of determining the size of effective area. Presently at the calculation of vertical fallouts of earth dams with the trapeziform section (fig. 1, is assumed that the epure of contact pressures has a rectangular form [2, 6]. Thus actual epure of contact pressures on the sole of dam has form of trapezoid (fig. 1. Thus, there is a disparity between actual and accepted in the normative documents in the contact pressures on the sole of earth dams. Purpose. At writing of this article we were pursue a purpose to calculate the value of damping coefficient of vertical dead stress on the depth of foundation, trapeziform loading determined and to foundation attached. About it has been already written not a bit in scientific literature [2; 5; 6; 7; 13]. In our view, for determination of vertical fallouts of foundation of earth dams it is necessary to use the formula of D-1 DBN [7], corrected in it the damping coefficient of vertical stress on a depth, conditioned of dam weight, that is to calculate a trapezoidal form of environmental stress (fig. 1. Conclusion. The damping coefficients of vertical stress calculated by us on a depth (tablas. 1 allow more exactly to determine their values, than coefficients, presented in normative documents [7]. This is caused by more complete, than it takes a place in normative documents, in the light of configuration of the environmental stress.

  15. Distribution and fractionation of rare earth elements and Yttrium in suspended and bottom sediments of the Kali estuary, western India

    Digital Repository Service at National Institute of Oceanography (India)

    Suja, S.; Fernandes, L.L.; Rao, V.P.

    around the Yellow Sea: implications for sediment provenance. Geo-Marine Lett 29: 291-300. Yang SY, Jung HS, Choi MS, Li CX (2002) The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth Planet Sci...

  16. Thulium anomalies and rare earth element patterns in meteorites and Earth: Nebular fractionation and the nugget effect

    CERN Document Server

    Dauphas, N

    2015-01-01

    This study reports the bulk rare earth element (REEs, La-Lu) compositions of 41 chondrites, including 32 falls and 9 finds from carbonaceous (CI, CM, CO and CV), enstatite (EH and EL) and ordinary (H, L and LL) groups, as well as 2 enstatite achondrites (aubrite). The CI-chondrite-normalized REE patterns and Eu anomalies in ordinary and enstatite chondrites show more scatter in more metamorphosed than in unequilibrated chondrites. This is due to parent-body redistribution of the REEs in various carrier phases during metamorphism. The dispersion in REE patterns of equilibrated ordinary chondrites is explained by the nugget effect associated with concentration of REEs in minor phosphate grains. Terrestrial rocks and samples from ordinary and enstatite chondrites display negative Tm anomalies of ~-4.5 % relative to ca chondrites. In contrast, CM, CO and CV (except Allende) show no significant Tm anomalies. Allende CV chondrite shows large excess Tm (~+10 %). These anomalies are similar to those found in group II...

  17. Impact Wear Properties of Metal-Plastic Multilayer Composites Filled with Glass Fiber Treated with Rare Earth Element Surface Modifier

    Institute of Scientific and Technical Information of China (English)

    程先华; 薛玉君

    2001-01-01

    The friction and wear properties of metal-plastic multilayer composites filled with glass fiber, which is treated with rare earth element surface modifier, under impact load and dry friction conditions were investigated. Experimental results show that the metal-plastic multilayer composite filled with glass fiber exhibits excellent friction and impact wear properties when using rare earth elements as surface modifier for the surface treatment of glass fiber.

  18. Separation and Enrichment of Rare Earth Elements in Phosphorite in Xinhua, Zhijin, Guizhou

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The phosphorite ores-deposits rich in rare earth elements(REE) in Zhijin, Xinhua, Guizhuo occurs in the early Cambrian Meishucun and at the bottom part of Qiongzhusi stage (the upper layer of phosphorites), belonging to Yangzi stratum section. The living creature scraps was proved existent in dolomitic-phosphorites by experiments, The REE could be extracted to provide the worthy data for the further using. Adopting the HNO3 to extract REE, through the ion exchange method, the REE recovery rate could be reached 85.44%, having certain reference value.

  19. Luminescence and structural properties of RbGdS2 compounds doped by rare earth elements

    Science.gov (United States)

    Jarý, V.; Havlák, L.; Bárta, J.; Mihóková, E.; Nikl, M.

    2013-04-01

    Rare earth elements (Pr, Ce) doped ternary sulfides of formula RbGd1-xRExS2 were synthesized in the form of crystalline hexagonal platelets by chemical reaction under the flow of hydrogen sulfide. The X-ray powder diffraction detected only a single crystalline phase of rhombohedral lattice system. Optical properties of studied systems are investigated by methods of time-resolved luminescence spectroscopy. Thermal stability of the Pr3+ emission is demonstrated. Application potential in the white light-emitting diode solid state lighting or X-ray phosphors is discussed.

  20. Geochemical Characteristics and Behaviors of Rare Earth Elements in Process of Vertisol Development

    Institute of Scientific and Technical Information of China (English)

    黄成敏; 王成善

    2004-01-01

    Vertisol developed on argillaceous rocks has its special pedogenic processes and properties, and formed some secondary nodules. In study area, contents of rare earth elements (REE) are significantly different in different sedimentary rocks due to varied contents of clay fraction and clay mineral composition, etc. Under the dry and hot climate, REEs were less differentiated than their parent sedimentary rocks. However, REEs in secondary nodules formed in pedogenic process display their specific behaviors. They are more concentrated in iron concretions, the content of heavy REEs increases relatively, and positive Ce-anomaly appeares. But, negative Ce-anomaly was found in calcium concretions, while normal Ce content in parent rocks and vertisol.

  1. Thermalization of different alkali and alkali-earth elements at the TRI{mu}P facility

    Energy Technology Data Exchange (ETDEWEB)

    Shidling, P.D., E-mail: P.Shidling@rug.n [Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands); Giri, G.S.; Hoek, D.J. van der; Jungmann, K.; Kruithof, W.L.; Onderwater, C.J.G.; Santra, B.; Sohani, M.; Versolato, O.O.; Willmann, L.; Wilschut, H.W. [Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands)

    2010-10-01

    Radioactive isotopes produced by the in-flight method are converted into low-energy ions with a thermal ionizer (TI) ion catcher, the operation of which is based on a hot cavity ion source. The extraction efficiency of the TI for different alkali and alkali-earth elements has been studied and compared to a model based on diffusion only. The model describes the stationary limit, i.e. the extraction efficiency, as well as the dynamic response of the TI output when the primary beam is switched on and off.

  2. Effect of Anion on Adsorption of Rare Earth Elements on Kaolinite

    Institute of Scientific and Technical Information of China (English)

    Wan Yingxin; Liu Jianjun

    2007-01-01

    For a better understanding the adsorption of rare earth elements (REEs) on minerals and its controlling factors, adsorption experiments were performed with kaolin in a matrix of various concentration of anion (Cl-, ClO4-, SO42-) in the pH 6.5. The adsorption of REEs onto the kaolin increase with increasing anion concentration, especially in the presence of SO42-, which is ascribe to the Na+ mass effect and anion complexation. furthermore, the heavy REEs are more adsorbed onto kaolin in presence of higher concentration of anion, especially for Cl- and SO42-, presumably due to the difference of anion complexation with light REE and heavy REEs.

  3. The rare-earth elements: vital to modern technologies and lifestyles

    Science.gov (United States)

    Van Gosen, Bradley S.; Verplanck, Philip L.; Long, Keith R.; Gambogi, Joseph; Seal, Robert R., II

    2014-01-01

    Until recently, the rare-earth elements (REEs) were familiar to a relatively small number of people, such as chemists, geologists, specialized materials scientists, and engineers. In the 21st century, the REEs have gained visibility through many media outlets because of (1) the public has recognized the critical, specialized properties that REEs contribute to modern technology, as well as (2) China's dominance in production and supply of the REEs and (3) international dependence on China for the majority of the world's REE supply.

  4. Recycling rare earth elements from industrial wastewater with flowerlike nano-Mg(OH)(2).

    Science.gov (United States)

    Li, Chaoran; Zhuang, Zanyong; Huang, Feng; Wu, Zhicheng; Hong, Yangping; Lin, Zhang

    2013-10-09

    Treatment of wastewater containing low-concentration yet highly-expensive rare earth elements (REEs) is one of the vital issues in the REEs separation and refining industry. In this work, the interaction and related mechanism between self-supported flowerlike nano-Mg(OH)2 and low-concentration REEs wastewater were investigated. More than 99% REEs were successfully taken up by nano-Mg(OH)2. Further analysis revealed that the REEs could be collected on the surface of Mg(OH)2 as metal hydroxide nanoparticles (recycling of valuable REEs in practical industrial applications.

  5. Characterization of the electrical behaviour of rare earth elements during the upgrading of monazite

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, R M [Radiation Physics Department, National Center for Radiation Research and Technology NCRRT, PO Box 29, Nasr City, Cairo (Egypt); Fawzy, Y H A [Radiation Physics Department, National Center for Radiation Research and Technology NCRRT, PO Box 29, Nasr City, Cairo (Egypt); Ashry, H A [Radiation Physics Department, National Center for Radiation Research and Technology NCRRT, PO Box 29, Nasr City, Cairo (Egypt); Soliman, F A S [Nuclear Materials Authority, El-Horrya, PO Box 2404, Heliopolis-11361, Cairo (Egypt)

    2004-03-07

    Electrical properties of rare earth elements (REEs) in some geological materials were characterized during the upgrading of monazite from Egyptian black sand. It has been found that there was a significant relationship between concentrations of REEs and dc conductivity. Also, dielectric constant, dielectric loss, polarization, relaxation time and resonance frequency of samples containing REEs, were measured at a frequency range up to 1 MHz. From these measurements, it has been found that the values of electrical conductivity, resonance frequency and dielectric polarization are inversely proportional to the concentration of REEs. For most relations, the correlation coefficients were found to be better than 99%.

  6. Extraction of rare earth elements from hydrate-phosphate precipitates of apatite processing

    Science.gov (United States)

    Andropov, M. O.; Anufrieva, A. V.; Buynovskiy, A. S.; Makaseev, Y. N.; Mazov, I. N.; Nefedov, R. A.; Sachkov, V. I.; Stepanova, O. B.; Valkov, AV

    2016-01-01

    The features of extraction of rare earth elements (REE) were considered from hydrate-phosphate precipitates of REE of apatite processing by nitric acid technology. The preliminary purification of nitrate solution of REE from impurities of titanium, aluminum, iron, uranium and thorium was suggested to obtain stable solutions not forming precipitates. Washing the extract was recommended with the evaporated reextract that allows to obtain directly on the cascade of REE extraction the concentrated solutions suitable for the separation into groups by the extraction method. Technical decisions were suggested for the separation of REE in groups without the use of salting-out agent.

  7. Effect of Rare Earth Elements on Thermal Fatigue Property of Low Chromium Semi-Steel

    Institute of Scientific and Technical Information of China (English)

    常立民; 刘建华; 张瑞军; 邵利; 于升学; 谌岩

    2003-01-01

    The effect of rare earth elements on eutectic carbide′s morphology of low chromium semi-steel in as-cast state and after heat treatment was investigated, and accordingly, the thermal fatigue property of this material was studied. The results show that RE can improve the eutectic carbide′s morphology, inhibit the formation and propagation of thermal fatigue cracks, therefore, promote the thermal fatigue property, which is more noticeable in case of the RE modification in combination with heat treatment. The optimal thermal fatigue property can be obtained when treated with 0.2% RE modification as well as normalization at 950 ℃ for 3 h.

  8. New neutron-deficient isotopes of barium and rare-earth elements

    CERN Document Server

    Bogdanov, D D; Karnaukhov, V A; Petrov, L A; Plochocki, A; Subbotin, V G; Voboril, J

    1976-01-01

    The authors present an investigation of the short-lived neutron- deficient isotopes of barium and rare-earth elements. By using the BEMS-2 isotope separator on a heavy ion beam, 19 new isotopes were produced with mass numbers ranging from 117 to 138. Five of these (/sup 117/Ba, /sup 129,131/Nd and /sup 133,135/Sm) turned out to be delayed proton emitters. The beta -decay probabilities for the new isotopes have been analyzed in terms of the beta -strength function. An analysis of the proton spectrum shape has been performed using the statistical model for delayed proton emission.

  9. Influence of rare earth elements (Nd, Sm, Gd) on the physicochemical properties of ges crystal

    Science.gov (United States)

    Madatov, R. S.; Alekperov, A. S.; Magerramova, Dzh. A.

    2015-11-01

    Layered semiconductors (including GeS), which are widely used in modern electronics, are of great interest for researchers. New GeS-based devices have been developed for holographic recording, optical processing, and storage of information. In the last few years, American scientists have developed a unique GeS-based device that makes it possible to accumulate an immense amount of solar energy. The introduction of rare earth elements (REEs) facilitates the healing of metal and chalcogenide vacancies, removes polytypism, and enhances interlayer interaction.

  10. Electrodeposition Techniques for the Preparation of Beta-Sprectroscopy Sources of Rare-Earth Elements

    DEFF Research Database (Denmark)

    Hansen, P. Gregers; Høgh, J.; Nielsen, H. L.

    1964-01-01

    Thin, uniform radioactive deposits of rare earths and related elements can be prepared by cathodic electrodeposition of their hydroxides. The main theoretical and experimental features of this process are reviewed and plating cell design and the choice of conditions are described together...... with the associated radio-chemical methods. The use of copper-backed nickel films is shown to allow the preparation of beta sources on quite thin (down to 45 μg cm−2) backings, if the copper layer is etched selectively after the radioactivity has been plated onto the nickel....

  11. Analysis of Rare Earth Elements in Rock and Mineral Samples by ICP-MS and LA-ICP-MS

    Science.gov (United States)

    Sindern, Sven

    2017-02-01

    The group of the rare earth elements (REEs) serves as valuable indicator of numerous geological processes such as magma formation or fluid-rock interaction. The decay systems of the radioactive REE isotopes 138La, 147Sm and 176Lu are used for geochronometric dating of a range of events, starting from first steps of planetary formation to younger steps of geodynamic development. Thus, the abundance of all REEs occurring in a large range of concentrations as well as precise isotope ratios must be analysed in different geomaterials. The inductively coupled plasma (ICP) ion source and various types of mass spectrometers (MS) represent the basis to fulfil the analytical requirements of geoscientific studies. Today, ICP-quadrupole MS and ICP-sector field MS (SFMS) with a single detector or multiple ion collection (MC-ICP-MS) are standard instruments for REE analyses in the geosciences. Due to the need for in situ analysis, laser ablation (LA)-ICP-MS has become an important trace element microprobe technique, which is widely applied for determination of REE concentrations and isotope compositions in geoscientific laboratories. The quality of concentration analysis or isotope ratio determination of REEs by ICP-MS and LA-ICP-MS is affected by many parameters. Most significant are interferences caused by polyatomic oxide and hydroxide ion species formed in the plasma as well as fractionation effects leading to non-stoichiometric behaviour during element determination or to biased isotope ratio measurements. Laser-induced fractionation and isobaric interferences have to be considered as additional effects for LA-ICP-MS. As analyte elements and matrix are unseparated, mineral standards matching the matrix of samples are a prerequisite for accurate and precise REE concentration and isotope ratio determination. Application of fs lasers instead of the more common ns lasers in LA-ICP-MS systems turns out to be a significant step to reduce laser-induced fractionation and to

  12. Alkali and alkaline earth element geochemistry of Los Humeros Caldera, Puebla, Mexico

    Science.gov (United States)

    Verma, Surendra P.

    1984-03-01

    Results of the measurements of alkali (K, Rb and Cs) and alkaline earth (Ba and Sr) elements on seven pre-caldera and twenty post-caldera samples of Los Humeros volcanics (Pliocene to Recent) are described. These data are interpreted in terms of the known solid-liquid partition coefficients. It appears that fractional crystallization is a dominant petrogenetic process and is controlled by the observed modal phases, namely plagioclase, olivine and clinopyroxene (in decreasing importance), and perhaps, in addition, biotite and titanomagnetite in the later stages of the differentiation sequence. The available major element chemistry and mass-balance calculations support these conclusions. Sr and Nd isotopic data further suggest that these magmas were generated in the underlying mantle, fractionated in a shallow-level magma chamber and underwent very insignificant sialic contamination before eruption.

  13. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements

    Energy Technology Data Exchange (ETDEWEB)

    Branquinho, Cristina [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande C2, Piso 4, 1749-016 Lisbon (Portugal) and Universidade Atlantica, Antiga Fabrica da Polvora de Barcarena, 2745-615 Barcarena (Portugal)]. E-mail: cmbranquinho@fc.ul.pt; Serrano, Helena Cristina [Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal); Pinto, Manuel Joao [Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal); Martins-Loucao, Maria Amelia [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande C2, Piso 4, 1749-016 Lisbon (Portugal); Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal)

    2007-03-15

    The several established criteria to define a hyperaccumulator plant were applied to a rare and endangered species, Plantago almogravensis, and to the 3rd most abundant element in the earth crust, Al. Using the most common criteria, P. almogravensis undoubtedly is an Al hyperaccumulator plant. If the recent proposed requirements were considered, most of them matching those for a plant to be used in phytoextraction, it can only be considered an unusual accumulator of Al. A discussion is made concerning the several criteria of a hyperaccumulator plant in order to include rare and endemic ones and abundant elements. In ecological terms, the enrichment in Al and Fe observed may account for the differences in the vegetation pattern. Due to the rarity and endangered nature of this plant, the contribution of this work is also relevant for the ecological understanding and the development of conservation options of this endemic species. - Revisiting plant hyperaccumulation criteria.

  14. Rationally designed mineralization for selective recovery of the rare earth elements

    Science.gov (United States)

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-05-01

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ~6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.

  15. Effects of rare earth elements and REE-binding proteins on physiological responses in plants.

    Science.gov (United States)

    Liu, Dongwu; Wang, Xue; Chen, Zhiwei

    2012-02-01

    Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.

  16. Leaching of Light Rare Earth Elements from Sichuan Bastnaesite: A Facile Process to Leach Trivalent Rare Earth Elements Selectively from Tetravalent Cerium

    Science.gov (United States)

    Shen, Yueyue; Jiang, Ying; Qiu, Xianying; Zhao, Shilin

    2017-07-01

    The effects of the nitric acid concentration, leaching time, leaching temperature, and solid-to-liquid ratio on leaching efficiency were examined. From those results, a facile process for the selective leaching of trivalent rare earth elements (RE(III)) from tetravalent cerium (Ce(IV)) was proposed. The roasted bastnaesite was used to leach 34.87% of RE(III) and 2.15% of Ce(IV) at 60°C for 0.5 h with an acid concentration of 0.5 mol/L. This selective leaching process can be described by the shrinking-core model that follows the kinetic model 1 - 2/3α - (1 - α)2/3. Subsequently, the leached slag was hydrothermally treated and followed by thorough leaching with 4.0-mol/L nitric acid. Furthermore, the specific surface area of the final leached slag is 57.7 m2/g, which is approximately 650 times higher than that of raw ore. Finally, selective leaching of RE(III) (>90%) was achieved without using an organic solvent for extraction, whereas lower value Ce(IV)was presented in the leached slag (>92%).

  17. New trace element determinations in the fingernails of ALS patients

    Energy Technology Data Exchange (ETDEWEB)

    Van Dalsem, D.J.; Robinson, L. [Oak Ridge National Lab., TN (United States); Ehmann, W.D. [Kentucky Univ., Lexington, KY (United States). Dept. of Chemistry

    1996-02-01

    ORNL`s High Flux Isotope Reactor was used in a neutron activation analysis experiment to determine selected elemental composition of fingernails from patients afflicted with amyotrophic lateral sclerosis (AL). While no statistical difference were found in aluminium a suggestive difference was observed for copper concentrations.

  18. An electrochemical sensor for determining elemental iodine in gas media

    Energy Technology Data Exchange (ETDEWEB)

    Goffman, V.G.; Shaimerdinov, B.U.; Kotelkin, I.M. [Institute of New Chemical Problems, Moscow (Russian Federation)] [and others

    1993-12-01

    The possibility of using solid-electrolyte Ag, AgI/AgI/Au cells as sensors for determining the concentration of elemental iodine in gas media is investigated. It is established that the sensor parameters are independent of oxygen content and radiation dose at different relative humidities.

  19. Notes on Contributions to the Science of Rare Earth Element Enrichment in Coal and Coal Combustion Byproducts

    Directory of Open Access Journals (Sweden)

    James C. Hower

    2016-03-01

    Full Text Available Coal and coal combustion byproducts can have significant concentrations of lanthanides (rare earth elements. Rare earths are vital in the production of modern electronics and optics, among other uses. Enrichment in coals may have been a function of a number of processes, with contributions from volcanic ash falls being among the most significant mechanisms. In this paper, we discuss some of the important coal-based deposits in China and the US and critique classification systems used to evaluate the relative value of the rare earth concentrations and the distribution of the elements within the coals and coal combustion byproducts.

  20. Seawater rare-earth element patterns preserved in apatite of Pennsylvanian conodonts?

    Science.gov (United States)

    Bright, Camomilia A.; Cruse, Anna M.; Lyons, Timothy W.; MacLeod, Kenneth G.; Glascock, Michael D.; Ethington, Raymond L.

    2009-03-01

    Past workers have used rare-earth element patterns recorded in biogenic apatite as proxies for original seawater chemistry. To explore the potency of this approach, we analyzed Pennsylvanian conodonts from limestones, gray shales, and black shales of the Fort Scott and Pawnee formations (Desmoinesian) and Swope and Dennis formations (Missourian) in Kansas, Missouri, and Iowa, U.S.A. Analysis of individual platform conodonts from seven taxa using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed a consistent enrichment in the middle rare-earth elements (MREE). Analogous MREE enrichment has been observed in authigenic apatite and bulk samples of phosphate-rich black shales from the same formations. Importantly, however, phosphate-depleted shales intimately associated with the P-rich intervals are relatively depleted in MREE. These antithetic patterns argue convincingly for secondary migration from the bulk sediment into the phosphate, and the extent of MREE enrichment in the conodonts is correlated positively with the total REE content. MREE enrichment in conodonts does not vary systematically as a function of lithology, stratigraphic level, conodont genus, geographic location, or with independent estimates of paleoredox conditions in the bottom waters. Collectively, these results argue for postmortem (diagenetic) REE uptake resulting in a pronounced (and progressive) MREE enrichment. Any cerium anomalies, if initially present, were masked by diagenetic uptake of REE. Paleoenvironmental interpretations of conodont REE, particularly for samples exhibiting MREE enrichment, should therefore be viewed with caution.

  1. The Suppression Effect of Light Rare Earth Elements on Proliferation of Two Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    JIYUN-JING; XIAOBAI; 等

    2000-01-01

    To study the suppression effect of light rare earth elements(RE) on proliferation of two cancer cell lines.Two cancer cell lines PAMC82 and K562 were used to examine their colony-forming ability in soft agar,microtubule structure,calmodulin levels and regulation of smoe gene expressions y Northern blot analysis with and without treatment by RE.The results showed that on soft agar culture the colony-forming ability of human gastric cancer cell line PAMC82 treated by RE chloride decreased and the PAMC82 cell microtubule abnormal structure became normal.The calmodulin (CaM) levels decreased in human leukemia cells(k562) treated with cerium chloride and neodymium chloride.The Northern blot analysis revealed marked up-regulation of p53,p16(MTS1),p21(WAF1) gene expressions in PAMC82 cells treated with lanthanum chloride and cerium chloride,as compared to control PAMC82 cells,The light rare earth elements studied have certain suppression effects on proliferation of cancer cells,This effect might be realted to the decrease of calmodulin and up-regulationg of smoe gene expressions in cancer cells.

  2. The Suppression Effect of Light Rare Earth Elements on Proliferation of Two Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the suppression effect of light rare earth elements (RE) on proliferation of two cancer cell lines. Two cancer cell lines PAMC82 and K562 were used to examine their colony-forming ability in soft agar, microtubule structure, calmodulin levels and regulation of some gene expressions by Northern blot analysis with and without treatment by RE. The results showed that on soft agar culture the colony-forming ability of human gastric cancer cell line PAMC82 treated by RE chloride decreased and the PAMC82 cell microtubule abnormal structure became normal. The calmodulin (CaM) levels decreased in human leukemia cells (K562) treated with cerium chloride and neodymium chloride. The Northern blot analysis revealed marked up-regulation of p53, p16(MTS1), p21(WAF1) gene expressions in PAMC82 cells treated with lanthanum chloride and cerium chloride, as compared to control PAMC82 cells. The light rare earth elements studied have certain suppression effects on proliferation of cancer cells. This effect might be related to the decrease of calmodulin and up-regulation of some gene expressions in cancer cells.

  3. Sources of Extraterrestrial Rare Earth Elements:To the Moon and Beyond

    Science.gov (United States)

    McLeod, C. L.; Krekeler, M. P. S.

    2017-08-01

    The resource budget of Earth is limited. Rare-earth elements (REEs) are used across the world by society on a daily basis yet several of these elements have up to 3% of the PKT. Other lunar REE-bearing lunar phases include monazite, yittrobetafite (up to 94,500 ppm yttrium), and tranquillityite (up to 4.6 wt % yttrium, up to 0.25 wt % neodymium), however, lunar sample REE abundances are low compared to terrestrial ores. At present, there is no geological, mineralogical, or chemical evidence to support REEs being present on the Moon in concentrations that would permit their classification as ores. However, the PKT region has not yet been mapped at high resolution, and certainly has the potential to yield higher REE concentrations at local scales (date, constituting <0.6% of the total sample. Nonetheless, they dominate a samples REE budget with their abundances typically 1-2 orders of magnitude enriched relative to their host rock. As with the Moon, though phases which host REEs have been identified, no extraterrestrial REE resource, or ore, has been identified yet. At present extraterrestrial materials are therefore not suitable REE-mining targets. However, they are host to other resources that will likely be fundamental to the future of space exploration and support the development of in situ resource utilization, for example: metals (Fe, Al, Mg, PGEs) and water.

  4. Analysis of trace rare earth elements in misch metal by means of ITP-PIXE (isotachophoresis - Particle Induced X-ray Emission) method

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian-Ying; Hirokawa, Takeshi; Nishiyama, Fumitaka; Kimura, Goji; Kiso, Yoshiyuki; Ito, Kazuaki; Shoto, Eiji [Hiroshima Univ., Higashi-Hiroshima (Japan). Faculty of Engineering

    1993-12-31

    A misch metal, an alloy of light rare earth elements, was analyzed by a new coupled analytical method, ITP-PIXE (isotachophoresis - Particle Induced X-ray Emission): The sample solution containing ca.1 mg misch metal was separated and fractionated by the use of a preparative isotachophoretic analyzer. The dropwise fractions containing nanomole rare earth elements were analyzed off-line by PIXE. The matrix effect in X-ray measurement was reduced by the isotachophoretic removing of the dominant lanthanoids and preconcentration of the trace elements of interest. Consequently the minor elements, Sm, Gd, Tb, Dy, Ho, Er, Yb and Y could be determined accurately. The most trace element found was Yb (4ppm, 4ng in 1mg sample). The good accuracy of ITP-PIXE method was also demonstrated for several model samples of lanthanoids, where La was the dominant element and the thirteen lanthanoids were the minor elements. The ratio was varied from 500:1 to 50000:1. Even in the case of 50000:1, ca.10% accuracy was achieved for each minor element except for Sm(23%), Gd(17%) and Yb(18%). The analytical results by ITP-PIXE were compared with those by means of ICP-AES (Inductively Coupled Plasma - Atomic Emission Spectrometry). (author).

  5. The History and Use of Our Earth's Chemical Elements: A Reference Guide (by Robert E. Krebs)

    Science.gov (United States)

    Bracken, Reviewed By Jeffrey D.

    1999-04-01

    Greenwood Press: Westport, CT, 1998. 282 pp + 25 pp glossary + 37 pp index. 15.9 x 24.1 cm. ISBN 0-313-30123-9. $39.95. This book is an excellent resource for chemical educators at the high school and college levels. The format of the text is consistent and the writing style is clear and concise, making it ideally suited for student use also. The first three chapters serve to introduce the reader to a brief history of chemistry, early models of the atom, and the development of the periodic table. Names of the contributing scientists are mentioned whenever necessary, but the overall purpose of these introductory chapters is simply to lay a foundation for the subsequent seven chapters. A complete glossary of important scientific terms mentioned in the text should allow beginning students to use this book without feeling overwhelmed. Each entry for the 112 elements contains the following information: elemental symbol, atomic number, period, common valence, atomic weight, natural state, common isotopes, properties, characteristics, abundance, natural sources, history, common uses and compounds, and safety hazards. This information is well organized, with clear headings and separate sections making the book extremely user-friendly. Readers can easily obtain the information they desire without having to skim the full entry for a chosen element. One very nice feature of this book is that the elements entries are arranged by their locations in the periodic table. For example, chapter 4 contains the alkali metals and alkaline earth metals. This organizational scheme allows one to quickly see the patterns and trends within groups of elements. This format is significantly better than arranging the elements in alphabetical order, which places the entry for sodium far removed from the entries for lithium and potassium. I would highly recommend this book to high school teachers and college chemistry professors. It is well written and is an excellent source of information for

  6. Simultaneous spectrophotometric determination of thorium and rare earth metals with m-carboxychlorophosphonazo (CPAmK) and cetylpyridinium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Chunggin Hsu; Ximan Lian; Jiaomai Pan (East China Normal Univ., Shanghai, SH (China))

    1991-09-01

    Th and rare earth elements (REE) react with m-carboxychlorophosphonazo (CPAmK) in the absence of cetylpyridinium chloride (CPC) to form colour complexes. In the presence of CPC, REE-complexes are not formed because of micellar masking, while Th gives a more sensitive reaction with CPAmK. Most of the foreign ions are tolerated in considerable amounts; 360-1000-fold amounts of rare earths do not interfere with the determination of Th. The optimum conditions of the complex-formation reactions and the compositions of Th-CPAmK complexes are described. A simple method is proposed for simultaneous determination of Th and rare earths without previous separation. (author).

  7. Toward understanding early Earth evolution: Prescription for approach from terrestrial noble gas and light element records in lunar soils

    OpenAIRE

    Ozima, Minoru; Yin, Qing-Zhu; Podosek, Frank A.; Miura, Yayoi N.

    2008-01-01

    Because of the almost total lack of geological record on the Earth's surface before 4 billion years ago, the history of the Earth during this period is still enigmatic. Here we describe a practical approach to tackle the formidable problems caused by this lack. We propose that examinations of lunar soils for light elements such as He, N, O, Ne, and Ar would shed a new light on this dark age in the Earth's history and resolve three of the most fundamental questions in earth science: the onset ...

  8. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid.

    Science.gov (United States)

    Minoda, Ayumi; Sawada, Hitomi; Suzuki, Sonoe; Miyashita, Shin-ichi; Inagaki, Kazumi; Yamamoto, Takaiku; Tsuzuki, Mikio

    2015-02-01

    The demand for rare earth elements has increased dramatically in recent years because of their numerous industrial applications, and considerable research efforts have consequently been directed toward recycling these materials. The accumulation of metals in microorganisms is a low-cost and environmentally friendly method for the recovery of metals present in the environment at low levels. Numerous metals, including rare earth elements, can be readily dissolved in aqueous acid, but the efficiency of metal biosorption is usually decreased under the acidic conditions. In this report, we have investigated the use of the sulfothermophilic red alga Galdieria sulphuraria for the recovery of metals, with particular emphasis on the recovery of rare earth metals. Of the five different growth conditions investigated where G. sulphuraria could undergo an adaptation process, Nd(III), Dy(III), and Cu(II) were efficiently recovered from a solution containing a mixture of different metals under semi-anaerobic heterotrophic condition at a pH of 2.5. G. sulphuraria also recovered Nd(III), Dy(III), La(III), and Cu(II) with greater than 90% efficiency at a concentration of 0.5 ppm. The efficiency remained unchanged at pH values in the range of 1.5-2.5. Furthermore, at pH values in the range of 1.0-1.5, the lanthanoid ions were collected much more efficiently into the cell fractions than Cu(II) and therefore successfully separated from the Cu(II) dissolved in the aqueous acid. Microscope observation of the cells using alizarin red suggested that the metals were accumulating inside of the cells. Experiments using dead cells suggested that this phenomenon was a biological process involving specific activities within the cells.

