WorldWideScience

Sample records for earth elements determination

  1. Enzymatic determination of rare earth elements using pyrophosphatases

    International Nuclear Information System (INIS)

    Shekhovtsova, T.N.; Pirogova, S.V.; Fedorova, O.M.; Dolmanova, I.F.; Bajkov, A.A.

    1993-01-01

    A highly sensitive(determination limit 8x10 -6 -4x10 -4 μ g/m) and selective enzymatic method for determination of rare earth elements has been developed. The method is based on inhibition action of rare earths on the catalytic activity of pyrophosphates isolated from bakery geast and E.Coli. The mechanism of the rare earth element action, corresponding to competitive inhibition, has been established

  2. Enzymatic determination of rare earth elements by use of pyrophosphotases

    International Nuclear Information System (INIS)

    Shekhovtseva, T.N.; Pirogova, S.V.; Fedorova, O.M.; Dolmanova, I.F.; Bajkov, A.A.

    1993-01-01

    A highly sensitive (determination limit 8 x 10 -6 - 4 x 10 -4 μg/ml) and selective enzymatic method for determination of rare earth elements has been developed. The method is based on inhibition action of rare earths on the catalytic activity of pyrophosphates isolated from bakery geast and E. Coli. The mechanism of the rare earth element action, corresponding to competitive inhibition, has been established

  3. The determination of the rare earth elements in naturally-occurring materials zy flame spectroscopy

    International Nuclear Information System (INIS)

    Watts, J.C.

    1975-01-01

    Because the quantitative collection of the rare-earth elements retains natural abundance ratios, adequate analytical methodology incorporates their individual sensitivities, and tolerates their mutual contamination. To achieve these ends, the sensitivities of 15 rare-earths in flame emission were determined in the unseparated nitrous oxide/acetylene flame, their mutual interference ascertained at practical concentrations, and useful emission lines selected for their determination in natural materials. Sources of atomic emission interference were extraneous in origin. Fe in the determination of Dy and Zr in the determination of Nd. Inter-element interferences of the rare-earth elements were minimal after wavelength selection and reduction of the spectral band width. For comparison, five rare earths were determined by flame AAS. (author)

  4. Determination of the rare earth elements in marine pore waters and associated sediments

    International Nuclear Information System (INIS)

    Kennedy, H.; Elderfield, H.

    Accurate and precise determinations of natural levels of rare earth elements (R.E.E.) in sea water and pore water are highly reliant upon the size and variability of the analytical blank, the method for determining the yield, and, to a lesser extent, the inherent precision of the instrument used. Isotope dilution mass spectrometry (IDMS) together with ultra-clean room techniques has been successfully used in the determinations of rare earth elements in pore waters. Simultaneous multi-element analysis by inductively coupled plasma atomic emission spectrometry (ICP) provides an alternative to IDMS for a rapid determination of R.E.E. in sediments. (author)

  5. Determination of rare earth elements by liquid chromatography/inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Yoshida, K.; Haraguchi, H.

    1984-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) interfaced with high-performance liquid chromatography (HPLC) has been applied to the determination of rare earth elements. ICP-AES was used as an element-selective detector for HPLC. The separation of rare earth elements with HPLC helped to avoid erroneous analytical results due to spectral interferences. Fifteen rare earth elements (Y and 14 lanthanides) were determined selectively with the HPLC/ICP-AES system using a concentration gradient method. The detection limits with the present HPLC/ICP-AES system were about 0.001-0.3 μg/mL with a 100-μL sample injection. The calibration curves obtained by the peak height measurements showed linear relationships in the concentration range below 500 μg/mL for all rare earth elements. A USGS rock standard sample, rare earth ores, and high-purity lanthanide reagents (>99.9%) were successfully analyzed without spectral interferences

  6. Spectrofluorimetric determination of rare earth elements using solidmatrix

    International Nuclear Information System (INIS)

    Suh, I.S.; Chi, K.Y.

    1982-01-01

    In this experiment, rare earth elements are separated from uranium by using the alumina column, anion exchange resin column, and 20% TOA in xylene and fluorescence characteristics were found in the solid matrix to analyze these elements without preseparation from each other. It becomes clear that the YVO 4 matrix is more sensitive than the Y 2 O 3 matrix when the red filter is used to minimized the second order peak intensity. And micro quantity of the rare earth elements in the yellow cake are analyzed by the using of the YVO 4 soid matrix. (Author)

  7. Determination of rare earth elements in aluminum by inductively coupled plasma-atomic emission spectroscopy

    International Nuclear Information System (INIS)

    Mahanti, H.S.; Barnes, R.M.

    1983-01-01

    Inductively coupled plasma-atomic emission spectroscopy is evaluated for the determination of 14 rare earth elements in aluminum. Spectral line interference, limit of detection, and background equivalent concentration values are evaluated, and quantitative recovery is obtained from aluminum samples spiked with rare earth elements. The procedure is simple and suitable for routine process control analysis. 20 references, 5 tables

  8. Determination of rare earth elements in rice by INAA and ICP-MS

    International Nuclear Information System (INIS)

    Pham Thi Huynh, M.; Chu Pham Ngoc, S.; Carrot, F.; Revel, G.; Dang Vu, M.

    1997-01-01

    Irrigation of rice plants with a solution of rare earth elements increases both the production capacity and the resistance to disease. Assuming that the treated plants remain expendable, the different parts of plants, root stalk and grain, were analyzed by instrumental neutron activation analysis (INAA) and by mass spectrometry after plasma excitation (ICP-MS). About 40 elements were determined. The results showed that the contamination remained in the roots and was absent in rice grains. The analytical distribution of different elements in different parts of both treated and non-treated plants has given some information concerning the possible effect of the rare earth treatment. The performances of the two analytical methods have been compared. (author)

  9. Determination of rare-earth elements in rocks by isotope-excited X-ray fluorescence spectrometry

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar; Wollenberg, H.A.

    1970-01-01

    Isotope-excited X-ray fluorescence spectrometry furnishes a rapid determination of rare-earth elements in unprepared rock samples. The samples are excited by 241Am γ-rays, generating X-ray spectra on a multichannel pulse-height analyser. Gaussian peaks of the Kα and Kβ X-ray energies are treated ......-ray spectrometric scan of a longitudinally sliced drill core showed a close correlation between rare-earth abundances and appropriate minerals.......Isotope-excited X-ray fluorescence spectrometry furnishes a rapid determination of rare-earth elements in unprepared rock samples. The samples are excited by 241Am γ-rays, generating X-ray spectra on a multichannel pulse-height analyser. Gaussian peaks of the Kα and Kβ X-ray energies are treated...

  10. Rare earth elements behavior in Peruibe black mud

    International Nuclear Information System (INIS)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da

    2015-01-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  11. Rare earth elements behavior in Peruibe black mud

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da, E-mail: jeffkoy@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  12. Determination of aluminium, scandium and rare earth elements by emission flame spectrometry

    International Nuclear Information System (INIS)

    Otruba, V.; Sommer, L.

    1989-01-01

    Emission spectrometry in nitrous oxide-acetylene flames in combination with a highly resolving double monochromator and sensitive detecting system enables simple, sensitive and selective determinations of aluminium, scandium and all rare earth elements with exception of cerium in complicated matrices. Calibration plots are linear for a large concentration interval (≤ 100 μgxml -1 ), detection limits are in ngxml -1 level and RSD does not exceed 3% on the optimal concentration level of the particular element. The determination of Al, Sc, Eu and Yb showed particular advantages as to methods using ICP-spectrometry. (orig.)

  13. Determination of individual rare earth elements in Vietnamese monazite by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Nguyen Mong Sinh

    1993-01-01

    Radiochemical neutron activation analysis (RNAA) has been applied for determination of rare earth elements (REE) in Vietnamese monazite. The chemical separation procedure used is based on the chromatographic elution of rare earth groups, after the separation of 233 Pa(Th) in irradiated monazite samples by coprecipitation with MnO 2 , the rare earth elements were retained by Biorad AG1 x 8 resin column in 10% 15.4M HNO 3 -90% methanol solution. The elution of heavy rare earth (HREE) and middle rare earth (MREE) groups was carried out with 10% 1M HNO 3 - 90% methanol and 10% 0.05M HNO 3 -90% methanol solution, respectively; while the light rare earths (LREE) were eluted from the column by 0.1M HNO 3 solution. The accuracy of the method was checked by the analysis of granodiorite GSP-I and the rare earth values were in good agreement. (author) 7 refs.; 3 tabs

  14. Chemical analysis of rare earth elements

    International Nuclear Information System (INIS)

    Tsukahara, Ryoichi; Sakoh, Takefumi; Nagai, Iwao

    1994-01-01

    Recently attention has been paid to ICP-AES or ICP-MS, and the reports on the analysis of rare earth elements by utilizing these methods continue to increase. These reports have become to take about 30% of the reports on rare earth analysis, and this is because these methods are highly sensitive to rare earth elements, and also these methods have spread widely. In ICP-AES and ICP-MS, mostly solution samples are measured, therefore, solids must be made into solution. At the time of quantitatively determining the rare earth elements of low concentration, separation and concentration are necessary. Referring to the literatures reported partially in 1990 and from 1991 to 1993, the progress of ICP-AES and ICP-MS is reported. Rare earth oxides and the alloys containing rare earth elements are easily decomposed with acids, but the decomposition of rocks is difficult, and its method is discussed. The separation of the rare earth elements from others in geochemical samples, cation exchange process is frequently utilized. Also solvent extraction process has been studied. For the separation of rare earth elements mutually, chromatography is used. The spectral interference in spectral analysis was studied. The comparison of these methods with other methods is reported. (K.I)

  15. Rare Earth Elements Distribution in Beryl

    International Nuclear Information System (INIS)

    El Gawish, H.K.; Nada, N.; Ghaly, W.A.; Helal, A.I.

    2012-01-01

    Laser ablation method is applied to a double focusing inductively coupled plasma mass spectrometer to determine the rare earth element distribution in some selected beryl samples. White, green and blue beryl samples are selected from the Egyptian eastern desert. Distributions of chondrite- normalized plot for the rare earth element in the selected beryl samples are investigated

  16. Determination of rare earth elements in high purity rare earth oxides by liquid chromatography, thermionic mass spectrometry and combined liquid chromatography/thermionic mass spectrometry

    International Nuclear Information System (INIS)

    Stijfhoorn, D.E.; Stray, H.; Hjelmseth, H.

    1993-01-01

    A high-performance liquid chromatographic (HPLC) method for the determination of rare earth elements in rocks has been modified and used for the determination of rare earth elements (REE) in high purity rare earth oxides. The detection limit was 1-1.5 ng or 2-3 mg/kg when a solution corresponding to 0.5 mg of the rare earth oxide was injected. The REE determination was also carried out by adding a mixture of selected REE isotopes to the sample and analysing the collected HPLC-fractions by mass spectrometry (MS) using a thermionic source. Since the matrix element was not collected, interference from this element during the mass spectrometric analysis was avoided. Detection limits as low as 0.5 mg/kg could then be obtained. Detection limits as low as 0.05 mg/kg were possible by MS without HPLC-pre-separation, but this approach could only be used for those elements that were not affected by the matrix. Commercial samples of high purity Nd 2 O 3 , Gd 2 O 3 and Dy 2 O 3 were analysed in this study, and a comparison of results obtained by HPLC, combined HPLC/MS and direct MS is presented. (Author)

  17. Determination of rare earth elements by photometric microtitration using xylenol orange

    International Nuclear Information System (INIS)

    Kuban, V.; Jancarova, I.; Sommer, L.

    1989-01-01

    Stock solutions were prepared of rare earth elements in approx 0.1M nitric acid, xylenol orange and EDTA. All measurements were made using a double-beam digital recording spectrophotometer (Superscan 3) with a titration measuring cell with a volume of approx. 30 ml and optical length of 20 mm. Titration agents were pipetted using an automatic piston microburette. Measured were absorbance pH curves of solutions of several lanthanides with xylenol orange, the absorption spectra of solutions of xylenol orange with lanthanides with increasing addition of titration agents EDTA, and the titration curves of the dependence of absorbance of lanthanide solutions with xylenol orange during titration with the EDTA solution. It was found that photometric microtitration allowed accurate and correct determination of all rare earth elements within the concentration range 0.04 - 0.5 mmol/l by titration with standard EDTA solution of a concentration of xylenol orange of 20 μmol/l. (E.S.). 4 figs., 3 tabs., 7 refs

  18. Investigations for chromatographic separation and determination of the rare earths and auxiliary group elements

    International Nuclear Information System (INIS)

    Post, K.

    1981-01-01

    Different method have been developed to quantitatively determine rare earth elements after their column chromatographic separation. The influence of the active solvents in the running systems diethyl ether/tetra hydrofuran (THF)/nitric acid (HNO 3 ) and diethyl ether/bis-(2-ethyl hexyl) phosphate (HDEHP)/HNO 3 was investigated on the column chromatographic separation of all rare earth elements is possible by the synergistic combination of the active running components THF and HDEHP. Further from product isotopes could also be separated using the running agents described here in investigations to separate fission product mixtures of irradiated uranium. (orig./HBR) [de

  19. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    International Nuclear Information System (INIS)

    Selle, J.E.

    1992-01-01

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented

  20. Choice of excitation source for determination of rare earth elements with radioisotope excited X ray fluorescence

    International Nuclear Information System (INIS)

    Zhang Quanshi; Chang Yongfu

    2000-01-01

    The comparisons of two radioisotope source ( 241 Am and 238 Pu) which are the most available in the radioisotope excited X Ray Fluorescence (XRF) analysis technique and two characteristic X ray series (KX and LX) analyzed for the determination of the rare-earth (RE) elements were investigated in detail. According to the principle of emission and detection of X ray , the relative excitation efficiencies were calculated by the some fundamental physical parameters including the photoelectric mass attenuation coefficient, the fluorescent yield, the absorption jump factor, the emission probability of the detected fluorescent line with reference to other liens of the same series etc., The advantages and disadvantages of the two conditions are discussed. These results may determine the optimal excitation and detection conditions for different rare-earth elements. The experimental results with nine rare-earth elements (Ce, Nd, Sm, Tb, Tm, Ho, Er, Yb and Lu) are in agreement with the results of theoretical calculations

  1. Determination of rare earth elements in red mud by ICP-MS

    International Nuclear Information System (INIS)

    Kumar, Sanjukta A.; Suvarna, S.; Kiran Kumar, G.

    2017-01-01

    Red mud or red sludge is a highly alkaline waste product composed mainly of iron oxide that is generated in the industrial production of aluminum from bauxite. With about 77 million tons of this hazardous material being produced annually, red mud poses a serious disposal problem in the mining industry. Discharge of red mud is hazardous environmentally because of its alkalinity. Many studies have been conducted to develop uses of red mud. An estimated 2 to 3 million tones are used annually in the production of cement, road construction and as a source for iron. Potential applications include the production of low cost concrete, application to sandy soils to improve phosphorus cycling, amelioration of soil acidity, landfill capping and carbon sequestration. Red mud contains a large amount of iron along with appreciable concentrations of many strategic elements such as rare earth elements and therefore can be a source of valuable secondary raw material. This necessitates the elemental characterization of red mud. This paper presents an effective dissolution procedure using a mixture of phosphoric acid and nitric acid for red mud followed by determination of rare earth elements by ICP-MS. The method was validated by spike recovery experiments. The recoveries were found within 98 to 102 %. The relative standard deviation (RSD) of the method was found to be within 5 %

  2. Determination of rare-earth elements in rocks by isotope-excited X-ray fluorescence spectrometry

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar; Wollenberg, H.A.

    1970-01-01

    Isotope-excited X-ray fluorescence spectrometry furnishes a rapid determination of rare-earth elements in unprepared rock samples. The samples are excited by 241Am γ-rays, generating X-ray spectra on a multichannel pulse-height analyser. Gaussian peaks of the Kα and Kβ X-ray energies are treated......-ray spectrometric scan of a longitudinally sliced drill core showed a close correlation between rare-earth abundances and appropriate minerals....

  3. Multielement determination of rare earth elements by liquid chromatography/inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Sawatari, Hideyuki; Asano, Takaaki; Hu, Xincheng; Saizuka, Tomoo; Itoh, Akihide; Hirose, Akio; Haraguchi, Hiroki

    1995-01-01

    The rapid determination of rare earth elements (REEs) has been investigated by an on-line system of high performance liquid chromatography/multichannel inductively coupled plasma atomic emission spectrometry. In the present system, all REEs could be detected simultaneously in a single chromatographic measurement without spectral interferences. Utilizing a cation exchange column and 2-hydroxy-2-methylpropanoic acid aqueous solution as the mobile phase, the detection limits of 0.4-30 ng ml -1 for all REEs were obtained. The system was applied to the determination of REEs in geological standard rock samples and rare earth impurities in high purity rare earth oxides. The REEs in standard rocks could be determined by the present HPLC/ICP-AES system without pretreatment after acid digestion, although the detection limits were not sufficient for the analysis of rare earth oxides. (author)

  4. Rare earth elements determination in medicinal plants by Neutron Activation Analisys

    International Nuclear Information System (INIS)

    Goncalves, Rodolfo D.M.R.; Francisconi, Lucilaine S.; Silva, Paulo S.C. da

    2013-01-01

    Rare Earth Elements (REEs) have been considered nontoxic for human health and for the environment; however, the use of REEs in the development of recent technologies has increased the interest un their biological effects. Some studies related to their concentration in foodstuffs were published but REEs levels in medicinal plants are still unknown. The objective of this study was to determine the Rees concentration in the set of 59 medicinal herbs commonly used by Brazilian folk. Results showed that plants can concentrate REEs in their aerial parts, but the amount transferred to the extract of these plants is relatively low, resulting in little ingestion of these elements by the population during the extract consumption. (author)

  5. Rare earth elements determination in medicinal plants by Neutron Activation Analisys

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Rodolfo D.M.R.; Francisconi, Lucilaine S.; Silva, Paulo S.C. da, E-mail: rdmrg89@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Rare Earth Elements (REEs) have been considered nontoxic for human health and for the environment; however, the use of REEs in the development of recent technologies has increased the interest un their biological effects. Some studies related to their concentration in foodstuffs were published but REEs levels in medicinal plants are still unknown. The objective of this study was to determine the Rees concentration in the set of 59 medicinal herbs commonly used by Brazilian folk. Results showed that plants can concentrate REEs in their aerial parts, but the amount transferred to the extract of these plants is relatively low, resulting in little ingestion of these elements by the population during the extract consumption. (author)

  6. Determination Of Rare Earth And Other Elements In YEN-PHU Rare Earth Ore And Other Intermediate Products From The Floatation And Hydrometallurgical Process On Portable XRF Si-PIN Detector

    International Nuclear Information System (INIS)

    Doan Thanh Son; Phung Vu Phong; Nguyen Hanh Phuc

    2014-01-01

    The concentration of rare earths elements such as La, Ce, Pr, Nd, Gd and other elements as Ca, Fe, U, Th in Yen Phu rare earth ore and other intermediate products from the flotation and hydrometallurgical process was determined by using Si-PIN detector fluorescence spectrometry. The precision and accuracy of quantitative analysis was tested by standard reference materials and comparative analysis with different analytical methods. The analytical procedures were set-up and applied for the determination of rare earth and other elements in Yen Phu rare earth ore and other intermediate products from the flotation and hydrometallurgical process with high precision and accuracy. (author)

  7. Determination of Rare Earth Elements in Thai Monazite by Inductively Coupled Plasma and Nuclear Analytical techniques

    International Nuclear Information System (INIS)

    Busamongkol, Arporn; Ratanapra, Dusadee; Sukharn, Sumalee; Laoharojanaphand, Sirinart

    2003-10-01

    The inductively coupled plasma atomic emission spectroscopy (ICP-AES) for the determination of individual rare-earth elements (REE) was evaluated by comparison with instrumental neutron activation analysis (INAA) and x-ray fluorescence spectrometry (XRF). The accuracy and precision of INAA and ICP-AES were evaluated by using standard reference material IGS-36, a monazite concentrate. For INAA, the results were close to the certified value while ICP-AES were in good agreement except for some low concentration rare earth. The techniques were applied for the analysis of some rare earth elements in two Thai monazite samples preparing as the in-house reference material for the Rare Earth Research and Development Center, Chemistry Division, Office of Atoms for Peace. The analytical results obtained by these techniques were in good agreement with each other

  8. Determination of trace amounts of rare earth elements in various environmental samples by spark source mass spectrography

    International Nuclear Information System (INIS)

    Sugimae, Akiyoshi

    1978-01-01

    A chemical concentration-mass spectrographic procedure was described for the determination of trace amounts of rare earth elements in various environmental samples: airborne particulate matter, dustfall, soil and so forth. A 0.5 to 1 gram of sample material was decomposed by fusion with sodium carbonate. The silica dehydrated in the usual way was filtered off and the filtrate from the silica was then treated with ammonium hydroxide to precipitate the rare earth elements. After ignition of the precipitate, two ml of internal standard solution containing 20 μg/ml of silver were added and the mixture was then evaporated to dryness. The residue was mixed with an equal amount of graphite powder and then pressed into electrodes. Relative sensitivity coefficients (Ag=1.0) were determined by using Spex Mix and U. S. Geological Survey rock standard G-2. U. S. Geological Survey rock standard GSP-1 and N.B.S. coal fly ash SRM 1633 were analysed to evaluate the accuracy of the proposed method. Comparison of the mass spectral values with literature ones indicated a good agreement. The coefficient of variation obtained by replicate analysis of SRM 1633 was better than 25%. The proposed method was applied to the determination of rare earth elements in airborne particulate matter and dustfall collected on polystyrene filter and in dustjars, respectively. Results for the rare earth elements in the blank of glass fiber filter which was widely used for the collection of airborne particulate matter were also presented. (auth.)

  9. Preconcentration of rare earth elements from rocks by thin-layer chromatography and their neutron-activation determination

    International Nuclear Information System (INIS)

    Ryabukhin, V.A.; Volynets, M.P.; Myasoedov, B.F.

    1990-01-01

    Conditions were studied for separation of rare earths and accompanying elements in rocks on Fixion 50x8 thin-layer plates using solutions of oxalic acid and ammonium chloride in ammonia medium. A simple technique was developed for TLC proconcentration of rare earths followed by gamma spectrometric analysis of the irradiated fractions that enabled to determine 8-10 elements in samples with a mass of up to 30 mg. The limits of detection (μg/g) were 0.05 (Eu), 0.1 (Sm), 0.2 (Tb), 0.3 (Yb), 0.4 (La), 1.0 (Tu), 2.0 (Ce), 10 (Nd). The relative standard deviation was 0.05-0.20 at element levels 5-10 times as high as the detection limits

  10. Determination of rare earth elements in seawater by inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Moeller, P.; Dulski, P.; Luck, J.

    1992-01-01

    Shortly after sampling, rare earth elements (REEs) from 11.5 l of seawater were concentrated in 35 ml solutions by ion exchange chromatography on board the German research vessel ''Sonne'' using Chelex 100 chelating resin for preconcentration. Two millilitres of a 0.2 μg g -1 Lu spike was added to the seawater samples (i) for monitoring the chemical yield which was always found to vary between 85 and 112% (mean: 100±6) and (ii) as an internal standard. Rare earth elements have been determined by ICP-MS, with REE concentrations ranging from 100 (La) to 1 (Eu) pmol kg -1 . La in blanks can be as high as 30 pmol kg -1 , but blank concentrations for other REEs range between 0.5 and 0.01 pmol kg -1 . The trend of the precision of relative response factors varies between 12% (La) and 4% (Yb). The accuracy is estimated to be about 10% with the exception of La and Ce. Methodology improvements are suggested. (author)

  11. Determination of rare earths and traces of other elements by neutron activation analysis

    International Nuclear Information System (INIS)

    Atalla, L.T.; Mantovani, M.S.M.; Marques, L.S.

    A complete methodology for a multielemental analysis in geological material using the neutron activation technique was developed. 21 trace elements (9 of which are rare earths) were determined using thermal and epithermal neutron irradiations. Instrumetnal and radiochemical processing, applied to BCR-1 and G-2 geological standards, are described. Statistical tests carried out on G-2 data show an error smaller than 15% referring to all elements except Cr, Sb and Yb. The observed differences between are discussed. The good precision attained in this method is confirmed by its application to BCR-1 standard, which presents errors smaller than 4% for all elements except Nd, due to its intrinsic properties. The results from the present work are compared with those from other laboratories. (C.L.B.) [pt

  12. Determination of Rare Earth Elements in plants by neutron activation analysis

    International Nuclear Information System (INIS)

    Figueiredo, Ana M.G.; Maria, Sheila P.; Ceccantini, Gregorio C.T.

    1996-01-01

    In the present work, instrumental neutron activation analysis was employed to the determination of rare earth elements (La, Ce, Nd, Eu, Tb, Yb e Lu) in plants, aiming biogeochemical studies. The precision and accuracy of the method were verified by the analysis of the reference materials Citrus Leaves (NIST 1572) and Pine Needles (NIST 1575). With exception of terbium, the results obtained agreed with reference values, giving relative errors less than 25%. The method was applied to different species of plants growing in the alkaline-ultramafic complex of Salitre, MG and the obtained data were compared to the average content in plants. (author)

  13. The determination of minor amounts of rare earth elements in high purity earth oxides by HPLC/IDMS

    International Nuclear Information System (INIS)

    Stijfhoorn, D.E.; Stray, H.; Hjelmseth, H.

    1991-05-01

    Since the early seventies isotopic dilution mass spectrometry (IDMS) has been used at Institutt for energiteknikk, Kjeller, Norway for determination and certification of rare earth elements in high purity Y 2 O 3 . These lanthanides have, during the last few decades, become more widely used in highly specialized technology. High purity, quality 4 N (99.99%) or even 5 N materials are needed for phosphors, lasers, optical fibers, X-ray films, and in contrast fluids for magnetic resonance imaging (MRI). However, in a matrix constisting primarily of a single lanthanide, IDMS alone will not be effective due to isobaric interferences from the main elements or the mono-oxides formed in the ion source. On the other hand, high performance liquid chromatography (HPLC) may be used, but the detection limit will be in the order of 5 to 10 ppm/W. In this work a combination of HPLC and IDMS has been used to lower the detection limit to 1 ppm/W, where the sample is spiked before separation by HPLC, followed by IDMS analysis of the HPLC- fractions. In some cases the HPLC-process has to be repeated to remove the main element completly. Results are presented for Dy 2 O 3 and Nd 2 O 3 , but similar separating procedures can be applied for other rare earth oxides. 3 refs., 2 figs. 2 tabs

  14. A problem in gravimetric method for the determination of rare earth elements as oxide after the fluoride separation

    International Nuclear Information System (INIS)

    Takada, Kunio

    1979-01-01

    For the gravimetric determination of lanthanum, it was precipitated as fluoride and converted to oxide by igniting (ca. 930 0 C) in a town gas flame. However, the oxidation of lanthanum fluoride by ignition was incomplete, the major part of the precipitate being converted to oxyfluoride (LaOF) and a mixture of oxide and oxyfluoride resulted. Therefore, analytical results were generally (5 -- 7)% higher than theoretically expected. The lanthanum fluoride became converted into the oxide by repeating ignition (ca. 1070 0 C) three times, each for (30 -- 40)min. However, the weight was lower than that of the corresponding sesquioxide, La 2 O 3 . Except for ytterbium and lutetium, gravimetric results as oxides for the other rare earth elements (Y, Pr, Nd, Sm, Eu and Gd) were higher than theoretical values. Therefore, the precipitation of the rare earth elements as fluoride and the subsequent determination as oxide by ignition of the fluoride could not be recommended as the gravimetric method for the rare earths. In order to obtain accurate results for major to minor amounts of the rare earth elements, an EDTA titration at pH 6 should be used after the dissolution of fluoride in acid, if the fluoride precipitation separation is involved. (author)

  15. Spectral determination of individual rare earths in different classes of inorganic compounds

    International Nuclear Information System (INIS)

    Karpenko, L.I.; Fadeeva, L.A.; Shevchenko, L.D.

    1979-01-01

    The conditions are found allowing to analyze various inorganic compounds for rare-earth elements without separation from non-rare-earth components. The influence of the plasma composition on the intensity of spectral lines of rare-earth elements is studied. The relative intensity of homologous spectral lines of various rare-earth elements remains constant regardless of the plasma composition. The conditions are found for the determination of individual rare-earth elements acting as both alloying additives (Csub(n) -- n x 10 -1 -n x 10 -3 %), and basic components (up to tens of per cent) in different classes of inorganic compounds of 1-7 elements. The general method is developed for the determination of individual rare-earth elements in mixtures of oxides of rare-earth elements, complex fluorides of rare-earth elements and elements of group 2, gallates, borates, germanates, vanadates of rare-earth elements and aluminium; zirconates-titanates of lead and barium, containing modifying additives of rare-earth elements, complex chalcogenides of rare-earth elements and elements of group 5

  16. Determination of rare earth elements in tomato plants by inductively coupled plasma mass spectrometry techniques.

    Science.gov (United States)

    Spalla, S; Baffi, C; Barbante, C; Turetta, C; Turretta, C; Cozzi, G; Beone, G M; Bettinelli, M

    2009-10-30

    In recent years identification of the geographical origin of food has grown more important as consumers have become interested in knowing the provenance of the food that they purchase and eat. Certification schemes and labels have thus been developed to protect consumers and genuine producers from the improper use of popular brand names or renowned geographical origins. As the tomato is one of the major components of what is considered to be the healthy Mediterranean diet, it is important to be able to determine the geographical origin of tomatoes and tomato-based products such as tomato sauce. The aim of this work is to develop an analytical method to determine rare earth elements (RRE) for the control of the geographic origin of tomatoes. The content of REE in tomato plant samples collected from an agricultural area in Piacenza, Italy, was determined, using four different digestion procedures with and without HF. Microwave dissolution with HNO3 + H2O2 proved to be the most suitable digestion procedure. Inductively coupled plasma quadrupole mass spectrometry (ICPQMS) and inductively coupled plasma sector field plasma mass spectrometry (ICPSFMS) instruments, both coupled with a desolvation system, were used to determine the REE in tomato plants in two different laboratories. A matched calibration curve method was used for the quantification of the analytes. The detection limits (MDLs) of the method ranged from 0.03 ng g(-1) for Ho, Tm, and Lu to 2 ng g(-1) for La and Ce. The precision, in terms of relative standard deviation on six replicates, was good, with values ranging, on average, from 6.0% for LREE (light rare earth elements) to 16.5% for HREE (heavy rare earth elements). These detection limits allowed the determination of the very low concentrations of REE present in tomato berries. For the concentrations of REE in tomato plants, the following trend was observed: roots > leaves > stems > berries. Copyright 2009 John Wiley & Sons, Ltd.

  17. Multielement determination of rare earth elements in rock sample by liquid chromatography / inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Hamanaka, Tadashi; Itoh, Akihide; Itoh, Shinya; Sawatari, Hideyuki; Haraguchi, Hiroki.

    1995-01-01

    Rare earth elements in geological standard rock sample JG-1 (granodiolite)issued from the Geological Survey of Japan have been determined by a combined system of liquid chromatography and inductively coupled plasma mass spectrometry. (author)

  18. Rare earth elements: end use and recyclability

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  19. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  20. Determination of Barium and selected rare-earth elements in geological materials employing a HpGe detector by radioisotope excited x-ray fluorescence

    International Nuclear Information System (INIS)

    LaBrecque, J.J.; Preiss, I.L.

    1984-01-01

    The laterite material (geological) from Cerro Impacto was first studied by air radiometric techniques in the 1970's and was found to have an abnormally high radioactive background. Further studies showed this deposit to be rich in thorium, columbium, barium and rare-earth elements (mostly La, Ce, Pr and Nd). A similar work has been reported for the analysis of Brazil's lateritic material from Morro do Ferro to determine elemental compositions (including barium and rare-earth elements) and its relationship to the mobilization of thorium from the deposit using a Co-57 radioisotope source. The objective of this work was to develop an analytical method to determine barium and rare-earth element present in Venezuelan lateritic material from Cerro Impacto. We have employed a method before, employing a Si(Li) detector, but due to the low detection efficiencies in the rare-earth K-lines region (about 30 KeV - 40 KeV), we have decided to study the improvement in sensitivities and detection limits using an hyperpure germanium detector

  1. Utilization of atomic emission spectroscopy methods for determination of rare earth elements

    International Nuclear Information System (INIS)

    Kubova, J.; Polakovicova, J.; Medved, J.; Stresko, V.

    1997-01-01

    The authors elaborated and applied procedures for rare earth elements (REE) determination using optical emission spectrograph with D.C arc excitation and ICP atomic emission spectrometry.Some of these analytical method are described. The proposed procedure was applied for the analysis of different types of geological materials from several Slovak localities. The results the REE determination were used for e.g. investigation of REE distribution in volcanic rocks, rhyolite tuffs with uranium-molybdenum mineralization, sandstones with heavy minerals accumulations, phosphatic sandstones, granites, quartz-carbonate veins and in the meteorite found in the locality Rumanova. The REE contents were determined in 19 mineral water sources and the results obtained by the both mentioned methods compared. The total REE contents in the analysed mineral water samples were between 2 · 10 -7 and 3 · 10 -5 g dm -3

  2. Neutron activation analysis of the rare earth elements in Nasu hot springs

    International Nuclear Information System (INIS)

    Ikeda, Nagao; Takahashi, Naruto.

    1978-01-01

    Eleven rare earth elements (lanthanum, cerium, neodymium, samarium, europium, gadolinium, terbium, holmium, thulium, ytterbium and lutetium) in hot spring waters and sinter deposits in the Nasu area were determined by the neutron activation method. The rare earth elements in hot spring water were preconcentrated in ferric hydroxide precipitate and neutron-irradiated. The rare earth elements were chemically separated into lighter and heavier groups and the activity of each group was measured with a Ge(Li) detector. Distribution of the rare earth elements between the hot spring water and the sinter deposit was also discussed. (auth.)

  3. Determination of rare earth elements in biomonitors by neutron activation

    International Nuclear Information System (INIS)

    Figueiredo, Ana M.G.; Saiki, Mitiko; Ticianelli, R.B.; Domingos, M.; Alves, E.S.; Marcelli, M.P.

    2000-01-01

    The rare earth elements (REE) are becoming more and more important from the technological point of view, due to their increasing use in modern industry. Due to this fact, environmental contamination by REE may become significant, and little information are still available about biological effects of REE in plants, animals and human beings. The use of biomonitors to control environmental pollution has been an ecological and economical alternative in Europe and United Sates, to minimize the high costs of conventional equipment s. In the present paper, neutron activation analysis was employed to determine La, Ce, Nd, Sm, Eu, Tb, Yb and Lu in the lichen Canoparmelia texana and in Tillandsia usneoides, species that have been widely used as monitors of atmospheric pollution. The results showed an accumulation of REE in the biomonitors, indicating good possibilities of their utilization in the study of environmental contamination by REE. (author)

  4. Sc, Y, La-Lu - Rare Earth Elements

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    At present extensive efforts are being made in completing work on system number Rare Earth Elements. Part A is devoted to the occurrence of these elements on the earth and in the universe. Part B deals with the pure metals; the 7 volumes published cover the description of the separation from the raw materials, the preparation of pure metals,their uses and toxicology, the physical properties of nuclei, atoms, molecules, and isotopes; in addition the behavior of ions in solution and the electrochemical behavior of rare earth elements are described. The compounds are described in Part C. Part D with 6 volumes has been devoted to the description of coordination compounds and is completed. The volume ''Rare Earth Elements C 10'' deals with the rare earth tellurides, oxide tellurides, tellurates, telluride halides, tellurate halides, sulfide tellurides, selenide tellurides, and alkali rare earth tellurates. Another topic of this volume are the compounds of the rare earth elements with polonium. So far as meaningful and in accordance with all earlier volumes of ''Rare Earth Elements'' Series C, comparative data are presented in sections preceding treatment of the individual compounds and systems

  5. Determination of rare-earth elements content in granitic rocks by argon plasma emission spectrometry

    International Nuclear Information System (INIS)

    Merodio, J.C.; Martinez, J.M.

    1990-01-01

    A method has been developed that enables the rare-earth elements in granitic rocks to be measured sequentially, using an inductively coupled plasma (ICP) source spectrometer with medium spectral resolution (0,02nm). The rocks were dissolved in an open system with a mixture of nitric-hydrofluoric-perchloric acids. Any residues remaining at this stage were removed by filtration and digested using a mini-fusion method with lithium tetraborate. Prior to the excitation in the spectrometer the rare-earth group was separated from other constituents using cation-exchange chromatography. A detailed study of spectral interferences and the evaluation of the detection limits have been performed. Five geochemical reference sample (granitic rocks) were analyzed and the obtained results agree favourably with recommended values and with reported determinations, using high spectral resolution ICP spectrometry. (Author) [es

  6. Rare earth element recycling from waste nickel-metal hydride batteries

    International Nuclear Information System (INIS)

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-01-01

    Highlights: • Leaching kinetics of REEs has rarely been reported. • A new method, including hydrochloric acid leaching and oxalic acid precipitation, was proposed. • REEs recovery rate of 95.16% and pure rare earth oxides of 99% were obtained. • Leaching process was controlled by chemical reaction. • The kinetic equation was determined. - Abstract: With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70 °C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, −74 μm particle size, and 100 min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98 kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1−(1−x) 1/3 =A/ρr 0 [HCl] 0.64 exp((−439,800)/(8.314T) )t. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810 °C, a final product of 99% pure rare earth oxides was obtained

  7. Column extraction chromatography with HEH (EHP) for separating rare earth elements from coexistent elements and its application

    International Nuclear Information System (INIS)

    Peng Chunlin; Sun Baocheng; Zhao Junwu; Liu Xuan

    1985-01-01

    For separating rare earths from large amount of coexistent elements a new method of column extraction chromatography with HEH (EHP) as a stationary phase and sulphosalicylic acid, gluconic acid, ascorbic acid respectively as a mobile phase has been developed. It has been applied to the determination of trace rare earth elements in nickel-base alloys and iron-nickel-base alloys with satisfactory results

  8. Spectrographic determination of some rare earths in thorium compounds

    International Nuclear Information System (INIS)

    Brito, J. de.

    1977-01-01

    A method for spectrographic determination of Gd, Sm, Dy, Eu, Y, Yb, Tm and Lu in thorium compounds has been developed. Sensibilities of 0.01 μg rare earths/g Th02 were achieved. The rare earth elements were chromatographycally separated in a nitric acid-ether-cellulose system. The solvent mixture was prepared by dissolving 11% of concentrated nitric acid in ether. The method is based upon the sorption of the rare earths on activated cellulose, the elements being eluted together with 0.01 M HNO 3 . The retention of the 152 , 154 Eu used as tracer was 99,4%. The other elements showed recoveries varying from 95 to 99%. A direct carrier destillation procedure for the spectrochemical determination of the mentioned elements was used. Several concentrations of silver chloride were used to study the volatility behavior of the rare earths. 2%AgCl was added to the matrix as definite carrier, being lantanum selected as internal standard. The average coefficient of variation for this method was +- -+ 7%. The method has been appleid to the analysis of rare earths in thorium coumpounds prepared by Thorium Purification Pilot Plant at Atomic Energy Institute, Sao Paulo [pt

  9. Rare earth element recycling from waste nickel-metal hydride batteries.

    Science.gov (United States)

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Determination of rare earth elements in rocks by neutron activation analysis with pre-irradiation separation

    International Nuclear Information System (INIS)

    Alcala, A.L.

    1991-01-01

    Rare earth elements were determined by neutron activation analysis in rocks, a group separation before irradiation was developed. The international reference standards AGV-1, BE-N and JB-1, as well the Brazilian geological standards BB-1 and GB-1, provided by the Instituto de Geociencias da Universidade Federal da Bahia, were analysed. The method was based on acid digestion of the samples, cation exchange separation, and coprecipitation of the REE with calcium oxalate. Interferents like U, Th, Ta and Fe were eliminated. The concentration values of eleven REE's (La, Co, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Yb and Lu) were determined. (author)

  11. Studies on the determination of trace amounts of nitrogen along with alkali and alkaline earth elements in uranium based samples by ion-chromatography (IC)

    International Nuclear Information System (INIS)

    Verma, Poonam; Rastogi, R.K.; Ramakumar, K.L.

    2006-12-01

    Present report describes an ion chromatography (IC) method with suppressed conductivity detection for the determination of traces of nitrogen along with alkali and alkaline earth elements in uranium based nuclear fuels. Method was developed to determine nitrogen as NH 4 + along with alkali and alkaline earth cations by IC using a cation exchange column. (author)

  12. Direct determination of trace rare earth elements in ancient porcelain samples with slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Xiang Guoqiang; Jiang Zucheng; He Man; Hu Bin

    2005-01-01

    A method for the direct determination of trace rare earth elements in ancient porcelain samples by slurry sampling fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry was developed with the use of polytetrafluoroethylene as fluorinating reagent. It was found that Si, as a main matrix element in ancient porcelain sample, could be mostly removed at the ashing temperature of 1200 deg. C without considerable losses of the analytes. However, the chemical composition of ancient porcelain sample is very complicated, which makes the influences resulting from other matrix elements not be ignored. Therefore, the matrix effect of ancient porcelain sample was also investigated, and it was found that the matrix effect is obvious when the matrix concentration was larger than 0.8 g l -1 . The study results of particle size effect indicated that when the sample particle size was less than 0.057 mm, the particle size effect is negligible. Under the optimized operation conditions, the detection limits for rare earth elements by fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry were 0.7 ng g -1 (Eu)-33.3 ng g -1 (Nd) with the precisions of 4.1% (Yb)-10% (La) (c = 1 μg l -1 , n = 9). The proposed method was used to directly determine the trace rare earth elements in ancient porcelain samples produced in different dynasty (Sui, Ming and Qing), and the analytical results are satisfactory

  13. Determination of rare earth elements, hafnium and cadmium in sintered pellets of mixed thorium and uranium oxides by neutron activation

    International Nuclear Information System (INIS)

    Cardoso, S.N.M.

    1987-01-01

    This work shows the development of a method for determination of the rare-earth elements (Eu, Sm, Dy and Gd), Hf and Cd contents in sinterized U and Th mixed oxides by neutron activation analysis. The sample is dissolved in nitric/fluoridric (0,1% HF) medium, to dryness and redissolved in 6N HCl solution. The Hf is extracted into organic phase (0,5 M TTA/benzene), irradiated and analysed through 181 Hf isotope energy peak. The aqueous phase is treated with NH 4 OH for the precipitation of hidroxides. Then, these are dissolved in 6N HNO 3 solution. The extraction of U and Th is made in two steps, one with TBP/CCl 4 and another with 0,5 M TTA/C 6 H 6 . Then the rare-earth elements and Cd are irradiated and determined by gamma spectrometry. (author) [pt

  14. Determination of rare-earth elements, yttrium and scandium in manganese nodules by inductively-coupled argon-plastma emission spectrometry

    Science.gov (United States)

    Fries, T.; Lamothe, P.J.; Pesek, J.J.

    1984-01-01

    A sequential-scanning, inductively-coupled argon plasma emission spectrometer is used for the determination of the rare-earth elements, plus yttrium and scandium, in manganese nodules. Wavelength selection is optimized to minimize spectral interferences from manganese nodule components. Samples are decomposed with mixed acids in a sealed polycarbonate vessel, and elements are quantified without further treatment. Results for U.S. Geological Survey manganese nodule standards A-1 and P-1 had average relative standard deviations of 6.8% and 8.1%, respectively, and results were in good agreement with those obtained by other methods. ?? 1984.

  15. Production of Rare Earth Elements from Malaysian Monazite by Selective Precipitation

    International Nuclear Information System (INIS)

    Che Nor Aniza Che Zainul Bahri; Al- Areqi, W.M.; Amran Abdul Majid; Mohd Izzat Fahmi Mohd Ruf

    2016-01-01

    Rare earth elements (REEs) are very valuable and have high demands for advanced technology nowadays. REEs can be classified to light rare earth elements (LREEs) and heavy rare earth elements (HREEs). Malaysian rare earth ore especially monazite, is rich with LREEs compared to HREEs. Therefore a study was carried out to extract the REE from Malaysian monazite. The objectives of this study are to determine the content of REEs in Malaysian monazite leach solution, as well as to produce high grade of REEs. Concentrated sulphuric acid was used in digestion process and the filtrate containing the REEs was determined using Inductively Coupled Plasma- Mass Spectrometry (ICP-MS). Ammonia solution was used for REEs precipitation from monazite leach solution. The result indicated that REEs was successfully separated from monazite leach solution through selective precipitation using ammonia at pH 2.34 and the percentage of REEs that successfully separated was 70.03 - 81.85 %. The percentage of REEs which successfully separated from final solution was 96.05 - 99.10 %. Therefore, to have high purification of individual REEs, solvent extraction process should be carried out. (author)

  16. Determination of rare earth elements in the biological reference materials Pine Needles and Spruce Needles by neutron activation analysis

    International Nuclear Information System (INIS)

    Machado, C.N.; Maria, S.P.; Saiki, M.; Figueiredo, A.M.G.

    1998-01-01

    Instrumental neutron activation analysis was applied to determine La, Ce, Nd, Sm, Eu, Tb, Yb, Lu and Sc in two biological reference materials: NIST 1575 Pine Needles and BCR-CRM 101 Spruce Needles. The purpose was to contribute to the reference data for these two reference materials. The results were obtained with a good precision (relative standard deviations less than 15%). For the Pine Needles reference material there are already some proposed values and our results showed, in general, a good agreement with the data published. The contribution of uranium fission products to La, Ce, Nd and Sm was evaluated and considered in the determination of these elements. Interferences in the determination of rare earth elements in biological materials are also discussed. (author)

  17. Atomic absorption determination of iron and copper impurities in rare earth compounds

    International Nuclear Information System (INIS)

    Zelyukova, Yu.V.; Kravchenko, J.B.; Kucher, A.A.

    1978-01-01

    An extraction atomic absorption method for the determination of copper and iron impurities in rare earth compounds has been developed. The extraction separation of determined elements as hydroxy quinolinates with isobuthyl alcohol was used. It increased the sensitivity of these element determination and excluded the effect of the analysed sample. Cu, Te, Zn, Bi, Sn, In, Ga, Tl and the some other elements can be determined at pH 2.0-3.0 but rare earths are remained in an aqueous phase. The condition of the flame combustion does not change during the introduction of isobutyl extract but the sensitivity of the determination of the elements increased 2-3 times. The limit of Fe determination is 0.01 mg/ml and the limit of Cu determination is 0.014 mg/ml

  18. Ecological effect of rare earth elements

    International Nuclear Information System (INIS)

    Hu Aitang; Zhou Quansuo; Zheng Shaojian; Zhai Hai; Zhao Xiulan; Pang Yonglin; Wang Yuqi; Sun Jingxin; Zhang Shen; Wang Lijun

    1997-01-01

    Water and soil culture were carried out to study the ecological effect of rare earth elements (REEs) in the aspect of plant-soil system. Contents of REEs were determined by instrumental neutron activation analysis (INAA). There was a limit to REEs-tolerance of crops, which differed with the development periods of plant and soil types. The REEs concentration in plant, especially in root, was marked related to the concentration in culture material. Beyond the concentration-limit appeared phototoxicity. The chemical behavior of REEs in plants and soils varied with soil types and elements. The bio-availability of REEs in soil mainly depended on the exchangeable fraction of REEs affected strongly by the physi-chemical properties of soils

  19. Cermets based on rhenium and rare earth element oxides

    International Nuclear Information System (INIS)

    Varfolomeev, M.B.; Velichko, A.V.; Zajtseva, L.L.; Shishkov, N.V.

    1977-01-01

    The reduction of perrhenates of rare earth elements and of yttrium by hydrogen and the subsequent sintering have yielded cermets based on rhenium and rare earth element oxides inherent in which are more disperse and homogeneous structures than those of the ''molecular'' rare earth element-Tc cermets. The dispersity of cermets increases in the rare earth elements series from La to Lu. The microhardness of the Re phase in cermets is 490 kgf/mm 2 ; the total microhardness of a cermet is substantially higher

  20. Leaching of rare earth elements from bentonite clay

    OpenAIRE

    van der Watt, J.G; Waanders, F.B

    2012-01-01

    Due to increasing concerns of global rare earth element shortfalls in the near future, possible alternative sources of rare earth elements have recently become of economic interest. One such alternative is decanting acid mine water originating primarily from abandoned old mines in the Witwatersrand region of the Republic of South Africa. In this study, a novel way of rare earth element removal from the acid mine drainage was employed, making use of bentonite clay, which has very good adsorben...

  1. Extraction of rare earth elements from low-grade Bauxite via precipitation reaction

    Science.gov (United States)

    Kusrini, E.; Nurani, Y.; Bahari, ZJ

    2018-03-01

    The aim of this research was to determine the optimum hydrometallurgical parameters to extract the rare earth elements (REE) from low-grade bauxite through acid leaching and precipitation reaction. REE or lanthanide recovery by a precipitation method with sodium sulphate and sodium phosphate as precipitation agents is reported where the effect of pH and recovery of REE are described. The metal composition of REE in low-grade bauxite after treatment were analyzed by ICP-OES. The total recovery values of REE elements at the first precipitation reaction using sodium sulphate as the precipitation agent at pH 3.5 showed ~68.2% of lanthanum, ~18.9% cerium, and ~7.8% yttrium. Lanthanum was the rare-earth element present at the highest concentration in the low-grade bauxite after the series treatments. An optimum pH of 3.5 for precipitation of rare-earth elements using sodium sulphate was demonstrated where this method is recommended for the extraction of REE elements from low-grade bauxite.

  2. Enrichment method for trace amounts of rare earth elements using chemofiltration and XRF determination

    International Nuclear Information System (INIS)

    De Vito, I.E.; Olsina, R.A.; Masi, A.N.

    2000-01-01

    A preconcentration method for subsequent determination of rare earth elements (REE) by X-ray fluorescence (XRF) spectrometry was developed. The method is based on using (o-[3,6-disulfo-2-hydroxy-1-naphthylazo]-benzenearsonic acid) (Thorin) as a complexing agent which is retained on a polyamide membrane by a chemofiltration process. The pH dependence of the chemofiltration of these metal ions on the membrane and other variables, such as flow-rate, contact time, kinetic of complex formation, etc. were determined. The membrane containing the chemofiltrate formed a thin film, which eliminated the interelemental effects when measured by XRF. The detection limits were 23, 23 and 49 ng/mL for Sm(III), Eu(III) and Gd(III), respectively. High enrichment factors were obtained. The method was successfully applied to the preconcentration of Sm(III), Eu(III) and Gd(III) from different samples. (orig.)

  3. Determination of active oxygen content in rare earth peroxides

    International Nuclear Information System (INIS)

    Queiroz, Carlos A.S.; Abrao, Alcidio

    1993-01-01

    The content of active oxygen in rare earth peroxides have been determined after the dissolution of the samples with hydrocloridic acid in the presence of potassium iodide. The free generated iodine is titrated with sodium thiosulfate using starch as indicator. The oxidation of iodide to the free iodine indicates the presence of a higher valence state rare earth oxide, until now specifically recognized for the oxides of cerium (Ce O 2 ), praseodymium (Pr 6 O 1 1) and terbium (TB 4 O 7 ). recently the authors synthesized a new series of rare earth compounds, the peroxides. These new compounds were prepared by precipitating the rare earth elements complexed with carbonate ion by addition of hydrogen peroxide. the authors demonstrated that all rare earth elements, once solubilized by complexing with carbonate ion, are quantitatively precipitated as peroxide by addition of hydrogen peroxide. (author)

  4. Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon

    Science.gov (United States)

    Righter, K.; Pando, K.; Danielson, L.; Nickodem, K.

    2014-01-01

    Depletions of siderophile elements in mantles have placed constraints on the conditions on core segregation and differentiation in bodies such as Earth, Earth's Moon, Mars, and asteroid 4 Vesta. Among the siderophile elements there are a sub-set that are also volatile (volatile siderophile elements or VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd), and thus can help to constrain the origin of volatile elements in these bodies, and in particular the Earth and Moon. One of the fundamental observations of the geochemistry of the Moon is the overall depletion of volatile elements relative to the Earth, but a satisfactory explanation has remained elusive. Hypotheses for Earth include addition during accretion and core formation and mobilized into the metallic core, multiple stage origin, or addition after the core formed. Any explanation for volatile elements in the Earth's mantle must also be linked to an explanation of these elements in the lunar mantle. New metal-silicate partitioning data will be applied to the origin of volatile elements in both the Earth and Moon, and will evaluate theories for exogenous versus endogenous origin of volatile elements.

  5. A back-arc setting for mafic rocks of the Honeysuckle Beds, southeastern N.S.W.: the use of trace and rare earth element abundances determined by INAA

    Energy Technology Data Exchange (ETDEWEB)

    Dadd, K A [University of Technology, Sydney, NSW (Australia)

    1994-12-31

    Major, trace and rare earth elements abundance in mafic rocks of the Honeysuckle Beds was determined by x-ray fluorescence and neutron activation analysis . A comparison with typical mid-ocean ridge basalt compositions reveals an enrichment in light rare earths elements (Ba, Rb, and Th) and depletion in Nb, Ta and Ti, consistent with modifications of the source by subduction-related fluids. 9 refs., 6 figs.

  6. A back-arc setting for mafic rocks of the Honeysuckle Beds, southeastern N.S.W.: the use of trace and rare earth element abundances determined by INAA

    Energy Technology Data Exchange (ETDEWEB)

    Dadd, K.A. [University of Technology, Sydney, NSW (Australia)

    1993-12-31

    Major, trace and rare earth elements abundance in mafic rocks of the Honeysuckle Beds was determined by x-ray fluorescence and neutron activation analysis . A comparison with typical mid-ocean ridge basalt compositions reveals an enrichment in light rare earths elements (Ba, Rb, and Th) and depletion in Nb, Ta and Ti, consistent with modifications of the source by subduction-related fluids. 9 refs., 6 figs.

  7. Rare earth elements materials production from apatite ores

    International Nuclear Information System (INIS)

    Anufrieva, A V; Buynovskiy, A S; Makaseev, Y N; Mazov, I N; Nefedov, R A; Sachkov, V I; Valkov, A V; Andrienko, O S; Stepanova, O B

    2016-01-01

    The paper deals with the study of processing apatite ores with nitric acid and extraction of the rare earth elements. The rare earth elements can be successfully separated and recovered by extraction from the nitrate- phosphate solution, being an tributyl phosphate as extraction agent. The developed scheme of the processing apatite concentrate provides obtaining rare earth concentrates with high qualitative characteristics. (paper)

  8. Study of rare earth elements, uranium and thorium migration in rocks from Espinharas uranium deposit, Paraiba - Brazil

    International Nuclear Information System (INIS)

    Conceicao, Cirilo C.S.

    2009-01-01

    The determination of rare earth elements as natural analogue in patterns geologic has grown as a tool for predicting the long-term safety of nuclear disposal in geological formation. Migration of natural radionuclides is one of the most serious problems in the waste deposit from nuclear fuel cycle. Rare earth elements show the same kinetic behavior in rocks as natural radionuclides. This similar property of the analogues allows perform studies and models on the subject of radionuclides migration. The aim of this study was to determine the distribution of rare earth elements in rocks located at Espinharas - Paraiba - Brazil, uranium deposit. In this work are presented the results from the study above the distribution of rare earth elements in function of the degree of mineralized rocks, composition and the conditions of radioactive equilibrium of the uranium and thorium in some fractures on the rocks from radioactive occurrence of Espinharas-Brazil. The results show that there is a correlation of heavy rare earth elements, uranium and Thorium concentrations to oxidation factor of the rocks. However this correlation was not observed for light rare earth elements. It means that heavy rare earth elements follow the natural radionuclides in oxidation process of rocks. The samples were analyzed by ICP-MS, alpha and gamma spectrometry, X-ray diffraction and fluorimetry. (author)

  9. Rare Earth Elements: A Tool for Understanding the Behaviour of Trivalent Actinides in the Geosphere

    International Nuclear Information System (INIS)

    Buil, Belen; Gomez, Paloma; Garralon, Antonio; Turrero, M. Jesus

    2007-01-01

    Rare earth element (REE) concentrations have been determined in groundwaters, granite and fracture fillings in a restored uranium mine. The granitoids normalized REE patterns of groundwaters show heavy rare earth elements (HREE)-enrichment and positive Eu anomalies. This suggests that the REE are fractionated during leaching from the source rocks by groundwaters. Preferential leaching of HREE would be consistent with the greater stability of their aqueous complexes compared to those of the light rare earth elements (LREE), together with the dissolution of certain fracture filling minerals, dissolution/alteration of phyllosilicates and colloidal transport. (authors)

  10. Anthropogenic Cycles of Rare Earth Elements

    Science.gov (United States)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  11. Determination of rare earth elements in natural water samples – A review of sample separation, preconcentration and direct methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Andrew, E-mail: afisher@plymouth.ac.uk [School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, Devon, PL4 8AA (United Kingdom); Kara, Derya [Department of Chemistry, Art and Science Faculty, Balikesir University, 10100, Balikesir (Turkey)

    2016-09-07

    This review discusses and compares the methods given for the determination of rare earth elements (REE) in natural water samples, including sea, river, lake, tap, ground and waste waters as well as Antarctic ice. Since REE are at very low concentrations in natural waters, numerous different preconcentration methods have been proposed to enable their measurement. These include liquid liquid extraction, dispersive liquid-liquid micro-extraction and solidified floating drop micro-extraction. In addition to liquid-liquid extraction methods, solid phase extraction using commercial resins, resins made in-house, silica-based exchange materials and other solid media is also discussed. These and other techniques such as precipitation/co-precipitation and flotation are compared in terms of speed, preconcentration factors achieved, precision, accuracy and limits of detection (LOD). Some papers have discussed the direct determination of REE in these sample types. Some have used specialised sample introduction systems such as ultrasonic nebulization whereas others have used a standard sample introduction system coupled with inductively coupled plasma mass spectrometry (ICP-MS) detection. These direct methods have also been discussed and compared. - Highlights: • The determination of rare earth elements in waters is reviewed. • Assorted preconcentration techniques are discussed and evaluated. • Detection techniques include atomic spectrometry, potentiometry and spectrophotometry. • Special nebulisers and electrothermal vaporization approaches are reviewed.

  12. MaRGEE: Move and Rotate Google Earth Elements

    Science.gov (United States)

    Dordevic, Mladen M.; Whitmeyer, Steven J.

    2015-12-01

    Google Earth is recognized as a highly effective visualization tool for geospatial information. However, there remain serious limitations that have hindered its acceptance as a tool for research and education in the geosciences. One significant limitation is the inability to translate or rotate geometrical elements on the Google Earth virtual globe. Here we present a new JavaScript web application to "Move and Rotate Google Earth Elements" (MaRGEE). MaRGEE includes tools to simplify, translate, and rotate elements, add intermediate steps to a transposition, and batch process multiple transpositions. The transposition algorithm uses spherical geometry calculations, such as the haversine formula, to accurately reposition groups of points, paths, and polygons on the Google Earth globe without distortion. Due to the imminent deprecation of the Google Earth API and browser plugin, MaRGEE uses a Google Maps interface to facilitate and illustrate the transpositions. However, the inherent spatial distortions that result from the Google Maps Web Mercator projection are not apparent once the transposed elements are saved as a KML file and opened in Google Earth. Potential applications of the MaRGEE toolkit include tectonic reconstructions, the movements of glaciers or thrust sheets, and time-based animations of other large- and small-scale geologic processes.

  13. An improved ion-exchange separation of rare-earth elements for spectrographic analysis

    International Nuclear Information System (INIS)

    Jones, E.A.

    1978-01-01

    Rare-earth elements are separated from scandium and base metals by adsorption onto anion resin BIORAD AG1-X8 in the nitrate form from a mixture of 5 per cent 7M nitric acid and 95 per cent methanol. The yttrium subgroup is eluted with a mixture of 45 per cent 7M nitric acid and 55 per cent methanol, followed by elution of the cerium subgroup with 8M nitric acid. This separation facilitates the determination of the traces of the heavier yttrium subgroup of rare-earth elements

  14. Validation of ion chromatography for the determination of transition metal ions along with alkali, alkaline earth metal elements for uranium oxide fuel

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Prakash, Amrit; Afzal, Mohd.; Panakkal, J.P.

    2009-02-01

    The present report describes the use of Ion chromatography (IC) methods with spectrophotometric and direct conductivity detection for the determination of transition metal elements and alkali alkaline earth metal ions in UO 2 pellets. Transmet analytical column and Metrosep- cation 1-2 column were used for the separation of transition metal elements and alkali and alkaline earth metal elements respectively. Oxalic acid and mixture of pyridine 2,6-dicarboxylic acid (PDCA), Na 2 SO 4 and NaCl were used as mobile phase for the separation of transition metal ions and monitored after post - column reaction with 4,2-pyridylazo resorcinol (PAR) at 520nm spectrophotometrically. In the determination of alkali and alkaline earth metal ions the interference of transition metals are removed by complexing them with PDCA. Mixture of tartaric acid and PDCA employed in the separation of alkali and alkaline earth metal ions and monitored on direct conductivity detector. Mobile phase composition was optimised for the base line separation. Calibration plots of Fe 3+ , Cu 2+ , Ni 2+ , Co 2+ , Cd 2+ , Mn 2+ , Li + , Na + , K + , Mg 2+ , Ca 2+ and Sr 2+ were linear over a wide dynamic range with regression coefficient better than 0.999. Detection limit of above ions were between 5-30ppb. To prevent the overloading of the cation exchange column, uranium matrix was removed from UO 2 sample by solvent extraction with 30% TBP - TOPO/CCl 4 . Ten sintered UO2 pellets of same lot were analysed and R.S.D. ±10% was obtained. These methods were validated by analysis of ILCE standards of UO 2 . (author)

  15. Activation analysis of rare-earth elements in opium and cannabis samples

    International Nuclear Information System (INIS)

    Henke, G.

    1977-01-01

    Rare-earth concentrations in 65 Opium, Cannabis and Cannabis resin samples seized from various parts of the world were determined by destructive NAA. Because of the greater concentrations of Ca, P, K, Fe, Na and Si in plant materials, rare-earth elements were isolated after neutron irradiation and determined by gamma-spectrometry. The main steps of the method are: Preashing of 1 g Cannabis resin, 2.5 g Cannabis or 7.5 g Opium, respectively, in quartz ampoules (5 h, 500 deg C). Neutron irradiation, 24 h at 5x10 13 n cm -2 sec -1 . Cooling period 2-3 days. After addition of 0.1 μCi 139 Ce and rare-earth carriers wet ashing of irradiated samples with H 2 SO 4 /HNO 3 , followed by alternate addition of HNO 3 and H 2 O 2 (30%). Precipitation and removal of silicates, precipitation of fluorides, precipitation of hydroxides. Dissolution of hydroxides in HCl. Extraction with di-(2-ethylhexyl)phosphate (DEHP)/toluene and twice back-extraction of rare earths, gamma-spectrometry of HCl phase. Due to sample activity and half-life of nuclides, three measurements were made on each sample: 2 days (for La, Sm, Gd, Ho, Er, Yb); 14 days (for Nd, Lu) and 30 days after irradiation (for Ce, Eu, Tb). Great variations in absolute element concentrations, but only small significant differences of rare earth concentration ratios were found, indicating inconsiderable biogeochemical fractionation. The mean values of these ratios correspond to the relative abundances of the rare earths in the upper continental earth's crust. (T.G.)

  16. ICP-AES determination of rare earth elements in coal fly ash samples of thermal power stations: assessment of possible recovery and environmental impact of rare earth elements

    International Nuclear Information System (INIS)

    Premadas, A.; Mary, Thomas Anitha; Chakrapani, G.

    2013-01-01

    Accurate determination of rare earth elements (REEs) in ashes of thermal power plants is important in the current scenario due to its economic value, and the pollution caused if they are released in to the environment. Their toxicity to living organisms now gaining importance in international community, and some investigation shows it causes retardation in plant growth. In coal based thermal stations huge quantity of coal used annually as a fuel and lakhs of tones of waste is generated in the form of ashes. Therefore studies were carried out on three aspects - fairly rapid and accurate ICP-AES determination REEs in coal fly ash samples using addition technique, a preliminary acid leaching studies on coal received from three different fired thermal power stations using hydrochloric acid at pH 1 and 2, and quantify the REEs leached, and economic recovery of REEs using di-(2-ethylhexyl) phosphoric acid solvent extraction process or precipitation hydroxides using dilute ammonia solution. The standard addition method of REEs determination using rate and reproducible values, besides the analysis is fast compared to the ion exchange separation of REEs followed by the ICP-AES determination. (author)

  17. Rare earth element abundances and distribution patterns in plant materials

    International Nuclear Information System (INIS)

    Aidid, S.B.

    1994-01-01

    Eight out of the fourteen rare earth elements were estimated from the leaves of Pelthophorum pterocarpum, the leaves and roots of Impatiens balsamina, and the soils from four sampling sites by instrumental neutron activation analysis. The chondrite normalized rare earth element abundances and distribution patterns in the plant materials were found to be significantly correlated to the abundances of the rare earth elements occurring in the soils. The extent of accumulation of the rare earth elements in some plant materials was also governed by the age of the plants and the plant organs. (author) 16 refs.; 4 figs.; 3 tabs

  18. Comparative study of injection into a pneumatic nebuliser and tungsten coil electrothermal vaporisation for the determination of rare earth elements by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Dittrich, K.

    1988-01-01

    Injection into a pneumatic nebuliser and vaporisation using a tungsten coil electrothermal vaporisation system, with a 3-kW argon-nitrogen inductively coupled plasma (ICP), are compared for the determination of the rare earth elements. The sampling efficiency and thus also the absolute power of detection of the tungsten coil ICP optical emission spectrometric (ICP-OES) technique are better by two orders of magnitude, than the injection technique. The absolute detection limits for the rare earth elements are at the pg level; for the refractory rare earth elements (Er, La, Lu and Y), they are lower than those obtained by graphite furnace atomic absorption spectrometry, whereas for the other rare earth elements (Eu, Sc, Tm and Yb), the detection limits are comparable. With injection of samples into a pneumatic nebuliser and ICP-OES, matrix effects are low and absolute amounts of the order of mg of the rare earth matrix can be tolerated, giving relative detection limits down to 1 μg g -1 . The amount of rare earth matrix that can be tolerated with the tungsten-coil atomiser is two orders of magnitude lower. Thus the relatively detection limits of the two methods are of the same order, although the matrix effects are considerably higher with the tungsten coil. (author)

  19. Determination of rare earth elements by liquid chromatographic separation using inductively coupled plasma mass spectrometric detection

    International Nuclear Information System (INIS)

    Braverman, D.S.

    1992-01-01

    High-performance liquid chromatography (HPLC) is used to separate the rare earth elements (REEs) prior to detection by inductively coupled plasma mass spectrometry (ICP-MS). The use of HPLC-ICP-MS in series combines the separation power and speed of HPLC with the sensitivity, isotopic selectivity and speed of ICP-MS. The detection limits for the REEs are in the sub-ng ml -1 range and the response is linear over four orders of magnitude. A preliminary comparison of isotope dilution and external standard results for the determination of REEs in National Institute of Standards and Technology (NIST) Standard Reference Material (SRM 1633a) Fly Ash is presented. (author)

  20. Transport of rare earth element-tagged soil particles in response to thunderstorm runoff.

    Science.gov (United States)

    Matisoff, G; Ketterer, M E; Wilson, C G; Layman, R; Whiting, P J

    2001-08-15

    The downslope transport of rare earth element-tagged soil particles remobilized during a spring thunderstorm was studied on both a natural prairie and an agricultural field in southwestern Iowa (U.S.A.). A technique was developed for tagging natural soils with the rare earth elements Eu, Tb, and Ho to approximately 1,000 ppm via coprecipitation with MnO2. Tagged material was replaced in target locations; surficial soil samples were collected following precipitation and runoff; and rare earth element concentrations were determined by inductively coupled plasma mass spectrometry. Diffusion and exponential models were applied to the concentration-distance data to determine particle transport distances. The results indicate that the concentration-distance data are well described by the diffusion model, butthe exponential model does not simulate the rapid drop-off in concentrations near the tagged source. Using the diffusion model, calculated particle transport distances at all hillside locations and at both the cultivated and natural prairie sites were short, ranging from 3 to 73 cm during this single runoff event. This study successfully demonstrates a new tool for studying soil erosion.

  1. Incorporation of natural radionuclides and rare earth element into a salt tolerant plant

    International Nuclear Information System (INIS)

    Summerton, A.P.

    1992-01-01

    A highly salt tolerant shrub, samphire (Halosarcia halocnemoides), found growing in the solid alkaline residues in an evaporation pond at a former uranium and monazite treatment plant, has been analysed for natural radionuclides and rare earths. The data obtained have been copared with that for plants from the local natural environment. Vegetation-to-soil concentration ratios have been determined. The radionuclide concentration ratios for samples from the contaminated site are similar to those from the natural environment. Significant differences have been noted in the case of the rare earth elements with an apparent preferential incorporation of the light rare earth elements into the plant growing in the chemical residues. (author) 10 refs.; 1 fig.; 2 tabs

  2. Bioleaching of rare earth elements from monazite sand.

    Science.gov (United States)

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance. © 2015 Wiley Periodicals, Inc.

  3. Study on trace and rare earth elements in Indonesian oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Jing-ru; Wang, Qing; Liu, Hong-peng; Bai, Zhang [Northeast Dianli Univ., Jilin (China). Engineering Research Centre

    2013-07-01

    Major, trace elements and rare earth and mineral composition of the oil sand samples (ST1, ST2, ST3) and the oil sand retorting residue (semi-coke: SC1, SC2, SC3) from Indonesian were determined by XFS, ICP-MS and XRD methods. The trace elements content in oil sand is pretty much the same thing in Earth's Clarke value. The trace element is abundantly in earth's Clarke, in oil sand yet, for Ti, Mn, Ba, Sr, but these elements are lower enrichment. However, the Cr (EF = 16.8) and Mo (EF = 11.8) are ''enrichment'' in ST1; the Ni (EF =10.5), Se (EF = 17.5), Sr (EF = 28.7), Mo (EF = 106.5), Sc (EF = 12.8) and U (EF = 43.2) are ''enrichment'' in ST2; the Se (EF = 12.6), Sr (EF = 18.4), Mo (EF = 47.5), and U (EF = 27.8) are ''enrichment'' in ST3. Calculations show that trace elements in sime-coke have lower evaporation rate during Fischer Assay. Trace elements in raw oil sand are so stable that trace elements can't move easily to other pyrolysis product but enrich to sime-coke. After retorting, more elements are EF > 10, such as B, V, Ni, As, Se, Sr, Mo, Hg, Cs and U. It is essential to take the pollution produced by trace elements in sime-coke during the sime-coke utilization into consideration. The REEs content had a high correlation with the ash in oil sand. The REE is closely related to terrigenous elastic rocks.

  4. General geochemical properties and abundances of the rare earth elements

    International Nuclear Information System (INIS)

    Henderson, P.

    1984-01-01

    This chapter reviews some of the fundamental aspects of rare earth elements (REE) geochemistry and gives data on abundances in the solar system, the bulk Earth and the Earth's crust. It describes the state of knowledge on the partitioning of the REE, especially in igneous rock systems, and cites reference works concerned with the REE. Several chemical properties of REE are discussed (oxidation states; redox conditions; element coordination and ionic radii; element substitution). (Auth.)

  5. Membrane assisted solvent extraction for rare earth element recovery

    Science.gov (United States)

    Bhave, Ramesh R.; Kim, Daejin; Peterson, Eric S.

    2018-05-15

    Systems and methods for the recovery of rare earth elements are provided. The systems and methods generally include membrane assisted solvent extraction using permeable hollow fibers having an immobilized organic phase within the pores of the hollow fibers. The permeable hollow fibers are generally in contact with an acidic aqueous feed on one side thereof and a strip solution on another side thereof. The systems and methods generally include the simultaneous extraction and stripping of rare earth elements as a continuous recovery process that is well suited for post-consumer products, end-of-life products, and other recovery sources of rare earth elements.

  6. Distribution characteristics of rare earth elements in plants from a rare earth ore area

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; Wang, Y.Q.; Li, F.L.; Xiao, H.Q.; Chai, Z.F.

    2002-01-01

    The contents of eight rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in various plant species taken from a rare earth ore area were determined by instrumental neutron activation analysis. For a given plant, the REE patterns in root, leaf and host soil are different from each other. The REE distribution characteristics in roots of various species are very similar and resemble those in the surface water. The results of this study suggest that there is no significant fractionation between the REEs during their uptake by the plant roots from soil solution. However, the variation of the relative abundance of individual REE occurs in the process of transportation and deposition of REEs in plants. (author)

  7. Studies on rare earth elements in seawater and uptake by marine organisms

    International Nuclear Information System (INIS)

    Suzuki, H.; Koyanagi, T.; Saiki, M.

    1975-01-01

    The contents of rare earth elements in marine environmental samples were determined by neutron activation analysis to examine the existing state in coastal seawater and the concentration by marine organisms of the elements. Seawater was filtered through a Millipore filter GS (pore size 0.22 μm), before the analysis. Some of the seawater was treated with HC1 solution before filtration and some after filtration. Certain marine organisms were also analysed for determination of rare earth elements. These were: flounder (Paralichthys olivaceus); yellowtails (Seriola quinqueradiata); immature anchovy (Engraulis japonica); clams (Meretrix lusoria); green algae (Ulva pertusa); brown algae (Hizikia fusiforme, Sargassum fulvellum, Undaria pinnatifida). In the seawater without HC1 treatment before filtration, considerable amounts of the elements existed in residue on the filter, whereas in the seawater treated with HC1 before filtration, the greater part remained in the dissolved state. Concentration factors calculated from the contents of stable elements, therefore, are affected remarkably by the existing state of the elements in seawater. If only the dissolved state is assumed available for marine organisms, values one order higher are attained compared with the case where total amounts of the elements were used for the calculation. However, the contribution of the insoluble state seems to be not negligible with some organisms. The higher concentration factors for immature anchovy and clams observed in this study were considered to be caused by surface adsorption of elements in particulate form and also ingested sediment with high element concentration. (author)

  8. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  9. Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China.

    Science.gov (United States)

    Zhuang, Maoqiang; Zhao, Jinshan; Li, Suyun; Liu, Danru; Wang, Kebo; Xiao, Peirui; Yu, Lianlong; Jiang, Ying; Song, Jian; Zhou, Jingyang; Wang, Liansen; Chu, Zunhua

    2017-02-01

    To investigate the concentrations of rare earth elements in vegetables and assess human health risk through vegetable consumption, a total of 301 vegetable samples were collected from mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The total rare earth elements in vegetables from mining and control areas were 94.08 μg kg -1 and 38.67 μg kg -1 , respectively, and the difference was statistically significant (p vegetable had the highest rare earth elements concentration (984.24 μg kg -1 and 81.24 μg kg -1 for mining and control areas, respectively) and gourd vegetable had the lowest rare earth elements concentration (37.34 μg kg -1 and 24.63 μg kg -1 for mining and control areas, respectively). For both areas, the rare earth elements concentration in vegetables declined in the order of leaf vegetable > taproot vegetable > alliaceous vegetable > gourd vegetable. The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes (0.69 μg kg -1 d -1 and 0.28 μg kg -1 d -1 for mining and control areas, respectively) of rare earth elements through vegetable consumption were significantly lower than the acceptable daily intake (70 μg kg -1 d -1 ). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to low levels of rare earth elements on children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A novel approach for acid mine drainage pollution biomonitoring using rare earth elements bioaccumulated in the freshwater clam Corbicula fluminea.

    Science.gov (United States)

    Bonnail, Estefanía; Pérez-López, Rafael; Sarmiento, Aguasanta M; Nieto, José Miguel; DelValls, T Ángel

    2017-09-15

    Lanthanide series have been used as a record of the water-rock interaction and work as a tool for identifying impacts of acid mine drainage (lixiviate residue derived from sulphide oxidation). The application of North-American Shale Composite-normalized rare earth elements patterns to these minority elements allows determining the origin of the contamination. In the current study, geochemical patterns were applied to rare earth elements bioaccumulated in the soft tissue of the freshwater clam Corbicula fluminea after exposure to different acid mine drainage contaminated environments. Results show significant bioaccumulation of rare earth elements in soft tissue of the clam after 14 days of exposure to acid mine drainage contaminated sediment (ΣREE=1.3-8μg/gdw). Furthermore, it was possible to biomonitor different degrees of contamination based on rare earth elements in tissue. The pattern of this type of contamination describes a particular curve characterized by an enrichment in the middle rare earth elements; a homologous pattern (E MREE =0.90) has also been observed when applied NASC normalization in clam tissues. Results of lanthanides found in clams were contrasted with the paucity of toxicity studies, determining risk caused by light rare earth elements in the Odiel River close to the Estuary. The current study purposes the use of clam as an innovative "bio-tool" for the biogeochemical monitoring of pollution inputs that determines the acid mine drainage networks affection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Rare earth element abundances in presolar SiC

    Science.gov (United States)

    Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.

    2018-01-01

    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.

  12. Determination of rare-earths and other trace elements in neo proterozoic-neo paleozoic dykes from Ceara state, Brazil, by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Rafael Martins dos; Figueiredo, Ana M.G., E-mail: rafael.anjos@usp.b, E-mail: anamaria@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro do Reator Nuclear de Pesquisas. Lab. de Analise por Ativacao com Neutrons; Cardoso, Gustavo Luan; Marques, Leila S., E-mail: leila@iag.usp.b [Universidade de Sao Paulo (IAG/USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas

    2011-07-01

    Trace elements such as rare earths, U, Th, Ta, Ba and Hf can be very useful in petrogenetic studies of igneous and metamorphic rocks, giving information about the origin and evolution of magmas. Instrumental Neutron Activation Analysis (INAA) is an accurate and precise for trace element analysis in geological samples, and provides the information required for this kind of studies. In this study, rare earths and incompatible trace elements were determined by INAA in the geological reference materials GS-N and BE-N, to quality control, and for the investigation of acid dykes of neo proterozoic-neo paleozoic ages, which outcrop in the Medio Coreau and Ceara Central domains from the Borborema Province (Ceara State). The powdered samples (particle sizes less than 100 mesh), crushed by using a mechanical agate mortar grinder, were irradiated at the IEA-R1 nuclear reactor at IPEN-CNEN/SP, and the induced activity was measured by high resolution gamma-ray spectrometry. The accuracy and precision of the method were evaluated and preliminary results of dyke samples are presented. (author)

  13. Coprecipitation of rare earth elements with hydroxyapatite

    International Nuclear Information System (INIS)

    Fujino, Osamu

    1979-01-01

    The distribution behavior of trace rare earth elements between an aqueous phase and hydroxyapatite crystals was investigated. The apatite prepared by adding phosphate ion extremely slowly to an aqueous solution containing calcium, rare earth elements, ethylenediamine and nitrilotriacetate ion at 80 0 C. Apparently the coprecipitation reaction seems to be anomalous, because the apparent distribution coefficient did not have a constant value through the reaction. But when the true distribution coefficient was calculated by using the thermodynamic data at 80 0 C, it was revealed that rare earth ions were coprecipitated obeying logarithmic distribution law. The true distribution coefficient values of trivalent yttrium, scandium, europium and cerium ions were about 10sup(7.3), 10sup(9.8), 10sup(7.4) and 10sup(6.5) respectively. (author)

  14. Thorium and rare earth elements in crystal and brown sugar consumed in Brazil and Argentina

    International Nuclear Information System (INIS)

    Salles, Paula M.B. de; Campos, Tarcisio P. R. de

    2015-01-01

    Human exposure to contaminants in foods is a matter of general health concern. There is a growing interest in determine and quantify contaminants in food chain including natural radionuclides and rare earth elements (REE). Irradiation effects of radioactive nuclides and REE may cause lesions from their interaction with the human body. This study aimed to identify the presence of thorium and rare earth elements in crystal and brown sugar samples available for consumption in Brazil and Argentina. To determine the chemical elements, the 5g-sample methodology established at CDTN/CNEN, in Belo Horizonte, using the neutron activation technique, k 0 -method, was applied. The element Sm was determined in crystal sugar samples analyzed that were available to consumption in both countries. Similarly to the brown sugar samples which presented La, Sc and Sm. The elements Ce and Th were found in brown sugar sample available to consumption in Brazil. Thus, the detection of these elements in sugar samples is important insofar as the increasing consumption of sugar around the world. The presence of impurities and its concentration may contribute to health issues to consumers. (author)

  15. Thorium and rare earth elements in crystal and brown sugar consumed in Brazil and Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Salles, Paula M.B. de; Campos, Tarcisio P. R. de, E-mail: pauladesalles@yahoo.com.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Human exposure to contaminants in foods is a matter of general health concern. There is a growing interest in determine and quantify contaminants in food chain including natural radionuclides and rare earth elements (REE). Irradiation effects of radioactive nuclides and REE may cause lesions from their interaction with the human body. This study aimed to identify the presence of thorium and rare earth elements in crystal and brown sugar samples available for consumption in Brazil and Argentina. To determine the chemical elements, the 5g-sample methodology established at CDTN/CNEN, in Belo Horizonte, using the neutron activation technique, k{sub 0}-method, was applied. The element Sm was determined in crystal sugar samples analyzed that were available to consumption in both countries. Similarly to the brown sugar samples which presented La, Sc and Sm. The elements Ce and Th were found in brown sugar sample available to consumption in Brazil. Thus, the detection of these elements in sugar samples is important insofar as the increasing consumption of sugar around the world. The presence of impurities and its concentration may contribute to health issues to consumers. (author)

  16. Application of the Instrumental Neutron Activation Analysis and High Performance Liquid Chromatography (HPLC) in the rare earth elements determination in reference geological materials

    International Nuclear Information System (INIS)

    Figueiredo, Ana M.G.; Moraes, Noemia M.P. de; Shihomatsu, Helena M.

    1997-01-01

    Instrumental Neutron Activation Analysis (INAA) and High Performance Liquid Chromatography (HPLC) were applied to the determination of rare earth elements (REE) in the geological reference materials AGV-1, G-2 and GSP-1 (USGS). Results obtained by both techniques showed good agreement with certified values, giving relative errors less than 10%. The La, Ce, Nd, Sm, Eu, Tb, Yb and Lu REE elements were determined. All the REE except Dy and Y were determined by HPLC. The reference material G94, employed in the International Proficiency Test for Analytical Geochemistry Laboratories (GeoTP1) was analysed. The results obtained are a contribution to REE contents in this sample. The INAA and HPLC application to the determination of REE in this kind of matrix is also discussed. (author). 10 refs., 1 fig., 5 tabs

  17. Game meat authentication through rare earth elements fingerprinting

    International Nuclear Information System (INIS)

    Danezis, G.P.; Pappas, A.C.; Zoidis, E.; Papadomichelakis, G.; Hadjigeorgiou, I.; Zhang, P.; Brusic, V.; Georgiou, C.A.

    2017-01-01

    Accurate labelling of meat (e.g. wild versus farmed, geographical and genetic origin, organic versus conventional, processing treatment) is important to inform the consumers about the products they buy. Meat and meat products declared as game have higher commercial value making them target to fraudulent labelling practices and replacement with non-game meat. We have developed and validated a new method for authentication of wild rabbit meat using elemental metabolomics approach. Elemental analysis was performed using rapid ultra-trace multi-element measurement by inductively coupled plasma mass spectrometry (ICP-MS). Elemental signatures showed excellent ability to discriminate the wild rabbit from non-wild rabbit meat. Our results demonstrate the usefulness of metabolic markers -rare earth signatures, as well as other trace element signatures for game meat authentication. - Highlights: • Elemental metabolomics is a powerful new methodology for authentication of game rabbit meat. • New method for meat authentication utilizing rare earths elemental signatures. • Samples are compared to group signatures using angular and Euclidean distances. • Meat reference materials (>70 elements) can be used for cross-comparison between studies.

  18. Pyrometallurgical partitioning of uranium and transuranic elements from rare earth elements by electrorefining and reductive extraction

    International Nuclear Information System (INIS)

    Uozumi, Koichi; Kinoshita, Kensuke; Inoue, Tadashi; Storvick, T.S.; Krueger, C.L.; Nabelek, C.R.

    2001-01-01

    High-level liquid waste generated from PUREX reprocessing contains a small amount of transuranic elements, such as Np, Pu, Am, and Cm, with long-lived radioactivities. A pyrometallurgical partitioning process is being developed to recover transuranic elements from such waste. Small amounts of U contained in the high-level liquid waste are also recovered in the process. A key issue for developing the process is effective separation of U and the transuranic elements from the rare-earth elements, because the two elemental groups are chemically analogous. A series of process tests were carried out in the present study to demonstrate that a combination of electrorefining and reductive extraction is useful for separating U and transuranic elements from the rare-earth elements. The results indicate that 99% of U and each transuranic elements is recovered by the combination process as a product, and that the quantity of rare-earth elements contained in the product is smaller than the transuranic elements by weight. The overall mass balance of U and transuranic elements in the system ranged within the experimental errors assigned to sampling and analysis. (author)

  19. Direct rare earth determination by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Marin, Sergio; Cornejo, Silvia; Rojas, Jacqueline

    2003-01-01

    In the present work, the use of the inductively coupled plasma optical emission spectrometry (ICP-OES), for the sequential determination of Rare Earth elements in the metallurgical process samples is described. In the first place, the optimum parameters for the determination of the elements in study are established, like instrumental calibration, wavelengths spectral selection and interference of matrix. Next, the methodology for the digestion of solid samples (system of digestion with pressure) and the recovery of the interest elements are presented. Two material rocks as of reference Syenite SY3 are used. In order to assure the validity of the obtained data, the reference materials SY2 and SY3 were analyzed by means of two different techniques, ICP-OES and ICP-Mass, this last one was made by an international laboratory and a fusion with lithium metaborate was used with digestion method. Finally, the obtained results demonstrate that the reproducibility in the recovery of rare earth analyzed by both techniques is comparable, and that the methodology of digestion used for these elements is statistically valid (author)

  20. Advances in chromatography of the rare earth elements (review)

    International Nuclear Information System (INIS)

    Oguma, Koichi; Kuroda, Rokuro; Shimizu, Tsuneo.

    1995-01-01

    A review is presented which covers liquid chromatography, gas chromatography, and related techniques. This article intends to describe the chromatographic methods playing an important role in the separation of the rare earth elements. Special attention is paid to the usefulness of various types of liquid chromatography which enable the complete mutual separation of the rare earth elements. Applications are also discussed. (author) 161 refs

  1. Evaluation of Rare Earth Element Extraction from North Dakota Coal-Related Feed Stocks

    Science.gov (United States)

    Laudal, Daniel A.

    The rare earth elements consist of the lanthanide series of elements with atomic numbers from 57-71 and also include yttrium and scandium. Due to their unique properties, rare earth elements are crucial materials in an incredible array of consumer goods, energy system components and military defense applications. However, the global production and entire value chain for rare earth elements is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including previously mined deposits in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths are deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from a single resource that is only projected to last another 10 to 20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This dissertation details a study on evaluation of the technical and economic feasibility of rare earth element recovery from North Dakota lignite coal and lignite-related feedstocks. There were four major goals of this study: i) identify lignite or lignite-related feedstocks with total rare earth element content above 300 parts per million, a threshold dictated by the agency who funded this research as the minimum for economic viability, ii) determine the geochemistry of the feedstocks and understand the forms and modes of occurrence of the rare earth elements, information necessary to inform the development of extraction and concentration methods, iii) identify processing methods to concentrate the rare earth elements from the feedstocks to a target of two weight percent, a value

  2. Determination of rare earth contents in plant and soil by neutron activation analysis (NAA)

    International Nuclear Information System (INIS)

    Krafka, B.; Lin, X.L.; Henkelmann, R.

    1998-01-01

    Full text: The results presented are typical analytical results for Bavarian soils and plants. Plants and soils collected from identical sites are used to quantify the ratios of rare earth contents. This work has been in close cooperation with several governmental institutions, who are responsible for the protection and surveillance of agricultural sites and wooded areas. Routine sampling takes place on selected areas in the federal state of Bavaria, and the samples (soil and plants as wheat, corn or needles) are analysed with use of AAS, ICP-OES or ICP-MS techniques. INAA as an alternative method is in this context very interesting because it does not involve any sample pretreatment, prior to irradiation. It could be shown for chosen elements (K, Cr, Zn etc.), that incomplete digestion can lead to results which are remarkably lower than the total content in the sample. INAA also is an excellent technique to analyse rare earth elements. The advantage of analysing the original material, which only needs to be dried and homogenized, allows the determination of total values for most of the elements, independent of the chemical binding state of the atoms. Due to this reason, INAA is often called 'independent of matrix'. Only when the g-spectroscopy after activation is carried out, the main components may disturb the determination of trace elements. In soils, the matrix allows the pure instrumental determination of 9 rare earth elements (Ce, Dy, Eu, La, Lu, Nd, Sm, Tb, Yb). In plant material, the rare earth concentrations are much lower, so a chemical separation is needed in order to remove or reduce the main interferences like Na, K, Br etc. This combination of NAA with radiochemical separation is called Radiochemical Neutron Activation Analysis (RNAA) and allows to determine the same elements as in soils, except Dy

  3. Yttrium separation of Xenotime waste in Pitinga (Brazil), in order to obtain rare earth elements

    International Nuclear Information System (INIS)

    Melo.

    1996-01-01

    The xenotime (YPO 4 and rare earth elements) found in the mine of Pitinga, Amazonas State, Brazil, has its origin in a primal depository ('eluvio' kind) of cassiterite, having considerable quantities of zirconite, ilmenite, topaz and niobates-tantalates. This xenotime has different characteristics in relation of the depositories that exist in other countries for presenting more concentration of rare earth heavy oxides. The mineralization of this cassiterite is problematic, because of the high level of radioactive elements. In the present work, we will process only the xenotime. The separation of rare earth elements is very difficult due to their great chemical similarity. For a more exactly determination, it is necessary to separate them at least of the macron constituents of the sample. As the Yttrium is considerate one of the rare earth elements, due to its chemical similarity, we can understand the difficulty of a chemical separation, mainly when this one is also a macro constituent of the sample, as in the case of xenotime. The process of separation will be based on the little difference that exists between the constants of complexation and the fluoride. (authors). 5 refs., 1 fig., 2 tabs

  4. Activation analysis of rare-earth elements in opium and cannabis samples. [Neutron reactions

    Energy Technology Data Exchange (ETDEWEB)

    Henke, G [Muenster Univ. (Germany, F.R.). Inst. fuer Pharmazeutische Chemie

    1977-01-01

    Rare-earth concentrations in 65 Opium, Cannabis and Cannabis resin samples seized from various parts of the world were determined by destructive NAA. Because of the greater concentrations of Ca, P, K, Fe, Na and Si in plant materials, rare-earth elements were isolated after neutron irradiation and determined by gamma-spectrometry. The main steps of the method are: Preashing of 1 g Cannabis resin, 2.5 g Cannabis, or 7.5 g Opium, respectively, in quartz ampoules (5 h, 500 deg C). Neutron irradiation, 24 h at 5x10/sup 13/n cm/sup -2/sec/sup -1/. Cooling period 2-3 days. After addition of 0.1 ..mu..Ci /sup 139/Ce and rare-earth carriers wet ashing of irradiated samples with H/sub 2/SO/sub 4//HNO/sub 3/, followed by alternate addition of HNO/sub 3/ and H/sub 2/O/sub 2/ (30%). Precipitation and removal of silicates, precipitation of fluorides, precipitation of hydroxides. Dissolution of hydroxides in HCl. Extraction with di-(2-ethylhexyl)phosphate (DEHP)/toluene and twice back-extraction of rare earths, gamma-spectrometry of HCl phase. Due to sample activity and half-life of nuclides, three measurements were made on each sample: 2 days (for La, Sm, Gd, Ho, Er, Yb); 14 days (for Nd, Lu) and 30 days after irradiation (for Ce, Eu, Tb). Great variations in absolute element concentrations, but only small significant differences of rare earth concentration ratios were found, indicating inconsiderable biogeochemical fractionation. The mean values of these ratios correspond to the relative abundances of the rare earths in the upper continental earth's crust.

  5. Rare earth element lithogeochemistry of granitoid mineral deposits

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.P.; Fryer, B.J. (Memorial Univ. of Newfoundland, St. John' s (Canada). Dept. of Earth Sciences)

    1983-12-01

    As a monitor of the processes involved in the formation of granitoid mineral deposits the coherent group behaviour of the rare earth elements (REE) actively reflects changing fluid characteristics. For example, in the porphyry environment, magmatic-hydrothermal fluids produce potassic alteration with strong enrichment in the light rare earth elements, reflecting their high pH, low fluid/rock ratios, and the dominant role of Cl/sup -/ complexing in metal (i.e. Cu, Au) transport. With increasing fluid/rock ratios and decreasing pH accompanying the progressive involvement of meteoric fluids (and the production of propylitic, argillic, and phyllic alteration) anionic species such as F/sup -/ and CO/sub 3//sup 2 -/ become important in metal (e.g. Mo, W) transport through complexing, and their activity in the hydrothermal fluids is illustrated by mobilization of the heavy rare earth elements. The relative involvement of Cl/sup -/ versus F/sup -/ versus CO/sub 3//sup 2 -/ in metal transport in other granite-related systems can also be monitored through REE behaviour. Hence granitoid tin-tungsten mineralization and associated greisenization typically exhibit heavy rare earth enrichment and evidence the importance of F/sup -/ and CO/sub 3//sup 2 -/ in metal transport. Similarly, heavy rare earth element enrichment in hydrothermal uranium deposits can be related to the transport of uranium as carbonate complexes. REE are widely accepted as powerful tools in the study of rock petrogenesis, but their use has been neglected in the investigation of mineral deposits. The recognition of the systematic variation of REE distributions in granitoid mineral deposits suggests that the application of REE geochemistry, particularly when integrated with fluid inclusion and isotope studies, can provide l) an effective method for identifying the physiochemical controls of metal transport and 2) a useful criterion of elucidating metal distribution.

  6. Rare earth element lithogeochemistry of granitoid mineral deposits

    International Nuclear Information System (INIS)

    Taylor, R.P.; Fryer, B.J.

    1983-01-01

    As a monitor of the processes involved in the formation of granitoid mineral deposits the coherent group behaviour of the rare earth elements (REE) actively reflects changing fluid characteristics. For example, in the porphyry environment, magmatic-hydrothermal fluids produce potassic alteration with strong enrichment in the light rare earth elements, reflecting their high pH, low fluid/rock ratios, and the dominant role of Cl - complexing in metal (i.e. Cu, Au) transport. With increasing fluid/rock ratios and decreasing pH accompanying the progressive involvement of meteoric fluids (and the production of propylitic, argillic, and phyllic alteration) anionic species such as F - and CO 3 2- become important in metal (e.g. Mo, W) transport through complexing, and their activity in the hydrothermal fluids is illustrated by mobilization of the heavy rare earth elements. The relative involvement of Cl - versus F - versus CO 3 2- in metal transport in other granite-related systems can also be monitored through REE behaviour. Hence granitoid tin-tungsten mineralization and associated greisenization typically exhibit heavy rare earth enrichment and evidence the importance of F - and CO 3 2- in metal transport. Similarly, heavy rare earth element enrichment in hydrothermal uranium deposits can be related to the transport of uranium as carbonate complexes. REE are widely accepted as powerful tools in the study of rock petrogenesis, but their use has been neglected in the investigation of mineral deposits. The recognition of the systematic variation of REE distributions in granitoid mineral deposits suggests that the application of REE geochemistry, particularly when integrated with fluid inclusion and isotope studies, can provide l) an effective method for identifying the physiochemical controls of metal transport and 2) a useful criterion of elucidating metal distribution

  7. Change of sulfide inclusions in steel microalloying with rare earth and alkaline-earth elements

    International Nuclear Information System (INIS)

    Averin, V.V.; Polonskaya, S.M.; Chistyakov, V.F.

    1977-01-01

    The conditions for the formation of sulfides in molten and solid iron were determined by considering the thermodynamics of the interaction of sulfur and of oxygen with various components. It was shown in casting of low-carbon steel under a blanket of slag-forming briquettes, calcium of the silicocalcium partly passes to iron and to the sulfide phase. The sulfide inclusions with calcium in rolling become lens-shaped and acquire a greater strength, proportional to the content of calcium, thus ensuring a lesser anisotropy of steel. The change in the shape and the composition of sulfide inclusions effects the fracture of the metal which changes in type from separation along lamellar inclusions to a plastic fracture, i.e., enhances resilience. It is thus noted that rare-earth and alkali-earth elements, in particular, cerium and calcium are promising agents for desulfurating molten iron

  8. Earth, Air, Fire and Water in Our Elements

    Science.gov (United States)

    Lievesley, Tara

    2007-01-01

    The idea that everything is made of the four "elements", earth, air, fire and water, goes back to the ancient Greeks. In this article, the author talks about the origins of ideas about the elements. The author provides an account that attempts to summarise thousands of years of theoretical development of the elements in a thousand words or so.

  9. Peculiarities of rare-earth-element distribution in environmental objects

    International Nuclear Information System (INIS)

    Gorbunov, A.V.; Onischenko, T.L.; Gundorina, S.F.; Frontasyeva, M.V.

    1993-01-01

    The effect of the production of phosphorus fertilizers on the pollution of the environment by rare-earth elements is reviewed. The main sources of rare-earth element pollution in the environment are described. The levels of REEs in components of the environment - atmosphere, snow, different types of soil, native and agricultural types of vegetation - that provide evidence for their participation in the biological cycle of plants are considered. The high values of the correlation coefficients lead one to think that the REE distribution in vegetation occurs under specific laws true for this family of elements. (author) 9 refs.; 6 figs.; 5 tabs

  10. Rare earth element patterns of the Central Indian Basin sediments related to their lithology

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Roelandts, I.; Sudhakar, M.; Pluger, W.L.

    Rare earth element (REE) concentration have been determined in terrigenous, siliceous (nodule barren and nodule bearing), calcareous, and red clay from the Central Indian Basin. The bulk distribution of REE, and in particular the relative cerium...

  11. Reversed-phase thin-layer chromatography of the rare earth elements

    International Nuclear Information System (INIS)

    Kuroda, R.; Adachi, M.; Oguma, K.

    1988-01-01

    Partition chromatographic behaviour of the rare earth elements on C 18 bonded silica reversed-phase material has been investigated by thin-layer chromatography in methanol - lactate media. The rare earth lactato complexes are distributed and fractionated on bonded silica layers without ion-interaction reagents. The concentration and pH of lactate solution, methanol concentration and temperature have effects on the migration and resolution of the rare earth elements. The partition system is particularly suited to separate adjacent rare earths of middle atomic weight groups, allowing the separation of gadolinium, terbium, dysprosium, holmium, erbium and thulium to be achieved by development to 18 cm distance. (orig.)

  12. Rapid separation of individual rare-earth elements from fission products

    International Nuclear Information System (INIS)

    Baker, J.D.; Gehrke, R.J.; Greenwood, R.C.; Meikrantz, D.H.

    1980-01-01

    A microprocessor-controlled radiochemical separation system has been developed to rapidly separate rare-earth elements from gross fission products. The system is composed of two high performance liquid chromatography columns coupled in series by a stream-splitting injection valve. The first column separates the rare-earth group by extraction chromatography using dihexyldiethylcarbamylmethylenephosphonate (DHDECMP) adsorbed on Vydac C 8 resin. The second column isolates the individual rare-earth elements by cation exchange using Aminex A-9 resin with α-hydroxyisobutyric acid (α-HIBA) as the eluent. With this system, fission-product rare-earth isotopes with half-lives as short as three minutes have been studied

  13. Rare earth impurities in high purity lanthanum oxide determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Nguyen Van Suc; Desai, H.B.; Parthasarathy, R.; Gangadharan, S.

    1992-01-01

    Individual rare earth impurities in high purity La 2 O 3 (≥99.9%) have been determined by NAA after pre-separation of the matrix (La). The separation is carried out on an anion exchanger (Dowex 1x8) using different mixtures of methanol/nitric acid as eluants. The rare earth elements from Dy to Lu are eluted quantitatively using a 10% 1M HNO 3 - 90% methanol mixture, while the light rare earths from Ce to Gd are eluted quantitatively using a 10% 0.05M HNO 3 - 90% methanol mixture. La, which is retained on the column, is eluted using 0.1M HNO 3 . The recoveries of the various rare earth elements have been checked using radiotracers and also by spiking the sample with known amount of elements, and the recoveries are found to be quantitative. Results obtained on a typical high purity lanthanum oxide are reported here. (author) 5 refs.; 1 fig

  14. Behaviour of Rare Earth Elements during the Earth's core formation

    Science.gov (United States)

    Faure, Pierre; Bouhifd, Mohamed Ali; Boyet, Maud; Hammouda, Tahar; Manthilake, Geeth

    2017-04-01

    Rare Earth Elements (REE) are classified in the refractory group, which means that they have a high temperature condensation and their volatility-controlled fractionation is limited to high-temperature processes. Anomalies have been measured for Eu, Yb and Sm, which are the REE with the lowest condensation temperatures in CAIs and chondrules (e.g. [1]). REE are particularly abundant in the sulfides of enstatite chondrites, 100 to 1000 times the CI value [e.g. 2,3], proving that these elements are not strictly lithophile under extremely reducing conditions. However by investigating experimentally the impact of Earth's core formation on the behavior of Sm and Nd, we have shown the absence of fractionation between Sm and Nd during the segregation of the metallic phase [4]. Recently, Wohlers and Wood [5] proposed that Nd and Sm could be fractionated in presence of a S-rich alloy phase. However, their results were obtained at pressure and temperature conditions below the plausible conditions of the Earth's core formation. Clearly, large pressure range needs to be covered before well-constrained model can be expected. Furthermore, our preliminary metal-silicate partitioning results show that Ce and Eu have higher metal/silicate partition coefficients than their neighboring elements, and that the presence of sulphur enhances the relative difference between partition coefficients. In this presentation, we will present and discuss new metal-silicate partition coefficients of all REE at a deep magma ocean at pressures ranging from those of the uppermost upper mantle ( 5 GPa) to a maximum pressure expected in the range of 20 GPa, temperatures ranging from 2500 to about 3000 K, and oxygen fugacities within IW-1 to IW-5 (1 to 5 orders of magnitude lower than the iron-wüstite buffer). We will discuss the effect of S, as well as the effect of H2O on the behaviour of REE during the Earth's core formation: recent models suggest that contrary to currently accepted beliefs, the

  15. Chalcogenides formed by trivalent rare earth elements with d-elements

    International Nuclear Information System (INIS)

    Flao, Zh.; Laruehl', P.; Olitro, R.

    1981-01-01

    Data on ternary compounds formed by trivalent rare earth elements with 3d-, 4d- and 5d-elements of the Periodic system is presented. Compounds of 3d-elements both in bivalent and trivalent states are considered. The main attention is paid to the structure of the compounds. Description of a great number of new structural types of compounds is given. In certain cases the structure has not been deciphered and, besides, structural investigations with monocrystals are not numerous. Attention is drawn to the existence of nonstoichiometric compounds. References to the works on investigation of thermal (melting temperature), magnetic, optical and electric properties as well as Moessbauer effect are presented

  16. Uncovering the end uses of the rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xiaoyue, E-mail: xiaoyue.du@empa.ch [Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Yale University, 195 Prospect Street, New Haven CT 06511 (United States); Graedel, T.E. [Yale University, 195 Prospect Street, New Haven CT 06511 (United States)

    2013-09-01

    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging and conventional established technologies. However, quantitative knowledge of REE remains sparse, despite the current heightened interest in future availability of the resources. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supply vulnerable to short term disruption. We have drawn upon the published literature and unpublished materials in different languages to derive the first quantitative annual domestic production by end use of individual rare earth elements from 1995 to 2007. The information is illustrated in Sankey diagrams for the years 1995 and 2007. Other years are available in the supporting information. Comparing 1995 and 2007, the production of the rare earth elements in China, Japan, and the US changed dramatically in quantities and structure. The information can provide a solid foundation for industries, academic institutions and governments to make decisions and develop strategies. - Highlights: • We have derived the first quantitative end use information of the rare earths (REE). • The results are for individual REE from 1995 to 2007. • The end uses of REE in China, Japan, and the US changed dramatically in quantities and structure. • This information can provide solid foundation for decision and strategy making.

  17. Investigations on the determination of traces of some rare earths (Eu, Sm, Gd, Y) in oxides of rare earths (Y2O3, Sm2O3, Gd2O3) by emission spectrography in d.c. arc

    International Nuclear Information System (INIS)

    Dittrich, K.; Gajek, M.; Luan, P.

    1978-01-01

    The evaporation of traces and matrices of rare earth elements was investigated in different atmospheres. It was found, that low-boiling rare earths elements, because of their extended formation of carbides evaporate more slowly than high-boiling rare earths elements. The evaporation of the traces depends on the matrices. 3 cases for the determination of traces of rare earths elements in oxides of other rare earths elements are derived from the results of the evaporation: Low- to high-boiling traces of rare earths elements in low-boiling matrices of rare earths elements, low-boiling traces in medium- to high-boiling matrices, and medium- to high-boiling traces in medium- to high-boiling matrices. The results of the determination are: in Y 2 O 3 : 14 ppm Sm, 2 ppm Eu; in Gd 2 O 3 : 18 ppm Y, 3 ppm Sm, 2 ppm Eu; in Sm 2 O 3 : 70 ppm Y, 370 ppm Gd, 16 ppm Eu. (author)

  18. Determination of experimental conditions for the analysis of rare-earth elements by X-ray fluorescence spectrometry. Application to oxalates and potassium sulphate matrices

    International Nuclear Information System (INIS)

    Bayon Fuentes, A.; Bermudez Polonio, J.

    1969-01-01

    A previous theoretical and experimental study is carried out in order to analyze the rare earths elements by X-ray florescence spectrometry. All possible spectral interferences are considered. The working conditions for each element were selected, taking into account the peak/background ratio values for the following parameters: tungsten, molybdenum and chromium targets, current and voltage, analyzing crystals, and scintillation and flow proportional counters. Calibration curves were plotted showing the concentration of rare earths elements in oxalates and potassium sulphate matrices, and the theoretical detection limits for each element: are calculated. (Author) 8 refs

  19. Rare-earth elements in granites: concentration and distribution pattern

    International Nuclear Information System (INIS)

    Galindo, A.C.

    1983-01-01

    The geochemistry of rare earth elements in granites is studied. The rare earth element (REE) distribution pattern in granites is characterized by a smooth curve with decreasing concentrations from La to Lu, and frequently a marked Eu negative anomaly. It seems to exist relationship between granite genesis and its REE pattern, in that bodies of primary (magmatic differentiation) origin always show this negative Eu anomaly, while those bodies generated by crustal anatexis do not show this anomaly. (E.G.) [pt

  20. Sensitive method for the determination of rare earth elements by radioisotope-excited XRF employing a high purity germanium detector in optimized geometry

    International Nuclear Information System (INIS)

    Lal, M.; Joseph, D.; Patra, P.K.; Bajpal, H.N.

    1993-01-01

    A close-coupled side-source geometrical configuration is proposed for obtaining a high detection sensitivity for rare earth elements (57 ≤ Z ≤ 69) by radioisotope-excited energy-dispersive x-ray fluorescence spectrometry. In this configuration a disc source of 241 Am (100 mCi), a high-purity germanium detector and thin samples of rare earth elements on a Mylar backing are employed in an optimized geometry to achieve detection limits in the range 20-50 ng for these elements in a counting time of 1 h. (author)

  1. Rare earth elements during diagenesis of abyssal sediments: analogies with a transuranic element americium

    International Nuclear Information System (INIS)

    Boust, D.

    1987-03-01

    One of the possibilities for the storage of high-level radioactive wastes consists in burying them into abyssal sediments, the sediments being supposed to barrier out radionuclides migration. The objective of the work was to estimate the efficiency of sediment barrier with respect to americium. As there is no americium in abyssal sediments, an indirect approach was used: the behaviour of the rare earth elements, the best natural analogs of americium. They were analysed in a 15 m long core, from the Cap Verde abyssal plateau. The terrigenous phase derived from the African continent was modified by short-term processes (1-1000 years); the intermediate rare earth elements were dissolved. Mineral coatings, enriched in rare earth appeared. After burial, the evolution continued at a much slower rate (10 5 - 10 6 years). The rare elements of the mineral coatings derived from the dissolution of the terrigenous phase and from an additional source, deeper in the sediment column. The fluxes of rare earth elements from sediment to water column were estimated. In suboxic sediments, the dissolved particulate equilibrium was related to redox conditions. The short-term reactivity of americium was studied in laboratory experiments. Simple americium migration models showed that the sediments barrier was totally efficient with respect to americium. In the conditions, neptunium 237 a daughter product of americium 241 could induce fluxes of 10 16 atoms per year per ton of stored waste (10 -8 Ci y-1), during millions years, towards the water column [fr

  2. Determination of rare earth elements in water ore and grass sample around monazite dressing plant by high performance liquid chromatography

    International Nuclear Information System (INIS)

    Laoharojanaphand, S.

    1993-01-01

    High performance liquid chromatography technique for the analysis of rare earth elements; yttrium, cerium and lanthanum, was developed. A comparison of two mobile phases between α-hydroxy isobutyric acid and mandelic acid was carried out using C 1 8 column for separation and the amount of the rare earth elements were detected by post column complex formation with Arsenazo III. It was found that α-hydroxy isobutyric acid had higher efficiency in separation of the rare earth elements than mandelic acid when 1-octanesulfonic acid was used as an organic modifier. The optimum conditions of the mobile phase were comprised of the p H of 3.65, a flow rate of 1 ml/min which resulted in the values of resolution to be 13.62 between yttrium and cerium and 3.49 between cerium and lanthanum. Standard curves of yttrium and lanthanum yielded linear range of 0.1-45 and 1-60 ppm whereas the cerium curve was in the range of 1-100 ppm. The analyses of water, ore and grass samples collected around the monazite dressing plants from Prachuap Khiri Khan and Phuket showed that none of the rare earth elements was detected in all samples from Prachuap Khiri Khan. But 0.5 ppm of yttrium and 1.5 ppm of lanthanum were found in the water samples from Phuket while in the grass samples contained yttrium and cerium in the amounts of 2 ppm and 14 ppm whereas none was detected in the ore samples by this technique under the previous conditions

  3. Recovery and purification of rare earth elements and thorium

    International Nuclear Information System (INIS)

    Sungur, A.; Saygi, Z.; Yildiz, H.

    1985-01-01

    Rare earth elements and thorium found in the low-grade Eskisehir-Beylikahir ore have been recovered by HCl leaching, Lanthanides and thorium were separated and purified from the leach solutions through the precipitation sequence as double sulphate, hydroxide and oxalate. The Ln 2 O 3 and Th(OH) 4 products, finally obtained contained 36% Ce and 65% Th. The analysis of rare earth elements, thorium and other present ingredients were carried out by instrumental neutron activation analysis, atomic absorption spectroscopy, vis-spectroscopy and gravimetry. (author)

  4. Geological research on rare earth elements, results and outlook

    International Nuclear Information System (INIS)

    Fortin, H

    1999-01-01

    This is a report of the geological investigation of rare earth elements carried out by CCHEN and ENAMI (Empresa Nacional de Mineria) over 70,000 square kilometers in Chile's northern coastal mountain range. Twenty areas were identified with sphena, davidite, ilmenite, pyroxene, anatase and magnetite minerals containing 0.3 kg/t to 6.0 kg/t of rare earth elements. Additional research on Cerro Carmen Prospect, located near Diego de Almagro, define it as a metasomatic deposit, hosted in metamorphic contact rocks, between andesites (Pliensbachian to early Jurassic) and intrusive monzonitic rocks. This information increases knowledge about the metallogenesis of Chile's copper - iron - rare earth - uranium deposits and the application of this geological model of ore deposits as defined in Australia's Olympic Dam

  5. Relationship between accumulation of rare earth element in tumor and ionic radius

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, N [Kanazawa Univ. (Japan). School of Medicine

    1975-02-01

    The accumulation of rare earth elements in the different organs of Ehrlich's tumor-bearing mice at 48 hours after intraperitoneal administration was measured by a Ge(Li) semiconductor detector. Accumulation of all the rare earth elements was the highest in the pancreas. Accumulation of /sup 152/Eu in the different organs of Ehrlich's tumor-bearing mice was very high. The accumulation of rare earth elements in Ehrlich's tumor was lower than the accumulation of /sup 67/Ga and /sup 46/Sc. The tumor-organ concentration ratio of rare earth elements was remarkably lower than the accumulation of /sup 67/Ga and /sup 46/Sc. However, the accumulation of /sup 152/Eu in Ehrlich's tumor was somewhat higher than that of /sup 67/Ga. The relationship between the accumulation and the carrier content was examined. The lower the carrier content was, the higher was the accumulation in different organs. However, the carrier effect of rare earth on the uptake in different organs elements was slight. The author postulated that the elements in which the ionic radius is similar to that of Mg(0.62 A) or Ca(0.99 A) are abundant in the tumor cell membrane, and they might pass through the tumor cell membrane much more easily than would the other elements. However, the result was negative.

  6. Ir and Rare Earth's Elements determination by Neutron Activation Analysis and ICP - MS in soil samples

    Science.gov (United States)

    Salvini, A.; Cattadori, C.; Broggini, C.; Cagnazzo, M.; Ori, Gian Gabriele; Nisi, S.; Borio, A.; Manera, S.

    2006-05-01

    The platinum metals depleted in the earth's crust are relative to their cosmic abundance; concentration of these elements in sediments may thus indicate influxes of extraterrestrial material. Analysis of these parameters are done easily by Neutron Activation Analysis (NAA) and comparative results with ICP-MS technique show a good match. Results, adjust parameters and limits of this method will be displayed in tables.

  7. Determination of Hf, Sc and Y in geological samples together with the rare-earth elements

    International Nuclear Information System (INIS)

    Lihareva, N.; Delaloye, M.

    1997-01-01

    A method is described for the determination of Hf, Sc and Y simultaneously with the REE in geological materials. An earlier method for REE separation from major elements was studied with the aim to apply it also to the determination of Hf, Sc and Y. Sample decomposition was carried out by melting with LiBO 2 . The method involves separation and concentration stages, using the cation-exchange resin DOWEX AG 50W-X8. Matrix elements were eluted with 2 mol/l HCl, whereas 6 mol/l HNO 3 with oxalic acid and 8 mol/l HNO 3 were used to elute the elements to be determined. Some of the matrix elements could not be completely removed. This effect as well as the recovery rates of the determined elements were investigated. The measurements were performed by ICP-AES. Spectral interferences were also tested. (orig.). With 1 tab

  8. Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.

    Science.gov (United States)

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.

  9. Chromatographic Techniques for Rare Earth Elements Analysis

    Science.gov (United States)

    Chen, Beibei; He, Man; Zhang, Huashan; Jiang, Zucheng; Hu, Bin

    2017-04-01

    The present capability of rare earth element (REE) analysis has been achieved by the development of two instrumental techniques. The efficiency of spectroscopic methods was extraordinarily improved for the detection and determination of REE traces in various materials. On the other hand, the determination of REEs very often depends on the preconcentration and separation of REEs, and chromatographic techniques are very powerful tools for the separation of REEs. By coupling with sensitive detectors, many ambitious analytical tasks can be fulfilled. Liquid chromatography is the most widely used technique. Different combinations of stationary phases and mobile phases could be used in ion exchange chromatography, ion chromatography, ion-pair reverse-phase chromatography and some other techniques. The application of gas chromatography is limited because only volatile compounds of REEs can be separated. Thin-layer and paper chromatography are techniques that cannot be directly coupled with suitable detectors, which limit their applications. For special demands, separations can be performed by capillary electrophoresis, which has very high separation efficiency.

  10. Enhanced separation of rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenhalgh, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herbst, R. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Soderstrom, M. D. [Cytec Solvay Group, Tempe, AZ (United States); Jakovljevic, B. [Cytec Solvay Group, Niagara Falls, ON (Canada)

    2016-09-01

    Industrial rare earth separation processes utilize PC88A, a phosphonic acid ligand, for solvent extraction separations. The separation factors of the individual rare earths, the equipment requirements, and chemical usage for these flowsheets are well characterized. Alternative ligands such as Cyanex® 572 and the associated flowsheets are being investigated at the pilot scale level to determine if significant improvements to the current separation processes can be realized. These improvements are identified as higher separation factors, reduced stage requirements, or reduced chemical consumption. Any of these improvements can significantly affect the costs associated with these challenging separation proccesses. A mid/heavy rare earth element (REE) separations flowsheet was developed and tested for each ligand in a 30 stage mixer-settler circuit to compare the separation performance of PC88A and Cyanex® 572. The ligand-metal complex strength of Cyanex® 572 provides efficient extraction of REE while significantly reducing the strip acid requirements. Reductions in chemical consumption have a significant impact on process economics for REE separations. Partitioning results summarized Table 1 indicate that Cyanex® 572 offers the same separation performance as PC88A while reducing acid consumption by 30% in the strip section for the mid/heavy REE separation. Flowsheet Effluent Compositions PC88A Cyanex® 572 Raffinate Mid REE Heavy REE 99.40% 0.60% 99.40% 0.60% Rich Mid REE Heavy REE 2.20% 97.80% 0.80% 99.20% Liquor Strip Acid Required 3.4 M 2.3 M Table 1 – Flowsheet results comparing separation performance of PC88A and Cyanex® 572 for a mid/heavy REE separation.

  11. Rare earth elements determined in Antarctic ice by inductively coupled plasma-Time of flight, quadrupole and sector field-mass spectrometry: An inter-comparison study

    International Nuclear Information System (INIS)

    Dick, D.; Wegner, A.; Gabrielli, P.; Ruth, U.; Barbante, C.; Kriews, M.

    2008-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is a suitable tool for multi-element analysis at low concentration levels. Rare earth element (REE) determinations in standard reference materials and small volumes of molten ice core samples from Antarctica have been performed with an ICP-time of flight-MS (ICP-TOF-MS) system. Recovery rates for REE in e.g. SPS-SW1 amounted to ∼103%, and the relative standard deviations were 3.4% for replicate analysis at REE concentrations in the lower ng L -1 range. Analyses of REE concentrations in Antarctic ice core samples showed that the ICP-TOF-MS technique meets the demands of restricted sample mass. The data obtained are in good agreement with ICP-Quadrupole-MS (ICP-Q-MS) and ICP-Sector Field-MS (ICP-SF-MS) results. The ICP-TOF-MS system determines accurately and precisely REE concentrations exceeding 5 ng L -1 while between 0.5 and 5 ng L -1 accuracy and precision are element dependent

  12. A new potentiometric method for the estimation of the rare earth elements

    International Nuclear Information System (INIS)

    Selig, W.S.