  9. Recent advances in rare-earth elements modification of inorganic semiconductorbased photocatalysts for efficient solar energy conversion:A review

    Institute of Scientific and Technical Information of China (English)

    于耀光; 陈刚; 周彦松; 韩钟慧

    2015-01-01

    This review focused on rare-earth elements containing inorganic semiconductor photocatalysts for efficient solar energy conversion. We also summarized the recent progress in the modification of the transition metal oxides and mixed oxides with rare earth ions. In the first section, we surveyed a variety of rare-earth elements modified TiO2 photocatalysts. Attributed to the modifica-tion with rare-earth elements, phase transformation of TiO2 from anatase to rutile was inhibited. Furthermore, the light-absorbing property of the TiO2 modified with rare-earth elements was also enhanced. In the second section, we summarized the effects of rare-earth elements on the modification of transition metal mixed oxides. It was believed that the corner-shared octahedral units in the form of networks, chains and slabs within the mixed oxide lattice were essential for the enhancement of the photocatalytic activity. In the last section, the strategy for the design of NIR or IR response upconversion composite photocatalysts was also discussed.

  10. Study of rare earth element effect on microstructures and mechanical properties of an Al-Cu-Mg-Si cast alloy

    Institute of Scientific and Technical Information of China (English)

    WAN Weiwei; HAN Jianmin; LI Weijing; WANG Jinhua

    2006-01-01

    The improvements of microstructures and properties of a high strength aluminum cast alloy were studied.The effects of rare earth elements on the microstructures and mechanical properties of the high strength cast alloy Al-Cu-Mg-Si were investigated.The result shows that the addition of rare earth elements can change the microstructures in refining the grain size of the alloy and making the needle-like and laminar eutectic Si to a granular Si.With the increase of the rare earth, the tensile strength and elongation of the alloy increase first and then fall down.The mechanical properties of the alloy will reach the highest value when the content of rare earth elements is about 0.7%.

  11. Effects of the accumulation of the rare earth elements on soil macrofauna community

    Institute of Scientific and Technical Information of China (English)

    LI

    2010-01-01

    The accumulation of rare earth elements(REEs)in soil has occurred due to the pollution caused by the exploitation of rare earth resources and the wide rare earth fertilizers in agriculture.The accumulation of REEs has a toxic effect on the soil macrofauna community.12study samples were collected near a mine tailings dam with a large amount of REEs by distance gradient sample method.The total concentration of REEs was analyzed and the results were compared with that of the sample from a control site.The effects of the amount of REEs in the soil on the soil macrofauna community were also analyzed.The results showed that the accumulation of REEs in soil was significant in the study area and its concentration was strongly correlated with the distance from the pollution source.One-way ANOVA analysis indicated the significant differences in soil macrofauna communities among the different sites.The ordination obtained through the redundancy analysis demonstrated that the concentration of REEs and the total nitrogen,total potassium and pH,had affected the soil macrofauna community.A small amount of REEs in the soil can promote the diversity of soil macrofauna,but a large amount of REEs can reduce its diversity.The insect groups of Carabidae and Dermaptera were comparatively sensitive to the concentration of REEs in soil,and could be used as an indicator of soil pollution of REEs.However,the Formicidae and Stibaropus formosanus exhibited a high tolerance to REEs in soil.We believe that it is very important for the soil environment protection to strictly control the application of the rare earth fertilizers in agriculture in China.

  12. Assessing the utility of trace and rare earth elements as biosignatures in microbial iron oxyhydroxides

    Directory of Open Access Journals (Sweden)

    Christine eHeim

    2015-02-01

    Full Text Available Microbial iron oxyhydroxides are common deposits in natural waters, recent sediments and mine drainage systems and often contain significant accumulations of trace and rare earth elements (TREE. TREE patterns are widely used to characterize minerals and rocks, and to elucidate their evolution and origin. Whether and which characteristic TREE signatures distinguish between a biological and an abiological origin of iron minerals is still not well understood. Long-term flow reactor studies were performed in the Äspö Hard Rock Laboratory to investigate the development of microbial mats dominated by iron-oxidizing bacteria, namely Mariprofundus sp. and Gallionella sp. The experiments investigated the accumulation and fractionation of TREE under controlled conditions and enabled us to assess potential biosignatures evolving within the microbial iron oxyhydroxides. Concentrations of Be, Y, Zn, Zr, Hf, W, Th, Pb, and U in the microbial mats were 1e3- to 1e5-fold higher than in the feeder fluids whereas the rare earth elements and Y (REE+Y contents were 1e4 and 1e6 fold enriched. Except for a hydrothermally induced Eu anomaly, the normalized REE+Y patterns of the microbial iron oxyhydroxides were very similar to published REE+Y distributions of Archaean Banded Iron Formations. The microbial iron oxyhydroxides from the flow reactors were compared to iron oxyhydroxides that were artificially precipitated from the same feeder fluid. These abiotic and inorganic iron oxyhydroxides show the same REE+Y distribution patterns. Our results indicate that the REE+Y mirror quite exactly the water chemistry, but they do not allow to distinguish microbially mediated from inorganic iron precipitates. All TREE studied showed an overall similar fractionation behavior in biogenic, abiotic and inorganic iron oxyhydroxides. Exceptions are Ni and Tl, which were only accumulated in the microbial iron oxyhydroxides and may point to a potential usage of these elements as

  13. Geochemical fractionation of rare earth elements in lacustrine deposits from Qaidam Basin

    Institute of Scientific and Technical Information of China (English)

    ZHANG HuCai; ZHANG WenXiang; CHANG FengQin; YANG LunQing; LEI GuoLiang; YANG MingSheng; PU Yang; LEI YangBin

    2009-01-01

    Based on the concentration and distribution pattern analysis of the rare earth elements (REEs) at the Shell Bar section from Qaidam Basin,we studied the geochemical fractionations of REE in paleolake deposits and their paleo-environmental significance.Our results show that the REE concentration in AS (acid soluble) and AR (acid residual) fractions are 20.9 μg/g and 95.4 μg/g (except element Y) individually,showing a strong REE differentiation between AS and AR fractions.However,the two types of fractions (AS & AR) have similar REE distribution patterns,which are slightly rich in light earth rare elements (LREEs),with slightly right-tilting and negative Eu anomaly.The LREE of AR is richer than that of AS.There were no significant correlations between the REE in AS,AR and other proxies.It indicated that the lacustrine deposition had different material sources and experienced varying geochemical procedures.Correlation analysis between the REE and the content of fine grain-size (<4 μm) of the sediments,Rb/Sr ratio and Mn concentration showed high correlation coefficients.Our results demonstrated that the REE in acid soluble and residual fractions bear different environmental significances,which are strongly dependent on local environment.The REE of acid soluble fraction is closely related to the paleoclimatic changes in the lake catchment and the evolutionary processes of lake itself.Our results suggest that δCe and (La/Yb)_n could be used as proxies of the reduction-oxidation conditions and furthermore the temperature change and the lake level fluctuations.Using these proxies,we reconstructed the paleoclimate and water level fluctuation history during the high lake level period lasting between 43.5 and 22.4 cal.ka BP.

  14. Geochemical fractionation of rare earth elements in lacustrine deposits from Qaidam Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the concentration and distribution pattern analysis of the rare earth elements (REEs) at the Shell Bar section from Qaidam Basin, we studied the geochemical fractionations of REE in paleolake deposits and their paleo-environmental significance. Our results show that the REE concentration in AS (acid soluble) and AR (acid residual) fractions are 20.9 μg/g and 95.4 μg/g (except element Y) individually, showing a strong REE differentiation between AS and AR fractions. However, the two types of fractions (AS & AR) have similar REE distribution patterns, which are slightly rich in light earth rare elements (LREEs), with slightly right-tilting and negative Eu anomaly. The LREE of AR is richer than that of AS. There were no significant correlations between the REE in AS, AR and other proxies. It indicated that the lacustrine deposition had different material sources and experienced varying geochemical procedures. Correlation analysis between the REE and the content of fine grain-size (<4 μm) of the sediments, Rb/Sr ratio and Mn concentration showed high correlation coefficients. Our results demonstrated that the REE in acid soluble and residual fractions bear different environmental significances, which are strongly dependent on local environment. The REE of acid soluble fraction is closely related to the paleoclimatic changes in the lake catchment and the evolutionary processes of lake itself. Our results suggest that δCe and (La/Yb)n could be used as proxies of the reduction-oxidation conditions and furthermore the temperature change and the lake level fluctuations. Using these proxies, we reconstructed the paleoclimate and water level fluctuation history during the high lake level period lasting between 43.5 and 22.4 cal. ka BP.

  15. On Re-Entry Prediction of Near Earth Objects with Genetic Algorithm Using KS Elements

    Science.gov (United States)

    Sharma, R. K.; Anilkumar, A. K.; Xavier James Raj, M.; Sabarinath, A.

    2009-03-01

    The accurate orbit prediction of the near-Earth objects is an important requirement for the re-entry and the life time estimation. The method of Kustaanheimo and Stiefel (KS) total energy element equations is one of the powerful methods for orbit prediction. Recently, due to the reentries of large number of risk objects, which posses threat to the human life and property, a great concern is developed in the space scientific community. Consequently, the prediction of risk objects re-entry time and location has got much importance for the proper planning of mitigation strategies and hazard assessment. This paper discusses an integrated procedure for orbit life time prediction combining the KS elements and genetic algorithm (GA). The orbit prediction is carried out by numerically integrating the KS element equations. In this methodology, the ballistic coefficient is estimated from a set of observed orbital parameters in terms of the Two Line Elements (TLE) by minimizing the variance of the predicted re-entry time from different TLE using GA. A software, KSGEN, systematically developed in-house using KS elements and genetic algorithm is utilized for predicting the re-entry time of the risk objects. This software has been effectively used for the prediction of the re-entry time in the past seven re-entry exercise campaigns conducted by the Inter Agency Space Debris Coordination Committee (IADC). The predicted re-entry time matched quite well with the actual re-entry time for all the seven IADC re-entry campaigns. A detailed analysis is carried out with two case studies.

  16. Cracking the Code of Soil Genesis. The Early Role of Rare Earth Elements

    Science.gov (United States)

    Zaharescu, D. G.; Dontsova, K.; Burghelea, C. I.; Maier, R. M.; Huxman, T. E.; Chorover, J.

    2014-12-01

    Soil is terrestrial life support system. Its genesis involves tight interactions between biota and mineral surfaces that mobilize structural elements into biogeochemical cycles. Of all chemical elements rare earth elements (REE) are a group of 16 non-nutrient elements of unusual geochemical similarity and present in all components of the surface environment. While much is known about the role of major nutrients in soil development we lack vital understanding of how early biotic colonization affects more conservative elements such as REE. A highly controlled experiment was set up at University of Arizona's Biosphere-2 that tested the effect of 4 biological treatments, incorporating a combination of microbe, grass, mycorrhiza and uninoculated control on REE leaching and uptake in 4 bedrock substrates: basalt, rhyolite, granite and schist. Generally the response of REE to biota presence was synergistic. Variation in total bedrock chemistry could explain major trends in pore water REE. There was a fast transition from chemistry-dominated to a biota dominated environment in the first 3-4 months of inoculation/seeding which translated into increase in REE signal over time. Relative REE abundances in water were generally reflected in plant concentrations, particularly in root, implying that below ground biomass is the main sync of REE in the ecosystem. Mycorrhiza effect on REE uptake in plant organs was significant and increased with infection rates. Presence of different biota translated into subtle differences in REE release, reveling potential biosignatures of biolota-rock colonization. The results thus bring fundamental insight into early stages non-nutrient cycle and soil genesis.

  17. Determination of neodymium, holmium and erbium in mixed rare earths by norfloxacin

    Energy Technology Data Exchange (ETDEWEB)

    Wang Nai-Xing; Jiang Wei; Ren Yuezhen; Si Zhikun; Qiu Xunxing [Department of Chemistry, Shandong University, Jinan (China); Wang Lei [Department of Pharmacy, Shandong Medical University, Jinan (China); Du Gaoying; Qi Ping [Shandong Analysis and Test Center, Jinan (China)

    1998-08-01

    Norfloxacin (NFX) is proposed as reagent for the derivative spectrophotometric determination of neodymium, holmium and erbium in mixed rare earths. The absorption spectra of 4f electron transitions of the systems of neodymium, holmium and erbium complexes with norfloxacin in presence of cetylpyridinium chloride were studied by normal and derivative spectra. The absorption bands found normally at 575 nm for neodymium, 450 nm for holmium and 523 nm for erbium were enhanced markedly. Using the second derivative spectrum, Beer`s Law is obeyed from 5.0 x 10{sup -5} {proportional_to} 2.5 x 10{sup -4} mol dm{sup -3} for neodymium, holmium and erbium. The relative standard deviations are 1.0, 1.4 and 1.1% for 6.9 x 10{sup -5} mol dm{sup -3} of neodymium, 6.1 x 10{sup -5} mol dm{sup -3} of holmium and 6.0 x 10{sup -5} mol dm{sup -3} of erbium, respectively. A method for the direct determination of neodymium, holmium and erbium in mixtures of rare earth elements with good accuracy and selectivity, is described. (orig.) With 4 figs., 2 tabs., 11 refs.

  18. Determination of trace elements in the human substantia nigra

    Energy Technology Data Exchange (ETDEWEB)

    Morawski, M. [Paul-Flechsig-Institut fuer Hirnforschung, Universitaet Leipzig, Jahnallee 59, 04109 Leipzig (Germany)]. E-mail: morm@medizin.uni-leipzig.de; Meinecke, Ch. [Fakultaet fuer Physik und Geowissenschaften, Universitaet Leipzig, Linnestrasse 5, 04105 Leipzig (Germany); Reinert, T. [Fakultaet fuer Physik und Geowissenschaften, Universitaet Leipzig, Linnestrasse 5, 04105 Leipzig (Germany); Doerffel, A.C. [Paul-Flechsig-Institut fuer Hirnforschung, Universitaet Leipzig, Jahnallee 59, 04109 Leipzig (Germany); Riederer, P. [Klin. Neurochemie, Abt. Psychiatrie, Universitaet Wuerzburg, Fuechsleinstrasse 15, 97080 Wuerzburg (Germany); Arendt, T. [Paul-Flechsig-Institut fuer Hirnforschung, Universitaet Leipzig, Jahnallee 59, 04109 Leipzig (Germany); Butz, T. [Fakultaet fuer Physik und Geowissenschaften, Universitaet Leipzig, Linnestrasse 5, 04105 Leipzig (Germany)

    2005-04-01

    'The gain in brain is mainly in the stain' was long time a key sentence for research in neurodegenerative disease. However, for a quantification of the element concentrations (especially iron) in brain tissue, standard staining methods are insufficient. Advanced physical methods allow a quantitative elemental analysis of brain tissue. The sophisticated ion beam analysis provides a quantitative determination of elemental concentrations with a subcellular spatial resolution using a scanning proton beam focussed down to below 1 {mu}m that induces characteristic X-rays in the specimen (PIXE - particle induced X-ray emission). Histochemical and biochemical determinations of total iron content in brain regions from idiopathic Parkinson's disease have demonstrated an increase of iron in parkinsonian substantia nigra pars compacta but not in the pars reticulata, however without a clear cellular classification. For the first time, we have differentially investigated the intra- and extraneuronal elemental concentrations (especially iron) of the human substantia nigra pars compacta versus pars reticulata with detection limits in the range of 50 {mu}mol/l. Thus, we could compare the neuronal iron concentration in human brain sections of healthy and parkinsonian brain tissue. Clear differences in the iron concentration and distribution could be disclosed. Additionally, we could show in situ that the increased intraneuronal iron content is linked to neuromelanin.

  19. Rare earth elements and titanium in plants, soils and groundwaters in the alkaline-ultramafic complex of Salitre, MG Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ceccantini, G. [Instituto de Biociencias, Sao Paulo, (Brazil). Dept. de Botanica; Figueiredo, A.M.G. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Div. de Radioquimica; Sondag, F.; Soubies, F. [ORSTOM, 93 - Bondy (France); Soubies, F. [Universite Paul Sabatier, 31 - Toulouse (France)

    1997-12-31

    The contents of rare earth elements (REE) and titanium in various plant species, in groundwaters and in soils from the alkaline-ultramafic complex of Salitre, have been determined. Due to the the particular mineralogy of the bedrock, REE and Ti exhibit high concentrations in the soils. Despite this, plants generally present REE concentrations within the ranges usually found in plants, and the transfer factor from soil to plant is at least ten times below the range reported in the literature, confirming that the concentrations of REE in the plants are widely independent of the soil content. All species present normalized patterns similar to those of the soils, characterized by an enrichment in light REE. Several plants show Ti concentrations about three times higher than the reference values. It is suggested that in the studied ecosystem, the plant metabolism affect the REE distribution in the groundwaters, leading to an enrichment of the superficial waters in heavy REE

  20. Process to determine light elements content of steel and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Quintella, Cristina M.A.L.T.M.H.; Castro, Martha T.P.O. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica. LabLaser; Mac-Culloch, Joao N.L.M. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The present work reports a process to determine qualitatively and quantitatively elements of molar mass inferior to 23 within materials, by X rays spectra associated with multivariate data analysis, or chemometric analysis. The spectra is acquired between 5 keV and 22 keV when the materials are exposed to X radiation. Here is reported the direct determination of carbon content in steel and metallic alloys. The process is more effective when using spectral regions which are not usually used. From the analysis of these spectral regions which were not considered before, it was possible to detect light elements with molar mass lower than 23, which have low capacity of absorbing and emitting radiation, but have high capacity of scattering radiation. The process here reported has the advantage that X-Ray spectra obtained are calibrated multivariately, showing high potential for development in order to be used in a portable field equipment. (author)

  1. Determination of neodymium in rare earth mixtures by fourth-derivative spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Naixing Wang; Weian Liang (Shandong Univ., Jinan, SD (China)); Ping Qi (Shandong Analysis and Test Center, Jinan (China))

    1991-11-20

    The absorption spectra corresponding to 4f electron transitions of the neodymium complex with xylenol orange and cetylpyridinium chloride in the presence of Triton X-100 are reported. The absorption by neo-dymium is increased by factor 666, compared with that of its chloride. Fourth-derivative spectra are used to increase the sensitivity and to eliminate interferences from other rare elements. Beer's law is obeyed for 1.4-7.2 {mu}g Nd in 25 ml of solution. Relative standard deviation is 0.8% for 5.0 {mu}g/25 ml (n=7). Detection limits are 5.0 ng ml{sup -1} for Nd alone and 11.0 ng ml{sup -1} in the presence of 45 ng of lanthanum. Satisfactory results were obtained for the determination of neodymium in rare earth mixtures. (author). 11 refs.; 4 figs.

  2. New fission fragment distributions and r-process origin of the rare-earth elements

    CERN Document Server

    Goriely, S; Lemaitre, J -F; Panebianco, S; Dubray, N; Hilaire, S; Bauswein, A; Janka, H -Thomas

    2013-01-01

    Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A > 140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical uncertainties, but calculations sensitively depend on nuclear physics. In particular the fission fragment yields determine the creation of 110 140.

  3. Influence of Rare Earth Elements on Microstructure and Mechanical Properties of Cast High-Speed Steel Rolls

    Institute of Scientific and Technical Information of China (English)

    Wang Mingjia; Mu Songmei; Sun Feifei; Wang Yan

    2007-01-01

    The influence of rare earth (RE) elements on the solidification process and eutectic transformation and mechanical properties of the high-V type cast, high-speed steel roll was studied. Test materials with different RE additions were prepared on a horizontal centrifugal casting machine. The solidification process, eutectic structure transformation, carbide morphology, and the elements present, were all investigated by means of differential scanning calorimetry (DSC) and scanning electron microscopy energy dispersive spectrometry (SEM-EDS). The energy produced by crack initiation and crack extension was analyzed using a digital impact test machine. It was found that rare earth elements increased the tensile strength of the steel by inducing crystallization of earlier eutectic γ-Fe during the solidification process, which in turn increased the solidification temperature and thinned the dendritic grains. Rare earth elements with large atomic radius changed the lattice parameters of the MC carbide by forming rare earth carbides. This had the effect of dispersing long-pole MC carbides to provide carbide grains, thereby, reducing the formation of the gross carbide and making more V available, to increase the secondary hardening process and improve the hardness level. The presence of rare earth elements in the steel raised the impact toughness by changing the mechanism of MC carbide formation, thereby increasing the crack initiation energy.

  4. Liquid Inclusions in Heat-Resistant Steel Containing Rare Earth Elements

    Science.gov (United States)

    Li, Yandong; Liu, Chengjun; Zhang, Tongsheng; Jiang, Maofa; Peng, Cheng

    2016-12-01

    Abundant thermodynamic data of pure substances were incorporated in the coupled thermodynamic model of inclusion precipitation and solute micro-segregation during the solidification of heat-resistant steel containing rare earth elements. The liquid inclusions Ce2x Al2y Si1-x-y O z (0 x x and z = 1 - x - y) were first introduced to ensure the model more accurately. And the computational method for generation Gibbs free energy of liquid inclusions in molten steel was given. The accuracy of accomplished model was validated through plant trials, lab-scale experiments, and the data published in the literature. The comparisons of results calculated by FactSage with the model were also discussed. Finally, the stable area of liquid inclusions was predicted and the liquid inclusions with larger size were found in the preliminary experiments.

  5. Predictive model for ionic liquid extraction solvents for rare earth elements

    Science.gov (United States)

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Eckert, Franck; Shibata, Etsuro; Nakamura, Takashi

    2015-12-01

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF3-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids' ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF3 were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  6. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  7. Geochemical Characteristics of Rare Earth Elements in Sewage Discharge Channels of Tianjin

    Institute of Scientific and Technical Information of China (English)

    王立军; 梁涛; 丁力强; 张朝生; 李国胜; 闫欣; 王秀丽

    2003-01-01

    The geochemical features of rare earth elements (REEs) in the North and South sewage discharge channels of Tianjin were studied. The results show that concentrations of dissolved REEs in water of the sewage discharge channels are very low, while concentrations of Eu and heavy REEs are higher than those in natural rivers. Concentrations of REEs in unfiltered water are high and they mainly resided on suspended matter. Distribution patterns of the dissolved and susp ended light REEs vary reversely with the atomic number. Concentrations of REEs in the sediments and suspended matter are lower than those in natural rivers, and concentrations of REEs in the suspended matter are much lower than those in the sediments. Distribution patterns of REEs in sediments and suspended matter were similar with light REE enrichment and positive Eu-anomaly. This distributi on pattern is different from those of natural rivers. The differences may cause by the large amount of organic pollutants in sewage.

  8. Predictive model for ionic liquid extraction solvents for rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Grabda, Mariusz; Oleszek, Sylwia [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2,1-Katahira, 2-Chome, 980-8577 Sendai (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, ul. M. Sklodowskiej-Curie 34, 41-819, Zabrze (Poland); Panigrahi, Mrutyunjay; Kozak, Dmytro; Shibata, Etsuro; Nakamura, Takashi [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2,1-Katahira, 2-Chome, 980-8577 Sendai (Japan); Eckert, Franck [COSMOlogic GmbH & Co KG, Imbacher Weg 46, 50379 Leverkusen (Germany)

    2015-12-31

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  9. Fractionations of rare earth elements in plants and their conceptive model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fractionations of rare earth elements (REEs) and their mechanisms in soybean were studied through application of exogenous mixed REEs under hydroponic conditions. Significant enrichment of middle REEs (MREEs) and heavy REEs (HREEs) was observed in plant roots and leaves respectively, with slight fractionation between light REEs (LREEs) and HREEs in stems. Moreover, the tetrad effect was observed in these organs. Investigations into REE speciation in roots and in the xylem sap using X-ray absorption spectroscopy (XAS) and nanometer-sized TiO2 adsorption techniques, associated with other controlled experiments, demonstrated that REE fractionations should be dominated by fixation mechanism in roots caused by cell wall absorption and phosphate precipitation, and by the combined effects of fixation mechanism and transport mechanism in aboveground parts caused by solution complexation by intrinsic organic ligands. A conceptive model was established for REE fractionations in plants based on the above studies.

  10. Effects of Rare Earth Elements on Vigor Enhancement of Aged Spinach Seeds

    Institute of Scientific and Technical Information of China (English)

    刘超; 洪法水; 郑蕾; 汤萍; 王志刚

    2004-01-01

    The effect and the mechanism of action of lanthanum, cerium and neodymium on aged seeds of spinach were studied. By LaCl3, CeCl3, and NdCl3 treatment, the germination rate, germination index and vigor index of aged spinach seeds are increased and the activities of superoxide dismutase, catalase and peroxidase are enhanced. Moreover the ·O2- and malondialdehyde content are decreased and the cell membrane permeability of aged spinach seeds is reduced. Among these three rare earth elements, Ce treatment enhances vigor of aged seeds most significantly, that of Nd treatment secondly and La treatment is not as effective as the other two treatments. The reason may be from 4f electron characteristic and alternation valence of REEs.

  11. Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation.

    Science.gov (United States)

    Prudêncio, Maria Isabel; Valente, Teresa; Marques, Rosa; Sequeira Braga, Maria Amália; Pamplona, Jorge

    2015-11-01

    Rare earth elements (REE) were used to assess attenuation processes in a passive system for acid mine drainage treatment (Jales, Portugal). Hydrochemical parameters and REE contents in water, soils and sediments were obtained along the treatment system, after summer and winter. A decrease of REE contents in the water resulting from the interaction with limestone after summer occurs; in the wetlands REE are significantly released by the soil particles to the water. After winter, a higher water dynamics favors the AMD treatment effectiveness and performance since REE contents decrease along the system; La and Ce are preferentially sequestered by ochre sludge but released to the water in the wetlands, influencing the REE pattern of the creek water. Thus, REE fractionation occurs in the passive treatment systems and can be used as tracer to follow up and understand the geochemical processes that promote the remediation of AMD.

  12. Liquid Inclusions in Heat-Resistant Steel Containing Rare Earth Elements

    Science.gov (United States)

    Li, Yandong; Liu, Chengjun; Zhang, Tongsheng; Jiang, Maofa; Peng, Cheng

    2017-04-01

    Abundant thermodynamic data of pure substances were incorporated in the coupled thermodynamic model of inclusion precipitation and solute micro-segregation during the solidification of heat-resistant steel containing rare earth elements. The liquid inclusions Ce2 x Al2 y Si1- x-y O z (0 z = 1 - x - y) were first introduced to ensure the model more accurately. And the computational method for generation Gibbs free energy of liquid inclusions in molten steel was given. The accuracy of accomplished model was validated through plant trials, lab-scale experiments, and the data published in the literature. The comparisons of results calculated by FactSage with the model were also discussed. Finally, the stable area of liquid inclusions was predicted and the liquid inclusions with larger size were found in the preliminary experiments.

  13. Effects of Rare Earth Element Lan on the Activities of Earthworm Enzyme

    Institute of Scientific and Technical Information of China (English)

    Xu Dongmei; Liu Wenli; Liu Weiping

    2007-01-01

    The effects of Rare Earth Element Lan on the activities of cellulose, catalase, peroxidase and superoxide dismutasein in earthworm were carried out by natural soil test. The results indicated that Lan can significantly suppress the activity of cellulose. The responses of three enzymes in earthworm to Lan were different, Lan mostly affects catalase activity and inhibited catalase activity throughout the experiment. Peroxidase activity tend to "promote weakly and inhibited strongly" when short term of exposure to Lan, while "inhibited weakly and promote strongly" as a function of time. In comparison, Lan had little influence on the activity of superoxide dismutase. The variance analysis results showed that the concentration of Lan significantly affected the activities of cellulose and CAT but had no obvious influence on the activities of SOD and POD. The treatment time and the interactive effect between treatment concentrations and time had very significant effect on the activities of cellulose, SOD, CAT and POD.

  14. Quantitative estimation of concentrations of dissolved rare earth elements using reflectance spectroscopy

    Science.gov (United States)

    Dai, Jingjing; Wang, Denghong; Wang, Runsheng; Chen, Zhenghui

    2013-01-01

    Characteristic spectral parameters such as the wavelength and depth of absorption bands are widely used to quantitatively estimate the composition of samples from hyperspectral reflectance data in soil science, mineralogy as well as vegetation study. However, little research has been conducted on the spectral characteristic of rare earth elements (REE) and their relationship with chemical composition of aqueous solutions. Reflectance spectra of ore leachate solutions and contaminated stream water from a few REE mines in the Jiangxi Province, China, are studied for the first time in this work. The results demonstrate that the six diagnostic absorption features of the rare earths are recognized in visible and near-infrared wavelengths at 574, 790, 736, 520, 861, and 443 nm. The intensity of each of these six absorption bands is linearly correlated with the abundance of total REE, with the r2 value >0.95 and the detection limit at ≥75,000 μg/L. It is suggested that reflectance spectroscopy provides an ideal routine analytical tool for characterizing leachate samples. The outcome of this study also has implications for monitoring the environmental effect of REE mining, in particular in stream water systems by hyperspectral remote sensing.

  15. Planktonic foraminiferal rare earth elements as a potential new aeolian dust proxy

    Science.gov (United States)

    Chou, C.; Liu, Y.; Lo, L.; Wei, K.; Shen, C.

    2012-12-01

    Characteristics of rare earth elements (REEs) have widely been used as important tracers in many fields of earth sciences, including lithosphere research, environmental change, ocean circulation and other natural carbonate materials. Foraminiferal test REE signatures have been suggested to reflect ambient seawater conditions and serve as valuable proxies in the fields of paleoceanography and paleoclimate. Here we present a 60-kyr planktonic foraminifera Globigerinoides ruber (white, 250-300 μm) REE record of a sediment core MD05-2925 (9°20.61'S, 151°27.61'E, water depth 1660 m) from the Solomon Sea. The REE diagram shows two dominant sources of local seawater and nearby terrestrial input. The variability of foraminiferal REE/Ca time series is different from Mg/Ca-inferred sea surface temperature and δ18O records during the past 60-kyr. This inconsistency suggests that planktonic foraminiferal REE content cannot result only from changes in ice volume and temperature. Synchroneity between high planktonic foraminiferal REE content and Antarctic ice core dust amount record implies the same dust sources, probably from Australia or mainland China. Our results suggest that foraminiferal REE can potentially be as a new dust proxy and record dry/humid conditions at the source area.

  16. Estimation of Soil Electrical Properties in a Multilayer Earth Model with Boundary Element Formulation

    Directory of Open Access Journals (Sweden)

    T. Islam

    2012-01-01

    Full Text Available This paper presents an efficient model for estimation of soil electric resistivity with depth and layer thickness in a multilayer earth structure. This model is the improvement of conventional two-layer earth model including Wenner resistivity formulations with boundary conditions. Two-layer soil model shows the limitations in specific soil characterizations of different layers with the interrelationships between soil apparent electrical resistivity (ρ and several soil physical or chemical properties. In the multilayer soil model, the soil resistivity and electric potential at any points in multilayer anisotropic soil medium are expressed according to the variation of electric field intensity for geotechnical investigations. For most soils with varying layers, multilayer soil resistivity profile is therefore more suitable to get soil type, bulk density of compacted soil and to detect anomalous materials in soil. A boundary element formulation is implemented to show the multilayer soil model with boundary conditions in soil resistivity estimations. Numerical results of soil resistivity ratio and potential differences for different layers are presented to illustrate the application, accuracy, and efficiency of the proposed model. The nobility of the research is obtaining multilayer soil characterizations through soil electric properties in near surface soil profile.

  17. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags.

    Science.gov (United States)

    Park, Dan M; Reed, David W; Yung, Mimi C; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E; Navrotsky, Alexandra; Jiao, Yongqin

    2016-03-01

    With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.