    1988-01-01

    Chinese workers recently described a new potentiometric method for lead using sodium tetraphenylborate (NaTPB) as a titrant. Based on a previous Chinese publication, the authors have recently developed a method for the estimation of the alkaline earth metals by sequential titration with NaTPB. In the present work, the authors report a similar method for the estimation of the rare earth elements, including Sc and Y. The sensing electrode is a spectrographic graphite rod, coated with a solution of poly(vinyl chloride) and dioctylphthalate in tetrahydrofuran as previously described. The reference electrode was a double-junction Ag/AgCl electrode. The titration system is controlled by a Tektronix 4051 graphics computer system. Single cations or mixtures up to 0.5 mequiv are determined by potentiometric titration with 0.05 N NaTPB, after formation of the oxonium cations by reaction with an aqueous solution of poly(ethylene glycol) (PEG). Best results are obtained with PEGs of molecular weights from 8,000 to 20,000. Sequential estimation of Pb + Ba, Sr, and Ca, and the sum of the rare earth elements is also reported, plus possible applications to Al, Ga, and anions precipitated by lead

  13. U.S. trade dispute with China over rare earth elements

    Science.gov (United States)

    Showstack, Randy

    2012-03-01

    The U.S. government has brought a new trade case against China over rare earth elements (REE) as well as tungsten and molybdenum, President Barack Obama announced on 13 March. Japan and the European Union also have taken similar actions against China about REEs, which are a group of 17 chemically similar metallic elements that are used in a variety of electronic, optical, magnetic, and catalytic applications. REEs are plentiful in the Earth's crust, although China currently has about 37% of the world's reserves and accounts for more than 95% of the world's production of the elements, according to the British Geological Survey. The United States has requested consultations with China at the World Trade Organization (WTO) concerning "China's unfair export restraints on rare earths, as well as tungsten and molybdenum," the Office of the United States Trade Representative announced in a 13 March statement.

  14. Study on speciation of rare earth elements in soil

    International Nuclear Information System (INIS)

    Wang Yuqi; Sun Jingxin; Chen Hongmin; Guo Fanqing; Wang Lijun; Zhang Shen

    1996-01-01

    The contents of rare earth elements (REE) in red soil, yellow brown soil and leached chernozem are studied. After extracted sequentially, REE in these soils are fractionated into seven forms, i.e., (I) water soluble, (II) exchangeable, (III) loosely bound to organic mater, (IV) bound to carbonate and specifically absorbed, (V) bound to Fe-Mn oxides, (VI) tightly bound to organic matter and (VII) residual forms. The contents of REE in every form are determined by NAA (neutron activation analysis). The results show that REE in soils mainly exist in residual form and REE in soluble forms are very limited (<7%)

  15. Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.

    Directory of Open Access Journals (Sweden)

    Pierre Gueriau

    Full Text Available The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.

  16. Two main and a new type rare earth elements in Mg alloys: A review

    Science.gov (United States)

    Kong, Linghang

    2017-09-01

    Magnesium (Mg) alloys stand for the lightest structure engineering materials. Moreover, the strengthening of Mg alloys in ductility, toughness and corrosion predominates their wide applications. With adding rare earth elements in Mg, the mechanical properties will be improved remarkably, especially their plasticity and strength. A brief overview of the addition of rare earth elements for Mg alloys is shown. The basic mechanisms of strengthening Mg alloys with rare earth elements are reviewed, including the solid solution strengthening, grain refinement and long period stacking ordered (LPSO) phase. Furthermore, the available rare earth elements are summarized by type, chemical or physical effects and other unique properties. Finally, some challenge problems that the research is facing and future expectations of ra-re-earth Mg alloys are stated and discussed.

  17. Assessing rare earth elements in quartz rich geological samples

    International Nuclear Information System (INIS)

    Santoro, A.; Thoss, V.; Ribeiro Guevara, S.; Urgast, D.; Raab, A.; Mastrolitti, S.; Feldmann, J.

    2016-01-01

    Sodium peroxide (Na_2O_2) fusion coupled to Inductively Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS) measurements was used to rapidly screen quartz-rich geological samples for rare earth element (REE) content. The method accuracy was checked with a geological reference material and Instrumental Neutron Activation Analysis (INAA) measurements. The used mass-mode combinations presented accurate results (only exception being "1"5"7Gd in He gas mode) with recovery of the geological reference material QLO-1 between 80% and 98% (lower values for Lu, Nd and Sm) and in general comparable to INAA measurements. Low limits of detection for all elements were achieved, generally below 10 pg g"−"1, as well as measurement repeatability below 15%. Overall, the Na_2O_2/ICP-MS/MS method proved to be a suitable lab-based method to quickly and accurately screen rock samples originating from quartz-rich geological areas for rare earth element content; particularly useful if checking commercial viability. - Highlights: • Na_2O_2 fusion coupled to ICP-MS/MS was used to determine REE in quartz-rich samples. • The method accuracy was checked with a geological reference material and INAA. • Results were within 80–98% recovery of QLO-1 reference material, comparable to INAA. • Detection limits were generally below 10 pg g"−"1, and repeatability was below 15%. • Na_2O_2/ICP-MS/MS proved to be a suitable method for REE in quartz-rich samples.

  18. Neutron activation analysis of rare earths and some other elements in material of geochemical interest

    International Nuclear Information System (INIS)

    Brunfelt, A.O.

    1975-01-01

    ngle-element methods for the determination by neutron activation analysis of antimony, chromium, phosphorus, selenium and silver in international geochemical standard rocks, and the determination of rare earth elements i in standard rocks and apatites are described and discussed in twelve previously published papers, and in an eighteen page summary. Chemical separationtechniques are also discussed and the results are compared with previously obtained results with the same standard rocks. The accuracy of neutron activation analysis is discussed in comparison with isotope dilution mass spectroscopy, atomic absorption, gas chromatography and spark source mass spectrometry. (JIW)

  19. Application of delayed X-ray spectrometry to the analysis of some rare earth elements

    International Nuclear Information System (INIS)

    Pillay, A.E.; Mboweni, R.C.M.

    1991-01-01

    The capabilities of delayed x-ray spectrometry preceded by isotope-source thermal neutron activation for the specific determination of some rare earth elements (Sm, Eu, Dy, Ho) in small powdered samples was evaluated. The feasibility study relied heavily on the low-energy sensitivity of the detector used. Detection of the delayed x-rays was achieved with a 100-mm 2 Ge detector with the ability to produce optimum photopeak-to-noise ratios. The rare earth elements were chosen on the basis of their inherent favourable nuclear properties for producing a practicable x-ray yield and on the demand for their analysis. Analytical results are presented over a range of concentrations for the elements of interest and the potential of the technique for application to their general routine analysis is discussed. Interferences from the sample matrix can be suppressed to an extent that makes the method almost independent of the matrix. This and other features make the technique a strong rival to conventional activation analysis. (author)

  20. Correlations fo Sc, rare earths and other elements in selected rock samples from Arrua-i

    Energy Technology Data Exchange (ETDEWEB)

    Facetti, J F; Prats, M [Asuncion Nacional Univ. (Paraguay). Inst. de Ciencias

    1972-01-01

    The Sc and Eu contents in selected rocks samples from the stock of Arrua-i have been determined and correlations established with other elements and with the relative amount of some rare earths. These correlations suggest metasomatic phenomena for the formation of the rock samples.

  1. Correlations fo Sc, rare earths and other elements in selected rock samples from Arrua-i

    International Nuclear Information System (INIS)

    Facetti, J.F.; Prats, M.

    1972-01-01

    The Sc and Eu contents in selected rocks samples from the stock of Arrua-i have been determined and correlations established with other elements and with the relative amount of some rare earths. These correlations suggest metasomatic phenomena for the formation of the rock samples

  2. Determination of Rare Earth Elements in Geological Samples Using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Jain, Jinesh C; Goueguel, Christian L; McIntyre, Dustin L; Singh, Jagdish P

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) was used to detect rare earth elements (REEs) in natural geological samples. Low and high intensity emission lines of Ce, La, Nd, Y, Pr, Sm, Eu, Gd, and Dy were identified in the spectra recorded from the samples to claim the presence of these REEs. Multivariate analysis was executed by developing partial least squares regression (PLS-R) models for the quantification of Ce, La, and Nd. Analysis of unknown samples indicated that the prediction results of these samples were found comparable to those obtained by inductively coupled plasma mass spectrometry analysis. Data support that LIBS has potential to quantify REEs in geological minerals/ores.

  3. [Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements].

    Science.gov (United States)

    Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo

    2015-08-01

    The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.

  4. Rare earth element patterns in nigerian coals

    International Nuclear Information System (INIS)

    Ewa, I.O.B.; Elegba, S.B.

    1996-01-01

    Rare Earth Elements (REE's) retain group coherence in their environment and are therefore useful geochemical markers. We report the pattern of ten REE's (La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Yb, Lu) determined by Instrumental Neutron Activation Analysis (INAA) for coals obtained from eight mines in Nigeria, namely, Okaba, Enugu, Ogbete, Onyeama, Gombe, Lafia, Asaba and Afikpo. Our results show the existence of fractionations with the highest index of 13.19 for Lafia coal, depletion in HREE, negative Eu anomaly for most of the coals, REE patterns that are consistent with chondritic trends; prominent (Eu/Eu * ) cn for Okaba and Gombe coals. Variations in geochemical data observed could suggest strong departures from band metamorphism during the coalification events of the Benue Trough geosynclines, where the coal deposits are all located. (author) 14 refs., 2 figs., 3 tabs

  5. Determination of rare earth elements in environmental matrices by sector-field inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Riondato, J; Vanhaecke, F; Moens, L; Dams, R

    2001-07-01

    In the framework of an international certification campaign, sector-field inductively coupled plasma mass spectrometry (sector-field ICP-MS) was used for the accurate determination of the rare earth elements in five candidate reference materials: aquatic plant, calcareous soil, mussel tissue, river sediment, and tuna muscle. All samples were taken into solution by use of microwave-assisted or mixed microwave-assisted / open beaker acid digestion. Subsequently, the samples were appropriately diluted and subjected to ICP-MS analysis. Except for Sc, all the elements involved were determined at low mass resolution (R = 300). For Sc, application of a higher resolution setting (R = 3,000) was required to separate the analyte signal from those of several molecular ions which gave rise to spectral overlap at low mass resolution. Some of the heavier REE can also suffer from spectral overlap attributed to the occurrence of oxide ions (MO+) of the lighter REE and Ba. This spectral overlap could be successfully overcome by mathematical correction. Matrix effects were overcome by use of two carefully selected internal standards, such that external calibration could be used. On each occasion, a geological reference material was analyzed as a quality-control sample and the reliability of all results obtained was additionally checked by means of chondrite normalization. For tuna muscle the content of all REE was below the limit of detection. For calcareous soil and river sediment, low to sub microg g(-1) values were observed, whereas the REE content of aquatic plant and mussel tissue was considerably lower (low to sub ng g(-1)). Overall, the results obtained were in excellent agreement with the average values, calculated on the basis of all "accepted" values, obtained in different laboratories using different techniques.

  6. Transport of natural series radionuclides and light rare earth elements in a coastal lagoon of a monazite region

    International Nuclear Information System (INIS)

    Costa Lauria, D. da

    2002-01-01

    It has been investigated the transport of radionuclides of natural radioactive series and the light rare earth elements in a coastal lagoon system, located in a monazite rich region, in whose water was found abnormal concentrations of radium isotopes and light rare earth elements (LREEs). Four sampling campaigns were carried out: two in rainy and two in dry seasons. Sediment and water samples were collected in seven sampling stations along of the lagoon's 5.4-km. The stations were localized in the map of the lagoon by global positioning system, GPS. Still at the field, it was determined the conductivity, alkalinity, Eh and pH in the water and the pH and Eh in the sediment samples. The determination of Ra-226, Ra-228, Pb-210 activity concentrations in the water samples were performed by gross alpha and beta counting. The Th, U, light rare earth elements (La-Sm), Ca, Mg, Na, K, Mn, Al and Fe were determined by inductively coupled plasma mass spectrometry (ICP-MS) (Perkin Elmer-Sciex, model Elan 5000 A) by the TotalQuant method. Argentometric (chloride), turbidimetric (sulfate), cadmium reduction (nitrate), ascorbic acid reduction (phosphate) and selective ion electrode (fluoride) methods determined anions (2). Organic and inorganic dissolved carbons were determined by combustion-infrared method using a carbon analyzer (2). The sediment samples were analyzed by gamma spectrometry, to determine Ra-228 (Ac-228, 911 keV) and Ra-226 (Bi-214, 609 keV) (3), and after sample dissolution by ICP-MS aiming the determination of U, Th and LREE concentrations. (author)

  7. Origin of the earth's moon: constraints from alkali volatile trace elements

    International Nuclear Information System (INIS)

    Kreutzberger, M.E.; Drake, M.J.; Jones, J.H.

    1986-01-01

    Although the Moon is depleted in volatile elements compared to the Earth, these depletions are not in accord with simple volatility. For example, the Cs/Rb ratios of the Earth and Moon inferred from basalts are approximately one seventh and one half of the CI ratio, respectively. Volatility considerations alone predict that the lunar Cs/Rb ratio should be equal to or lower than the terrestrial ratio if the Moon was derived entirely from Earth mantle material. Thus hypotheses such as rotational fission which invoke derivation of lunar material entirely from the Earth's mantle may be excluded. The collisional ejection hypothesis of lunar origin requires at least 18% of lunar material to be derived from a projectile with dehydrated CI composition to match the lunar Cs/Rb ratio, and 25% to 50% to match both the lunar Cs/Rb ratio and absolute concentrations of Cs and Rb. It remains to be demonstrated that this relatively large contribution of projectile material is consistent with other elemental abundances and element ratios in the Moon. (author)

  8. Application and evaluation of the mass spectrometric isotope dilution technique in the determination of rare earths in geological materials

    International Nuclear Information System (INIS)

    Moraes, N.M.P. de.

    1988-01-01

    Establishment of the experimental procedures employed in the rare earth element determination of geological samples by mass spectrometric isotope dilution analysis is discussed in the present work. The procedures involve preparation and calibration of the isotope tracers isotope dilution, dissolution in a teflon pressure vessel, chemical separation and isotope analysis using a fully automated Micromass VG ISOTOPES model 354 thermal ionization mass spectrometer. For the initial chemical separation of total rare earths the cationic resin was employed and HC1 and HNO 3 acids as eluents. In the second step rare earths elements were separated into individual (La, Ce and Nd) and subgroups (Sm-Eu-Gd, Yb-Er-Dy) fractions using the same cationic resin and α-HIBA as eluent. Nine elements La, Ce, Nd, Sm, Eu, Gd, Dy, Er and Yb are determined by this method in the ''United States Geological Survey'' (USGS) standard samples GSP-1, AGV-1 and G-2, with an overall precision of +- 1 to 2% and an accuracy of 5%. The concentration of rare earth element determined in the standard sample PCC-1 showed that the total analytical blanks are in submicrogram levels. The concentration of rare earth elements in the same USGS standard samples were also determined by Instrumental neutron activation analysis, neutron activation analysis with chemical separation before irradiation and inductively coupled argon plasma spectroscopy. The chemical procedures employed for these methods are the same as that used for mass spectrometric isotope dilution. Based on the results obtained, each method was evaluated pointing out their merits and defects. The study clearly showed that the chemical procedure employed for all these techniques was satisfactory. (author) [pt

  9. Mechanochemical decomposition of monazite to assist the extraction of rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wantae; Bae, Inkook; Chae, Soochun [Korea Institute of Geoscience and Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Shin, Heeyoung, E-mail: hyshin@kigam.re.k [Korea Institute of Geoscience and Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2009-11-03

    Mechanochemical decomposition by milling a mixture of monazite and sodium hydroxide powder and subsequent leaching by sulfuric acid for the extraction of rare earth elements at room temperature has been investigated. The milling of the mixture allows the mechanochemical formation of rare earth hydroxides and sodium phosphate as milling progresses. Nearly all the monazite is decomposed within 120 min under the present milling conditions. A 0.05N sulfuric acid solution enables us to improve the yield of each of La, Nd and Sm to around 85% or more in the powder milled for 120 min. Also, respective Ce and Pr yields of about 20% and 70% remain un-dissolved since they are changed into oxide forms during and after the milling operation. These rare earth oxides are mostly dissolved as the acid concentration increases to 5N. The yield of rare earth elements increases with increasing milling time. Thus mechanochemical milling plays a significant role in achieving high yield of rare earth elements from the leaching of the milled powder.

  10. Mechanochemical decomposition of monazite to assist the extraction of rare earth elements

    International Nuclear Information System (INIS)

    Kim, Wantae; Bae, Inkook; Chae, Soochun; Shin, Heeyoung

    2009-01-01

    Mechanochemical decomposition by milling a mixture of monazite and sodium hydroxide powder and subsequent leaching by sulfuric acid for the extraction of rare earth elements at room temperature has been investigated. The milling of the mixture allows the mechanochemical formation of rare earth hydroxides and sodium phosphate as milling progresses. Nearly all the monazite is decomposed within 120 min under the present milling conditions. A 0.05N sulfuric acid solution enables us to improve the yield of each of La, Nd and Sm to around 85% or more in the powder milled for 120 min. Also, respective Ce and Pr yields of about 20% and 70% remain un-dissolved since they are changed into oxide forms during and after the milling operation. These rare earth oxides are mostly dissolved as the acid concentration increases to 5N. The yield of rare earth elements increases with increasing milling time. Thus mechanochemical milling plays a significant role in achieving high yield of rare earth elements from the leaching of the milled powder.

  11. Fertiliser characterisation: Major, trace and rare earth elements

    International Nuclear Information System (INIS)

    Otero, N.; Vitoria, L.; Soler, A.; Canals, A.

    2005-01-01

    In recent years, there has been increasing concern regarding the chemical impact of agricultural activities on the environment so it is necessary to identify contaminants, and/or characterise the sources of contamination. In this study, a comprehensive chemical characterisation of 27 fertilisers of different types used in Spain has been conducted; major, minor and trace elements were determined, including rare earth elements. Results show that compound fertilisers used for fertigation or foliar application have low content of heavy metals, whereas fertilisers used for basal and top dressing have the highest content of both REE and other heavy metals. REE patterns of fertilisers have been determined in order for them to be used as tracers of fertilisers in future environmental studies. Furthermore in this work REE patterns of fertilisers are used as tracers of the source of phosphate in compound fertilisers, distinguishing between phosphorite and carbonatite derived fertilisers. Fertilisers from carbonatites have higher contents of REE, Sr, Ba and Th whereas fertilisers from phosphorites have higher contents of metals of environmental concern, such as Cd, U and As; and the sum of the heavy metals is higher. Some of the analysed fertilisers have Cd concentrations that exceed maximum values established in some countries and can be expected to produce long-term soil accumulation. Furthermore, other elements such as U, As and Cr are 10-50 times higher in concentration than those of Cd, but there is no legislation regarding them, therefore it is necessary to regulate fertiliser compositions in order to achieve environmental protection of soils and waters

  12. Composition of the earth's upper mantle. II - Volatile trace elements in ultramafic xenoliths

    Science.gov (United States)

    Morgan, J. W.; Wandless, G. A.; Petrie, R. K.; Irving, A. J.

    1980-01-01

    Radiochemical neutron activation analysis was used to determine the nine volatile elements Ag, Bi, Cd, In, Sb, Se, Te, Tl, and Zn in 19 ultramafic rocks, consisting mainly of spinel and garnet lherzolites. A sheared garnet lherzolite, PHN 1611, may approximate undepleted mantle material and tends to have a higher volatile element content than the depleted mantle material represented by spinel lherzolites. Comparisons of continental basalts with PHN 1611 and of oceanic ridge basalts with spinel lherzolites show similar basalt: source material partition factors for eight of the nine volatile elements, Sb being the exception. The strong depletion of Te and Se in the mantle, relative to lithophile elements of similar volatility, suggests that 97% of the earth's S, Se and Te may be in the outer core.

  13. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements

    Science.gov (United States)

    Kato, Yasuhiro; Fujinaga, Koichiro; Nakamura, Kentaro; Takaya, Yutaro; Kitamura, Kenichi; Ohta, Junichiro; Toda, Ryuichi; Nakashima, Takuya; Iwamori, Hikaru

    2011-08-01

    World demand for rare-earth elements and the metal yttrium--which are crucial for novel electronic equipment and green-energy technologies--is increasing rapidly. Several types of seafloor sediment harbour high concentrations of these elements. However, seafloor sediments have not been regarded as a rare-earth element and yttrium resource, because data on the spatial distribution of these deposits are insufficient. Here, we report measurements of the elemental composition of over 2,000 seafloor sediments, sampled at depth intervals of around one metre, at 78 sites that cover a large part of the Pacific Ocean. We show that deep-sea mud contains high concentrations of rare-earth elements and yttrium at numerous sites throughout the eastern South and central North Pacific. We estimate that an area of just one square kilometre, surrounding one of the sampling sites, could provide one-fifth of the current annual world consumption of these elements. Uptake of rare-earth elements and yttrium by mineral phases such as hydrothermal iron-oxyhydroxides and phillipsite seems to be responsible for their high concentration. We show that rare-earth elements and yttrium are readily recovered from the mud by simple acid leaching, and suggest that deep-sea mud constitutes a highly promising huge resource for these elements.

  14. Addressing Rare-Earth Element Criticality: An Example from the Aviation Industry

    Science.gov (United States)

    Ku, Anthony Y.; Dosch, Christopher; Grossman, Theodore R.; Herzog, Joseph L.; Maricocchi, Antonio F.; Polli, Drew; Lipkin, Don M.

    2014-11-01

    Rare-earth (RE) elements are enablers for a wide range of technologies, including high-strength permanent magnets, energy-efficient lighting, high-temperature thermal barrier coatings, and catalysts. While direct material substitution is difficult in many of these applications because of the specific electronic, optical, or electrochemical properties imparted by the individual rare-earth elements, we describe an example from the aviation industry where supply chain optimization may be an option. Ceramic matrix composite engine components require environmental barrier coatings (EBCs) to protect them from extreme temperatures and adverse reactions with water vapor in the hot gas path. EBC systems based on rare-earth silicates offer a unique combination of environmental resistance, thermal expansion matching, thermal conductivity, and thermal stability across the service temperature window. Several pure rare-earth silicates and solid solutions have been demonstrated in EBC applications. However, all rely on heavy rare-earth elements (HREEs) for phase stability. This article considers the possibility of using separation tailings containing a mixture of HREEs as a source material in lieu of using the high-purity HREE oxides. This option arises because the desired properties of RE-silicate EBCs derive from the average cation size rather than the electronic properties of the individual rare-earth cations. Because separation tailings have not incurred the costs associated with the final stages of separation, they offer an economical alternative to high-purity oxides for this emerging application.

  15. Rare-earth element geochemistry in the Luanga Mafic-Ultramafic Complex, Para

    International Nuclear Information System (INIS)

    Suita, M.T.F.; Nilson, A.A.

    1989-01-01

    Six whole-rock samples (harzburgite, orthopyroxenic and norite) of the Luanga Mafic-Ultramafic Complex (Para) were analysed for rare-earth elements (REE) through plasma spectrometry. The Luanga Complex is a deformed and metamorphosed layered mafic-ultramafic body of Archaean age. The Complex underwent medium-grade metamorphism in three stages. The first stage (medium grade) involved local formation of tremolite and reduction of Ca content in plagioclase. The second stage (low grade) consisted of serpentinization of amphibole or ortopyroxene forming bastile and generation of albite + epidote + white mica + actinolite from plagioclase. The third stage involved renewed serpentinization and/or talcification of pre-existing minerals (including serpentine) along fracture and fault surfaces. The analysed rocks display light rare-earth element (LREE) enrichment up to sixty times the composition of the Leedly chondrite and La/Yb ratios from 6.2 to 20.0 they are low in medium rare-earth elements (MREE), displaying discrete to strong negative Eu anomaly even in plagioclase cumulates and are slightly enriched in heavy rare-earth elements (HREE), usually higher than chondrite values. The low MREE area related to the occurrence of orthopyroxene (bronzite) in a way similar to the pattern of alpine periodotites, while HREE enrichment is compatible with the presence of bronzite and Mg-olivine, probably an inherited igneous feature. (author) [pt

  16. Retention of alkaline earth elements in man

    International Nuclear Information System (INIS)

    Newton, D.

    1990-06-01

    The data on human metabolism and long-term retention of alkaline earth elements ( 133 Ba injected into six healthy male volunteers at age 25-81 y and 45 Ca and 85 Sr received by one healthy male volunteer) are presented. Excreta were collected for 2-3 weeks after injection of the tracer into an antecubital vein. Activity in urine, ashed faeces and early samples of blood plasma was determined by gamma-ray scintillation spectrometry. Whole body retention has been assessed through serial measurements of body radioactivity. The injected 133 Ba apparently became mainly skeletal within several days, much earlier than predicted by the ICRP model. The whole-body retention at 32 d ranged from 5 to 14%, the rate of loss correlating with the excretory plasma clearance rate. No age-related trends were identified in the metabolism of Ca and Sr. 2 refs, 2 figs

  17. Assessing rare earth elements in quartz rich geological samples.

    Science.gov (United States)

    Santoro, A; Thoss, V; Ribeiro Guevara, S; Urgast, D; Raab, A; Mastrolitti, S; Feldmann, J

    2016-01-01

    Sodium peroxide (Na2O2) fusion coupled to Inductively Coupled Plasma Tandem Mass Spectrometry (ICP-MS/MS) measurements was used to rapidly screen quartz-rich geological samples for rare earth element (REE) content. The method accuracy was checked with a geological reference material and Instrumental Neutron Activation Analysis (INAA) measurements. The used mass-mode combinations presented accurate results (only exception being (157)Gd in He gas mode) with recovery of the geological reference material QLO-1 between 80% and 98% (lower values for Lu, Nd and Sm) and in general comparable to INAA measurements. Low limits of detection for all elements were achieved, generally below 10 pg g(-1), as well as measurement repeatability below 15%. Overall, the Na2O2/ICP-MS/MS method proved to be a suitable lab-based method to quickly and accurately screen rock samples originating from quartz-rich geological areas for rare earth element content; particularly useful if checking commercial viability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Wine Traceability with Rare Earth Elements

    Directory of Open Access Journals (Sweden)

    Maurizio Aceto

    2018-03-01

    Full Text Available The traceability of foodstuffs is now a relevant aspect of the food market. Scientific research has been devoted to addressing this issue by developing analytical protocols in order to find the link between soil and food items. In this view, chemical parameters that can act as soil markers are being sought. In this work, the role of rare earth elements (REEs as geochemical markers in the traceability of red wine is discussed. The REE distribution in samples from each step of the wine making process of Primitivo wine (produced in Southern Italy was determined using the highly sensitive inductively coupled plasma-mass spectrometry (ICP-MS technique. Samples analyzed include grapes, must, and wine samples after every step in the vinification process. The resulting data were compared to the REE distribution in the soil, revealing that the soil fingerprint is maintained in the intermediate products up to and including grape must. Fractionation occurs thereafter as a consequence of further external interventions, which tends to modify the REE profile.

  19. Direct quantification of rare earth element concentrations in natural waters by ICP-MS

    International Nuclear Information System (INIS)

    Lawrence, Michael G.; Greig, Alan; Collerson, Kenneth D.; Kamber, Balz S.

    2006-01-01

    A direct quadrupole ICP-MS technique has been developed for the analysis of the rare earth elements and yttrium in natural waters. The method has been validated by comparison of the results obtained for the river water reference material SLRS-4 with literature values. The detection limit of the technique was investigated by analysis of serial dilutions of SLRS-4 and revealed that single elements can be quantified at single-digit fg/g concentrations. A coherent normalised rare earth pattern was retained at concentrations two orders of magnitude below natural concentrations for SLRS-4, demonstrating the excellent inter-element accuracy and precision of the method. The technique was applied to the analysis of a diluted mid-salinity estuarine sample, which also displayed a coherent normalised rare earth element pattern, yielding the expected distinctive marine characteristics

  20. Volatile elements - water, carbon, nitrogen, noble gases - on Earth

    Science.gov (United States)

    Marty, B.

    2017-12-01

    Understanding the origin and evolution of life-bearing volatile elements (water, carbon, nitrogen) on Earth is a fruitful and debated area of research. In his pioneering work, W.W. Rubey inferred that the terrestrial atmosphere and the oceans formed from degassing of the mantle through geological periods of time. Early works on noble gas isotopes were consistent with this view and proposed a catastrophic event of mantle degassing early in Earth's history. We now have evidence, mainly from noble gas isotopes, that several cosmochemical sources contributed water and other volatiles at different stages of Earth's accretion. Potential contributors include the protosolar nebula gas that equilibrated with magma oceans, inner solar system bodies now represented by chondrites, and comets. Stable isotope ratios suggest volatiles where primarily sourced by planetary bodies from the inner solar system. However, recent measurements by the European Space Agency Rosetta probe on the coma of Comet 67P/Churyumov-Gerasimenko permit to set quantitative constraints on the cometary contribution to the surface of our planet. The surface and mantle reservoirs volatile elements exchanged volatile elements through time, with rates that are still uncertain. Some mantle regions remained isolated from whole mantle convection within the first tens to hundreds million years after start of solar system formation. These regions, now sampled by some mantle plumes (e.g., Iceland, Eifel) preserved their volatile load, as indicated by extinct and extant radioactivity systems. The abundance of volatile elements in the mantle is still not well known. Different approaches, such as high pressure experimental petrology, noble gas geochemistry, modelling, resulted in somewhat contrasted estimates, varying over one order of magnitude for water. Comparative planetology, that is, the study of volatiles on the Moon, Venus, Mars, Vesta, will shed light on the sources and strengths of these elements in the

  1. Mineralogy of the rare earth elements

    International Nuclear Information System (INIS)

    Clark, A.M.

    1984-01-01

    This paper contains mineralogic properties of the rare earth elements (REE). Notes are given on total REE abundances, distribution patterns, and modes of occurrence. References are confined as far as possible to papers containing usable REE data. The minerals are grouped alphabetically within each major cationic group. The paper includes an alphabetic table of mineral names, chemical formulas, crystal system and section number. It functions as a handy entrance to the mineralogic and bibliographic paper. (G.J.P.)

  2. Electro-kinetic separation of rare earth elements using a redox-active ligand

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Huayi; Cole, Bren E.; Qiao, Yusen; Bogart, Justin A.; Cheisson, Thibault; Manor, Brian C.; Carroll, Patrick J.; Schelter, Eric J. [Department of Chemistry, University of Pennsylvania, Philadelphia, PA (United States)

    2017-10-16

    Purification of rare earth elements is challenging due to their chemical similarities. All of the deployed separation methods rely on thermodynamic properties, such as distribution equilibria in solvent extraction. Rare-earth-metal separations based on kinetic differences have not been examined. Herein, we demonstrate a new approach for rare-earth-element separations by exploiting differences in the oxidation rates within a series of rare earth compounds containing the redox-active ligand [{2-(tBuN(O))C_6H_4CH_2}{sub 3}N]{sup 3-}. Using this method, a single-step separation factor up to 261 was obtained for the separation of a 50:50 yttrium-lutetium mixture. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. The comparison of element composition of Venus, Earth, Mars, and chondrites in the light of the Mendeleev Periodic Law

    International Nuclear Information System (INIS)

    Chuburkov, Yu.T.

    1998-01-01

    The share of free neutral atoms, N 0 , for all elements in Protoplanet nebula has been determined with the account of their abundance and physico-chemical properties. The linear dependence for the ratio of nonvolatile and volatile elements in chondrites and igneous rocks of the Earth on N 0 was obtained. The Mendeleev Periodic Law was used to obtain the proof of the existence of the hypothetical process of element magnetic separation in Protoplanet nebula. To this end the concentration ratios of element-analogous with different N 0 in the matters of Venus, Earth, Mars, and chondrites were compared. The data obtained are sufficient demonstration of the existence of the hypothetical process of element magnetic separation in Protoplanet nebula. With the account of the above said, it was shown that Shergotty and Tunguska meteorites by their relative elemental composition are close to Mars and asteroids, respectively. (author)

  4. Uptake of rare earth elements by dryopteris erythrosora (autumn fern)

    International Nuclear Information System (INIS)

    Ozaki, Takuo; Enomoto, Shuichi

    2001-01-01

    Mechanisms of uptake of rare earth elements (REEs) were investigated, particularly those by REE accumulator species (autumn fern). Rare earth elements are practically insoluble under natural conditions, suggesting some unknown mechanisms in REE accumulator species. In the present investigation, two notable phenomena were observed. (1) Concerning the ionic-radius dependence of REE uptake by leaves, nonaccumulator species showed an extremely high uptake for Y compared with the adjacent-ionic-radius REEs in the multitracer, while accumulator species showed no anomaly. (2) REE uptake by autumn fern was influenced by the addition of chelating chemical reagents in the uptake solution, while no effect was observed for nonaccumulator species. (author)

  5. Game meat authentication through rare earth elements fingerprinting.

    Science.gov (United States)

    Danezis, G P; Pappas, A C; Zoidis, E; Papadomichelakis, G; Hadjigeorgiou, I; Zhang, P; Brusic, V; Georgiou, C A

    2017-10-23

    Accurate labelling of meat (e.g. wild versus farmed, geographical and genetic origin, organic versus conventional, processing treatment) is important to inform the consumers about the products they buy. Meat and meat products declared as game have higher commercial value making them target to fraudulent labelling practices and replacement with non-game meat. We have developed and validated a new method for authentication of wild rabbit meat using elemental metabolomics approach. Elemental analysis was performed using rapid ultra-trace multi-element measurement by inductively coupled plasma mass spectrometry (ICP-MS). Elemental signatures showed excellent ability to discriminate the wild rabbit from non-wild rabbit meat. Our results demonstrate the usefulness of metabolic markers -rare earth signatures, as well as other trace element signatures for game meat authentication. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Spectroscopic identification of rare earth elements in phosphate glass

    Science.gov (United States)

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.

    2018-01-01

    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV-VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  7. A volatile topic: Parsing out the details of Earth's formation through experimental metal-silicate partitioning of volatile and moderately volatile elements

    Science.gov (United States)

    Mahan, B. M.; Siebert, J.; Blanchard, I.; Badro, J.; Sossi, P.; Moynier, F.

    2017-12-01

    Volatile and moderately volatile elements display different volatilities and siderophilities, as well as varying sensitivity to thermodynamic controls (X, P, T, fO2) during metal-silicate differentiation. The experimental determination of the metal-silicate partitioning of these elements permits us to evaluate processes controlling the distribution of these elements in Earth. In this work, we have combined metal-silicate partitioning data and results for S, Sn, Zn and Cu, and input these characterizations into Earth formation models. Model parameters such as source material, timing of volatile delivery, fO2 path, and degree of impactor equilibration were varied to encompass an array of possible formation scenarios. These models were then assessed to discern plausible sets of conditions that can produce current observed element-to-element ratios (e.g. S/Zn) in the Earth's present-day mantle, while also satisfying current estimates on the S content of the core, at no more than 2 wt%. The results of our models indicate two modes of accretion that can maintain chondritic element-to-element ratios for the bulk Earth and can arrive at present-day mantle abundances of these elements. The first mode requires the late addition of Earth's entire inventory of these elements (assuming a CI-chondritic composition) and late-stage accretion that is marked by partial equilibration of large impactors. The second, possibly more intuitive mode, requires that Earth accreted - at least initially - from volatile poor material preferentially depleted in S relative to Sn, Zn, and Cu. From a chemical standpoint, this source material is most similar to type I chondrule rich (and S poor) materials (Hewins and Herzberg, 1996; Mahan et al., 2017; Amsellem et al., 2017), such as the metal-bearing carbonaceous chondrites.

  8. Rare earth elements and permanent magnets (invited)

    Science.gov (United States)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  9. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    Science.gov (United States)

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  10. Rare Earth Elements - A New Challenge for the World Economy

    Directory of Open Access Journals (Sweden)

    Cristina Bumbac

    2013-01-01

    Full Text Available Rare Earth Elements or Rare Earth Metals (REM are a collection of seventeen chemical elements in the periodic table, namely scandium, yttrium and fifteen lanthanides. The term "rare earth" arises from the rare earth minerals from which they were first isolated. They are uncommon oxide-type minerals (earths found in Gandolinite extracted from one mine in Sweden. The first discovery was made in 1794, but it was only in 1940 that the scientist Frank Spedding developed an ion exchange procedure for separating and purifying the REM. For the next decades, they were hardly used in some "minor" industrial fields. Only after 2000 their importance grew, once the multitude of possibilities to use them was discovered due to technological progress. Now REM are incorporated into almost all modern technological devices: superconductors, magnets, electronic polishers, refining catalysts hybrid car components and military techniques. They are used in small quantities, but due to their extraordinary properties the prices are very high. The main problem is that China dominates this market, with 97% of total global supply. The highest concentration of rare earth metals are in Inner Mongolia in China, Mountain Pass in California U.S.A. and in Mount Weld in Australia. The developed countries are far behind China regarding production and are indeed depending on Chinese exports. Hence, there is a difficult situation on this particular market, with an uncertain future.

  11. Advances in the hydrometallurgical separation techniques of high purity rare earth elements

    International Nuclear Information System (INIS)

    Vijayalakshmi, R.; Kain, V.

    2017-01-01

    Rare Earths are a series of 15 chemically similar elements that occur together in monazite mineral found in the beach sands of Kerala, Tamil Nadu and Orissa. The rare earth elements (REE) are becoming increasingly strategically important considering their essential role in permanent magnets such as, SmCo_5, Sm_2Co_1_7 and Nd_2Fe_1_4B, phosphors for LED screens and lamps, rechargeable nickel metal hydride batteries and catalysts and other green applications. The increasing popularity of hybrid and electric cars, wind turbines and compact fluorescent lamps is causing an increase in the demand and price of REE. The European Commission considers the REE as the most critical raw materials group, with the highest supply risk. According to the medium-term criticality matrix of the U.S. Department of Energy (DOE), the five most critical REE are neodymium (Nd), europium (Eu), terbium (Tb), dysprosium (Dy) and yttrium (Y). China is presently producing more than 90% of all rare earths, although they possess less than 405 of the proven reserves. Due to large and increasing domestic demands, China tightened its REE export quota from 2012 onwards. These export quotas caused serious problems for REE users outside of China. Fortunately India is blessed with large resources of rare earths in the form of monazite found in the beach sands of Kerala, Tamil Nadu and Orissa. Indian Rare Earths Limited at Aluva near Kochi produces mainly mixed rare earths chloride and till recent past exporting to USA, UK, France, Japan, etc. They have revived their rare earth separation plant to meet the in-house demands of the strategic, defense and nuclear industry. This paper discusses the recent advances made in hydrometallurgical separation techniques based on solvent extraction technique, ion-exchange resins, hollow fibre membrane extractor, solvent encapsulated polymeric beads, etc for the production of high purity rare earth elements from both primary (Monazite, xenotime) and secondary sources

  12. Determination of the stability constants for the complexes of rare-earth elements and tetracycline

    International Nuclear Information System (INIS)

    Saiki, M.; Lima, F.W.

    1977-01-01

    Stability constants for the lanthanide elements complexes with tetracycline were determined by the methods of average number of ligands, the two parameters and by weighted least squares. The technique of solvent extraction was applied to obtain the values of the parameters required for the determination of the constants [pt

  13. Spectral and thermal behaviours of rare earth element complexes with 3,5-dimethoxybenzoic acid

    Directory of Open Access Journals (Sweden)

    JANUSZ CHRUŚCIEL

    2003-10-01

    Full Text Available The conditions for the formation of rare earth element 3,5-dimethytoxybenzoates were studied and their quantitative composition and solubilities in water at 293 K were determined. The complexes are anhydrous or hydrated salts and their solubilities are of the orders of 10-5 – 10-4 mol dm-3. Their FTIR, FIR and X-ray spectra were recorded. The compounds were also characterized by thermogravimetric studies in air and nitrogen atmospheres and by magnetic measurements. All complexes are crystalline compounds. The carboxylate group in these complexes is a bidentate, chelating ligand. On heating in air to 1173 K, the 3,5-dimethoxybenzoates of rare earth elements decompose in various ways. The hydrated complexes first dehydrate to form anhydrous salts which then decompose in air to the oxides of the respective metals while in nitrogen to mixtures of carbon and oxides of the respective metals. The complexes are more stable in air than in nitrogen.

  14. Application of 241Am EDXRF to the determination of rare earth samples of solvent extraction processes

    International Nuclear Information System (INIS)

    Yan Chunhua; Jia Jiangtao; Liao Chunsheng; Li Biaoguo

    1998-01-01

    A rapid energy dispersive X-ray fluorescence spectroscopy (EDXRF) analysis system is established to determine rare earth concentrations. The characteristic K-shell series X-rays of rare earths were excited by a 1.1 x 10 9 Bq 241 Am radioisotope source. The spectra were recorded and analyzed using a multi-channel analyzer, employing a high-purity Ge detector. In this method, the Compton scattering peak, absorption of elements, and specific simplification are considered. Samples of light, middle and heavy rare earths during separation processes in both hydrochloride solution and rare earth loaded organic phases were analyzed off-line. Some comparative results measured by ICP are also given. The results show that the method can be used for a wide range of rare earth concentrations (0.1-300 g l -1 rare earth oxide). Being rapid, effective, precise and non-destructive, the method can be applied to on-line analysis to determine rare earth concentrations during separation by solvent extraction. (orig.)

  15. Qualitative analysis of the rare earth element by simulation of inductively coupled plasma emission spectra

    International Nuclear Information System (INIS)

    Hashimoto, M.S.; Tobishima, Taeko; Kamitake, Seigo; Yasuda, Kazuo.

    1985-01-01

    The emission lines for qualitative analysis of rare earth elements by a simulation technique of ICP spectra were proposed. The spectra were simulated by employing a Gaussian (or a Lorentzian at high concentrations) profile. The simulated spectra corresponded quite well with the observed ones. The emission lines were selected so that the interference was as small as possible. The present qualitative analysis is based on a pattern recognition method where observed intensity ratios of the emission lines in each element are compared with those of a single analyte element. The qualitative analysis was performed for twelve standard solutions containing a single rare earth element and for eight standard solutions containing an element other than rare earth elements. The selection of the emission lines and the algorithm of the present qualitative analysis were justified. (author)

  16. Determination of trace elements: Neutron-activation analysis in geochemistry and cosmochemistry

    International Nuclear Information System (INIS)

    Kolesov, G.M.

    1994-01-01

    Geochemistry, like cosmochemistry, open-quotes studies chemical elements hor-ellipsis of the crust and hor-ellipsis the Earth hor-ellipsis their history, their distribution hor-ellipsis their genetic hor-ellipsis connectionsclose quotes and is based on data on the abundance and distribution of elements obtained by various analytical methods. Neutron-activation analysis (NAA) plays a particular role in this respect. This is due to its high sensitivity (detection limit as small as 10 -14 g), which makes possible the use of samples of arbitrary mass, and also due to the possibility of obtaining information about composition without destruction of the object, conserving, if required, the unique material under investigation. Of the most interest are the data on the contents for a number of trace elements (at a level of 10 -7 - 10 -4 %), among which are rare-earth elements (REE), U, Th, Zr, Hf, Ta, W, Ga, Ni, Rb, Cs, platinum-group metals, Ag, Au, etc. These elements are considered as indicators of geochemical processes associated with the genesis and evolution of solar system bodies in early and more recent stages of evolution; they are also used to study processes and phenomena at zone boundaries: river-sea, ocean-atmosphere, and so on. The aim of this work is to show the capabilities of NAA in the determination of trace elements

  17. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  18. Ion associates of rare earth elements with salicylic acid derivatives and rhodamine B and their analytical application

    Energy Technology Data Exchange (ETDEWEB)

    Tselik, E I; Poluehktov, N S; Mishchenko, V T [AN Ukrainskoj SSR, Odessa. Fiziko-Khimicheskij Inst.

    1979-10-01

    The determination of rare earth elements by extraction photometry (fluorimetric) technique with the use of salicylic acid derivatives and Rhodamine B is reported. The best results in the determination of REE in the form of ionic associates between their acidocomplexes and Rhodamine B are obtained with the use of 3,5-diiodinesalicylic acid. The ratio between components in the compounds formed and the conditions of extraction are determined.

  19. Radiological Impacts and Regulation of Rare Earth Elements in Non-Nuclear Energy Production

    Directory of Open Access Journals (Sweden)

    Timothy Ault

    2015-03-01

    Full Text Available Energy industries account for a significant portion of total rare earth usage, both in the US and worldwide. Rare earth minerals are frequently collocated with naturally occurring radioactive material, imparting an occupational radiological dose during recovery. This paper explores the extent to which rare earths are used by various non-nuclear energy industries and estimates the radiological dose which can be attributed to these industries on absolute and normalized scales. It was determined that typical rare earth mining results in an occupational collective dose of approximately 0.0061 person-mSv/t rare earth elements, amounting to a total of 330 person-mSv/year across all non-nuclear energy industries (about 60% of the annual collective dose from one pressurized water reactor operated in the US, although for rare earth mining the impact is spread out over many more workers. About half of the collective dose from non-nuclear energy production results from use of fuel cracking catalysts for oil refining, although given the extent of the oil industry, it is a small dose when normalized to the energy equivalent of the oil that is used annually. Another factor in energy industries’ reliance on rare earths is the complicated state of the regulation of naturally occurring radiological materials; correspondingly, this paper also explores regulatory and management implications.

  20. Signatures of rare-earth elements in banded corals of Kalpeni atoll-Lakshadweep archipelago in response to monsoonal variations

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.A.S.; Nath, B.N.; Balaram, V.

    Concentrations of rare-earth elements (REE) have been determined in seasonal bands of Porites species collected from the Lakshadweep lagoon. Total REE (REE) are very low (less than 3 ppm) in these corals. Seasonal variations in REE appear to have...

  1. A Novel Approach for Earthing System Design Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Sajad Samadinasab

    2017-04-01

    Full Text Available Protection of equipment, safety of persons and continuity of power supply are the main objectives of the grounding system. For its accurate design, it is essential to determine the potential distribution on the earth surface and the equivalent resistance of the system. The knowledge of such parameters allows checking the security offered by the grounding system when there is a failure in the power systems. A new method to design an earthing systems using Finite Element Method (FEM is presented in this article. In this approach, the influence of the moisture and temperature on the behavior of soil resistivity are considered in EARTHING system DESIGN. The earthing system is considered to be a rod electrode and a plate type electrode buried vertically in the ground. The resistance of the system which is a very important factor in the design process is calculated using FEM. FEM is used to estimate the solution of the partial differential equation that governs the system behavior. COMSOL Multiphysics 4.4 which is one of the packages that work with the FEM is used as a tool in this design. Finally the values of the resistance obtained by COMSOL Multiphysics are compared with the proven analytical formula values for the ground resistance, in order to prove the work done with COMSOL Multiphysics.

  2. Determination of trace elements in cockle Anadara Granosa L. using INAA

    International Nuclear Information System (INIS)

    Ibrahim, Noorddin

    1994-01-01

    This study determines the trace metal content in Anadara Granosa L., a popular seafood amongst South-East-Asians. Using the technique of instrumental neutron activation analysis (INAA) identification has been made of the presence of 17 trace metals including elements which are classified as toxic (As, Br, Cs) and those which are rare-earths (Eu, Ce, Lu, Tb, Yb). (author)

  3. Quantification of trace amounts of rare earth elements in high purity gadolinium oxide by sector field inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Pedreira, W.R.; Silva Queiroz, C.A. da; Abrao, A.; Pimentel, M.M.

    2004-01-01

    In recent years, rare earth elements (REEs) have received much attention in the fields of geochemistry and industry. Gadolinium oxide is used for many different high technology applications such as infrared absorbing automotive glass, petroleum cracking catalyst, gadolinium-yttrium garnets, microwave applications, and color TV tube phosphors. It can also be used in optical glass manufacturing and in the electronic industry. Rapid and accurate determinations of the rare earth elements are increasingly required as industrial demands expand. In general, the inductively coupled plasma mass spectrometry (ICP-MS) presents some advantages for trace element analysis, due to high sensitivity and resolution, when compared with other analytical techniques. In this work, sector field inductively coupled plasma mass spectrometry was used. Sixteen elements (Sc, Y, and 14 lanthanides) were determined selectively with the ICP-MS system using a concentration gradient method. The detection limits with the ICP-MS system were about 0.2-8 pg ml -1 . The recovery percentage ranged from 95 to 100% for different rare earth elements. The %R.S.D. of the methods varying between 1.5 and 2.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two high pure gadolinium oxides samples (IPEN and JMC) was performed. IPEN's material is highly pure (>99.99%) and was successfully analyzed without spectral interference

  4. Acid pressure leaching of a concentrate containing uranium, thorium and rare earth elements

    International Nuclear Information System (INIS)

    Lan Xinghua; Peng Ruqing.

    1987-01-01

    The acid pressure leaching of a concentrate containing rinkolite for recovering uranium, thorium and rare earth elements is described. The laboratory and the pilot plant test results are given. Under the optimum leaching conditions, the recovery of uranium, thorium and rare earth elements are 82.9%, 86.0% and 88.3% respectively. These results show that the acid pressure leaching process is a effective process for treating the concentrate

  5. Fully automated dissolution and separation methods for inductively coupled plasma atomic emission spectrometry rock analysis. Application to the determination of rare earth elements

    International Nuclear Information System (INIS)

    Govindaraju, K.; Mevelle, G.

    1987-01-01

    In rock analysis laboratories, sample preparation is a serious problem, or even an enormous bottleneck. Because this laboratory is production-oriented, this problem was attacked by automating progressively, different steps in rock analysis for major, minor and trace elements. This effort has been considerably eased by the fact that all sample preparation schemes in this laboratory for the past three decades have been based on an initial lithium borate fusion of rock samples and all analytical methods based on multi-element atomic emission spectrometry, with switch-over from solid analysis by arc/spark excitation to solution analysis by plasma excitation in 1974. The sample preparation steps which have been automated are: weighing of samples and fluxes, lithium borate fusion, dissolution and dilution of fusion products and ion-exchange separation of difficult trace elements such as rare earth elements (REE). During 1985 and 1986, these different unit operations have been assembled together as peripheral units in the form of a workstation, called LabRobStation. A travelling robot is the master of LabRobStation, with all peripheral units at its reach in 10 m 2 workspace. As an example of real application, the automated determination of REE, based on more than 8000 samples analysed during 1982 and 1986, is presented. (author)

  6. Study of polyoxide catalysts of methane combustion on Mn, Cu, Ni, rare earth elements, alkaline earth elements base by the X-ray fluorescence analysis method

    International Nuclear Information System (INIS)

    Grigor'eva, V.P.; Popova, N.M.; Zheksenbaeva, Z.T.; Sass, A.S.; Salakhova, R.Kh.; Dosumov, K.D.

    2002-01-01

    The results of X-ray fluorescence analysis of polyoxide catalysts on of Mn, Cu, Ni, rare earth elements, alkaline earth elements base supported on 2 % Ce/θ-Al 2 O 3 are presented. This polyoxide catalysts are using for deep methane oxidation. DRON-4-7 X-ray diffractometers was applied for the analysis. It was found, that oxides in Ni-Cu-Cr catalysts after long time heating up to 1200 deg. C have been interacted with catalyst supports with Ni(Cu)Al 2 O 3 aluminates formation and due to its decomposition transformation degree of CH 4 to CO 2 are reduced. Activity of MnBaSrCeLa catalysts after heating up to 1200 deg. C does not changed

  7. Characteristics and genesis of Rare Earth Element (REE) in western Indonesia

    Science.gov (United States)

    Handoko, A. D.; Sanjaya, E.

    2018-02-01

    Rare Earth Element (REE) has unique properties that have been used in many hightech applications. The demand of REE increased recently in the world due to its special properties. Although REE concentration in the crust is higher than gold, economically viable deposits are still rare. Reduction of REE exports by China cause increased prices of REE. Due to this condition, exploration of potential REE mines emerged. Indonesia also participates in this phenomenon, and explore the possibility of REE mines in its area. This review will discuss the characteristics and genesis of REE and its occurrence in western Indonesia; focused in Sumatera, Tin Island, and Kalimantan. The review is done based on literature research from several resources about characteristics of rare earth element in general and in the given area. The research shows that the potential REE mines can be found in several different locations in Indonesia, such as Tin Island, Sumatera, and Kalimantan. Most of them are composed of monazite, zircon, and xenotime as rare earth minerals. Monazite iss known for its elevated number of radioactive elements, so study about radioactive content and more environment friendly ore processing becomes compulsory.

  8. Element Abundances in Meteorites and the Earth: Implication for the Accretion of Planetary Bodies

    Science.gov (United States)

    Mezger, K.; Vollstaedt, H.; Maltese, A.

    2017-12-01

    Essentially all known inner solar system materials show near chondritic relative abundances of refractory elements and depletion in volatile elements. To a first approximation volatile element depletion correlates with the respective condensation temperature (TC) of the elements. Possible mechanisms for this depletion are incomplete condensation and partial loss by evaporation caused by heating prior to or during the planetesimal accretion. The stable isotope compositions of almost all moderately volatile elements in different meteorite classes show only minor, or no evidence for a Rayleigh-type fractionation that could be attributed to partial condensation or evaporation. The different classes of meteorites also show that the degree of depletion in their parent bodies (i.e. mostly planetesimals) is quite variable, but nevertheless systematic. For primitive and least disturbed carbonaceous chondrites the element depletion pattern is a smooth function of TC. The accessible silicate Earth also shows this general depletion pattern, but in detail it is highly complex and requires differentiation processes that are not solely controlled by TC. If only highly lithophile elements are considered the depletion pattern of the silicate Earth reveals a step function that shows that moderately volatile lithophile elements have abundances that are ca. 0.1 times the chondritic value, irrespective of their TC. This element pattern observed for bulk silicate Earth can be modelled as a mixture of two distinct components: ca. 90% of a strongly reduced planetary body that is depleted in highly volatile elements and ca. 10% of a more volatile element rich and oxidized component. This mixture can account for the apparent Pb- paradox observed in melts derived from the silicate Earth and provides a time constraint for the mixing event, which is ca. 70 My after the beginning of the solar system. This event corresponds to the giant impact that also formed the Moon.

  9. Determination of rare earth elements in products of Chadormalu iron ore concentrator plant (Iran) from beneficiation point of view

    International Nuclear Information System (INIS)

    Jorjani, E.; Bagherieh, A. H.; Rezai, B.

    2007-01-01

    :Different samples have been prepared from different products in Chadormalu iron ore concentrator plant: Low intensity magnetite separators concentrate (magnetite concentrate), reverse flotation tail (final hematite concentrate), flotation concentrate (apatite concentrate), final tail (L.I. M.S. tail + reverse flotation concentrate + apatite flotation tail). The samples were used for rare earth elements (REEs) distribution and origin studies. The assay of REEs was determined by ICP-MS spectrometry. The amount of total (light and heavy) REEs were 9631, 291, 199, 2236 ppm and the distributions were 19.3, 3.6, 10.1, 67% in flotation concentrate (apatite concentrate), reverse flotation tail (hematite concentrate), magnetite concentrate and total tail respectively. About 19.3% of total REEs were distributed in apatite concentrate with an assay of 9631 ppm. Therefore, further studies have been conducted on this product. According to the Xray studies the minerals of fluoroapatite, ankerite and calcite are the main mineral phases in apatite concentrate which the apatite is dominant among them. The scanning electron microscopy studies were shown that the high amount of REEs distributed on fluoroapatite mineral. The results have clearly shown that the apatite concentrate that is a by product of iron dressing in Chadormalu plant, with a low economical value and left without any further treatment, can be used as a significant source of REEs. According to this characterization studies, the recovery of a mixed rare earth oxide from fluoroapatite is possible either with the treatment of liquors from the total dissolution of the ore in nitric acid or with the proposed treatment of the phosphogypsum by-product from the conventional sulphuric acid route and the recovery of rare earth oxides from phosphoric acid sludges that the detailed flowsheet needs further extraction work

  10. Effect of rare earth elements on the distribution of photosynthate in sugar beet

    International Nuclear Information System (INIS)

    Bai Baozhang; Yang Yuchang; Meng Xianju; Wang Yuefeng; Bai Song

    1995-01-01

    The effect of rare earth elements on the distribution of photosynthate in sugar beet was studied. The results indicated that rare earth elements stimulated CO 2 assimilation, increased the ratio of root and tops (R/T), improved the distribution of photosynthate and stimulated the transport of organic matter from leaf to root of sugar beet plant. The treatment with 0.05% was shown to have the most significant effect among all the treatments

  11. Maria Goeppert Mayer's Theoretical Work on Rare-Earth and Transuranic Elements

    OpenAIRE

    Wang, Frank Y.

    2008-01-01

    After the discovery of element 93 neptunium by Edwin McMillan and Philip H. Abelson in 1941, Maria Goeppert Mayer applied the Thomas-Fermi model to calculate the electronic configuration of heavy elements and predicted the occurrence of a second rare-earth series in the vicinity of elements 91 or 92 extending to the transuranic elements. Mayer was motivated by Enrico Fermi, who was at the time contemplating military uses of nuclear energy. Historical development of nuclear science research le...

  12. Separation of traces of traces of trans-plutonium elements in weight quantities of rare earths

    International Nuclear Information System (INIS)

    SORET, Christian

    1969-08-01

    The author reports the separation of trans-plutonium elements and their dosing in a mixture of fission products. In some situations dosing is performed on both rare earths and trans-plutonium elements. The chemical separation process is a chromatographic method of exchange on an anionic resin in concentrated lithium chloride. He proposes a brief overview of separation processes, describes the separation mechanism, and then reports preliminary studies of the influence of increasing quantities of rare earths and the influence of increasing heights of resin bed in order to determine the best conditions of separation. He describes the preparation of resin and of the column, the introduction of the fixing solution at the top of the column, the preparation of lithium chloride solutions. He presents the adjustment and measurement devices, and the calculation of the resin minimum volume. Results are then presented and discussed. The operation mode is addressed: devices, reagents, preparation techniques (preparation of lithium chloride solutions) [fr

  13. Determination of rare earth elements with group separation irradiation followed by neutron activation analysis. Application to brazilian standards BB-1 and GB-1

    International Nuclear Information System (INIS)

    Alcala, A.L.; Figueiredo, A.M.G.; Marques, L.S.; Astolfo, R.

    1989-01-01

    In order to determine the rare earth elements (REE) in rocks, by neutron activation analysis, a group separation, before irradiation, was developed. The Brazilian geological standards BB-1 and GB-1, provided by Instituto de Geociencias da Universidade da Bahia, were analyzed. The method was based on acid digestion of the samples, cation exchange separation with a Dowex 50WX8 column and coprecipitation of the REE with calcium oxalate. Interferents, like U, Th, Ta and Fe were eliminated. The concentration values of ten REE's (La, Ce, Pr, Nd, Sm, Eu, Tb, Ho, Yb and Lu) were determined. The analysis of Pr made a contribution to the knowledge of the REE contents in these geological standards, since there are not yet results in the literature. The other REE data obtained were compared with literature values and some discrepancies are discussed. (author) [pt

  14. RARE EARTH ELEMENTS: A REVIEW OF PRODUCTION, PROCESSING, RECYCLING, AND ASSOCIATED ENVIRONMENTAL ISSUES

    Science.gov (United States)

    Rare earth elements (REEs) are a group of 15 chemical elements in the periodic table, specifically the lanthanides. Two other elements, scandium and yttrium, have a similar physiochemistry to the lanthanides, are commonly found in the same mineral assemblages, and are often refe...