  18. Rare earth element components in atmospheric particulates in the Bayan Obo mine region

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingqing, E-mail: wanglq@igsnrr.ac.cn; Liang, Tao, E-mail: liangt@igsnrr.ac.cn; Zhang, Qian; Li, Kexin

    2014-05-01

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 μm (PM{sub 10}) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m{sup 3}, and those for PM{sub 10} were 42.8 and 68.9 ng/m{sup 3}, in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM{sub 10} and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM{sub 10} were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La{sub N}/Yb{sub N}, La{sub N}/Sm{sub N}, Gd{sub N}/Yb{sub N}). - Highlights: • TSP and PM{sub 10} samples were collected to analyze the levels and distributions of REE. • Enrichment factors indicated that REE enrichment was caused by anthropogenic sources. • The distribution of REEs showed a strong gradient in the prevailing wind direction. • Obvious fractionation between LREEs and HREEs is observed in atmospheric particulates.

  19. A major light rare-earth element (LREE) resource in the Khanneshin carbonatite complex, southern Afghanistan

    Science.gov (United States)

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Horton, Forrest; Buttleman, Kim; Scott, Emily R.

    2012-01-01

    The rapid rise in world demand for the rare-earth elements (REEs) has expanded the search for new REE resources. We document two types of light rare-earth element (LREE)-enriched rocks in the Khanneshin carbonatite complex of southern Afghanistan: type 1 concordant seams of khanneshite-(Ce), synchysite-(Ce), and parisite-(Ce) within banded barite-strontianite alvikite, and type 2 igneous dikes of coarse-grained carbonatite, enriched in fluorine or phosphorus, containing idiomorphic crystals of khanneshite-(Ce) or carbocernaite. Type 1 mineralized barite-strontianite alvikite averages 22.25 wt % BaO, 4.27 wt % SrO, and 3.25 wt % ∑ LREE2O3 (sum of La, Ce, Pr, and Nd oxides). Type 2 igneous dikes average 14.51 wt % BaO, 5.96 wt % SrO, and 3.77 wt % ∑ LREE2O3. A magmatic origin is clearly indicated for the type 2 LREE-enriched dikes, and type 1 LREE mineralization probably formed in the presence of LREE-rich hydrothermal fluid. Both types of LREE mineralization may be penecontemporaneous, having formed in a carbonate-rich magma in the marginal zone of the central vent, highly charged with volatile constituents (i.e., CO2, F, P2O5), and strongly enriched in Ba, Sr, and the LREE. Based on several assumptions, and employing simple geometry for the zone of LREE enrichment, we estimate that at least 1.29 Mt (million metric tonnes) of LREE2O3 is present in this part of the Khanneshin carbonatite complex.

  20. Geology and market-dependent significance of rare earth element resources

    Science.gov (United States)

    Simandl, G. J.

    2014-12-01

    China started to produce rare earth elements (REEs) in the 1980s, and since the mid-1990s, it has become the dominant producer. Rare earth element export quotas first introduced by the Chinese government in the early 2000s were severely reduced in 2010 and 2011. This led to strong government-created disparity between prices within China and the rest of the world. Industrialized countries identified several REEs as strategic metals. Because of rapid price increases of REE outside of China, we have witnessed a world-scale REE exploration rush. The REE resources are concentrated in carbonatite-related deposits, peralkaline igneous rocks, pegmatites, monazite ± apatite veins, ion adsorption clays, placers, and some deep ocean sediments. REE could also be derived as a by-product of phosphate fertilizer production, U processing, mining of Ti-Zr-bearing placers, and exploitation of Olympic Dam subtype iron oxide copper gold (IOCG) deposits. Currently, REEs are produced mostly from carbonatite-related deposits, but ion adsorption clay deposits are an important source of heavy REE (HREE). Small quantities of REE are derived from placer deposits and one peralkaline intrusion-related deposit. The ideal REE development targets would be located in a politically stable jurisdiction with a pro-mining disposition such as Canada and Australia. REE grade, HREE/light REE (LREE) ratio of the mineralization, tonnage, mineralogy, and permissive metallurgy are some of the key technical factors that could be used to screen potential development projects. As REEs are considered strategic metals from economic, national security, and environmental points of view, technical and economic parameters alone are unlikely to be used in REE project development decision-making. Recycling of REE is in its infancy and unless legislated, in the short term, it is not expected to contribute significantly to the supply of REE.

  1. TerraFERMA: The Transparent Finite Element Rapid Model Assembler for multiphysics problems in Earth sciences

    Science.gov (United States)

    Wilson, Cian R.; Spiegelman, Marc; van Keken, Peter E.

    2017-02-01

    We introduce and describe a new software infrastructure TerraFERMA, the Transparent Finite Element Rapid Model Assembler, for the rapid and reproducible description and solution of coupled multiphysics problems. The design of TerraFERMA is driven by two computational needs in Earth sciences. The first is the need for increased flexibility in both problem description and solution strategies for coupled problems where small changes in model assumptions can lead to dramatic changes in physical behavior. The second is the need for software and models that are more transparent so that results can be verified, reproduced, and modified in a manner such that the best ideas in computation and Earth science can be more easily shared and reused. TerraFERMA leverages three advanced open-source libraries for scientific computation that provide high-level problem description (FEniCS), composable solvers for coupled multiphysics problems (PETSc), and an options handling system (SPuD) that allows the hierarchical management of all model options. TerraFERMA integrates these libraries into an interface that organizes the scientific and computational choices required in a model into a single options file from which a custom compiled application is generated and run. Because all models share the same infrastructure, models become more reusable and reproducible, while still permitting the individual researcher considerable latitude in model construction. TerraFERMA solves partial differential equations using the finite element method. It is particularly well suited for nonlinear problems with complex coupling between components. TerraFERMA is open-source and available at http://terraferma.github.io, which includes links to documentation and example input files.

  2. Homology among tet determinants in conjugative elements of streptococci

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.D.; Hazum, S.; Guild, W.R.

    1981-10-01

    A mutation to tetracycline sensitivity in a resistant strain of Streptococcus pneumoniae was shown by several criteria to be due to a point mutation in the conjugative o(cat-tet) element found in the chromosomes of strains derived from BM6001, a clinical strain resistant to tetracycline and chloramphenicol. Strains carrying the mutation were transformed back to tetracycline resistance with the high efficiency of a point marker by donor deoxyribonucleic acids from its ancestral strain and from nine other clinical isolates of pneumococcus and by deoxyribonucleic acids from Group D Streptococcus faecalis and Group B Streptococcus agalactiae strains that also carry conjugative tet elements in their chromosomes. It was not transformed to resistance by tet plasmid deoxyribonucleic acids from either gram-negative or gram-positive species, except for one that carried transposon TN916, the conjugative tet element present in the chromosomes of some S. faecalis strains. The results showed that the tet determinants in conjugative elements of several streptococcal species share a high degree of deoxyribonucleic acid sequence homology and suggested that they differ from other tet genes.

  3. Rare earth element variations resulting from inversion of pigeonite and subsolidus reequilibration in lunar ferroan anorthosites

    Science.gov (United States)

    James, O.B.; Floss, C.; McGee, J.J.

    2002-01-01

    We present results of a secondary ion mass spectrometry study of the rare earth elements (REEs) in the minerals of two samples of lunar ferroan anorthosite, and the results are applicable to studies of REEs in all igneous rocks, no matter what their planet of origin. Our pyroxene analyses are used to determine solid-solid REE distribution coefficients (D = CREE in low-Ca pyroxene/CREE in augite) in orthopyroxene-augite pairs derived by inversion of pigeonite. Our data and predictions from crystal-chemical considerations indicate that as primary pigeonite inverts to orthopyroxene plus augite and subsolidus reequilibration proceeds, the solid-solid Ds for orthopyroxene-augite pairs progressively decrease for all REEs; the decrease is greatest for the LREEs. The REE pattern of solid-solid Ds for inversion-derived pyroxene pairs is close to a straight line for Sm-Lu and turns upward for REEs lighter than Sm; the shape of this pattern is predicted by the shapes of the REE patterns for the individual minerals. Equilibrium liquids calculated for one sample from the compositions of primary phases, using measured or experimentally determined solid-liquid Ds, have chondrite-normalized REE patterns that are very slightly enriched in LREEs. The plagioclase equilibrium liquid is overall less rich in REEs than pyroxene equilibrium liquids, and the discrepancy probably arises because the calculated plagioclase equilibrium liquid represents a liquid earlier in the fractionation sequence than the pyroxene equilibrium liquids. "Equilibrium" liquids calculated from the compositions of inversion-derived pyroxenes or orthopyroxene derived by reaction of olivine are LREE depleted (in some cases substantially) in comparison with equilibrium liquids calculated from the compositions of primary phases. These discrepancies arise because the inversion-derived and reaction-derived pyroxenes did not crystallize directly from liquid, and the use of solid-liquid Ds is inappropriate. The LREE

  4. Organic complexation of rare earth elements in natural waters: Evaluating model calculations from ultrafiltration data

    Science.gov (United States)

    Pourret, Olivier; Davranche, Mélanie; Gruau, Gérard; Dia, Aline

    2007-06-01

    The Stockholm Humic Model (SHM) and Humic Ion-Binding Models V and VI were compared for their ability to predict the role of dissolved organic matter (DOM) in the speciation of rare earth elements (REE) in natural waters. Unlike Models V and VI, SHM is part of a speciation code that also allows us to consider dissolution/precipitation, sorption/desorption and oxidation/reduction reactions. In this context, it is particularly interesting to test the performance of SHM. The REE specific equilibrium constants required by the speciation models were estimated using linear free-energy relationships (LFER) between the first hydrolysis constants and the stability constants for REE complexation with lactic and acetic acid. Three datasets were used for the purpose of comparison: (i) World Average River Water (Dissolved Organic Carbon (DOC) = 5 mg L -1), previously investigated using Model V, was reinvestigated using SHM and Model VI; (ii) two natural organic-rich waters (DOC = 18-24 mg L -1), whose REE speciation has already been determined with both Model V and ultrafiltration studies, were also reinvestigated using SHM and Model VI; finally, (iii) new ultrafiltration experiments were carried out on samples of circumneutral-pH (pH 6.2-7.1), organic-rich (DOC = 7-20 mg L -1) groundwaters from the Kervidy-Naizin and Petit-Hermitage catchments, western France. The results were then compared with speciation predictions provided by Model VI and SHM, successively. When applied to World Average River Water, both Model VI and SHM yield comparable results, confirming the earlier finding that a large fraction of the dissolved REE in rivers occurs as organic complexes This implies that the two models are equally valid for calculating REE speciation in low-DOC waters at circumneutral-pH. The two models also successfully reproduced ultrafiltration results obtained for DOC-rich acidic groundwaters and river waters. By contrast, the two models yielded different results when compared to

  5. Seawater-derived rare earth element addition to abyssal peridotites during serpentinization

    Science.gov (United States)

    Frisby, Carl; Bizimis, Michael; Mallick, Soumen

    2016-04-01

    Serpentinized abyssal peridotites are evidence for active communication between the Earth's hydrosphere and the upper mantle, where exchange and retention of both major and trace elements occur. Bulk rock Nd isotopes in serpentinized abyssal peridotites imply interaction of seawater with the peridotite. In contrast, the Nd isotopes of clinopyroxenes from serpentinized abyssal peridotites retain their primary magmatic signature. It is currently unclear if, how and where seawater-derived Nd and other REE are being added or exchanged with the mantle peridotite minerals during serpentinization. To remedy this knowledge gap, we present in situ trace and major element concentrations, bulk rock and sequential leaching experiment trace element concentrations as well as Nd, Sr isotope data on refertilized and depleted serpentinized abyssal peridotites from the Southwest Indian Ridge. The secondary serpentine matrix and magnetite veins in these peridotites have elevated LREE concentrations, with variable negative Ce anomalies and large Rb, Sr, Pb and U enrichments that resemble seawater trace element patterns. The LREE concentrations in the serpentine phase are higher than those expected for the primary mantle mineralogy (olivine, orthopyroxene) based on data from relic clinopyroxenes and equilibrium partition coefficients. These data are consistent with seawater-derived REE addition to the peridotite during serpentinization. The bulk rocks have more radiogenic Sr and more unradiogenic Nd isotopes than their clinopyroxene (up to 8 εNd units lower than clinopyroxene). Sequential leaching experiments designed to mobilize secondary carbonates and Fe-oxides show even more unradiogenic Nd isotope ratios in the leachates than the bulk rock and clinopyroxene, approaching seawater compositions (up to 15 εNd units lower than clinopyroxene). Mass balance calculations using trace elements or Nd isotopes suggest that up to 30% of the bulk peridotite Nd budget is of seawater origin and

  6. Terrain classification of ladar data for bare earth determination

    Science.gov (United States)

    Neuenschwander, Amy L.; Magruder, Lori A.

    2011-06-01

    Terrain classification, or bare earth extraction, is an important component to LADAR data analysis. The terrain classification approach presented in this effort utilizes an adaptive lower envelope follower (ALEF) with an adaptive gradient operation for accommodations of local topography and roughness. In order to create a more robust capability, the ALEF was modified to become a strictly data driven process that facilitates a quick production of the data product without the subjective component associated with user inputs. This automated technique was tested on existing LADAR surveys over Wyoming's Powder River Basin and the John Starr Memorial Forest in Mississippi, both locations with dynamic topographic features. The results indicate a useful approach in terms of operational time and accuracy of the final bare earth recovery with the advantage of being fully data driven.

  7. Magnetic resonance signal moment determination using the Earth's magnetic field

    KAUST Repository

    Fridjonsson, Einar Orn

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth\\'s magnetic field system.

  8. Substitution of Nd with other rare earth elements in melt spun Nd2Fe14B magnets

    Directory of Open Access Journals (Sweden)

    D. N. Brown

    2016-05-01

    Full Text Available This is a contemporary study of rapidly quenched Nd1.6X0.4Fe14B magnetic materials (where X= Nd, Y, Ce, La, Pr, Gd and Ho. A 20% substitution of the Nd component from Nd2Fe14B can bring about some commercial advantage. However, there will be some compromise to the magnetic performance. Light rare earth elements are definitely more abundant (Y, Ce, La than the heavier rare earth elements, but when they are included in RE2Fe14B magnets they tend to lower magnetic performance and thermal stability. Substituting heavy rare earth elements (Gd, Ho for Nd in Nd2Fe14B improves the thermal stability of magnets but causes a loss in magnet remanence.

  9. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    Energy Technology Data Exchange (ETDEWEB)

    Morf, Leo S., E-mail: leo.morf@bd.zh.ch [Baudirektion Kanton Zürich, Amt für Abfall, Wasser, Energie und Luft, Zurich (Switzerland); Gloor, Rolf; Haag, Olaf [Bachema AG, Schlieren (Switzerland); Haupt, Melanie [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland); Skutan, Stefan [Bachema AG, Schlieren (Switzerland); Lorenzo, Fabian Di; Böni, Daniel [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland)

    2013-03-15

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  10. Subduction Zone Redox and the Deep Earth Cycles of Sulfur and Chalcophile Elements

    Science.gov (United States)

    Canil, D.

    2013-12-01

    Subduction at convergent plate margins is a return flux to the mantle of rocks influenced by weathering, hydrothermal activity, atmospheric exchange, or bio-mineralization in the exosphere. The latter exogenic processes modify the long-term abundance and behaviour of certain elements in the deeper earth that can be traced over time in the chemistry of mantle-derived magmas. The redox budget of subduction is controlled by the flux of oxidized versus reduced forms of Fe, S, H, or C, and impacts the long-term evolution of oxygen on the planet, critical for life in the exosphere. In particular, the sulfur cycle is specifically tied to the evolution of oxygen on Earth's surface over time and critical to biogeochemical cycles on the surface. The behaviour of sulfur in the exogenic system is well-studied and fairly well understood using sedimentary records. An originally sulfidic ocean on Earth gave way with time and oxygenation to one that is sulfate dominated over the last two billion years. In contrast, far less is known of the deep earth cycle of S, and more so its history. The record of the endogenic cycle can only be monitored via what comes out of the mantle (magmas and their gases), or what goes down via subduction (hydrothermally-altered or weathered subducted lithosphere). Interest in the endogenic cycle of S is not new but several outstanding conundrums remain for sulfur in arc magmas that point to the importance of the subduction process. A hitherto ignored component of the paradox of the sulfur cycle is the sedimentary veneer that sits atop the subducted oceanic basalt crust. Compilations show only 0.12 wt% S in altered ocean basalt crust, but up to 10 times that amount in oceanic sediments, tied to their Fe content (in pyrite). These abundances may seem trivial, but the behaviour of this small amount of S in subduction is not fully appreciated and its oxidation potential in the arc mantle is enormous. The conversion of subducted sulfide to sulfate is a 8

  11. Effects of rare earth elements on growth and metabolism of medicinal plants

    Directory of Open Access Journals (Sweden)

    Chunhong Zhang

    2013-02-01

    Full Text Available The rare earth elements (REEs are a set of 17 chemical elements. They include the lanthanide series from lanthanum (La to lutetium (Lu, scandium (Sc, and yttrium (Y in the periodic table. Although REEs are used widely in industry and agriculture in China for a long time, there has been increasing interest in application of REEs to medicinal plants in recent years. In this paper, we summarize researches in the past few decades regarding the effects of REEs on the germination of seeds, the growth of roots, total biomass, and the production of its secondary metabolites, as well as their effects on the absorption of minerals and metals by medicinal plants. By compilation and analysis of these data, we found that REEs have promoting effects at low concentrations and negative effects at comparatively high concentrations. However, most studies focused only on a few REEs, i.e., La, cerium (Ce, neodymium (Nd and europium (Eu, and they made main emphasis on their effects on regulation of secondary metabolism in tissue-cultured plants, rather than cultivated medicinal plants. Advanced research should be invested regarding on the effects of REEs on yields of cultivated plants, specifically medicinal plants.

  12. Microbial mobilization of rare earth elements (REE from mineral solids—A mini review

    Directory of Open Access Journals (Sweden)

    Fabienne Barmettler

    2016-06-01

    Full Text Available In the light of an expected supply shortage of rare earth elements (REE measures have to be undertaken for an efficient use in all kinds of technical, medical, and agricultural applications as well as—in particular—in REE recycling from post-use goods and waste materials. Biologically- based methods might offer an alternative and supplement to physico-chemical techniques for REE recovery and recycling. A wide variety of physiologically distinct microbial groups have the potential to be applied for REE bioleaching form solid matrices. This source is largely untapped until today. Depending of the type of organism, the technical process (including a series of influencing factors, the solid to be treated, and the target element, leaching efficiencies of 80 to 90% can be achieved. Bioleaching of REEs can help in reducing the supply risk and market dependency. Additionally, the application of bioleaching techniques for the treatment of solid wastes might contribute to the conversion towards a more sustainable and environmental friendly economy.

  13. Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis

    Science.gov (United States)

    Zaharescu, Dragos G.; Burghelea, Carmen I.; Dontsova, Katerina; Presler, Jennifer K.; Maier, Raina M.; Huxman, Travis; Domanik, Kenneth J.; Hunt, Edward A.; Amistadi, Mary K.; Gaddis, Emily E.; Palacios-Menendez, Maria A.; Vaquera-Ibarra, Maria O.; Chorover, Jon

    2017-02-01

    The rare earth elements (REE) are increasingly important in a variety of science and economic fields, including (bio)geosciences, paleoecology, astrobiology, and mining. However, REE distribution in early rock-microbe-plant systems has remained elusive. We tested the hypothesis that REE mass-partitioning during incipient weathering of basalt, rhyolite, granite and schist depends on the activity of microbes, vascular plants (Buffalo grass), and arbuscular mycorrhiza. Pore-water element abundances revealed a rapid transition from abiotic to biotic signatures of weathering, the latter associated with smaller aqueous loss and larger plant uptake. Abiotic dissolution was 39% of total denudation in plant-microbes-mycorrhiza treatment. Microbes incremented denudation, particularly in rhyolite, and this resulted in decreased bioavailable solid pools in this rock. Total mobilization (aqueous + uptake) was ten times greater in planted compared to abiotic treatments, REE masses in plant generally exceeding those in water. Larger plants increased bioavailable solid pools, consistent with enhanced soil genesis. Mycorrhiza generally had a positive effect on total mobilization. The main mechanism behind incipient REE weathering was carbonation enhanced by biotic respiration, the denudation patterns being largely dictated by mineralogy. A consistent biotic signature was observed in La:phosphate and mobilization: solid pool ratios, and in the pattern of denudation and uptake.

  14. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    M. Opiela

    2012-04-01

    Full Text Available The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%, phosphorus (from 0.006 to 0.008% and oxygen (6 ppm. The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non- metallic inclusions during hot-working.

  15. Determination of the CKM Element V(Ub)

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Dominique; /Victoria U.

    2007-04-06

    The precise determination of the CKM matrix element |V{sub ub}| is crucial in testing the Standard Model mechanism for CP violation. From a sample of 88 million B{bar B} pairs collected with the BABAR detector, charmless semileptonic B decays are selected using simultaneous requirements on the electron energy, E{sub e}, and the invariant mass squared of the electron-neutrino pair, q{sup 2}. The partial branching fraction, unfolded for detector effects, is determined in a region of the q{sup 2}-E{sub e} plane where the dominating semileptonic decays to charm mesons are highly suppressed. Theoretical calculations based on the Heavy Quark Expanion allows for a determination of |V{sub ub}| = (3.95 {+-} 0.27{sub -0.42}{sup +0.58} {+-} 0.25) x 10{sup -3}, where the errors represent experimental, heavy quark parameters and theoretical uncertainties, respectively.

  16. Separation of Rare Earth Elements (Sm, Eu, Gd) in Bastnaesite by Displacement Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Se Mann; Lee, Jin Young; Han, Choon [Kwangwoon University, Seoul (Korea); Kim, Sung Don; Yoon, Ho Sung; Kim, Joon Soo [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-10-31

    Rare earth elements (Sm, Eu, Gd) in bastnaesite were separated by displacement chromatography. Experiments were conducted to investigate elution characteristics and effects of retaining ions on separations of those elements. During separation processes, ions were exchanged in loading and separation columns packed with the cation-exchange resin (DOWEX 50WX8-200). Various retaining ions such as Cu{sup 2+}, Zn{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Fe{sup 3+} and Al{sup 3+} were employed in the separation column. When the EDTA solution was used as an eluent, acidity and concentrations were regulated. Also, rare earth elements(RE) in bastnaesite ore were ionized by hydrochloric acid prior to separations. According to experimental results, Gd, Eu and Sm were eluated by turns and the order was in accord with that of stability constants for chelating complex with EDTA. During the eluation of RE, the acidity of eluate was lowered (pH 5-6) because retaining ions formed chelating complex with EDTA and hydrogen ion was formed as a result. The highest separation efficiency ({alpha}{sub Gd}{sup Sm} = 0.9388) was obtained when Al{sup 3+} was employed as a retaining ion. On the other hand, the lowest ({alpha}{sub Gd}{sup Sm} = 0.3876) was when Fe{sup 3+} was employed as a retaining ion. Another series of experiments were conducted to investigate effects of RE{sub 1}-EDTA eluent on the separation of RE. For experiments, Cu{sup 2+}, in the separation column was exchanged with retaining ion. Then, pure RE{sub 1}(Sm, Eu) was mixed with EDTA to form RE{sub 1}-EDTA solution(O.015 M) which was fed to the column as an eluent. Results showed that the separation efficiency improved because the eluation of RE{sub 1} in RE{sub 1}-EDTA solution was retarded compared to other RE. That is, the separation efficiency({alpha}{sub Gd}{sup Sm}) increased to 1.1612 and 1.4545 when SM-EDTA and EU-EDTA solution were used respectively. When EDTA solution was only used as an eluent, {alpha}{sub Gd}{sup Sm

  17. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic.

    Science.gov (United States)

    MacMillan, Gwyneth Anne; Chételat, John; Heath, Joel P; Mickpegak, Raymond; Amyot, Marc

    2017-09-07

    Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂(15)N, ∂(13)C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g(-1)), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.

  18. Determination of diametral error using finite elements and experimental method

    Directory of Open Access Journals (Sweden)

    A. Karabulut

    2010-01-01

    Full Text Available This study concerns experimental and numerical analysis on a one-sided bound workpiece on the lathe machine. Cutting force creates deflection on workpiece while turning process is on. Deflection quantity is estimated utilizing Laser Distance Sensor (LDS with no contact achieved. Also diametral values are detected from different sides of workpiece after each turning operation. It is observed that diametral error differs due to the quantity of the deflection. Diametral error reached a peak where deflection reached a peak. Model which constituted finite elements is verified by experimental results. And also, facts which caused diametral error are determined.

  19. PRELIMINARY RESULTS ON THE OCCURRENCE OF RARE EARTH ELEMENTS IN THE AQUATIC SYSTEM OF THE PIALASSA BAIONA, RAVENNA (ITALY

    Directory of Open Access Journals (Sweden)

    Rosa Cidu

    2009-07-01

    Full Text Available The Site of Community Importance of the Pineta S. Vitale, bordered by the Pialassa Baiona lagoon system, is submitted to increasing deterioration due to a subsiding phenomenon, groundwater salinization and contamination from the industrial sites of Ravenna. Within a multidisciplinary research project, evaluation of the background level of Rare Earth Elements (REE, not regulated at present, but potentially harmful to human health and the characterization of processes which control their migration and retention were performed to contribute to the knowledge on the present environmental quality of the Ravenna area. Concentrations of total and dissolved elements were determined in 40 water samples comprising surface waters, soil waters, shallow and deep groundwater. Dissolved major and minor components generally showed increasing concentrations from West to East (i.e. towards the sea and appeared mostly derived from a marine source. Marked correlations between dissolved ΣREE and Al and Fe concentrations in the filtered fraction <0.4 μm were observed, especially in the soil waters. Shale-normalized patterns of the dissolved REE in the soil waters showed an enrichment in the Middle REE (MREE; such patterns being attributed to preferential adsorption of the MREE onto colloidal particles (<0.4 μm.

  20. Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil.

    Science.gov (United States)

    de Campos, Francisco Ferreira; Enzweiler, Jacinta

    2016-05-01

    The concentrations of rare earth elements (REE), measured in water samples from Atibaia River and its tributary Anhumas Creek, Brazil, present excess of dissolved gadolinium. Such anthropogenic anomalies of Gd in water, already described in other parts of the world, result from the use of stable and soluble Gd chelates as contrast agents in magnetic resonance imaging. Atibaia River constitutes the main water supply of Campinas Metropolitan area, and its basin receives wastewater effluents. The REE concentrations in water samples were determined in 0.22-μm pore size filtered samples, without and after preconcentration by solid-phase extraction with bis-(2-ethyl-hexyl)-phosphate. This preconcentration method was unable to retain the anthropogenic Gd quantitatively. The probable reason is that the Gd chelates dissociate slowly in acidic media to produce the free ion that is retained by the phosphate ester. Strong correlations between Gd and constituents or parameters associated with effluents confirmed the source of most Gd in water samples as anthropogenic. The shale-normalized REE patterns of Atibaia River and Anhumas Creek water samples showed light and heavy REE enrichment trends, respectively. Also, positive Ce anomalies in many Atibaia River samples, as well as the strong correlations of the REE (except Gd) with terrigenous elements, imply that inorganic colloidal particles contributed to the REE measured values.

  1. Mineralogy and geochemistry of trace and Rare Earth Element from the Manaila massive sulphide deposit (Eastern Carpathians, Romania)

    Science.gov (United States)

    Moldoveanu, S.; Iancu, O. G.; Kasper, H. U.

    2012-04-01

    Keywords: Eastern Carpathians, Mănăila deposit, REE, trace elements, pyrite The present paper deal with the mineralogy and trace elements geochemistry of sulphide deposits from Mănăila mine field located in NE area of Eastern Carpathians Mountains (Romania). The mineralization occurs within metamorphic rocks of Tulgheş terrane, part of Crystalline-Mezozoic zone of the Eastern Carpathians. The metamorphic rocks in Mănăila area consist of felsic metavolcanics rocks with quartzites and quartz-feldspathic rocks as prevailing types. The P-T metamorphic conditions are typical of greenschis facies with biotite and garnet (Mn-Grt) in mineral assemblage. The mineralogical study was performed using reflected light microscope and Scanning Electron Microscopy (SEM) methods. Thus, the both methods show that the main sulphides minerals are represented by pyrite and chalcopyrite, being followed by sphalerite, galena and little amount of Cu sulphosalts (tetrahedrite and bournonite) and also by gangue minerals (quartz and carbonates). Pyrite occurs as large euhedral to subhedral grains in quartz and small rounded inclusion in chalcopyrite. The trace elements analysis was achieved on whole-rock samples and involved the determination of REE, LIL (Rb, Ba, Sr) and HFS (Y, Zr, Hf, U, Th, Nb, Ta) by ICP-MS method. The concentration of LIL and HFS trace elements in mineralized rocks decrease as follows: Ba > Bi > As > Sb > Co > Ga > Ni > Cd. Even if the barium contents in Mănăila ore is high, baritina (BaSO4) was not identified throught the mineralogical analyses carried out so far. The total rare earth element content (REE) of the samples from Mănăila range from 26.84 to 246.46 ppm. Chondrite - normalized REE patterns of the mineralized rocks show that the LREE are enriched in relation to the HREE. Also a positive Ce anomalies and negative Eu anomalies are present. Y/Ho and Zr/Hf ratios are close to the chondritic ratios indicating Charge-and-Radius-Controlled (CHARAC

  2. Using rare earth elements to control phosphorus and track manure in runoff.

    Science.gov (United States)

    Buda, Anthony R; Church, Clinton; Kleinman, Peter J A; Saporito, Lou S; Moyer, Barton G; Tao, Liang

    2010-01-01

    Concern over the enrichment of agricultural runoff with phosphorus (P) from land applied livestock manures has prompted the development of manure amendments that minimize P solubility. In this study, we amended poultry, dairy, and swine manures with two rare earth chlorides, lanthanum chloride (LaCl(3).7H(2)O) and ytterbium chloride (YbCl(3).6H(2)O), to evaluate their effects on P solubility in the manure following incubation in the laboratory as well as on the fate of P and rare earth elements (REEs) when manures were surface-applied to packed soil boxes and subjected to simulated rainfall. In terms of manure P solubility, La:water-extractable P (WEP) ratios close to 1:1 resulted in maximum WEP reduction of 95% in dairy manure and 98% in dry poultry litter. Results from the runoff study showed that REE applications to dry manures such as poultry litter were less effective in reducing dissolved reactive phosphorus (DRP) in runoff than in liquid manures and slurries, which was likely due to mixing limitations. The most effective reductions of DRP in runoff by REEs were observed in the alkaline pH soil, although reductions of DRP in runoff from the acidic soil were still >50%. Particulate REEs were strongly associated with particulate P in runoff, suggesting a potentially useful role in tracking the fate of P and other manure constituents from manure-amended soils. Finally, REEs that remained in soil following runoff had a tendency to precipitate WEP, especially in soils receiving manure amendments. The findings have valuable applications in water quality protection and the evaluation of P site assessment indices.