  15. Study of alkaline-earth element complexes in anhydrous acetic acid

    International Nuclear Information System (INIS)

    Petit, N.

    1968-10-01

    We have studied the complexes of alkaline-earth elements in anhydrous acetic acid. Using glass-electrode potentiometry we have studied the titration of alkaline earth acetates with perchloric acid which is the strongest acid in anhydrous acetic acid. These titrations have shown that the basic strength of these acetates increases as follows: Mg 4 ); the mixed acetate-acid sulfate complex of barium: Ba (OAc)(HSO 4 ); the mixed acetate-chloride of barium: Ba (OAc)(Cl). (author) [fr

  16. Speciation of rare earth elements in different types of soils in China

    International Nuclear Information System (INIS)

    Wang Lijun; Zhang Shen; Gao Xiaojiang; Liu Shujuan

    1997-01-01

    Contents, distribution patterns, physical and chemical speciation of rare earth elements (REEs) in laterite (tropical zone), red earth (middle subtripical earth), yellow brown soil (Northern subtripical earth), cinnamon soil (warm temperature zone), leached chernozem (temperate zone) and albic bleached soil (temperate zone) in China were determined with instrumental neutron activation analysis (INAA). Content and distribution patterns of ERRs are closely related to soil mechanical composition. In laterite, red earth, yellow brown soil and leached chernozem, REEs mainly enrich in fine grain particles or coarser grain partials while in clay particles no such enrichment was found. The distribution patterns of REEs in these soils are consistent with the REE features of their parent rocks. In all the six soils, REEs mainly exist in residual form, and with the increase of atomic number, intermediate REEs (IRRE) have lower proportions of residual form than light REEs (LREE) and heavy REEs (HREE). For the six unstable forms, water soluble form has the lowest proportion. The proportions of exchangeable form, carbonate and specific adsorption form are lower. The proportions of Fe-Min oxides form in different types of soils decrease gradually from Southern China to Northern China following the order: laterite > red earth > yellow brown soil > cinnamon soil, leached chernozem, albic bleached soil. Proportions of bound organic matters are higher and follow the order: Albic bleached soil > leached chernozem > red earth > laterite > yellow brown soil > cinnamon soil. The albic bleached soil has higher proportion of softly bound organic matter form. The leached chernozem has higher proportion of tightly bound organic matter form. Form of bound to organic matter in laterite is almost totally made up of form of softly bound to organic matter

  17. Study of rare earth elements as material for control rods

    International Nuclear Information System (INIS)

    1975-03-01

    The properties of rare earth elements as the material for control rods were studied. The rare earth elements, especially europium oxide, has the nuclear property corresponding to boron carbide, and its neutron absorption process does not emit alpha particles. The elements produced as a result of neutron capture also have large capture cross sections. This paper presents survey report on the properties and nuclear properties of rare earth elements, and comparison with other materials. Preliminary experiment was performed to make the pellets of europium oxide, and is described in this paper. Because of large density, the crystal form to be made was monoclinic system. Europium hydroxide was decomposed at 1000 0 C and 10 -5 torr. The obtained powder was dipped into benzene, and dryed in the air at 450 0 C. This powder was pressed and sintered in the air for one hour at 1500 0 C. The density of the obtained pellets was 97.0% of the theoretical density. The cross section of europium for fast neutron absorption is not yet accurately obtained, and is in the range between 4.65 and 8.5 barn for 151 Eu(n,γ) reaction. Since chain absorption reaction is caused in Eu, the overall capability of neutron absorption is not much changed by the loss of original material due to absorption. The pellets of europium oxide may be handled in air, but must be kept in dry atmosphere. The reactions of europium oxide with various metals were also investigated. The characteristic behavior in case of irradiation depends on the amount of silicon contained, and it was very good if the amount was less than 0.03%. (Kato, T.)

  18. Report on the intercomparison for the determination of trace elements in Lake Sediment (SL-1)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-02-01

    The determination of trace element concentrations including those of the rare-earths in geological samples has gained much importance during the past decade. Knowledge of the concentrations of specific elements and of their ratios have proved essential for the understanding of the development of geological strata. With increasing use of instruments in analysis, reference samples have become essential for their calibration and various international organizations have issued reference materials to monitor precision and accuracy in chemical determinations. The IAEA has in the past organized several intercomparisons and prepared reference samples of geochemical materials. The present report deals with a recent intercomparison on the determination of trace elements in Lake Sediment (Sl-1) carried out in 1977-1978 and involving the participation of 43 institutes who returned a total of 2535 individual results on 43 elements.

  19. Determination of rare earth elements in biomonitors by neutron activation; Determinacao de elementos terras raras em biomonitores por ativacao neutronica

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Ana M.G.; Saiki, Mitiko; Ticianelli, R.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Domingos, M.; Alves, E.S.; Marcelli, M.P. [Instituto de Botanica, Sao Paulo, SP (Brazil)

    2000-07-01

    The rare earth elements (REE) are becoming more and more important from the technological point of view, due to their increasing use in modern industry. Due to this fact, environmental contamination by REE may become significant, and little information are still available about biological effects of REE in plants, animals and human beings. The use of biomonitors to control environmental pollution has been an ecological and economical alternative in Europe and United Sates, to minimize the high costs of conventional equipment s. In the present paper, neutron activation analysis was employed to determine La, Ce, Nd, Sm, Eu, Tb, Yb and Lu in the lichen Canoparmelia texana and in Tillandsia usneoides, species that have been widely used as monitors of atmospheric pollution. The results showed an accumulation of REE in the biomonitors, indicating good possibilities of their utilization in the study of environmental contamination by REE. (author)

  20. Generalized phase diagram for the rare-earth elements: Calculations and correlations of bulk properties

    International Nuclear Information System (INIS)

    Johansson, B.; Rosengren, A.

    1975-01-01

    A ''generalized'' phase diagram is constructed empirically for the lanthanides. This diagram makes it possible, not only in one picture, to assemble a lot of information but also to predict phase transitions not yet experimentally accessible. Further, it clearly illustrates the close relation between the members of the lanthanide group. To account for some of its features, the pseudopotential method is applied. The trend in crystal structure through the lanthanide series can thereby be qualitatively accounted for, as can the trend in crystal structure for an individual element, when compressed. A scaling procedure makes it possible to extend the treatment to elements neighboring the lanthanides in the Periodic Table. In total 25 elements are considered. An atomic parameter f (relatable to the pseudopotential) is introduced, by means of which different phase transitions, both for an individual rare-earth element and intra-rare-earth alloys, can be correlated to certain critical values of this parameter. A nonmagnetic rare-earth series (Sc, Lu, Y, La, and Ac) is introduced and the occurrence of superconductivity is discussed with special emphasis on the pressure dependence of the transition temperature. This temperature can be correlated to the above-mentioned parameter f, both for intra-rare-earth alloys and pure elements at different pressures. The correlation implies that actinium is a superconductor with a critical temperature which could be as high as (11--12) degree K

  1. Analog elements for transuranic chemistries

    International Nuclear Information System (INIS)

    Weimer, W.C.

    1982-01-01

    The analytical technique for measuring trace concentrations of the analog rare earth elements has been refined for optimal detection. The technique has been used to determine the rare earth concentrations in a series of geological and biological materials, including samples harvested from controlled lysimeter investigations. These studies have demonstrated that any of the trivalent rare earth elements may be used as analog elements for the trivalent transuranics, americium and curium

  2. PIXE methodology of rare earth element analysis and its applications

    International Nuclear Information System (INIS)

    Ma Xinpei

    1992-01-01

    The Proton Induced X-ray Emission (PIXE) methodology of rare earth element (REEs) analysis is discussed, including the significance of REE analysis, the principle of PIXE applied to REE, selection of characteristic X-ray for Lanthanide series elements, deconvolution of highly over lapped PIXE spectrum and minimum detection limit (MDL) of REEs. Some practical applications are presented. And the specialities of PIXE analysis to the high pure REE chemicals are discussed. (author)

  3. Neutron activation analysis of the rare earth elements in rocks from the earth's upper mantle and deep crust

    International Nuclear Information System (INIS)

    Stosch, H.-G.; Koetz, J.; Herpers, U.

    1986-01-01

    Three techniques for analyzing rare earth elements (REE) in geological materials are described, i.e. instrumental neutron activation analysis (INAA), neutron activation analysis with pre-irradiation chemical REE separation (PCS-NAA) and radiochemical neutron activation analysis (RNAA). The knowledge of REE concentrationd in eclogites, peridotites and minerals from the earth's lower crust and upper mantle is very useful in constraining their petrogenetic history. (author)

  4. Determination of rare earths in their extraction processing

    International Nuclear Information System (INIS)

    You Jiannan; Zhang Yuqin

    1989-01-01

    A method for determination of rare earths in ores, ion-exchange resins and solution samples has been developed. The ore is molten with sodium peroxide and the molten sample is leached with triethenol amine and sodium citrate. In weak acid medium, the rare earths can be extracted by PMBP-phenol solution, and stripped with formic acid. In the acetic acidsodium acetate buffer medium of pH3, the spectrophotometric determination of rare earths with arsenazo M has been made. The rare earths in ion-exchange resins can be directly determined by spectrophotometry after being leached with hydrochloric acid and at heated condition. The rare earths with arsenazo M or a red complex. The maximum absorption of the complex is at 640 nm, and the molar absorption is 8.0 x 10 4 L centre dot mol -1 centre dot cm -1 . While the range of determination is 0.005%-0.5% and 0.001-1.0 g/L, the relative standard deviation is less than 5%, and recovery of rare earths is 98.5-105%. The method is rather simple and rapid

  5. High contents of rare earth elements (REEs) in stream waters of a Cu-Pb-Zn mining area.

    Science.gov (United States)

    Protano, G; Riccobono, F

    2002-01-01

    Stream waters draining an old mining area present very high rare earth element (REE) contents, reaching 928 microg/l as the maximum total value (sigmaREE). The middle rare earth elements (MREEs) are usually enriched with respect to both the light (LREEs) and heavy (HREEs) elements of this group, producing a characteristic "roof-shaped" pattern of the shale Post-Archean Australian Shales-normalized concentrations. At the Fenice Capanne Mine (FCM), the most important base metal mine of the study area, the REE source coincides with the mine tailings, mostly the oldest ones composed of iron-rich materials. The geochemical history of the REEs released into Noni stream from wastes in the FCM area is strictly determined by the pH, which controls the REE speciation and in-stream processes. The formation of Al-rich and mainly Fe-rich flocs effectively scavenges the REEs, which are readily and drastically removed from the solution when the pH approaches neutrality. Leaching experiments performed on flocs and waste materials demonstrate that Fe-oxides/oxyhydroxides play a key role in the release of lanthanide elements into stream waters. The origin of the "roof-shaped" REE distribution pattern as well as the peculiar geochemical behavior of some lanthanide elements in the aqueous system are discussed.

  6. Formulae for the determination of the elements of the E\\"otvos matrix of the Earth's normal gravity field and a relation between normal and actual Gaussian curvature

    OpenAIRE

    Manoussakis, G.; Delikaraoglou, D.

    2011-01-01

    In this paper we form relations for the determination of the elements of the E\\"otv\\"os matrix of the Earth's normal gravity field. In addition a relation between the Gauss curvature of the normal equipotential surface and the Gauss curvature of the actual equipotential surface both passing through the point P is presented. For this purpose we use a global Cartesian system (X, Y, Z) and use the variables X, and Y to form a local parameterization a normal equipotential surface to describe its ...

  7. ICP Mass and Optical Emission Spectrometry of Ore Samples Containing Rare Earth Elements

    International Nuclear Information System (INIS)

    Mohammed, A.E.W.M.

    2013-01-01

    Inductively Coupled Plasma Optical Emission and Mass Spectrometry (ICP-OES and ICPMS) are widely accepted as a rapid and sensitive techniques for Rare Earth Elements (REEs) analysis of geological samples. However, the achievable accuracy of these techniques are seriously limited by the problem of matrix interferences. In this study, matrix effects in ICP-AES were addressed using two approaches. In the first approach, the mechanisms of matrix interferences and analyte excitation were elucidated fundamentally. First, matrix effects from a comprehensive list of thirty-nine elements were investigated. It was confirmed that matrix elements with low second (instead of the widely reported first) ionization potentials (IP) produce a stronger matrix effect in all cases. Another critical parameter defining the severity of the matrix effect was found to be the availability of low-lying energy levels in the doubly charged matrix ion. Penning ionization followed by ion electron recombination through successive cycles is proposed as the mechanism for the more severe matrix effects caused by low second-IP matrices. In the second approach ICP-OES and ICP-MS are applied in this study for the analysis of Rare Earth Elements of two selected standard reference samples namely AGV-2 and BCR-2 beside a fluorspar geological sample (G-9 sample). Effective procedures are developed to avoid the spectral interference from matrix elements by using ion exchange resin Amberlite IR-120 before determination of REEs using ICP-OES and ICPMS. The potential of the method is evaluated by analysis of Certified Reference Materials (AGV-2 and BCR-2). Results obtained by ICP-MS show that experimental data are in agreement with the certified values and their values could be used as a quantitative data. The results obtained using ICP-OES were compared and discussed.

  8. The phosphorus fertilizer production as a source of rare-earth elements pollution of the environment

    International Nuclear Information System (INIS)

    Volokh, A.A.; Gorbunov, A.V.; Revich, B.A.; Gundorina, S.F.; Frontas'eva, M.V.; Chen Sen Pal.

    1989-01-01

    This paper considers some peculiarities of the production of phosphorus fertilizers from the point of view of the pollution of the environment with rare-earth elements. The principal possibility is demonstrated of the determination of the influence of a given type of production on the environment by measuring the change in the rare-arth elements interrelationship in the show. The main source of industrial dust is identified. The distribution of pollutants in dependence on the size of aerosol particles is given. The data on the concentrations of the pollutants in agricultural plants, employees hair and hair of local residents are also reported. 8 refs.; 4 figs.; 4 tabs

  9. Determination of rare earth elements in Solanum lycocarpum in `Cerrado de Emas`- Pirassununga, State of Sao Paulo, Brazil, by neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Piorino-Maria, S.; Figueiredo, A.M.G.; Ticianelli, R.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Ceccantini, G. [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    1997-10-01

    In the present work, the rare earth elements concentration (REE) in plant leaves of the species Solanum lycocarpum from `Cerrado de Emas`, Pirassununga, Sao Paulo, and the soil where they have grown up, was determined by using instrumental neutron activation analysis. The obtained values for most of the light REE (La, Ce, Nd) were higher than the reference values for REE in plants. These results suggest that the light REE are more available in the soil than the heavy REE. The concentration of REE in the plant and the soil were normalized to chondrite contents, showing in the soil diagram a negative anomaly for the concentration of Eu and a positive anomaly for the concentration of Ce, which were not observed in the plant diagram. (author). 11 refs., 1 fig., 2 tabs.

  10. Determination of rare earth elements in Solanum lycocarpum in 'Cerrado de Emas'- Pirassununga, State of Sao Paulo, Brazil, by neutron activation analysis

    International Nuclear Information System (INIS)

    Piorino-Maria, S.; Figueiredo, A.M.G.; Ticianelli, R.B.; Ceccantini, G.

    1997-01-01

    In the present work, the rare earth elements concentration (REE) in plant leaves of the species Solanum lycocarpum from 'Cerrado de Emas', Pirassununga, Sao Paulo, and the soil where they have grown up, was determined by using instrumental neutron activation analysis. The obtained values for most of the light REE (La, Ce, Nd) were higher than the reference values for REE in plants. These results suggest that the light REE are more available in the soil than the heavy REE. The concentration of REE in the plant and the soil were normalized to chondrite contents, showing in the soil diagram a negative anomaly for the concentration of Eu and a positive anomaly for the concentration of Ce, which were not observed in the plant diagram. (author). 11 refs., 1 fig., 2 tabs

  11. Rare earths: critical elements for various applications and challenges in their separation

    International Nuclear Information System (INIS)

    Singh, D.K.; Chakravartty, J.K.

    2015-01-01

    High purity rare earths oxides, metal and alloys find wide applications in high tech area such as nuclear energy, permanent magnets, materials for storing hydrogen, phosphors, laser, etc. Rare earths consists a group of 15 elements from La to Lu in the periodic table and it also includes Sc and Y. Due to similar chemical nature owing to common oxidation state of +3, rare earths are very difficult to separate from each other. They have very low separation factors with acidic extractants like D2EHPA and EHEHPA and hence require large number of stages in various cascade of extraction process. Monazite (a source of rare earths, thorium and uranium) is processed at IREL to separate rare earths from thorium and uranium. The rare earths are fractionated into three groups namely light rare earths (LRE), middle rare earths (MRE) and heavy rare earths (HRE) by solvent extraction method employing EHEHPA as extractant

  12. The transfer of rare earth elements through liquid extraction membranes

    International Nuclear Information System (INIS)

    Kapranchik, V.P.; Proyaev, V.V.; Kopyrin, A.A.

    1988-01-01

    The transfer of rare earth elements through liquid extraction membranes, presenting Dacron nuclear filters, impregnated by extractants of different types (tributylphosphine oxide; di-2-ethylhexylphosphoric acid, HDEHP; trioctylamine, TOA) is investigated. It is ascertained that in systems with extractant-carriers TOA and HDEHP inversion of dependences of flow values and distribution coefficients on the element atomic number is observed. Mathematical model of transfer, permitting to establish relation between extractional and transport characteristics of the membrane, is suggested

  13. Study on Yen Phu rare earth ore concentrate treatment technology and separation of major heavy rare earth elements by solvent extraction method

    International Nuclear Information System (INIS)

    Le Ba Thuan; Pham Quang Trung; Vu Lap Lai

    2003-01-01

    1. Yenphu rare earth ore concentrate treatment by alkali under pressure: On the base of studying mineral and chemical compositions of Yenphu rare earth ore concentrate containing 28% TREO and conditions for digestion of ore concentrate by alkali under pressure such as ore concentrate/ NaOH ratio, alkali concentration, pressure and temperature at bench scale (100 gram and 5 kg per batch), the optimal conditions for decomposition of REE ore concentrate have been determined. The yield of the decomposition stage is about 90%. The studies on alkali washing, REE leaching by HCl, pH for leaching process, and iron and radioactive impurities removing by Na 2 S + Na 2 PO 4 have been carried out. The obtained results show that mixture of Na 2 S 5% + Na2PO 4 1% is effective in iron and radioactive impurities removing. The obtained REE oxides get purity of > 99% and meet the need of solvent extraction (SX) individual separation of rare earth elements. The schema for recovery of REEs from Yenphu REE ore concentrate by alkali decomposition under high pressure has been proposed. 2. Fractionation of Yenphu rare earth mixture into subgroups by solvent extraction with PC88A: On the base of simulation program, the parameters for fractional process of rare earths mixture into subgroups by solvent extraction with PC88A have been proposed and determined by experimental verification on mixer-settler set. According to this process, rare earths mixture fractionated into yttrium and light subgroups. In their turn, the light subgroup was separated into light (La, Ce, Pr, Nd) and middle (Sm, Eu, Gd) subgroups. The average yield of the process reached value > 95%. The composition of light subgroup meets the needs for individual separation of Gd, Eu, and Sm. 3. Separation and purification of yttrium: The process for recovery of yttrium consists of two stages: upgrade to get high quality Y concentrate by PC88A and purification by Aliquat 336 in NH 4 SCN-NH 4 Cl medium. The process parameter for

  14. Determination of rare earth elements in seawater by ICP-MS after preconcentration with a chelating resin-packed minicolumn

    International Nuclear Information System (INIS)

    Zhu Yanbei; Itoh, Akihide; Fujimori, Eiji; Umemura, Tomonari; Haraguchi, Hiroki

    2006-01-01

    Rare earth elements (REEs) in seawater were preconcentrated 20-fold (from 50 to 2.5 ml) by a chelating resin-packed minicolumn device and determined by inductively coupled plasma mass spectrometry (ICP-MS). The recoveries for REEs were in the range from 90% for Eu and Dy to 98% for Yb, and their standard deviations were less than 4%. The lower detection limits for REEs ranged from 0.06 ng l -1 for Lu to 0.5 ng l -1 for Sm. The analytical results for REEs in seawater reference materials (NASS-5, CASS-3, and CASS-4), the Take Island coastal seawater, and the Ise Bay coastal seawater were evaluated as the REE distribution patterns with shale-normalization and deep seawater-normalization. Slight relative enrichments of heavy REEs were observed in the Take Island coastal seawater and the Ise Bay coastal seawater, which might be attributed to the input from the river flows containing more dissolved heavy REEs. In addition, positive anomalies of Sm were found in the normalized REE distribution patterns for NASS-5, CASS-3, and CASS-4, which would be attributed to the contamination in the preparation process of reference materials by NRC

  15. Rare-earth elements in uranium deposits in the municipality of Pedra, Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Kennedy Francys Rodrigues Damascena; Romilton dos Santos Amaral; Jose Araujo dos Santos Junior; Alberto Antonio da Silva; Romulo Simoes Cezar Menezes

    2015-01-01

    In the present study, soil and rock samples were collected from uranium deposits in the city of Pedra, Pernambuco, Brazil. These samples were analyzed using neutron activation analysis to identify the occurrence of rare-earth elements (REE). The most abundant elements found were Ce, Nd and La, with concentrations 12 times higher than the average in the earth's crust and 4.6 times higher than values reported in worldwide studies, including Brazil. Nonetheless, further studies to examine the economic feasibility of mining REEs from this site are necessary. (author)

  16. Determine Daytime Earth's Radiation Budget from DSCOVR

    Science.gov (United States)

    Su, W.; Thieman, M. M.; Duda, D. P.; Khlopenkov, K. V.; Liang, L.; Sun-Mack, S.; Minnis, P.; SUN, M.

    2017-12-01

    The Deep Space Climate Observatory (DSCOVR) platform provides a unique perspective for remote sensing of the Earth. With the National Institute of Standards and Technology Advanced Radiometer (NISTAR) and the Earth Polychromatic Imaging Camera (EPIC) onboard, it provides full-disk measurements of the broadband shortwave and total radiances reaching the L1 position. Because the satellite orbits around the L1 spot, it continuously observes a nearly full Earth, providing the potential to determine the daytime radiation budget of the globe at the top of the atmosphere. The NISTAR is a single-pixel instrument that measures the broadband radiance from the entire globe, while EPIC is a spectral imager with channels in the UV and visible ranges. The Level 1 NISTAR shortwave radiances are filtered radiances. To determine the daytime TOA shortwave and longwave radiative fluxes, the NISTAR measured shortwave radiances must be unfiltered first. We will describe the algorithm used to un-filter the shortwave radiances. These unfiltered NISTAR radiances are then converted to the full disk shortwave and daytime longwave fluxes, by accounting for the anisotropic characteristics of the Earth-reflected and emitted radiances. These anisotropy factors are determined by using the scene identifications determined from multiple low Earth orbit and geostationary satellites matched into the EPIC field of view. Time series of daytime radiation budget determined from NISTAR will be presented, and methodology of estimating the fluxes from the small unlit crescent of the Earth that comprises part of the field of view will also be described. The daytime shortwave and longwave fluxes from NISTAR will be compared with CERES dataset.

  17. Bacterial Cell Surface Adsorption of Rare Earth Elements

    Science.gov (United States)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  18. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    Science.gov (United States)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-02-01

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) & 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) &29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  19. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    International Nuclear Information System (INIS)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-01-01

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232 Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted

  20. Thorium, Uranium and Rare Earth Elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas Advanced Materials Plant (LAMP)

    International Nuclear Information System (INIS)

    Al-Areqi, W.M.; Amran Abdul Majid; Sukiman Sarmani

    2013-01-01

    Full-text: Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6 Bq/ kg) whereas the Th and U concentrations in WLP were determined to be 1952.9 ± 17.6 ppm (7987.4 ± 71.9 Bq/ kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/ kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/ kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232 Th compared to Malaysian soil natural background (63 - 110 Bq/ kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6 % and 4.7 ± 0.1 % respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04 %, 1.6 %, 0.22 % and 0.06 % respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be re

  1. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    Energy Technology Data Exchange (ETDEWEB)

    AL-Areqi, Wadeeah M., E-mail: walareqi@yahoo.com; Majid, Amran Ab., E-mail: walareqi@yahoo.com; Sarmani, Sukiman, E-mail: walareqi@yahoo.com [Nuclear Science Programme, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi (Malaysia)

    2014-02-12

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of {sup 232}Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  2. Recovery and separation of rare-earth elements, barium, and strontium from bastnasite with sulfuric acid

    International Nuclear Information System (INIS)

    Eisele, J.A.; Bauer, D.J.

    1974-01-01

    A bench-scale investigation was made of a concentrated H 2 SO 4 reaction for recovering and separating rare earth elements, barium, and strontium from a bastnaesite ore and byproduct. Barium and strontium were dissolved in the concentrated acid and precipitated as a mixed product by water dilution. Separation of strontium from barium was effected by reaction with Na 2 CO 3 solution, followed by a dilute acid leach of the SrCO 3 formed. After removing the barium and strontium from bastnaesite ore, the rare-earth elements were roasted to water-soluble sulfates. The rare earth sulfate solution was subsequently processed by solvent extraction to produce rare-earth oxides low in lead and magnesium. (U.S.)

  3. Rare earth elements as a by-catch of sedimentary deposits. Exploration program of rare earth elements; Selten Erd Elemente als Beifang sedimentaerer Lagerstaetten. Erkundungsprogramm Selten Erd Elemente

    Energy Technology Data Exchange (ETDEWEB)

    Linhardt, E.; Gebhardt, A. (comps.)

    2014-02-15

    The increasing demand for rare earth elements (REE) in the field of ''green technologies'' on the one hand and the shortage of raw materials on the world markets on the other hand confronted also Bavaria as an industrial location with growing supply problems in these ''high tech raw materials''. The aim of exploration was the clarification of the feedstock REE potential of heavy mineral concentrates which are obtained in the industrial extraction and processing of sand and kaolin in existing extraction operations in northern Bavaria as by catch and are potentially winnable or marketable. The in-depth investigation enabled the potential of found rare earth elements and other high-tech metal oxides that can be classified as very likely find it in terms of an economic recovery. [German] Der zunehmende Bedarf an Selten Erd Elementen (SEE) im Bereich der ''Gruenen Technologien'' zum Einen sowie die Rohstoffverknappung auf den Weltmaerkten zum Anderen konfrontiert auch Bayern als Industriestandort mit wachsenden Versorgungsproblemen bei diesen ''high tech-Grundstoffen''. Ziel der Erkundung war die Klaerung des rohstofflichen SEE-Potenzials von Schwermineralkonzentraten, die bei der grosstechnischen Gewinnung und Aufbereitung von Sand und Kaolin in vorhandenen Gewinnungsbetrieben Nordbayerns als Beifang anfallen und potenziell gewinn- bzw. vermarktbar sind. Im Zuge der Untersuchung konnten nutzbare Potenziale von Selten Erd Elementen und anderen high-tech - Metalloxiden gefunden werden, die sehr wahrscheinlich als fuendig im Hinblick auf eine wirtschaftliche Gewinnung eingestuft werden koennen.

  4. Rare earth element composition of Paleogene vertebrate fossils from Toadstool Geologic Park, Nebraska, USA

    Energy Technology Data Exchange (ETDEWEB)

    Grandstaff, D.E., E-mail: grand@temple.edu [Department of Earth and Environmental Science, Temple University, Philadelphia, PA 19122 (United States); Terry, D.O. [Department of Earth and Environmental Science, Temple University, Philadelphia, PA 19122 (United States)

    2009-04-15

    Fossil bones and teeth from terrestrial environments encode unique rare earth and trace element (REE and TE) signatures as a function of redox conditions, pH, concentrations of complexing ligands, and water-colloid interactions. This signature is set early in the fossilization process and serves as a paleoenvironmental and paleoclimatic proxy. These signatures can also be used to interpret temporal and spatial averaging within vertebrate accumulations, and can help relocate displaced fossil bones back into stratigraphic context. Rare earth elements in vertebrate fossils from upper Eocene and Oligocene strata of Toadstool Geologic Park, northwestern Nebraska, record mixing and evolution of Paleogene vadose or groundwaters and variations in paleoenvironments. REE signatures indicate that HREE-enriched alkaline groundwater reacted with LREE- and MREE-enriched sediments to produce 3-component mixtures. REE signatures become increasingly LREE- and MREE-enriched toward the top of the studied section as the paleoenvironment became cooler and drier, suggesting that REE signatures may be climate proxies. Time series analysis suggests that REE ratios are influenced by cycles of ca. 1050, 800, 570, 440, and 225 ka, similar to some previously determined Milankovitch astronomical and climate periodicities.

  5. Microwave-induced combustion of crude oil for further rare earth elements determination by USN–ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, J.S.F. [Departamento de Química Inorgânica, Universidade Federal do Rio Grande do Sul, 97105-900 Porto Alegre, RS (Brazil); Pereira, L.S.F.; Mello, P.A. [Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Guimarães, R.C.L.; Guarnieri, R.A.; Fonseca, T.C.O. [CENPES/PETROBRAS, 21941-945 Rio de Janeiro, RJ (Brazil); Flores, E.M.M., E-mail: ericommf@gmail.com [Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)

    2014-09-24

    Highlights: • Microwave-induced combustion was applied for light and heavy crude oils digestion. • It was feasible to determine all the REEs in heavy crude oil by ICP-MS. • Only diluted acid solutions were used in agreement to green chemistry recommendations. - Abstract: A procedure for light and heavy crude oils digestion by microwave-induced combustion (MIC) is proposed for the first time for further rare earth elements (REE) determination by inductively coupled plasma mass spectrometry (ICP-MS) equipped with an ultrasonic nebulizer (USN). Samples of crude oil (API density of 10.8–23.5, up to 250 mg) were inserted in polycarbonate capsules and combusted using 20 bar of oxygen and 50 μL of 6 mol L{sup −1} ammonium nitrate as igniter. Nitric acid solutions (1–14.4 mol L{sup −1}) were evaluated for analyte absorption and a reflux step was applied after combustion (5 min of microwave irradiation at 1400 W) in order to achieve better analyte recoveries. Accuracy was evaluated using a spiked sample and also by comparison of results obtained by microwave-assisted digestion combined to ultraviolet radiation (MW–UV) and by neutron activation analysis (NAA). Using 3 mol L{sup −1} HNO{sub 3}, quantitative recoveries (better than 97%) were obtained for all analytes. Blank values were always negligible. Agreement was higher than 96% for La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y by comparison of results with those obtained by MW–UV and by NAA (only for La, Ce, Nd, Sm, and Yb). Residual carbon content in digests using MIC was always below 1%. As an advantage over conventional procedures for crude oil digestion, using MIC, it was possible to use diluted acid as absorbing solution, obtaining better limits of detection and avoiding interferences in REE determination by USN–ICP-MS.

  6. PIXE studies on elemental characterization of offset printing ink tagged with rare-earth taggants

    International Nuclear Information System (INIS)

    Joseph, D.; Saxena, A.; Choudhury, R.K.; Maind, S.D.

    2007-01-01

    Proton Induced X-ray Emission Technique (PIXE) has been used for elemental characterization of offset printing ink tagged with rare-earth taggants, with a proton beam of energy 4 MeV at Folded Tandem Ion Accelerator (FOTIA) at BARC, Trombay, Mumbai, India. The offset printing ink was tagged with rare-earth (La, Pr, Nd, Sm, Eu and Gd) thenoyltrifluoroacetonate chelates at about 1000 ppm level for each element separately. Small aliquots (approximately 20 mg) of tagged inks were coated on paper supports and then analyzed. Well-resolved rare-earth L X-rays were detected using a high resolution Si(Li) detector. Satisfactory results to identify and quantify the taggants were achieved. (author)

  7. Effect of Rare Earth Element on Microstructure and Properties of in situ Synthesized TiB2/Al Composites

    Directory of Open Access Journals (Sweden)

    QU Min

    2018-03-01

    Full Text Available The effect of rare earth element Ce, Sc and Er on TiB2 particles and matrix alloy micros-tructure of TiB2/Al composites was studied with in situ synthesis method. It shows that the addition of rare earth element improves the microstructure and properties of TiB2/Al composites notably. The particles of TiB2 are relatively homogenously distributed as adding 0.3% (mass fraction rare earth element Sc and Er, moreover, it is Er that refines the microstructure of matrix alloy most significantly, then is Sc. Similarly, it is demonstrated that the addition of Sc and Er results in better tensile strength, which is enhanced by 32% and 31%, respectively; the addition of Er also leads to the best ductility by 85% with optimal tensile property. Meanwhile, fracture morphology analysis reveals that the fracture of the composites is microporous gathered ductile fracture when adding Sc and Er. Finally, it is verified that the mechanism of rare earth element on composites lies in two aspects:one is that the addition of rare earth element improves the wettability of the composites and suppresses the agglomeration of TiB2 particles; the other is that the addition of rare earth element refines the microstructure of matrix alloy and then improves the tensile strength of the composites.

  8. Study on the extraction of rare earth elements in liquid bismuth

    International Nuclear Information System (INIS)

    Harada, M.; Adachi, M.; Kai, Y.; Koike, K.

    1987-01-01

    Three factors, which are important for the extraction of rare earth elements in liquid bismuth - molten salt system, were studied, i. e., the equilibrium distribution of neodymium, samarium and bismuth between molten LiCl - liquid Bi-Li alloys, the extraction rate of rare earths, and the characteristics of the extractor with drop dispersion. The rare earth elements were extracted through redox reactions. In high range of Li-mole fraction in the alloy phase, X Li , the distribution of neodymium and bismuth in the salt phase markedly increased as X Li increased. The anomalous increase is attributed to the formation of the compound comprised of Nd, Li, Bi and oxygen in the salt phase. The redox reaction processes were very fast and the extraction rates for rare earths are controlled by the diffusion processes of the solute and the metallic lithium. The process for the formation of liquid metal drops in the continuous phase is predictable from semiempirical correlations reported for aqueous solution - organic solvent systems. The height of droplet bed being accumulated on drop settling portion is predictable from the coalescence time of single drop to a flat metal interface. The coalescence of metal drop to clean interface was very fast. The extractor type of liquid metal dispersion in molten salt is suitable for the extraction process in the fuel reprocessing of MSR or MSBR. (author)

  9. The Marine Geochemistry of the Rare Earth Elements

    Science.gov (United States)

    1983-09-01

    C3): 2045-2056. BACON, M.P., P.G. BREWER, D.W. SPENCER, T.W. MURRAY & T. GODDARD (1980). Lead - 210 , polonium - 210 , manganese and iron in the Cariaco...191 La and Pr 197 Ce: its oxidation and reduction 197 Eu 207 4.5. Conclusions 210 CHAPTER 5. Behaviour of the Rare Earth Elements in anoxic waters of...seawater and algal food . When the radioactive particles were no longer available, the accumulated radioactivity of the zooplankters was rapidly lost

  10. Geochemical behaviour of rare earth elements on metasomatic alteration of volcanic rocks

    International Nuclear Information System (INIS)

    Jordanov, J.A.; Kunov, A.J.

    1987-01-01

    Investigations are carried out on metasomatically altered Paleogene latites in order to follow up the rare earth elements (REE) geochemical behavour. Representative samples of the initial rocks (latites), from propylitized latites and quartz-sericite rocks, as well as from dickite, alumite, diaspore and monoquartzites, are analysed. The results show that REE have a behaviour of moderately mobile elements. They undergo redistribution both in quantity and in the composition of the group. The different concentrations and changes in the ΣREE compared to the initial rocks are observed and direct relationships to the degree of endogenic leaching are made. The REE mobility and redistribution during the metasomatic alterations in the region investigated are controlled by the physical-chemical conditions which play a significant role both in determining the composition of the mineral paragenese and in the fixing of REE. The distribution patterns indicate that REE redistribution in the case of metasomatic alterations is almost isochemical without any supply from hydrothermal solutions

  11. Organic Waste Composts, a Serious Rare- Earth Source as Determined by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Sroor, A.; El-Bahi, S.M.; Abdel-Halieem, A.S.; Abdel-Sabour, M.F.

    1999-01-01

    Delayed Neutron Activation Analysis technique [DNNA] was applied for investigating rare-earth elements and some heavy metals content of some locally organic fertilizers namely cattle manure (CM) , dried sewage sludge [SS] , municipal solid waste [MSW] and mixture for a (SS+MSW). The γ-ray spectrum of each sample was investigated using a HPGe detector equipped with computer unit. Fourteen elements were determined. Some of them were confirmed by the γ-γ cascades using a HPGe-HPGe coincidence spectrometer. The concentration of these elements in each sample was measured in μg/g. Some of these elements may lead to undesirable environmental effects. The undiscriminating use of organic waste as organic fertilizers may result in the increase of toxic elements [Cr, Sc, Sb, Th, etc.) in soil environment which may transfer through food chain to human health

  12. Multielement determination of major-to-ultratrace elements in deep-seawater salts by ICP-AES and ICP-MS

    International Nuclear Information System (INIS)

    Sakai, Takeshi; Nakagawa, Koji; Nakajima, Hiroshi; Itoh, Akihide; Ji, Shan; Haraguchi, Hiroki

    2002-01-01

    Major-to-ultratrace elements in deep-seawater salts were determined by ICP-AES and ICP-MS, after they were separated into the water-soluble, acid-soluble, and insoluble particle components. Deep-seawater salts were prepared from seawater collected at 344 m deep near the off-shore of Cape Muroto in Kochi Prefecture. The major and minor elements in salts were determined by ICP-AES after appropriate dilution with pure water. Trace and ultratrace elements in the water-soluble and acid-soluble components were preconcentrated by a chelating resin preconcentration method. In addition, the major to-ultratrace elements in the insoluble particle component were determined by ICP-AES and ICP-MS, after acid-digestion using HNO 3 /HF/HClO 4 . As a result, 21-35 elements in deep-seawater salts could be determined over the wide concentration range. It was found that the elements, such as Al, V, Fe, Mn, Co, Cu, Zn, and rare earth elements, were more abundant in the acid-soluble component of deep-seawater salts, which may play some essential roles in physiological effectiveness for intake of salt. (author)

  13. Determination of trace amounts of rare-earth elements in highly pure neodymium oxide by sector field inductively coupled plasma mass spectrometry (ICP-SFMS) and high-performance liquid chromatography (HPLC) techniques

    Science.gov (United States)

    Pedreira, W. R.; Sarkis, J. E. S.; da Silva Queiroz, C. A.; Rodrigues, C.; Tomiyoshi, I. A.; Abrão, A.

    2003-02-01

    Recently rare-earth elements (REE) have received much attention in fields of geochemistry and industry. Rapid and accurate determinations of them are increasingly required as industrial demands expand. Sector field inductively coupled plasma mass spectrometry (ICP-SFMS) with high-performance liquid chromatography (HPLC) has been applied to the determination of REE. HR ICP-MS was used as an element-selective detector for HPLC in highly pure materials. The separation of REE with HPLC helped to avoid erroneous analytical results due to spectral interferences. Sixteen elements (Sc, Y and 14 lanthanides) were determined selectively with the HPLC/ICP-SFMS system using a concentration gradient methods. The detection limits with the HPLC/ICP-SFMS system were about 0.5-10 pg mL-1. The percentage recovery ranged from 90% to 100% for different REE. The %RSD of the methods varying between 2.5% and 4.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two highly pure neodymium oxides samples (IPEN and Johnson Matthey Company) were performed. In short, the IPEN's materials which are highly pure (>99.9%) were successfully analyzed without spectral interferences.

  14. Determination of trace amounts of rare-earth elements in highly pure neodymium oxide by sector field inductively coupled plasma mass spectrometry (ICP-SFMS) and high-performance liquid chromatography (HPLC) techniques

    International Nuclear Information System (INIS)

    Pedreira, W.R.; Sarkis, J.E.S.; Silva Queiroz, C.A. da; Rodrigues, C.; Tomiyoshi, I.A.; Abrao, A.

    2003-01-01

    Recently rare-earth elements (REE) have received much attention in fields of geochemistry and industry. Rapid and accurate determinations of them are increasingly required as industrial demands expand. Sector field inductively coupled plasma mass spectrometry (ICP-SFMS) with high-performance liquid chromatography (HPLC) has been applied to the determination of REE. HR ICP-MS was used as an element-selective detector for HPLC in highly pure materials. The separation of REE with HPLC helped to avoid erroneous analytical results due to spectral interferences. Sixteen elements (Sc, Y and 14 lanthanides) were determined selectively with the HPLC/ICP-SFMS system using a concentration gradient methods. The detection limits with the HPLC/ICP-SFMS system were about 0.5-10 pg mL -1 . The percentage recovery ranged from 90% to 100% for different REE. The %RSD of the methods varying between 2.5% and 4.5% for a set of five (n=5) replicates was found for the IPEN's material and for the certificate reference sample. Determination of trace REEs in two highly pure neodymium oxides samples (IPEN and Johnson Matthey Company) were performed. In short, the IPEN's materials which are highly pure (>99.9%) were successfully analyzed without spectral interferences

  15. Distribution behavior of uranium, neptunium, rare-earth elements (Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiCl-KCl eutectic salt and liquid cadmium or bismuth

    International Nuclear Information System (INIS)

    Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.

    1995-01-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCl eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system. (orig.)

  16. Geochemical characteristics of trace and rare earth elements in Xiangyangping uranium deposit of Guangxi

    International Nuclear Information System (INIS)

    Chen Qi; Xiao Jianjun; Fan Liting; Wen Cheng

    2013-01-01

    The trace and rare earth elements analysis were performed on two kinds ore-hosting rocks (Xiangcaoping granite and Douzhashan granite), alternated cataclastic granite and uranium ores in Xiangyangping uranium deposit of Guangxi. The results show that both of the two kinds granites display similar maturity features of highly evolved crust with the enrichment of Rb, Th, U, Ta and Pb, the depletion of Ba and Sr, high Rb/Sr and low Nb/Ta ratio, moderately rich light rare earth elements, strong negative Eu anomaly. Moreover, Douzhashan granite have higher Rb/Sr ratio and U content, which indicate it experienced more sufficient magma evolution and have higher potential of uranium source. There are almost no change in the content of trace and rare earth elements and distribution patterns during chloritization, hydromicazation and potash feldspathization of granite, but there occurred uranium enrichment and mineralization and REE remobilization while hematitization was superposed. This suggest that hematitization is most closely correlated with uranium mineralization in the working area. Because Most hematitization cataclastic rocks and uranium ore display similar geochemical characteristics to Douzhashan granite with relative high Rb/Sr and low Nb/Ta, Zr/Hf, ΣREE, LREE/HREE ration, and the trace and rare earth elements content and distribution patterns of some Xiangcaoping hematitization cataclastic rocks are between the two kinds of granite, therefore it can be concluded that the mineralization materials were mainly from Douzhashan granite and partly from Xiangcaoping granite. (authors)

  17. Unraveling Recrystallization Mechanisms Governing Texture Development from Rare Earth Element Additions to Magnesium

    Science.gov (United States)

    Imandoust, Aidin

    The origin of texture components associated with rare-earth (RE) element additions in wrought magnesium (Mg) alloys is a long-standing problem in magnesium technology. The objective of this research is to identify the mechanisms accountable for rare-earth texture during dynamic recrystallization (DRX). Towards this end, we designed binary Mg-Cerium and Mg-Gadolinium alloys along with complex alloy compositions containing zinc, yttrium and Mischmetal. Binary alloys along with pure Mg were designed to individually investigate their effects on texture evolutions, while complex compositions are designed to develop randomized texture, and be used in automotive and aerospace applications. We selected indirect extrusion to thermo-mechanically process our materials. Different extrusion ratios and speeds were designed to produce partially and fully recrystallized microstructures, allowing us to analyze DRX from its early stages to completion. X-ray diffraction, electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to conduct microstructure and texture analyses. Our analyses revealed that rare-earth elements in zinc-containing magnesium alloys promote discontinuous dynamic recrystallization at the grain boundaries. During nucleation, the effect of rare earth elements on orientation selection was explained by the concomitant actions of multiple Taylor axes in the same grain. Isotropic grain growth was observed due to rare earth elements segregating to grain boundaries, which lead to texture randomization. The nucleation in binary Mg-RE alloys took place by continuous formation of necklace structures. Stochastic relaxation of basal and non-basal dislocations into low-angle grain boundaries produced chains of embryos with nearly random orientations. Schmid factor analysis showed a lower net activation of dislocations in RE textured grains compared to ones on the other side of the stereographic triangle. Lower dislocation densities within

  18. Th, U and trace elements determination in Egyiptian Lake sediments by INAA and laser fluorimetry

    International Nuclear Information System (INIS)

    Ismail, S.S.; Grass, F.; Ghods, A.

    1995-01-01

    A study was undertaken to determine element concentrations in Aswan High Dam Lake sediments. Sediment samples were collected from 40 to 500 km upstream of the dam to follow the sedimentation process and the distribution of Th, U and the trace elements in the lake. INAA was applied for the determination of Sm, Ce, Lu, Th, Cr, Yb, Au, Hf, Ba, Nd, Cs, Tb, Sc, Rb, Fe, Zn, Co, Eu, and Sb, while Laser Fluorimetry was applied for U determination. The accuracy and the reproducibility of the techniques were tested with IAEA standard materials (SL, Soil-7). The U values ranged from 4 ppm to 18 ppm, Th values were between 2 and 10 ppm, and showed a very good correlation with the rare earth elements and Fe. The distribution of most of the elements in the lake follows the same trend as the distribution of the clays in the sediments. Ba showed a negative correlation with most of the elements under investigation. (author) 5 refs.; 4 figs.; 7 tabs

  19. Effect of rare earth elements on uranium electrodeposition in LiCl-KCI eutectic salt

    International Nuclear Information System (INIS)

    Park, Sung Bin; Kang, Young Ho; Hwang, Sung Chan; Lee, Han Soo; Peak, Seung Woo; Ahn, Do Hee

    2015-01-01

    It is necessary to investigate the electrodeposition behavior of uranium and other elements on the cathode in the electrorefining process to recover the uranium selectively from the reduced metals of the electrolytic reduction process since transuranic elements and rare earth elements is dissolved in the LiCl-KCl eutectic salt. Study on separation factors of U, Ce, Y and Nd based on U and Ce was performed to investigate the deposition behavior of the cathode with respect to the concentration of rare earth elements in LiCl-KCl eutectic salt. After electrorefining with constant current mode by using Ce metal as a sacrifice anode, the contents of U, Ce, Y and Nd in the salt phase and the deposit phase of the cathode were analyzed, and separation factors of the elements were obtained from the analyses. Securing conditions of pure uranium recovery in the electrorefining process was investigated by considering the separation factors with respect to UCl 3 and CeCl 3 /UCl 3 ratio

  20. Electrical and dielectric properties of lithium manganate nanomaterials doped with rare-earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed; Ahmad, Zahoor [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2008-05-01

    Substituted LiR{sub x}Mn{sub 2} {sub -} {sub x}O{sub 4} (R = La{sup 3+}, Ce{sup 3+}{sub ,} Pr{sup 3+} and x = 0.00 - 0.20) nanoparticles are prepared by the sol-gel method and the consequent changes in their lattice structure, dielectric and electrical parameters are determined by XRD, ED-XRF, SEM, LCR meter bridge and dc electrical resistivity measurements. Diffraction data show that the samples are single-phase spinel materials with crystallites sizes between 21 and 38 nm. The lattice parameter, cell volume and X-ray density are found to be affected by doping the Li-manganate with the rare-earth elements. The ED-XRF analysis confirms the stoichiometric composition of the synthesized samples and SEM reveals their morphology. Calculated values of the dielectric constant ({epsilon}) and the dielectric loss (tan {delta}) decrease with the frequency of the applied field. This is attributed to Maxwell-Wagner polarization. Replacement of manganese by the rare-earth elements results in an improvement in the structural stability of the material, which is considered to be useful for enhancement of the cycleability of the compounds when used in lithium rechargeable batteries, and increases significantly the values of {epsilon} and tan {delta} (except for Ce). Lithium manganate nanomaterials with high {epsilon} and low tan {delta} may be attractive for application in memory storage devices. (author)

  1. Levels of major and trace elements, including rare earth elements, and ²³⁸U in Croatian tap waters.

    Science.gov (United States)

    Fiket, Željka; Rožmarić, Martina; Krmpotić, Matea; Benedik, Ljudmila

    2015-05-01

    Concentrations of 46 elements, including major, trace, and rare earth elements, and (238)U in Croatian tap waters were investigated. Selected sampling locations include tap waters from various hydrogeological regions, i.e., different types of aquifers, providing insight into the range of concentrations of studied elements and (238)U activity concentrations in Croatian tap waters. Obtained concentrations were compared with the Croatian maximum contaminant levels for trace elements in water intended for human consumption, as well as WHO and EPA drinking water standards. Concentrations in all analyzed tap waters were found in accordance with Croatian regulations, except tap water from Šibenik in which manganese in concentration above maximum permissible concentration (MPC) was measured. Furthermore, in tap water from Osijek, levels of arsenic exceeded the WHO guidelines and EPA regulations. In general, investigated tap waters were found to vary considerably in concentrations of studied elements, including (238)U activity concentrations. Causes of variability were further explored using statistical methods. Composition of studied tap waters was found to be predominately influenced by hydrogeological characteristics of the aquifer, at regional and local level, the existing redox conditions, and the household plumbing system. Rare earth element data, including abundances and fractionation patterns, complemented the characterization and facilitated the interpretation of factors affecting the composition of the analyzed tap waters.

  2. Rare earths and energy critical elements: a roadmap and strategy for India

    International Nuclear Information System (INIS)

    Bharadwaj, Mridula Dixit; Balasubramanian, N.

    2014-01-01

    The aim of this presentation is to summarise and update the report 'Rare Earths (RE) and Energy Critical Elements (ECE): A Roadmap and Strategy for India' released in July 2012. The background to the report is as follows. The Ministry of Mines (MoM), Government of India constituted a steering committee in August 2011 to develop a strategy paper on status and availability of Rare Earth Elements (REE) and Energy Critical Elements (ECE). The race to find alternatives to RE by the use of supercomputers and genetic algorithms will be described. Many of the ECE eg. gallium, germanium, indium, selenium and tellurium are by-products of main metals: aluminium, copper, zinc and tin. Their production is restricted by that of main metals. Saline brine and subsoil bitterns are sources of lithium. Uranium, and niobium alloying with zirconium are critical to nuclear energy. Exploration, applications, recycling and recovery of these elements will be discussed. Our report and presentation lay stress on novel routes that emphasise self-reliance and not merely economic viability and also provide short, medium and long term options along with proposals for specific policy and legislative interventions

  3. ICP-AES determination of rare earths in zirconium with prior chemical separation of the matrix

    International Nuclear Information System (INIS)

    Rajeswari, B.; Dhawale, B.A.; Page, A.G.; Sastry, M.D.

    2002-01-01

    Zirconium being one of the most important material in nuclear industry used as a fuel cladding in reactors and an additive in advanced fuels necessitates its characterization for trace metallic contents. Zirconium, as refractory in nature as the rare earth elements, has a complex spectrum comprising of several emission lines. Rare earths, which are high neutron absorbers have to be analysed at very low limits. Hence, to achieve the desired limits, the major matrix has to be separated prior to rare earth determination. The present paper describes the method developed for the separation of rare earths from zirconium by solvent extraction using Trioctyl Phosphine Oxide (TOPO) as the extractant followed by their determination using Inductively Coupled Plasma - Atomic Emission Spectrometric (ICP-AES) method. Initially, radiochemical studies were carried out using known amounts of gamma active tracers of 141 Ce, 152-154 Eu, 153 Gd and 95 Zr for optimisation of extraction conditions using Tl- activated NaI detector. The optimum conditions at 0.5 M TOPO/xylene in 6 M HCl so as to achieve a quantitative recovery of rare earth analytes alongwith a near total extraction of zirconium in the organic phase, was further extended to carry out the studies using ICP-AES method. The recovery of rare earths was found to be quantitative within experimental error with a precision better than 10% RSD. (author)

  4. Rare earth element concentrations and Nd isotopes in the Southeast Pacific Ocean

    Science.gov (United States)

    Jeandel, C.; Delattre, H.; Grenier, M.; Pradoux, C.; Lacan, F.

    2013-02-01

    vertical profiles of rare earth element concentrations and Nd isotopic compositions have been measured in the remote southeast Pacific Ocean. The three stations represent contrasting environments: the oligotrophic center of the gyre (station GYR), the "transition zone" east of the South Tropical Front (station EGY), and the Peru-Chile upwelling marked by a pronounced oxygen minimum (station UPX). Rare earth concentrations display nutrient like vertical profiles except at UPX where surface waters are enriched. At this station Nd isotopic compositions are clearly more radiogenic than in the open ocean, suggesting that boundary exchange process is releasing lithogenic rare earth element from the volcanic Andes. Unexpected radiogenic values (ɛNd reaching -3.7) are also observed at 2000 m at station GYR in the Upper Circumpolar Deep Water that commonly have ɛNd values around -6. Exchange processes related to hydrothermal activity are suspected to produce this increase in ɛNd in the vicinity of the East Pacific Rise. These results provide some guidance for higher resolution studies planned in this region by the international GEOTRACES program.

  5. Distribution of trace elements in land plants and botanical taxonomy with special reference to rare earth elements and actinium

    International Nuclear Information System (INIS)

    Koyama, Mutsuo

    1989-01-01

    Distribution profiles of trace elements in land plants were studied by neutron activation analysis and radioactivity measurements without activation. Number of botanical samples analyzed were more than three thousand in which more than three hundred botanical species were included. New accumulator plants of Co, Cr, Zn, Cd, rare earth elements, Ac, U, etc., were found. Capabilities of accumulating trace elements can be related to the botanical taxonomy. Discussions are given from view points of inorganic chemistry as well as from botanical physiology

  6. Online preconcentration ICP-MS analysis of rare earth elements in seawater

    Science.gov (United States)

    Hathorne, Ed C.; Haley, Brian; Stichel, Torben; Grasse, Patricia; Zieringer, Moritz; Frank, Martin

    2012-01-01

    The rare earth elements (REEs) with their systematically varying properties are powerful tracers of continental inputs, particle scavenging intensity and the oxidation state of seawater. However, their generally low (˜pmol/kg) concentrations in seawater and fractionation potential during chemical treatment makes them difficult to measure. Here we report a technique using an automated preconcentration system, which efficiently separates seawater matrix elements and elutes the preconcentrated sample directly into the spray chamber of an ICP-MS instrument. The commercially available "seaFAST" system (Elemental Scientific Inc.) makes use of a resin with ethylenediaminetriacetic acid and iminodiacetic acid functional groups to preconcentrate REEs and other metals while anions and alkali and alkaline earth cations are washed out. Repeated measurements of seawater from 2000 m water depth in the Southern Ocean allows the external precision (2σ) of the technique to be estimated at mine water reference materials diluted with a NaCl matrix with recommended values in the literature. This makes the online preconcentration ICP-MS technique advantageous for the minimal sample preparation required and the relatively small sample volume consumed (7 mL) thus enabling large data sets for the REEs in seawater to be rapidly acquired.

  7. Origin assessment of uranium ore concentrates based on their rare-earth elemental impurity pattern

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Z.; Wallenius, M.; Mayer, K. [Commission of the European Communities, Karlsruhe (Germany). European Inst. for Transuranium Elements

    2010-07-01

    The rare-earth element pattern was used as an additional tool for the identification and origin assessment of uranium ore concentrates (yellow cakes) for nuclear forensic purposes. By this means, the source of an unknown material can be straightforwardly verified by comparing the pattern with that of a known or declared sample. In contrast to other indicators used for nuclear forensic studies, the provenance of the material can also be assessed in several cases even if no comparison sample is available due to the characteristic pattern. The milling process was found not to change the pattern and no significant elemental fractionation occurs between the rare-earth elements, thus the pattern in the yellow cakes corresponds to that found in the uranium ore. (orig.)

  8. Production of a tracer packet of heavier rare earth elements

    International Nuclear Information System (INIS)

    Lahiri, S.; Nayak, D.; Maji, S.

    2004-01-01

    Production of a tracer packet of heavier rare earth elements containing carrier-free radionuclides of 153,155 Tb, 153,155,157 Dy, 159 Ho, 159,161 Er, 161 Tm produced by medium energy 7 Li and 12 C irradiation on an europium oxide target and the subsequent separation of bulk europium from the carrier-free products is described. (author)

  9. Complexometric determination of rare earth elements in quartz glasses with indicator xylenol orange-cetylpyridinium chloride

    International Nuclear Information System (INIS)

    Svistunova, G.P.; Amelin, V.G.

    1988-01-01

    A study was made on possibility of using the system xylenol orange (XO)-cetypyridinium determination of REE. XO forms with REE in the presence of CP intensively coloured complexes with absorbtion maximums at 610-615 nm. Colour transformation from blue to yellow is observed during complexometric titration in CP presence in the final point of titration by EDTA solution. The method was applied for Eu and Ce determination in alloyed quartz glasses. Titanium doesn't prevent REE determination at its content in titrated solution up to 1 mg. Other elements affect slightly the results. The method is recommended to use for 0.1-0.7% REE determination in quartz glasses of 0.5-1.5 g samples

  10. Complexometric determination of rare earth elements in quartz glasses with indicator xylenol orange-cetylpyridinium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Svistunova, G P; Amelin, V G

    1988-11-01

    A study was made on possibility of using the system xylenol orange (XO)-cetypyridinium determination of REE. XO forms with REE in the presence of CP intensively coloured complexes with absorbtion maximums at 610-615 nm. Colour transformation from blue to yellow is observed during complexometric titration in CP presence in the final point of titration by EDTA solution. The method was applied for Eu and Ce determination in alloyed quartz glasses. Titanium doesn't prevent REE determination at its content in titrated solution up to 1 mg. Other elements affect slightly the results. The method is recommended to use for 0.1-0.7% REE determination in quartz glasses of 0.5-1.5 g samples.

  11. Determination of rare earth, major and trace elements in authigenic fraction of Andaman Sea (Northeastern Indian Ocean) sediments by inductively coupled plasma-mass spectrometry

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.; You, C.-F.; Nath, B.N.; SijinKumar, A.V.

    Downcore variation of rare earth elements (REEs) in the authigenic Fe-Mn oxides of a sediment core (covering a record of last approx. 40 kyr) from the Andaman Sea, a part of the Indian Ocean shows distinctive positive Ce and Eu anomalies...

  12. Synthesis and physicochemical investigation of complexes of rare earth, alkaline earth elements and copper with some β-diketones

    International Nuclear Information System (INIS)

    Nichiporuk, R.V.; Pechurova, N.I.; Snezhko, N.I.; Martynenko, L.I.; Kaul', A.R.; Zanina, A.S.; Shergina, S.I.; Sokolov, I.E.