  3. Rare-earth elements enrichment of Pacific seafloor sediments: the view from volcanic islands of Polynesia

    Science.gov (United States)

    Melleton, Jérémie; Tuduri, Johann; Pourret, Olivier; Bailly, Laurent; Gisbert, Thierry

    2014-05-01

    Rare-earth elements (REEs) are key metals for «green» technologies such as energy saving lamps or permanent magnets used in, e.g., wind turbines, hard disk drives, portable phone or electric or hybrid vehicles. Since several years, world demand for these metals is therefore drastically increasing. The quasi-monopolistic position of China, which produces around 95 % of global REEs production, generates risks for the industries that depend on a secure supply of REEs. In response, countries are developing and diversifying their supply sources, with new mining projects located outside China and efforts in the area of REEs recycling. Most of these projects focus on deposits related to carbonatites and alkaline-peralkaline magmatism, which are generally enriched in light REEs (LREEs) compared to the heavy REEs (HREEs)-enriched deposits of the ion-adsorption types, located in southern China. However, a recent study revealed new valuable resources corresponding to seafloor sediments located in the south-eastern and north-central Pacific. The deep-sea mud described by these authors show a higher HREE/LREE ratio than ion-adsorption deposits, a feature which significantly increases their economic interest. The authors suggest mid-ocean ridge hydrothermal activity as an explanation to this anomalous enrichment. However, several contributions have documented considerable REEs enrichment in basalts and peridotitic xenoliths from French Polynesia. Several arguments have been exposed in favour of a supergene origin, with a short migration, suggesting that REEs were collected from weathered basalts. The Tahaa volcanic island (Sous-le-Vent Island, Society Archipelago, French Polynesia) is the first location where such enrichment has been described. New petrographic and mineralogical investigations confirm a supergene mobilization of this abnormal occurrence. REE-bearing minerals (mainly phosphates of the rhabdophane group) are primarily located within basalt vesicles but also in

  4. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Gutiérrez, Silvia C.; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart, E-mail: s.t.wagland@cranfield.ac.uk

    2015-08-15

    Highlights: • Samples from multiple core drills were obtained from 4× landfill sites in the UK. • Each sample analysed for rare earth elements, critical metals and valuable metals. • Two stage microwave digestion method ensuring high yield. • High quantities of copper and aluminium were observed in the soil layers of landfill. • Across 4× landfills aluminium and copper present has a value of around $400 million. - Abstract: Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58 ± 6 mg kg{sup −1} for REEs comprising 44 ± 8 mg kg{sup −1} for light REEs, 11 ± 2 mg kg{sup −1} for heavy REEs and 3 ± 1 mg kg{sup −1} for Scandium (Sc) and 3 ± 1.0 mg kg{sup −1} of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are

  5. Magnetic resonance signal moment determination using the Earth's magnetic field

    Science.gov (United States)

    Fridjonsson, E. O.; Creber, S. A.; Vrouwenvelder, J. S.; Johns, M. L.

    2015-03-01

    We demonstrate a method to manipulate magnetic resonance data such that the moments of the signal spatial distribution are readily accessible. Usually, magnetic resonance imaging relies on data acquired in so-called k-space which is subsequently Fourier transformed to render an image. Here, via analysis of the complex signal in the vicinity of the centre of k-space we are able to access the first three moments of the signal spatial distribution, ultimately in multiple directions. This is demonstrated for biofouling of a reverse osmosis (RO) membrane module, rendering unique information and an early warning of the onset of fouling. The analysis is particularly applicable for the use of mobile magnetic resonance spectrometers; here we demonstrate it using an Earth's magnetic field system.

  6. Rare earth element distribution and mineralization in Sweden: an application of principal component analysis to FOREGS soil geochemistry

    NARCIS (Netherlands)

    Sadeghi, Martiya; Morris, George A.; Carranza, Emmanuel John M.; Laderberger, Anna; Andersson, Madelen

    2013-01-01

    This paper presents results of statistical analyses and spatial interpretations of distributions of rare earth elements (REEs) in Sweden using the Forum of European Geological Surveys (FOREGS) geochemical database of topsoil, subsoil and stream sediment compositions. Raster maps depicting spatial di

  7. Use of rare earth oxide tracers to determine source areas for sediment eroded from arable hillslopes

    Science.gov (United States)

    Deasy, C.; Quinton, J. N.

    2009-04-01

    hillslope, the topslope, midslope, and downslope hillslope segments without tramlines, and the tramline areas. Erosion rates were measured from a number of hillslope areas, and sediment samples were collected from the hillslope areas after a series of rainfall events, and analysed for rare earth element concentrations in order to determine the amounts of different tracers eroded in each event. The results of the paper provide insights into the transport of sediment within arable hillslopes. For example, the upslope section of the hillslope is more important as a sediment source than the downslope area, and much of the applied tracer remained on the hillslope and was not eroded in the monitored rainfall events, suggesting that much of the hillslope area was not connected to the downslope runoff transport pathways.

  8. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  9. Rare earth elements in the phosphatic-enriched sediment of the Peru shelf

    Science.gov (United States)

    Piper, D.Z.; Baedecker, P.A.; Crock, J.G.; Burnett, W.C.; Loebner, B.J.

    1988-01-01

    Apatite-enriched materials from the Peru shelf have been analyzed for their major oxide and rare earth element (REE) concentrations. The samples consist of (1) the fine fraction of sediment, mostly clay material, (2) phosphatic pellets and fish debris, which are dispersed throughout the fine-grained sediment, (3) tabular-shaped phosphatic crusts, which occur within the uppermost few centimeters of sediment, and (4) phosphatic nodules, which occur on the seafloor. The bulk REE concentrations of the concretions suggest that these elements are partitioned between the enclosed detrital material and the apatite fraction. Analysis of the fine-grained sediment with which the samples are associated suggested that this detrital fraction in the concretions should have shale REE values; the analysis of the fish debris suggested that the apatite fraction might have seawater values. The seawater contribution of REE's is negligible in the nodules and crust, in which the apatite occurs as a fine-grained interstitial cement. That is, the concentration of REE's and the REE patterns are predominantly a function of the amount of enclosed fine-grained sediment. By contrast, the REE pattern of the pelletal apatite suggests a seawater source and the absolute REE concentrations are relatively high. The REE P2O5 ratios of the apatite fraction of these samples thus vary from approximately zero (in the case of the crust and nodules) to as much as approximately 1.2 ?? 10-3 (in the case of the pellets). The range of this ratio suggests that rather subtle variations in the depositional environment might cause a significant variation in the REE content of this authigenic fraction of the sediment. Pelletal glauconite was also recovered from one sediment core. Its REE concentrations closely resemble those of the fish debris. ?? 1988.

  10. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha.

    Science.gov (United States)

    Hopfe, Stefanie; Flemming, Katrin; Lehmann, Falk; Möckel, Robert; Kutschke, Sabine; Pollmann, Katrin

    2017-04-01

    In most modern technologies such as flat screens, highly effective magnets and lasers, as well as luminescence phosphors, Rare Earth Elements (REE) are used. Unfortunately no environmentally friendly recycling process exists so far. In comparison to other elements the interaction of microorganisms with REE has been studied to a less extent. However, as REE are ubiquitously present in nature it can be assumed that microorganisms play an important role in the biogeochemistry of REE. This study investigates the potential of organic acid-producing microbes for extracting REE from industrial waste. In Germany, 175 tons of fluorescent phosphor (FP) are collected per year as a distinct fraction from the recycling of compact fluorescent lamps. Because the FP contains about 10% of REE-oxides bound in the so-called triband dyes it is a readily accessible secondary resource of REE. Using the symbiotic mixed culture Kombucha, consisting of yeasts and acetic acid bacteria, REE were leached at a significant rate. The highest leaching-rates were observed in shake cultures using the entire Kombucha-consortium or its supernatant as leaching agent compared to experiments using the isolates Zygosaccharomyces lentus and Komagataeibacter hansenii as leaching organisms. During the cultivation, the pH decreased as a result of organic acid production (mainly acetic and gluconic acid). Thus, the underlying mechanism of the triband dye solubilisation is probably linked to the carboxyl-functionality or a proton excess. In accordance with the higher solubility of REE-oxides compared to REE-phosphates and -aluminates, the red dye Y2O3:Eu(2+) containing relatively expensive REE was shown to be preferentially solubilized. These results show that it is possible to dissolve the REE-compounds of FP with the help of microbial processes. Moreover, they provide the basis for the development of an eco-friendly alternative to the currently applied methods that use strong inorganic acids or toxic

  11. Ultrasound-assisted extraction of rare-earth elements from carbonatite rocks.

    Science.gov (United States)

    Diehl, Lisarb O; Gatiboni, Thais L; Mello, Paola A; Muller, Edson I; Duarte, Fabio A; Flores, Erico M M

    2017-04-12

    In view of the increasing demand for rare-earth elements (REE) in many areas of high technology, alternative methods for the extraction of these elements have been developed. In this work, a process based on the use of ultrasound for the extraction of REE from carbonatite (an igneous rock) is proposed to avoid the use of concentrated reagents, high temperature and excessive extraction time. In this pioneer work for REE extraction from carbonatite rocks in a preliminary investigation, ultrasonic baths, cup horn systems or ultrasound probes operating at different frequencies and power were evaluated. In addition, the power released to the extraction medium and the ultrasound amplitude were also investigated and the temperature and carbonatite mass/volume of extraction solution ratio were optimized to 70°C and 20mg/mL, respectively. Better extraction efficiencies (82%) were obtained employing an ultrasound probe operating at 20kHz for 15min, ultrasound amplitude of 40% (692Wdm(-3)) and using a diluted extraction solution (3% v/v HNO3+2% v/v HCl). It is important to mention that high extraction efficiency was obtained even using a diluted acid mixture and relatively low temperature in comparison to conventional extraction methods for REE. A comparison of results with those obtained by mechanical stirring (500rpm) using the same conditions (time, temperature and extraction solution) was carried out, showing that the use of ultrasound increased the extraction efficiency up to 35%. Therefore, the proposed ultrasound-assisted procedure can be considered as a suitable alternative for high efficiency extraction of REE from carbonatite rocks. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Life cycle assessment of the production of rare earth elements for energy applications: a review

    Directory of Open Access Journals (Sweden)

    Julio eNavarro

    2014-11-01

    Full Text Available Rare earth elements (REEs are a group of seventeen elements with similar chemical properties, including fifteen in the lanthanide group, yttrium, and scandium. Due to their unique physical and chemical properties REEs gain increasing importance in many new energy technologies and systems that contribute to reduce greenhouse gas emissions and fossil fuel depletion (e.g., wind turbine, electric vehicles, high efficiency lighting, batteries, and hydrogen storage. However, it is well known that production of REEs is far from environmentally sustainable as it requires significant material and energy consumption while generating large amounts of air/water emissions and solid waste. Although life cycle assessment (LCA has been accepted as the most comprehensive approach to quantify the environmental sustainability of a product or process, to date, there have been only very limited LCA studies on the production of REEs. With the continual growth of renewable energy and energy efficient technologies, global production of REEs will increase. Therefore reducing environmental footprints of REE production becomes critical and identifying environmental hotspots based on a holistic and comprehensive assessment on environmental impacts serves as an important starting point. After providing an overview of LCA methodology and a high-level description of the major REE production routes used from 1990s to today, this paper reviews the published LCA studies on the production of REEs. To date, almost all the LCA studies are based on process information collected from the operation of Mountain Pass facility in U.S. in 1990s and the operation of facilities in Bayan Obo, China. Knowledge gaps are identified and future research efforts are suggested to advance understanding on environmental impacts of REE production from the life cycle perspective.

  13. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    Science.gov (United States)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-02-01

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) & 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) &29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  14. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    Energy Technology Data Exchange (ETDEWEB)

    AL-Areqi, Wadeeah M., E-mail: walareqi@yahoo.com; Majid, Amran Ab., E-mail: walareqi@yahoo.com; Sarmani, Sukiman, E-mail: walareqi@yahoo.com [Nuclear Science Programme, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi (Malaysia)

    2014-02-12

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of {sup 232}Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  15. Method for determination of small amounts of rare earths and thorium in phosphate rocks

    Science.gov (United States)

    Waring, C.L.; Mela, H.

    1953-01-01

    In laboratory investigations, interest developed in the possible rare-earth content of phosphate samples from Florida and the northwestern United States. Because of the difficulty of making chemical determinations of traces of individual rare earths, a combined chemical-spectrographic method was investigated. After removal of iron by the extraction of the chloride with ether, the rare earths and thorium are concentrated by double oxalate precipitation, using calcium as a carrier. The rare earths are freed from calcium by an ammonium hydroxide precipitation with a fixed amount of aluminum as a carrier. The aluminum also serves as an internal standard in the final spectrographic analysis. The method will determine from 0.02 to 2 mg. of each rare earth with an error no greater than 10%. The investigation has resulted in a fairly rapid and precise procedure, involving no special spectrographic setup. The method could be applied to other types of geologic materials with the same expected accuracy.

  16. Rare earth element fingerprints in Korean coastal bay sediments: Association with provenance discrimination

    Science.gov (United States)

    Kang, Jeongwon; Woo, Han Jun; Jang, Seok; Jeong, Kap-Sik; Jung, Hoi-Soo; Hwang, Ha Gi; Lee, Jun-Ho; Cho, Jin Hyung

    2016-09-01

    Rare earth elements (REEs: La-Lu) in surface sediments collected from the mouth and middle tidal flats of Gomso Bay, South Korea, in August 2011 and May 2012 were analyzed to investigate the fine-grained sediment provenance. The upper continental crust (UCC)-normalized light REEs (LREEs: La to Nd) were more enriched than the middle REEs (MREEs: Sm to Dy) and heavy REEs (HREEs: Ho to Lu), resulting in large (La/Yb)UCC (1.9 ± 0.4) to (Gd/Yb)UCC (1.4 ± 0.2) ratios. The monthly (La/Yb)UCC values differed between the mouth and middle tidal flats due to deposition of fine-grained sediments that originated from distant rivers (the Geum and Yeongsan) and the Jujin Stream, located on the southern shore of the inner bay. We observed relative reductions in the (La/Yb)UCC value and REE content in the sediments from the mouth of the bay compared with those from Jujin Stream sediments. Confined to the middle tidal flat around the KH Line of Jujin Stream, the sediments, most enriched in LREEs but depleted in Eu, were distributed in August as strong Jujin Stream runs. Here, we suggest that an increase in LREE/HREE and decrease in MREE/LREE ratios can be used as a proxy to identify the Jujin Stream provenance in mixed riverine sediments and to trace Jujin Stream sediments within the Gomso Bay tidal flat, especially in the summer rainy season.

  17. Corrosion Penetration and Crystal Structure of AA5022 in HCl Solution and Rare Earth Elements

    Institute of Scientific and Technical Information of China (English)

    A.A.El-Meligi; S.H. Sanad; A.A.Ismail; A.M. Baraka

    2005-01-01

    Al-alloy (AA5022) corrosion penetration (CP) and crystal structure were investigated after running static immersion corrosion tests in 1 mol/L HCl solution and different concentrations of rare earth elements (La3+), (Ce3+) and their combination, at different temperatures. X-ray diffraction (XRD) was used to examine the surface structure before and after immersion, and secondary electron detector (SED) was operated to study surface morphology. In 1 mol/L HCl solution the corrosion penetration increased with increasing temperature and immersion time. The increase of La3+ concentrations up to 1000× 10-6 g/L led to the decrease in the corrosion penetration, and the decrease in Ce3+concentrations up to 50×10-6 g/L decreases the corrosion penetration of the alloy. Mix3 (combination of La3+ and Ce3+) dramatically reduced the corrosion penetration. This suggests that a synergistic effect exists between La3+and Ce3+. The reaction kinetics both in absence and presence of La3+ and Ce3+ and their combination would follow a parabolic rate law. The XRD patterns revealed that the intensities of certain hkl phases are affected. The crystalline structure has not been deformed either before or after testing and there are no additional peaks except that of the as-received alloy. In the case of accelerating CP, the surface morphology shows that the roughness andvoids of surface are increased.

  18. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?

    Science.gov (United States)

    Emsbo, Poul; McLaughlin, Patrick I.; Breit, George N.; du Bray, Edward A.; Koenig, Alan E.

    2015-01-01

    The critical role of rare earth elements (REEs), particularly heavy REEs (HREEs), in high-tech industries has created a surge in demand that is quickly outstripping known global supply and has triggered a worldwide scramble to discover new sources. The chemical analysis of 23 sedimentary phosphate deposits (phosphorites) in the United States demonstrates that they are significantly enriched in REEs. Leaching experiments using dilute H2SO4 and HCl, extracted nearly 100% of their total REE content and show that the extraction of REEs from phosphorites is not subject to the many technological and environmental challenges that vex the exploitation of many identified REE deposits. Our data suggest that phosphate rock currently mined in the United States has the potential to produce a significant proportion of the world's REE demand as a byproduct. Importantly, the size and concentration of HREEs in some unmined phosphorites dwarf the world's richest REE deposits. Secular variation in phosphate REE contents identifies geologic time periods favorable for the formation of currently unrecognized high-REE phosphates. The extraordinary endowment, combined with the ease of REE extraction, indicates that such phosphorites might be considered as a primary source of REEs with the potential to resolve the global REE (particularly for HREE) supply shortage.

  19. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    Science.gov (United States)

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  20. Accumulation and Fractionation of Rare Earth Elements in Soil-Rice Systems

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Accumulation and fractionation of rare earth elements (REEs) were studied through applications of exogenous REEs in soils with pot-cultured rice for 2 years. The results show that the biomass of rice consistently decreases at sproutto exogenous REE exposure is much weaker than that of wheat. The distribution patterns of REEs in rice of the control are similar to that in the soil, both exhibiting light REE (LREE) enrichment and positive Tb in the roots and the aboveground terns of REEs in roots, some effects in stems and leaves, and almost no effects in grains. Accumulation rates of REEs in different organs follow the order of roots > leaves > stems > panicle axes and crusts > grains. The roots take up different REEs at almost the same rates, except for the selective accumulation of Tb. In the aboveground parts, the accumulation rates of middle REEs (MREEs) and heavy REEs (HREEs) are higher than those of LREEs, there are significant selective accumulations of Eu and Tb. Accumulation rates of REEs in the roots, stems and leaves increase with the increasing applications of exogenous REEs, but they change slightly in the panicle axes, crusts and grains, demonstrating that it is easier for the roots, stems and leaves to accumulate exogenous REEs. Selective accumulation and fractionation of exogenous Nd are also observed in rice organs including grains.

  1. Template polymerization synthesis of hydrogel and silica composite for sorption of some rare earth elements.

    Science.gov (United States)

    Borai, E H; Hamed, M G; El-kamash, A M; Siyam, T; El-Sayed, G O

    2015-10-15

    New sorbents containing 2-acrylamido 2-methyl propane sulphonic acid monomer onto poly(vinyl pyrilidone) P(VP-AMPS) hydrogel and P(VP-AMPS-SiO2) composite have been synthesized by radiation template polymerization. The effect of absorbed dose rate (kGy), crosslinker concentration and polymer/monomer ratio on the degree of template polymerization of P(VP-AMPS) hydrogel was studied. The degree of polymerization was evaluated by the calculated percent conversion and swelling degree. The maximum capacity of P(VP-AMPS) hydrogel toward Cu(+2) metal ion found to be 91 mg/gm. The polymeric composite P(VP-AMPS-SiO2) has been successfully synthesized. The structure of the prepared hydrogel and composite were confirmed by FTIR, thermal analysis (TGA and DTA) and SEM micrograph. Batch adsorption studies for La(3+), Ce(3+), Nd(3+), Eu(3+) and Pb(+2) metal ions on the prepared hydrogel and composite were investigated as a function of shaking time, pH and metal ion concentration. The sorption efficiency of the prepared hydrogel and composite toward light rare earth elements (LREEs) are arranged in the order La(3+)>Ce(3+)>Nd(3+)>Eu(3+). The obtained results demonstrated the superior adsorption capacity of the composite over the polymeric hydrogel. The maximum capacity of the polymeric composite was found to be 116, 103, 92, 76, 74 mg/gm for La(3+), Ce(3+), Nd(3+), Eu(3+) and Pb(2+) metal ions respectively.

  2. A novel method to assess the effect of diagenesis on fossil teeth: Rare earth element signatures

    Institute of Scientific and Technical Information of China (English)

    WEN Xingyue; WANG Chengshan; HUANG Chengmin; BAI Song; ZHANG Qing

    2011-01-01

    An attempt was made to test the validity of the signatures of rare earth elements (REE) as a tool to judge the effect of diagenesis on fossil teeth.Sample REE contents and features of fossil teeth and sediments from Jinsha Relics,Sichuan,Southwest China were analyzed.The difference in REE content between fossil teeth is significantly greater than that between sediments at the Jinsha Relics.Chondrite-normalized REE patterns showed that obvious LREE enrichment and strong Ce and HREE depletion occurred in all fossil teeth samples.Meanwhile δCe and δEu values varied more dramatically in fossil teeth than in sediments.Accordingly,low content,LREE enrichment,strong Ce depletion,the significantly positive correlation between LREE/HREE and δCe,and unchanged (La/Yb)N demonstrated that the fossil teeth from Jinsha Relics have not been contaminated by diagenesis.The REE signature might be a potential proxy to assess the effect of diagenesis on fossil teeth.

  3. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.

    Science.gov (United States)

    Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R

    2015-08-18

    The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  4. Responses of plant calmodulin to endocytosis induced by rare earth elements.

    Science.gov (United States)

    Wang, Lihong; Cheng, Mengzhu; Chu, Yunxia; Li, Xiaodong; Chen, David D Y; Huang, Xiaohua; Zhou, Qing

    2016-07-01

    The wide application of rare earth elements (REEs) have led to their diffusion and accumulation in the environment. The activation of endocytosis is the primary response of plant cells to REEs. Calmodulin (CaM), as an important substance in calcium (Ca) signaling systems, regulating almost all of the physiological activities in plants, such as cellular metabolism, cell growth and division. However, the response of CaM to endocytosis activated by REEs remains unknown. By using immunofluorescence labeling and a confocal laser scanning microscope, we found that trivalent lanthanum [La(III)], an REE ion, affected the expression of CaM in endocytosis. Using circular dichroism, X-ray photoelectron spectroscopy and computer simulations, we demonstrated that a low concentration of La(III) could interact with extracellular CaM by electrostatic attraction and was then bound to two Ca-binding sites of CaM, making the molecular structure more compact and orderly, whereas a high concentration of La(III) could be coordinated with cytoplasmic CaM or bound to other Ca-binding sites, making the molecular structure more loose and disorderly. Our results provide a reference for revealing the action mechanisms of REEs in plant cells.

  5. Rare earth element geochemistry of groundwater from a deep seated sandstone aquifer, northern Anhui province, China

    Institute of Scientific and Technical Information of China (English)

    Gui Herong; Sun Linhua; Chen Luwang; Chen Song

    2011-01-01

    Deep coal mines in northern Anhui province,China,provide opportunities for tracing the distribution and fractionation of rare earth elements (REEs) in deep seated environments.Major ions,as well as REE concentrations were measured in groundwater from a sandstone aquifer located between -400 and -280 m.Our results indicate that this groundwater consists of Cl·HCO3-Na or Cl·CO3-Na water types with warm temperature (30.1-31.4℃),circumneutral pH (7.27-8.61) and high levels of total dissolved solids (TDS- 1306-2165 mg/L).Concentrations of REEs in groundwater are high as expressed by their Nd concentrations (0.0086-0.018 μg/L).Except for weak heavy REEs (HREE) enrichment relative to light REEs (LREE),the similarity of REE distribution patterns between groundwater and aquifer rock indicate that enrichment of REEs is considered to be controlled by aquifer rock,as well as by their minerals,whereas the fractionation of REEs is controlled by HREE enriched minerals and,to a lesser extent,by inorganic REE complexes.Ce anomalies normalized to Post Archean Average Shale (PAAS) and aquifer rock are weak,which probably reflect the contribution of reduced conditions in combination with pH,rather than a signature of aquifer rock.

  6. Environmental geochemistry reflected by rare earth elements in Bohai Bay (North China) core sediments.

    Science.gov (United States)

    Xu, Ya-Yan; Song, Jin-Ming; Duan, Li-Qin; Li, Xue-Gang; Zhang, Ying; Sun, Pei-Yan

    2010-08-05

    In Bohai Bay sediment, two cores were collected to estimate the source of sediments, and assess the environmental changes. Sequential extractions were carried out in this study. Rare earth elements (REE) were leached out from four labile fractions: Exchangeable (L1), Bound to carbonates (L2), Bound to Fe-Mn oxides (L3), Bound to organic matter (L4), and the remainder was Residual (R5). The percentages of REE in different fractions follow the order: R5 > L3 > L2 > L4 > L1. With heavy REE depletion and no pronounced REE fractionation, NASC-normalized REE patterns of Bohai Bay sediments are quite consistent with that of Haihe River sediment, which is the key river of Bohai Bay. Y/Ho ratios of total contents are all much lower than the average value of continental crust, while Y/Ho ratios of L2 are higher than those of other fractions. Based on the patterns of REE and Y/Ho ratios of samples, sediments of Bohai Bay mainly come from terrigenous matters, which are mainly brought by Haihe River. And REE combined with carbonates may be partly inherited from anthropogenic matter. Moreover, environmental changes exert significant influences on the patterns and fractionations of REE, and they can be deduced from the characteristics of REE. Our results on the patterns and burial fluxes of REE reflect two environmental changes: Bohai Bay has been shifting towards more reducing conditions in the last one hundred years, and there was a large flood in 1939.

  7. State of rare earth elements in different environmental components in mining areas of China.

    Science.gov (United States)

    Liang, Tao; Li, Kexin; Wang, Lingqing

    2014-03-01

    China has relatively abundant rare earth elements (REEs) reserves and will continue to be one of the major producers of REEs for the world market in the foreseeable future. However, due to the large scale of mining and refining activities, large amounts of REEs have been released to the surrounding environment and caused harmful effects on local residents. This paper summarizes the data about the contents and translocation of REEs in soils, waters, atmosphere, and plants in REE mining areas of China and discusses the characteristics of their forms, distribution, fractionation, and influencing factors. Obviously high concentrations of REEs with active and bioavailable forms are observed in all environmental media. The mobility and bioavailability of REEs are enhanced. The distribution patterns of REEs in soils and water bodies are all in line with their parent rocks. Significant fractionation phenomenon among individual members of REEs was found in soil-plant systems. However, limited knowledge was available for REEs in atmosphere. More studies focusing on the behavior of REEs in ambient air of REE mining areas in China are highly suggested. In addition, systematic study on the translocation and circulation of REEs in various media in REEs mining areas and their health risk assessment should be carried out. Standard analytical methods of REEs in environments need to be established, and more specific guideline values of REEs in foods should also be developed.

  8. Unusual seeding mechanism for enhanced performance in solid-phase magnetic extraction of Rare Earth Elements

    Science.gov (United States)

    Polido Legaria, Elizabeth; Rocha, Joao; Tai, Cheuk-Wai; Kessler, Vadim G.; Seisenbaeva, Gulaim A.

    2017-03-01

    Due to the increasing demand of Rare Earth Elements (REE or RE), new and more efficient techniques for their extraction are necessary, suitable for both mining and recycling processes. Current techniques such as solvent extraction or solid adsorbents entail drawbacks such as using big volumes of harmful solvents or limited capacity. Hybrid nanoadsorbents based on SiO2 and highly stable γ-Fe2O3-SiO2 nanoparticles, proved recently to be very attractive for adsorption of REE, yet not being the absolute key to solve the problem. In the present work, we introduce a highly appealing new approach in which the nanoparticles, rather than behaving as adsorbent materials, perform as inducers of crystallization for the REE in the form of hydroxides, allowing their facile and practically total removal from solution. This induced crystallization is achieved by tuning the pH, offering an uptake efficiency more than 20 times higher than previously reported (up to 900 mg RE3+/g vs. 40 mg RE3+/g). The obtained phases were characterized by SEM-EDS, TEM, STEM and EFTEM and 13C and 29Si solid state NMR. Magnetic studies showed that the materials possessed enough magnetic properties to be easily removed by a magnet, opening ways for an efficient and industrially applicable separation technique.

  9. Inorganic Speciation of Rare Earth Elements in Chaohu Lake and Longganhu Lake, East China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Inorganic speciation of dissolved rare earth elements (REEs) were calculated for Chaohu Lake and Longganhu Lake by using the program MINTEQ 2. 30. The result shows that REE-Carbonate complexes, which account for more than 93 % of total REE are the dominate and typically species in solution. Moreover, carbonator complexes (LnCO3 +) were predicted to be the dominant species when pH between 7.2 and 8.0 and bicarbonate complexes (Ln (CO3)2-) were predicted to be the dominant species when pH > 8.0. The free ion specie (i. e., Ln3 + ) increases in these waters with pH decreasing and accounts for about 5. 03 %. The percentage of REE-phosphate complexes account for 1.61% of the dissolved REEs. REE-phosphate for light REEs complexes are supersaturated in Chaohu Lake and Longganhu Lake. Furthermore,LnPO4 for heavy REEs are supersaturated in west of Chaohu Lake in high water period. PO43- is responsible for limiting the dissolved REEs concentrations. REE-sulfate, REE-chloride, REE-fluoride and REE-hydroxide complexes, are negligible and generally account for less than 1% of the total dissolved REEs.

  10. Ionic conductivity of binary fluorides of potassium and rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, N. I., E-mail: nsorokin1@yandex.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2016-01-15

    The ionic conductivity s of KYF{sub 4} and K{sub 2}RF{sub 5} single crystals (R = Gd, Ho, Er) and KNdF{sub 4} and K{sub 2}RF{sub 5} ceramic samples (R = Dy, Er) has been studied in the temperature range of 340–500°C. A comparative analysis of the σ values for these objects has been performed. Binary fluorides of potassium and rare earth elements were synthesized by the hydrothermal method (temperature 480°C, pressure 100–150 MPa) in the R{sub 2}O{sub 3}–KF–H{sub 2}O systems. The σ values of tetraf luorides are 3 × 10{sup –5} S/cm (KYF{sub 4} single crystal) and 3 × 10{sup –6} S/cm (KNdF{sub 4} ceramics) at 435°C. A K{sub 2}ErF{sub 5} single crystal with σ = 1.2 × 10{sup –4} S/cm at 435°C has the maximum value of ionic conductivity among pentafluorides. The anisotropy of ionic transport was found in K{sub 2}HoF{sub 5} single crystals, σ{sub ∥c}/σ{sub ⊥c} = 2.5, where σ{sub ∥c} and σ{sub ⊥c} are, respectively, the conductivities along the crystallographic c axis and in the perpendicular direction.

  11. Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wenming, E-mail: jwenming@163.com [State Key Lab of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Fan, Zitian; Dai, Yucheng; Li, Chi [State Key Lab of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-03-01

    The effects of rare earth (RE) containing Ce and La elements addition on the microstructures characteristics, tensile properties and fracture behavior of A357 alloy under as-cast and T6 conditions were systematically investigated in this study. Obtained results showed that the addition of RE obviously reduced the sizes of the α-Al primary phase and eutectic silicon particles as well as SDAS value and improved the morphology of eutectic silicon particles. The optimum level of added RE content were 0.2 wt%, and the aspect ratio of eutectic silicon particles of the A357 modified alloy under as-cast and T6 conditions decreased 142% and 174%, respectively, compared with the unmodified alloy. In addition, the addition of RE greatly improved the tensile properties of A357 alloy as result of the significant improvement in microstructure, especially in elongation under T6 condition. The fracture surfaces of the A357 unmodified alloy tensile samples showed a clear brittle fracture nature, and its fracture path passed through the eutectic silicon particles and displayed a transgranular fracture mode, leading to poorer ductility. The fracture path of the A357 modified alloys passed through the eutectic phase along the grain boundaries of the α-Al primary phase, and the fracture generated by dimple rupture with cracked eutectic silicon particles, and it showed an intergranular fracture mode, resulting in superior ductility.

  12. Influence of rare earth elements on corrosion behavior of Al-brass in marine water

    Institute of Scientific and Technical Information of China (English)

    LIN Gaoyong; ZHOU Yuxiong; ZENG Juhua; ZOU Yanming; LIU Jian; SUN Liping

    2011-01-01

    The corrosion behaviors of Al-brass in stagnant and flowing marine water as a function of combinative rare earths (Ce and La) addition were investigated by electrochemical techniques,X-ray diffraction (XRD) and scanning electron microscopy (SEM).It was demonstrated that RE elements could make the corrosion product layer more protective and strengthen the cohesion between the film and matrix in stagnant seawater.The electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) analysis confirmed that a duplex layer,which was mainly composed of an inner A12O3 with trace amounts of RE compounds and an outer basic chloride of copper or zinc like (Cu,Zn)2Cl(OH)3,Cu(OH)Cl and CuCl2·3Cu(OH)2 layer was formed on RE-contained Al-brass surface and that the inner layer was responsible for the good corrosion resistance of the alloy.While only a porous and non-protective corrosion product layer was formed on the Al-brass alloy without RE addition,which made small values of the corrosion resistance.Additionally,in flowing marine water with velocity about 2 m/s,pitting corrosion occurred on the M-brass surface and RE addition could availably decrease pitting sensitivity of the alloy.

  13. New trace element determinations in the fingernails of ALS patients

    Energy Technology Data Exchange (ETDEWEB)

    Van Dalsem, D.J.; Ehmann, W.D. [Univ. of Kentucky, Lexington, KY (United States); Robinson, L. [Oak Ridge National Laboratory, TN (United States)

    1996-12-31

    Amyotrophic lateral sclerosis (ALS) afflicts 2 of every 100,000 people in the United States each year. A well-known example of ALS today is Stephen Hawking. He is a theoretical physicist, the author of A Brief History of Time, and is virtually immobilized by ALS. Diseases that cause progressive paralysis because of motor neuron degeneration in the central nervous system are termed motor neuron disorders (MND). Amyotrophic lateral sclerosis is a common form of MND. Pain-free, progressive muscular weakness is the most common clinical symptom. There is chronic weakness with atrophy of the affected muscles by the time the disease is diagnosed. Atrophy eventually results in wheelchair confinement and then only bed without the ability to speak or swallow. Death often occurs as a result of respiratory problems. Unlike other neurodegenerative diseases, in ALS the patient`s bladder and bowel control, eye movement, and mental faculties are preserved. The question today is whether or not certain trace elements are involved in the etiology or pathogenesis of ALS. A collaborative study was undertaken by the University of Kentucky and Oak Ridge National Laboratory (ORNL) using neutron activation analysis (NAA) to study trace element concentrations in ALS patients fingernails to determine if there existed statistically significant imbalances.

  14. Functional changes appropriate for determining mineral element requirements.

    Science.gov (United States)

    Lukaski, H C; Penland, J G

    1996-09-01

    One factor limiting efforts to determine human requirements for dietary intakes of mineral elements has been the unavailability of acceptable standards for evaluating the effects of marginal and mild deficiencies. Traditional approaches, such as growth, longevity, chemical balance and measurement of concentrations of minerals in plasma or serum and cellular components of the blood, have not been sensitive indicators of mineral nutriture. One alternative that has been shown to be responsive to graded dietary mineral intake is the evaluation of functional responses to specific challenges or stressors. Aberrant responses, either exaggerated or attenuated, to controlled stressors have been observed in a variety of physiological, psychological and immunological parameters when mineral intakes have been suboptimal by conventional standards, compared with adequate responses. In comparison to static biochemical approaches for assessment of mineral nutritional status, functional tests may be sensitive and responsive to alterations in mineral intake in adult humans. Dynamic functional measures complement static biochemical measures and reflect the net effect of deficiencies on integrated biological systems. The application of some of these types of dynamic evaluations of function may be a useful and productive approach for proposing mineral element intakes to optimize human health and biological function and performance.

  15. Determination of Time and Temperature Profiles in a Poured Earth Heat Transfer Process

    Directory of Open Access Journals (Sweden)

    Edgardo Jonathan Suarez-Dominguez

    2015-01-01

    Full Text Available Poured earth is a current alternative in architecture that could provide a solution for building in places with low -income populations because it uses earth located in the surrounding medium. There are several characteristics of the material that must be studied, including thermal conductivity, mainly atregions with extreme climates due to intervening in comfort levels of users. Because of this it is necessary to have mathematical models to predict the heat flux temperature and in turn along poured earth elements for further design. In this paper a non-stationary model for heat flow in a poured earth wall is proposed to describe non stationary flux in it. It was found that the model created engages over 95% for more representative case found at Mexico.

  16. Determination of the age of the earth from Kamland measurement of geo-neutrinos

    OpenAIRE

    Mohanty, Subhendra

    2003-01-01

    The low energy component of the antineutrino spectrum observed in the recent Kamland experiment has significant contribution from the radioactive decay of $^{238}U$ and $^{232}Th$ in the crust and mantle of the earth. By taking the ratio of the antineutrino events obeserved in two different energy ranges we can determine the present value $[Th/U]$ independent of the U,Th distribution in the earth. Comparing with the r-process initial value of $[Th/U]_0$ we determine the age of the earth as a ...

  17. Source and mobility of Rare Earth Elements in a sedimentary aquifer system: Aquitaine basin (Southern France)

    Science.gov (United States)

    Negrel, P. J.; Petelet-Giraud, E.; Millot, R.; Malcuit, E.

    2011-12-01

    The study of rare earth elements (REEs) in natural waters initially involved an examination of their occurrence and behavior in seawater and coastal waters such as estuaries. Since the 1990s, REE geochemistry has been applied to continental waters such as rivers and lakes and groundwaters. Rare earth elements) are of great interest because of their unique characteristics and have been used in the study of many geological processes like weathering and water-rock interaction processes, provenance of sediments, etc... With the evolution of analytical techniques like new generation ICP-MS, much attention had been paid towards the water geochemistry of REEs. However, there is a need of more investigations devoted to REEs in large groundwater systems, especially on the understanding of the distribution of REEs and their evolution in such systems. In this frame, large sedimentary aquifer systems often constitute strategic water resources for drinking water supply, agriculture irrigation and industry, but can also represent an energetic resource for geothermal power. Large water abstractions can induce complete modification of the natural functioning of such aquifer systems. These large aquifer systems thus require water management at the basin scale in order to preserve both water quantity and quality. The large Eocene Sand aquifer system of the Aquitaine sedimentary basin was studied through various hydrological, chemical and isotopic tools. This system extends over 116,000 km2 in the South west part of the French territory. The aquifer being artesian in the west of the district and confined with piezometric levels around 250-m depth in the east. The 'Eocene Sands', composed of sandy Tertiary sediments alternating with carbonate deposits, is a multi-layer system with high permeability and a thickness of several tens of metres to a hundred metres. The Eocene Sand aquifer system comprises at least five aquifers: Paleocene, Eocene infra-molassic sands (IMS), early Eocene

  18. DETERMINATION OF THE EARTH’S GEOID BY SATELLITE OBSERVATIONS

    Science.gov (United States)

    Determinations of the geoid made by different authors have differed by more than forty meters in some geographic locations. The authors differed in...conducted with Doppler observations on satellites have shown moderate variations (rarely as much as 30 meters) in the geoid determined if the number of...satellite orbital inclinations employed is reduced by one. Reduction of the number of gravity parameters used to represent the geoid also resulted in

  19. Assessment of Bioavailable Concentrations of Germanium and Rare Earth Elements in the Rhizosphere of White Lupin (Lupinus albus L.)

    Science.gov (United States)

    Wiche, Oliver; Fischer, Ronny; Moschner, Christin; Székely, Balázs

    2015-04-01

    Concentrations of Germanium (Ge) and Rare Earth Elements in soils are estimated at 1.5 mg kg -1 (Ge), 25 mg kg -1 (La) and 20 mg kg -1 (Nd), which are only roughly smaller than concentrations of Pb and Zn. Germanium and rare earth elements are thus not rare but widely dispersed in soils and therefore up to date, only a few minable deposits are available. An environmental friendly and cost-effective way for Ge and rare earth element production could be phytomining. However, the most challenging part of a phytomining of these elements is to increase bioavailable concentrations of the elements in soils. Recent studies show, that mixed cultures with white lupine or other species with a high potential to mobilize trace metals in their rhizosphere due to an acidification of the soil and release of organic acids in the root zone could be a promising tool for phytomining. Complexation of Ge and rare earth elements by organic acids might play a key role in controlling bioavailability to plants as re-adsorption on soil particles and precipitation is prevented and thus, concentrations in the root zone of white lupine increase. This may also allow the complexes to diffuse along a concentration gradient to the roots of mixed culture growing species leading to enhanced plant uptake. However, to optimize mixed cultures it would be interesting to know to which extend mobilization of trace metals is dependent from chemical speciation of elements in soil due to the interspecific interaction of roots. A method for the identification of complexes of germanium and rare earth elements with organic acids, predominantly citric acid in the rhizosphere of white lupine was developed and successfully tested. The method is based on coupling of liquid chromatography with ICP-MS using a zic-philic column (SeQuant). As a preliminary result, we were able to show that complexes of germanium with citric acid exist in the rhizosphere of white lupin, what may contribute to the bioavailability of this

  20. Determination of a lower bound on Earth's climate sensitivity

    Directory of Open Access Journals (Sweden)

    STEPHEN E. Schwartz

    2013-09-01

    Full Text Available Transient and equilibrium sensitivity of Earth's climate has been calculated using global temperature, forcing and heating rate data for the period 1970–2010. We have assumed increased long-wave radiative forcing in the period due to the increase of the long-lived greenhouse gases. By assuming the change in aerosol forcing in the period to be zero, we calculate what we consider to be lower bounds to these sensitivities, as the magnitude of the negative aerosol forcing is unlikely to have diminished in this period. The radiation imbalance necessary to calculate equilibrium sensitivity is estimated from the rate of ocean heat accumulation as 0.37±0.03 W m−2 (all uncertainty estimates are 1−σ. With these data, we obtain best estimates for transient climate sensitivity 0.39±0.07 K (W m−2−1 and equilibrium climate sensitivity 0.54±0.14 K (W m−2−1, equivalent to 1.5±0.3 and 2.0±0.5 K (3.7 W m−2−1, respectively. The latter quantity is equal to the lower bound of the ‘likely’ range for this quantity given by the 2007 IPCC Assessment Report. The uncertainty attached to the lower-bound equilibrium sensitivity permits us to state, within the assumptions of this analysis, that the equilibrium sensitivity is greater than 0.31 K (W m−2−1, equivalent to 1.16 K (3.7 W m−2−1, at the 95% confidence level.

  1. The impact of transport processes on rare earth element patterns in marine authigenic and biogenic phosphates

    Science.gov (United States)

    Auer, Gerald; Reuter, Markus; Hauzenberger, Christoph A.; Piller, Werner E.

    2017-04-01

    Rare earth elements (REEs) are commonly used proxies to reconstruct water chemistry and oxygen saturation during the formation of authigenic and biogenic phosphates in marine environments. In the modern ocean REEs exhibit a distinct pattern with enrichment of heavy REEs and strong depletion in cerium (Ce). The wide range of REE enrichment patterns found in ancient marine phosphates lead to the proposition that water chemistry has been very different in the Earth's past. However, both early and late diagenesis are known to affect REE signatures in phosphates altering primary marine signals. Herein we present a dataset of REE signatures in 38 grain specific LA-ICP-MS measurements of isolated phosphate and carbonate grains in three discrete rock samples. The phosphates mainly consist of authigenic phosphates and phosphatized microfossils that formed in a microbially mediated micro-milieu. In addition, isolated biogenic and reworked phosphatic grains are also present. The phosphates are emplaced in bioclastic grain- to packstones deposited on a carbonate ramp setting in the central Mediterranean Sea during the middle Miocene Monterey event. The results reveal markedly different REE patterns (normalized to the Post Archean Australian Shale standard) in terms of total enrichment and pattern shape. Analyses of REE diagenesis proxies show that diagenetic alteration affected the samples only to a minor degree. Grain shape and REE patterns together indicate that authigenic, biogenic and reworked phosphates have distinct REE patterns irrespective of the sample. Our study shows that while REE patterns in phosphates do reflect water chemistry during authigenesis, they are often already heavily altered during reworking, a process, which can occur in geologically negligible timespans. REE patterns are therefore more likely to reflect complex enrichment processes after their formation. Similarities in the REE patterns of reworked and biogenic phosphate further suggest that the

  2. Anomalous scattering factors of some rare earth elements evaluated using photon interaction cross-sections

    Indian Academy of Sciences (India)

    S B Appaji Gowda; M L Mallikarjuna; R Gowda; T K Umesh

    2003-09-01

    The real and imaginary parts, '() and ''() of the dispersion corrections to the forward Rayleigh scattering amplitude (also called anomalous scattering factors) for the elements La, Ce, Pr, Nd, Sm, Gd, Dy, Ho and Er, have been determined by a numerical evaluation of the dispersion integral that relates them through the optical theorem to the photoeffect cross-sections. The photoeffect cross-sections are derived from the total attenuation cross-section data set experimentally determined using high resolution high purity germanium detector in a narrow beam good geometry set-up for these elements in the photon energy range 5 to 1332 keV and reported earlier by the authors. Below 5 keV, Scofield’s photoeffect cross-sections compiled in XCOM program have been interpolated and used. Simple formulae for '' in terms of atomic number and energy have also been obtained. The data cover the energy region from 6 to 85 keV and atomic number from 57–68. The results obtained are found to agree fairly well with the other available data.

  3. Earth-Mars Telecommunications and Information Management System (TIMS): Antenna Visibility Determination, Network Simulation, and Management Models

    Science.gov (United States)

    Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don

    1996-01-01

    This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.

  4. The Use of Lead Isotope and Rare Earth Element Geochemistry for Forensic Geographic Provenancing

    Science.gov (United States)

    Carey, A.; Darrah, T.; Harrold, Z.; Prutsman-Pfeiffer, J.; Poreda, R.

    2008-12-01

    Lead isotope and rare earth element composition of modern human bones are analyzed to explore their utility for geographical provenancing. DNA analysis is the standard for identification of individuals. DNA analysis requires a DNA match for comparison. Thus, DNA analysis is of limited use in cases involving unknown remains. Trace elements are incorporated into bones and teeth during biomineralization, recording the characteristics of an individual's geochemical environment. Teeth form during adolescence, recording the geochemical environment of an individual's youth. Bones remodel throughout an individual's lifetime. Bones consist of two types of bone tissue (cortical and trabecular) that remodel at different rates, recording the geochemical environment at the time of biomineralization. Cortical bone tissue, forming the outer surface of bones, is dense, hard tissue that remodels in 25-30 yrs. Conversely, trabecular bone tissue, the inner cavity of bones, is low density, porous and remodels in 2-5 years. Thus, analyzing teeth and both bone tissues allows for the development of a geographical time line capable of tracking immigration patterns through time instead of only an individual's youth. Geochemical isotopic techniques (Sr, O, C, N) have been used for geographical provenancing in physical anthropology. The isotopic values of Sr, C, O, N are predominantly a function of soil compositions in areas where food is grown or water is consumed. Application of these provenancing techniques has become difficult as an individual's diet may reflect the isotopic composition of foods obtained at the local grocer as opposed to local soil compositions. Thus, we explore the use of REEs and Pb isotopes for geographical provenancing. Pb and REEs are likely more reliable indicators of modern geographical location as their composition are high in bio-available sources such as local soils, atmospheric aerosols, and dust as opposed to Sr, C, O, N that are controlled by food and

  5. Understanding rhizosphere processes to enhance phytoextraction of germanium and rare earth elements

    Science.gov (United States)

    Wiche, Oliver

    2017-04-01

    Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that are not actually rare in terms of concentrations in soils but they are hardly available for plant uptake due to interactions with organic matter (SOM), secondary soil constituents such as Fe/Mn oxides and P bearing soil fractions. Processes in the rhizosphere might influence availability of Ge and REEs in the soil-plant system, since lowering of the pH and presence of carboxylates and siderophores (small molecules that strongly chelate Fe and other elements) strongly influences the chemical speciation of Ge and REEs in soil and consequently this comprehensive knowledge helps us to improve phytomining. In a series of field and greenhouse experiments 16 plant species from the functional groups of grasses, herbs and legumes were tested with regard to their accumulation efficiency of Ge and REEs in shoots. Subsequently, we conducted mixed culture experiments in which inefficient species (e.g. cereals like Avena sativa, Hordeum vulgare, Panicum miliaceum) were cultivated in mixed cultures with efficient species (Lupinus albus, Lupinus angustifolius). Based on the plant concentrations a principal component analysis (PCA) was performed to identify significant factors that explain the accumulation behavior of different plant species with regard to Ge, REEs, Si, Fe and Mn. In this analysis Mn was used to identify plant species with efficient mechanisms to access sparingly available P-resources in soils. Particularly in nonmycorrhizal species concentrations of Mn in leaves often indicate a carboxylate based P-mobilising strategy. Herbaceous plant species accumulated significantly higher amounts of REEs while grasses accumulated significantly higher amounts of Ge. Concentrations of Ge in shoots of grasses correlated significantly positive with Si, but negatively with concentrations of Mn. Indeed, the results of the PCA clearly show that plants with high Mn concentrations tend to have

  6. Rare earth element geochemistry of Cambrian phosphorites from the Yangtze Region

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiyan; YANG Ruidong; WEI Huairui; GAO Junbo

    2013-01-01

    Analysis on P2O5 and REE (rare earth elements) in basal Cambrian phosphorites from the Yangtze Region,showed that the phosphofites from Bailongtan in Yunnan Province,Zhijin,Jinsha,Xishui,Zunyi,Tianzhu and Tongren in Guizhou Province,Shangrao in Jiangxi Province,Jiangshan in Zhejiang Province and Nanjing in Jiangsu Province contained high REE contents in phosphorites,especially those from Tianzhu and Tongren in Guizhou Province,Shangrao in Jiangxi Province,Jiangshan in Zhejiang Province and Nanjing in Jiangsu Province.Among them,the highest REE contents reached up to 1361.59× 10-6 and P2O5 contents up to 29.45%.In contrast,phosphofites from Kaiyang,Qingzhen and Zhenyuan in Guizhou Province had relatively low total REE contents and low P2O5 contents,with the lowest total REE content of 53.19× 10-6,and the lowest P2O5 content of 0.07%.REE contents exhibited a positive correlation with phosphorous contents,indicating a close genetic relationship between REE and phosphorous element.The main reason was the difference of the sedimentary environments and the contents of phosphorous and REE in deep water mass formed in upwelling currents,at an upper slope facies (Slu) in reducing condition due to relatively closed sedimentary environment.It was very difficult for the upswelling phosphorous and REE to deposit,massive phosphorous deposits were hard to be formed.At a deep water ramp facies (DRa) in the ascending process of currents,phosphorus and REE underwent differentiation rather than sedimentation.Consequently,the contents of P2O5 sediments and REE were low.At a shallow water ramp facies (including shoals and tidal fiats) (SRa),with active seawater circulation and phosphatic supplement,sunny weather,high nutrition and rapid growth of algae,were benefitial for the physical enrichment of carbonate sediments.Therefore,massive phosphorite deposits were easy to be formed with abundant REE minerals,and finally turned into high REE beating phosphorous deposits.

  7. Distribution of rare earth elements in an alluvial aquifer affected by acid mine drainage: the Guadiamar aquifer (SW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Olias, M. [Departamento de Geodinamica y Paleontologia, Universidad de Huelva, Avda. de las Fuerza Armadas s/n, 21071 Huelva (Spain)]. E-mail: manuel.olias@dgyp.uhu.es; Ceron, J.C. [Departamento de Geodinamica y Paleontologia, Universidad de Huelva, Avda. de las Fuerza Armadas s/n, 21071 Huelva (Spain); Fernandez, I. [Departamento de Geodinamica y Paleontologia, Universidad de Huelva, Avda. de las Fuerza Armadas s/n, 21071 Huelva (Spain); Rosa, J. de la [Departamento de Geologia, Universidad de Huelva, Avda. de las Fuerza Armadas s/n, 21071 Huelva (Spain)

    2005-05-01

    This work analyses the spatial distribution, the origin, and the shale-normalised fractionation patterns of the rare earth elements (REE) in the alluvial aquifer of the Guadiamar River (south-western Spain). This river received notoriety in April 1998 for a spill that spread a great amount of slurry (mainly pyrites) and acid waters in a narrow strip along the river course. Groundwaters and surface waters were sampled to analyse, among other elements, the REEs. Their spatial distribution shows a peak close to the mining region, in an area with low values of pH and high concentrations of sulphates and other metals such as Zn, Cu, Co, Ni, Pb, and Cd. The patterns of shale-normalised fractionation at the most-contaminated points show an enrichment in the middle rare earth elements (MREE) with respect to the light (LREE) and heavy (HREE) ones, typical of acid waters. The Ce-anomaly becomes more negative as pH increases, due to the preferential fractionation of Ce in oxyhydroxides of Fe. - Pollution of the aquifer with rare earth elements is documented at a site of a major spill from a mining operation.

  8. Geochemical investigation and statistical analysis on rare earth elements in Lakehsiyah deposit, Bafq district

    Science.gov (United States)

    Rahimi, Elham; Maghsoudi, Abbas; Hezarkhani, Ardeshir

    2016-12-01

    The Kashmar-Kerman volcano-plutonic arc in central Iran is an important mining province and hosts several large deposits of magmatic iron ores. Some of these ores are characterized by considerable amounts of REE-bearing minerals like apatite, monazite, and xenotime. The Lakehsiyah iron-apatite deposits in the Bafq district (central Iran), are hosted by late Precambrian-Cambrian igneous and dolomite rocks. In order to investigate geochemical characteristics of the rare earth elements related to their genesis, statistical analysis was carried out. The Interpretation of these data led to the identification of four different zones as follows: iron ore, phosphate rich, metasomatic and host rock. Chemical analysis of the zones shows high LREE/HREE ratio with a considerable negative Eu anomaly being a characteristic of the Kiruna ore-type. The distribution of REE patterns resembles, but in different contents, indicating a genetic relationship, and a similar source of magnetite and apatite ores that are similar to most of the iron-apatite deposits in central Iran. Two generations of apatite (type-I and II) are recognized, including coarse-grained euhedral crystals (type-I) and fine grained crystals (type- II) present in the matrix. Apatite-Ι shows a heterogeneous pattern which consists of dark and light phases due to variable concentrations of REE and traces of Si, Na, and Cl. The REEs enrichment explains the presence of monazite and xenotime inclusions within dark apatite grains being a result of hydrothermal activity. The final stage of the hydrothermal system was accompanied by gold overprinting with minor iron ore during metasomatism, probably driven from a deep-seated intrusion, usually found along micro-fractures cutting the previously formed minerals.

  9. Aeromagnetic expression of rare earth element (REE) deposits in New Mexico, USA

    Science.gov (United States)

    Li, M.

    2016-12-01

    With the development of high-tech devices and the expanding demands in industrial production, rare earth elements(REE) has been playing an increasingly important role in the global economy in the past several decades. Different types of REE serve irreplaceable functions in high-tech industry, as well as for developing sustainable energy and catalysis of manufacturing. Given that the global supply of REE has become strained since 2009 and no known substitutes for REE have been found, exploration for new REE deposits is imperative for economic sustainability. Ten main regions have REE deposits in New Mexico, some of which have not been exploited, while some sites such as Gallinas mountains vein deposits are in early exploration stage. Exploration for the reserves and quantization of mineral compositions of New Mexico's REE depositional districts can have economic benefits in general. In this study, high-resolution airborne magnetic and gravity data were used for studying the Gallinas mountains REE deposit. The purposes of this study are to: (1) characterize specific aeromagnetic anomaly and gravity features from the REE deposits, and (2) apply the characterized features to suggest other areas among the ten REE depositional regions for further exploration. All REE deposits in the study area are found associated with alkaline to alkali-calcic volcanic rocks. A quantitative modeling based on aeromagnetic and gravity anomaly mapping was constructed with an assumption of three units: carbonatites, alkaline volcanic intrusions and REE-concentrated minerals (barite, bastnaesite, etc.). The results of this study show that alkaline deposit is characterized by negative magnetic anomalies and carbonatite is associated with gravity anomaly and vertical gravity gradient high. The area with significantly high aeromagnetic anomaly area and also gravity anomaly high supposed to reflect REE-concentrated minerals such as bastnaesite. For further research, hyperspectral information and

  10. Rare earth elements in human and animal health: State of art and research priorities.

    Science.gov (United States)

    Pagano, Giovanni; Aliberti, Francesco; Guida, Marco; Oral, Rahime; Siciliano, Antonietta; Trifuoggi, Marco; Tommasi, Franca

    2015-10-01

    A number of applications have been developed using rare earth elements (REE), implying several human exposures and raising unsolved questions as to REE-associated health effects. A MedLine survey was retrieved from early reports (1980s) up to June 2015, focused on human and animal exposures to REE. Literature from animal models was selected focusing on REE-associated health effects. Some REE occupational exposures, in jobs such as glass polishers, photoengravers and movie projectionists showed a few case reports on health effects affecting the respiratory system. No case-control or cohort studies of occupational REE exposures were retrieved. Environmental exposures have been biomonitored in populations residing in REE mining areas, showing REE accumulation. The case for a iatrogenic REE exposure was raised by the use of gadolinium-based contrast agents for nuclear magnetic resonance. Animal toxicity studies have shown REE toxicity, affecting a number of endpoints in liver, lungs and blood. On the other hand, the use of REE as feed additives in livestock is referred as a safe and promising device in zootechnical activities, possibly suggesting a hormetic effect both known for REE and for other xenobiotics. Thus, investigations on long-term exposures and observations are warranted. The state of art provides a limited definition of the health effects in occupationally or environmentally REE-exposed human populations. Research priorities should be addressed to case-control or cohort studies of REE-exposed humans and to life-long animal experiments. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Quantifying Post-Fire Aeolian Sediment Transport Using Rare Earth Element Tracers.

    Science.gov (United States)

    Dukes, D.; Ravi, S.; Grandstaff, D. E.; Gonzales, H. B.; Li, J. J.; Sankey, J. B.; Wang, G.; Van Pelt, R. S.

    2016-12-01

    Grasslands and rangelands in arid and semi-arid regions of the world, which provide fundamental ecosystem services, are undergoing rapid increases in fire activity and are highly susceptible to post-fire accelerated soil erosion by wind. A quantitative assessment that integrates fire-wind erosion feedbacks is therefore critically needed in understanding vegetation change, soil biogeochemical cycling, air quality, and landscape evolution. We investigated the applicability of a novel tracer technique - the use of rare earth element (REE) tracers - to quantify soil erosion by wind and to identify sources and sinks of wind-blown sediments in both a burned and unburned shrub-grass transition zone within the Chihuahuan desert (New Mexico, USA). At the beginning of the windy season, March 2016, silt and sand sized particles in shrub, grass, and bare microsites were each tagged with a unique REE oxide, Ho, Eu, and Yb respectively. Samples were then taken directly after application prior to a prescribed fire and again at the end of the windy season in June 2016. All REE tracers showed signs of depletion and mixing, with the depletion in the burned site up to 20% greater than the unburned. REE concentration comparisons between the burned and unburned plots reveal a shift in the source and sink dynamics of sediment post fire. In unburned plots, changes in microsite REE concentrations indicate that sediment moved from the bare to vegetated microsites, whereas the opposite occurred in burned plots. However, burned plot grass microsites acted as a sink for sediment from shrub microsites, whereas unburned plot grass microsites exhibited no enrichment from shrub microsite-sourced sediment. Though fires are known to immediately increase aeolian sediment transport, accompanying changes in the sources and sinks of wind borne sediment may influence biogeochemical cycling and vegetation shifts possibly providing a feedback mechanism for land degradation in dryland ecosystems.

  12. Bioleaching of some Rare Earth Elements from Egyptian Monazite using Aspergillus ficuum and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Wesam Abdel Ghany HASSANIEN

    2013-12-01

    Full Text Available Aspergillus ficuum and Pseudomonas aeruginosa exhibit good potential in generating varieties of organic acids effective for bioleaching some rare earth elements (REEs from Egyptian monazite (purity 97 % and (thorium-uranium concentrate. Batch experiments are performed to compare the bioleaching efficiencies of the one and 2-step bioleaching processes. The highest percentages of bioleached REEs from monazite and (Th-U concentrate directly by A. ficuum are found to be 75.4, 63.8 % at a pulp density 0.6, 1.2 % (w/v, respectively, after 9 days of incubation at 30 °C and 63.5, 52.6 % by P. aeruginosa after 8 days of incubation at 35 °C using a shaking incubator at 175 rpm. It is also found that 14.3 and 1.4 g/l of citric and oxalic acid, respectively, are produced by A. ficuum, while 6.3 g/l of 2-ketogluconic acid is produced by P. aeruginosa. The highest percentages of chemical leaching of REEs from 0.6 % monazite using citric acid 14.3 g/l, oxalic acid 1.4 g/l, citric/oxalic acids 15.7 g/l and 2- ketogluconic acid 6.3 g/l after 24 h are 55.7, 26.0, 58.8 and 45.6 %, respectively. This work addresses the area of beneficiation of the used mineral to solubilize REEs through the biotechnological route in Egypt, where the bioleaching method is more effective than the chemical one using organic acids.doi:10.14456/WJST.2014.85

  13. Rare earth elements as indicators of hydrothermal processes within the East Scotia subduction zone system

    Science.gov (United States)

    Cole, Catherine S.; James, Rachael H.; Connelly, Douglas P.; Hathorne, Ed C.

    2014-09-01

    The East Scotia subduction zone, located in the Atlantic sector of the Southern Ocean, hosts a number of hydrothermal sites in both back-arc and island-arc settings. High temperature (>348 °C) 'black smoker' vents have been sampled at three locations along segments E2 and E9 of the East Scotia back-arc spreading ridge, as well as 'white smoker' (Mg = 0 mmol/kg) is markedly different, with pH ranging from andesite-hosted, providing an ideal opportunity for investigating the geochemical controls on rare earth element (REE) behaviour. Endmember hydrothermal fluids from E2 and E9 have total REE concentrations ranging from 7.3 to 123 nmol/kg, and chondrite-normalised distribution patterns are either light REE-enriched (LaCN/YbCN = 12.8-30.0) with a positive europium anomaly (EuCN/Eu∗CN = 3.45-59.5), or mid REE-enriched (LaCN/NdCN = 0.61) with a negative Eu anomaly (EuCN/Eu∗CN = 0.59). By contrast, fluids from the Kemp Caldera have almost flat REE patterns (LaCN/YbCN = 2.1-2.2; EuCN/Eu∗CN = 1.2-2.2). We demonstrate that the REE geochemistry of fluids from the East Scotia back-arc spreading ridge is variably influenced by ion exchange with host minerals, phase separation, competitive complexation with ligands, and anhydrite deposition, whereas fluids from the Kemp submarine volcano are also affected by the injection of magmatic volatiles which enhances the solubility of all the REEs. We also show that the REE patterns of anhydrite deposits from Kemp differ from those of the present-day fluids, potentially providing critical information about the nature of hydrothermal activity in the past, where access to hydrothermal fluids is precluded.

  14. The effects of rare earth elements on an anaerobic hydrogen producing microorganism

    Science.gov (United States)

    Fujita, Y.; St Jeor, J. D.; Reed, D. W.

    2016-12-01

    Rapid growth of new energy technologies and consumer electronics is leading to increased fluxes of rare earth elements (REE), during the phases of resource extraction, product usage, recycling, and disposal. However, little is known about the impacts of these increased REE fluxes on environmental ecosystems, whether natural or engineered (e.g., biological waste treatment systems). We have been evaluating the effects of europium and yttrium on hydrogen production by an anaerobic fermenting microorganism, Sporacetigenium mesophilum, originally isolated from an anaerobic digester at a wastewater treatment plant.1 Europium and yttrium are important components of phosphors used in fluorescent lighting, and are expected to be recycled in larger quantities in the future. Also tested was the compound tributyl phosphate (TBP), a widely used complexing agent in lanthanide and actinide separations. TBP and related compounds may be used in recycling processes for REE. S. mesophilumcultures were amended with Eu at 100 ppb, 1 ppm and 10 ppm and hydrogen production was measured. While the lowest Eu concentration had minimal effect on hydrogen production compared to the no Eu control, the two higher Eu amendment levels appeared to enhance hydrogen production. TBP at 0.1 g/L completely inhibited hydrogen production. Measurements of aqueous Eu concentrations indicated that >85% of the added Eu remained soluble at all three of the Eu addition levels tested. Experiments to ascertain whether enhancement (or inhibition) occurs at even higher Eu concentrations are underway, as are corresponding experiments with yttrium. This work contributes to the assessment of the potential impacts of increased REE recycling and processing on ecosystems, and supports decision making with respect to disposal of wastewaters generated during these industrial practices. 1Chen, S., Song, L. and X. Dong. Int J. Syst. Evol. Microbiol. 56, 721-725, doi: 10.1099/ijs.0.63686-0 (2006).