    1991-01-01

    Complexes of rare earth, alkaline earth elements and copper with 2-methoxy-2,6,6-trimethylheptanedion-3,5 as well as complexes of yttrium and barium with 2-methoxy-2,6-dimethylheptanedion-3,5 were synthesized. Prepared complexes were investigated by the methods of chemical, thermal, X-ray phase analyses, IR spectroscopy. Complex sublimation was studied at 10 -1 -10 -2 mm Hg. Complexes of rare earths and copper don't change their composition during sublimation, and sublimation of hydrated complexes of barium, strontium and calcium leads to formation of anhydrous complexes. All prepared complexes are able to transsublimate multiply and qualitatively without change of composition. All isolated complexes can be used for preparation of film oxide coatings by CVD method

  13. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Fox, Dr. Richard V [Idaho National Laboratory (INL); Miziolek, Andrzej W [United States Army Research Laboratory; DeLucia, Frank C [United States Army Research Laboratory; Andre, Nicolas O [ORNL

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  14. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Fox, Dr. Richard V [Idaho National Laboratory (INL); Miziolek, Andrzej W [United States Army Research Laboratory; DeLucia, Frank C [United States Army Research Laboratory; Andre, Nicolas O [ORNL

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  15. Sequential determination of environmental levels of isotopic thorium, uranium and the light rare earth elements within the terrestrial food chain by induced coupled plasma (ICP) and alpha spectrometry

    International Nuclear Information System (INIS)

    Linsalata, P.; Morse, R.; Ford, H.

    1986-01-01

    A radioecological study designed to measure soil to plant and soil to animal (livestock) transfer of Th, U, Ra and the light rare earth elements (REE) in typical and naturally-enhanced radiation environments required the development of radiochemical methods suitable for low-level determinations in a broad suite of environmental matrices including soil, edible vegetables and vegetation, and the major organs and tissues of various livestock. Earlier work has demonstrate the reliability of the methods summarized here for measuring the isotopic thorium and REE content of human feces, and that in the edible portions of various vegetables grown under field conditions. The very high degree of biological discrimination against Th and REE uptake in plants as well as in animal soft tissues necessitated the analysis of typical sample masses of 1-4 kg (fresh weight) to insure reasonably precise (eg., 10-20%) concentration estimates for most of the elements and isotopes of interest. As a result of the ''bone-seeking'' nature and relatively long retention times for these elements in skeletal tissue, typical analytical masses required for analysis of bone range from 40 to 70 g (fresh weight) except for the REE's in which a larger aliquot is recommended when determination is by induced coupled plasma spectrometry

  16. A preliminary research on characteristics of rare-earth elements in ancient pottery of neolithic age in Su Wan area

    International Nuclear Information System (INIS)

    Chen Shuyu; Lin Shuqin; Peng Zicheng; Liu Fangxin; Zhang Jingguo

    1995-01-01

    The content of rare-earth elements in the three ancient ruins of pottery of the Neolithic age along Yangtze River is analyzed by means of Inductively Coupled Plasma Atomic Emission Spectrometry and X-ray fluorescence Spectrometry. It is shown that the distribution of rare-earth elements varies with the sites where the ancient pottery samples were unearthed. Therefore the analysis of the content of the rate-earth elements may help explore the ancient pottery production sites and the route of the ancient culture exchange

  17. Study on the contents of trace rare earth elements and their distribution in wheat and rice samples by RNAA

    International Nuclear Information System (INIS)

    Sun Jingxin; Zhao Hang; Wang Yuqi

    1994-01-01

    The concentrations of 8 REE (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in wheat and rice samples have been determined by RNAA. The contents and distributions of REE in each part of the plants (i.e. root, leaf, stem, husk and seed) and their host soils were studied, which included samples applied with rare earth elements in farming and control samples. The effects of applying rare earth on the uptake of REE by the plants and the REE accumulation in the grains of human health were also discussed. (author) 9 refs.; 4 figs.; 4 tabs

  18. Naturally Occurring Radionuclides and Rare Earth Elements Pattern in Weathered Japanese Soil Samples

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Hosoda, M.; Takahashi, H.; Sorimachi, A.; Ishikawa, T.; Tokonami, S.; Uchida, S.

    2011-01-01

    From the viewpoint of radiation protection, determination of natural radionuclides e.g. thorium and uranium in soil samples are important. Accurate methods for determination of Th and U is gaining importance. The geochemical behavior of Th, U and rare earth elements (REEs) are relatively close to one another while compared to other elements in geological environment. Radioactive elements like 232 Th and 238 U along with their decay products (e.g. 226 Ra) are present in most of the environmental matrices and can be transferred to living bodies by different pathways that can lead to sources of exposure of man. Therefore, it is necessary to monitor these natural radionuclides in weathered soil samples to assess the possible hazards. The activity concentrations of 226 Ra, 228 Th, and 40 K in soils have been measured using a g γ-ray spectroscopy system with high purity germanium detector. The thorium, uranium and REEs were determined from the same sample using inductively coupled plasma mass spectrometry (ICP-MS). Granitic rocks contain higher amounts of Th, U and light REEs compared to other igneous rocks such as basalt and andesites. Therefore, it is necessary to understand the interaction between REEs and nature of soils, as soils are complex heterogeneous mixture of organic and inorganic solids, water and gases. In this paper, we have discussed about distribution pattern of 226 Ra, 232 Th and 238 U along with REEs in soil samples of weathered acid rock (granite and ryolite) collected from two prefectures in Japan: 1. Gifu and 2. Okinawa. (author)

  19. A gravimetric method for the determination of oxygen in uranium oxides and ternary uranium oxides by addition of alkaline earth compounds

    International Nuclear Information System (INIS)

    Fujino, Takeo; Tagawa, Hiroaki; Adachi, Takeo; Hashitani, Hiroshi

    1978-01-01

    A simple gravimetric determination of oxygen in uranium oxides and ternary uranium oxides is described. In alkaline earth uranates which are formed by heating in air at 800-1100 0 C, uranium is in the hexavalent state over certain continuous ranges of alkaline earth-to-uranium ratios. Thus, if an alkaline earth uranate or a compound containing an alkaline earth element, e.g. MgO, is mixed with the oxide sample and heated in air under suitable conditions, oxygen can be determined from the weight change before and after the reaction. The standard deviation of the O:U ratio for a UOsub(2+x) test sample is +-0.0008-0.001, if a correction is applied for atmospheric moisture absorbed during mixing. (Auth.)

  20. Spacecraft attitude determination using the earth's magnetic field

    Science.gov (United States)

    Simpson, David G.

    1989-01-01

    A method is presented by which the attitude of a low-Earth orbiting spacecraft may be determined using a vector magnetometer, a digital Sun sensor, and a mathematical model of the Earth's magnetic field. The method is currently being implemented for the Solar Maximum Mission spacecraft (as a backup for the failing star trackers) as a way to determine roll gyro drift.

  1. Enhanced phytoextraction of germanium and rare earth elements - a rhizosphere-based approach

    Science.gov (United States)

    Wiche, Oliver

    2016-04-01

    Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that have become an integral part of our modern high tech society. While most of these elements are not actually rare in terms of general amounts in the earth's crust, they are rarely found in sufficient abundances in single locations for their mining to be economically viable. The average concentration of Ge in soils is estimated at 1.6 μg g-1. The REEs comprise a group of 16 elements including La, the group of lanthanides and Y that are abundant in the earth crust with concentrations varying from 35 μg g-1 (La), 40 μg g-1 (Nd), 6 μg g-1 (Gd) and 3.5 μg g-1 (Er) to 0.5 μg g-1 in Tm. Thus, a promising chance to improve supply of these elements could be phytomining. Unfortunately, bioavailability of Ge and REEs in soils appears to be low, in particular in neutral or alkaline soils. A sequential dissolution analysis of 120 soil samples taken from the A-horizons of soils in the area of Freiberg (Saxony, Germany) revealed that only 0.2% of total Ge and about 0.5% of La, Nd, Gd and Er of bulk concentrations were easily accessible by leaching with NH4-acetate (pH 7). Most of the investigated elements were bound to Fe-/Mn-oxides and silicates and were therefore only poorly available for plant uptake. Here we report an environmentally friendly approach for enhanced phytoextraction of Ge and REEs from soils using mixed cultures of plant species with efficient mechanisms for the acquisition of nutrients in the rhizosphere. The rhizosphere is characterized as the zone in soil sourrounding a plant root that consists of a gradient in chemical, physical and biological soil properties driven by rhizodeposits like carboxylates and protons. Some species like white lupin (Lupinus albus) are able to excrete large amounts of organic acid anions(predominantly citrate and malate) and show a particularly high potential for the acidification of the rhizosphere. In our experiments, mixed cultures

  2. Solvent extraction of rare earth elements by γ-ray spectrometry

    International Nuclear Information System (INIS)

    Sudha Vani, T.J.; Krishna Rao, K.S.V.; Krishna Reddy, L.; Jaya Rami Reddy, M.; Lee, Yong III

    2010-01-01

    Rare earth element (REE) is a mine of new material and has very wide uses in industry. India has second largest abundant resources of rare earths and with its products and exports playing an important part in the world. REEs are important in nuclear energy programs, hence the separation and purification of rare earths is demanded. As well known, the separation between trivalent REEs is one of the most difficult tasks in separation chemistry due to their similar chemical properties. A large number of acidic and neutral organo-phosphorus and sulphur extractants have been widely employed industrially for the solvent extraction separation of REEs. However, these reagents display various shortcomings, such as poor selectivity, third phase formation, etc. In view of the ever increasing demand for high purity REEs as a group or from one another, there is a growing interest in the development of new and more selective solvent extraction reagents

  3. Multi-elemental determination of trace elements in deep seawater by inductively coupled plasma mass spectrometry with resin preconcentration

    International Nuclear Information System (INIS)

    Sumida, Takashi; Nakazato, Tetsuya; Tao, Hiroaki

    2003-01-01

    A miniaturized column (ca. 3 mm i.d., 40 mm length), packed with a chelating resin (0.2 g) with iminodiacetic acid groups (Muromac A-1), was tested for the preconcentration of trace elements in seawater. After preconcentration, the column was washed with ammonium acetate buffer (pH 5.5) and water to remove the major elements, such as Ca and Mg, and was then eluted with 4 ml of 2 mol l -1 nitric acid. Twenty-six trace elements were determined by inductively coupled plasma mass spectrometry and inductively coupled plasma emission spectrometry. The necessary volume of the seawater sample was only 200 ml. The recoveries for most of the elements tested were over 90%, although those for Al, V and Th were around 70%. The trueness and precision were evaluated by analyzing a standard reference material of seawater (NASS-4, NRC Canada). The observed values obtained with the present method showed good agreement with the certified values. The present method was also applied to deep seawater samples collected at Muroto, Japan. A difference in the rare earth element pattern, especially the Ce anomaly, between the deep seawater sample and the surface seawater sample was observed, as well as the differences of the concentrations of many trace elements. (author)

  4. The effect of acid rain stress on membrane protective system of spinach and the conservation of rare earth elements

    International Nuclear Information System (INIS)

    Chongling, Y; Yetang, H.

    1998-01-01

    Full text: Based on pot experiments, the effect of acid rain stress on membrane protective system of spinach and the effect of rare earth elements has been studied. The results showed, stress of acid rain resulted in decrease of over all level of superoxide dismutase activity, catalase activity and increase of peroxidase (POD) activity. After being treated by rare earth elements, the overall level of superoxide dismutase activity and catalase activity were increased and the peak value of activity variation curve moved toward to the direction of higher acidity. POD activity increased slightly, comparing with the plants that hadn't been treated by rare earth elements under same acid rain condition; the three important enzymes of membrane protective system could be kept on a relatively stable level. It was clear that in relative lower acidity condition, rare earth elements can reduce the impact of acid rain on the membrane protective system

  5. The effect of acid rain stress on chlorophyll, peroxidase of the conservation of rare earth elements

    International Nuclear Information System (INIS)

    Chongling, Y.; Yetang, H.; Xianke, Y.; Shunzhen, F.; Shanql, W.

    1998-01-01

    Full text: Based on pot experiment, the effect of acid rain stress on chlorophyll, peroxidase of wheat, the relationship of them and the conservation of rare earth elements has been studied. The result showed: stress of acid rain resulted in decrease of chlorophyll content and a/b values, chlorophyll a/b value and chlorophyll content is positive correlation with pH value of acid rain: peroxidase activity was gradually rise with pH value decrease, which indirectly increased decomposition intensity of chlorophyll. Decreased content and a/b value of chlorophyll further speeded blade decay affected the transport and transformation of light energy and metabolism of carbohydrates. After being treated by rare earth elements content and pH value of chlorophyll and peroxidase activity could be relatively stable. Therefore, under lower acidity condition, rare earth elements can influence the effect of acid rain on chlorophyll and peroxidase activity of wheat

  6. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y.; Barnes, J.; Fox, S.

    2016-09-01

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. We have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.

  7. Preparation of new phthalocyanine complexes of some rare-earth elements

    International Nuclear Information System (INIS)

    Sugimoto, Hiroshi; Higashi, Teruaki; Mori, Masayasu

    1982-01-01

    The reaction of tris(1,3-diphenyl-1,3-propanedionato) complexes of heavier rare-earth elements, M 3+ (dbm) 3 and lithium phthalocyaninato (2-), Li 2 (pc) gave two types of new stable phthalocyanine complexes, [M 3+ (pc)(dbm)(dbmH)] and [M 3+ (pc)(dbm)] depending on the solvents used for the preparation. The structure of both types of complexes are tentatively proposed. (author)

  8. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies.

    Science.gov (United States)

    Alonso, Elisa; Sherman, Andrew M; Wallington, Timothy J; Everson, Mark P; Field, Frank R; Roth, Richard; Kirchain, Randolph E

    2012-03-20

    The future availability of rare earth elements (REEs) is of concern due to monopolistic supply conditions, environmentally unsustainable mining practices, and rapid demand growth. We present an evaluation of potential future demand scenarios for REEs with a focus on the issue of comining. Many assumptions were made to simplify the analysis, but the scenarios identify some key variables that could affect future rare earth markets and market behavior. Increased use of wind energy and electric vehicles are key elements of a more sustainable future. However, since present technologies for electric vehicles and wind turbines rely heavily on dysprosium (Dy) and neodymium (Nd), in rare-earth magnets, future adoption of these technologies may result in large and disproportionate increases in the demand for these two elements. For this study, upper and lower bound usage projections for REE in these applications were developed to evaluate the state of future REE supply availability. In the absence of efficient reuse and recycling or the development of technologies which use lower amounts of Dy and Nd, following a path consistent with stabilization of atmospheric CO(2) at 450 ppm may lead to an increase of more than 700% and 2600% for Nd and Dy, respectively, over the next 25 years if the present REE needs in automotive and wind applications are representative of future needs.

  9. Origin of middle rare earth element enrichments in acid waters of a Canadian high Arctic lake.

    Science.gov (United States)

    Johannesson, Kevin H.; Zhou, Xiaoping

    1999-01-01

    -Middle rare earth element (MREE) enriched rock-normalized rare earth element (REE) patterns of a dilute acidic lake (Colour Lake) in the Canadian High Arctic, were investigated by quantifying whole-rock REE concentrations of rock samples collected from the catchment basin, as well as determining the acid leachable REE fraction of these rocks. An aliquot of each rock sample was leached with 1 N HNO 3 to examine the readily leachable REE fraction of each rock, and an additional aliquot was leached with a 0.04 M NH 2OH · HCl in 25% (v/v) CH 3COOH solution, designed specifically to reduce Fe-Mn oxides/oxyhydroxides. Rare earth elements associated with the leachates that reacted with clastic sedimentary rock samples containing petrographically identifiable Fe-Mn oxide/oxyhydroxide cements and/or minerals/amorphous phases, exhibited whole-rock-normalized REE patterns similar to the lake waters, whereas whole-rock-normalized leachates from mafic igneous rocks and other clastic sedimentary rocks from the catchment basin differed substantially from the lake waters. The whole-rock, leachates, and lake water REE data support acid leaching or dissolution of MREE enriched Fe-Mn oxides/oxyhydroxides contained and identified within some of the catchment basin sedimentary rocks as the likely source of the unique lake water REE patterns. Solution complexation modelling of the REEs in the inflow streams and lake waters indicate that free metal ions (e.g., Ln 3+, where Ln = any REE) and sulfate complexes (LnSO 4+) are the dominant forms of dissolved REEs. Consequently, solution complexation reactions involving the REEs during weathering, transport to the lake, or within the lake, cannot be invoked to explain the MREE enrichments observed in the lake waters.

  10. Variation of Rare Earth Elements (REEs) in the Sulu and Celebes ...

    African Journals Online (AJOL)

    This study provides a dataset of rare earth elements (REEs) in the seawater of Sulu and Celebes Seas of Malaysian waters during the PMSE 09' expedition, which was conducted to define the pattern of REEs in both seas. Samples were collected, filtered and pre-concentrated on-board ship then analyzed by using ICP-MS.

  11. Investigation on the status of rare earth elements contained in the powder of spent fluorescent lamps

    International Nuclear Information System (INIS)

    Belardi, G.; Ippolito, N.; Piga, L.; Serracino, M.

    2014-01-01

    Highlights: • Most of rare earth elements are contained in particles of size finer than 7 μm. • Most of Si, K and Na are contained in the coarser size-fractions. • The phases in the size-fractions of the fluorescent powder have been determined. • Europium is contained in yttrium oxide and in vanadium–yttrium oxides. • The crystallo–chemical composition of all the phases has been determined. - Abstract: The aim of this study is to examine the status of rare earth elements (REE) contained in the chemical compounds that make up the powder of spent fluorescent lamps, with a view of their recovery. The status of REE in the as-received powder, as well as in a few size-class fractions of it, has been established. This way, only those size-class fractions containing high REE concentrations can be considered in a recovery process. The investigation has been carried out using particle-size, chemical, TGA/DTA, XRPD, SEM-EDS and EMPA analyses. The last technique enabled to establish the status of REE within the lattice of the chemical compounds present in the powder. The fineness of the as-received powder and the higher REE concentration in the finest size-classes suggest that physical methods of separation should not be used to separate the REE-containing chemical compounds from each other. Leaching methods seem more suitable with a material of such size

  12. Triethylamine-assisted Mg(OH)2 coprecipitation/preconcentration for determination of trace metals and rare earth elements in seawater by inductively coupled plasma mass spectrometry (ICP-MS).

    Science.gov (United States)

    Arslan, Zikri; Oymak, Tulay; White, Jeremy

    2018-05-30

    In this paper, we report an improved magnesium hydroxide, Mg(OH) 2 , coprecipitation method for the determination of 16 trace elements (Al, V, Cr, Mn, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Sb, Sn and Pb) and 18 rare earth elements (REEs), including Sc, Y, U and Th in seawater and estuarine water samples. The procedure involves coprecipitation of the trace elements and REEs on Mg(OH) 2 upon addition of a small volume of triethylamine (TEA) followed by analysis of the dissolved pellet solutions by inductively coupled plasma mass spectrometry (ICP-MS). Three-step sequential coprecipitation was carried out on 10 mL aliquots of seawater to eliminate the matrix ions and to preconcentrate the analytes of interest into a 1 mL final volume. Spike recoveries varied from 85% (Th) to 105% (Y). Calcium (Ca), sodium (Na) and potassium (K) matrices were virtually eliminated from the analysis solutions. Collision reaction interface (CRI) technology utilizing H 2 and He gases was employed to determine its effectiveness in removing the spectral interferences originating from the residual Mg matrix, TEA and plasma gases. H 2 was more effective than He in reducing spectral interferences from TEA and plasma gases. Limits of detection (LODs) ranged from 0.01 ng L -1 (Ho) to 72 ng L -1  (Al). The method was validated by using certified seawater (CASS-4) and estuarine water (SLEW-3) reference materials. Precision for five (n = 5) replicate measurements were between 1.2% (Pr) and 18% (Lu). Fe, Pb, Sn, and Zn impurities in TEA were significant in comparison to the levels in CASS-4 and SLEW-3, while relatively high background signals impacted determinations of low levels of Sc and Th. The effects of these hurdles on precision and accuracy were alleviated by measuring these elements in spiked CASS-4 and SLEW-3. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Evolution of Mg-5Al-0.4Mn microstructure after rare earth elements addition

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2011-04-01

    Full Text Available Mg-5Al-0.4Mn-xRE (x = 0, 1, 2, 3 wt.% magnesium alloys were prepared successfully by casting method. The microstructure wasinvestigated by light microscopy. The influence of rare earth (RE elements on the area fraction of eutectic was analysed. The obtainedresults revealed that the as-cast Mg-5Al-0.4Mn alloy consist of α - Mg matrix and eutectic α + γ (where γ is Mg17Al12. However, whilerare earth elements were added to the Mg-Al type alloy, Al11RE3 precipitates were formed. The amount of the Al11RE3 precipitatesincreased with increasing addition of RE, but the amount of γ - Mg17Al12 decreased.

  14. Extraction-differential-photometric method to determine rare earths of cerium subgroup

    International Nuclear Information System (INIS)

    Askerov, D.N.; Gusejnov, I.K.; Melikov, A.A.

    1985-01-01

    The extraction - photometric method to determine great quantities of rare earths of the cerium subgroup as a complex with antipyrine A and diphenylguanidine is developed. Isobutyl and n-butyl alcohols are used as extractants. It is established that proportional dependence between relative optical density and concentration of rare earths of the cerium subgroup in the solution takes place in the concentration interval of 10.3-14.7 μg of rare earths in 1 ml of the solution. Determination error is+-1.12%. The technique is used to determine rare earths of the cerium subgroup in rare earth oxides of a mixed composition, as well as in monozite and loparite

  15. Rare-earth elements

    Science.gov (United States)

    Van Gosen, Bradley S.; Verplanck, Philip L.; Seal, Robert R.; Long, Keith R.; Gambogi, Joseph; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    The rare-earth elements (REEs) are 15 elements that range in atomic number from 57 (lanthanum) to 71 (lutetium); they are commonly referred to as the “lanthanides.” Yttrium (atomic number 39) is also commonly regarded as an REE because it shares chemical and physical similarities and has affinities with the lanthanides. Although REEs are not rare in terms of average crustal abundance, the concentrated deposits of REEs are limited in number.Because of their unusual physical and chemical properties, the REEs have diverse defense, energy, industrial, and military technology applications. The glass industry is the leading consumer of REE raw materials, which are used for glass polishing and as additives that provide color and special optical properties to the glass. Lanthanum-based catalysts are used in petroleum refining, and cerium-based catalysts are used in automotive catalytic converters. The use of REEs in magnets is a rapidly increasing application. Neodymium-iron-boron magnets, which are the strongest known type of magnets, are used when space and weight are restrictions. Nickel-metal hydride batteries use anodes made of a lanthanum-based alloys.China, which has led the world production of REEs for decades, accounted for more than 90 percent of global production and supply, on average, during the past decade. Citing a need to retain its limited REE resources to meet domestic requirements as well as concerns about the environmental effects of mining, China began placing restrictions on the supply of REEs in 2010 through the imposition of quotas, licenses, and taxes. As a result, the global rare-earth industry has increased its stockpiling of REEs; explored for deposits outside of China; and promoted new efforts to conserve, recycle, and substitute for REEs. New mine production began at Mount Weld in Western Australia, and numerous other exploration and development projects noted in this chapter are ongoing throughout the world.The REE-bearing minerals are

  16. Rare earth element behaviour and hydrothermal alteration, Lihir Island, Papua New Guinea

    International Nuclear Information System (INIS)

    Lottermoser, B.G.

    1990-01-01

    This contribution documents extreme rare earth elements (REE) mobility associated with a currently active subaerial hydrothermal system on Lihir Island, Papua New Guinea, which is host to a large epithermal gold deposit. Instrumental thermal activation analysis for selected REE and for other trace elements has been performed at the Lucas Heights Research Laboratories in Sydney. Samples and standards were irradiated with thermal neutrons and subsequently counted on coaxial and planar detectors after several decay periods. The gamma-ray spectra were processed using FORTRAN data reduction program. The wide range of (La/Lu) c n, (La/Sm) c n and (Tb/Lu) c n ratios reflects a pronounced mobilisation and fractionation of REE during the hydrothermal process. It is estimated that the increasing fractionation of REE, and especially of 'light rare earth' (La to Sm), up the alteration sequence is the result of decreasing pH, temperature and alkalinity of the hydrothermal fluids with increasing alteration intensity. 15 refs., 2 figs

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    pp 485-498. Determination of rare earth and refractory trace element abundances in early solar system objects by ion microprobe · S Sahijpal K K Marhas J N Goswami · More Details Abstract Fulltext PDF. Experimental and analytical procedures devised for measurement of rare earth element (REE) abundances using a ...

  18. Developing alternative resources of rare earth elements in Europe - EURARE and the red mud challenge

    Science.gov (United States)

    Deady, Eimear; Mouchos, Evangelos; Goodenough, Kathryn; Wall, Frances; Williamson, Ben

    2015-04-01

    part of this study. Red muds from these deposits contain on average 900 ppm REE compared with typical values of Geological Survey, Keyworth, Nottingham, 2014. [3] Z. Maksimović and G. Pantó, "Authigenic rare earth minerals in karst-bauxites and karstic nickel deposits". In: A.P. Jones, F. Wall and C.T. Williams, Rare earth minerals, chemistry, origin and ore deposits, Chapter 10, pp. 257-279, 1996. [4] G. Bárdossy, "Karst Bauxites, Bauxite Deposits on Carbonate Rocks". Elsevier, 444pp, 1982. [5] M. Ochsenkühn-Petropoulou, T. Lyberopoulou, and G. Parissakis, "Direct determination of lanthanides, yttium and scandium in bauxites and red mud from alumina production", Analytica Chimica Acta, vol. 296, no. 3, pp. 305-313, October 1994. [6] É. Deady, E. Mouchos, K. Goodenough, B. Williamson and F. Wall. "Rare Earth Elements in Karst-Bauxites: a Novel Untapped European Resource?" ERES 1st European Rare Earth Resources conference, Milos, Greece, (5-6/09/2014). [7] A. Wagh and W. Pinnock, "Occurrence of scandium and rare earth elements in Jamaican bauxite waste", Economic Geology, vol. 82, no. 3, pp. 757-761, May 1987. [8] G. Mongelli, "Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy)", Chemical Geology, vol. 140, no. 1, pp. 69-79, June 1997. Additional resources: www.eurare.eu; www.redmud.org.

  19. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution

    International Nuclear Information System (INIS)

    Liu, Hu; Zhang, Shengen; Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin; Volinsky, Alex A.

    2014-01-01

    Highlights: • The article provides a new method for recycling rare earth (RE) from waste phosphor. • When compared with the traditional methods, leach rate was much higher. • Y–Eu concentrate and Tb–Ce concentrate were obtained successively. • It would reduce the burden of later extraction, separation and purification. - Abstract: This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y 0.95 Eu 0.05 ) 2 O 3 in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce 0.67 Tb 0.33 MgAl 11 O 19 ) and the Blue phosphor (Ba 0.9 Eu 0.1 MgAl 10 O 17 ) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO 2 are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications

  20. Distribution of rare earths in liver of mice administered with chloride compounds of 12 rare earths

    International Nuclear Information System (INIS)

    Shinohara, A.; Chiba, M.; Inaba, Y.

    1998-01-01

    Full text: Rare earths are used in high technology field, however, the information on their biological effects are not sufficient. The behaviour of rare earths in biology is of interest in connection with their toxicity. In the present study, the distribution of rare earths in liver of mice administered with these elements was investigated. The effects on Ca and other biological essential elements were also determined. Male mice (5 weeks old) were injected with one of 12 kinds of rare earths (chlorides of Y, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er and Yb) at the dose of 25 mg/KXg body weight. After 20 hours of administration, mice were sacrificed, then liver and other organs were taken out. Liver was homogenized and separated by centrifugation. The concentrations of rare earths administered were measured by microwave-induced plasma-mass spectrometry (MIP-MS) after acid digestion. The concentrations of administered elements in whole liver were about 100μg/g (wet weight), where the difference between elements was few. Distribution amounts of elements administered in four fractions were following order; 700μg precipitate > mitocondrial fraction > microsomal fraction > cytosol. The relative contents in these fractions, however, was different depending on the element administered. Calcium concentrations in liver of administered mice were higher than those of control mice. Increase of Ca concentrations were observed in all four fractions and the increase ratio was also dependent on the elements administered

  1. NEW RARE EARTH ELEMENT ABUNDANCE DISTRIBUTIONS FOR THE SUN AND FIVE r-PROCESS-RICH VERY METAL-POOR STARS

    International Nuclear Information System (INIS)

    Sneden, Christopher; Lawler, James E.; Den Hartog, Elizabeth A.; Cowan, John J.; Ivans, Inese I.

    2009-01-01

    We have derived new abundances of the rare earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low-metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally consistent Ba, rare earth, and Hf (56 ≤ Z ≤ 72) element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.

  2. Forced-flow chromatography of rare earths using sensitive spectrophometry

    International Nuclear Information System (INIS)

    Matsui, Masakazu; Aoki, Toru; Kumagai, Tetsu.

    1981-01-01

    The sensitive spectrophotometric method for the rare earth elements with xylenol orange in the presence of cetylpyridinium bromide was applied to the continuous detection system of liquid chromatography. Fourteen rare earth elements were completely separated within 130 min cation-exchange chromatography using 2-hydroxy-iso-butylic acid. The eluted ions were determined with absorption maxima of their complexes at around 610 nm. A linear relationship between the peak height and the amounts of rare earth elements was also obtained over the range 0.04 to 0.5 MU g. (author)

  3. Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel-metal-hydride batteries

    Science.gov (United States)

    Rodrigues, Luiz Eduardo Oliveira Carmo; Mansur, Marcelo Borges

    The separation of rare earth elements, cobalt and nickel from NiMH battery residues is evaluated in this paper. Analysis of the internal content of the NiMH batteries shows that nickel is the main metal present in the residue (around 50% in weight), as well as potassium (2.2-10.9%), cobalt (5.1-5.5%), rare earth elements (15.3-29.0%) and cadmium (2.8%). The presence of cadmium reveals that some Ni-Cd batteries are possibly labeled as NiMH ones. The leaching of nickel and cobalt from the NiMH battery powder with sulfuric acid is efficient; operating variables temperature and concentration of H 2O 2 has no significant effect for the conditions studied. A mixture of rare earth elements is separated by precipitation with NaOH. Finally, solvent extraction with D2EHPA (di-2-ethylhexyl phosphoric acid) followed by Cyanex 272 (bis-2,4,4-trimethylpentyl phosphinic acid) can separate cadmium, cobalt and nickel from the leach liquor. The effect of the main operating variables of both leaching and solvent extraction steps are discussed aiming to maximize metal separation for recycling purposes.

  4. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  5. Rare earth elements in a uranium deposit in Pedra, Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Damascena, Kennedy Francys Rodrigues; Amaral, Romilton dos Santos; Santos Junior, Jose Araujo dos; Bezerra, Jairo Dias; Oliveira, Iane Andrade de; Silva, Alberto Antonio da

    2013-01-01

    Rare Earth Elements (REEs) are similar in the physical and chemical properties of their compounds and are most commonly found in nature associated with terrestrial radionuclides. The high interest in conducting research on REEs is due to their multiple applications and high economic value. In this light, the present study analyzed samples of soil and rocks from an anomalous area replete with uranium and thorium, in the town of Pedra, Pernambuco, Brazil, in an attempt to identify the occurrence and concentrations of these elements. For these analyses, neutron activation, followed by high-resolution gamma spectrometry, was used to define the REEs. The following REEs were identified in the study area: La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, and Sc. The most abundant elements in the region, within samples of soil and rock, respectively, were: Ce (63-503 mg.kg -1 / 19.6 to 2243.5 mg.kg -1 ), Nd (25.0 to 249.0 mg.kg -1 / 3.8 to 1951.0 mg.kg -1 ), and La (30.6 to 253.0 mg.kg -1 / 12.1 to 517.0 mg.kg -1 ). The other REEs presented concentrations of between the detection limit and 46.0 mg.kg -1 . The results indicate that the Ce, La, and Nd concentrations appeared in up to 12 times the average occurrences in the earth's crust and up to 4.6 times higher than the averages reported in studies worldwide, including Brazil. Therefore, further studies are warranted to examine the economic viability of REEs in the area and to confirm the occurrence of these anomalous elements in the studied region. (author)

  6. Sustainability of rare earth elements chain: from production to food - a review.

    Science.gov (United States)

    Turra, Christian

    2018-02-01

    Rare earth elements (REE) are a group of chemical elements that include lanthanoids (lanthanum to lutetium), scandium and yttrium. In the last decades, the REE demand in the industry and other areas has increased significantly. In general, REE have shown low concentrations in soils, plants, water and atmosphere, but they may accumulate in such environments due to anthropogenic inputs. In areas where there is REE contamination, the slow accumulation of these elements in the environment could become problematic. Many studies have shown environmental areas contaminated with REE and their toxic effects. Thus, it is important to review, in order to improve the current understanding of these elements in the environment, showing the effects of REE exposure in mining, soil, water, plants and food. Besides, there are few suppliers and a limited quantity of these elements in the world. This paper suggests options to improve the sustainability management of REE chain.

  7. Earth-Mars Telecommunications and Information Management System (TIMS): Antenna Visibility Determination, Network Simulation, and Management Models

    Science.gov (United States)

    Odubiyi, Jide; Kocur, David; Pino, Nino; Chu, Don

    1996-01-01

    This report presents the results of our research on Earth-Mars Telecommunications and Information Management System (TIMS) network modeling and unattended network operations. The primary focus of our research is to investigate the feasibility of the TIMS architecture, which links the Earth-based Mars Operations Control Center, Science Data Processing Facility, Mars Network Management Center, and the Deep Space Network of antennae to the relay satellites and other communication network elements based in the Mars region. The investigation was enhanced by developing Build 3 of the TIMS network modeling and simulation model. The results of several 'what-if' scenarios are reported along with reports on upgraded antenna visibility determination software and unattended network management prototype.

  8. Development of the determination method of rare earth elements in seawater by ICP-MS with an on-line preconcentration column of improved iminodiacetate resin and its application to Tokyo Bay seawater

    International Nuclear Information System (INIS)

    Tsuneto, Atsushi; Suzuki, Yoshinari; Furuta, Naoki; Furusho, Yoshiaki

    2009-01-01

    In order to determine rare earth elements (REEs) in seawater by using inductively coupled plasma mass spectrometry (ICP-MS) with an on-line preconcentration column, we used the improved iminodiacetate chelate resin (MetaSEP ME-2) that had a cation-type alkyl group. Its operating conditions were optimized, and the recoveries of REEs and the removal rates of matrix elements were compared with other resins. Ca and Mg were removed more efficiently under a buffer solution of pH 5.0. The removal efficiencies of Ca and Mg using MetaSEP ME-2 were better than those using other resins. We determined REEs in a seawater reference material (NASS-5) with MetaSEP ME-2. The obtained results were in good agreement with the reference values. We applied this method to the determination of REEs in seawater collected from Tokyo Bay, and evaluated the distribution patterns of REEs. Consequently, the positive anomaly of Gd in the small-molecule fraction was observed. The positive anomaly of Gd can be attributed to the outflow of Gd compounds, which are used for a magnetic resonance imaging contrast medium. (author)

  9. Electrodeposition Techniques for the Preparation of Beta-Sprectroscopy Sources of Rare-Earth Elements

    DEFF Research Database (Denmark)

    Hansen, P. Gregers; Høgh, J.; Nielsen, H. L.

    1964-01-01

    Thin, uniform radioactive deposits of rare earths and related elements can be prepared by cathodic electrodeposition of their hydroxides. The main theoretical and experimental features of this process are reviewed and plating cell design and the choice of conditions are described together...

  10. Determination of trace elements in Tillandsia usneoides by neutron activation analysis for environmental biomonitoring

    International Nuclear Information System (INIS)

    Figueiredo, A.M.G.; Saiki, M.; Ticianelli, R.B.; Domingos, M.; Alves, E.S.; Markert, B.

    2001-01-01

    Neutron activation analysis was applied to the determination of the elements Al, As, Ba, Br, Cl, Co, Cr, Fe, K, Mg, Mn, Mo, Na, Rb, Sb, Sc, Ti, Th, V, Zn and the rare earths La, Ce, Nd, Sm, Eu, Tb and Yb in the epiphytic bromeliad Tillandsia usneoides. The samples were collected at an unpolluted area and exposed in different sites of the city of Sao Paulo, Brazil, and in a control site outside Sao Paulo. The results obtained showed an accumulation of Al, As, Cr, Fe, Mo, Sb, Ti, V and Zn elements in Tillandsia usneoides exposed in polluted sites, indicating a promising potential of this species as a biomonitor of air pollution in Sao Paulo. (author)

  11. Determination of 22 elements in Marine Environmental Samples in special areas at the South of Vietnam

    International Nuclear Information System (INIS)

    Nguyen Ngoc Tuan; Nguyen Giang; Nguyen Thanh Tam; Truong Phuong Mai

    2007-01-01

    In 2007 year, we continued to determine the contents of 22 elements in marine environmental samples such as marine sediment, seawater and marine creature. The methods for the determination of elements in these objects are Neutron Activation Analysis and Atomic Absorption Spectrophotometer. The obtained analytical results are a database to monitor marine environmental pollution and to evaluate the impact of exploitation of rare earth- radioactive ores near by the sea coast; exploitation of crude oil in offshore and technology activities at the south of Vietnam in the future. The analytical results of toxic and trace element contents are also to attend the Forum for Nuclear Cooperation of Asia (FNCA) in which Vietnam is one of nine member counties. The analytical results have been presented in the FNCA 2007 workshop on utilization of the research reactor from 28 September-02 October in Serpong, Indonesia. (author)

  12. Atmospheric depositions of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology

    International Nuclear Information System (INIS)

    Allajbeu, Sh.; Lazo, P.; Yushin, N.S.; Frontasyeva, M.V.; Qarri, F.; Duliu, O.G.

    2015-01-01

    Rare earth elements (REE) are conservative elements, scarcely derived from anthropogenic sources. The mobilization of REE in the environment requires their monitoring in environmental matrices, where they are mainly present at trace levels. The results on determination of the content of 11 elements by epithermal neutron activation analysis (ENAA) at the IBR-2 reactor in Dubna in carpet-forming moss species Hypnum cupressiforme collected from 44 sampling sites over the whole Albanian territory are presented and discussed. The paper is focused on Sc and lanthanides, as well as Fe and Th, the last ones showing correlations with the investigated REE. With the exception of Fe, all other elements were never determined in the air deposition of Albania. The STATISTICA"T"M 10 software was used for data analysis. The median values for the content of elements under investigation were compared to those in Bulgaria, Macedonia, Romania and Serbia, as well as Norway selected as a pristine area. Therefore, it was shown that the accumulation of REE in mosses is associated with the wind blown metal-enriched soils that are pointed out as the main emitting factor. [ru

  13. The application of micro-column solid phase extraction techniques for the determination of rare earth elements in actinide containing matrices

    International Nuclear Information System (INIS)

    Carney, K.P.; Cummings, D.G.

    1995-01-01

    The design and characterization of an argon segmented-solid phase extraction system is described. A 200 ul volume micro-column has been constructed for the preconcentration of rare earth elements (REEs) from salt matrices containing uranium. An inductively coupled plasma atomic emission spectrometer has been utilized for simultaneous detection of Sr, Y and the REEs (namely Ce, Eu, La, Nd, Pr, Sm) at levels ranging from 5- to 2000 ppm in LiCl/KCl samples containing U. Preconcentration factors of 100 fold have been demonstrated. The precision, linear dynamic range and column performance of the system will be presented. (author). 5 refs., 5 figs., 3 tabs

  14. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hu [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Shengen, E-mail: zhangshengen@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Volinsky, Alex A. [Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620 (United States)

    2014-05-01

    Highlights: • The article provides a new method for recycling rare earth (RE) from waste phosphor. • When compared with the traditional methods, leach rate was much higher. • Y–Eu concentrate and Tb–Ce concentrate were obtained successively. • It would reduce the burden of later extraction, separation and purification. - Abstract: This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y{sub 0.95}Eu{sub 0.05}){sub 2}O{sub 3} in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce{sub 0.67}Tb{sub 0.33}MgAl{sub 11}O{sub 19}) and the Blue phosphor (Ba{sub 0.9}Eu{sub 0.1}MgAl{sub 10}O{sub 17}) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO{sub 2} are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications.

  15. A political economy of China's export restrictions on rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Pothen, Frank [Zentrum fuer Europaeische Wirtschaftsforschung GmbH (ZEW), Mannheim (Germany); Fink, Kilian [Frankfurt Univ. (Germany)

    2015-04-20

    We investigate why governments restrict exports of exotic raw materials taking rare earth elements as a case study. Trade restrictions on exotic materials do not have immediate macroeconomic effects. Relocating rare earth intensive industries is found to be the main reason behind China's export barriers. They are part of a more extensive strategy aiming at creating comparative advantages in these sectors and at overcoming path dependencies. Moreover, export barriers serve as a second-best instrument to reduce pollution and to slow down the depletion of exhaustible resources. Growing domestic rare earth consumption renders those increasingly ineffective. Rising reliance on mine-site regulation indicates that this fact is taken into account. Rare earth extraction is dominated by a few large companies; the demand side is dispersed. That speaks against successful lobbying for export restrictions. It appears as if the export barriers are set up to compensate mining firms.

  16. Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos

    Institute of Scientific and Technical Information of China (English)

    Jun'an Cui; Zhiyong Zhang; Wei Bai; Ligang Zhang; Xiao He; Yuhui Ma; Yan Liu; Zhifang Chai

    2012-01-01

    In recent years,with the wide applications and mineral exploitation of rare earth elements,their potential environmental and health effects have caused increasing public concern.Effect of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos were studied.The embryos were exposed to La3+ or Yb3+ at 0,0.01,0.1,0.3,0.5 and 1.0 mmol/L,respectively.Early life stage parameters such as egg and embryo mortality,gastrula development,tail detachment,eyes,somite formation,circulatory system,pigmentation,malformations,hatching rate,length of larvae and mortality were investigated.The results showed La3+ and Yb3+ delayed zebrafish embryo and larval development,decreased survival and hatching rates,and caused tail malformation in a concentration-dependent way.Moreover,heavy rare-earth ytterbium led to more severe acute toxicity of zebrafish embryo than light rare-earth lanthanum.

  17. Levels of platinum group elements and rare-earth elements in wild mushroom species growing in Poland.

    Science.gov (United States)

    Mleczek, Mirosław; Niedzielski, Przemysław; Kalač, Pavel; Siwulski, Marek; Rzymski, Piotr; Gąsecka, Monika

    2016-01-01

    Due to limited data-describing abilities of mushrooms to accumulate platinum group elements (PGEs) and rare-earth elements (REEs), the aim of this study was to determine, by inductively coupled plasma optical emission spectrometry followed by microwave-assisted sample digestion by nitric acid, the content of these elements in 20 mushroom species (10 above ground and 10 growing on wood), mostly edible, collected near a busy trunk road. The highest content of PGEs in above-ground mushroom species was observed in Lepista gilva and Suillus bovinus fruit bodies (0.38 ± 0.05 and 0.37 ± 0.03 mg kg(-1) DW, respectively), while in mushrooms growing on wood, the highest content was observed in Pleurotus ostreatus (0.35 ± 0.04 mg kg(-1) DW). The mean content of PGEs for both these groups was 0.23 ± 0.08 and 0.26 ± 0.07 mg kg(-1) DW, respectively. The highest content of REEs in Suillus luteus and Tricholoma equestra was 5.03 ± 0.50 and 2.18 ± 0.56 mg kg(-1) DW, respectively, but within mushrooms growing on wood in Ganoderma applanatum fruiting bodies it was 4.19 ± 0.78 mg kg(-1) DW. Mean contents of REEs were 1.39 ± 1.21 and 1.61 ± 0.97 mg kg(-1) DW in above-ground species and species growing on wood, respectively. Generally, the group of mushroom species growing on wood was capable of slightly higher accumulation of both REEs and PGEs. No limits have been established for both the groups until now.

  18. Rare earth elements, U and Th in tunnel dusts of SÃO Paulo City, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Nory, Renata M.; Figueireido, Ana Maria G., E-mail: renata.nory@ipen.br, E-mail: anamaria@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    São Paulo is one of the most populated cities in the world, with about 20 million inhabitants in its metropolitan area, more than 12 million motor vehicles and intense industrial activity. Given its importance as a major urban center in South America and the lack of information concerning urban dust composition, the present study aimed to determine rare earth elements (REEs), U and Th mass fractions in tunnel dust, collected in the Jânio Quadros Tunnel, and to assess their possible sources. The study of REEs distribution in urban environments has become of interest over the last decades, due to the increasing industrial use of these elements. The REEs, that are as common as the most familiar metals, are found in metallurgical additives, fluid cracking catalysts and automobile converter catalysts, among other applications. In this study, which employed Instrumental Neutron Activation Analysis (INAA) as analytical technique, the mass fractions of eight REEs were determined and normalized to the chondrite concentration values. The results showed that major concentrations were found for light REEs, following the sequence Ce > La > Nd > Sm > Yb > Eu > Tb > Lu. The pattern of the results pointed to a natural origin for these elements. Regarding U and Th concentrations, the results varied between 1.0 - 9.4 μg g{sup -1} and 3.3 - 35.9 μg g{sup -1}, respectively. Since there is almost no information about the concentration of these elements in this kind of matrix in São Paulo city, these data are important to support further investigations. (author)

  19. Natural radioactivity and Rare Earth elements in feldspar samples, Central Eastern desert, Egypt

    International Nuclear Information System (INIS)

    Walley El-Dine, Nadia; El-Shershaby, Amal; Afifi, Sofia; Sroor, Amany; Samir, Eman

    2011-01-01

    The pegmatite bodies of the Eastern Desert of Egypt are widely distributed especially along the Marsa-Alam-Idfu road. The Abu Dob area covers about 150 km 2 of the Arabian Nubian shield at the central part of the Eastern Desert of Egypt. Most of the pegmatite is zoned; the zonation starts with milky quartz at the core followed by alkali feldspar at the margins. The feldspars vary in color from rose to milky and in composition from K-feldspar to Na-feldspar, sometimes interactions of both types are encountered. Thirteen feldspar samples were collected from different locations in the Abu Dob area for measuring the natural radioactivity of 238 U, 232 Th and 40 K using an HPGe detector. The variation in concentration of radionuclides for the area under investigation can be classified into regions of high, medium and low natural radioactivity. The average concentration in BqKg -1 has been observed to be from 9.5 to 183675.7 BqKg -1 for 238 U, between 6.1 and 94,314.2 BqKg -1 for 232 Th and from 0 to 7894.6 BqKg -1 for 40 K. Radium equivalent activities (Ra eq ), dose rate (D R ) and external hazard (H ex ) have also been determined. In the present work, the concentration of rare earth elements are measured for two feldspar samples using two techniques, Environmental Scanning Electron microscope XIL 30 ESEM, Philips, and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The existence of rare earth elements in this area are very high and can be used in different important industries.

  20. Natural radioactivity and Rare Earth elements in feldspar samples, Central Eastern desert, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Walley El-Dine, Nadia, E-mail: nadia_walley5@hotmail.co [Department of physics, Faculty of girls for Art, Science and Education, Ain Shams University, Heliopolis, Cairo (Egypt); El-Shershaby, Amal [Department of physics, Faculty of girls for Art, Science and Education, Ain Shams University, Heliopolis, Cairo (Egypt); Afifi, Sofia [Nuclear Materials Authority (Egypt); Sroor, Amany; Samir, Eman [Department of physics, Faculty of girls for Art, Science and Education, Ain Shams University, Heliopolis, Cairo (Egypt)

    2011-05-15

    The pegmatite bodies of the Eastern Desert of Egypt are widely distributed especially along the Marsa-Alam-Idfu road. The Abu Dob area covers about 150 km{sup 2} of the Arabian Nubian shield at the central part of the Eastern Desert of Egypt. Most of the pegmatite is zoned; the zonation starts with milky quartz at the core followed by alkali feldspar at the margins. The feldspars vary in color from rose to milky and in composition from K-feldspar to Na-feldspar, sometimes interactions of both types are encountered. Thirteen feldspar samples were collected from different locations in the Abu Dob area for measuring the natural radioactivity of {sup 238}U, {sup 232}Th and {sup 40}K using an HPGe detector. The variation in concentration of radionuclides for the area under investigation can be classified into regions of high, medium and low natural radioactivity. The average concentration in BqKg{sup -1} has been observed to be from 9.5 to 183675.7 BqKg{sup -1} for {sup 238}U, between 6.1 and 94,314.2 BqKg{sup -1} for {sup 232}Th and from 0 to 7894.6 BqKg{sup -1} for {sup 40}K. Radium equivalent activities (Ra{sub eq}), dose rate (D{sub R}) and external hazard (H{sub ex}) have also been determined. In the present work, the concentration of rare earth elements are measured for two feldspar samples using two techniques, Environmental Scanning Electron microscope XIL 30 ESEM, Philips, and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The existence of rare earth elements in this area are very high and can be used in different important industries.

  1. Rigidly framed earth retaining structures thermal soil structure interaction of buildings supporting unbalanced lateral earth pressures

    CERN Document Server

    Aboumoussa, Walid

    2014-01-01

    Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories....

  2. [Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province and evaluation of its ecological risk].

    Science.gov (United States)

    Jin, Shu-Lan; Huang, Yi-Zong; Wang, Fei; Xu, Feng; Wang, Xiao-Ling; Gao, Zhu; Hu, Ying; Qiao Min; Li, Jin; Xiang, Meng

    2015-03-01

    Rare earth elements content in farmland soils and crops of the surrounding copper mining and smelting plant in Jiangxi province was studied. The results showed that copper mining and smelting could increase the content of rare earth elements in soils and crops. Rare earth elements content in farmland soils of the surrounding Yinshan Lead Zinc Copper Mine and Guixi Smelting Plant varied from 112.42 to 397.02 mg x kg(-1) and 48.81 to 250.06 mg x kg(-1), and the average content was 254.84 mg x kg(-1) and 144.21 mg x kg(-1), respectively. The average contents of rare earth elements in soils in these two areas were 1.21 times and 0.68 times of the background value in Jiangxi province, 1.36 times and 0.77 times of the domestic background value, 3.59 times and 2.03 times of the control samples, respectively. Rare earth elements content in 10 crops of the surrounding Guixi Smelting Plant varied from 0.35 to 2.87 mg x kg(-1). The contents of rare earth elements in the leaves of crops were higher than those in stem and root. The contents of rare earth elements in Tomato, lettuce leaves and radish leaves were respectively 2.87 mg x kg(-1), 1.58 mg x kg(-1) and 0.80 mg x kg(-1), which were well above the hygienic standard limit of rare earth elements in vegetables and fruits (0.70 mg x kg(-1)). According to the health risk assessment method recommended by America Environmental Protection Bureau (USEPA), we found that the residents' lifelong average daily intake of rare earth elements was 17.72 mg x (kg x d)(-1), lower than the critical value of rare earth elements damage to human health. The results suggested that people must pay attention to the impact of rare earth elements on the surrounding environment when they mine and smelt copper ore in Jiangxi.

  3. Marine geochemistry of the rare earth elements: a review

    International Nuclear Information System (INIS)

    Kennedy, H.; Elderfield, H.

    1984-01-01

    The rare earth elements (REE) form a coherent group because of their systematic decrease in atomic radii with increasing atomic number and predominant +3 oxidation state. This makes them particularly useful in the study of marine geochemistry. The fact that two members of the group are often found in anomalous oxidation states allows a study of the fractionation of these REE from their neighbours and provides an insight into the geochemical behaviour of the REE in the marine environment. Thus the chemistry and relative abundances of the REE can be used to assess the origin and depositional environments of modern sediments. (author)

  4. Sustainability evaluation of essential critical raw materials: cobalt, niobium, tungsten and rare earth elements

    Science.gov (United States)

    Tkaczyk, A. H.; Bartl, A.; Amato, A.; Lapkovskis, V.; Petranikova, M.

    2018-05-01

    The criticality of raw materials has become an important issue in recent years. As the supply of certain raw materials is essential for technologically-advanced economies, the European Commission and other international counterparts have started several initiatives to secure reliable and unhindered access to raw materials. Such efforts include the EU Raw Materials Initiative, European Innovation Partnership on Raw Materials, US Critical Materials Institute, and others. In this paper, the authors present a multi-faceted and multi-national review of the essentials for the critical raw materials (CRMs) Co, Nb, W, and rare earth elements (REEs). The selected CRMs are of specific interest as they are considered relevant for emerging technologies and will thus continue to be of increasing major economic importance. This paper presents a ‘sustainability evaluation’ for each element, including essential data about markets, applications and recycling, and possibilities for substitution have been summarized and analysed. All the presented elements are vital for the advanced materials and processes upon which modern societies rely. These elements exhibit superior importance in ‘green’ applications and products subject to severe conditions. The annual production quantities are quite low compared to common industrial metals. Of the considered CRMs, only Co and REE gross production exceed 100 000 t. At the same time, the prices are quite high, with W and Nb being in the range of 60 USD kg‑1 and some rare earth compounds costing almost 4000 USD kg‑1. Despite valiant effort, in practice some of the considered elements are de facto irreplaceable for many specialized applications, at today’s technological level. Often, substitution causes a significant loss of quality and performance. Furthermore, possible candidates for substitution may be critical themselves or available in considerably low quantities. It can be concluded that one preferred approach for the

  5. Phytoextraction of rare earth elements in herbaceous plant species growing close to roads.

    Science.gov (United States)

    Mikołajczak, Patrycja; Borowiak, Klaudia; Niedzielski, Przemysław

    2017-06-01

    The aim of study was to determine the phytoextraction of rare earth elements (REEs) to roots, stems and leaves of five herbaceous plant species (Achillea millefolium L., Artemisia vulgaris L., Papaver rhoeas L., Taraxacum officinale AND Tripleurospermum inodorum), growing in four areas located in close proximity to a road with varied traffic intensity. Additionally, the relationship between road traffic intensity, REE concentration in soil and the content of these elements in plant organs was estimated. A. vulgaris and P. rhoeas were able to effectively transport REEs in their leaves, independently of area collection. The highest content of REEs was observed in P. rhoeas leaves and T. inodorum roots. Generally, HREEs were accumulated in P. rhoeas roots and leaves and also in the stems of T. inodorum and T. officinale, whereas LREEs were accumulated in T. inodorum roots and T. officinale stems. It is worth underlining that there was a clear relationship between road traffic intensity and REE, HREE and LREE concentration in soil. No positive correlation was found between the concentration of these elements in soil and their content in plants, with the exception of T. officinale. An effective transport of REEs from the root system to leaves was observed, what points to the possible ability of some of the tested plant species to remove REEs from soils near roads.

  6. A deposit model for carbonatite and peralkaline intrusion-related rare earth element deposits: Chapter J in Mineral deposit models for resource assessment

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.; Seal, Robert R.; McCafferty, Anne E.

    2014-01-01

    Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. A wide variety of other commodities have been exploited from carbonatites and alkaline igneous rocks including niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other elements enriched in these deposits include manganese, strontium, tantalum, thorium, vanadium, and uranium. Carbonatite and peralkaline intrusion-related rare earth element deposits are presented together in this report because of the spatial, and potentially genetic, association between carbonatite and alkaline rocks. Although these rock types occur together at many locations, carbonatite and peralkaline intrusion-related rare earth element deposits are not generally found together.

  7. Determination of lanthanides in rare earths concentrates by emission optical spectrography

    International Nuclear Information System (INIS)

    Friedmann, R.; Lordello, A.R.; Abrao, A.

    1978-01-01

    A spectrochemical method has been developed for the determination of Y, Pr, Sm, Eu, Gd and Dy in purified lanthanum oxide; Y, La, Nd, Sm, Gd and Dy in purified cerium oxide and Y, La, Sm, Eu, Gd and Dy in purified neodymium oxide. The technique consists of an almost total consumption of the sample in a 17 ampere direct current arc. The rare earth oxides are mixed with an equal amount by weight of spectrographic graphite and the electrodes are arced in an argon (80%)-oxygen (20%) atmosphere, inside a specially desingned chamber, to suppress cyanogen bands. The concentration ranges are approximatelly 0.002 - 2%, depending on the matrix and the elements to be analysed. The presicion, accuracy and acceptability of the method are calculated for all elements. The total error values are approximately in the range of 18-48%. The method was developed for quality control of the individual fractions held by pulsed and ion exchange columns in the lanthanide separations, in the Chemical Engineering Centre, Atomic Energy Institute, Sao Paulo [pt

  8. Recycling of Rare Earth Elements

    Science.gov (United States)

    Lorenz, Tom; Bertau, Martin

    2017-01-01

    Any development of an effective process for rare earth (RE) recycling has become more and more challenging, especially in recent years. Since 2011, when commodity prices of REs had met their all-time maximum, prices have dropped rapidly by more than 90 %. An economic process able to offset these fluctuations has to take unconventional methods into account beside well-known strategies like acid/basic leaching or solvent extraction. The solid-state chlorination provides such an unconventional method for mobilizing RE elements from waste streams. Instead of hydrochloric acid this kind of chlorination decomposes NH4Cl thermally to release up to 400 °C hot HCl gas. After cooling the resulting solid metal chlorides may be easily dissolved in pH-adjusted water. Without producing strongly acidic wastes and with NH4Cl as cheap source for hydrogen chloride, solid-state chlorination provides various advantages in terms of costs and disposal. In the course of the SepSELSA project this method was examined, adjusted and optimized for RE recycling from fluorescent lamp scraps as well as Fe14Nd2B magnets. Thereby many surprising influences and trends required various analytic methods to examine the reasons and special mechanisms behind them.

  9. Rare earths as a future resource

    International Nuclear Information System (INIS)

    Cornell, D.H.

    1988-01-01

    The fourteen rare earth or lanthanide elements have recently emerged as an important natural resource because of the rapidly growing demand in the electronic, chemical and metallurgical industries. The Symposium on rare earth elements as a future resource presented a multidisciplinary review of rare earth chemistry, geology, beneficiation, industrial applications and marketing. Papers by experts in many fields were presented on the following topics: chemical properties of the rare earth elements; the analysis of rare earth elements and minerals; beneficiation and extraction of rare earth elements; economic geochemistry and mineralogy of rare earths; present industrial uses of rare earth elements; the role of rare earth elements in high-temperature superconductors; the technical application of high-temperature superconductors; supply and demand for rare earth products - now and in the future, and the geology of rare earth deposits

  10. Dispersion and concentration of elements in the Earth's crust an overview

    International Nuclear Information System (INIS)

    Iiyama, J.T.