  15. Cyanex 923 as the extractant in a rare earth element impurity analysis of high-purity cerium oxide.

    Science.gov (United States)

    Duan, Taicheng; Li, Hongfei; Kang, JianZhen; Chen, Hangting

    2004-06-01

    In this work, the feasibility of employing Cyanex 923 as an extractant into the non-cerium REE (rare earth elements) impurity analysis of high-purity cerium oxide was investigated. Through investigations on the choice of the extraction medium, the optimium extraction acidity, matrix Ce4+ effect on the non-cerium REE ion extraction, the optimium extractant concentration and suitable extracting time, and oscillation strengh, it was found that when the phase ratio was at 1:1 and the acicidity was about 2% H2SO4, by gently shaking by hand for about 2 min, 10 mL of 30% Cyanex 923 could not extract even for a 20 ng amount of non-cerium REE3+ ions. However, the extraction efficiency for Ce4+ of 100 mg total amount under the same conditions was about 96%, indicating that a 25-fold preconcentration factor could be achieved. Thus, it was concluded that Cyanex 923 could be used in a REE impurity analysis of 99.9999% or so pure cerium oxide for primary sepapation to elimilate matrix-induced interferences encountered in an ICP-MS (inductively coupled plasma mass spectroscopy) determination.

  16. Determination of Seepage and Analysis of Earth Dams (Case Study: Karkheh Dam

    Directory of Open Access Journals (Sweden)

    A. Kamanbedast

    2011-01-01

    Full Text Available Because of the increasing trend of building dam throughout Iran; it is necessary to optimize dam buildings and operations. Dam or Hydropower industry has two types of buildings; normally: (1 Concrete dams (2 Embankment (earth dams. Generally, scientists and engineers use different methods to enhance safety and decrease any errors in calculation due to maintenance of water storage especially hydro structure of the dam. It is necessary to investigate the dam seepage control; commonly used by several methods. Seepage is one of the important issues for design, build and maintenance of dams awareness. Seepage problem and its rules helps scientist to select a suitable method of monitoring and solving such problem. These methods of analysis were carried out at civil and construction project. In this study, one of latest method of investigation of seepage behavior were analytically evaluated and compared with the actual rules. Based on determine results; several suggestions and optimization method were suggested. Therefore, an optimum method was scientifically selected. Besides that, flow condition of porous environment with application of numeric program was analyzed. Finally, all the results were lunched out from seep/w soft which is the most significant program about this matter; use of finite elements method is specified for saturated and unsaturated environment. Thus; leakage and seepage were defined as function of (time and position. Subsequently, the best seepage solutions for the dam constructing were scientifically identified.

  17. Mineral chemistry of Rare Earth Element (REE) mineralization, Browns Ranges, Western Australia

    Science.gov (United States)

    Cook, Nigel J.; Ciobanu, Cristiana L.; O'Rielly, Daniel; Wilson, Robin; Das, Kevin; Wade, Benjamin

    2013-07-01

    ‘Green energy futures’ are driving unprecedented demand for Rare Earth Elements (REE), underpinning significant exploration activity worldwide. Understanding how economic REE concentrations form is critical for development of exploration models. REE mineralisation in the Browns Ranges, Gordon Downs Region, Western Australia, comprises xenotime-dominant mineralisation hosted within Archaean to Palaeoproterozoic metasedimentary units (Browns Range Metamorphics). Mineralogical, petrographic and mineral-chemical investigation, including trace element analysis by Laser-Ablation Inductively-Coupled Plasma Mass Spectroscopy, gives insights into the mineralogical distribution and partitioning of REE, and also provides evidence for the genetic evolution of the Browns Range REE mineralisation via a succession of hydrothermal processes. Two main REE-bearing minerals are identified: xenotime [(Y,REE)PO4], which is HREE selective; and subordinate florencite [(REEAl3(PO4)2(OH)6] which is LREE selective. Two morphological generations of xenotime are recognised; compositions are however consistent. Xenotime contains Dy (up to 6.5 wt.%), Er (up to 4.35 wt.%), Gd (up to 7.56 wt.%), Yb (up to 4.65 wt.%) and Y (up to 43.3 wt.%). Laser Ablation ICP-MS element mapping revealed a subtle compositional zoning in some xenotime grains. LREE appear concentrated in the grain cores or closest to the initial point of growth whereas HREE, particularly Tm, Yb and Lu, are highest at the outer margins of the grains. The HREE enrichment at the outer margins is mimicked by As, Sc, V, Sr, U, Th and radiogenic Pb. Florencite is commonly zoned and contains Ce (up to 11.54 wt.%), Nd (up to 10.05 wt.%) and La (up to 5.40 wt.%) and is also notably enriched in Sr (up to 11.63 wt.%) and Ca. Zircon (which is not a significant contributor of REEs overall due to its low abundance in the rocks) is also enriched in REE (up to 13 wt.% ΣREE) and is the principal host of Sc (up to 0.8 wt.%). Early, coarse

  18. In Situ Scanning Electron Microscopy Observation of Tensile Deformation in Sn-Ag-Cu Alloys Containing Rare-Earth Elements

    Science.gov (United States)

    Xiao, Wei Min; Shi, Yao Wu; Lei, Yong Ping; Xia, Zhi Dong; Guo, Fu

    2008-11-01

    The effects of rare-earth (RE) element additions on the tensile deformation mechanism of the Sn-3.8Ag-0.7Cu solder alloy have been investigated. The results show that adding RE elements can remarkably improve the tensile strength and elongation of the Sn-3.8Ag-0.7Cu alloy. The increase in the mechanical properties are attributed to the constraints of microcrack growth and grain boundary sliding in the eutectic phase as well as the relaxation of stress concentration in the β-Sn phase due to the addition of the RE elements. It is considered that the RE elements strengthen the eutectic phase and increase the deformation resistance of this alloy.

  19. Stabilization effects of third element on CaCu5 type derivatives of rare-earth transition-metal intermetallics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Part of the results of the key project "Search for novel rare-earth functional materials" supported by the National Natural Science Foundation of China is reviewed. In combination with reports in literature, the effects of the third element M on the formation and stability of La2(Co, M)17, R(Fe, M)12 and R3(Fe, M)29 intermetallic compounds are discussed by considering mixing enthalpy of M with rare-earth, Fe and Co, and atomic radius, electronegativity and electronic configurations, etc. It is concluded that the mixing en thalpy and atomic radius dominate the preferential sites and the minimum amount of M required to stabilize a structure, which ultimately affect the magnetic properties of a compound prominently. This review should provide some heuristic hints for exploiting novel rare-earth transition metal functional materials and for improving their performance.

  20. Biosorption of rare earth elements using biomass of Sargassum on El-Atshan Trachytic sill, Central Eastern Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Nora Shenouda Gad

    2016-12-01

    Full Text Available The use of unicellular brown micro-algae has several advantages over conventional methods for removing rare earth elements (REEs from lithogenic materials. A comparative study is made to investigate the uptake and bioaccumulation of REEs from trachytic samples collected from El-Atshan mine area in the Central Eastern Desert of Egypt. The examined samples are characterized by their high REE content. Using Sargassum algae; it appears possible to reduce the abundance of the Light Rare Earths (LREEs; La, Ce, Nd, Pm, Sm and Eu that have a large atomic number. However, higher efficiency of the separation has been recorded for the heavy rare earths (HREEs which display a marked control of quantum failing (tetrad effect.

  1. Combined use of the leucoxene ores of the Yarega deposit with the formation of synthetic rutile and wollastonite and the recovery of rare and rare-earth elements

    Science.gov (United States)

    Sadykhov, G. B.; Zablotskaya, Yu. V.; Anisonyan, K. G.; Olyunina, T. V.

    2016-11-01

    A new process of catalytic autoclave desiliconization of the leucoxene concentrate by lime milk with the formation of synthetic rutile and wollastonite is developed. The general laws of the processes occurring under the conditions of pressure leaching of the concentrate are revealed, and the main leaching parameters that ensure selective desiliconization of leucoxene grains are determined. The leucoxene concentrate is shown to contain rare and rare-earth elements. They are concentrated in synthetic rutile during desiliconization, which facilitates their extraction during subsequent chlorination of rutile.

  2. A new type of rare earth elements deposit in weathering crust of Permian basalt in western Guizhou, NW China

    Institute of Scientific and Technical Information of China (English)

    YANG Ruidong; WANG Wei; ZHANG Xiaodong; LIU Ling; WEI Huairui; BAO Miao; WANG Jingxin

    2008-01-01

    A new type of rare earth elements (REEs) deposit was discovered from the gaolinite mudstone in the weathering crust of Permian basalt, Bijie region, western Guizhou, China. It contained ∑-RE2O3 0.065%-1.086%. This type of REEs deposit was widely distributed with steady horizon and thickness of 3-4 m. The ore-bearing weathering crust (kaolinite) of the three discovered REEs deposits belonged to the third episode of the Emeishan basalt eruption. The new type of REEs deposit was suggested that basalt (tuff) weathering could lead to the en- richment of the rare earth elements. Therefore, it is of important economic significance to explore REEs deposits in the weathering crust of basalt (tufts) in Yunnan, Guizhou, and Sichuan Provinces.

  3. Rare earth element (REE) geochemistry of phosphorites of the Sonrai area of Paleoproterozoic Bijawar basin, Uttar Pradesh, India

    Institute of Scientific and Technical Information of China (English)

    K. F. Khan; Shamim A. Dar; Saif A. Khan

    2012-01-01

    The rare earth element (REE) data from the Paleoproterozoic Bijawar basin,Sonrai phosphorites were used to interpret the depositional conditions of the phosphorites.The post archean Australian shales (PAAS) normalized REE patterns of the Sonrai phosphorites were characterized by negative Ce and positive Eu anomalies.Middle rare earth elements (MREE)-ennchment was a characteristic feature.Phosphorites showing the diagenetic effects on the REE patterns were limited.The observed Eu anomaly was indicative of an anoxic (or sulphate reducing) diagenetic environment of phosphate formation.Mixing of sea water and upwelling during the Paleoproterozoic was responsible for the recording of positive Eu and negative Ce anomalies in the Sonrai phosphorites.

  4. Spectrochemical and thermal behaviours of the 2,4- and 3,4-dimethoxybenzoates of rare earth elements

    Directory of Open Access Journals (Sweden)

    AGNIESZKA WALKÓW-DZIEWULSKA

    2000-11-01

    Full Text Available The physicochemical properties and thermal stability in air of the 2,4- and 3,4-dimethoxybenzoates of rare earth elements were compared in order to observe the influence of the position of the –OCH3 substituent on their thermal stability. The complexes of these two series are crystalline, hydrated or anhydrous salts with colours typical of trivalent rare earth ions. The carboxylate group is a bidentate, chelating ligand. The thermal stability of the 2,4- and 3,4-dimethoxybenzoates of the lanthanide elements was studied in the temperature range 273–1173 K. The positions of methoxy- groups in the benzene ring influence the number of crystallization water molecules in the complexes and their thermal stability, which is connected with the varying influence of inductive and mesomeric effects of the –OCH3 substituent on the electron density in the benzene ring.

  5. Earth's thermal radiation sensors for attitude determination systems of small satellites

    Science.gov (United States)

    Vertat, I.; Linhart, R.; Masopust, J.; Vobornik, A.; Dudacek, L.

    2017-07-01

    Satellite attitude determination is a complex process with expensive hardware and software and it could consume the most of resources (volume, mass, electric power), especially of small satellites as CubeSats. Thermal radiation infrared detectors could be one of useful sensors for attitude determination systems in such small satellites. Nowadays, these sensors are widely used in contact-less thermometers and thermo-cameras resulting in a low-cost technology. On low Earth orbits the infrared thermal sensors can be utilized for coarse attitude determination against a relative warm and close Earth's globe.

  6. Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos

    Institute of Scientific and Technical Information of China (English)

    Jun'an Cui; Zhiyong Zhang; Wei Bai; Ligang Zhang; Xiao He; Yuhui Ma; Yan Liu; Zhifang Chai

    2012-01-01

    In recent years,with the wide applications and mineral exploitation of rare earth elements,their potential environmental and health effects have caused increasing public concern.Effect of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos were studied.The embryos were exposed to La3+ or Yb3+ at 0,0.01,0.1,0.3,0.5 and 1.0 mmol/L,respectively.Early life stage parameters such as egg and embryo mortality,gastrula development,tail detachment,eyes,somite formation,circulatory system,pigmentation,malformations,hatching rate,length of larvae and mortality were investigated.The results showed La3+ and Yb3+ delayed zebrafish embryo and larval development,decreased survival and hatching rates,and caused tail malformation in a concentration-dependent way.Moreover,heavy rare-earth ytterbium led to more severe acute toxicity of zebrafish embryo than light rare-earth lanthanum.

  7. Estimation of the physico-chemical parameters of materials based on rare earth elements with the application of computational model

    Science.gov (United States)

    Mamaev, K.; Obkhodsky, A.; Popov, A.

    2016-01-01

    Computational model, technique and the basic principles of operation program complex for quantum-chemical calculations of material's physico-chemical parameters with rare earth elements are discussed. The calculating system is scalable and includes CPU and GPU computational resources. Control and operation of computational jobs and also Globus Toolkit 5 software provides the possibility to join computer users in a unified system of data processing with peer-to-peer architecture. CUDA software is used to integrate graphic processors into calculation system.

  8. Distribution of major, trace and rare-earth elements in surface sediments of the Wharton Basin, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Rao, Ch.M.; Higgs, N.C.; Colley, S.; Parthiban, G.

    lithologies (including calcareous ooze, siliceous and red clays) with variable pro- ductivity, aeolian input and influence of Antarc- tic Bottom Water have been studied to address the source, abundance, mode of incorporation and factors controlling....G. and Bruland, K.W., 1985. Rare earth elements in the Pacific and Atlan- tic Oceans. Geochim. Cosmochim. Acta, 49: 1943-1957. Dehairs, F., Chesselet, R. and Jedwab, J., 1980. Discrete sus- pended particles of barite and the barium cycle in the open ocean...

  9. Determination of trace elements in body fluids by XRF spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nadj, M.; Injuk, J.; Valcovic, V.; Lakatos, J.

    1987-04-01

    X-ray emission spectroscopy is used for trace element analysis of body fluids. Analytical procedures that include sample preparation and XRF setup are described for the analysis of blood serum and amniotic fluid samples for different gravidity stages. The comparison between the distribution of these elements in amniotic fluid and serum is presented and discussed.

  10. Study of Suspended Solid in Constructed Wetland Using Rare Earth Elements

    Science.gov (United States)

    Xiao, Z. X. Z.

    2015-12-01

    Constructed wetland (CW) is one of the commonly used technologies in wastewater treatment. By means of the biochemical interactions among water, microscopic organism, aquatic plant and sediments in natural environment CW can remove biochemical oxygen demand (BOD), ammoniacal nitrogen, suspended solid (SS) and heavy metals. In this study, rare earth elements (REEs) were used as a natural tracer for the study of SS in the CW. The studied CW, Hebao Island free water surface CW, is located in Chiayi County, south Taiwan. The CW is designed for removing SS and BOD due to the pollution from livestock farms in the upstream area. However, the removal of SS was not effective. In some cases, the SS concentration of inflow is even higher than that of outflow. That the sediments on the slope were flushed into the CW was considered as the main problem. After all the refinement, the issue has not improved yet. In the study, the water samples were filtered with 1.0μm filter paper. Then, part of water samples were digested by ultrapure nitric acid to obtain the water representing the total of dissolved and suspended matters. The others were filtered by 0.1μm filter, which represent the matters in dissolved form. REEs and most of metals were subsequently measured with ICP-MS. REEs generally have a unique source and would fractionate in certain regular patterns during biochemical reactions due to lanthanide contraction. They can be an excellent natural tracer in the environmental researches. After normalized by North American Shale Composite, the REEs pattern for the samples with the total of dissolved and suspended matters is characterized by a middle REE (MREE) enrichment and light REE (LREE) depletion. According to the previous theoretical studies, the MREE enrichment could be achieved by a selected adsorption of MREEs by organic matters, which is generally humic substance in natural surface water. It is suggested that the refinement of removal efficiency of SS should focus on

  11. Rare Earth Element Speciation in Geothermal Fluids from Yellowstone National Park, Wyoming, USA

    Science.gov (United States)

    Lewis, A. J.; Komninou, A.; Yardley, B. W. D.; Palmer, M. R.

    1998-02-01

    Elevated concentrations (20-1133 nmol/kg) of rare earth elements (REE) are present in acid-sulphate and acid-sulphate-chloride hydrothermal waters of the Yellowstone National Park (YNP). We used recently estimated thermodynamic data ( Haas et al 1995) to speciate seventeen YNP hydrothermal fluids with the EQ3NR code. The fluids show a range in pH (2.0-4.0) and temperature (70°-93°C) and are of varied chemistry, with TDS = 155-2,075 ppm, sulphate = 100-10,325 μmol/kg, chloride = 190-24,580 μmol/kg, fluoride = 26-1,790 μmol/kg, and SO 4/F = 0.8-323. Field temperature and pH measurements were used in the modelling and saturation with kaolinite and quartz was assumed, although quartz was actually supersaturated. Where possible, oxygen fugacity was calculated from the analytical sulphate/sulphide ratios, otherwise it was set above the hematite-magnetite buffer and pyrite saturation (although speciation calculations show that this is not critical). Carbonate and phosphate levels were set at the analytical detection limit, with the exception of 4 waters for which analytical data for phosphate existed. The waters show little fractionation of REE relative to their host rhyolitic volcanics; it appears that the REE abundances of hydrothermal fluids resulting from alteration of YNP rhyolites are unaffected by the presence of potential complexing species, i.e., that acid-alteration completely strips REE from the portion of the rocks that it affects without any fractionation across the REE series. The main control over REE speciation is the relative abundances of potential complexing agents; however, pH and absolute abundances are also important. In the most acidic waters (pH ˜ 2.0) the free ion is the major species when salinity and SO 4/Cl are low (60-80% of each REE), and REE complexes with chloride can be significant (up to 5%). For higher SO 4/Cl values, sulphate complexes dominate (80-90%). For less acid waters (pH 2.8-4.0) fluoride is the main complexing agent in

  12. Biogeochemical Cycle and Residue of Extraneous Rare Earth Elements in Agricultural Ecosystem

    Institute of Scientific and Technical Information of China (English)

    王立军; 梁涛; 丁士明; 张朝生; 张国梁; 王秀丽

    2004-01-01

    Four groups of field experiments including foliage dressing with a regular amount of rare earth elements(REEs),soil dressing with a regular amount of REEs,soil dressing with a triple regular amount of REEs and the control were carried out in Panggezhuang Village,Daxing County,Beijing,where REE fertilizers are widely applied. The input and output fluxes of all kinds of REEs in the soil and plant system were measured using ICP-MS. The results show that the total amount of REEs carried by rain,snow,irrigation water,composite fertilizer and dust is at a very low level in the control field,which is only about 19.3 g·nm-1 per year. The amounts of REE input in the fields with application of extraneous REEs are much higher than that under control. The total amounts of REE input in the fields with foliage dressing and soil dressing are 9.7 and 106 times higher than that under control,respectively. However,the total outputs of REEs via wheat and infiltrated water are quite similar among the four experimental fields. Uptake of wheat is the main way of output and concentrations of REEs in different organs follow a descending order of roots>leaves>stems>crusts>seeds. Based on calculation,the amount of REE output is slightly higher than that of input in the control field,which implies that it is hard for REEs to accumulate in the soils without application of REE fertilizers. In the fields with the application of extraneous REEs,the amount of REEs in soils can increase with the increasing input of REEs. If REE-fertilizers are applied regularly via soil dressing with the ordinary amount,the concentrations of REEs in the surface soils may double in 159 years. The speed of REE accumulation with foliage dressing is much lower than that with soil dressing,and it needs 2008 years to double the concentrations of REEs in surface soils.

  13. Metal loading effect on rare earth element binding to humic acid: Experimental and modelling evidence

    Science.gov (United States)

    Marsac, Rémi; Davranche, Mélanie; Gruau, Gérard; Dia, Aline

    2010-03-01

    The effect of metal loading on the binding of rare earth elements (REE) to humic acid (HA) was studied by combining ultrafiltration and Inductively Coupled Plasma Mass Spectrometry techniques. REE-HA complexation experiments were performed at pH 3 for REE/C molar ratios ranging from ca 4 × 10 -4 to 2.7 × 10 -2. Results show that the relative amount of REE bound to HA strongly increases with decreasing REE/C. A middle-REE (MREE) downward concavity is shown by patterns at high metal loading, whereas patterns at low metal loading display a regular increase from La to Lu. Humic Ion Model VI modelling are close to the experimental data variations, provided that (i) the ΔLK 2 parameter (i.e. the Model VI parameter taken into account the presence of strong but low density binding sites) is allowed to increase regularly from La to Lu (from 1.1 to 2.1) and (ii) the published log KMA values (i.e. the REE-HA binding constants specific to Model VI) are slightly modified, in particular with respect to heavy REE. Modelling approach provided evidence that logKdREE patterns with varying REE/C likely arises because REE binding to HA occurs through two types of binding sites in different density: (i) a few strong sites that preferentially complex the heavy REE and thus control the logKdREE atterns at low REE/C; (ii) a larger amount of weaker binding sites that preferentially complex the middle-REE and thus control the logKdREE pattern at high REE/C. Hence, metal loading exerts a major effect on HA-mediated REE binding, which could explain the diversity of published conditional constants for REE binding with HA. A literature survey suggests that the few strong sites activated at low REE/C could be multidentate carboxylic sites, or perhaps N-, or P-functional groups. Finally, an examination of the literature field data proposed that the described loading effect could account for much of the variation in REE patterns observed in natural organic-rich waters (DOC > 5 mg L -1 and 4

  14. The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand

    Science.gov (United States)

    Nozaki, Yoshiyuki; Lerche, Dorte; Alibo, Dia Sotto; Snidvongs, Anond

    2000-12-01

    A new filtration method using a 0.04 μm hollow fiber filter was applied to the river, estuarine, and coastal waters in the Chao Phraya estuary for geochemical investigation. The filtered waters were analyzed for all the lanthanides, Y and In by using inductively coupled plasma mass spectrometry (ICPMS). The dissolved concentrations of rare earth elements (REEs) are significantly lower than those reported previously for other rivers, presumably because of effective removal of river colloids by the ultra-filtration. The variation of dissolved REEs in the estuary is dependent on the season. The light REEs vary considerably in the low salinity ( S river discharge is low, the REEs show maxima in the mid salinity ( S = 5-12) zone suggesting that dissolved REEs are supplied to the waters by either desorption from suspended loads or remineralization of underlying sediments. The rapid removal of the REEs is also taking place in the turbid-clear water transition zone ( S = 12-15), presumably due to biological uptake associated with blooming of Noctilca occurred at the time of January sampling. In the medium to high discharge season (July and November), the dissolved REE(III)s at S > 3 show almost conservative trends being consistent with some of the previous works. Europium is strongly enriched in the river and estuarine waters compared to the South China Sea waters. Thus, the REE source of the Chao Phraya River must be fractionated and modified in entering to the South China Sea. Dissolved In and Ce in the high salinity ( S = 20-25) zone of the estuary are lower than those of the offshore waters, and therefore, the dissolved flux of the Chao Phraya River cannot account for the higher concentrations of dissolved In and Ce in the surface waters of the South China Sea. The negative Ce anomaly is progressively developed with increasing salinity, being consistent with continued oxidation of Ce(III) to Ce(IV) in the estuary. Fractionation of the light-to-heavy REEs seems to take

  15. Rare earth element sorption by basaltic rock: Experimental data and modeling results using the “Generalised Composite approach”

    Science.gov (United States)

    Tertre, E.; Hofmann, A.; Berger, G.

    2008-02-01

    Sorption of the 14 rare earth elements (REE) by basaltic rock is investigated as a function of pH, ionic strength and aqueous REE concentrations. The rock sample, originating from a terrestrial basalt flow (Rio Grande do Sul State, Brazil), is composed of plagioclase, pyroxene and cryptocrystalline phases. Small amounts of clay minerals are present, due to rock weathering. Batch sorption experiments are carried out under controlled temperature conditions of 20 °C with the XNa sites, and surface complexation at >SOH sites. Total site density (>XNa + >SOH) is determined by measuring the cation exchange capacity (CEC = 52 μmol/m 2). Specific concentrations of exchange sites and complexation sites are determined by fitting the Langmuir equation to sorption isotherms of REE and phosphate ions. Site densities of 22 ± 5 and 30 ± 5 μmol/m 2 are obtained for [>XNa] and [>SOH], respectively. The entire set of REE experimental data is modeled using a single exchange constant (log Kex = 9.7) and a surface complexation constant that progressively increases from log K = -1.15 for La(III) to -0.4 for Lu(III). The model proves to be fairly robust in describing other aluminosilicate systems. Maintaining the same set of sorption constants and only adjusting the site densities, we obtain good agreement with the literature data on REE/kaolinite and REE/smectite sorption. The Generalised Composite non-electrostatic model appears as an easy and efficient tool for describing sorption by complex aluminosilicate mineral assemblages.

  16. Rare earth elements distribution in grapevine varieties grown on volcanic soils: an example from Mount Etna (Sicily, Italy).

    Science.gov (United States)

    D'Antone, Carmelisa; Punturo, Rosalda; Vaccaro, Carmela

    2017-04-01

    A geochemical and statistical approach has allowed identifying in rare earth elements (REEs) absorption a good fingerprinting mark for determining the territoriality and the provenance of Vitis vinifera L. in the district of Mount Etna (southern Italy). Our aim is to define the REEs distribution in different parts of the plants which grow in the same volcanic soil and under the same climate conditions, and therefore to assess whether REEs distribution may reflect the composition of the provenance soil or if plants can selectively absorb REEs in order to recognize the fingerprint in the Etna Volcano soils as well as the REEs pattern characteristic of each cultivar of V. vinifera L. The characteristic pattern of REEs has been determined by ICP-MS analyses in the soils and in the selected grapevine varieties for all the following parts: leaves, seeds, juice, skin, and berries. These geochemical criteria, together with the multivariate statistical analysis of the principal component analysis (PCA) and of the linear discriminant analysis (LDA) that can be summarized with the box plot, suggest that leaves mostly absorb REEs than the other parts of the plant. This work investigates the various parts of the plant in order to verify if each grape variety presents a characteristic geochemical pattern in the absorption of REEs in relationship with the geochemical features of the soil so to highlight the individual compositional fingerprint. Based on REE patterns, our study is a useful tool that allows characterizing the differences among the grape varieties and lays the foundation for the use of REEs in the geographic origin of the Mount Etna wine district.

  17. Study On The Separation And Extraction Of Rare-Earth Elements From The Phosphor Recovered From End Of Life Fluorescent Lamps

    Directory of Open Access Journals (Sweden)

    Shin D.-W.

    2015-06-01

    Full Text Available In this study, recovered phosphor from end of life three-wavelength fluorescent lamp was selected for reuse rare earth elements in the phosphor. The effect of a type of acid, concentration, and time was investigated as solubility of rare earth elements. In addition, precipitate heat-treated was investigated as possibility of reusable phosphor. The results showed that the amount of the rare earth elements was different values depending on the type of acid, and it was investigated with concentration of acid and reaction time. After precipitation reaction, the precipitate was sintered in electric furnace in order to reuse rare earth elements as phosphor. It was confirmed that yttrium, europium, oxygen, and carbon through X-ray diffraction and inductively coupled plasma analysis. Following the results, it can assume that rare earth oxide reuse the phosphor as three-wavelength fluorescent lamp.

  18. Rare earth element behavior during groundwater – seawater mixing along the Kona Coast of Hawaii

    Science.gov (United States)

    Johannesson, Karen H.; Palmore, C. Dianne; Fackrell, Joseph; Prouty, Nancy G.; Swarzenski, Peter W.; Chevis, Darren A.; Telfeyan, Katherine; White, Christopher D.; Burdige, David J.

    2017-01-01

    Groundwater and seawater samples were collected from nearshore wells and offshore along the Kona Coast of the Big Island of Hawaii to investigate rare earth element (REE) behavior in local subterranean estuaries. Previous investigations showed that submarine groundwater discharge (SGD) is the predominant flux of terrestrial waters to the coastal ocean along the arid Kona Coast of Hawaii. Groundwater and seawater samples were filtered through 0.45 μm and 0.02 μm pore-size filters to evaluate the importance of colloidal and soluble (i.e., truly dissolved ionic species and/or low molecular weight [LMW] colloids) fractions of the REEs in the local subterranean estuaries. Mixing experiments using groundwater collected immediately down gradient from a wastewater treatment facility (WWTF) proximal to the Kaloko-Hanokohau National Historic Park, and more “pristine” groundwater from a well constructed in a lava tube at Kiholo Bay, were mixed with local seawater to study the effect of solution composition (i.e., pH, salinity) on the concentrations and fractionation behavior of the REEs as groundwater mixes with seawater in Kona Coast subterranean estuaries. The mixed waters were also filtered through 0.45 or 0.02 μm filters to ascertain the behavior of colloidal and soluble fractions of the REEs across the salinity gradient in each mixing experiment. Concentrations of the REEs were statistically identical (two-tailed Student t-test, 95% confidence) between the sequentially filtered sample aliquots, indicating that the REEs occur as dissolved ionic species and/or LMW colloids in Kona Coast groundwaters. The mixing experiments revealed that the REEs are released to solution from suspended particles or colloids when Kona Coast groundwater waters mix with local seawater. The order of release that accompanies increasing pH and salinity follows light REE (LREE) > middle REE (MREE) > heavy REE (HREE). Release of REEs in the mixing experiments is driven by decreases in the

  19. Rare earth element behavior during groundwater-seawater mixing along the Kona Coast of Hawaii

    Science.gov (United States)

    Johannesson, Karen H.; Palmore, C. Dianne; Fackrell, Joseph; Prouty, Nancy G.; Swarzenski, Peter W.; Chevis, Darren A.; Telfeyan, Katherine; White, Christopher D.; Burdige, David J.

    2017-02-01

    Groundwater and seawater samples were collected from nearshore wells and offshore along the Kona Coast of the Big Island of Hawaii to investigate rare earth element (REE) behavior in local subterranean estuaries. Previous investigations showed that submarine groundwater discharge (SGD) is the predominant flux of terrestrial waters to the coastal ocean along the arid Kona Coast of Hawaii. Groundwater and seawater samples were filtered through 0.45 μm and 0.02 μm pore-size filters to evaluate the importance of colloidal and soluble (i.e., truly dissolved ionic species and/or low molecular weight [LMW] colloids) fractions of the REEs in the local subterranean estuaries. Mixing experiments using groundwater collected immediately down gradient from a wastewater treatment facility (WWTF) proximal to the Kaloko-Hanokohau National Historic Park, and more "pristine" groundwater from a well constructed in a lava tube at Kiholo Bay, were conducted with local seawater to study the effect of solution composition (i.e., pH, salinity) on the concentrations and fractionation behavior of the REEs as groundwater mixes with seawater in Kona Coast subterranean estuaries. The mixed waters were also filtered through 0.45 or 0.02 μm filters to ascertain the behavior of colloidal and soluble fractions of the REEs across the salinity gradient in each mixing experiment. Concentrations of the REEs were statistically identical (two-tailed Student t-test, 95% confidence) between the sequentially filtered sample aliquots, indicating that the REEs occur as dissolved ionic species and/or LMW colloids in Kona Coast groundwaters. The mixing experiments revealed that the REEs are released to solution from suspended particles or colloids when Kona Coast groundwater waters mix with local seawater. The order of release that accompanies increasing pH and salinity follows light REE (LREE) > middle REE (MREE) > heavy REE (HREE). Release of REEs in the mixing experiments is driven by decreases in the

  20. Natural and anthropogenic rare earth elements in Lago de Paranoá, Brasilia, Brazil

    Science.gov (United States)

    Merschel, Gila; Baldewein, Linda; Bau, Michael; Dantas, Elton Luiz; Walde, Detlef; Bühn, Bernhard

    2014-05-01

    Rare earth elements (REE) belong to the group of particle reactive elements and occur at ultratrace levels in natural waters. They are exclusively trivalent, but Ce and Eu can also be tetravalent and divalent, respectively, depending on the redox-level, the pH and the temperature of the fluid. Due to these redox changes, normalized REE patterns may show Ce and/or Eu anomalies. Recently, these high-tech metals raised significant public attention, as they are of great economic importance and consumption and hence release into the environment increased sharply. The most prominent example of a REE contamination is anthropogenic Gd, which is derived from Gd-based contrast agents used in magnetic resonance imaging. Due to their high stabilities, these compounds are not readily removed by commonly applied waste water treatment technologies and, therefore, are released from treatment plants into surface and ground waters. Hence, this anthropogenic Gd can be used as a tracer for the presence of waste water-derived substances such as pharmaceuticals and personal care products in river, lake, ground and tap waters. Lago de Paranoá is an artificial reservoir lake in the city of Brasilia, Brazil, and is currently considered a potential freshwater resource. The city's two waste water treatment plants are located on its shore and their effluents are discharged into the lake. To investigate the level of contamination, we took water samples at 11 stations in the lake and compared the REE concentrations in unfiltered and filtered (<200 nm) lake water. The unfiltered water samples show light REE enrichment (LaSN/YbSN: 1.37-1.98) and high REE concentrations (Sum REE: 192 - 476 ng/L), while the unfiltered water samples are heavy REE enriched (LaSN/YbSN: 0.15-0.61) at lower concentrations (Sum REE: 50 - 85 ng/L). This is due to the fact that light REE are preferentially bound to particle surfaces, while the heavy REE are preferentially complexed with ligands in solution. In marked

  1. Rare earth element and uranium-thorium variations in tufa deposits from the Mono Basin, CA

    Science.gov (United States)

    Wilcox, E. S.; Tomascak, P. B.; Hemming, N.; Hemming, S. R.; Rasbury, T.; Stine, S.; Zimmerman, S. R.