    1991-01-01

    During the Earth's history of 4,500 x 10 6 years, the distribution of elements in its crust is strongly modified from the initial pattern. The paper overlooks at first how and to what extent this modification could be take place. It is emphasized that water in deep as well as in shallow parts of the crust plays an essential role in the transportation of elements. Whether a particular element thus transported by water are concentrated in particular places or diluted and dispersed in the crust or brought to the surface and join into the surface water depends on the geological and geochemical condition of the passages of these waters acting as transporter of the elements. If there was no preferential passages for water, these elements and water will diffuse into the surroundings and no particular concentration of elements will be resulted. On the contrary, the presence of preferential conduit (such as fissure or faults) will offer the places adequate for this concentration provided that a favorable physical and chemical conditions are present. The review thus intends to point out the importance of the tectono-geochemical conditions to be taken into consideration for the planning of the nuclear wastes disposal and of the environmental protection. (author)

  11. Determination of the heavy rare earth radionuclides in melted rock

    International Nuclear Information System (INIS)

    Li Yinming; Wang Yalong; Zhang Quanshi

    1995-01-01

    There are some heavy rare earth radionuclides in the melted rocks, such as 160 Tb, 168,170 Tm, 88,91 Y, 174,177 Lu, 169 Yb, etc.. Because their contents are very low in the melted rocks and the light rare earth fission products are interfered with their determination, it is very complicated to measure them quantitatively. So a new method has been studied in which P507 resin is used to separate and purify the rare earths. Radioactive sources are prepared by the pieces of filter paper for determining chemical yield with X-fluorescence analysis, and radioactive activity is determined with the γ-spectra analysis. It is proved that this method has satisfied the demands of experiments

  12. Spectrophotometric determination of rare earths in binary mixtures

    International Nuclear Information System (INIS)

    Krasnova, A.V.; Shvarev, V.S.

    1978-01-01

    The possibility was investigated of using the reaction with brompyrogallol red (BPR) (dibrompyrogallosulfophthalein) for analyzing binary mixtures of rare earth metals close in ordinal numbers (La-Y, La-Eu, La-Sm, La-Nd, Nd-Y, Nd-Eu). Heavy REM are masked by nitrile-acetic acid (NAA). The experimental design method was used to determine optimum conditions. The optimizing parameters were the optical density measured with respect to water and the amount of the component bound into the complex. It was found that optimum conditions for the analysis of investigated mixtures differ only in the amount of NAA necessary to mask the heavy element [NAA]/[Sm 3+ ]=4; [NAA]/[Eu 3+ ]=5; [NAA]/Nb 3+ ]=10; [NAA]/[Y 3+ ]=2.5. The optimum acidity and the amount of BPR are always the same: pH 6.5; [BPR]/[La 3+ ]=[BPR]/[Nd 3+ ]=4. The given method for analyzing binary mixtures of lanthanoids surpasses considerably in sensitivity the methods based on intrinsic absorption spectra, while retaining the same reproducibility

  13. Direct qualitative and quantitative determination of rare earths after separation by high pressure liquid chromatography (HPLC)

    International Nuclear Information System (INIS)

    Weuster, W.; Specker, H.

    1980-01-01

    The rare earths from lanthanum to erbium can be separated by means of HPLC in an eluent system containing di-isopropylether/tetrahydrofuran/nitric acid (100:30:3), and they are determined qualitatively and quantitatively after calibration. Fluorescence quenching of THF at break-through of the single elements serves as indication method. This quenching is proportional to the concentration. The calibration curve is linear within 0.2 to 0.02 moles input. Standards, ores (monazites, cerite earths, yttriae) and technical products were analysed qualitatively and quantitatively. The results obtained are in good agreement with analytical values from different methods. The relative standard deviation is 1.8-3% (N = 10). The procedure takes 50 min from dissolution of the analytical sample. (orig.) [de

  14. Neutron-activation determination of the rare earths in natural calcites using a semiconductor detector

    International Nuclear Information System (INIS)

    Vaganov, N.A.; Bulnaev, A.I.; Mejer, V.A.; Ponomarev, V.S.

    1976-01-01

    The application of germanium semiconducting detector is described. The detector has an energy resolution about 1 KeV and makes it possible to determine the content of Ce, Nd, Eu, Gd, Tb, and Yb in natural calcites with high sensitivity. The region of soft γ-radiation of activated calcites is more favourable for measurements to be performed than the region of hard γ-rays. Semiconducting detectors of radiation type are relatively cheap; they can be stored at room temperature. The limit of determining rare earth elements in calcites is (g): Eu-1.5.10 -9 ; Tb-4.0.10 -9 ; Yb-7.0.10 -9 ; Ce-1.0.10 -7 ; Nd-5.0.10 -7 ; Gd-1.0.10 -6 . A relative error of concentration determination is 10-20%

  15. Size distribution of rare earth elements in coal ash

    Science.gov (United States)

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  16. Assessment of Bioavailable Concentrations of Germanium and Rare Earth Elements in the Rhizosphere of White Lupin (Lupinus albus L.)

    Science.gov (United States)

    Wiche, Oliver; Fischer, Ronny; Moschner, Christin; Székely, Balázs

    2015-04-01

    Concentrations of Germanium (Ge) and Rare Earth Elements in soils are estimated at 1.5 mg kg -1 (Ge), 25 mg kg -1 (La) and 20 mg kg -1 (Nd), which are only roughly smaller than concentrations of Pb and Zn. Germanium and rare earth elements are thus not rare but widely dispersed in soils and therefore up to date, only a few minable deposits are available. An environmental friendly and cost-effective way for Ge and rare earth element production could be phytomining. However, the most challenging part of a phytomining of these elements is to increase bioavailable concentrations of the elements in soils. Recent studies show, that mixed cultures with white lupine or other species with a high potential to mobilize trace metals in their rhizosphere due to an acidification of the soil and release of organic acids in the root zone could be a promising tool for phytomining. Complexation of Ge and rare earth elements by organic acids might play a key role in controlling bioavailability to plants as re-adsorption on soil particles and precipitation is prevented and thus, concentrations in the root zone of white lupine increase. This may also allow the complexes to diffuse along a concentration gradient to the roots of mixed culture growing species leading to enhanced plant uptake. However, to optimize mixed cultures it would be interesting to know to which extend mobilization of trace metals is dependent from chemical speciation of elements in soil due to the interspecific interaction of roots. A method for the identification of complexes of germanium and rare earth elements with organic acids, predominantly citric acid in the rhizosphere of white lupine was developed and successfully tested. The method is based on coupling of liquid chromatography with ICP-MS using a zic-philic column (SeQuant). As a preliminary result, we were able to show that complexes of germanium with citric acid exist in the rhizosphere of white lupin, what may contribute to the bioavailability of this

  17. [Effects of rare earth elements on soil fauna community structure and their ecotoxicity to Holotrichia parallela].

    Science.gov (United States)

    Li, Guiting; Jiang, Junqi; Chen, Jie; Zou, Yunding; Zhang, Xincai

    2006-01-01

    By the method of OECD filter paper contact, this paper studied the effects of applied rare earth elements on soil fauna community structure and their ecological toxicity to Holotrichia parallela in bean field. The results showed that there were no significant differences between the treatments and the control in soil fauna species, quantity of main species, and diversity index. Urgent and chronic toxic test showed that the differences between the treatments and the control were not significant. It was suggested that within the range of test dosages, rare earth elements had little ecological toxicity to Holotrichia parallela, and did not change the soil fauna community structure.

  18. Determination of trace amounts of rare earth elements in samarium, terbium and disprosium oxides by graphite furnace atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Dantas, E.S.K.

    1990-01-01

    A graphite furnace atomic-absorption spectrometry method for the determination of neodymium, europium, terbium, dysprosium and yttrium at trace level in samarium oxide; of samarium, europium, dysprosium, holmium, erbium and yttrium in terbium oxide and of europium, terbium, holmium, erbium and yttrium in dysprosium oxide was established. The best pyrolysis and atomization temperatures were determined for each lanthanide considered. Calibration curves were obtained for the pure elements, for binary mixtures formed by the matrix and each of the lanthanides studied and, finally, for the complex mixtures constituted by the matrix and all the other lanthanide of the group under scrutiny. This study has been carried out to examine the interference of the presence of one lanthanide on the behaviour of the other, since a lack of linearity on the calibration curves has been observed in some cases. Detection and determination limits have been determined as well. The detection limits encountered were within the range 0.002 to 0.3% for different elements. The precision of the method expressed as the relative standard deviation was calculated for each element present in each of the matrices studied. The conclusion arrived at is that the method can be applied for determining the above mentioned lanthanides present in the matrices studied with purity up to 99.50%. (author)

  19. An orbit determination algorithm for small satellites based on the magnitude of the earth magnetic field

    Science.gov (United States)

    Zagorski, P.; Gallina, A.; Rachucki, J.; Moczala, B.; Zietek, S.; Uhl, T.

    2018-06-01

    Autonomous attitude determination systems based on simple measurements of vector quantities such as magnetic field and the Sun direction are commonly used in very small satellites. However, those systems always require knowledge of the satellite position. This information can be either propagated from orbital elements periodically uplinked from the ground station or measured onboard by dedicated global positioning system (GPS) receiver. The former solution sacrifices satellite autonomy while the latter requires additional sensors which may represent a significant part of mass, volume, and power budget in case of pico- or nanosatellites. Hence, it is thought that a system for onboard satellite position determination without resorting to GPS receivers would be useful. In this paper, a novel algorithm for determining the satellite orbit semimajor-axis is presented. The methods exploit only the magnitude of the Earth magnetic field recorded onboard by magnetometers. This represents the first step toward an extended algorithm that can determine all orbital elements of the satellite. The method is validated by numerical analysis and real magnetic field measurements.

  20. Studies on determination of stable elements in sea water and organisms

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    The existing conditions of stable elements including Co, Zn, Cs, Ce and Eu in sea water were determined by adding radioactive tracers, and determination methods were discussed. 60 Co added to sea water revealed to be kept in solution in 93 per cent of non-filtrated sea water, and in 98 per cent of filtrated sea water. 65 Zn also added to sea water showed to be kept in solution in 97 per cent of both non-filtrated and filtrated sea water. Both elements seemed to exist as particle or ion smaller than 0.45 μ, which solved in sea water. On the other hand, in both Ce and Eu of rare earth elements, about 80 per cent of them presented in the residue, but the treatment of sea water by hydrochroric acid solubilized 80 to 90 per cent of them in filtrated sea water. One of the instrumental analysis, irradiation analysis by nuclear reactor, was applied: each of preconcentration procedure by ion exchange method for Co and Zn in sea water and drying up sample marine organisms to ash content combined with irradiation analysis. Chemical recovery of both 60 Co and 65 Zn in sea water by preconcentration procedure reached more than 95 per cent. As to marine organisms, Co, Zn, and Cs could be determined with only 100 to 200 mg. of ash content obtained from sample marine organisms showing 80 per cent of chemical yield of the carrier through whole the procedure of analysis in almost all the samples. The chemical recovery of Ce and Eu in sea water and marine organisms by the preconcentration procedure reached about 85 per cent, and chemical yield through whole the procedure of analysis was more than 60 per cent. Concentration factor of Co and Zn in fishes and shells, especially that of muscles, obtained by stable elements determination method was almost 10 times that by RI tracer method. The difference of chemical forms between RI tracer and stable isotope affected not only to physiological metabolism but also to food chains. (Kanao, K.)

  1. Current extraction and separation of uranium, thorium and rare earths elements from monazite leach solution using organophosphorous extractants

    International Nuclear Information System (INIS)

    Biswas, Sujoy; Rupawate, V.H.; Hareendran, K.N.; Roy, S.B.

    2014-01-01

    A new process based on solvent extraction has been developed for separation of uranium, thorium and rare earths from monazite leach solution using organophosphorous extractants. The Thorium cake coming from monazite source was dissolved in HNO 3 medium in presence of trace amount of HF for feed preparation. The separation of U(VI) was carried out by liquid-liquid extraction using tris-2-ethyl hexyl phosphoric acid (TEHP) in dodecane leaving thorium and rare earths elements in the raffinate. The thorium from raffinate was selectively extracted using 1M tri iso amyl phosphate (TiAP) in dodecane in organic phase leaving all rare earths elements in aqueous solution. The uranium and thorium from organic medium was quantitatively stripped using 0.05 M HNO 3 counter current mode. Results indicate the quantitative separation of uranium, thorium and rare earths from thorium cake (monazite source) using organophosphorous extractant in counter current mode

  2. The occurrence of rare earth elements in some Finnish mires

    Directory of Open Access Journals (Sweden)

    Yliruokanen, I.

    1995-12-01

    Full Text Available The content of the more abundant rare earths (RE (Y, La, Ce, Pr, Nd and Sm in the ash of 399 peat samples from 26 Finnish mires was determined by X-ray fluorescence spectrometry. The content of all rare earths (La-Lu, Y in 29 samples was also determined by spark source mass spectrometry. The median RE contents in peat ashes from areas where the bedrock consists of rapakivi granite, granite or archean gneiss are reported. Detailed data concerning the individual mires are also presented. The highest RE contents were found in samples from rapakivi granite areas where a strong negative Eu anomaly was also observed. The RE contents were in general highest at the basal peat layers.

  3. Rare earth element and rare metal inventory of central Asia

    Science.gov (United States)

    Mihalasky, Mark J.; Tucker, Robert D.; Renaud, Karine; Verstraeten, Ingrid M.

    2018-03-06

    Rare earth elements (REE), with their unique physical and chemical properties, are an essential part of modern living. REE have enabled development and manufacture of high-performance materials, processes, and electronic technologies commonly used today in computing and communications, clean energy and transportation, medical treatment and health care, glass and ceramics, aerospace and defense, and metallurgy and chemical refining. Central Asia is an emerging REE and rare metals (RM) producing region. A newly compiled inventory of REE-RM-bearing mineral occurrences and delineation of areas-of-interest indicate this region may have considerable undiscovered resources.

  4. Thin-film method-XRF determination of the composition of rare earth oxides

    International Nuclear Information System (INIS)

    Xiao Deming

    1992-01-01

    The author describes the thin-film sample preparation by precipitation-pumping filtering method and the composition of rare earth oxide materials by XRF determination. The determination limits are 0.01% to 0.17%. The coefficients of variation are in the range of 0.85% to 14.9%. The analytical results of several kinds of rare earth oxide materials show that this method can be applied to the determination of the composition of rare earth oxide mixtures

  5. The radioactive earth

    International Nuclear Information System (INIS)

    Plant, J.A.; Saunders, A.D.

    1996-01-01

    Uranium, thorium and potassium are the main elements contributing to natural terrestrial radioactivity. The isotopes 238 U, 235 U, 232 Th and 40 K decay with half-lives so long that significant amounts remain in the earth, providing a continuing source of heat. The slow decay of these isotopes also provides the basis for radiometric age dating and isotopic modelling of the evolution of the earth and its crust. There is a complex interplay between their heat production and the processes involved in crust formation. Phenomena such as volcanism, earthquakes, and large-scale hydrothermal activity associated with ore deposition reflect the dissipation of heat energy from the earth, much of which is derived from natural radioactivity. The higher levels of radioactive elements during the early history of the earth resulted in higher heat flow. All three of the radioactive elements are strongly partitioned into the continental crust, but within the crust their distribution is determined by their different chemical properties. The behaviour of U, which has two commonly occurring oxidation states, is more complex than that of Th and K. Uranium deposits are diverse, and are mostly associated with granites, acid volcanics, or detrital sedimentary rocks. The most important U deposits economically are unconformity-type ores of Proterozoic age, in which U is enriched by up to 5 x 10 6 with respect to bulk earth values. In some cases natural radioactivity can be of environmental concern. The most significant risk is posed by accumulations of radon, the gaseous daughter product of U. (author)

  6. Oil-refinery and automotive emissions of rare earth elements

    International Nuclear Information System (INIS)

    Kitto, M.E.; Gordon, G.E.; Anderson, D.L.; Olmez, I.

    1991-01-01

    The concentration pattern of rare-earth elements (REEs) in emissions from oil refineries and newer-model automobiles shows a distortion from the crustal abundance pattern. The REEs arise from the zeolite cracking catalysts used in petroleum refining and emission-control substrates used in automobile catalytic converters, respectively. Ten petroleum cracking catalysts from four countries and 12 catalytic converters from five automobile manufacturers were characterized for their REE content. The cracking catalysts are highly enriched in light REEs, whereas the automobile catalysts are enriched primarily in Ce. Incorporation of zeolite catalysts into refined oil provides new atmospheric elemental signatures for tracing emissions from refineries and oil-fired power plants on a regional scale. Though both have enhanced La/REE ratios, emissions from these two sources can be distinguished by their La/V ratios. Although REE demand by the petroleum industry has dropped considerably in recent years, automobile catalytic converters containing REEs are expected to increase dramatically as more stringent emission regulations are adopted in Europe, Japan and the US

  7. Geochemical processes assessed by Rare Earth Elements fractionation at “Laguna Verde” acidic-sulphate crater lake (Azufral volcano, Colombia)

    International Nuclear Information System (INIS)

    Inguaggiato, Claudio; Burbano, Viviana; Rouwet, Dmitri; Garzón, Gustavo

    2017-01-01

    The geochemical behaviour of major elements, Fe, Al, Mn, and Rare Earth Elements (REE) was investigated in the “Laguna Verde” acidic crater lake of Azufral volcano (Colombia). The cold lake water (T close to 10 °C) is sulphate-dominated, due to absorption and oxidation of H_2S (pH 2.1–2.7, Eh 196–260 mV), and Na-enriched (Total Dissolved Solids 0.79 g L"−"1). The total amount of REE dissolved in the lake ranges from 3.3 to 9.1 ppb. The REE patterns normalized to the local rocks show a Light Rare Earth Elements (LREE) depletion quite constant in the 15 samples. Similar patterns were already found in the acidic sulphate springs of Nevado del Ruiz volcano-hydrothermal system, caused by the precipitation of alunite and jarosite, absorbing LREE and hence removing them from solution. Alunite and jarosite minerals are not oversaturated at chemical-physical conditions within the lake itself, but alunite becomes oversaturated for temperatures above ≈100 °C, reigning in the underlying hydrothermal system. Water temperatures close to 75 °C were found in the northern part of the lake. Coupling the distribution of REE in lake water (LREE depleted) and the saturation indexes, we suggest that the distribution of REE in the lake water is the result of the alunite precipitation in the northern part of the lake and/or in the deeper hydrothermal system. The acidic hydrothermal fluids mobilize the REE with contents up to ≈5 orders of magnitude higher than seawater; acidic-hydrothermal systems, such as acidic crater lakes, can hence be considered potential REE “reservoirs”. - Highlights: • Acidic crater lakes can be considered potential Rare Earth Elements reservoirs. • Alunite precipitation removes Light Rare Earth Elements. • Rare Earth Elements identify geochemical processes in volcano-hydrothermal systems.

  8. Mass separation of rare-earth elements by a high-temperature thermal ion source coupled with a He-jet system

    International Nuclear Information System (INIS)

    Kawase, Y.; Okano, K.; Aoki, K.

    1987-01-01

    By using a high-temperature thermal ion source coupled to a He-jet system, neutron-rich isotopes of rare-earth elements such as cerium, praseodymium, neodymium and promethium produced by the thermal-neutron fission of /sup 235/U were ionized and successfully separated. The temperature dependence of the ionization efficiency has been measured and found to be explained qualitatively by the vapour pressure of the relevant elements. The characteristic temperature dependence of the ionization efficiency has been utilized for Z-identification of several isobars of rare-earth elements. The heaviest isotopes of neodymium and promethium, /sup 155/Nd and /sup 156/Pm, have recently been identified

  9. Mimicking the magnetic properties of rare earth elements using superatoms.

    Science.gov (United States)

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Castleman, A W

    2015-04-21

    Rare earth elements (REs) consist of a very important group in the periodic table that is vital to many modern technologies. The mining process, however, is extremely damaging to the environment, making them low yield and very expensive. Therefore, mimicking the properties of REs in a superatom framework is especially valuable but at the same time, technically challenging and requiring advanced concepts about manipulating properties of atom/molecular complexes. Herein, by using photoelectron imaging spectroscopy, we provide original idea and direct experimental evidence that chosen boron-doped clusters could mimic the magnetic characteristics of REs. Specifically, the neutral LaB and NdB clusters are found to have similar unpaired electrons and magnetic moments as their isovalent REs (namely Nd and Eu, respectively), opening up the great possibility in accomplishing rare earth mimicry. Extension of the superatom concept into the rare earth group not only further shows the power and advance of this concept but also, will stimulate more efforts to explore new superatomic clusters to mimic the chemistry of these heavy atoms, which will be of great importance in designing novel building blocks in the application of cluster-assembled nanomaterials. Additionally, based on these experimental findings, a novel "magic boron" counting rule is proposed to estimate the numbers of unpaired electrons in diatomic LnB clusters.

  10. Comparison of inductively coupled plasma mass spectrometry with inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis for the determination of rare earth elements in Greek bauxites

    International Nuclear Information System (INIS)

    Ochsenkuehn-Petropoulou, Maria; Luck, Joachim

    1991-01-01

    Fore the determination of rare earth elements (REE) in bauxitic materials the techniques of inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and instrumental neutron activation analysis (INAA) were compared. In the NIST (National Institute of Standards and Technology) bauxites SRM 697 Dominican, and SRM 69 b Arkansas, the concentration of some REEs were determined. With the reference bauxite BX-N of the ARNT (Association Nationale de la Recherche Technique) the precision and accuracy of ICP-AES for the determination of REEs in bauxites was tested. Furthermore, Greek bauxites of the Parnassos-Giona area were investigated. In a comparison of the three methods it was possible to calculate from the data series the precision of each method, which showed that the tendency found in the deviations for the different REEs is in accordance with published values. Also the limits of detection for REEs in bauxites were calculated and found to be in the same range as those in the literature. (author)

  11. Rare earth element mineralogy, geochemistry, and preliminary resource assessment of the Khanneshin carbonatite complex, Helmand Province, Afghanistan

    Science.gov (United States)

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Buttleman, Kim P.

    2011-01-01

    There is increased concern about the future availability of rare earth elements (REE) because of China's dominance as the supplier of more than 95 percent of world REE output, their decision to restrict exports of rare earth products, and the rapid increase in world-wide consumption of rare earth product. As a result, countries such as the United States, Japan, and member nations of the European Union face a future of tight supplies and high prices for rare earth products unless other sources of REE are found and developed (Long and others, 2010; U.S. Geological Survey, 2011, p. 128-129, 184-185). We report and describe a significant new deposit of light rare earth elements (LREE), estimated at 1 Mt, within the Khanneshin carbonatite complex of south Afghanistan. The potential resource is located in a remote and rugged part of the igneous complex in a region previously identified by Soviet geologists in the 1970s. This report reviews the geologic setting of LREE deposit, presents new geochemical data documenting the grade of LREE mineralization, briefly describes the mineralogy and mineralogical associations of the deposit, and presents a preliminary estimate of LREE resources based on our current understanding of the geology.

  12. Biosorption of rare earth elements, thorium and uranium using Buccinum tenuissimum shell biomass

    International Nuclear Information System (INIS)

    Wang, Yudan; Koto, Yusuke; Sakamoto, Nobuo; Kano, Naoki; Imaizumi, Hiroshi

    2010-01-01

    In order to evaluate the efficiency of shell biomass as sorbent for rare earth elements (REEs), thorium (Th) and uranium (U), sorption experiment from multi-element solutions containing known amount of REEs, Th and U using Buccinum tenuissimum shell was explored. Furthermore, to confirm the characteristics of the shell biomass, the surface morphology, the crystal structure, and the specific surface area of the shell (both original sample and the heat-treatment (480degC, 6h) sample) was determined. Consequently, the following matters have been mainly clarified. (1) By heat-treatment (480degC, 6h), the crystal structure of the shell biomass was transformed from aragonite (CaCO 3 ) into calcite (CaCO 3 ) phase, and the specific surface area of the biomass have decreased remarkably (i.e., by a factor of less than one eighth). (2) The shell biomass (both original sample and the heat-treated sample) showed excellent sorption capacity for REEs, although the sorption capacity decreases slightly after heat-treatment. (3) Adsorption isotherms using the shell biomass can be described by Langmuir and Freundlich isotherms satisfactorily for REEs, but not for Th and U in this work. (4) Shell biomass (usually treated as waste material) could be an efficient sorbent for REEs in future. (author)

  13. Elemental analysis of samples of rare earths

    International Nuclear Information System (INIS)

    Lopez M, J.; Ramirez T, J.J.; Sandoval J, R.A.; Aspiazu F, J.; Villasenor S, P.; Lugo L, M.F.

    2003-01-01

    Applying the PIXE technique (Particle Induced X-Ray Emission) it was analyzed the purity of the samples that will be used to measure the production section of X rays with Li and B beams. It is not necessary to determine the concentrations of the pollutant elements. (Author)

  14. Behaviour of rare earth elements, thorium, uranium and strontium isotopes in soil samples of Bryansk region contaminated due to Chernobyl accident

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Yonehara, H.; Kurotaki, K.; Shiraishi, K.; Ramzaev, V.; Barkovski, A.

    2000-01-01

    The aim of this study was to characterise the processes which control retention of rare earth elements, U and Th in soil samples of Bryansk region in one of Russian territory contaminated due to Chernobyl accident. Acid sandy and loam sand podzolic soils are typical of this area. We have classified soil samples into forest, pasture, field, yard and kitchen garden. Rare earth elements, U and Th concentrations were measured by digestion soil samples using acid digestion and microwave digestion method followed by ICP-MS whereas Sr isotope ratio ( 87 Sr/ 86 Sr) was determined by using a thermal ionization mass spectrometer (TIMS). In case of forest soil samples, ratio of U/Th varied from 3.32 to 3.60. Though concentration of U and Th varies, ratio does not show much variation. Pasture soil showed higher concentration of REEs, U and Th. Chondrite normalized pattern of soil samples did not differ much from one another excep Ce and Eu and were similar to that for average concentration of continental crust. In case of 87 Sr/ 86 Sr ratio, top layer soil sample shows a relatively higher isotope ratio than lower layers. These data, within the study area, may be reflective of variations in the concentration of elements in reservoir rocks at depth. (author)

  15. TO DETERMINATION OF DAMPING COEFFICIENT OF VERTICAL DEAD STRESS OF EARTH DAMS ON A DEPTH

    Directory of Open Access Journals (Sweden)

    NESTEROVA E. V.

    2015-12-01

    Full Text Available Raising of problem. At the problem solving about determination of deflected mode (DM of build constructions by the finite element method (FEM on accuracy of solving substantial influence is rendered by the sizes of effective area of foundation. It is suggested to develop the criteria of determining the size of effective area. Presently at the calculation of vertical fallouts of earth dams with the trapeziform section (fig. 1, is assumed that the epure of contact pressures has a rectangular form [2, 6]. Thus actual epure of contact pressures on the sole of dam has form of trapezoid (fig. 1. Thus, there is a disparity between actual and accepted in the normative documents in the contact pressures on the sole of earth dams. Purpose. At writing of this article we were pursue a purpose to calculate the value of damping coefficient of vertical dead stress on the depth of foundation, trapeziform loading determined and to foundation attached. About it has been already written not a bit in scientific literature [2; 5; 6; 7; 13]. In our view, for determination of vertical fallouts of foundation of earth dams it is necessary to use the formula of D-1 DBN [7], corrected in it the damping coefficient of vertical stress on a depth, conditioned of dam weight, that is to calculate a trapezoidal form of environmental stress (fig. 1. Conclusion. The damping coefficients of vertical stress calculated by us on a depth (tablas. 1 allow more exactly to determine their values, than coefficients, presented in normative documents [7]. This is caused by more complete, than it takes a place in normative documents, in the light of configuration of the environmental stress.

  16. Realizing the therapeutic potential of rare earth elements in designing nanoparticles to target and treat glioblastoma.

    Science.gov (United States)

    Lu, Victor M; McDonald, Kerrie L; Townley, Helen E

    2017-10-01

    The prognosis of brain cancer glioblastoma (GBM) is poor, and despite intense research, there have been no significant improvements within the last decade. This stasis implicates the need for more novel therapeutic investigation. One such option is the use of nanoparticles (NPs), which can be beneficial due to their ability to penetrate the brain, overcome the blood-brain barrier and take advantage of the enhanced permeation and retention effect of GBM to improve specificity. Rare earth elements possess a number of interesting natural properties due to their unique electronic configuration, which may prove therapeutically advantageous in an NP formulation. The underexplored exciting potential for rare earth elements to augment the therapeutic potential of NPs in GBM treatment is discussed in this review.

  17. Characterization of Rare Earth Element Minerals in Coal Utilization Byproducts

    Energy Technology Data Exchange (ETDEWEB)

    Montross, Scott N. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Verba, Circe A. [National Energy Technology Lab. (NETL), Albany, OR (United States). Research Innovation Center; Collins, Keith [National Energy Technology Lab. (NETL), Albany, OR (United States). Research Innovation Center

    2017-07-17

    The United States currently produces over 100 million tons of coal utilization byproducts (CUB) per year in the form of fly ash, bottom ash, slag, and flue gas (American Coal Ash Association (ACCA), 2015). But this “waste material” also contains potentially useful levels of rare earth elements (REE). Rare earth elements are crucial for many existing and emerging technologies, but the U.S. lacks a domestic, sustainable REE source. Our project explored the possibility of developing a supply of REEs for U.S. technologies by extracting REEs from CUBs. This work offers the potential to reduce our dependence on other countries for supply of these critical elements (NETL, REE 2016 Project Portfolio). Geologic and diagenetic history, industrial preparation methods, and the specific combustion process all play major roles in the composition of CUB. During combustion, inorganic mineral phases of coal particles are fluidized at temperatures higher than 1400oC, so inorganic mineral materials are oxidized, fused, disintegrated, or agglomerated into larger spherical and amorphous (non-crystalline) particles. The original mineralogy of the coal-containing rock and heating/cooling of the material significantly affects the composition and morphology of the particles in the combustion byproduct (Kutchko and Kim, 2006). Thus, different types of coal/refuse/ash must be characterized to better understand mineral evolution during the combustion process. Our research focused on developing a working model to address how REE minerals behave during the combustion process: this research should help determine the most effective engineering methods for extracting REEs from CUBs. We used multimodal imaging and image processing techniques to characterize six rock and ash samples from different coal power plants with respect to morphology, grain size, presence of mineral phases, and elemental composition. The results of these characterization activities provided thresholds for realizing the

  18. Rare earth element patterns in biotite, muscovite and tourmaline minerals

    International Nuclear Information System (INIS)

    Laul, J.C.; Lepel, E.A.

    1986-01-01

    Rare earth element concentrations in the minerals biotite and muscovite from the mica schist country rocks of the Etta pegmatite and tourmalines from the Bob Ingersoll pegmatite have been measured by INAA and CNAA. The concentrations range from 10 -4 g/g to 10/sup -10g//sub g/. The REE patterns of biotite, muscovite and tourmaline reported herein are highly fractionated from light to heavy REE. The REE concentrations in biotite and muscovite are high and indigenous. The pegmatite tourmalines contain low concentrations of REE. Variations in tourmaline REE patterns reflect the geochemical evolution of pegmatite melt/fluid system during crystallization

  19. New neutron-deficient isotopes of barium and rare-earth elements

    CERN Document Server

    Bogdanov, D D; Karnaukhov, V A; Petrov, L A; Plochocki, A; Subbotin, V G; Voboril, J

    1976-01-01

    The authors present an investigation of the short-lived neutron- deficient isotopes of barium and rare-earth elements. By using the BEMS-2 isotope separator on a heavy ion beam, 19 new isotopes were produced with mass numbers ranging from 117 to 138. Five of these (/sup 117/Ba, /sup 129,131/Nd and /sup 133,135/Sm) turned out to be delayed proton emitters. The beta -decay probabilities for the new isotopes have been analyzed in terms of the beta -strength function. An analysis of the proton spectrum shape has been performed using the statistical model for delayed proton emission.

  20. Trace elements determination in human hair

    International Nuclear Information System (INIS)

    Carrion, Jose

    1995-01-01

    Concentrations of Cu, Zn, Pb, Mg, Ca, Na, K, Mn, Cr, Ni, Co, V, Cd and Al, in human hair sampled from 23 young men during 24 months were determined by atomic absorption spectroscopy. Additional determination of mercury and volatile elements were made by using accessory MHS-10. Statistical treatment of data is presented for each person and element. The pre-treatment of hair carried out with an organic solvent to remove the superficial pollutants is explained. (The author)

  1. Diagenetic remobilization of rare earth elements in a sediment core from the central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Banakar, V.K.

    Rare earth elements (REE) distribution in a 36 cm long sediment box core from the Central Indian Basin is studied. REE concentration is generally higher in the upper oxic zone than in intermediate suboxic zone suggesting REE diffusion upwards...

  2. Distribution of rare earth elements in an alluvial aquifer affected by acid mine drainage: the Guadiamar aquifer (SW Spain)

    International Nuclear Information System (INIS)

    Olias, M.; Ceron, J.C.; Fernandez, I.; Rosa, J. de la

    2005-01-01

    This work analyses the spatial distribution, the origin, and the shale-normalised fractionation patterns of the rare earth elements (REE) in the alluvial aquifer of the Guadiamar River (south-western Spain). This river received notoriety in April 1998 for a spill that spread a great amount of slurry (mainly pyrites) and acid waters in a narrow strip along the river course. Groundwaters and surface waters were sampled to analyse, among other elements, the REEs. Their spatial distribution shows a peak close to the mining region, in an area with low values of pH and high concentrations of sulphates and other metals such as Zn, Cu, Co, Ni, Pb, and Cd. The patterns of shale-normalised fractionation at the most-contaminated points show an enrichment in the middle rare earth elements (MREE) with respect to the light (LREE) and heavy (HREE) ones, typical of acid waters. The Ce-anomaly becomes more negative as pH increases, due to the preferential fractionation of Ce in oxyhydroxides of Fe. - Pollution of the aquifer with rare earth elements is documented at a site of a major spill from a mining operation

  3. Thermodynamics and kinetics of the formation of rare earth intermetallics

    International Nuclear Information System (INIS)

    Deodhar, S.S.

    1975-01-01

    Heats of reaction of rare earth intermetallics with iron, cobalt and nickel were determined using Differential Thermal Analysis technique. The intermetallic compounds studied were of MgCu 2 type Laves phases and the rare earth elements studied were praseodymium, gadolinium, dyprosium and erbium. The reactions were exothermic and the heats of reaction were generally high. They varied from the low of -2.5 kcal/g mole for Fe 2 Gd to the high of -35.3 kcal/g mole for Ni 2 Er. The magnitudes of heats of reaction were always greater for the intermetallics of heavy rare earth elements. The rare earth intermetallics studied were either ferromagnetic or antiferromagnetic. The variations in the magnetic moments and the heats of reaction with respect to the atomic number of the rare earth elements followed certain trends. The similarities were observed in the trends of two properties. Electronic configuration for the MgCu 2 type rare earth intermetallics is proposed using Engel--Brewer correlation for metallic structures and the structural features of the Laves phase compounds. Kinetics of the reactions between the rare earth elements and iron, cobalt, and nickel was studied. The rate of reaction was diffusion controlled in each case. The Valensi--Carter equation for the diffusion mechanism satisfactorily described the kinetic behavior. The magnitudes of activation energies and frequency factors were determined. The reactions can be characterized by their reaction temperatures since they always begin at definite temperatures. It was observed that the reaction began at a higher temperature if the activation energy for the reaction was high

  4. Extraction and separation of Am and rare earth elements in HNO3 solution with P507-sulphonating kerosene

    International Nuclear Information System (INIS)

    Li Zhenhu; Jiao Rongzhou; Zhu Yongjun

    1994-01-01

    A study has been made of the extraction equilibrium of Am(III) and rare earth elements (III) in HNO 3 solution with P507-sulphonating kerosene. It has been found that this equilibrium depends on saponification ratio of P507, feed acidity, metal concentration as well as phase ratio. The extraction ability in order is La< Ce< Am< Pr< Nd< Sm. The model of distribution ratio has been founded. The agreement for calculated and experimental values of distribution ratio is fairly good. These values can be used to design the extraction and separation process of Am and rare earth elements

  5. Technical Information Resource on Rare Earth Elements Now Available to Public and Private Sector Stakeholders

    Science.gov (United States)

    A new EPA technical information resource, “Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues” has been produced as an introductory resource for those interested in learning more about REE mining and alternatives to meet demand...

  6. Concentration levels of rare-earth elements and thorium on plants from the Morro de Ferro environment as an indicator for the biological availability of transuranium elements

    International Nuclear Information System (INIS)

    Miekeley, N.; Casartelli, E.A.; Dotto, R.M.

    1994-01-01

    Plants and soils from a natural thorium and rare-earth element occurrence (Morro do Ferro, Brazil) were analyzed by alpha spectrometry (Th) and ICP-AES (REE), after pre-concentration of the elements by solvent extraction, co-precipitation and ion exchange procedures. Leaching experiments with humic acid solutions and different soils were performed to estimate the fraction of elements biologically available. High concentrations of the light rare-earth elements (LREE) and of Th, reaching some hundreds of μg/g-ash, were measured in plant leaves from the areas of the highest concentration of these elements in soil and in near-surface waters. Chondrite normalized REE plots of plant leaves and corresponding soils are very similar, suggesting that there is no significant fractionation between the REE during uptake from the soil solution and incorporation into the leaves. However, Ce-depletion was observed for some plant species, increasing for Solanum ciliatum in the sequence: leaves -3 to 10 -2 . Leaching experiments confirmed the importance of humic acid complexation for the bio-uptake of Th and REE and further showed that only a very small fraction of these elements in soil is leachable. The implications of these results on the calculated CR's will be discussed. (author) 26 refs.; 5 figs.; 5 tabs

  7. Rapid spectrographic method for determining microcomponents in solutions

    International Nuclear Information System (INIS)

    Karpenko, L.I.; Fadeeva, L.A.; Gordeeva, A.N.; Ermakova, N.V.

    1984-01-01

    Rapid spectrographic method foe determining microcomponents (Cd, V, Mo, Ni, rare earths and other elements) in industrial and natural solutions has been developed. The analyses were conducted in argon medium and in the air. Calibration charts for determining individual rare earths in solutions are presented. The accuracy of analysis (Sr) was detection limit was 10 -3 -10 -4 mg/ml, that for rare earths - 1.10 -2 mg/ml. The developed method enables to rapidly analyze solutions (sewages and industrialllwaters, wine products) for 20 elements including 6 rare earths, using strandard equipment

  8. Elemental and mineralogical study of earth-based pigments using particle induced X-ray emission and X-ray diffraction

    International Nuclear Information System (INIS)

    Nel, P.; Lynch, P.A.; Laird, J.S.; Casey, H.M.; Goodall, L.J.; Ryan, C.G.; Sloggett, R.J.

    2010-01-01

    Artwork and precious artefacts demand non-destructive analytical methodologies for art authentication, attribution and provenance assessment. However, structural and chemical characterisation represents a challenging problem with existing analytical techniques. A recent authentication case based on an Australian Aboriginal artwork, indicate there is substantial benefit in the ability of particle induced X-ray emission (PIXE), coupled with dynamic analysis (DA) to characterise pigments through trace element analysis. However, this information alone is insufficient for characterising the mineralogical residence of trace elements. For this reason a combined methodology based on PIXE and X-ray diffraction (XRD) has been performed to explore the benefits of a more comprehensive data set. Many Aboriginal paintings and artefacts are predominantly earth pigment based. This makes these cultural heritage materials an ideal case study for testing the above combined methodological approach on earth-based pigments. Samples of synthetic and naturally occurring earth-based pigments were obtained from a range of sources, which include Indigenous communities within Australia's Kimberley region. PIXE analyses using a 3 MeV focussed proton beam at the CSIRO nuclear microprobe, as well as laboratory-based XRD was carried out on the above samples. Elemental signature spectra as well as mineralogical data were used to assess issues regarding synthetic and naturally occurring earth pigments with the ultimate aim of establishing provenance.

  9. Determination of ash-forming elements in lignite coal

    International Nuclear Information System (INIS)

    Wischnewski, C.; Werner, G.; Vogt, J.; Just, G.

    1990-01-01

    The most important methods are discussed suitable for the determination of ash-forming elements in coal. In this connection questions of the concentrations of elements in lignites, of the sample preparation, and of the selection of methods for the determination of ash-forming elements are addressed. Advantages and disadvantages of different analysis techniques are shown using concrete examples. (author)

  10. Identification and determination of natural radioactive impurities in rare earth chlorides

    International Nuclear Information System (INIS)

    Gu, M.J.; Cen, Y.H.; Tang, T.Y.; Chang, J.X.

    1988-01-01

    227 Ac, 228 Th, 226 Ra, 210 Po and 210 Pb can be present at rare earth chlorides. A radiochemical procedure is presented for the identification and determination of natural radioactive impurities in rare earth chlorides. The determination limits for these radionuclides were 1.5x10 -4 to 3x10 -1 Bq/g. The relative standard deviations for determining 10 -2 Bq/g radionuclides were usually less than +-7%. (author) 9 refs.; 3 figs.; 2 tabs

  11. Carbon footprint assessment of recycling technologies for rare earth elements: A case study of recycling yttrium and europium from phosphor.

    Science.gov (United States)

    Hu, Allen H; Kuo, Chien-Hung; Huang, Lance H; Su, Chao-Chin

    2017-02-01

    Rare earth elements are key raw materials in high-technology industries. Mining activities and manufacturing processes of such industries have caused considerable environmental impacts, such as soil erosion, vegetation destruction, and various forms of pollution. Sustaining the long-term supply of rare earth elements is difficult because of the global shortage of rare earth resources. The diminishing supply of rare earth elements has attracted considerable concern because many industrialized countries regarded such elements as important strategic resources for economic growth. This study aims to explore the carbon footprints of yttrium and europium recovery techniques from phosphor. Two extraction recovery methods, namely, acid extraction and solvent extraction, were selected for the analysis and comparison of carbon footprints. The two following functional units were used: (1) the same phosphor amounts for specific Y and Eu recovery concentrations, and (2) the same phosphor amounts for extraction. For acid extraction method, two acidic solutions (H 2 SO 4 and HCl) were used at two different temperatures (60 and 90°C). For solvent extraction method, acid leaching was performed followed by ionic liquid extraction. Carbon footprints from acid and solvent extraction methods were estimated to be 10.1 and 10.6kgCO 2 eq, respectively. Comparison of the carbon emissions of the two extraction methods shows that the solvent extraction method has significantly higher extraction efficiency, even though acid extraction method has a lower carbon footprint. These results may be used to develop strategies for life cycle management of rare earth resources to realize sustainable usage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Rare earth elements-critical resources for green energy and digital technology

    International Nuclear Information System (INIS)

    Singh, D.

    2013-01-01

    High technology and environment applications of the Rare Earth Elements (REE) have grown dramatically in diversity and importance over the past few decades. The REE forms largest economical coherent group in the periodic table. The versatility and specialty of the REE has given them a level of technological, environment and economical importance. As technological applications of REE have multiplied over the past several decades, the demand for them has increased dramatically. The green energy is the segment, which is largely contributed in its performance by the REE. The increasing concern about the impact of green house gases around the globe has made countries to explore clean energy technologies to reduce emissions. India has ambitious plans for generating solar power of 30,000 MW and wind energy of 50,000 MW by 2013. Critical component with respect to wind energy is the high strength rare earth permanent magnet, while in hybrid electrical motors REEs like lanthanum are used in LiMH battery pack

  13. Age of the earth and solar system

    International Nuclear Information System (INIS)

    Manhes, G.

    1977-01-01

    The history of chemical element formation and radiochronology is given. The study of Pb isotope composition evolution enables to estimate the age of the earth. A series of galena of known ages was measured. By means of a model, it is possible to determine the initial isotope composition of Pb on the earth and the age of the earth. On the other hand, the analysis of stony meteorites provides a Pb isotope composition higher than the earth value. A comparison of the data shows a fundamental transition at 4.55 10 9 years [fr

  14. Reaction cross section calculation of some alkaline earth elements

    Science.gov (United States)

    Tel, Eyyup; Kavun, Yusuf; Sarpün, Ismail Hakki

    2017-09-01

    Reaction cross section knowledge is crucial to application nuclear physics such as medical imaging, radiation shielding and material evaluations. Nuclear reaction codes can be used if the experimental data are unavailable or are improbably to be produced because of the experimental trouble. In this study, there action cross sections of some target alkaline earth elements have been calculated by using pre-equilibrium and equilibrium nuclear reaction models for nucleon induced reactions. While these calculations, the Hybrid Model, the Geometry Dependent Hybrid Model, the Full Exciton Model, the Cascade Exciton Model for pre-equilibrium reactions and the Weisskopf-Ewing Model for equilibrium reactions have been used. The calculated cross sections have been discussed and compared with the experimental data taken from Experimental Nuclear Reaction Data library.

  15. Active earth pressure model tests versus finite element analysis

    Science.gov (United States)

    Pietrzak, Magdalena

    2017-06-01

    The purpose of the paper is to compare failure mechanisms observed in small scale model tests on granular sample in active state, and simulated by finite element method (FEM) using Plaxis 2D software. Small scale model tests were performed on rectangular granular sample retained by a rigid wall. Deformation of the sample resulted from simple wall translation in the direction `from the soil" (active earth pressure state. Simple Coulomb-Mohr model for soil can be helpful in interpreting experimental findings in case of granular materials. It was found that the general alignment of strain localization pattern (failure mechanism) may belong to macro scale features and be dominated by a test boundary conditions rather than the nature of the granular sample.

  16. A survey of 16 rare Earth elements in the major foods in China.

    Science.gov (United States)

    Jiang, Ding Guo; Yang, Jie; Zhang, Shuo; Yang, Da Jin

    2012-06-01

    The aim of this survey was to investigate the level of contamination of the most consumed foods in China with 16 rare earth elements (REEs), and to provide the basic data for establishing and revising food safety standards for REEs. Sixteen REEs in foods were measured by inductively coupled plasma-mass spectrometry (ICP-MS) in the labs of the Centers for Disease Control and Prevention of four provinces and two municipalities, during 2009-2010. 1 231 samples were analyzed and 19 121 concentration data of 16 REEs were collected. The REEs levels in the investigated foods varied significantly. The concentrations of cerium (Ce), dysprosium (Dy), yttrium (Y), lanthanum (La), and neodymium (Nd) were relatively high, while the remaining eleven REEs were at low levels. The mean values of total rare earth element oxides (REOs) in cereals, fresh vegetables, fresh aquatic products, fresh meats and eggs varied from 0.052 mg/kg to 0.337 mg/kg. 16 REEs in the major foods were at very low contamination levels in the investigated regions. Copyright © 2012 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  17. Simultaneous determination of twelve trace elements in estuarine and sea water using pre-irradiation chromatography

    International Nuclear Information System (INIS)

    Greenberg, R.R.; Kingston, H.M.

    1982-01-01

    A procedure is described for the preconcentration of 100 m of estuarine and seawater into a solid sample using Chelex-100 resin. This solid sample weighs less than half a gram and contains the transition metals and many other elements of interest, but is essentially free from the alkali metals, the alkaline earth metals, and the halogens. The concentrations of Co, Cr, Cu, Fe, Mn, Mo, Ni, Sc, Th, U, V and Zn have been determined in seawater when this procedure was coupled to neutron activation analysis. (author)

  18. Experimental evidence of the impact of rare-earth elements on particle growth and mechanical behaviour of silicon nitride

    International Nuclear Information System (INIS)

    Satet, Raphaelle L.; Hoffmann, Michael J.; Cannon, Rowland M.

    2006-01-01

    The impact of various rare-earth and related doping elements (R = Lu, Sc, Yb, Y, Sm, La) on the grain growth anisotropy and the mechanical properties of polycrystalline β-silicon nitride ceramics has been studied. Model experiments, in which Si 3 N 4 particles can grow freely in an R-Si-Mg-oxynitride glass matrix, show that, with increasing ionic radius of the additive, grain anisotropy increases due to non-linear growth kinetics. Toughness and strength are affected by the rare-earth element. Samples of equivalent grain sizes and morphologies yield an increasing toughness with increasing ion size of the R 3+ , reflecting an increasingly intergranular crack path. These samples are also strong and flaw tolerant, but the trends of strength and toughness do not exactly match. The choice of the rare-earth is essential to tailor microstructure, interfacial strength and mechanical properties. However, somewhat different trends for properties from IIIb and lanthanide additives indicate that more than the R 3+ size (i.e., purely ionic bond strength between R 3+ and its neighbours) is important. The electronic structure of the R-element is responsible for the type of dopant adsorption and the properties of the interface

  19. Evaluation of the effect of heavy rare earth elements on the microstructure and mechanical and electrical properties of zirconia - Yttria ceramics

    International Nuclear Information System (INIS)

    Lazar, Dolores Ribeiro Ricci

    2002-01-01

    The use of Yttria concentrates for synthesis and processing of zirconia based ceramics, applied as structural and solid electrolyte materials, was investigated in this work. Terbium, dysprosium, holmium, erbium and ytterbium are chemical elements, classified as heavy rare earths, that can be found in those concentrates due to their association with yttrium ores. The ceramic characteristics were compared to zirconia - Yttria and zirconia - Yttria - rare earth oxide systems. The dopant content was 3 and 9 mol%. The raw materials were prepared by the coprecipitation route using solutions from the chemical processing of zircon and monazite ores and obtained by dissolution of high purity rare earth oxides. In the first part of this work, calcination, milling and ceramic processing were studied to produce ceramics with densities up to 95% TD. Samples were prepared in optimized conditions for the evaluation of the effect of each heavy rare earth element. Powders were characterized by chemical analysis. X-ray diffraction, scanning and transmission electron microscopy, gas adsorption (BET) and laser diffraction for the determination of the agglomerate size distributions. Green pellets were characterized by mercury porosimetry and the sintering kinetic was studied by dilatometry. The characterization of the as-sintered pellets was performed by the apparent density measurement (Archimedes method). X-ray diffraction, microstructure analysis by scanning and transmission electron microscopy, Vickers indentation tests for hardness and fracture toughness determination, dynamic mechanical analysis for the elastic modulus measurement, and impedance spectroscopy for electrical resistivity measurement. It was observed that the presence of heavy rare earths in a concentrate containing 85 wt% of Yttria has no significant influence on the properties of zirconia based ceramics. TZP ceramics, containing 3 mol% of dopants, have grain size smaller than 0.4μm, and Vickers hardness and

  20. Separation and spectrophotometric determination of elements

    International Nuclear Information System (INIS)

    Marczenko, Z.

    1986-01-01

    This book is a useful text intended as a reference for the laboratory that is either involved in spectrophotometric analysis or requires separations prior to analysis by any method. It attempts to cover a diverse series of topics in fewer than 700 pages. Part I of the book covers general topics such as separation schemes (solvent extraction, precipitation, volatility, ion exchange), principles and instrumentation used for spectrophotometry, and color reagents in only 119 pages. Entire books have been written on each of those subjects. The author must therefore resort to extensive referencing to cover each subject adequately. Part II, Methods for Separation and Determination of Individual Elements, discusses all elements - both nonmetals and metals and major procedures for the separation and spectrophotometric determination of each element are adequately covered

  1. Quantitative analysis of thorium in the presence of rare earth by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Jesus, Camila S. de; Taam, Isabel; Vianna, Claudio A.

    2013-01-01

    The occurrence of Thorium in ores is normally associated to other elements such as Uranium and Cerium, as well as some Rare-Earths (RE). The separation of these elements by traditional analytic chemistry techniques is both time and reagent consuming, thus increasing the analysis cost. The hereby proposed method consists in the direct determination of Thorium in rare earths ores and compounds by X-ray fluorescence spectroscopy without any prior chemical separation from other matrix elements. This non-destructive technique is used to determine which elements are present in solid and liquid samples, as well as their concentrations. The studied matrix contains Lanthanum, Cerium, Praseodymium, Neodymium, Samarium, Gadolinium and Yttrium. This study evaluated the analytical lines of radiation emission for each rare earth contained in the matrix, comparing it to the Thorium main analytical line. The Thorium quantification was measured through the Th L line, where there is no influence or interference from the rare earths analytical lines. The studied samples are certified standards and the obtained results have been compared to Ethylenediaminetetraacetic acid (EDTA) titration results, an already well-established and widely trusted method. We also measured the matrix effect thus using complex rare earths liquor. This liquor contains also elements commonly found in monazites sands: phosphates, aluminum, iron. Obtained results state the efficiency of X-ray Fluorescence to determine Thorium in the presence of rare earths without any prior chemical separation. (author)

  2. Rare earth elements in sinters from the geothermal waters (hot springs) on the Tibetan Plateau, China

    Science.gov (United States)

    Feng, Jin-Liang; Zhao, Zhen-Hong; Chen, Feng; Hu, Hai-Ping

    2014-10-01

    The mineralogical and geochemical composition of sinters from the geothermal areas on the Tibetan Plateau was determined. They occur as siliceous, salty and calcareous sinters but biogenic siliceous sinters were also found. The analyses indicate that there are no distinct inter -element relationships between individual rare earth elements (REEs) and other elements. Formed from the same geothermal water, the mineralogical and chemical composition of the sinters is influenced by their genesis and formation conditions. The REE distributions depend on the origin of the sinters. Fe-Mn phases in sinters tend to scavenge more REEs from geothermal water. Neither the REE fractionation nor the Ce anomaly seems to be associated with Fe-Mn phases in the sinters. The fourth tetrads of some sinters display weak W-type (concave) effects. In contrast, the third tetrads present large effects in some sinters due to positive Gd anomalies. The origin of the positive Eu anomalies in some sinters seems to be caused by preferential dissolution of feldspars during water-rock interaction. The complexing ligands in geothermal water may contribute significantly to the fractionation of REEs in sinters. The dominant CO32- and HCO3- complexing in geothermal water favors enrichment of heavy REEs in calcareous sinters.

  3. A new instrumental method for the analysis of rare earth elements

    International Nuclear Information System (INIS)

    Santos, A.N. dos.

    1975-01-01

    A method for the simultaneous elemental analysis of the rare earths is proposed and empirically verified. It is based on the analysis of the escape peaks, generated by the characteristic X-rays of these elements in a xenon proportional counter. The peaks are well resolved and intense, in contrast to the photopeak which is lost in the background. The spectra are generated by a radioisotope such as Co 57 , and the equipment is simple, portable and low cost, although resolution challenges that of the best solid state detectors. Since X-rays are utilized, matrix, granulometric or mineralogical effects are minimal, and the method is rapid, sensitive, non-destructive and requires little or no sample preparation. The results are preliminary and an improvement in resolution of up to fourfold seems possible; precision is better than 0,1% in concentrated samples and sensitivity is about 20 μg

  4. Separation and Recycling for Rare Earth Elements by Homogeneous Liquid-Liquid Extraction (HoLLE Using a pH-Responsive Fluorine-Based Surfactant

    Directory of Open Access Journals (Sweden)

    Shotaro Saito

    2015-08-01

    Full Text Available A selective separation and recycling system for metal ions was developed by homogeneous liquid-liquid extraction (HoLLE using a fluorosurfactant. Sixty-two different elemental ions (e.g., Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, Ir, La, Lu, Mg, Mn, Mo, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Re, Rh, Ru, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn, and Zr were examined. By changing pH from a neutral or alkaline solution (pH ≥ 6.5 to that of an acidic solution (pH < 4.0, gallium, zirconium, palladium, silver, platinum, and rare earth elements were extracted at >90% efficiency into a sedimented Zonyl FSA® (CF3(CF2n(CH22S(CH22COOH, n = 6–8 liquid phase. Moreover, all rare earth elements were obtained with superior extraction and stripping percentages. In the recycling of rare earth elements, the sedimented phase was maintained using a filter along with a mixed solution of THF and 1 M sodium hydroxide aqueous solution. The Zonyl FSA® was filtrated and the rare earth elements were recovered on the filter as a hydroxide. Furthermore, the filtrated Zonyl FSA was reusable by conditioning the subject pH.

  5. Reaction cross section calculation of some alkaline earth elements

    Directory of Open Access Journals (Sweden)

    Tel Eyyup

    2017-01-01

    Full Text Available Reaction cross section knowledge is crucial to application nuclear physics such as medical imaging, radiation shielding and material evaluations. Nuclear reaction codes can be used if the experimental data are unavailable or are improbably to be produced because of the experimental trouble. In this study, there action cross sections of some target alkaline earth elements have been calculated by using pre-equilibrium and equilibrium nuclear reaction models for nucleon induced reactions. While these calculations, the Hybrid Model, the Geometry Dependent Hybrid Model, the Full Exciton Model, the Cascade Exciton Model for pre-equilibrium reactions and the Weisskopf-Ewing Model for equilibrium reactions have been used. The calculated cross sections have been discussed and compared with the experimental data taken from Experimental Nuclear Reaction Data library.

  6. Determination of rare earth elements, thorium and uranium by inductively coupled plasma mass spectrometry and strontium isotopes by thermal ionization mass spectrometry in soil samples of Bryansk region contaminated due to Chernobyl accident

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Yonehara, H.; Kurotaki, K.; Shiraishi, K.; Ramzaev, V.; Barkovski, A.

    2001-01-01

    Inductively coupled plasma mass spectrometric (ICP-MS) determination of rare earth elements (REEs), thorium and uranium in forest, pasture, field and kitchen garden soils from a Russian territory and in certified reference materials (JLK-1, JSD-2 and BCR-1) is described. In addition to concentration data, strontium isotopic composition of the soil samples were measured by thermal ionization mass spectrometry. The measurements contributed to the understanding of the background levels of these elements in an area contaminated due to Chernobyl accident. There was not a significant variation in the concentration of REEs at different depth levels in forest soil samples, however, the ratio of Th/U varied from 3.32 to 3.60. Though concentration of U and Th varied to some extent, the ratio did not show much variation. The value of 87 Sr/ 86 Sr ratio, was in the top layer soil sample relatively higher than in the lower layers. (author)

  7. Determination of the thermodynamic properties of titanium sponge, rare earth oxides and carbonates

    International Nuclear Information System (INIS)

    Russo, V.L.; Ivanov, E.N.

    1977-01-01

    The procedure is described of determining heat physical properties of titanium sponge in media controlled at temperatures up to approximately 1100 deg C obtained in an industrial apparatus. The study has been conducted with a sample located into a glass made from stainless steel; the temperature has been measured in the center and near the surface of the sample. The relationships are given between the relative heat conductivity of the titanium sponge, argon pressure and temperature, as well as between a change in heat physical constants of the titanium sponge and temperature. An artificial reaction mass has been created, and the effect of magnesium and magnesium chloride on heat physical properties has been studied. It has been established that heat conductivity for the reaction mass with magnesium chloride is much lower than that of the sponge with magnesium. Heat physical constants of oxides and carbonates of rare-earth elements are given determined with the use of the method developed

  8. Determination of the thermodynamic properties of titanium sponge, rare earth oxides and carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Russo, V L; Ivanov, E N

    1977-03-01

    The procedure is described of determining heat physical properties of titanium sponge in media controlled at temperatures up to approximately 1100/sup 0/C obtained in an industrial apparatus. The study has been conducted with a sample located into a glass made from stainless steel; the temperature has been measured in the center and near the surface of the sample. The relationships are given between the relative heat conductivity of the titanium sponge, argon pressure and temperature, as well as between a change in heat physical constants of the titanium sponge and temperature. An artificial reaction mass has been created, and the effect of magnesium and magnesium chloride on heat physical properties has been studied. It has been established that heat conductivity for the reaction mass with magnesium chloride is much lower than that of the sponge with magnesium. Heat physical constants of oxides and carbonates of rare-earth elements are given determined with the use of the method developed.

  9. Pyrochemical extraction for selective removal of transuranium elements from molten LiCl-KCl

    International Nuclear Information System (INIS)

    Ackermann, J.P.; Johnson, T.R.

    1993-01-01

    Recent determinations of separation factors that describe partition of the actinide and rare earth elements between liquid cadmium and LiCl-KCl eutectic allowed identification of a process for selective removal of the transuranium (TRU) element chlorides from the electrolyte used for electrofining of metal fuel from the Integral Fast Reactor. It is periodically necessary to remove rare earth elements from the electrolyte to limit heat generation from radioactive decay. Countercurrent extraction of electrolyte with uranium in cadmium solution allows retention of valuable TRU elements in the reprocessed fuel, and results in a rare earth waste stream that is essentially free of TRU elements and their concomitant long-term hazards

  10. Spectrographic Determination of Trace Constituents in Rare Earths

    International Nuclear Information System (INIS)

    Capdevila, C.; Alvarez, F.

    1962-01-01

    A spectrographic method was developed for the determination of 18 trace elements in lanthanum, cerium, praseodimium, neodimium and samarium compounds. The concentrations of the impurities cover the range of 0,5 to 500 ppm. Most of these impurities are determined by the carrier distillation method. Several more refractory elements have been determined by total burning of the sample with a direct current arc or by the conduction briquet excitation technique with a high voltage condensed spark. The work has been carried out with a Hilger Automatic Large Quartz Spectrograph. (Author) 5 refs

  11. Determination of trace elements in seawater by air-flow injection/ICP-MS with chelating resin preconcentration

    International Nuclear Information System (INIS)

    Lee, Kyue-Hyung; Ohshima, Mitsuko; Motomizu, Shoji

    2002-01-01

    Multielement determination of major to trace metals in a deep seawater malt was accomplished by inductively coupled plasma-mass spectrometry (ICP-MS) together with inductively coupled plasma-atomic emission spectrometry (ICP-AES). Major elements, such as Na, K, Mg, and Ca, were measured by ICP-AES and normal continuos nebulization ICP-MS after sample dilution by 10 3 -10 6 fold. Fifteen trace elements in the concentrated metal solutions pretreated with cation-exchange resin or chelating resin could be simultaneously determined by air-flow injection/ICP-mass spectrometry (AFI/ICP-MS). Since the injection volume for AFI/ICP-MS was 25 μl, final samples volumes less than 500 μl were enough for several replicate measurements. Three different preconcentration methods assisted with AFI/ICP-MS were examined and could be successfully applied to a deep seawater malt. The analytical results of rate earth elements (REEs) and Co, Ni, Cu, Zn, Cd, and Pb obtained by AFI/ICP-MS coupled with disk filtration method using iminodiacetate (IDA)-type chelating resin were favorably agreed with the data obtained by AFI/ICP-MS coupled with column preconcentration method using chitosan-based chelating resin. (author)

  12. Geology and market-dependent significance of rare earth element resources

    Science.gov (United States)

    Simandl, G. J.

    2014-12-01

    China started to produce rare earth elements (REEs) in the 1980s, and since the mid-1990s, it has become the dominant producer. Rare earth element export quotas first introduced by the Chinese government in the early 2000s were severely reduced in 2010 and 2011. This led to strong government-created disparity between prices within China and the rest of the world. Industrialized countries identified several REEs as strategic metals. Because of rapid price increases of REE outside of China, we have witnessed a world-scale REE exploration rush. The REE resources are concentrated in carbonatite-related deposits, peralkaline igneous rocks, pegmatites, monazite ± apatite veins, ion adsorption clays, placers, and some deep ocean sediments. REE could also be derived as a by-product of phosphate fertilizer production, U processing, mining of Ti-Zr-bearing placers, and exploitation of Olympic Dam subtype iron oxide copper gold (IOCG) deposits. Currently, REEs are produced mostly from carbonatite-related deposits, but ion adsorption clay deposits are an important source of heavy REE (HREE). Small quantities of REE are derived from placer deposits and one peralkaline intrusion-related deposit. The ideal REE development targets would be located in a politically stable jurisdiction with a pro-mining disposition such as Canada and Australia. REE grade, HREE/light REE (LREE) ratio of the mineralization, tonnage, mineralogy, and permissive metallurgy are some of the key technical factors that could be used to screen potential development projects. As REEs are considered strategic metals from economic, national security, and environmental points of view, technical and economic parameters alone are unlikely to be used in REE project development decision-making. Recycling of REE is in its infancy and unless legislated, in the short term, it is not expected to contribute significantly to the supply of REE.

  13. Microstructure and emission ability of rare earth oxides doped molybdenum cathodes

    International Nuclear Information System (INIS)

    Yang Jiancan; Nie Zuoren; Wang Yiman

    2003-01-01

    We adopted high-resolution transmission electron microscopy (TEM) and scanning electron microscopy (SAM) to observe and analyze the microstructure of rare earth oxide (La 2 O 3 , Sc 2 O 3 ) doped molybdenum cathodes. The results show that there are many nanometer particles in the molybdenum matrix besides some sub-micrometer particles in the crystal interfaces. All these particles are rare earth oxides as determined through calculating the electron diffraction pattern. Then we determined the electron work function and the zero-field emission current of molybdenum cathodes by the electron emission measurement. To correlate the emission data with surface composition, we use Auger electron spectroscopy (AES) to analyze the elements on the activated cathode surface and their depth profiles. We found that there were about 20 nm thick layers on an activated cathode surface, which have a high content of rare earth elements. We also use AES to analyze the elements diffusion to the cathode surface from cathode body during heating up to its operating temperature to find out which element positively affects the electron emission

  14. Behavior of rare earth elements in coexisting manganese macronodules, micronodules, and sediments from the central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Colley, S.; Higgs, N.C.

    Associated manganese macronodules, micronodules, and sediments from the Central Indian Basin (CIB) were analyzed for major, trace, and rare earth elements (REE) to understand REE carrier phases and their fractionation pattern among three...

  15. Progress of sintered NdFeB permanent magnets by the diffusion of non-rare earth elements and their alloy compounds

    Directory of Open Access Journals (Sweden)

    Lyu Meng

    2017-12-01

    Full Text Available It has been found that the coercivity (HC and corrosivity of sintered NdFeB magnets are closely related to the components and microstructure of their intergranular phase.The traditional smelting NdFeB magnets with adding heavy rare earth elements can modify intergranular phase to improve the HC and corrosion resistance of magnets.However,it makes the additives be homogenously distributed on the main phase,and causes magnetic decrease and cost increase.With the addition of non-rare earth materials into grain boundary,the microstructure of intergranular phase as well as its electrochemical potential and wettability can be optimized.As a result,the amount of heavy rare earth elements and cost of magnets could be reduced whilst the HC and corrosion resistance of magnets can be improved.This paper summarized the research on regulating the components and the microstructure of intergranular phase in sintered NdFeB magnets by non-rare earth metals and compounds,and its influence on coercivity and corrosion resistance.

  16. X-ray fluorescence analysis of high purity rare earth oxides for common trace rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Dixit, R.M.; Khanna, P.P.; Deshpande, S.S.; Machado, I.J.; Kapoor, S.K.

    1990-01-01

    Methods for the determination of individual trace common rare earth (RE) elements have been developed for fifteen RE oxide matrices viz. La 2 O 3 to Lu 2 O 3 and Y 2 O 3 . In general, for each matrix, two or three neighbouring elements on both sides of the matrix element are determined. The minimum determination limit (MDL) achieved is 0.002% for most of the elements. Special efforts were made to use a small amount of sample (as low as 400 mg) for the analysis by the use of double layer pellet technique and critical thickness studies. Practical experiences with 15 RE matrices, most of which are investigated for the first time, are discussed. Details of selection of instrumental parameters and analysis lines, precision and accuracy and preparation of samples and synthetic standards are given. Theoretical minimum detection limit (TMDL) for each analyte element is calculated in all the 15 matrices. (author). 50 tabs., 2 figs

  17. Extraction of rare earths from iron-rich rare earth deposits

    OpenAIRE

    Bisaka, K.; Thobadi, I.C.; Pawlik, C.

    2017-01-01

    Rare earth metals are classified as critical metals by the United Nations, as they have found wide application in the fabrication of magnets, particularly those used in green energy technologies which mitigate global warming. Processing of ores containing rare earth elements is complex, and differs according to the nature of each ore. In the conventional process, run of mine (ROM) ores are processed in a physical separation plant to produce a concentrate from which rare earth elements are ext...

  18. Analogs for transuranic elements

    International Nuclear Information System (INIS)

    Weimer, W.C.; Laul, J.C.; Kutt, J.C.

    1981-01-01

    A combined theoretical and experimental approach is being used to estimate the long-term environmental and biogeochemical behaviors of selected transuranic elements. The objective of this research is to estimate the effect that long-term (hundreds of years) environmental weathering has on the behavior of the transuranic elements americium and curium. This is achieved by investigating the actual behavior of naturally occurring rare earth elements, especially neodymium, that serve as transuranic analogs. Determination of the analog element behavior provides data that can be used to estimate the ultimate availability to man of transuranic materials released into the environment

  19. Ferromanganese nodules and their associated sediments from the Central Indian Ocean Basin: Rare earth element geochemistry

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Rao, Ch.M.; Migdisov, A.A.; Colley, S.; Higgs, N.C.; Demidenko, L.

    FerromanganeseNodulesandtheirAssociatedSedimentsfromtheCentralIndianOceanBasin:RareEarthElementGeochemistry J.N.PATTANCH.M.RAONationalInstituteofOceanography,DonaPaula Goa,IndiaA.A.MIGDISOV InstituteofGeochemistry,RussianAcademyofSciencesMoscow,Russia S.COLLEY,N.C.HIGGSSouthamptonOceanographyCentre,EmpressDockSouthampton...

  20. Thorium, uranium and rare earth elements concentration in weathered Japanese soil samples

    International Nuclear Information System (INIS)

    Sahoo, Sarata Kumar; Hosoda, Masahiro; Kamagata, Sadatoshi; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Uchida, Shigeo

    2011-01-01

    The geochemical behavior of thorium, uranium and rare earth elements (REEs) are relatively close to one another while compared to other elements in a geological environment. Radioactive elements like 232 Th and 238 U along with their decay products (e.g. 226 Ra) are present in most environmental matrices and can be transferred to living bodies by different pathways which can lead to the sources of exposure to man. For these reasons, it has been necessary to monitor those natural radionuclides in weathered soil samples to assess the possible hazards. It has been observed that granitic rocks contain higher amounts of U, Th and light REEs compared to other igneous rocks such as basalt and andesites. To better understand the interaction between REEs and soils, the nature of soils must be considered. In this paper, we discussed the distribution pattern of 232 Th and 238 U along with REEs in soil samples of weathered acid rock (granite and ryolite) collected from two prefectures of Japan: (1) Kobe city in Hyogo prefecture and (2) Mutsu city and Higashidori village in Aomori prefecture. (author)

  1. Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    Science.gov (United States)

    Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.

    2015-01-01

    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.

  2. Determination of toxic and essential elements in seafood

    International Nuclear Information System (INIS)

    Surtipanti, S.; Suwirma, S.; Yumiarti, S.; Yune Mellawati, T.

    1990-01-01

    Indonesia has only a list of the maximum permissible concentration of toxic elements in water stated in a national legislation. Therefore, it is important to study the toxic elements content in fish and shellfish, because these marine organisms are good biological indicators. The interesting elements to be analyzed are toxic elements, i.e. As, Cd, Cr, Hg, Pb, Sb and Se, and essential elements, i.e., Zn and Cu. As, Cr, Hg, Sb, Se and Zn can be determined by Neutron Activation Analysis (NAA), while Cd, Cu and Pb by Atomic Absorption Spectrometry (AAS). The determination of such elements in foodstuff i.e. rice, corn, green pea, wheat, vegetables, fruits, tea and coffee have been done previously. The major purpose of this work is to know whether the concentration of toxic elements in marine organisms is approaching or exceeding the maximum permissible concentration as stated by International legislation. 7 refs, 5 tabs

  3. INAA Application for Trace Element Determination in Biological Reference Material

    Science.gov (United States)

    Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.

    2017-06-01

    Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.

  4. A compilation of silicon, rare earth element and twenty-one other trace element concentrations in the natural river water reference material SLRS-5 (NRC-CNRC)

    International Nuclear Information System (INIS)

    Yeghicheyan, Delphine; Cloquet, Christophe; Bossy, Cecile; Bouhnik Le Coz, Martine; Douchet, Chantal; Granier, Guy; Heimburger, Alexie; Losno, Remi; Lacan, Francois; Labatut, Marie; Pradoux, Catherine; Lanzanova, Aurelie; Candaudap, Frederic; Chmeleff, Jerome; Rousseau, Tristan C.C.; Seidel, Jean-Luc; Delpoux, Sophie; Tharaud, Mickael; Sivry, Yann; Sonke, Jeroen E.

    2013-01-01

    The natural river water certified reference material SLRS-5 (NRC-CNRC) was routinely analysed in this study for major and trace elements by ten French laboratories. Most of the measurements were made using ICP-MS. Because no certified values are assigned by NRC-CNRC for silicon and 35 trace element concentrations (rare earth elements, Ag, B, Bi, Cs, Ga, Ge, Li, Nb, P, Rb, Rh, Re, S, Sc, Sn, Th, Ti, Tl, W, Y and Zr), or for isotopic ratios, we provide a compilation of the concentrations and related uncertainties obtained by the participating laboratories. Strontium isotopic ratios are also given. (authors)

  5. Determination of contaminants in rare earth materials by prompt gamma activation analysis (PGAA)

    International Nuclear Information System (INIS)

    Perry, D.L.; English, G.A.; Firestone, R.B.; Molnar, G.L.; Revay, Zs.

    2005-01-01

    Prompt gamma activation analysis (PGAA) has been used to detect and quantify impurities in the analyses of rare earth (RE) oxides. The analytical results are discussed with respect to the importance of having a thorough identification and contaminant elements in these compounds regarding the function of the materials in their various applications. Also, the importance of using PGAA to analyze materials in support of other physico-chemical studies of the materials is discussed, including the study of extremely low concentrations of ions - such as the rare earth ions themselves - in bulk material matrices. (author)

  6. Identification of rare earth elements by their fluorescence complexes with tetracycline

    International Nuclear Information System (INIS)

    Zanotti-Cavazzoni, J.C.; Boveda V, J.C.; Abrao, A.

    1994-01-01

    A procedure for identification of rare earth elements (REE) based on the complex formation with tetracycline (TC) and visual observation under ultraviolet light is described. One micro drop of REE chloride is placed over the filter paper impregnated with tetracycline and previously dried before use. After dried (30-60 O C) the paper is examined under the UV light. In a second procedure for the identification of mixture of REE a drop of the analyte is added over a filter paper strip impregnated with TC followed by a chromatographic development using a 2:1:1:1 (vol/vol) ethanol, acetone, ether and 1% acetic acid mixture of pH 5,8. After dried, the strip is observed under UV light. Sc, Y, La, Dy, Ho and Lu exhibited high yellow fluorescence; Gd, Tm and Yb a weak yellow; Ce an intense violet; Pr, ND, Sm and Tb violet: Eu a high red fluorescence and Er a violet brown wish, not well defined. It is possible to identify for instance 0.3 ug Ce (concentration 6 mg/L) and 0.2 ug Er (concentration 6 mg/L). Preliminary experiments indicated that those REE-TC chelates can be used for the identification and determination of the REE by spectro fluorimetry. (author). 30 refs

  7. Rare earth elements leaching from Tin slag using Acid Chloride after Alkaline fusion process

    International Nuclear Information System (INIS)

    Kurnia Trinopiawan; Budi Yuli Ani; June Mellawati; Mohammad Zaki Mubarok

    2016-01-01

    Tin slag, a waste product from tin smelting process, has a potency to be utilized further by extracting the valuable metals inside, such as rare earth elements(REE). The objective of this study is to determine the optimum leaching condition of REE from tin slag after alkali fusion. Silica structure in slag is causing the direct leaching uneffectively. Therefore, pre-treatment step using alkali fusion is required to break the structure of silica and to increase the porosity of slag. Fusion is conducted in 2 hours at 700°C, with ratio of natrium hydroxide (NaOH) : slag = 2 : 1. Later, frit which is leached by water then leached by chloride acid to dissolve REE. As much as 87,5% of REE is dissolved at 2 M on chloride acid (HCl) concentration, in 40°C temperature, -325 mesh particle size, 15 g/100 ml of S/L, 150 rpm of agitation speed, and 5 minutes of leaching time. (author)

  8. Targeting heavy rare earth elements in carbonatite complexes

    Science.gov (United States)

    Broom-Fendley, S.; Wall, F.; Gunn, A. G.; Dowman, E.

    2012-04-01

    The world's main sources of the rare earth elements (REE) are concentrated in carbonatite complexes. These have the advantages of high grade and tonnage, combined with low thorium contents, yet they are generally enriched in light rare earths (LREE). The heavy rare earths (HREE, which include Eu-Lu and Y) are more highly sought after because of their role in new and green technologies. HREE are predominantly extracted from ion-adsorption clays in China. These are small, low grade deposits, which are often illegally mined by artisans. Increased government control, environmental legislation and local demand for REE in China have led to high prices and global concerns about the security of supply of the HREE. Alternative sources of the HREE are poorly documented. We present a review of such targets, including: (1) 'abnormal' carbonatites; (2) areas around LREE-rich complexes such as breccia, fenite and latter stage veins; and (3) weathered carbonatites. At Lofdal, Namibia, carbonatite dykes contain xenotime-(Y) together with LREE minerals. The original chemistry of the carbonatite magma, coupled with late-stage magma and fluid evolution, seem to be controlling factors [1, 2]. The Khibina carbonatite, Kola Peninsula, Russia, is an example of where early LREE carbonatites become increasing HREE-enriched as magmas evolve to carbo-hydrothermal fluids [3]. Around carbonatite complexes in Malawi HREE enrichment can be found in breccia and in fenite. Breccia around Songwe shows areas with high Y/La ratios within the matrix caused by narrow zones of xenotime enrichment. Fenite around Kangankunde and Chilwa Island has higher HREE:LREE ratios than the carbonatite [4]. At weathered complexes, such as at Mount Weld in Western Australia, changes in both HREE concentration and LREE:HREE ratios are observed. In currently unworked sections of the deposit, the HREE mineral churchite (YPO4.H2O) has formed concentrations due to groundwater flow [5]. These areas of enrichment are

  9. Rare earth element mobility in arc-type volcanic rocks

    International Nuclear Information System (INIS)

    Kuschel, E.; Smith, I.E.M.

    1990-01-01

    Some samples from arc-type volcanic suites collected in northern New Zealand and southeastern Papua New Guinea show rare earth element (REE) and Y abundances which are enriched relative to the those typical of their respective associations. This enrichment appears to be the result of an alteration process which selectively mobilises the REE and re-precipitates them as REE-bearing minerals in veins and interstitial patches. The alteration is on a micron scale and is not detected in routine petrographic examination. It is emphasised that the pattern of REE mobility in young, fresh rocks is important to igneous geochemists who use REE abundances to constrain petrogenetic models and may also be important because it indicates the operation of a natural REE enrichment process which could operate in the formation of economic REE deposits. 3 refs., 5 figs

  10. Effects of Rare Earth Elements on Properties of Ni-Base Superalloy Powders and Coatings

    Directory of Open Access Journals (Sweden)

    Chunlian Hu

    2017-02-01

    Full Text Available NiCrMoY alloy powders were prepared using inert gas atomization by incorporation of rare earth elements, such as Mo, Nb, and Y into Ni60A powders, the coatings were sprayed by oxy-acetylene flame spray and then remelted with high-frequency induction. The morphologies, hollow particle ratio, particle-size distribution, apparent density, flowability, and the oxygen content of the NiCrMoY alloy powders were investigated, and the microstructure and hardness of the coatings were evaluated by optical microscopy (OM. Due to incorporation of the rare earth elements of Mo, Nb, or Y, the majority of the NiCrMoY alloy particles are near-spherical, the minority of which have small satellites, the surface of the particles is smoother and hollow particles are fewer, the particles exhibit larger apparent density and lower flowability than those of particles without incorporation, i.e., Ni60A powders, and particle-size distribution exhibits a single peak and fits normal distribution. The microstructure of the NiCrMoY alloy coatings exhibits finer structure and Rockwell hardness HRC of 60–63 in which the bulk- and needle-like hard phases are formed.

  11. DFT Calculations using WIEN2K to determine oxygen defect structure of rare earth doped ceria

    CERN Document Server

    Khalife, Ali Rida

    2014-01-01

    We perform density functional calculations using the program WIEN2K in order to study oxygen vacancies in rare earth doped ceria. The calculation for all rare earth elements were prepared, however only those foe Cadmium and Europium were performed due to lack of time. Also a short description of my stay at CERN was presented

  12. Sc, Y, La-Lu. Rare earth elements. Vol. A 6a. 8. rev. ed.

    International Nuclear Information System (INIS)

    Ditz, R.; Sarbas, B.; Schubert, P.; Toepper, W.

    1988-01-01

    The present volume 'Rare Earth Elements' A 6a describes origin, mode of occurrence, and behavior of Y and RE elements in the sedimentary and metamorphic cycles, and completes the series of volumes describing cosmo- and geochemistry of these elements. In the chapter 'Sedimentary Cycle', the behavior of Y and RE during the weathering process is first outlined under both marine and terrestrial conditions, including a short compilation for migration and precipitation in surficial weathering and oxidation zones. The main part of the chapter treats, in addition to the mode of occurrence, predominantly the distribution of Y and RE in the different types of sedimentary rocks in relation to genetic processes (comprising physical and/or spatial factors such as geological age of the deposition). A concluding part gives a description of mobilization, migration, and precipitation of Y and RE during the diagenetic transformation of sediments, especially in relation to the various types of ferromanganese concretions. In the chapter 'Metamorphic Cycle', the first, extensive part gives examples of mode of occurrence and behavior of Y and RE during both the contact-metamorphic and prograde and retrograde regional-metamorphic processes affecting sedimentary and igeneous source rocks. The second part briefly describes behaviour of Y and RE during ultrametamorphism of metamorphic rocks, and during metamorphic processes in connection with special types of geologic events (as, e.g., subduction of crustal material into the earth's mantle and impact of extraterrestrial material). (orig.) With 4 figs

  13. Rare earth analysis in human biological samples by atomic absorption using electrothermal atomization

    International Nuclear Information System (INIS)

    Citron, I.M.; Holtzman, R.B.; Leiman, J.

    1982-01-01

    The determination of Sc and seven rare earth elements, Nd, Sm, Dy, Ho, Eu, Tm, and Yb, in biological samplesby atomic absorption spectrophotometric analysis (AAS) using electrothermal atomization in a pyrolytic graphite tube is shown to be rapid, precise and accurate. The technique utilizes the method of standard additions and linear regression analysis to determine results from peak area data. Inter-elemental interferences are negligible. The elements found sensitive enough for this type of analysis are, in order of decreasing sensitivity, Yb, Eu, Tm, Dy, Sc, Ho, Sm and Nd. The determination in these types of materials of Gd and elements less sensitive to AAS detection than Gd does not appear to be feasible. Results are presented on the concentrations of these elements in 41 samples from human subjects, cows and vegetables with normal environmental exposure to the rare earth elements. The composite percent mean deviation in peak-area readings for all samples and all elements examined was 4%. The mean standard error in the results among samples was about 6.5%

  14. Partitioning and Leaching Behavior of Actinides and Rare Earth Elements in a Zirconolite- Bearing Hydrothermal Vein System

    International Nuclear Information System (INIS)

    Payne, Timothy E.; Hart, Kaye P.; Lumpkin, Gregory R.; McGlinn, Peter J.; Giere, Reto

    2007-01-01

    Chemical extraction techniques and scanning electron microscopy were used to study the distribution and behavior of actinides and rare earth elements (REE) in hydrothermal veins at Adamello (Italy). The six samples discussed in this paper were from the phlogopite zone, which is one of the major vein zones. The samples were similar in their bulk chemical composition, mineralogy, and leaching behavior of major elements (determined by extraction with 9 M HCl). However, there were major differences in the extractability of REE and actinides. The most significant influence on the leaching characteristics appears to be the amounts of U, Th and REE incorporated in resistant host phases (zirconolite and titanite) rather than readily leached phases (such as apatite). Uranium and Th are very highly enriched in zirconolite grains. Actinides were more readily leached from samples with a higher content of U and Th, relative to the amount of zirconium. The results show that REE and actinides present in chemically resistant host minerals can be retained under aggressive leaching conditions. (authors)

  15. Rare earth elements exploitation, geopolitical implications and raw materials trading

    Science.gov (United States)

    Chemin, Marie-Charlotte

    2015-04-01

    Rare earth elements (REE) correspond to seventeen elements of the periodic table. They are used in high technology, cracking, electric cars' magnet, metal alloy for batteries, and also in phone construction or ceramics for electronic card. REEs are an important resource for high technology. This project targets 16 years old students in the subject "personalized aid" and will last six weeks. The purpose of this project is to develop autonomy and research in groups for a transdisciplinary work. This project gathers knowledge in geology, geography and economics. During the first session students analyze the geology applications of the REE. They begin the analysis with learning the composition in different rocks such as basalt and diorite to make the link with crystallization. Then they compare it with adakite to understand the formation of these rocks. In the second session, they study REE exploitation. We can find them as oxides in many deposits. The principal concentrations of rare earth elements are associated with uncommon varieties of igneous rocks, such as carbonatites. They can use Qgis, to localize this high concentration. In the third session, they study the environmental costs of REE exploitation. Indeed, the exploitation produces thorium and carcinogenic toxins: sulphates, ammonia and hydrochloric acid. Processing one ton of rare earths produces 2,000 tons of toxic waste. This session focuses, first, on Baotou's region, and then on an example they are free to choose. In the fourth session, they study the geopolitical issues of REE with a focus on China. In fact this country is the largest producer of REE, and is providing 95% of the overall production. REE in China are at the center of a geopolitical strategy. In fact, China implements a sort of protectionism. Indeed, the export tax on REE is very high so, as a foreign company, it is financially attractive to establish a manufacturing subsidiary in China in order to use REE. As a matter of fact

  16. Behavior and distribution of rare earth elements, thorium and uranium in soil environment

    International Nuclear Information System (INIS)

    Kano, Naoki; Ogura, Daichi; Imaizumi, Hiroshi; Tsuchida, Toshiyuki; Sakamoto, Nobuo; Lu, He; Nishimura, Yoshikazu; Gao Lidi

    2009-01-01

    In order to investigate the behavior of rare earth elements (REEs), thorium (Th) and uranium (U) in soil environment, these elements in agricultural soils were partitioned and determined by a sequential extraction procedure into 6 fractions: water soluble (F (ws)), exchangeable (F (ec)), bound to carbonates (F (cb)), bound to organic matter (F (om)), bound to Fe-Mn oxides (F (fm)) and residual (F (rd)) fractions. Soil samples were collected from the agricultural field (paddy and upland field) and non-agricultural field in Sakata City in Yamagata Prefecture, and Nagaoka City in Niigata Prefecture on April 2005, October 2005 and April 2006. In addition, REEs, Th and U in crops grown on the soils and those in fertilizers used in the agricultural field were also determined. Consequently, the following matters have been mainly clarified. (1) REEs in soils mainly exists in the form of F (rd) fraction (i.e., silicate), although F (om) or F (fm) was relatively large proportion fraction (F (om) : 8-28% ; F (fm) : 6-20%) ; while U in soils may be present as the fraction bound to carbonate (15%) in addition to as F (rd) (60-70%). (2) The total concentrations of U in soil in agricultural field is remarkably larger (about 2 times) than that in non-agricultural field, although the concentrations of REEs and Th are not greatly varied regardless of soil utilizations (i.e., paddy field, upland field or no plow). (3) The value of pH(H 2 O)-pH(KCl) in soil of the upland field is smallest. Moreover, EC (electric conductivity) in soil of the upland field is much higher than that of the paddy field or of the non-agricultural field. (4) REE patten of the crops and fertilizers is generally similar to that of soils, although the order of the concentration of REEs is soils'>'fertilizers'>'crops'. (author)

  17. Separation of rare earth elements in monazite sand by anion exchange resin (pt. II)

    International Nuclear Information System (INIS)

    Cha, K.W.; Lee, J.H.; Yoon, S.H.; Ha, Y.G.

    1980-01-01

    An anion exchange method for separating Y, La, Ce, Pr, and Nd element in monazaites and into enriched fractions has been developed. The complexed rare earth ions with EDTA at pH 8.4 passed through the resin column of the various size and eluted with 0.0301 M EDTA as eluent at flow rate of 1 ml/min and 2 ml/min. The result of separation is good in the high column length rather than the low on using the resin of the same amount and the volume of eluent required in eluting all the rare earths at 2 ml/min flow rare is larger than that at 1 ml/min and the result of separation obtained here is unsatisfactory. (author)

  18. Study on passive earth pressure acting on the embedment of an earth retaining wall for braced excavation work in cohesive soil; Nenseido jiban ni okeru kussaku dodomeheki neirebu no judo doatsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, H. [Pacific Consultants K.K., Tokyo (Japan); Hirashima, K. [Yamanashi University, Yamanashi (Japan). Faculty of Engineering

    1995-12-15

    Passive earth pressure exerts a great influence on the stress and deformation of earth retaining walls in braced excavation. To calculate this pressure, conventional ultimate earth pressure equation, or Rankine-Resals and Coulomb`s equation, are currently applied respectively to cohesive and sandy soil. However, these intentional equation to determine passive earth pressure do not adequately take into account the excavation width during work and the shearing resistance on the earth retaining wall surface. This paper deals with cohesive soil only, deriving a calculation equation for passive earth pressure, which takes into account excavation width and the shearing resistance of the earth retaining wall surface. Then, constants in this equation are determined using the calculation results obtained from the finite element method with blasts-plastic elements. The calculation results are also compared with measured values in the model test in order to check the applicability of the calculation equation for passive earth pressure thus obtained. Finally, this paper proposes a practicable calculation equation for passive earth pressure. 13 refs., 10 figs., 10 tabs.

  19. Potentially toxic elements and rare earth elements in plants from the lake Kalimantsi bank (NE Republic of Macedonia)

    International Nuclear Information System (INIS)

    Vrhovnik, Petra; Doloenets, Matej

    2017-01-01

    Potentially toxic elements (PTE) and rare earth elements (REE) are often increased in the environment, especially nearby active or abandoned mines . While NE Macedonia is very rich with metal ore bodies also elevated pollution is expected in the surrounding ecosystems. NE part of the country is also very important agricultural area where several food crops are being produced and consequently water from local lakes and rivers is being used for irrigation. In present paper we have focused on different plant species growing on the Lake Kalimantsi bank. All plant species were analyzed for PTE and REE. Results revealed that the PTE s (Cr, Cu, Pb, Zn, Ni, As and Cd) in the studied plant species show great enhancement in all samples and also exceed the recommended and allowable limits. Meanwhile REE s reflect a very similar range among all samples. Generally, all REE s were in the safe range, according to currently known regulations. (author)

  20. Investigating Rare Earth Element Systematics in the Marcellus Shale

    Science.gov (United States)

    Yang, J.; Torres, M. E.; Kim, J. H.; Verba, C.

    2014-12-01

    The lanthanide series of elements (the 14 rare earth elements, REEs) have similar chemical properties and respond to different chemical and physical processes in the natural environment by developing unique patterns in their concentration distribution when normalized to an average shale REE content. The interpretation of the REE content in a gas-bearing black shale deposited in a marine environment must therefore take into account the paleoredox conditions of deposition as well as any diagenetic remobilization and authigenic mineral formation. We analyzed 15 samples from a core of the Marcellus Shale (Whipkey ST1, Greene Co., PA) for REEs, TOC, gas-producing potential, trace metal content, and carbon isotopes of organic matter in order to determine the REE systematics of a black shale currently undergoing shale gas development. We also conducted a series of sequential leaching experiments targeting the phosphatic fractions in order to evaluate the dominant host phase of REEs in a black shale. Knowledge of the REE system in the Marcellus black shale will allow us to evaluate potential REE release and behavior during hydraulic fracturing operations. Total REE content of the Whipkey ST1 core ranged from 65-185 μg/g and we observed three distinct REE shale-normalized patterns: middle-REE enrichment (MREE/MREE* ~2) with heavy-REE enrichment (HREE/LREE ~1.8-2), flat patterns, and a linear enrichment towards the heavy-REE (HREE/LREE ~1.5-2.5). The MREE enrichment occurred in the high carbonate samples of the Stafford Member overlying the Marcellus Formation. The HREE enrichment occurred in the Union Springs Member of the Marcellus Formation, corresponding to a high TOC peak (TOC ~4.6-6.2 wt%) and moderate carbonate levels (CaCO3 ~4-53 wt%). Results from the sequential leaching experiments suggest that the dominant host of the REEs is the organic fraction of the black shale and that the detrital and authigenic fractions have characteristic MREE enrichments. We present our

  1. Group separation of rare earth elements by liquid-liquid extraction for the neutron activation analysis of silicate rocks

    International Nuclear Information System (INIS)

    Wyttenbach, A.; Bajo, S.; Tobler, L.

    1983-01-01

    Rare earth elements are isolated as a group from neutron activated rock samples by a new radiochemical procedure based on extraction with thenoyltrifluoracetone/phenanthroline in CHCl 3 . The procedure consists of three extraction steps, obviates the use of inactive carriers and gives practically quantitative chemical yields, thereby avoiding fractionation of the individual rare earths. Details of the dissolution, chemical separations. and counting procedure are given together with an analysis of BCR-1. (author)

  2. The effect of oxygen on segregation-induced redistribution of rare-earth elements in silicon layers amorphized by ion implantation

    International Nuclear Information System (INIS)

    Aleksandrov, O. V.

    2006-01-01

    A model of segregation-induced redistribution of impurities of rare-earth elements during solid-phase epitaxial crystallization of silicon layers amorphized by ion implantation is developed. This model is based on the assumption that a transition layer with a high mobility of atoms is formed at the interphase boundary on the side of a-Si; the thickness of this layer is governed by the diffusion length of vacancies in a-Si. The Er concentration profiles in Si implanted with both erbium and oxygen ions are analyzed in the context of the model. It shown that, in the case of high doses of implantation of rare-earth ions, it is necessary to take into account the formation of R m clusters (m = 4), where R denotes the atom of a rare-earth element, whereas, if oxygen ions are also implanted, formation of the complexes RO n (n = 3-6) should be taken into account; these complexes affect the transition-layer thickness and segregation coefficient

  3. Determination of rare earth impurities in thorium by spectrographic methods

    Energy Technology Data Exchange (ETDEWEB)

    Wray, L W

    1957-08-15

    A method for determining rare earth impurities in thorium in the fractional ppm range is described. Before spectrographic examination is possible, the impurities must be freed from the thorium matrix. This is accomplished by removing the bulk of the thorium by extraction with TBP-CCl{sub 4} and the remainder by extraction with TTA-C{sub 6}H{sub 6}. This results in a consistent recovery of rare earths of about 85% with an average sensitivity of 0.2 ppm. The experimental error is within 10%. Details of the procedure are given together with working curves for the major neutron absorbing rare earths; i.e. dysprosium, europium, gadolinium and samarium. (author)

  4. Use of multivariate and neutron activation analysis on studying element interrelationships in Brazilian phosphorite

    International Nuclear Information System (INIS)

    Delgado, J.U.; Carvalho, J.L.S.; Tauhata, L.

    1993-01-01

    Methods to determine U, Th and other constituent elements in mineral matrices through Instrumental Neutron Activation Analysis (INAA), have been widely utilized due to their capability to extract a large quantity of information from small samples. In the present work, an experimental methodology based on INAA associated to the cluster statistics technique was used to determine the uranium concentration and its correlation with other elements present in the mineral phosphorites from the northeast region of Brazil. Data for 22 elements including rare-earth elements are presented. A good correlation between uranium and rare-earth elements is observed. For the transition metals, correlation with uranium was not noted. (author) 11 refs.; 2 figs.; 1 tab

  5. Geochemical study of trace elements in micrograin minerals

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Kazuhiro; Shinozuka, Yoshitsugu; Imai, Shiho; Baba, Naoho; Machii, Tami; Shimada, Mitsuo; Hasebe, Kiyoshi [Hokkaido Univ., Sapporo (Japan)

    1998-01-01

    Abstract of five papers are contained in this paper. 1. Neutron activation analysis of iridium in Japan P/T boundary layer sample. Iridium of Permian/Triassic (P/T) boundary layer samples in Japan are determined. A collision of materials outside of the earth was not proved. 2. Adsorbability of rare earth elements by biogenic phosphate salt particles. Phosphate minerals are very strong adsorbent of rare earth elements, so that they can use as the removal materials of them in radioactive waste. 3. Analysis of undecomposed minerals and irresoluble compounds in acid decomposed residue. In order to investigate the past global changes, a micro wave heat method was studied and good results were obtained. 4. Determination of iridium in tsunami deposits in Cuba. Very small amount of iridium was discovered in the samples. 5. Activation analysis of iridium in the sample of 300 m core of Baikal lake. (Plan). (S.Y.)

  6. Low degree Earth's gravity coefficients determined from different space geodetic observations and climate models

    Science.gov (United States)

    Wińska, Małgorzata; Nastula, Jolanta

    2017-04-01

    Large scale mass redistribution and its transport within the Earth system causes changes in the Earth's rotation in space, gravity field and Earth's ellipsoid shape. These changes are observed in the ΔC21, ΔS21, and ΔC20 spherical harmonics gravity coefficients, which are proportional to the mass load-induced Earth rotational excitations. In this study, linear trend, decadal, inter-annual, and seasonal variations of low degree spherical harmonics coefficients of Earth's gravity field, determined from different space geodetic techniques, Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), Global Navigation Satellite System (GNSS), Earth rotation, and climate models, are examined. In this way, the contribution of each measurement technique to interpreting the low degree surface mass density of the Earth is shown. Especially, we evaluate an usefulness of several climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) to determine the low degree Earth's gravity coefficients using GRACE satellite observations. To do that, Terrestrial Water Storage (TWS) changes from several CMIP5 climate models are determined and then these simulated data are compared with the GRACE observations. Spherical harmonics ΔC21, ΔS21, and ΔC20 changes are calculated as the sum of atmosphere and ocean mass effect (GAC values) taken from GRACE and a land surface hydrological estimate from the selected CMIP5 climate models. Low degree Stokes coefficients of the surface mass density determined from GRACE, SLR, GNSS, Earth rotation measurements and climate models are compared to each other in order to assess their consistency. The comparison is done by using different types of statistical and signal processing methods.

  7. Trace element determination in beauty products by k0-instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Sneyers, L.; Verheyen, L.; Vermaercke, P.; Bruggeman, M.

    2009-01-01

    A recent study on trace elements in beauty products and cosmetics sold on the Asian market has shown the presence of high levels of U, Th and rare earth elements in so called 'Hormesis cosmetics'. For the purpose of comparison, some more information about trace elements in European cosmetics would be useful. In this paper the results obtained using k 0 -standardised Instrumental Neutron Activation Analysis (k 0 -INAA) for more than 20 trace elements in 20 different beauty products collected from the European market are presented. We found traces of Ba, As and Sb which is in breach with European legislation. For some of the other elements like Cr and Co further speciation is needed in order to evaluate their presence in beauty products. (author)

  8. Application of K0-NAA in the Determination of Gold and other Trace Elements in Mineralized Rocks from El-Sid Gold District, Eastern Desert, Egypt

    International Nuclear Information System (INIS)

    El Abd, A.; Hamdy, M.; Mostafa, M.; El-Amir, M.

    2009-01-01

    K 0 - neutron activation analysis is an important method for multi-element analysis . The NAA k - 0 was used to determine the concentration of gold and some other trace elements in the mineralized mafic (gabro) and ultramafic (serpentinite) rocks from El-Sid gold district, Central Eastern Desert, Egypt . The samples were properly prepared together with the standards Au, Zr and Ni and simultaneously irradiated in the irradiation position 2, which is characterized with the neutron spectrum parameters a = -0.01 and f =20. After activation, the samples were subjected to gamma-ray spectrometry, using a high-purity germanium detection system and computerized multichannel analyzer. The concentrations of 25 elements, beside gold were determined. The results showed that the concentrations of incompatible elements including rare earth elements, large-ion lithophile elements (Rb, Sr, Th, Ba, Cs and Na) and high field strength elements (Ta, Hf and Zr), and the compatible elements (transition elements Co and Cr) are different from one sample to another. The results were briefly discussed within the text of this research work.

  9. Using rare earth elements for the identification of the geographic origin of food

    Science.gov (United States)

    Meisel, T.; Bandoniene, D.; Joebstl, D.

    2009-04-01

    The European Union defined regimes within the Protected Geographical Status (PGS) framework to protect names of regional food specialities. Thus only food produced in a specific geographical area with a specific way of production or quality can be protected by a protected geographical indication (PGI) label. As such Styrian Pumpkin Seed Oil has been approved with this label, but as with many other high priced regional specialities, fraud cannot be excluded or nor identified. Thus the aim of this work is, to develop an analytical method for the control of the geographic origin of pumpkin seed oil and also to test the method for other protected products. The development of such a method is not only of interest for scientists, but also of importance for the consumer wanting to know the origin of the food products and the assurance of the purity and quality. The group of rare earth elements (REE) in plants also have a characteristic distribution pattern similar to upper crustal REE distributions. Since the REE concentrations are extremely low in pumpkin seed oil (ppt to low ppb), ICP-MS was the only sensitive tool able to produce validated results. The carrier of the REE are most likely small particles distributed within the pumpkin seed oil. Unlike, e.g., olive oil, pumpkin seed oil is bottled and sold unfiltered, which makes this Styrian speciality an interesting sampling target. As pumpkin seed oils from different geographic origin show variable trace element and rare earth distribution patterns, is should possible to trace the origin of these oils. In the current project pumpkin seeds from different regions in Austria and from abroad were sampled. The trace element patterns in the extracted oil of these seeds were determined and a preliminary classification with discriminate analysis was successfully done on a statistical basis. In addition to the study of the geographic origin it was demonstrated that REE distribution patterns can also be used for the

  10. Rare Earth and other Chemical Elements Accumulation in Vines of Fogo Island (Cape Verde)

    Science.gov (United States)

    Marques, Rosa; Prudêncio, Maria Isabel; Rocha, Fernando; Dias, Maria Isabel; Franco, Dulce

    2017-04-01

    The Fogo Island is the fourth bigger island of the Cape Verde (central Atlantic Ocean). This archipelago is located 570 kilometres off the coast of West Africa, and is characterized by a semi-arid climate. The volcanic soils of the caldera of this island, with an active volcanism during historical times, have been used for viticulture. The study of uptake of chemical elements by vines - absorption and translocation to grapes - grown in soils developed on alkaline pyroclasts is the main goal of this work. The concentrations of 27 chemical elements in bark, leafs and grapes of two vines, as well as in the corresponding soils ( 50). The bioavailable fraction of Cr and As in these soils may be due to the low percentage of iron oxides (particularly in the form of nanoparticles), which play an important role in the retention of these elements. The factors responsible for the phytoavailability of Sb in soils and its uptake by plants it's still poorly known. Although the Sb concentrations in earth's crust are low, higher concentrations of this element in soils may be related with hydrothermal and volcanic processes. Also, the temperature may influence the accumulation of Sb in plants, with an increase of the Sb uptake by plants at higher temperatures, due to an increased desorption rate of Sb from soil particles. Concerning U, its mobility and dispersion in soils is controlled by its oxidation state, its adsorption capacity in clay minerals or iron oxides, and the ability to form more or less soluble complexes. Although U concentrations in these volcanic soils are low, there is a fraction available for absorption and accumulation by grapes. Concerning the rare earth elements (REE), it should be noted that the light REE are not enriched in any part of the vines studied, and only the heavy REE are enriched in grapes (EF = 20-50); this can be explained by the preferential uptake of the heavy REE, after primary minerals breakdown and the formation of more soluble compounds

  11. Investigation of recovery and recycling of rare earth elements from waste fluorescent lamp phosphors

    Science.gov (United States)

    Eduafo, Patrick Max

    Characterization techniques and experimental measurements were used to evaluate a process for recycling rare earth elements (REEs) from spent fluorescent lamp phosphors. QEMSCAN analysis revealed that over 60% of the rare earth bearing minerals was less than 10 microm. A representative sample of the as-received feed contained 14.59 wt% total rare earth elements (TREE) and upon sieving to below 75 microm, the grade increased to 19.60 wt% REE with 98.75% recovery. Based on experimental work, a new process for extracting the chief REEs from end of life fluorescent lamps has been developed. The proposed flowsheet employs a three-stage leaching and precipitation process for selective extraction and recovery of the REEs. Hydrochloric acid was used as lixiviant in batch leach experiments on the phosphor powder. The maximum extraction obtained was 100% for both yttrium and europium under the following leaching conditions: 2.5 M HCl, 70°C, 1 hour, 180 g/L and 600 rpm. However, the solubility of cerium, lanthanum and terbium remained low at these conditions. Kinetic data of the leaching of yttrium and europium showed best fit to the logarithmic rate expression of the empirical model of leaching. Activation energy was calculated to be 77.49 kJ/mol for Y and 72.75 kJ/mol for Eu in the temperature range of 298 to 343 K. Precipitation tests demonstrate that at least 50% excess the stoichiometric amount of oxalic acid is needed to recover yttrium and europium efficiently to produce a pure (Y, Eu) mixed oxide. Total recovery of the REEs was achieved even at very low pH or without any base added. Over 99% pure mixed rare earth oxide at 99% recovery has been attained. An economic assessment of the developed process using operating and capital cost have be undertaken and based on the analysis of the three economic scenarios, two are economic and one is non-economic.

  12. Distribution of U and Th decay series and rare earth elements in sediments of Santos Basin. Correlation with industrial activities

    International Nuclear Information System (INIS)

    Silva, P.S.C.; Mazzilli, B.P.; Favaro, D.I.T.

    2005-01-01

    Santos Basin, located in Southwest Brazil, is considered the most important industrial region of the country. Among the industrial activities present, phosphate fertilizer plants are responsible for the production of 69 million tons of phosphogypsum waste, which is stockpiled in the surrounding environment. This waste concentrates radionuclides of the natural series as well as rare earth elements originally present in the phosphate rock used as raw material. Environmental impact of such activities in the sediments of the estuarine system by measuring the concentration of U, Th and rare earth elements and activity concentration of radionuclides 226 Ra, 228 Ra, 228 Th and 210 Pb. (author)

  13. Rare earth elements in sediment profiles from marginal lagoons of the Moji-Guacu River basin, Brazil

    International Nuclear Information System (INIS)

    Ferreira, J.R.; Fernandes, E.A.N.; Franca, E.J.; Tavares, G.A.; Silva, N.C. da; Taddei, M.H.T.

    2006-01-01

    Sediment cores from Catingueiro, Barrinha and Rio das Pedras marginal lagoons of the Moji-Guacu River basin were analyzed for rare earth elements (REEs), Fe, Ta and Th by instrumental neutron activation analysis (k 0 -INAA). Data indicated similarities between Catingueiro and Barrinha lagoons, while a distinct scenario was seen for Rio das Pedras likely due to changes of sedimentation rate in 1950's. By using Fe, Sc, Ta and Th as conservative elements, double normalization technique was performed in order to assess the distribution pattern of Ce, Eu, La, Sm and Tb for each core. In all cases, it was evident a depletion of lighter REE elements in the Rio das Pedras lagoon. (author)

  14. Determination of mutually interfering elements in activation analysis

    International Nuclear Information System (INIS)

    Figueiredo, A.M.G.

    1979-01-01

    The determination of the elements present in the groups scandium-zinc, mercury-selenium and arsenic-antimony-bromine represents a classical problem in thermal neutron activation analysis because the gamma-ray peaks of the radioisotopes produced from these elements by activation appear very close in the spectrum. A study is made of the possibility of simultaneous instrumental determination of these elements by means of the spectrum stripping technique, using a 400-channel analyser coupled to a Nal(Tl) detector and a 4096-channel analyser coupled to a Ge(Li) detector. Artificial mixtures of the interfering elements in varying proportions are prepared, so as to reproduce possible real samples, where the elements may be present at several concentrations. Radiochemical separation techniques for the cited elements are studied with the use of tracers. For the separation of scadium and zinc, the technique of extraction chromatography is applied. The separation of mercury and selenium is accomplished by means of ion exchange. The technique of coprecipitation is used to separate bromine from arsenic and antimony followed by ion exchange to isolate these two elements from each other. The precision and the accuracy of the results are discussed. (Author) [pt

  15. HIGH PERCENTAGE OF RARE EARTH ELEMENT CONNECTION WITH THE ACCUMULATION SEDIMENT AS RESPONSE LONGSHORE CURRENTS IN THE BELITUNG WATERS

    Directory of Open Access Journals (Sweden)

    Delyuzar Ilahude

    2017-07-01

    Full Text Available The study area is geographically located in the West coast of Belitung island at coordinates 105o48'00" - 106o06' 00" E and 06o46'00" - 06o50' 00" S. The beach and coastal area is influenced by wave energy from the West and North directions The purpose of this study is to analyze the relationship between the zone of sediment accumulation of empirical approaches on oceanography parameter containing rare earth elements. The approach used is to predict the shore wave energy using wave prediction curve deep waters to obtain the energy flux of the wave at each point of reference. Sediments containing rare earth elements tend to lead to the south as a result of the movement of longshore currents. Regional coastal area of the western part of the island of Belitung, especially in the southern part of the estuary of the river Tanjung Pandan is estimated to be a zone of sediment accumulation. The movement of sediment caused by wave energy from the north led to sedimentation evolved significantly in the south which is thought to contain rare earths minerals derived from land. This sedimentation process takes place on a seasonal basis, which allegedly took place in the west. The movement of sediment to the south of the mouth of the Cerucuk River it is predicted that rare earth elements were supplied from these rivers tend to settle in the southern part of the estuary Cerucuk throughout the year.

  16. Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions

    Science.gov (United States)

    Piper, David Z.; Bau, Michael

    2013-01-01

    The concentrations of the rare earth elements (REE) in surface waters and sediments, when normalized on an element-by-element basis to one of several rock standards and plotted versus atomic number, yield curves that reveal their partitioning between different sediment fractions and the sources of those fractions, for example, between terrestrial-derived lithogenous debris and seawater-derived biogenous detritus and hydrogenous metal oxides. The REE of ancient sediments support their partitioning into these same fractions and further contribute to the identification of the redox geochemistry of the sea water in which the sediments accumulated. The normalized curves of the REE that have been examined in several South American wine varietals can be interpreted to reflect the lithology of the bedrock on which the vines may have been grown, suggesting limited fractionation during soil development.

  17. Determination of trace elements in electronic materials by NAA

    International Nuclear Information System (INIS)

    Kobayashi, Kenji

    1986-01-01

    Trace amounts of elements in electronic materials were determined by instrumental neutron activation analysis (INAA), re-activation analysis and substoichiometric radioactivation analysis using gamma-ray spectrometry. Ten elements (Cr, Cu, Fe, Zn, Co, Eu, Ir, Sb, Sc, Tb) in gallium arsenide single crystal were determined by INAA and substoichiometric radioactivation analysis. Trace level of chromium (10 13 atoms/cm 3 ) and zinc (10 14 atoms/cm 3 ) in gallium arsenide single crystal were determined by INAA. The chromium concentrations in horizontal Bridgmangrown semi-insulating gallium arsenide ingot were ranged from 1.2 x 10 16 atoms/cm 3 at seed end to 3.5 x 10 16 atoms/cm 3 at tail end. The trace determinations of iron (10 14 atoms/cm 3 ) and copper (10 14 atoms/cm 3 ) in silicon, gallium arsenide and indium phoshide single crystals were carried out by substoichiometric radioactivation analysis. The reactivation analysis for the multielement determination of indium phosphide single crystal was carried out and nineteen elements were determined simultaneously by gamma-ray spectrometry. Eleven elements (Ag, As, Br, Co, Cr, Fe, K, Mn, Sb, Sc, Zn) in four NIES standard reference materials (Pond Sediment, Chlorella, Mussel and Tea Leaves) and seven elements (Co, Cr, Eu, Fe, Sc, Tb, Yb) in two NBS glasses (SRM-615 and SRM-613) were determined by INAA and substoichiometric radioactivation analysis and the analytical results obtained by the methods were in good agreement with certified values by NIES and NBS. (author)

  18. Determination of lanthanum and rare earth elements in bovine whole blood reference material by ICP-MS after coprecipitation preconcentration with heme-iron as coprecipitant

    International Nuclear Information System (INIS)

    Fujimori, Eiji; Hayashi, Tatsuya; Inagaki, Kazumi; Haraguchi, H.

    1999-01-01

    An analytical method for the determination of lanthanide elements in the bovine whole blood reference material (IAEA A-13) has been investigated by inductively coupled plasma mass spectrometry (ICP-MS). The bovine whole blood reference material was digested with HNO 3 and HClO 4 , and then the pH of the digested solution was adjusted to 12 with 3 M sodium hydroxide aqueous solution. In this experimental procedure, lanthanide elements in the blood sample were coprecipitated with iron mainly derived from heme-iron in blood itself. In order to minimize matrix effects due to iron, excess iron in the analysis solution was removed by solvent extraction using methyl isobutyl ketone (MIBK) prior to the determination of lanthanide elements by ICP-MS. The recoveries of all lanthanide elements were almost quantitative in the recovery test. In consequence, it has been found that all lanthanide elements in bovine whole blood reference material are at the wide concentration range of 0.90 pg/g for Tm ∝1880 pg/g for Ce. (orig.)

  19. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements

    Energy Technology Data Exchange (ETDEWEB)

    Branquinho, Cristina [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande C2, Piso 4, 1749-016 Lisbon (Portugal) and Universidade Atlantica, Antiga Fabrica da Polvora de Barcarena, 2745-615 Barcarena (Portugal)]. E-mail: cmbranquinho@fc.ul.pt; Serrano, Helena Cristina [Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal); Pinto, Manuel Joao [Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal); Martins-Loucao, Maria Amelia [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande C2, Piso 4, 1749-016 Lisbon (Portugal); Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal)

    2007-03-15

    The several established criteria to define a hyperaccumulator plant were applied to a rare and endangered species, Plantago almogravensis, and to the 3rd most abundant element in the earth crust, Al. Using the most common criteria, P. almogravensis undoubtedly is an Al hyperaccumulator plant. If the recent proposed requirements were considered, most of them matching those for a plant to be used in phytoextraction, it can only be considered an unusual accumulator of Al. A discussion is made concerning the several criteria of a hyperaccumulator plant in order to include rare and endemic ones and abundant elements. In ecological terms, the enrichment in Al and Fe observed may account for the differences in the vegetation pattern. Due to the rarity and endangered nature of this plant, the contribution of this work is also relevant for the ecological understanding and the development of conservation options of this endemic species. - Revisiting plant hyperaccumulation criteria.

  20. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements

    International Nuclear Information System (INIS)

    Branquinho, Cristina; Serrano, Helena Cristina; Pinto, Manuel Joao; Martins-Loucao, Maria Amelia

    2007-01-01

    The several established criteria to define a hyperaccumulator plant were applied to a rare and endangered species, Plantago almogravensis, and to the 3rd most abundant element in the earth crust, Al. Using the most common criteria, P. almogravensis undoubtedly is an Al hyperaccumulator plant. If the recent proposed requirements were considered, most of them matching those for a plant to be used in phytoextraction, it can only be considered an unusual accumulator of Al. A discussion is made concerning the several criteria of a hyperaccumulator plant in order to include rare and endemic ones and abundant elements. In ecological terms, the enrichment in Al and Fe observed may account for the differences in the vegetation pattern. Due to the rarity and endangered nature of this plant, the contribution of this work is also relevant for the ecological understanding and the development of conservation options of this endemic species. - Revisiting plant hyperaccumulation criteria

  1. Geochemistry of rare earth elements in the mainstream of the Yangtze River, China

    International Nuclear Information System (INIS)

    Li, X.; Zhang, S.; Wang, L.; Zhang, C.

    1998-01-01

    Water, suspended matter, and sediment samples were taken from 8 locations along the Yangtze River in 1992. The concentration and speciation (exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter, and residual forms) of rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb, and Lu) were determined by instrumental neutron activation analysis (INAA).The contents of the soluble fraction of REEs in the river are low, and REEs mainly reside in particulate form. In the particles, the chondrite-normalized distribution patterns show significant LREE enrichment and Eu-depletion. While normalized to shales, both sediments and suspended matter samples show relative LREE enrichment and HREE depletion. REEs are relatively enriched in fine-grained fractions of the sediments.exchangeable. About 65 to 85% of REEs in the particles exist in the residual form, and the exchangeable form is very low. High proportions of residual REEs reveal that REEs in sediments and suspended matter are controlled by their abundances in the earth's crust. Carbonate, Fe-Mn oxide and organic fractions of REEs in sediments account for 2.4-6.9%, 5.2-11.1%, and 7.3-14.0% of the total contents respectively. They are similar to those in the suspended matter. This shows that carbonates, Fe-Mn oxides and organic matter play important roles during the particle-water interaction processes. By normalization to shales, the 3 forms of REEs follow convex shapes according to atomic number with middle REE (Sm, Eu, and Tb) enrichment, while light REE and heavy REE are depleted. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Processing of spent Ni-MH batteries for the recovery of cobalt, nickel and rare earth elements bearing materials by means of a chemical and electrochemical sequential process

    Science.gov (United States)

    Delvasto, P.; Orta Rodríguez, R.; Blanco, S.

    2016-02-01

    Rechargeable Ni-MH batteries contain strategic metal values which are worth to be recovered. In the present work, a preliminary sequential chemical and electrochemical procedure is proposed, in order to reclaim materials bearing Ni, Co and rare earth elements (REE) from Ni-MH spent batteries. Initially, spent batteries are disassembled to separate the electrode materials (anode and cathode), which are then leached with an aqueous solution of 5w% sulphuric acid. The metal content of this solution is checked by atomic absorption spectrometry techniques. The obtained solution is pH-adjusted (with NaOH), until pH is between 4.0 and 4.3; then, it is heated up to 70°C to precipitate a rare earth elements sulphate (Nd, La, Pr, Ce), as determined by means of x-ray fluorescence techniques. The solids-free solution is then electrolyzed, in order to recover a Ni-Co alloy. The electrolysis conditions were established through a cyclic voltammetry technique.

  3. Sediment geochronology and geochemical behavior of major and rare earth elements in the Oualidia Lagoon in the western Morocco

    International Nuclear Information System (INIS)

    Mejjad, N.; El-Hammoumi, O.; Fekri, A.; Laissaoui, A.; Benmansour, M.; Bounouira, H.; Benkdad, A.; Bounakhla, M.; Benbrahim, S.; Bouthir, F.Z.

    2016-01-01

    Naturally occurring radionuclides and 137 Cs were measured in a sediment core and surface deposit collected from the bed channel of the Oualidia Lagoon located in the western Morocco. Major and rare earth elements (REE) profiles were determined by instrumental NAA technique. 210 Pb and 137 Cs were used to establish the sedimentation chronology over the last decades by using conventional models. 210 Pb displayed relatively higher concentrations and rate of supply to the sediment than typical levels found in other coastal areas in Morocco. REE ratios and Ce anomalies showed that the direct incorporation of particles from seawater to the bed sediment is the most important, followed by the terrigenous component. (author)

  4. Anomalous scattering factors of some rare earth elements evaluated

    Indian Academy of Sciences (India)

    section data set experimentally determined using high resolution high purity germanium detector in a narrow beam good geometry set-up for these elements in the photon energy range 5 to 1332 keV and reported earlier by the authors. Below 5 keV ...