    2009-12-01

    Samples of fossil tufa deposits from several localities in the Mono Basin, eastern California, were analyzed for trace element concentrations in order to better understand changes in lake composition in the past. These deposits were formed during the last glacial cycle, mostly during deglaciation (Benson et al., 1990, PPP). Three elevations are represented by the analyses. Samples from near Highway 167 were sampled between 2063 and 2069 m asl. Samples from near Thompson Road were sampled between 2015 and 2021 m. One layered mound was sampled at 1955 m. Concentrations of the lanthanide rare earth elements (REE), in particular the heavy/light (HREE/LREE) distributions, have been shown to be sensitive to alkalinity in modern saline lakes (e.g., Johannesson et al., 1994, GRL, 21, 773-776), and the same has been suggested for U/Th (Anderson et al., 1982, Science, 216, 514-516). Holocene to near-modern tufa towers exist in shallow water and around the current shoreline (1945 m). Tufa towers above 2000 m include a characteristic morphology termed thinolite, interpreted to represent pseudomorphs after the very cold water mineral ikaite. Most lower elevation towers do not have the thinolite morphology, but some layered tufa mounds at low elevations include several layers of thinolite, such as the one sampled for this project. Analyses were made on millimeter-scale bulk samples from tufa towers. Measurements were made on sample solutions with a Varian 820MS quadrupole ICP-MS. Mono Basin tufa samples have total REE concentrations ranging from 0.029 to 0.77 times average shales. Samples have flat to moderately HREE-enriched shale-normalized patterns with limited overall variability ([La/Lu]SN of 1.8 to 9.6) but with some variability in the slope of the HREE portion of the patterns. Tufa towers sampled from three elevations have (Gd/Lu)SN of 0.40 to 1.5. The REE patterns of most samples have small positive Ce anomalies, but a minority of samples, all from the layered tufa mound

  2. Element Partitioning Constraints on Formation and Composition of the Earth's Core

    Science.gov (United States)

    Li, J.; Agee, C. B.; Fei, Y.

    1998-01-01

    Element partitioning study provides a number of constraints on the formation and composition of the core. First, partitioning of siderophile elements between the core and mantle should explain the "excess" siderophile elements in the mantle. Second, partitioning of light element(s) between the core and mantle should supply the core with the right amount of light element(s) to account for the density deficit in the core. Third, partitioning of light element(s) between the inner and outer core should be consistent with the observed difference in density deficits (relative to pure Fe) between these two reservoirs. In this study, high-pressure and high-temperature experiments have been conducted to investigate the pressure, temperature, and composition effects on partitioning of siderophile elements Ni and Co between core-forming Fe alloy and mantle silicate melt and minerals, partitioning of light elements S, O, and Si between core-forming Fe alloy and mantle silicate melt and minerals, and partitioning of light elements S and C between solid and liquid Fe. The implications of these results for mechanism of core formation and the composition of the core are discussed.

  3. Orbit Determination Error Analysis Results for the Triana Sun-Earth L2 Libration Point Mission

    Science.gov (United States)

    Marr, G.

    2003-01-01

    Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination error analysis results are presented for all phases of the Triana Sun-Earth L1 libration point mission and for the science data collection phase of a future Sun-Earth L2 libration point mission. The Triana spacecraft was nominally to be released by the Space Shuttle in a low Earth orbit, and this analysis focuses on that scenario. From the release orbit a transfer trajectory insertion (TTI) maneuver performed using a solid stage would increase the velocity be approximately 3.1 km/sec sending Triana on a direct trajectory to its mission orbit. The Triana mission orbit is a Sun-Earth L1 Lissajous orbit with a Sun-Earth-vehicle (SEV) angle between 4.0 and 15.0 degrees, which would be achieved after a Lissajous orbit insertion (LOI) maneuver at approximately launch plus 6 months. Because Triana was to be launched by the Space Shuttle, TTI could potentially occur over a 16 orbit range from low Earth orbit. This analysis was performed assuming TTI was performed from a low Earth orbit with an inclination of 28.5 degrees and assuming support from a combination of three Deep Space Network (DSN) stations, Goldstone, Canberra, and Madrid and four commercial Universal Space Network (USN) stations, Alaska, Hawaii, Perth, and Santiago. These ground stations would provide coherent two-way range and range rate tracking data usable for orbit determination. Larger range and range rate errors were assumed for the USN stations. Nominally, DSN support would end at TTI+144 hours assuming there were no USN problems. Post-TTI coverage for a range of TTI longitudes for a given nominal trajectory case were analyzed. The orbit determination error analysis after the first correction maneuver would be generally applicable to any libration point mission utilizing a direct trajectory.

  4. Determination of light elements in amalgam restorations. [Dental amalgam

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Osborne, J.W.; Nelson, G.V.

    1982-01-01

    Rutherford backscattering has been used to measure the major elemental compositions in the near-surface regions of freshly prepared and used samples of dental amalgam. A depletion from bulk stoichiometry of the major elements, which indicates an accumulation of lighter elements on the surface of the materials, has been observed. Increases in the F, Na, Cl, P, O, C, and N concentrations between freshly prepared samples and used samples were measured by observation of gamma rays produced by proton and deuteron induced reactions.

  5. Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation

    Science.gov (United States)

    Miller, J. K.; Antreasian, P. J.; Georgini, J.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.

    1995-01-01

    Navigation of the orbit phase of the Near Earth steroid Rendezvous (NEAR) mission will re,quire determination of certain physical parameters describing the size, shape, gravity field, attitude and inertial properties of Eros. Prior to launch, little was known about Eros except for its orbit which could be determined with high precision from ground based telescope observations. Radar bounce and light curve data provided a rough estimate of Eros shape and a fairly good estimate of the pole, prime meridian and spin rate. However, the determination of the NEAR spacecraft orbit requires a high precision model of Eros's physical parameters and the ground based data provides only marginal a priori information. Eros is the principal source of perturbations of the spacecraft's trajectory and the principal source of data for determining the orbit. The initial orbit determination strategy is therefore concerned with developing a precise model of Eros. The original plan for Eros orbital operations was to execute a series of rendezvous burns beginning on December 20,1998 and insert into a close Eros orbit in January 1999. As a result of an unplanned termination of the rendezvous burn on December 20, 1998, the NEAR spacecraft continued on its high velocity approach trajectory and passed within 3900 km of Eros on December 23, 1998. The planned rendezvous burn was delayed until January 3, 1999 which resulted in the spacecraft being placed on a trajectory that slowly returns to Eros with a subsequent delay of close Eros orbital operations until February 2001. The flyby of Eros provided a brief glimpse and allowed for a crude estimate of the pole, prime meridian and mass of Eros. More importantly for navigation, orbit determination software was executed in the landmark tracking mode to determine the spacecraft orbit and a preliminary shape and landmark data base has been obtained. The flyby also provided an opportunity to test orbit determination operational procedures that will be

  6. trace elements determination in municipal water supply in damaturu ...

    African Journals Online (AJOL)

    DR. AMINU

    Key words: Contamination, Trace elements, Toxic, underground water. INTRODUCTION ... prevent rot and increase longevity, such as penta- ... often contains arsenic that was in drugs administered to chickens .... could cause toxicity. Iron was ...

  7. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    Science.gov (United States)

    Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  8. Determination of 24 Trace Level of Rare Earth and Metal Elements in Coastal and Estuarine Seawater by Polymer Complexation -Ultrafiltration Technique and Inductively Coupled Plasma Mass Spectrometry%聚丙烯酸螯合-超滤分离富集电感耦合等离子体质谱测定近岸及河口海水中24种痕量稀土及金属元素

    Institute of Scientific and Technical Information of China (English)

    林继军; 林文博; 弓振斌; 段华玲; 黄佳华

    2011-01-01

    A method of polyacrylic acid-complexation and ultrafiltration for matrix modification and inductively coupled plasma mass spectrometry (ICP - MS ) was developed for the determination of 24 trace level of rare earth elements ( REEs ) and metal elements in coastal and estuarine seawater. REEs ions, Cu , Pb 2+ , Cd , Co 2+ , Ni could reacted with polyacrylic acid (PAA) to form stable complexes when the pH value was above 7. 5, which could be separated and enriched absolutely after trapped and eluted from the ultrafilter. Full quantitative data collection mode and internal standard calibration curve were used for the ICP - MS determination. Under the optimized conditions, the relative standard deviations ( RSDs) were in the range of 1. 7% -7. 3% , and the spiked recoveries were between 73% and 96% . The limits of quantitation (LOQs, 10σ) ranged from 0. 23 ng/L to 13. 9 ng/L. The method blank ranged from 0. 09 ng/L to 8. 38 ng/L. The developed method could be applied in the simultaneous determination of REEs and metal elements in coastal and estuarine seawater.%建立了聚丙烯酸螯合-超滤( PCP - UF)分离富集、电感耦合等离子体质谱(ICP - MS)测定海水中痕量稀土及金属元素的方法.pH值高于7.5时,海水中的稀土离子、Cu2、pb2、Cd2、Co2、Ni2+等与聚丙烯酸(PAA)形成稳定的高分子螯合物,经超滤截留、硝酸解离后,实现了稀土及金属元素从海水中的分离、富集;采用ICP - MS的全定量数据采集模式、内标校正的标准校正曲线法对待测元素进行定量分析.在优化实验条件下,方法的相对标准偏差(RSD)为1.7% ~7.3%,加标回收率为73% ~ 96%;方法的定量下限(LOQs,10σ为0.23 ~ 13.9 ng/L,方法空白为0.09 ~ 8.38 ng/L.建立的方法可用于近岸及河口海水中痕量稀土及金属元素的同时测定.

  9. Mapping of rare earth elements in nuclear waste glass–ceramic using micro laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Motto-Ros, V. [ILM, UMR5306, Université Lyon 1 — CNRS, Université de Lyon, F-69622, Lyon (France); Panczer, G., E-mail: gerard.panczer@univ-lyon1.fr [ILM, UMR5306, Université Lyon 1 — CNRS, Université de Lyon, F-69622, Lyon (France); De Ligny, D.; Yu, J.; Benoit, J.M. [ILM, UMR5306, Université Lyon 1 — CNRS, Université de Lyon, F-69622, Lyon (France); Dussossoy, J.L.; Peuget, S. [CEA, DEN, DTCD/SECM/LMPA-Marcoule, F-30207 Bagnols-sur-Cèze (France)

    2013-09-01

    A micro-LIBS system was set up based on a quadruple Nd:YAG laser at 266 nm coupled with a microscope. Elemental mapping was performed on a Mo-rich glass–ceramic sample containing CaMoO{sub 4} crystallites hundreds of microns in length and about 25 μm in section diameter. The topography of single-shot laser-induced craters was characterized using an atomic force microscope (AFM), which revealed a crater size less than 7 μm. Mappings of Mo, Ca, Sr, Al, Fe, Zr and rare earth elements such as Eu, Nd, Pr and La were undertaken. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was conducted to validate the micro-LIBS analysis. Principal components analysis calculation was used to investigate the correlation of elements in the two phases of glass–ceramic. Correlation between Ca, Sr, rare earth elements and Mo indicates their preferential incorporation into the calcium molybdate crystalline phase. Anti-correlation between Fe, Zr, Al and Mo revealed their affinity to the glass phase. - Highlights: • A dedicated micro-LIBS system was set up to perform fast elemental mapping. • Mapping was conducted on a Mo-rich nuclear waste glass–ceramic for the first time. • Mo, Ca, Sr, Eu, Nd, La, Pr, Al, Fe and Zr were detected in one spectral range. • Crater size was about 5 μm on crystallites of the sample. • Fractionation behavior of elements was investigated by principal components analysis.

  10. Influence of Rare Earth Elements on Luminescent Properties of Y2SiO5:Tb

    Institute of Scientific and Technical Information of China (English)

    Jiao Huan; Liao Fuhui; Zhou Jingjing; Jing Xiping

    2005-01-01

    Photoluminescent(PL) and cathodoluminescent(CL) properties of rare earths (Sc3+, La3+, Gd3+ and Lu3+) doped (Y0.97Tb0.03)2SiO5 were studied. Rare earth doping clearly influences PL and CL properties of Y2SiO5:Tb. For La3+ doped system, PL intensity increases nearly 10% at x=0.05 whereas for Lu3+ doped system, the intensity increases about 20% at x=0.20. Gd3+ doping and Sc3+ doping reduce the intensity; at x=0.3, it is reduced about 30% for Gd3+ doped system and about 15% for Sc3+ doped system, respectively. Quenching concentration of activator became higher in rare earth doped samples, which may be understood by that the rare earth dopants might dilute the concentration of the activator. Additionally, doping also influences the color saturation of Y2SiO5:Tb. Sc3+, La3+, and Gd3+ doping improve the color saturation, whereas Lu3+ doping decreases the color saturation. CL measurements show that CL intensity increases for all rare earths doped systems. The energy transfer from Gd3+ to Tb3+ was discussed.

  11. Physico-chemical properties of 3-methoxy-2-nitrobenzoates of some rare earth elements(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    Wieslawa Ferenc; Beata Cristóv(a)o; Jan Sarzy(n)ski; Halina Gluchowska

    2012-01-01

    The complexes of 3-methoxy-2-nitrobenzoates of Pr(Ⅲ),Nd(Ⅲ),Sm(Ⅲ),Eu(Ⅲ),Gd(Ⅲ),Tb(Ⅲ),Er(Ⅲ) and Tm(Ⅲ) with the formula:Ln(CsH6NO5)3·2H2O,where Ln=lanthanides(Ⅲ),were synthesized and characterized by elemental analysis,Forier transform irtrared (FTIR) spectroscopy,magnetic and thermogravimetric studies and also by X-ray diffraction (XRD) measurements.The complexes had colours typical for Ln(Ⅲ) ions.The carboxylate groups bound as bidentate chelating.On heating to 1173 K in air they decomposed in the same way,at first,dehydrated in one step to anhydrous salts,and then decomposed to the oxides of respective metals with intermediate formation of the oxycarbonates.The enthalpy values of the dehydration process changed from 133.72 to 44.50 kJ/mol.Their solubility in water at 293 K was of the order of 10-4 mol/dm3.The magnetic moments of analysed complexes were determined by Gouy's method in the range of 76-303 K.

  12. The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Funari, Valerio, E-mail: valerio.funari@unibo.it [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy); Bokhari, Syed Nadeem Hussain [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Vigliotti, Luigi [Istituto di Scienze Marine (ISMAR-CNR)—National Research Council, Via Piero Gobetti 101, Bologna (Italy); Meisel, Thomas [General and Analytical Chemistry—Montanuniversität Leoben, Franz-Josef-Str. 18, Leoben (Austria); Braga, Roberto [Dipartimento di Scienze Biologiche, Geologiche e Ambientali (BiGeA)—University of Bologna, Piazza di Porta San Donato 1, Bologna (Italy)

    2016-01-15

    Highlights: • The REE concentrations of bottom and fly ashes from municipal incinerators are investigated. • First attempt toward discriminating the magnetic signature (susceptibility) of ashes from incinerators. • New methods and parameters for REE prospecting, which can be determined quickly and with limited costs, are provided. - Abstract: Bottom and fly ashes from Municipal Solid Waste Incinerators (MSWI) are hazardous products that present concern for their safe management. An attractive option to reduce their impact both on the environment and the financial commitment is turning MSWI ashes into secondary raw materials. In this study we present the REE content and distribution of bottom and fly ashes from MSWI after a highly effective digestion method and samples analysis by ICP–MS. The chondrite-normalised REE patterns of MSWI bottom and fly ash are comparable with that of crustal averages, suggesting a main geogenic source. Deviations from typical crustal pattern (e.g., Eu, Tb) disclose a contribution of likely anthropogenic provenance. The correlation with major elements indicates possible sources for REE and facilitates a preliminary resource assessment. Moreover, magnetic susceptibility measurements can be a useful prospecting method in urban ores made of MSWI ashes. The relationship between REE and some influencing parameters (e.g., Pricing Influence Factor) emphasises the importance of MSWI ash as alternative source of REE and the need of further efforts for REE recovery and purification from low concentrations but high flows waste.

  13. Separation characteristics of rare earth elements in the TOPO/DTPA - Salting-out reagent solution system

    Energy Technology Data Exchange (ETDEWEB)

    Miyahara, S.; Koma, Yoshikazu; Koyama, Tomozo; Tanaka, Yasumasa [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works; Kano, J.

    1998-11-01

    A test of mutual separation of rare earth elements was carried out using an organic phosphorus extraction solvent TOPO (tri-octyl phosphorus oxide). It was found that the distribution ratio monotonously increased with the atomic number and the separation factor of La/Ln was 10{sup 3}. Under the condition that a sufficient quantity of DTPA compared with the amount of rare earth metals and pH > 1.5 in which DTPA easily formed complexes with lanthanides, the following conclusions were obtained; (i) the separation factor was not affected by pH, the kind of salting-out reagent, or the concentration, (ii) the extraction reaction with TOPO and complex formation with DTPA mainly contributed to the separation of lanthanides, and (iii) the separation factor computed by means of the distribution ratio of TOPO extraction and complex formation constant for DTPA more or less agreed with the empirical value. Separation of rare earth elements using TOPO revealed similar characteristics to those of systems with CMPO and TBP. (H. Baba)

  14. Rare-earth elements as source indicators of Pan-African granites from Obudu Plateau, Southeastern Nigeria

    Institute of Scientific and Technical Information of China (English)

    Ukaegbu V.U; Beka F.T

    2008-01-01

    The rare-earth element (REE) concentrations of representative granite samples from the southeast of the Obudu Plateau, Nigeria, were analyzed with an attempt to determine the signatures of their source, evolutionary history and tectonic setting. Results indicated that the granites have high absolute REE concentrations (190×10-6-1191×10-6; av.=549×10-6) with the chondrite-normalized REE patterns characterized by steep negative slopes and prominent to slight or no negative Eu anomalies. All the samples are also characterized by high and variable concentrations of the LREE (151×10-6-1169×10-6; av.= 466×10-6), while the HREE show low abundance (4×10-6-107×10-6; av.=28×10-6). These are consistent with the variable levels of REE fractionation, and differentiation of the granites. This is further supported by the range of REE contents, the chondrite-normalized patterns and the ratios of LaN/YbN (2.30-343.37), CeN/YbN (5.94-716.87), LaN/SmN (3.14-11.68) and TbN/YbN (0.58-1.65). The general parallelism of the REE patterns, suggest that all the granites were comagmatic in origin, while the high Eu/Eu* ratios (0.085-2.807; av.=0.9398) indicate high fO2 at the source. Similarly, irregular variations in LaN/YbN, CeN/YbN and Eu/Eu* ratios and REE abundances among the samples suggest behaviors that are related to mantle and crustal sources.

  15. Metal, trace and rare earth element assessment in a sedimentary profile from Promissao reservoir, Sao Paulo state, Brazil, by INAA

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sharlleny A.; Franklin, Robson L., E-mail: shasilva@sp.gov.br [Companhia Ambiental do Estado de Sao Paulo (ELAI/CETESB), SP (Brazil). Setor de Quimica Inorganica; Luiz-Silva, Wanilson [Universidade Estadual de Campinas (DGRN/UNICAMP), SP (Brazil). Instituto de Geociencias. Departamento de Geologia e Recursos Naturais; Favaro, Deborah I.T., E-mail: defavaro@ipen.gov.br [Instituto de Pesquisas Energeticas e Nucleares (LAN/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Laboratorio de Analise por Ativacao Neutronica

    2015-07-01

    In the present study the preliminary results for the Promissao reservoir, situated in the Lower Tiete region covering a little more than 1% of the SP state population, is characterized by intense agropastoral activities. Its operations for generating electrical energy started in 1975. It is located at Tiete River and its hydrographic basin has a drainage area of 530 km{sup 2}. The total extension of the reservoir is 110 km along the Tiete River, with a medium depth of 20 m. A core sampler was used and a 33 cm sediment core was collected from the dam in January 2013, sliced at every 2.5 cm, totaling 13 samples. Instrumental neutron activation analysis was applied to the sediment samples in order to determine some major (Fe, K, and Na), trace (As, Ba, Br, Co, Cr, Cs, Hf, Rb, Sb, Sc, Ta, Tb, Th, U, and Zn) and rare earth elements (Ce, Eu, La, Lu, Nd, Sm, Tb, and Yb). The enrichment factor (EF) was applied to the results obtained by using North American Shale Composite, Upper Continental Crust and the concentration values of the last layer of this profile as reference values for sediment contamination index assessment. When the results for As, Cr, and Zn were compared to threshold effect level (TEL) and probable effect level (PEL) oriented values, sediments from 0-10 cm exceeded the TEL values for As (5.9 mg kg{sup -1}), all samples exceeded the PEL values for Cr (90 mg kg{sup -1}), and all samples had much lower values than TEL values for Zn (123 mg kg{sup -1}). (author)

  16. Porosity and Permeability of Round Top Mountain Rhyolite (Texas, USA Favor Coarse Crush Size for Rare Earth Element Heap Leach

    Directory of Open Access Journals (Sweden)

    Lorraine Negron

    2016-02-01

    Full Text Available Water-saturation porosity and dye-penetration permeability measurements of Round Top Mountain rhyolite confirm that a ½-inch (13-mm crush size would permit efficient acid heap leaching of yttrium and heavy rare earth elements (YHREEs hosted in yttrofluorite, a YHREE-substituted variety of fluorite. Laboratory acid leaching has extracted up to 90% of the YHREEs. The bulk insoluble gangue mineralogy of the rhyolite, 90% to 95% quartz and feldspars, assures low acid consumption. Different crush sizes were weighed, soaked in water, and reweighed over time to determine water-penetration estimated porosity. Typical porosities were 1% to 2% for gray and 3% to 8% for pink varieties of Round Top rhyolite. The same samples were re-tested after soaking in dilute sulfuric to simulate heap leaching effects. Post-leach porosity favorably increased 15% in pink and 50% in gray varieties, due to internal mineral dissolution. Next, drops of water-based writing ink were placed on rhyolite slabs up to ~10 mm thick, and monitored over time for visual dye breakthrough to the lower side. Ink penetration through 0.5 to 2.5-mm-thick slabs was rapid, with breakthrough in minutes to a few hours. Pink rhyolite breakthrough was faster than gray. Thicker slabs, 4 to 10 mm, took hours to three days for breakthrough. Porosity and permeability of the Round Top rhyolite and acid solubility of the yttrofluorite host should permit liberation of YHREEs from the bulk rock by inexpensive heap leaching at a coarse and inexpensive nominal ½-inch (13-mm crush size. The rate-limiting step in heap leach extraction would be diffusion of acid into, and back-diffusion of dissolution products out of, the crushed particles. The exceptional porosity and permeability that we document at Round Top suggest that there may be other crystalline rock deposits that economically can be exploited by a coarse-crush bulk heap leach approach.

  17. Trace element determination in vitamin E using ICP-MS.

    Science.gov (United States)

    Ponce De León, Claudia A; Montes Bayón, Maria; Caruso, Joseph A

    2002-09-01

    Vitamin E supplements are either isolated from plants sources or prepared synthetically. Isolation from plants includes eight different tocopherol structures. Vitamin E synthesis includes seven different stereoisomers, which involves the use of several catalysts that may lead to trace element contamination in the vitamin. The use of ICP-MS is an ideal technique for detecting these trace elements. However, the oily nature of the samples requires the development of a sample preparation methodology. This study was done upon the request of synthetic vitamin E manufacturers to test the trace metal purity of their samples. In this work, the comparison of an acid microwave digestion and emulsion preparation is discussed. Cromium, nickel, tin and lead were found in the synthetic vitamin E analyzed and 200, 60, 9 and 45 ppb were the concentrations found respectively for these elements. Digesting the samples gives slightly lower detection limits compared to the emulsion preparation.

  18. Modeling of rare earth element sorption to the Gram positive Bacillus subtilis bacteria surface.

    Science.gov (United States)

    Martinez, Raul E; Pourret, Olivier; Takahashi, Yoshio

    2014-01-01

    In this study, rare earth element (REE) binding constants and site concentration on the Gram+ bacteria surfaces were quantified using a multi-site Langmuir isotherm model, along with a linear programming regression method (LPM), applied to fit experimental REE sorption data. This approach found one discrete REE binding site on the Gram+ Bacillus subtilis surface for the pH range of 2.5-4.5. Average log10 REE binding constants for a site j on these bacteria ranged from 1.08±0.04 to 1.40±0.04 for the light REE (LREE: La to Eu), and from 1.36±0.03 to 2.18±0.14 for the heavy REE (HREE: Gd to Lu) at the highest biomass concentration of 1.3 g/L of B. subtilis bacteria. Similar values were obtained for bacteria concentrations of 0.39 and 0.67 g/L indicating the independence of REE sorption constants on biomass concentration. Within the experimental pH range in this study, B. subtilis was shown to have a lower affinity for LREE (e.g. La, Ce, Pr, Nd) and a higher affinity for HREE (e.g. Tm, Yb, Lu) suggesting an enrichment of HREE on the surface of Gram+ bacteria. Total surface binding site concentrations of 6.73±0.06 to 5.67±0.06 and 5.53±0.07 to 4.54±0.03 mol/g of bacteria were observed for LREE and HREE respectively, with the exception of Y, which showed a total site concentration of 9.53±0.03, and a log K(REE,j) of 1.46±0.02 for a biomass content of 1.3 g/L. The difference in these values (e.g. a lower affinity and increased binding site concentration for LREE, and the contrary for the HREE) suggests a distinction between the LREE and HREE binding modes to the Gram+ bacteria reactive surface at low pH. This further implies that HREE may bind more than one monoprotic reactive group on the cell surface. A multisite Langmuir isotherm approach along with the LPM regression method, not requiring prior knowledge of the number or concentration of cell surface REE complexation sites, were able to distinguish between the sorption constant and binding site concentration

  19. Height-gain atlas for an elemental vertical electric dipole above a flat Earth

    Science.gov (United States)

    Heckscher, J. L.; Tichovolsky, E. J.

    1981-03-01

    The complex height-gain for an infinitesimal vertical electric dipole (VED) above each of five homogeneous flat surfaces representative of sea water, well-conducting earth, poorly conducting earth, fresh water, and ice is calculated at 0.1, 1, 10, and 100 MHz for selected ranges. The amplitude and phase of the three cylindrical electromagnetic field components are given for source elevations of 0, 3/4, and 3/2 wavelengths in sets of 36 tables and 48 figures for each of the five types of surfaces.

  20. Structural differences between light and heavy rare earth element binding chlorophylls in naturally grown fern: Dicranopteris linearis.

    Science.gov (United States)

    Wei, Zhenggui; Hong, Fashui; Yin, Ming; Li, Huixin; Hu, Feng; Zhao, Guiwen; Wong, Jonathan Woonchung

    2005-09-01

    Chloroplasts and chlorophylls were isolated from the leaves of Dicranopteris linearis, a natural perennial fern sampled at rare earth element (REE) mining areas in the South-Jiangxi region (southern China). The inductively coupled plasma-mass spectrometry (ICP-MS) results indicated that REEs were present in the chloroplasts and chlorophylls of D. linearis. The in vivo coordination environment of light REE (lanthanum) or heavy REE (yttrium) ions in D. linearis chlorophyll-a was determined by the extended X-ray absorption fine structure (EXAFS). Results revealed that there were eight nitrogen atoms in the first coordination shell of the lanthanum atom, whereas there were four nitrogen atoms in the first coordination shell of yttrium. It was postulated that the lanthanum-chlorophyll-a complex might have a double-layer sandwich-like structure, but yttrium-binding chlorophyll-a might be in a single-layer form. Because the content of REE-binding chlorophylls in D. linearis chlorophylls was very low, it is impossible to obtain structural characteristics of REE-binding chlorophylls by direct analysis of the Fourier transform infrared (FTIR) and ultraviolet (UV)-visible spectra of D. linearis chlorophylls. In order to acquire more structural information of REE-binding chlorophyll-a in D. linearis, lanthanum - and yttrium-chlorophyll-a complexes were in vitro synthesized in acetone solution. Element analyses and EXAFS results indicated that REE ions (lanthanum or yttrium) of REE-chlorophyll-a possessed the same coordination environment whether in vivo or in vitro. The FTIR spectra of the REE-chlorophyll-a complexes indicated that REEs were bound to the porphyrin rings of chlorophylls. UV-visible results showed that the intensity ratios of Soret to the Q-band of REE-chlorophyll-a complexes were higher than those of standard chlorophyll-a and pheophytin-a, indicating that REE-chlorophyll-a might have a much stronger ability to absorb the ultraviolet light. The MCD spectrum in

  1. Edxrf determination of major and minor elements in compound fertilizers

    DEFF Research Database (Denmark)

    Christensen, Leif Højslet; Rasmussen, Leif W.

    1985-01-01

    The combination of the energy-dispersive x-ray fluorescence technique and a backscatter/fundamental parameter-based matrix correction approach provides a new and unique solution to elemental analyses of fertilizers. This is demonstrated by means of results obtained for three reference materials...

  2. DETERMINATION OF MULTI ELEMENT LEVELS IN LEAVES AND ...

    African Journals Online (AJOL)

    Preferred Customer

    Different parts of the plants are consumed as tea with the help of a solution. ... the growth medium increases, some heavy metals that can pass into the body of ... Fe, Mn, Sr and Zn are multi-elements which have major significance for human.

  3. Quantification of the strengthening effect of rare earth elements during hot deformation of Mg-Gd-Y-Zr magnesium alloy

    Directory of Open Access Journals (Sweden)

    Hamed Mirzadeh

    2016-01-01

    Full Text Available The flow stress of Mg-Gd-Y-Zr, Mg-Al-Zn, and Mg-Zn-Zr magnesium alloys during hot deformation were correlated to the Zener–Hollomon parameter through analyses based on the proposed physically-based and apparent approaches. It was demonstrated that the theoretical exponent of 5 and the lattice self-diffusion activation energy of magnesium (135 kJ/mol can be set in the hyperbolic sine law to describe the peak flow stresses. As a result, the influence of rare earth elements, gadolinium (Gd and yttrium (Y, upon the hot working behavior was readily characterized by the proposed approach, which was not possible by the conventional apparent approach. It was shown quantitatively that the rare earth addition exerts a profound effect on the hot strength and hence on the creep resistance.

  4. EVALUATION OF ERRORS IN PARAMETERS DETERMINATION FOR THE EARTH HIGHLY ANOMALOUS GRAVITY FIELD

    Directory of Open Access Journals (Sweden)

    L. P. Staroseltsev

    2016-05-01

    Full Text Available Subject of Research.The paper presents research results and the simulation of errors caused by determining the Earth gravity field parameters for regions with high segmentation of gravity field. The Kalman filtering estimation of determining errors is shown. Method. Simulation model for the realization of inertial geodetic method for determining the Earth gravity field parameters is proposed. The model is based on high-precision inertial navigation system (INS at the free gyro and high-accuracy satellite system. The possibility of finding the conformity between the determined and stochastic approaches in gravity potential modeling is shown with the example of a point-mass model. Main Results. Computer simulation shows that for determining the Earth gravity field parameters gyro error model can be reduced to two significant indexes, one for each gyro. It is also shown that for regions with high segmentation of gravity field point-mass model can be used. This model is a superposition of attractive and repulsive masses - the so-called gravitational dipole. Practical Relevance. The reduction of gyro error model can reduce the dimension of the Kalman filter used in the integrated system, which decreases the computation time and increases the visibility of the state vector. Finding the conformity between the determined and stochastic approaches allows the application of determined and statistical terminology. Also it helps to create a simulation model for regions with high segmentation of gravity field.

  5. Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact

    Directory of Open Access Journals (Sweden)

    Nawshad Haque

    2014-10-01

    Full Text Available Rare earths are used in the renewable energy technologies such as wind turbines, batteries, catalysts and electric cars. Current mining, processing and sustainability aspects have been described in this paper. Rare earth availability is undergoing a temporary decline due mainly to quotas being imposed by the Chinese government on export and action taken against illegal mining operations. The reduction in availability coupled with increasing demand has led to increased prices for rare earths. Although the prices have come down recently, this situation is likely to be volatile until material becomes available from new sources or formerly closed mines are reopened. Although the number of identified deposits in the world is close to a thousand, there are only a handful of actual operating mines. Prominent currently operating mines are Bayan Obo in China, Mountain Pass in the US and recently opened Mount Weld in Australia. The major contributor to the total greenhouse gas (GHG footprint of rare earth processing is hydrochloric acid (ca. 38%, followed by steam use (32% and electricity (12%. Life cycle based water and energy consumption is significantly higher compared with other metals.

  6. Influence of Rare Earth Element Supply on Future Offshore Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Abrahamsen, Asger Bech; Henriksen, Matthew Lee

    2011-01-01

    electrical machines. Such machines are utilized in applications such as electric cars, and wind turbines. This paper will examine the rare earth supply issue, in order to comment on its relevance to the wind turbine industry. The wind turbine topologies which are currently being used are compared...

  7. Determination a static limiting load curves for slewing bearing with application of the finite element methods

    Directory of Open Access Journals (Sweden)

    Marek Krynke

    2013-02-01

    Full Text Available In slewing bearings, a great number of contact pairs are present on the contact surfaces between the rolling elements and raceways of the bearing. Computations to determine the load of the individual rolling elements, taking into account the flexibility of the bearing ring, are most often carried out using the finite element method. Construction of a FEM full model of the bearing, taking into account the shape of the rolling elements and the determination of the contact problem for every rolling element, leads to a singularity of stiffness matrix, which in turn makes the problem impossible to solve. In FEM models the rolling elements are replaced by one-dimensional finite elements (linear elements to simplify the computation procedure and to obtain an optimal time for computations. replaced by truss elements with a material non-linear characteristic located between the raceway centres of the curvatures in their axial section, are presented in the paper

  8. Earth rotation, station coordinates and orbit determination from satellite laser ranging

    Science.gov (United States)

    Murata, Masaaki

    The Project MERIT, a special program of international colaboration to Monitor Earth Rotation and Intercompare the Techniques of observation and analysis, has come to an end with great success. Its major objective was to evaluate the ultimate potential of space techniques such as VLBI and satellite laser ranging, in contrast with the other conventional techniques, in the determination of rotational dynamics of the earth. The National Aerospace Laboratory (NAL) has officially participated in the project as an associate analysis center for satellite laser technique for the period of the MERIT Main Campaign (September 1983-October 1984). In this paper, the NAL analysis center results are presented.

  9. Rare earths and trace elements contents in leaves: A new indicator of the composition of atmospheric dust.

    Science.gov (United States)

    Censi, P; Cibella, F; Falcone, E E; Cuttitta, G; Saiano, F; Inguaggiato, C; Latteo, V

    2017-02-01

    The relationship between the trace element distribution in atmospheric particles and leaves of some exposed plants in the environment was recently demonstrated. This indication would suggest that the trace element analysis of leaves in these plants could provide information about the composition, nature and origin of the atmospheric dust dispersed in the environment. In order to corroborate this hypothesis, the distribution of trace elements and Rare Earths were studied in leaves of some endemic plants, in the atmospheric fallout and in soils of rural, urban and industrial ecosystems in Sicily. These elements have been chosen to discriminate the source and nature of different source on atmospheric dust and the larger capability of the composition of the latter materials to influence the metal ion distribution in leaves of studied plants rather than the soil composition. These evidences are related to the recognition both of positive La anomaly and trace element enrichments in studied leaves and to their particular V/Th and Co/Ni signature. On the other hand, some particular normalised REE features recognised in leaves suggest that a limited contribution to the REE budget in studied leaves is provided by the REE migration from roots.

  10. [Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province and evaluation of its ecological risk].

    Science.gov (United States)

    Jin, Shu-Lan; Huang, Yi-Zong; Wang, Fei; Xu, Feng; Wang, Xiao-Ling; Gao, Zhu; Hu, Ying; Qiao Min; Li, Jin; Xiang, Meng

    2015-03-01

    Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province was studied. The results showed that copper mining and smelting could increase the content of rare earth elements in soils and crops. Rare earth elements content in farmland soils of the surrounding Yinshan Lead Zinc Copper Mine and Guixi Smelting Plant varied from 112.42 to 397.02 mg x kg(-1) and 48.81 to 250.06 mg x kg(-1), and the average content was 254.84 mg x kg(-1) and 144.21 mg x kg(-1), respectively. The average contents of rare earth elements in soils in these two areas were 1.21 times and 0.68 times of the background value in Jiangxi province, 1.36 times and 0.77 times of the domestic background value, 3.59 times and 2.03 times of the control samples, respectively. Rare earth elements content in 10 crops of the surrounding Guixi Smelting Plant varied from 0.35 to 2.87 mg x kg(-1). The contents of rare earth elements in the leaves of crops were higher than those in stem and root. The contents of rare earth elements in Tomato, lettuce leaves and radish leaves were respectively 2.87 mg x kg(-1), 1.58 mg x kg(-1) and 0.80 mg x kg(-1), which were well above the hygienic standard limit of rare earth elements in vegetables and fruits (0.70 mg x kg(-1)). According to the health risk assessment method recommended by America Environmental Protection Bureau (USEPA), we found that the residents' lifelong average daily intake of rare earth elements was 17.72 mg x (kg x d)(-1), lower than the critical value of rare earth elements damage to human health. The results suggested that people must pay attention to the impact of rare earth elements on the surrounding environment when they mine and smelt copper ore in Jiangxi.

  11. Rare Earth Element Behaviour in Apatite from the Olympic Dam Cu–U–Au–Ag Deposit, South Australia

    Directory of Open Access Journals (Sweden)

    Sasha Krneta

    2017-08-01

    Full Text Available Apatite is a common magmatic accessory in the intrusive rocks hosting the giant ~1590 Ma Olympic Dam (OD iron-oxide copper gold (IOCG ore system, South Australia. Moreover, hydrothermal apatite is a locally abundant mineral throughout the altered and mineralized rocks within and enclosing the deposit. Based on compositional data for zoned apatite, we evaluate whether changes in the morphology and the rare earth element and Y (REY chemistry of apatite can be used to constrain the fluid evolution from early to late hydrothermal stages at OD. The ~1.6 Ga Roxby Downs granite (RDG, host to the OD deposit, contains apatite as a magmatic accessory, locally in the high concentrations associated with mafic enclaves. Magmatic apatite commonly contains REY-poor cores and REY-enriched margins. The cores display a light rare earth element (LREE-enriched chondrite-normalized fractionation pattern with a strong negative Eu anomaly. In contrast, later hydrothermal apatite, confined to samples where magmatic apatite has been obliterated due to advanced hematite-sericite alteration, displays a conspicuous, convex, middle rare earth element (MREE-enriched pattern with a weak negative Eu anomaly. Such grains contain abundant inclusions of florencite and sericite. Within high-grade bornite ores from the deposit, apatite displays an extremely highly MREE-enriched chondrite-normalized fractionation trend with a positive Eu anomaly. Concentrations of U and Th in apatite mimic the behaviour of ∑REY and are richest in magmatic apatite hosted by RDG and the hydrothermal rims surrounding them. The shift from characteristic LREE-enriched magmatic and early hydrothermal apatite to later hydrothermal apatite displaying marked MREE-enriched trends (with lower U, Th, Pb and ∑REY concentrations reflects the magmatic to hydrothermal transition. Additionally, the strong positive Eu anomaly in the MREE-enriched trends of apatite in high-grade bornite ores are attributable to

  12. Stability Study of Rare Earth Elements in Electroless Nickel Solution%无电解镀镍液稳定性研究

    Institute of Scientific and Technical Information of China (English)

    邵国强

    2014-01-01

    Some research developments about rare earth elements on the stability of electroless nickel solution was reviewed. Influence factor and action mechanism of rare earth elements were also introduced.%综述了稀土在提高无电解镀镍液稳定性中的研究进展,并分析了稀土促进镀液稳定性的影响因素和作用机理。

  13. Activating the expression of bacterial cryptic genes by rpoB mutations in RNA polymerase or by rare earth elements.

    Science.gov (United States)

    Ochi, Kozo; Tanaka, Yukinori; Tojo, Shigeo

    2014-02-01

    Since bacteria were found to contain genes encoding enzymes that synthesize a plethora of potential secondary metabolites, interest has grown in the activation of these cryptic pathways. Homologous and heterologous expression of these cryptic secondary metabolite-biosynthetic genes, often "silent" under ordinary laboratory fermentation conditions, may lead to the discovery of novel secondary metabolites. We review current progress on this topic, describing concepts for activating silent genes. We especially focus on genetic manipulation of transcription and translation, as well as the utilization of rare earth elements as a novel method to activate the silent genes. The possible roles of silent genes in bacterial physiology are also discussed.

  14. Rare earth elements in tropical surface water,soil and sediments of the Terengganu River Basin,Malaysia

    Institute of Scientific and Technical Information of China (English)

    Khawar; Sultan; Noor; Azhar; Shazili

    2009-01-01

    The 14 stable rare earth element(REE) concentrations and distribution patterns were investigated for surface waters(n=51),soils(n=52) and sediments(n=42) from the tropical Terengganu River basin,Malaysia.The chondrite normalized REE patterns of soils developed on four geological units showed enrichment of LREE,a pronounced negative Eu,and depletion of HREE with an enrichment order granite>>metasedimentary>alluvium>volcanic.The REE patterns in sediments reflected the soil REE patterns with an overall order o...

  15. (BRI) Direct and Inverse Design Optimization of Magnetic Alloys with Minimized Use of Rare Earth Elements

    Science.gov (United States)

    2016-02-02

    of the desired magnetic properties of the alloys. Sensitivity analysis of the variation of concentrations of each of the alloying elements revealed ...capable of exploring yet unexplored domains of the design space. Sensitivity analysis also revealed that certain alloying elements have negligible...Principal Investigator during the previous decade and applied to design optimization of H-type steels , Ni DISTRIBUTION A: Distribution approved for

  16. Investigation on the Use of the Weakly Basic Polyacrylate Anion-Exchanger Amberlite IRA-68 for Sorption and Separation of Iminodiacetate Complexes of Rare Earth Elements

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the determined affinity series of rare earth element complexes with IMDA for the anion-exchangers, purification of macroquantities of Nd3+ from Y3+, Sm3+ from Ho3+, La3+ from Nd3+ and La3+ from Pr3+ on the weakly basic gel anion-exchanger Amberlite IRA-68 was studied. Using the presented method on 1 L of Amberlite IRA-68 in the acetate form, it is possible to obtain about 240 g Nd2O3 purified from Y2O3. Great difference in affinity of La3+ and Nd3+ as well as Pr3+ complexes for this anion-exchanger in the acetate form indicates the possibility of applying this process for purification of lanthanum on the increased scale. On 1 L of Amberilte IRA-68 in the acetate form it is possible to obtain about 1125 g La2O3 purified from Nd2O3. On the basis of these results it can be assumed that unique properties of polyacrylate anion-exchangers enable their application for separation of rare earth elements.

  17. Investigation of Polyacrylate Anion-Exchangers for Separation of Rare Earth Element Complexes with EDTA

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The rare earth complexes with EDTA, Ln(edta), show an unusual sequence of affinity for the anion-exchangers. The sorption and chromatographic separation of Y3+ for Nd3+ complexes with EDTA was studied by using the strongly basic gel and macroporous polyacrylate anion-exchangers, Amberlite IRA 458 and Amberlite 958, and the weakly basic gel polyacrylate anion-exchanger, Amberlite IRA-68. The investigations on sorption and separation of rare earth complexes with EDTA on the polyacrylate anion-exchangers applied mainly in the environment protection so far indicate that they can be applied in anionexchange separation of lanthanide complexes with aminopolycarboxylic acids. It was shown that the weakly basic polyacrylate gel anion-exchanger Amberlite IRA-68 is the most effective in purification of Y3+ from Nd3+ in comparison with the strongly basic anion-exchangers of this type.

  18. Effect on Rare-Earth Element Lanthanum for Bond Strength of Electrodeposited Nickel

    Institute of Scientific and Technical Information of China (English)

    Song Bo; Zhang Xinyu; Jin Lihong; Zhu Yuansong; Mu Tao; Sui Zhitong

    2004-01-01

    The bond strength of electrodeposited nickel from common electroplate liquid and rare-earth electroplate liquid was tested and contrasted. Electrodeposited nickel of high bond strength was obtained by method of electro-plate nickel with one step and special pretreatment on the surface of aluminum-alloy substrate. The bond strength between the aluminum-alloy substrate and the electrodeposited nickel was tested by the method of heat shock. Then the effect on the bond strength of the electrodeposited nickel from rare-earth compound, the thickness of the electrodeposited nickel,temperature and current density were analyzed. The experimental result shows that the bond strength between the aluminum-alloy substrate and the electrodeposited nickel is 26 MPa under the following condition( current density: 0.2 ~ 0.6 A · dm-2, thickness of the nickel electrodeposition: 8 ~ 15 μm, and temperature of the electroplate liquid: 8 ~ 25 ℃ ).

  19. Application of rare- earth and nano elements on diamond cup wheels

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Diamond cup wheel is used widely as an important tool for machining ceramic tile. In this paper,nano rare - earth oxide and nano carbide were added in the segments of seven kinds of diamond cup wheels.The performance of diamond cup wheels were tested on a special designed test machine by grinding two kinds of ceramic tiles. The surface morphology of the segments was examined by Scanning Election Microscopy (SEM) and the micro-hardness of segments was measured. The results showed that nano rare-earth oxide and nano carbide can fine segment micro structure, make grain boundary clear and increase grasping of diamond grits. They can increase also the wear resistance of diamond cup wheels as well as the grinding ratio.

  20. Countering China’s Dominance in the Rare Earth Element Market System

    Science.gov (United States)

    2012-02-02

    China is also attempting to improve management and control of its REE resources by closing down smaller and illegal rare earth operations ...2011) S3521. http://energy.senate.gov/public/_files/SandalowTestimony.pdf (accessed November 29, 2011). 66 Jay Heizer and Barry Render, Operations ...reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215

  1. Highly Siderophile Elements in the Earth's Mantle as a Clock for the Moon-forming Impact

    CERN Document Server

    Jacobson, Seth A; Raymond, Sean N; O'Brien, David P; Walsh, Kevin J; Rubie, David C

    2015-01-01

    According to the generally accepted scenario, the last giant impact on the Earth formed the Moon and initiated the final phase of core formation by melting the Earth's mantle. A key goal of geochemistry is to date this event, but different ages have been proposed. Some argue for an early Moon-forming event, approximately 30 million years (Myr) after the condensation of the first solids in the Solar System, whereas others claim a date later than 50 Myr (and possibly as late as around 100 My) after condensation. Here we show that a Moon-forming event at 40 Myr after condensation, or earlier, is ruled out at a 99.9 per cent confidence level. We use a large number of N-body simulations to demonstrate a relationship between the time of the last giant impact on an Earth-like planet and the amount of mass subsequently added during the era known as Late Accretion. As the last giant impact is delayed, the late-accreted mass decreases in a predictable fashion. This relationship exists within both the classical scenario...

  2. Spectrographic Determination of Trace Constituents in Rare Earths; Determinacion espectrografica de impurezas en tierras raras

    Energy Technology Data Exchange (ETDEWEB)

    Capdevila, C.; Alvarez, F.

    1962-07-01

    A spectrographic method was developed for the determination of 18 trace elements in lanthanum, cerium, praseodimium, neodimium and samarium compounds. The concentrations of the impurities cover the range of 0,5 to 500 ppm. Most of these impurities are determined by the carrier distillation method. Several more refractory elements have been determined by total burning of the sample with a direct current arc or by the conduction briquet excitation technique with a high voltage condensed spark. The work has been carried out with a Hilger Automatic Large Quartz Spectrograph. (Author) 5 refs.

  3. Spectrographic Determination of Trace Constituents in Rare Earths; Determinacion espectrografica de impurezas en tierras raras

    Energy Technology Data Exchange (ETDEWEB)

    Capdevila, C.; Alvarez, F.

    1962-07-01

    A spectrographic method was developed for the determination of 18 trace elements in lanthanum, cerium, praseodimium, neodimium and samarium compounds. The concentrations of the impurities cover the range of 0,5 to 500 ppm. Most of these impurities are determined by the carrier distillation method. Several more refractory elements have been determined by total burning of the sample with a direct current arc or by the conduction briquet excitation technique with a high voltage condensed spark. The work has been carried out with a Hilger Automatic Large Quartz Spectrograph. (Author) 5 refs.

  4. Determination of elements in ayurvedic medicinal plants by AAS

    Energy Technology Data Exchange (ETDEWEB)

    Teerthe, Santoshkumar S.; Kerur, B. R., E-mail: kerurbrk@yahoo.com [Department of Physics, Gulbarga University, Gulbarga, and Karnataka, India – 585106 (India)

    2015-08-28

    India has a rich country for the uses of Ayurvedic medicinal plants for treatment and also the north- Karnataka boasts an unparallel diversity of medicinal plants. The present study attempts to estimate and compare the level of trace and heavy metals in some selected leaves and root samples of Ayurvedic medicinal plants such as Mg, Al, K, Cr, Mn, Fe, Cu, Zn, and Cd. The samples are collected from different places of North-Karnataka regions and sample solutions prepared as the ratio of 1:25:25+950ml=1000ppm.the trace and heavy elemental concentration was estimated using Atomic Absorption Spectrometric (AAS) Method. The average concentrations of Mg, Mn, Fe and Zn, are ranging from 2ppm to 5250.2ppm and potassium (K) has more concentration as compare to all other. The other elements likes Al, Cr, Cu, and Cd were also estimed and presented in the table. Therefore, these medicinal plants are rich in some essential minerals, especially K, Mg, Mn, Fe and Zn which are essential for human health.

  5. Determination of elements in ayurvedic medicinal plants by AAS

    Science.gov (United States)

    Teerthe, Santoshkumar S.; Kerur, B. R.

    2015-08-01

    India has a rich country for the uses of Ayurvedic medicinal plants for treatment and also the north- Karnataka boasts an unparallel diversity of medicinal plants. The present study attempts to estimate and compare the level of trace and heavy metals in some selected leaves and root samples of Ayurvedic medicinal plants such as Mg, Al, K, Cr, Mn, Fe, Cu, Zn, and Cd. The samples are collected from different places of North-Karnataka regions and sample solutions prepared as the ratio of 1:25:25+950ml=1000ppm.the trace and heavy elemental concentration was estimated using Atomic Absorption Spectrometric (AAS) Method. The average concentrations of Mg, Mn, Fe and Zn, are ranging from 2ppm to 5250.2ppm and potassium (K) has more concentration as compare to all other. The other elements likes Al, Cr, Cu, and Cd were also estimed and presented in the table. Therefore, these medicinal plants are rich in some essential minerals, especially K, Mg, Mn, Fe and Zn which are essential for human health

  6. 桦甸油页岩中稀土元素赋存状态研究%Geochemical occurrences of rare earth elements in oil shale from Huadian

    Institute of Scientific and Technical Information of China (English)

    柏静儒; 王擎; 魏艳珍; 柳桐

    2011-01-01

    Distribution characteristics and occurrence modes of rare earth elements ( REE) in oil shale from Huadian, Jilin province were determined by sequential chemical extraction process. Content of REE were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The results show that the enrichment of light rare earth elements (LREE) in Huadian oil shale is richer than that of heavy rare earth elements (HREE), relative to those in coals from China. The REE in oil shale are positively correlated with terrigenous clastic rock, and the supply of terrigenous materials is relatively stable. The fractionation between LREE and HREE is clear and shows a moderate LREE-enriched pattern. The occurrence of rare earth elements are mainly in minerals fractions. The enrichment of sulfide fractions inclines to LREE; besides, carbonate fractions, ferromanganese oxyhydroxides bound fraction and aluminosilicate bound fraction are more inclined to enrich HREE. Moreover, here is lack of the contents of rare earth elements in exchangeable and organic matter fractions. Additionally, the fractionation effects of rare REEs in different substances have some differences under various sedimentary environments.%以吉林省桦甸油页岩为研究对象,采用电感耦合等离子质谱( ICP-MS)和化学逐级提取方法相结合,对油页岩中稀土元素的分布特征以及油页岩中稀土元素的赋存状态进行研究.结果表明,相对于中国煤,桦甸油页岩表现为轻稀土元素富集程度高于重稀土元素.油页岩中稀土元素与陆源碎屑岩关系密切,且陆源物质的供应相对比较稳定.轻重稀土间分馏明显,属于轻稀土中度富集型.稀土元素主要赋存在矿物质中(硫化物结合态、碳酸盐结合态、铁锰氧化物结合态及硅铝化合物结合态),硫化物结合态更倾向于对轻稀土元素的富集而碳酸盐结合态、铁锰氧化物结合态及硅铝酸盐结合态则倾向于对重稀土元素的富集.

  7. Effect of combinative addition of strontium and rare earth elements on corrosion resistance of AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    NIU Jie-xin; CHEN Qiu-rong; XU Nai-xin; WEI Zhong-ling

    2008-01-01

    The influence of strontium(Sr) and rare earth(RE) elements on the corrosion behavior of AZ91D magnesium alloy was investigated by conventional corrosion testing and electrochemical measurements in 3.5% NaCI solution. After comparing the mass loss and hydrogen evolution of the samples, the microstruetures of the alloys and the morphologies of their corrosion product films were characterized by electron probe microanalysis-energy dispersive spectrometry(EPMA-EDS) and Auger electron spectroscopy(AES). Compared with individual addition of Sr or RE to AZ91D, the combinative addition of 0.5% Sr and 1% RE to AZ91D successfully decreases the corrosion rate further, which can be attributed to the depression of micro-galvanic couples, as well as the formation of more protective film due to aluminum enrichment. The combinative addition of strontium and rare earth elements to AZ91D magnesium alloy appears to he a promising approach to increase its corrosion resistance.

  8. Rare Earth Elements-Doped LiCoO2 Cathode Material for Lithium-Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    魏进平; 曹晓燕; 潘桂玲; 叶茂; 阎杰

    2003-01-01

    Some compounds of LiCo1-xRExO2 (RE=rare earth elements and x=0.01~0.03) were prepared by doping rare earth elements to LiCoO2 via solid state synthesis. The microstructure characteristics of the LiCo1-xRExO2 were investigated by XRD. It was found that the lattice parameters c are increased and the lattice volumes are enlarged compared to that of LiCoO2. Moreover, the performance of LiCo1-xRExO2 as the cathode material in lithium ion battery is improved, especially LiCo1-xYxO2 and LiCo1-xLaxO2. The initial charge/discharge capacities of LiCo0.99Y0.01O2 and LiCo0.99La0.01O2 are 174/154 (mAh*g-1) and 159/149 (mAh*g-1) respectively, while those for LiCoO2 working in the same way are only 139/131 (mAh*g-1).

  9. A New Discrete Element Sea-Ice Model for Earth System Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Adrian Keith [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    Sea ice forms a frozen crust of sea water oating in high-latitude oceans. It is a critical component of the Earth system because its formation helps to drive the global thermohaline circulation, and its seasonal waxing and waning in the high north and Southern Ocean signi cantly affects planetary albedo. Usually 4{6% of Earth's marine surface is covered by sea ice at any one time, which limits the exchange of heat, momentum, and mass between the atmosphere and ocean in the polar realms. Snow accumulates on sea ice and inhibits its vertical growth, increases its albedo, and contributes to pooled water in melt ponds that darken the Arctic ice surface in the spring. Ice extent and volume are subject to strong seasonal, inter-annual and hemispheric variations, and climatic trends, which Earth System Models (ESMs) are challenged to simulate accurately (Stroeve et al., 2012; Stocker et al., 2013). This is because there are strong coupled feedbacks across the atmosphere-ice-ocean boundary layers, including the ice-albedo feedback, whereby a reduced ice cover leads to increased upper ocean heating, further enhancing sea-ice melt and reducing incident solar radiation re ected back into the atmosphere (Perovich et al., 2008). A reduction in perennial Arctic sea-ice during the satellite era has been implicated in mid-latitude weather changes, including over North America (Overland et al., 2015). Meanwhile, most ESMs have been unable to simulate observed inter-annual variability and trends in Antarctic sea-ice extent during the same period (Gagne et al., 2014).

  10. Selective ion exchange recovery of rare earth elements from uranium mining solutions

    Science.gov (United States)

    Rychkov, Vladimir N.; Kirillov, Evgeny V.; Kirillov, Sergey V.; Bunkov, Grigory M.; Mashkovtsev, Maxim A.; Botalov, Maxim S.; Semenishchev, Vladimir S.; Volkovich, Vladimir A.

    2016-09-01

    A comparative study of rare earth, ferric and aluminum ions ion exchange behavior on gel sulfonated p;olystyrene cation exchange resins depending on the degree of the matrix cross-linking and pH of the solution is presented. Selective ion exchange of REEs is possible at the pH range of 1.5-2.0 using strongly acidic cation exchange resins containing more than 8 % of DVB. The preliminary results of testing the efficiency of REEs recovery from the industrial uranium underground leaching solutions are also presented.

  11. Hf and Nd Isotope Evidence for Production of an Incompatible Trace Element Enriched Crustal Reservoir in Early Earth (Invited)

    Science.gov (United States)

    Brandon, A. D.; Debaille, V.; Lapen, T. J.

    2010-12-01

    The final significant stage of accretion of the Earth was likely a collision between proto-Earth and a Mars sized impactor that formed the Moon. This event is thought to have produced enough thermal energy to melt all or most of the Earth, with a consequent magma ocean (MO). During subsequent cooling, the Earth would have formed its protocrust and corresponding mantle lithosphere, consisting of solidified basalt-komatiitic melt, in combination with buoyant cumulates and late stage residual melts from the MO. Relative to the convecting mantle, portions of this protolithosphere are likely to have been enriched in incompatible trace elements (ITE) in sufficient quantities to contain a significant amount of the bulk Earth’s budget for rare earth elements, U, Th, and Hf. If the protolithosphere was negatively buoyant, it may have overturned at or near the final stages of MO crystallization and a significant portion of that material may have been transported into the deep mantle where it resided and remixed into the convecting mantle over Earth history [1,2]. If the protolithosphere remained positively buoyant, its crust would have likely begun to erode from surface processes, and subsequently recycled back into the mantle over time as sediment and altered crust, once a subduction mechanism arose. The Nd and Hf isotopic compositions of Earth’s earliest rocks support the idea that an early-formed ITE-enriched reservoir was produced. The maxima in 142Nd/144Nd for 3.85 to 3.64 Ga rocks from Isua, Greenland decreases from +20 ppm to +12 ppm relative to the present day mantle value, respectively [3]. This indicates mixing of an early-formed ITE enriched reservoir back into the convecting mantle. In addition, zircons from the 3.1 Ga Jack Hills conglomerate indicate that material with an enriched 176Lu/177Hf of ~0.02 and an age of 4.4 Ga or greater was present at the Earth’s surface over the first 2 Ga of Earth history, supporting the scenario of a positively buoyant

  12. Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements

    Science.gov (United States)

    Kassavetis, S.; Hodroj, A.; Metaxa, C.; Logothetidis, S.; Pierson, J. F.; Patsalas, P.

    2016-12-01

    Conductive nitrides, such as TiN, are key engineering materials for electronics, photonics, and plasmonics; one of the essential issues for such applications is the ability of tuning the conduction electron density, the resistivity, and the electron scattering. While enhancing the conduction electron density and blueshifting the intraband absorption towards the UV were easily achieved previously, reducing the conduction electron density and redshifting the intraband absorption into the infrared are still an open issue. The latter is achieved in this work by alloying TiN by rare earth (RE = Sc, Y, La) or alkaline earth (AE = Mg, Ca) atoms in Ti substitutional positions. The produced TixRE1-xN and TixAE1-xN thin film samples were grown by a hybrid arc evaporation/sputtering process, and most of them are stable in the B1 cubic structure. Their optical properties were studied in an extensive spectral range by spectroscopic ellipsometry. The ellipsometric spectra were analyzed and quantified by the Drude-Lorentz model, which provided the conduction electron density, the electron mean free path, and the resistivity. The observed interband transitions are firmly assigned, and the optical and electrical properties of TixRE1-xN and TixAE1-xN are quantitatively correlated with their composition and crystal structure.

  13. Assessing anthropogenic levels, speciation, and potential mobility of rare earth elements (REEs) in ex-tin mining area.

    Science.gov (United States)

    Khan, Aysha Masood; Yusoff, Ismail; Bakar, Nor Kartini Abu; Bakar, Ahmad Farid Abu; Alias, Yatimah

    2016-12-01

    A study was carried out to determine the level of rare earth elements (REEs) in water and sediment samples from ex-mining lakes and River in Kinta Valley, Perak, Malaysia. Surface water and sediments from an ex-mining lake and Kinta River water samples were analyzed for REEs by inductively coupled plasma mass spectrometry. The total concentration of REEs in the ex-mining lake water samples and sediments were found to be 3685 mg/l and 14159 mg/kg, respectively, while the total concentration of REEs in Kinta River water sample was found to be 1224 mg/l. REEs in mining lake water were found to be within 2.42 mg/l (Tb) to 46.50 mg/l (Ce), while for the Kinta River, it was 1.33 mg/l (Ho) to 29.95 mg/l (Ce). Sediment samples were also found with REEs from 9.81 mg/kg (Ho) to 765.84 mg/kg (Ce). Ce showed the highest average concentrations for mining lake (3.88 to 49.08 mg/l) and Kinta River (4.44 to 33.15 mg/l) water samples, while the concentration of La was the highest (11.59 to 771.61 mg/kg) in the mining lake sediment. Lu was shown to have the highest enrichment of REEs in ex-mining lake sediments (107.3). Multivariate statistical analyses such as factor analysis and principal component analysis indicated that REEs were associated and controlled by mixed origin, with similar contributions from anthropogenic and geogenic sources. The speciation study of REEs in ex-tin mining sediments using a modified five-stage sequential extraction procedure indicated that yttrium (Y), gadolinium (Gd), and lanthanum (La) were obtained at higher percentages from the adsorbed/exchanged/carbonate fraction. The average potential mobility of the REEs was arranged in a descending order: Yb > Gd > Y = Dy > Pr > Er > Tm > Eu > Nd > Tb > Sc > Lu > Ce > La, implying that under favorable conditions, these REEs could be released and subsequently pollute the environment.

  14. From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements

    Directory of Open Access Journals (Sweden)

    M.P. Smith

    2016-05-01

    Full Text Available The rare earth elements are unusual when defining giant-sized ore deposits, as resources are often quoted as total rare earth oxide, but the importance of a deposit may be related to the grade for individual, or a limited group of the elements. Taking the total REE resource, only one currently known deposit (Bayan Obo would class as giant (>1.7 × 107 tonnes contained metal, but a range of others classify as large (>1.7 × 106 tonnes. With the exception of unclassified resource estimates from the Olympic Dam IOCG deposit, all of these deposits are related to alkaline igneous activity – either carbonatites or agpaitic nepheline syenites. The total resource in these deposits must relate to the scale of the primary igneous s