  5. Precambrian tholeiitic-dacitic rock-suites and Cambrian ultramafic rocks in the Pennine nappe system of the Alps: Evidence from Sm-Nd isotopes and rare earth elements

    Science.gov (United States)

    Stille, P.; Tatsumoto, M.

    1985-04-01

    Major element, trace element and Sm-Nd isotope analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd isotope data yield isochron ages of 475±81 Ma for the hornblendefelses, 1,018±59 Ma for the plagioclase amphibolites and 1,071±43 Ma for the banded amphibolites. The 1 Ga magmatic event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd isotope data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial ɛ Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material.

  6. Evaluation and distribution of metals, trace elements and rare earths in sediments profiles of Promissão Reservoir, Sao Paulo state, Brazil, by INAA

    International Nuclear Information System (INIS)

    Angelini, Matheus; Rocha, Flavio R.; Fávaro, Deborah I.T.; Franklin, Robson L.

    2017-01-01

    The concentration of elements at two points in the reservoir (1 and 3) was evaluated. Two profiles of fractionated sediments were collected in the field every 2.5 cm, generating 14 and 20 fractions, respectively, according to their depths (35 and 50 cm). The concentrations of the elements: As, Ba, Br, Ca, Co, Cr, Cs, Fe, Hf, K, Na, Rb, Sb, Sc, Ta, Th, U, Zn and the rare earth elements (Ce, Eu, Gd, La, Lu, Nd, Sm, Tb and Yb) were determined using the technique of Instrumental Neutron Activation Analysis (INAA). The validation of the methodology was done through the analysis of certified reference materials. The values of the North American Shale Composite (NASC) were used as reference values for calculation of Enrichment Factor (FE) and Geoacumulation Index (IGeo), tools used to evaluate pollution levels. The concentration of the As, Cr and Zn elements was also compared with the Guideline values TEL (Treshold Effect Level) and PEL (Probable Effect Level), values that provide concentration ranges for these elements indicating the presence or not of probable effects in aquatic biota from these concentrations

  7. Rare earth and precious elements in the urban sewage sludge and lake surface sediments under anthropogenic influence in the Republic of Benin.

    Science.gov (United States)

    Yessoufou, Arouna; Ifon, Binessi Edouard; Suanon, Fidèle; Dimon, Biaou; Sun, Qian; Dedjiho, Comlan Achille; Mama, Daouda; Yu, Chang-Ping

    2017-11-09

    Nowadays, sewage sludge and water bodies are subjected to heavy pollution due to rapid population growth and urbanization. Heavy metal pollution represents one of the main challenges threatening our environment and the ecosystem. The present work aims to evaluate the contamination state of the sewage sludge and lake sediments in the Republic of Benin. Twenty metallic elements including 15 rare earth elements (Eu, Sb, Cs, Nd, Pr, Gd, La, Ce, Tb, Sm, Dy, Ho, Eu, Yb, and Lu) and five precious elements (Ag, Au, Pd, Pt, and Ru) were investigated using inductive plasma-mass spectrometry. Results showed broad range concentrations of the elements. Ce, La, and Nd were present in both sediments and sewage sludge at concentrations ranging 5.80-41.30 mg/kg dry matter (DM), 3.23-15.60 mg/kg DM, and 2.74-19.26 mg/kg DM, respectively. Pr, Sm, Gd, Tb, Dy, Eu, Er, Yb, Cs, Ho, and Tm concentrations were lower (0.02-5.94 mg/kg DM). Among precious elements, Ag was detected at the highest concentration in all sites (0.43-4.72 mg/kg DM), followed by Pd (0.20-0.57 mg/kg DM) and Au (0.01-0.57 mg/kg DM). Ru and Pt concentrations were sewage sludge. This revealed a growing anthropogenic input which was also implied by principal component analysis. The evaluation of pollution loading index (PLI) indicated a moderate to strong contamination (0.12 ≤ PLI ≤ 0.58; 37 ≤ PLI ≤ 114, respectively, for rare earth elements and precious elements), while the degree of contamination indicated a moderate polymetallic contamination for rare earth elements and significant contamination for precious elements.

  8. Determination of preferential rare earth adatom adsorption geometries on Si(001)

    International Nuclear Information System (INIS)

    Shinde, Aniketa; Cao Juexian; Ouyang Wenjie; Wu Ruqian; Ragan, Regina

    2009-01-01

    The adsorption patterns of rare earth atoms on Si(001) were investigated using scanning tunneling microscopy measurements and density functional calculations. Stable configurations were systematically determined via calculation of binding energies of various adatom coverage and adsorption geometry. Competition between inter-adatom hybridization and Coulomb repulsion is the mechanism contributing to binding energy minima associated with commonly observed rare earth adsorption geometries. Comparison of stable configurations with experimental scanning tunneling microscopy images demonstrated accuracy of the theoretical models. This paves a way for the understanding of self-assembly of rare earth disilicide nanowires on vicinal Si(001) substrates.

  9. Environmental Defects And Economic Impact On Global Market Of Rare Earth Metals

    Science.gov (United States)

    Charalampides, G.; Vatalis, K.; Karayannis, V.; Baklavaridis, A.

    2016-11-01

    Rare earth elements include the 14 lanthanides as well as lanthanium and often yttrium. Actually, most of them are not very rare and occur widely dispersed in a variety of rocks. Rare earth metals are vital to some of the world's faster growing industries: catalysts, Nd-magnets, ceramics, glass, metallurgy, battery alloys, electronics and phosphors. Worldwide, the main countries for distribution of rare earths deposits include China, USA, Russia, Brasil, India, Australia, Greenland and Malaysia. The mining and processing of rare earth metals usually result in significant environmental defects. Many deposits are associated with high concentrations of radioactive elements such as uranium and thorium, which requires separate treatment and disposal. The accumulation of rare earth elements in soils has occurred due to pollution caused by the exploitation of rare earth resources and the wide use of rare earths as fertilizers in agriculture. This accumulation has a toxic effect on the soil microfauna community. However, there are large differences in market prices due to the degree of purity determined by the specifications in the applications. The main focus of this article is to overview Rare Earth Metals’ overall impact on global economy and their environmental defects on soils during processing techniques and as they are used as fertilizers.

  10. Transportation of natural radionuclides and rare earth light elements in the lagoon system of Buena, RJ

    International Nuclear Information System (INIS)

    Lauria, Dejanira da Costa

    1999-03-01

    it was investigated the transport of the series natural radionuclides and the earth rare light elements in a coastal lagoon system, located in a monazite rich region, in the coast north region of Rio de Janeiro state. The lagoon water showed off abnormal concentrations of radium isotopes and of the earth rare light elements (ERLEs). The longitudinal gradient of the Ra, of the ERLEs and of the major ion concentration's, whose data were obtained during two and half years of the research at the place, and the statistical analysis pointed to two mainly source as responsible for the water lagoon composition - the marine and the underground waters. The underground water supplies the radionuclides and ERLEs, possibly originated by monazite lixiviation. Based on the water speciation modeling, the results of laboratory adsorption on sediment experiments and the sediment characterization, the behavior of the radio isotopes, the ERLEs, U, Th e Pb-210, along of the lagoon, are discussed. It is also discussed the role of the aquatic macrophyte Typha dominguesis Pers in the nuclide uptake and the following liberation. (author)

  11. Characterization of three Brazilian bauxites and the corresponding bayer liquors in regard to rare earth and other minor elements

    International Nuclear Information System (INIS)

    Ikeda Oba, C.A.; Avritscher, W.; Pini, R.A.; Abrao, A.; Chaves, A.P.

    1998-01-01

    Full text: In this paper the results of chemical analysis of representative Brazilian bauxites are presented and discussed. Analyses were made on original mother rocks, ores, tailings from washing plants, Bayer liquors produced from this ores and also from the red muds. Samples of the ores were submitted to size, magnetic and density separation and these fractions were also analysed. Minor elements of interest assayed were rare earth, gallium and vanadium. Atomic absorption spectroscopy, x-ray fluorescence and emission spectroscopy were applied for the minor elements and also conventional wet chemical analyses mainly for major elements. A special technique for a rapid identification and semi-quantitative analysis of gallium and a permanent file for the results are presented as well. Brazilian bauxites are all of lateritic origin, constituted essentially by gibbsite and formed by intense tropical weathering of different rocks. This paper presents the chemical characterization of three Brazilian bauxites, namely Porto Trombetas, Cataguazes and Pocos de Caldas and the behaviour of their minor elements during the industrial processing in the mines and alumina mills. The grades of rare earths elements, gallium and vanadium show significant variations. This is most probably due to mother rocks characteristics than to bauxitization processes. The review deposits have the following mother rocks: Porto Trombetas Sedimentary - Cataguazes Metamorphic - Pocos de Caldas Alkaline (sienite). The samples from Pocos de Caldas show high grade for La+Ce with an average over 800ppm, Cataguazes has an average of 76 ppm La+Ce and Porto Trombetas 6,5ppm. Gallium grades are higher for Pocos de Caldas (average 135 ppm), followed by Porto Trombetas (62 ppm) and Cataguazes (37ppm). Vanadium grades are higher for Porto Trombetas (243 ppm) then Pocos de Caldas (165 ppm). Pocos de Caldas shows 50% enrichment in Ce in the washed ore and in Porto Trombetas most of the Y goes to the fines (product

  12. Lake Michigan sediments: in-situ tracer measurements using a rare-earth element

    International Nuclear Information System (INIS)

    Krezoski, J.R.

    1985-01-01

    A rare-earth-element (REE) tracer technique is used to describe in-situ biogenic and physical sediment reworking in Green Bay, Lake Michigan. Europium, a stable, high neutron capture cross section REE, added as Eu 2 O 3 to the sediment-water interface of quadrants of natural bottom muds, served as a tracer of surficial sediment redistribution in an oligochaete-chironomid-sphaerid benthic community. Sixty days after applying a millimeter thick layer of Eu to the undisturbed sediments, divers collected cores from within and around the experimental quadrants that were sectioned in 1 cm intervals to 10 cm and were analyzed by neutron activation analysis. Minute amounts of the activated REE in the sediment, detectable through high resolution gamma spectroscopy, revealed significant burial (to 2.4 cm) and broadening of the marked layer. A calculated bio-diffusion coefficient (K/sub B/ = 2.26 +/- 1.56 x 10 -6 cm 2 sec -1 ), based on a model from earlier microcosm studies, compares remarkably well with experimentally determined values and represents the first application of this model to field data. The method provides reliable estimates of in-situ reworking rates and is more accurate than time-averaged geochronology studies which rely on atmospherically derived radionuclides

  13. Patherns in the rare earth elements of the Serra do Carambei granite (Parana) and the others associated ignous rocks

    International Nuclear Information System (INIS)

    Pinto-Coelho, C.V.; Marini, O.J.

    1986-01-01

    The rare earth elements (REE) distribution patters in igneous rocks of the Serra do Carambei Granite area (Parana) were a very important tool to elucidate the genetic processes and the cogenetic relationships between these rocks. The porphyroid facies of the Cunhaporanga Granitoid Complex has a REE distribution pattern characterized by decreasing concentrations in direction to the heavy rare earth elements (HREE) and the smooth Eu negative anomalie, compatible with amphibole fractionation during the magma ascent and the incipient plagioclase fractionation. The REE pattern of the Serra do Carambei Granite is characterized by the strong Eu negative anomalie, by the light rare earth element (LREE) depletion and by the HREE increase. This shape of the REE patterns is frequently observed in Sn-W granites, according to French authors. However in the igneous rocks of the Serra do Carambei Granite area this is not true. ''Rhyolite'' dytes intrusives in the Serra do Carambei Granite exhibit REE pattern similar to the wall rock, indicating then the same genetic processes. The Castro Group rhyolites have REE patterns with decreasing concentrations in direction to the HREE and smooth Eu negative anomalie. The REE distribution patterns is against the consanguinity between the ''rhyolites'' intruded in the Serra do Carambei Granite and the rhyolites of the Castro Group and also between these rhyolites and the above mentioned Granite. (author) [pt

  14. A comprehensive analysis of the content of heavy rare-earth elements and platinum in snow samples to assess the ecological hazard of air pollution in urban areas

    Science.gov (United States)

    Vinokurov, S. F.; Tarasova, N. P.; Trunova, A. N.; Sychkova, V. A.

    2017-07-01

    Snow samples from the territory of the Setun River Valley Wildlife Sanctuary are analyzed for the content of rare-earth elements, heavy metals, and other hazardous elements by the inductively coupled plasma mass-spectrometry method. The changes in the concentrations of rare-earth elements, Pt, Pd, and indicator ratios of elements in the solid fractions of snow are revealed. A trend toward a decrease in the content of several elements northeastward of the Moscow Ring Road (MRR) is established. The level of seasonal atmospheric contamination of the area under study is assessed, and a possible source is identified.

  15. Distribution of trace elements in Western Canadian coal ashes

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, B I; Brown, J R; Fyfe, W S; Peirce, M; Winder, C G

    1981-01-01

    Concentrations of 52 minor elements in coal ash were determined using spark source mass spectroscopy. Hg levels in raw coal were investigated by cold vapour atomic absorption spectrophotometry. The concentration of elements are compared to other available data and to levels in the Earth's crust. F levels in coal ash exceed 500/sub g-1/ and may be greater than 1 wt% om raw coal. Approximately half the elements (B, S, Ni, Zn, Ga, Se, Sr, Y, Mo, Sn, Sb, I, Ba, Pr, Nd, Sm, Eu, Ho, Hf, Pt, Hg, Pb, Tl, Bi, U) investigated are enriched in the coal ash with respect to the Earth's crust. The ranges in minor element concentrations in coal ash and coal from different global regions are very similar.

  16. XRF and TXRF techniques for multi-element determination of trace elements in whole blood and human hair samples

    International Nuclear Information System (INIS)

    Khuder, A.; Karjou, J.; Sawan, M.Kh.; Bakir, M.A.

    2007-01-01

    XRF and TXRF were established as useful techniques for multi-element analysis of whole blood and human head hair samples. Direct-XRF with different collimation units and different X-ray excitation modes was successfully used for the determination of S, P, K, Ca, Fe, and Br elements in blood samples and K, Ca, Mn, Fe elements in human hair samples. Direct analysis by TXRF was used for the determination of Rb and Sr in digested blood and human hair samples, respectively, while, the co-precipitation method using APDC for TXRF analysis was used for the determination of Ni, Cu, Zn, and Pb elements in both matrices. As a result, the improved XRF and TXRF methods were applied for multi-element determination of elements in whole blood and human hair samples in non-occupational exposed population living in Damascus city. The mean concentrations of analyzed elements in both matrices were on the reported range values for non-occupational population in other countries. (author)

  17. XRF and TXRF techniques for multi-element determination of trace elements in whole blood and human hair samples

    International Nuclear Information System (INIS)

    Khuder, A.; Karjou, J.; Sawan, M.Kh.; Bakir, M.A.

    2008-01-01

    XRF and TXRF were established as useful techniques for multi-element analysis of whole blood and human head hair samples. Direct-XRF with different collimation units and different X-ray excitation modes was successfully used for the determination of S, P, K, Ca, Fe, and Br elements in blood samples and K, Ca, Mn, Fe elements in human hair samples. Direct analysis by TXRF was used for the determination of Rb and Sr in digested blood and human hair samples, respectively, while, the co-precipitation method using APDC for TXRF analysis was used for the determination of Ni, Cu, Zn, and Pb elements in both matrices. As a result, the improved XRF and TXRF methods were applied for multi-element determination of elements in whole blood and human hair samples in non-occupational exposed population living in Damascus city. The mean concentrations of analyzed elements in both matrices were on the reported range values for non-occupational population in other countries. (author)

  18. Multi-element determination of soil solution by INAA

    International Nuclear Information System (INIS)

    Qian Qinfang; Wu Shuiqing; Tian Jibing

    1992-01-01

    One of the factors influencing crop growth is the effective elemental contents, especially trace elements, under the circumstances of the same concentrations of N, P and K in soil. In order to obtain the data of effective elemental contents in soil, a novel method was introduced. In this method, soil solution was extracted by a squeezer. The concentrations of elements in soil solution were determined by INAA. Study on the compositions and the contents of elements in soil solution will provide information on making a suitable soil environment for plant growth and on rational and economical manuring

  19. Development of reduction technology for oxide fuel. Behaviour of rare-earth in lithium reduction process

    International Nuclear Information System (INIS)

    Kato, Tetsuya; Usami, Tsuyoshi; Yuda, Ryoichi; Kurata, Masateru; Moriyama, Hirotake

    2000-01-01

    Solubility measurements of rare-earth oxides in molten LiCl-Li 2 O salt and reduction tests of UO 2 doped with rare-earth oxides were carried out to determine the behavior of rare-earths in lithium reduction process. The solubility of rare-earth oxides increases in the order of Gd 2 O concentration. In multi-element systems including 6 rare-earth oxides, the solubility of each element is smaller than that in the individual systems. In the reduction tests, more than 90% of UO 2 was reduced within 1 hour after starting reduction and about 7% of rare-earths eluded into the LiCl molten salt bath containing Li 2 O which is formed by the reduction of UO 2 . The rare-earth concentrations in the bath were evaluated using the solubility data, assuming that rare-earth oxides in multi-element systems form solid solution as the equilibrium solid phase and that the activity coefficients in the solid phase are independent of the compositions. The calculated concentrations are consistent with the experimental ones obtained in the reduction tests. (author)

  20. Using rare earth element tracers and neutron activation analysis to study rill erosion process

    International Nuclear Information System (INIS)

    Li Mian; Li Zhanbin; Ding Wengfeng; Liu Puling; Yao Wenyi

    2006-01-01

    Spatially averaged soil erosion data provide little information on the process of rill erosion. The dynamically varied data on the temporal and spatial distributions in the rill erosion process are needed to better understand the erosion process and reveal its innate characteristics. The objectives of this study were to examine the feasibility and effectiveness of rare earth element (REE) tracers and the neutron activation analysis (NAA) method on the study of the rill erosion process and to reveal quantitatively the relationships and characteristics of temporal and spatial distributions of sediment yield in rill erosion. Four REEs were used to study the changeable process of rill erosion at 4 slope positions. Four water inflow rates were applied to a 0.3x5 m soil bed at 3 slopes of 10.5%, 15.8% and 21.2% in scouring experiments. All of the runoff was collected in the experiment. Each sample was air-dried and well mixed. Then 20 g of each sample was sieved through 100-mesh and about a 50 mg sample was weighed for analysis of the four elemental compositions by NAA. Results indicate that the REE tracers and NAA method can be used to not only quantitatively determine soil erosion amounts on different slope segments, but also to reveal the changeable process of rill erosion amount. All of the relative errors of the experimental results were less than 25%, which is considered satisfactory on the study of rill erosion process

  1. Using rare earth element tracers and neutron activation analysis to study rill erosion process

    Energy Technology Data Exchange (ETDEWEB)

    Li Mian [Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Key Laboratory of Yellow River Sediment Research of Ministry of Water Resources, Shunhelu 45, Zhengzhou, Henan 450003 (China)]. E-mail: hnli-mian@163.com; Li Zhanbin [Xi' an University of Technology, Xi' an, Shaanxi 710048 (China); Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100 (China); Ding Wengfeng [Institute of Soil and Water Conservation, Yangtse River' s Scientific Research Institute, Wuhan, Hubei 430010 (China); Liu Puling [Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100 (China); Yao Wenyi [Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Key Laboratory of Yellow River Sediment Research of Ministry of Water Resources, Shunhelu 45, Zhengzhou, Henan 450003 (China)

    2006-03-15

    Spatially averaged soil erosion data provide little information on the process of rill erosion. The dynamically varied data on the temporal and spatial distributions in the rill erosion process are needed to better understand the erosion process and reveal its innate characteristics. The objectives of this study were to examine the feasibility and effectiveness of rare earth element (REE) tracers and the neutron activation analysis (NAA) method on the study of the rill erosion process and to reveal quantitatively the relationships and characteristics of temporal and spatial distributions of sediment yield in rill erosion. Four REEs were used to study the changeable process of rill erosion at 4 slope positions. Four water inflow rates were applied to a 0.3x5 m soil bed at 3 slopes of 10.5%, 15.8% and 21.2% in scouring experiments. All of the runoff was collected in the experiment. Each sample was air-dried and well mixed. Then 20 g of each sample was sieved through 100-mesh and about a 50 mg sample was weighed for analysis of the four elemental compositions by NAA. Results indicate that the REE tracers and NAA method can be used to not only quantitatively determine soil erosion amounts on different slope segments, but also to reveal the changeable process of rill erosion amount. All of the relative errors of the experimental results were less than 25%, which is considered satisfactory on the study of rill erosion process.

  2. Significant improvement of accuracy and precision in the determination of trace rare earths by fluorescence analysis

    International Nuclear Information System (INIS)

    Ozawa, L.; Hersh, H.N.

    1976-01-01

    Most of the rare earths in yttrium, gadolinium and lanthanum oxides emit characteristic fluorescent line spectra under irradiation with photons, electrons and x rays. The sensitivity and selectivity of the rare earth fluorescences are high enough to determine the trace amounts (0.01 to 100 ppM) of rare earths. The absolute fluorescent intensities of solids, however, are markedly affected by the synthesis procedure, level of contamination and crystal perfection, resulting in poor accuracy and low precision for the method (larger than 50 percent error). Special care in preparation of the samples is required to obtain good accuracy and precision. It is found that the accuracy and precision for the determination of trace (less than 10 ppM) rare earths by fluorescence analysis improved significantly, while still maintaining the sensitivity, when the determination is made by comparing the ratio of the fluorescent intensities of the trace rare earths to that of a deliberately added rare earth as reference. The variation in the absolute fluorescent intensity remains, but is compensated for by measuring the fluorescent line intensity ratio. Consequently, the determination of trace rare earths (with less than 3 percent error) is easily made by a photoluminescence technique in which the rare earths are excited directly by photons. Accuracy is still maintained when the absolute fluorescent intensity is reduced by 50 percent through contamination by Ni, Fe, Mn or Pb (about 100 ppM). Determination accuracy is also improved for fluorescence analysis by electron excitation and x-ray excitation. For some rare earths, however, accuracy by these techniques is reduced because indirect excitation mechanisms are involved. The excitation mechanisms and the interferences between rare earths are also reported

  3. Rare earth elements and uranium in fountain waters from different towns of the Iron Quadrangle, MG, Brazil

    International Nuclear Information System (INIS)

    Ferreira, Claudia A.; Palmieri, Helena E.L.; Menezes, Maria Angela de B.C.

    2015-01-01

    Rare earth elements (REE) and uranium were evaluated in 34 fountain waters collected in different towns of the Iron Quadrangle (IQ), Minas Gerais, Brazil. The IQ is one of the largest and most well-known mineral deposits in the world. Not only extensive iron deposits but also hydrothermal gold deposits are found in this region. Because of the toxicological properties of REE, monitoring of groundwater which is used for drinking water may be useful if relatively high concentrations of REE are expected. The total REE (ΣREE) concentrations in fountain water range from 3 to 33395 ng L -1 . It was observed that fountains with a pH value below 5 presented higher concentration values of the determined elements proposed in this work. This is due to the fact that waters exhibiting low pH values enhance the dissolution of these elements. Moreover, for uranium the values ranged from less than < 2 to 540 ng L -1 . The highest concentrations in waters were observed only in four cities. Statistical methods such as Pearson correlation, PCA and HCA analysis were applied to the data set to shed some light on the behavior of the elements in water in this study. Three major groups with similar characteristics were identified and six diagrams of REE signatures in fountain waters were plotted according to their groupings of subdivisions. Using the REE-Post-Archean Australian Shale (PAAS) normalized patterns it was possible to verify presence of distinct REE signatures and recognize that the two samples belong to the same aquifer type. (author)

  4. Multilayer photosensitive structures based on porous silicon and rare-earth-element compounds: Study of spectral characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Kirsanov, N. Yu.; Latukhina, N. V., E-mail: natalat@yandex.ru; Lizunkova, D. A.; Rogozhina, G. A. [Samara National Research University (Russian Federation); Stepikhova, M. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2017-03-15

    The spectral characteristics of the specular reflectance, photosensitivity, and photoluminescence (PL) of multilayer structures based on porous silicon with rare-earth-element (REE) ions are investigated. It is shown that the photosensitivity of these structures in the wavelength range of 0.4–1.0 μm is higher than in structures free of REEs. The structures with Er{sup 3+} ions exhibit a luminescence response at room temperature in the spectral range from 1.1 to 1.7 μm. The PL spectrum of the erbium impurity is characterized by a fine line structure, which is determined by the splitting of the {sup 4}I{sub 15/2} multiplet of the Er{sup 3+} ion. It is shown that the structures with a porous layer on the working surface have a much lower reflectance in the entire spectral range under study (0.2–1.0 μm).

  5. Method validation for high resolution sector field inductively coupled plasma mass spectrometry determination of the emerging contaminants in the open ocean: Rare earth elements as a case study

    Science.gov (United States)

    Wysocka, Irena; Vassileva, Emilia

    2017-02-01

    Analytical procedure for the determination of fourteen rare earth elements (REEs) in the seawater samples has been developed and validated. The elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) at ultra-trace level were measured by high resolution sector field inductively coupled plasma mass spectrometry (HR ICP-SFMS) after off-line analytes pre-concentration and matrix separation. The sample pre-treatment was carried out by commercially available automated system seaFAST-pico™, which is a low-pressure ion chromatography technique, based on solid phase extraction principles. Efficient elimination of seawater matrix and up to 50-fold pre-concentration of REEs enabled their accurate and precise quantification at ng L- 1 level. A validation approach in line with the requirements of ISO/IEC 17025 standard and Eurachem guidelines were followed. With this in mind, selectivity, working range, linearity, recovery (from 92% to 102%), repeatability (1%-4%), intermediate precision (2%-6%), limits of detection (0.001-0.08 ng L- 1) were systematically assessed. The total uncertainty associated to each result was estimated and the main sources of uncertainty sorted out. All major contributions to the combined uncertainty of the obtained results were identified and propagated together, following the ISO/GUM guidelines. The relative expanded uncertainty was estimated at range from 10.4% to 11.6% (k = 2). Demonstration of traceability of measurement results was also presented. Due to the low limits of detection, this method enables the determination of ultra-low levels of REEs in the open seawater as well as small variations in their concentrations. The potential of the proposed analytical procedure, based on combination of seaFAST-pico™ for sample preparation and HR ICP-SFMS, was demonstrated by direct analysis of seawater form different regions of the world.

  6. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, M.; Boutorabi, S.M.A.; Azadi, M.; Nikravan, M.

    2013-01-01

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al 11 RE 3 intermetallic particles which is associated to the reduction of β-(Mg 17 Al 12 ) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10 5 cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy

  7. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, M., E-mail: mehdi-mokhtari@hotmail.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Boutorabi, S.M.A. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, M.; Nikravan, M. [Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of)

    2013-12-10

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al{sub 11}RE{sub 3} intermetallic particles which is associated to the reduction of β-(Mg{sub 17}Al{sub 12}) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10{sup 5} cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy.

  8. Rare Earth Element Phases in Bauxite Residue

    Directory of Open Access Journals (Sweden)

    Johannes Vind

    2018-02-01

    Full Text Available The purpose of present work was to provide mineralogical insight into the rare earth element (REE phases in bauxite residue to improve REE recovering technologies. Experimental work was performed by electron probe microanalysis with energy dispersive as well as wavelength dispersive spectroscopy and transmission electron microscopy. REEs are found as discrete mineral particles in bauxite residue. Their sizes range from <1 μm to about 40 μm. In bauxite residue, the most abundant REE bearing phases are light REE (LREE ferrotitanates that form a solid solution between the phases with major compositions (REE,Ca,Na(Ti,FeO3 and (Ca,Na(Ti,FeO3. These are secondary phases formed during the Bayer process by an in-situ transformation of the precursor bauxite LREE phases. Compared to natural systems, the indicated solid solution resembles loparite-perovskite series. LREE particles often have a calcium ferrotitanate shell surrounding them that probably hinders their solubility. Minor amount of LREE carbonate and phosphate minerals as well as manganese-associated LREE phases are also present in bauxite residue. Heavy REEs occur in the same form as in bauxites, namely as yttrium phosphates. These results show that the Bayer process has an impact on the initial REE mineralogy contained in bauxite. Bauxite residue as well as selected bauxites are potentially good sources of REEs.

  9. Elemental analysis of soils from central Sudan by energy dispersive XRF

    DEFF Research Database (Denmark)

    Yousif, A. A.; Kunzendorf, Helmar

    1986-01-01

    Energy dispersive X-ray fluorescence spectroscopy is employed to determine the concentration of nineteen elements in seven profiles representing the aridisols and vertisols groups from agricultural plains of Sudan. A significant variation in the concentration of alkaline and alkaline earth elements...

  10. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  11. Regularities of the extraction of rare earth elements with triisoamyl phosphate

    International Nuclear Information System (INIS)

    Danilov, N.A.; Korpusov, G.V.; Utkina, O.V.; Pogorel'skaya, S.A.

    1988-01-01

    A study was made on practically important regularities of rare earth element (REE) extraction by triisoamyl phosphate (TiAP): isotherms of REE extraction, effect of REE and salting-out agents concentrations in aqueous phase on REE distribution and separation coefficients, effect of HNO 3 concentration and others. The data obtained show, that TiAP is the typical representative of neutral organophosphoric compounds, and its extraction properties are close to those of TBP. The third phase doesn't form during REE nitrate extraction by TiAP solutions in saturated hydrocarbons of any concentration. High selectivity is not observed during separation of cerium subgroup REE by TiAP. TiAP losses are lower than those of TBP due to lower TiAP solubility in water

  12. Neutron activation analysis of rare earths in uranium containing rocks

    International Nuclear Information System (INIS)

    May, S.; Pinte, G.

    1984-01-01

    The determination of rare earths by activation analysis in uranium rocks is disturbed either by fission-produced rare earths, or by neptunium-239 originating from uranium-238. In order to eliminate these interferencies, the chemical separation of rare earths from uranium prior to activation should be performed. The chemical process is as follows: the rock sample is fused with sodium borate, then, after addition of hydrochloric acid, the resulting solution is passed through a Dowex 1x8 column. Uranium is retained on the resin, and rare earths and scandium are eluted. Aluminium is added as a carrier to the solution, and rare earths and scandium are coprecipitated with aluminium hydroxide. This precipitate is irradiated in the nuclear reactor. Gamma spectrometry is used for the determination of earth radionuclide. Activity measurements are performed in successive steps during one month. The following elements are determined: Pr, La, Sm, Nd, Yb, Lu, Ce, Tb, Eu and Sc. The chemical yield is measured by using scandium as an internal standard. (author)

  13. Determination of rare earth elements in seawater by inductively coupled plasma mass spectrometry with off-line column preconcentration using 2,6-diacetylpyridine functionalized Amberlite XAD-4

    Energy Technology Data Exchange (ETDEWEB)

    Karadas, Cennet [Department of Chemistry, Art and Science Faculty, Balikesir University, 10100 Balikesir (Turkey); Kara, Derya, E-mail: dkara@balikesir.edu.tr [Department of Chemistry, Art and Science Faculty, Balikesir University, 10100 Balikesir (Turkey); Fisher, Andrew [School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA (United Kingdom)

    2011-03-18

    An off-line column preconcentration technique using a micro-column of 2,6 diacetylpyridine functionalized Amberlite XAD-4 with inductively coupled plasma mass spectrometry (ICP-MS) as a means of detection has been developed. The aim of the method was to determine rare earth elements (REEs) (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) in seawater. Sample solutions (2-10 mL) were passed through the column which was then washed with ultra-pure water to remove residual matrix. The adsorbed cations on the resin were eluted by using 2 mL of 0.1 mol L{sup -1} HNO{sub 3} containing 10 ng mL{sup -1} indium as an internal standard. The eluent was analyzed for the metal concentrations using ICP-MS. Sample pH as well as the sample and eluent flow rates were optimized. The sorption capacity of resin was determined by the batch process, by equilibrating 0.05 g of the resin with solutions of 50 mL of 25 mg L{sup -1} of individual metal ions for 4 h at pH 6.0 at 26 deg. C. The sorption capacities for the resin were found to range between 47.3 {mu}mol g{sup -1} (for Lu) and 136.7 {mu}mol g{sup -1} (for Gd). Limits of detection (3{sigma}), without any preconcentration, ranged from 2 ng L{sup -1} to 10.3 ng L{sup -1} (for Tm and Lu respectively). The proposed method was applied to the determination of REEs in seawater and tap water samples.

  14. Handbook on the physics and chemistry of rare earths

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Eyring, L.

    1982-01-01

    This handbook is a six-volume work which covers the entire rare earth field in an integrated manner. Each chapter is a comprehensive, up-to-date, critical review of a particular segment of the field. The first volume is devoted to the rare earth metals, the second to rare earth alloys and intermetallics, and the third and fourth volumes to the non-metallic rare earth materials, including solutions, complexes and bioinorganic substances, in addition to solid inorganic compounds. The electronic structure of these unique elements is the primary basis of understanding their physical, metallurgical and chemical natures. The interrelationship of the 4f and valence electrons and the observed optical, electrical, magnetic, crystallographic, elastic, thermal, mechanical, chemical, geochemical and biological behaviors is brought forth time and again throughout the chapters. Also discussed are the preparative, separation and solution chemistry of the elements and their compounds and the various chemical and physical analytical methods for determining the rare earths in various materials and impurities in a rare earth matrix. Vol. 5 is a update complement of the previous volumes. Volume 6 is concerned with ternary and higher order materials. (Auth.)

  15. Effects of rare earth elements and REE-binding proteins on physiological responses in plants.

    Science.gov (United States)

    Liu, Dongwu; Wang, Xue; Chen, Zhiwei

    2012-02-01

    Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.

  16. Determination of positions of optical elements of the human eye

    International Nuclear Information System (INIS)

    Galetskii, S O; Cherezova, T Yu

    2009-01-01

    An original method for noninvasive determining the positions of elements of intraocular optics is proposed. The analytic dependence of the measurement error on the optical-scheme parameters and the restriction in distance from the element being measured are determined within the framework of the method proposed. It is shown that the method can be efficiently used for determining the position of elements in the classical Gullstrand eye model and personalised eye models. The positions of six optical surfaces of the Gullstrand eye model and four optical surfaces of the personalised eye model can be determined with an error of less than 0.25 mm. (human eye optics)

  17. Rare earth elements in Japan Sea sediments and diagenetic behavior of Ce/Ce∗: results from ODP Leg 127

    Science.gov (United States)

    Murray, R.; Buchholtz ten Brink, Marilyn R.; Brumsack, Hans-Juergen; Gerlach, David C.; Russ III, G. Price

    1991-01-01

    The relative effects of paleoceanographic and paleogeographic variations, sediment lithology, and diagenetic processes on the recorded rare earth element (REE) chemistry of Japan Sea sediments are evaluated by investigating REE total abundances and relative fractionations in 59 samples from Ocean Drilling Program Leg 127.

  18. Trace elements in land plants: concentration ranges and accumulators of rare earths, Ba, Ra, Mn, Fe, Co and heavy halogens

    International Nuclear Information System (INIS)

    Koyama, M.; Shirakawa, M.; Takada, J.; Katayama, Y.; Matsubara, T.

    1987-01-01

    More than 2000 samples of land plant leaves, mostly of tree, were analyzed by neutron activation analysis in order to find out macroscopic relations between distributions of chemical elements in plants and soil characteristics. The distributions of the elements in plants were also examined from the view point of botanical taxonomy or phylogeny. New species which accumulate Co, rare earths, Ba, Ra, heavy halogens and some other elements were found. Capability or potentiality for accumulating elements could be related to higher ranks of taxonomy, that is, genus or family. The nature of soil is also found to have profound effects on the extent of accumulation of elements in plants. (author)

  19. Trace elements and rare earth elements in wet deposition of Lijiang, Mt. Yulong region, southeastern edge of the Tibetan Plateau.

    Science.gov (United States)

    Guo, Junming; Kang, Shichang; Huang, Jie; Sillanpää, Mika; Niu, Hewen; Sun, Xuejun; He, Yuanqing; Wang, Shijing; Tripathee, Lekhendra

    2017-02-01

    In order to investigate the compositions and wet deposition fluxes of trace elements and rare earth elements (REEs) in the precipitation of the southeastern edge of the Tibetan Plateau, 38 precipitation samples were collected from March to August in 2012 in an urban site of Lijiang city in the Mt. Yulong region. The concentrations of most trace elements and REEs were higher during the non-monsoon season than during the monsoon season, indicating that the lower concentrations of trace elements and REEs observed during monsoon had been influenced by the dilution effect of increased precipitation. The concentrations of trace elements in the precipitation of Lijiang city were slightly higher than those observed in remote sites of the Tibetan Plateau but much lower than those observed in the metropolises of China, indicating that the atmospheric environment of Lijiang city was less influenced by anthropogenic emissions, and, as a consequence, the air quality was still relatively good. However, the results of enrichment factor and principal component analysis revealed that some anthropogenic activities (e.g., the increasing traffic emissions from the rapid development of tourism) were most likely important contributors to trace elements, while the regional/local crustal sources rather than anthropogenic activities were the predominant contributors to the REEs in the wet deposition of Lijiang city. Our study was relevant not only for assessing the current status of the atmospheric environment in the Mt. Yulong region, but also for specific management actions to be implemented for the control of atmospheric inputs and the health of the environment for the future. Copyright © 2016. Published by Elsevier B.V.

  20. China’s Rare Earths Production Forecasting and Sustainable Development Policy Implications

    Directory of Open Access Journals (Sweden)

    Xibo Wang

    2017-06-01

    Full Text Available Because of their unique physical and chemical properties, Rare earth elements (REEs perform important functions in our everyday lives, with use in a range of products. Recently, the study of China’s rare earth elements production has become a hot topic of worldwide interest, because of its dominant position in global rare earth elements supply, and an increasing demand for rare earth elements due to the constant use of rare earth elements in high-tech manufacturing industries. At the same time, as an exhaustible resource, the sustainable development of rare earth elements has received extensive attention. However, most of the study results are based on a qualitative analysis of rare earth elements distribution and production capacity, with few studies using quantitative modeling. To achieve reliable results with more factors being taken into consideration, this paper applies the generic multivariant system dynamics model to forecast China’s rare earth elements production trend and Hubbert peak, using Vensim software based on the Hubbert model. The results show that the peak of China’s rare earth elements production will appear by 2040, and that production will slowly decline afterwards. Based on the results, the paper proposes some policy recommendations for the sustainable development of China’s—and the world’s—rare earth elements market and rare earth-related industries.

  1. Determination of trace elements in high pure rare earth oxide by double focusing inductively coupled plasma mass spectrometry (HR ICP-MS) and high performance liquid chromatography (HPLC) techniques

    International Nuclear Information System (INIS)

    Pedreira Filho, Walter dos Reis

    2000-01-01

    Rare earth oxides are used in several technological fields whose applications can be observed in several areas of modern technology, among which are included: lasers, semiconductors semi, high purity materials and metallic alloys. The field of applications of the rare earth elements is quite wide. Several important industrial applications are ceramics, catalysts and metallurgical as well as research areas and high technology sectors. Such applications have been presenting an accentuated growth in the last years. Chemical characterization of rare earth oxides of high purity has been constituting one of the major challenges of analytical chemistry. Several analytical techniques were used for chemical characterization of high purity rare earth the oxides. Even so, those techniques present limitations when one needs to characterize materials of a high level of purity, as in the case of rare earth oxides. Some of those limitations are associated, for example, to spectral interference. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a powerful analytical tool for quantitative analysis of metal impurities in high purity materials. The Instituto de Pesquisas Energeticas e Nucleares (IPEN) has an unit of production and purification of rare earth oxides, with above 99,9% level of purity. In this work, the rare earth impurities were characterized in samples (La 2 O 3 ; CeO 2 ; Pr 6 O 11 ; Nd 2 O 3 ; Sm 2 O 3 ; Gd 2 O 3 ; Y 2 O 3 ) produced at the IPEN and certified standard materials produced by Johnson Matthey Chemical (JMC). The technique of high performance liquid chromatography (HPLC) was used in the separation of the impurities. Quantification of metallic impurities was carried out as inductively coupled plasma mass spectrometer (HR-ICP MS). In this work it is presented a new analytical methodology in the chemical characterization of metallic impurities in rare earth oxides of high purity (> 99,9%) with and without separation of the matrix. Analyses of standard

  2. Luminescence of Lanthanoides (Rare-earth elements) – Probes of structural variations in minerals

    International Nuclear Information System (INIS)

    Lenz, C.

    2015-01-01

    This cumulative PhD thesis summarises several individual studies on the luminescence of REE (rare-earth elements; i.e., trivalent lanthanoides), which are typically incorporated in accessory minerals such as zircon, titanite, monazite–(Ce) and xenotime–(Y). A main objective of these studies is to examine the powerfulness of REE luminescence-spectroscopy as structural probe. In particular, this concerns the potential use of REE3+ emissions in characterising structural disorder of their accessory host minerals as caused by radiation damage and/or compositional heterogeneity. Especially the former (i.e., mineral disorder due to radiation damage) is of interest to Earth and materials scientists, for instance for the understanding of changed physicochemical properties of initially crystalline materials that are affected by structural damage as caused by the radioactive decay of actinides. Moreover, a substantial contribution of the studies presented lies in the field of basic properties of the REE luminescence of natural accessory minerals. First, the investigations have addressed the identification of diverse REE species in diverse natural host minerals (which is done using synthetic REE-doped analogues). Second, factors that may bias the quantitative estimation of spectroscopic parameters have been studied, including effects of experimental parameters (crystal orientation and temperature) and the samples’ compositional heterogeneity. The results will be particularly useful to the growing community of Earth scientists who apply REE luminescence-spectroscopy in studying geological materials. (author) [de

  3. Atmospheric Drag Effects on the Motion of an Artificial Earth Satellite

    OpenAIRE

    TAKEUCHI, Sumio; 武内, 澄夫

    1982-01-01

    Perturbative effects of atmospheric drag on the motion of an artificial earth satellite are investigated in this paper. The atmosphere is considered to rotate with the same angular velocity as the earth. The altitudes of the satellite are given with reference to the standard earth-ellipsoid. The Lagrange planetary equations in Gaussian form are applied to determine the variations of the orbital elements. The atmospheric density at the satellite is regarded as a function of time. The density f...

  4. Study of the oxides nature effect of rare and rare earth elements on the aluminium-chromium catalyst properties

    International Nuclear Information System (INIS)

    Dadashev, B.A.; Abbasov, S.G.; Sarydzhanov, A.A.; AN Azerbajdzhanskoj SSR, Baku. Inst. Neftekhimicheskikh Protsessov)

    1975-01-01

    Adsorption studies have shown that oxides of rare and rare earth elements REE appreciably influence the structure of aluminium-chrome catalyst. Alkaline promotors, unlike REE, contribute to the formation of developed contact surface. Electrophysical investigations show that oxides of rare elements introduced into the catalyst increase its conductivity and activation energy. As for REE oxides, they decrease the conductivity and increase the activation energy. Catalysts with developed surface and high conductivity are also more active in the reaction of isopentane dehydration

  5. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    M. Opiela

    2012-04-01

    Full Text Available The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%, phosphorus (from 0.006 to 0.008% and oxygen (6 ppm. The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non- metallic inclusions during hot-working.

  6. The origin of the moon and the early history of the earth - a chemical model. Part 2: The earth

    International Nuclear Information System (INIS)

    O'Neill, H.St.C.

    1991-01-01

    The geochemical implications for the earth of a giant impact model for the origin of the earth-moon system are discussed, using a mass balance between three components: the proto-earth, the Impactor, and a late veneer. It is argued that the proto-earth accretes from material resembling a high temperature condensate from the solar nebula. Core formation takes place under very reducing conditions, resulting in the mantle of the proto-earth being completely stripped of all elements more siderophile than Fe, and partly depleted in the barely siderophile elements V, Cr, and perhaps Si. The Impactor then collides with the proto-earth, causing vaporisation of both the Impactor and a substantial portion of the earth's mantle. Most of this material recondenses to the earth, but some forms the moon. The Impactor adds most of the complement of the siderophile elements of the present mantle in an oxidized form. The oxidation state of the mantle is set near to its present, oxidized level. Finally, the addition of a late veneer, of composition similar to that of the H-group ordinary chondrites, accounts for the complement of the highly siderophile elements of the present mantle. The model accounts at least semi-quantitatively for the siderophile element abundances of the present mantle. Implications for the composition of the earth's core are discussed; the model predicts that neither S, O, nor Si should be present in sufficient quantities to provide the required light element in the core, whose identity, therefore, remains enigmatic

  7. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    OpenAIRE

    Quanyin Tan; Chao Deng; Jinhui Li

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation a...

  8. Rare Earth Element Behaviour in Apatite from the Olympic Dam Cu–U–Au–Ag Deposit, South Australia

    Directory of Open Access Journals (Sweden)

    Sasha Krneta

    2017-08-01

    Full Text Available Apatite is a common magmatic accessory in the intrusive rocks hosting the giant ~1590 Ma Olympic Dam (OD iron-oxide copper gold (IOCG ore system, South Australia. Moreover, hydrothermal apatite is a locally abundant mineral throughout the altered and mineralized rocks within and enclosing the deposit. Based on compositional data for zoned apatite, we evaluate whether changes in the morphology and the rare earth element and Y (REY chemistry of apatite can be used to constrain the fluid evolution from early to late hydrothermal stages at OD. The ~1.6 Ga Roxby Downs granite (RDG, host to the OD deposit, contains apatite as a magmatic accessory, locally in the high concentrations associated with mafic enclaves. Magmatic apatite commonly contains REY-poor cores and REY-enriched margins. The cores display a light rare earth element (LREE-enriched chondrite-normalized fractionation pattern with a strong negative Eu anomaly. In contrast, later hydrothermal apatite, confined to samples where magmatic apatite has been obliterated due to advanced hematite-sericite alteration, displays a conspicuous, convex, middle rare earth element (MREE-enriched pattern with a weak negative Eu anomaly. Such grains contain abundant inclusions of florencite and sericite. Within high-grade bornite ores from the deposit, apatite displays an extremely highly MREE-enriched chondrite-normalized fractionation trend with a positive Eu anomaly. Concentrations of U and Th in apatite mimic the behaviour of ∑REY and are richest in magmatic apatite hosted by RDG and the hydrothermal rims surrounding them. The shift from characteristic LREE-enriched magmatic and early hydrothermal apatite to later hydrothermal apatite displaying marked MREE-enriched trends (with lower U, Th, Pb and ∑REY concentrations reflects the magmatic to hydrothermal transition. Additionally, the strong positive Eu anomaly in the MREE-enriched trends of apatite in high-grade bornite ores are attributable to

  9. Rare earth elements in the Pacific and Atlantic Oceans

    International Nuclear Information System (INIS)

    Baar, H.J.W. de; Bacon, M.P.; Brewer, P.G.; Bruland, K.W.

    1985-01-01

    The first profiles of Pr, Tb, Ho, Tm and Lu in the Pacific Ocean, as well as profiles of La, Ce, Nd, Sm, Eu, Gd and Yb are reported. Concentrations of REE (except Ce) in the deep water are two to three times higher than those observed in the deep Atlantic Ocean. Surface water concentrations are typically lower than in the Atlantic Ocean, especially for the heavier elements Ho,Tm,Yb and Lu. Cerium is strongly depleted in the Pacific water column, but less so in the oxygen minimum zone. The distribution of the REE group is consistent with two simultaneous processes: (1) cycling similar to that of opal and calcium carbonate, and (2) adsorptive scavenging by settling particles and possibly by uptake at ocean boundaries. However, the first process can probably not be sustained by the low REE contents of shells, unless additional adsorption on surfaces is invoked. The second process, adsorptive scavenging, largely controls the oceanic distribution and typical seawater pattern of the rare earths. (author)

  10. Determination of trace elements in Mesozoic dykes of the Serra do Mar by neutron activation

    International Nuclear Information System (INIS)

    Vicentini, Caio M.; Marques, Leila S.

    2013-01-01

    The analysis of trace elements such as rare earths, Th, U, Ta, Hf, Ba, Rb and Ba, is a very important tool for petrogenetic studies. In order to study these processes in dykes of Enxame Serra do Mar (Coast of Sao Paulo and Rio de Janeiro), belonging to the Parana Magmatic Province (PMP), one of the most significant provinces of continental basalts in the world, were perform analyzes by neutron activation in these dikes. The technique, employed in Centro de Reator de Pesquisa of the Instituto de Pesquisas Energeticas e Nucleares, provided concentrations of trace elements with accuracy levels of 10% and 9%, which are suitable for petrogenetic studies. Due to the low concentrations of the elements analyzed, the experimental routine sample preparation processes covered very careful to avoid contamination. The samples investigated can be divided into four groups: basic rocks (SiO 2 500; basic rocks with Ti / Y 2 2 > 63%). Dikes of intermediate and acid composition only occur at the Sao Sebastiao Island and adjacent coastal region. The concentrations of major and minor elements, as well as the abundance patterns of rare earths and other incompatible elements of these more differentiated rocks, show significant similarities with the type of the volcanic Chapeco, suggesting similar genesis, in other worlds, including also processes of crustal contamination

  11. Preparation and Property of Acrylic Acid Rare Earth Complex and Its Hydrosilylation

    Institute of Scientific and Technical Information of China (English)

    Zhang Ming; Chen Haiyan; Chen Xiaosong; Dai Shaojun; Inoue Shinich; Okamoto Hiroshi

    2004-01-01

    Acrylic acid rare earth complex was prepared. Its chemical composition was determined by chemical and elemental analysis, and its structure as well as properties was characterized using IR, Fluorescence and UV spectrum, and its solubility was also investigated. Meanwhile a kind of elastic functional polymer with rare earth units in the side chains was produced. It is confirmed by IR spectrum that the Si-H bonds really react with acrylic acid rare earth.

  12. Microbial mobilization of rare earth elements (REE from mineral solids—A mini review

    Directory of Open Access Journals (Sweden)

    Fabienne Barmettler

    2016-06-01

    Full Text Available In the light of an expected supply shortage of rare earth elements (REE measures have to be undertaken for an efficient use in all kinds of technical, medical, and agricultural applications as well as—in particular—in REE recycling from post-use goods and waste materials. Biologically- based methods might offer an alternative and supplement to physico-chemical techniques for REE recovery and recycling. A wide variety of physiologically distinct microbial groups have the potential to be applied for REE bioleaching form solid matrices. This source is largely untapped until today. Depending of the type of organism, the technical process (including a series of influencing factors, the solid to be treated, and the target element, leaching efficiencies of 80 to 90% can be achieved. Bioleaching of REEs can help in reducing the supply risk and market dependency. Additionally, the application of bioleaching techniques for the treatment of solid wastes might contribute to the conversion towards a more sustainable and environmental friendly economy.

  13. ICP-AES determination of trace elements in carbon steel

    International Nuclear Information System (INIS)

    Sengupta, Arijit; Rajeswari, B.; Kadam, R.M.; Babu, Y.; Godbole, S.V.

    2010-01-01

    Full text: Carbon steel, a combination of the elements iron and carbon, can be classified into four types as mild, medium, high and very high depending on the carbon content which varies from 0.05% to 2.1%. Carbon steel of different types finds application in medical devices, razor blades, cutlery and spring. In the nuclear industry, it is used in feeder pipes in the reactor. A strict quality control measure is required to monitor the trace elements, which have deleterious effects on the mechanical properties of the carbon steel. Thus, it becomes imperative to check the purity of carbon steel as a quality control measure before it is used in feeder pipes in the reactor. Several methods have been reported in literature for trace elemental determination in high purity iron. Some of these include neutron activation analysis, atomic absorption spectrometry and atomic emission spectrometry. Inductively coupled plasma atomic emission spectrometry (ICP-AES) is widely recognized as a sensitive technique for the determination of trace elements in various matrices, its major advantages being good accuracy and precision, high sensitivity, multi-element capability, large linear dynamic range and relative freedom from matrix effects. The present study mainly deals with the direct determination of trace elements in carbon steel using ICP-AES. An axially viewing ICP spectrometer having a polychromator with 35 fixed analytical channels and limited sequential facility to select any analytical line within 2.2 nm of a polychromator line was used in these studies. Iron, which forms one of the main constituents of carbon steel, has a multi electronic configuration with line rich emission spectrum and, therefore, tends to interfere in the determination of trace impurities in carbon steel matrix. Spectral interference in ICP-AES can be seriously detrimental to the accuracy and reliability of trace element determinations, particularly when they are performed in the presence of high

  14. Spectrophotometric determination of elements of yttrium subgroup in the presence of cerium subgroup with xylenol orange and cetyl pyridinium chloride

    International Nuclear Information System (INIS)

    Belousova, V.V.; Chernova, R.K.; Sukhova, L.K.

    1978-01-01

    An effect of 17 cation surfactants of various types on optical properties of complexes of rare earth elements with xylenol orange (XO) has been studied. The ratio between the components in different-ligand complexes of r.e.e. with XO and cetylpyridinium is 1:1:3. The procedure of determining holmium in the presence of cerium and of ytterbium in the presence of praseodymium has been developed. Sodium fluoride has been used as a masking agent. pH value has been maintained equal to 4 (acetate-ammonium buffer). Standard deviation is, on the average, 0.87 for the case of determining Ho and 0.65 for Yb

  15. Use of nuclear techniques in the study of the behavior of rare earth elements on the use of phosphogypsum in cerrado agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Kerley A.P.; Sperling, Eduardo von, E-mail: kerley@ufmg.b, E-mail: eduardo@desa.ufmg.b [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Menezes, Maria A.B.C.; Brito, Walter; Jacomino, Vanusa M.F., E-mail: menezes@cdtn.b, E-mail: britol@cdtn.b, E-mail: vmfj@cdtn.b [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Phosphogypsum (PG) is a by-product of the 'wet process', whereby sulfuric acid reacts with phosphate rock to produce phosphoric acid. The Brazilian production of this material is around 12 million tons per year which is stacked in piles at the same place where it is produced. Researches carried out in several countries worldwide have demonstrated the potential use of PG in agriculture not only as a source for calcium and sulphur, but also as a conditioner for soils that contain high levels of aluminum. In Brazil, these studies are mainly focused on the application of phosphogypsum to the Cerrado region, the main agriculture region of the country. Taking into account the presence of natural radionuclides and rare earth elements (REE) in this material and the fact that the mobility and bioaccumulation of these elements can vary significantly with changes in climate, a research project has been conducted in partnership with the Brazilian Nuclear Energy Commission (CNEN) and Department of Sanitary and Environmental Engineering of Federal University of Minas Gerais in order to investigate the impact of using phosphogypsum in crops cultivated in Cerrado soils. For this purpose a set of greenhouse experiments have been conducted in two types of soil (one clayey and other sandy loam textured) to determine the transfer factor of rare earth elements from soil to crops (lettuce, corn and soybean). This paper aims to report preliminary results of the study, including the characterization of mineralogical phases and the determination of REE (La, Ce, Nd, Sm, Eu, Tb, Ho and Yb) concentration in PG samples. The characterization of mineralogical phases has been carried out by X-ray diffraction analyses and determination of REE concentration in PG samples has been conducted by neutron activation analysis (k{sub 0}-standardization method). The REE most present in PG samples was Ce (1730 ppm), followed by La (936 ppm) and Nd (791 ppm). Sm (85 ppm), Eu (29 ppm) and Yb (5 ppm

  16. Use of nuclear techniques in the study of the behavior of rare earth elements on the use of phosphogypsum in cerrado agriculture

    International Nuclear Information System (INIS)

    Oliveira, Kerley A.P.; Sperling, Eduardo von; Menezes, Maria A.B.C.; Brito, Walter; Jacomino, Vanusa M.F.

    2009-01-01

    Phosphogypsum (PG) is a by-product of the 'wet process', whereby sulfuric acid reacts with phosphate rock to produce phosphoric acid. The Brazilian production of this material is around 12 million tons per year which is stacked in piles at the same place where it is produced. Researches carried out in several countries worldwide have demonstrated the potential use of PG in agriculture not only as a source for calcium and sulphur, but also as a conditioner for soils that contain high levels of aluminum. In Brazil, these studies are mainly focused on the application of phosphogypsum to the Cerrado region, the main agriculture region of the country. Taking into account the presence of natural radionuclides and rare earth elements (REE) in this material and the fact that the mobility and bioaccumulation of these elements can vary significantly with changes in climate, a research project has been conducted in partnership with the Brazilian Nuclear Energy Commission (CNEN) and Department of Sanitary and Environmental Engineering of Federal University of Minas Gerais in order to investigate the impact of using phosphogypsum in crops cultivated in Cerrado soils. For this purpose a set of greenhouse experiments have been conducted in two types of soil (one clayey and other sandy loam textured) to determine the transfer factor of rare earth elements from soil to crops (lettuce, corn and soybean). This paper aims to report preliminary results of the study, including the characterization of mineralogical phases and the determination of REE (La, Ce, Nd, Sm, Eu, Tb, Ho and Yb) concentration in PG samples. The characterization of mineralogical phases has been carried out by X-ray diffraction analyses and determination of REE concentration in PG samples has been conducted by neutron activation analysis (k 0 -standardization method). The REE most present in PG samples was Ce (1730 ppm), followed by La (936 ppm) and Nd (791 ppm). Sm (85 ppm), Eu (29 ppm) and Yb (5 ppm) appear in

  17. The rare earth element (REE) lanthanum (La) induces hormesis in plants.

    Science.gov (United States)

    Agathokleous, Evgenios; Kitao, Mitsutoshi; Calabrese, Edward J

    2018-07-01

    Lanthanum is a rare earth element (REE) which has been extensively studied due to its wide application in numerous fields with a potential accumulation in the environment. It has long been known for its potential to stimulate plant growth within a hormetic-biphasic dose response framework. This article provides evidence from a series of high resolution studies published within the last two decades demonstrating a substantial and significant occurrence of lanthanum-induced hormesis in plants. These findings suggest that hormetic responses should be built into the study design of hazard assessment study protocols and included in the risk assessment process. Hormesis also offers the opportunity to substantially improve cost benefit estimates for environmental contaminants, which have the potential to induce beneficial/desirable effects at low doses. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Determination of trace elements in drinking tea by various analytical techniques

    International Nuclear Information System (INIS)

    Wang Chufang; Ke Chenghsiung; Yang Jenqyann

    1993-01-01

    Tea has been one of the most popular simulating beverages which is both heavily produced and consumed in Taiwan. The determination of minor or trace elements in drinking tea and tea leaves is therefore important for estimating the daily intake of Taiwanese considered as a safety indicator. In order to accurately and precisely determine the concentrations of trace elements in samples, several analytical methods such as AAS, NAA and ICP-AES are suggested. This paper attempts to utilize all three methods to determine the concentrations of minor or trace elements in different types of tea leaves and the extracts percolated from them. The influence of fermentation processes on the concentration levels of minor or trace elements in tea samples is investigated. Because only free metal ions are bioavailable for the human body, it is necessary to determine their concentrations in drinking tea. The dissolution of trace elements in drinking tea is therefore studied by simulating the common Chinese style of tea percolation. Concentrations of thirteen elements including Zn, Mn, Ca, Cu, Ni, Al, K, Mg, Cd, Pb, Na, Co and Sc are determined. (author) 14 refs.; 1 fig.; 6 tabs

  19. Rare-earth elements in human colostrum milk.

    Science.gov (United States)

    Poniedziałek, Barbara; Rzymski, Paweł; Pięt, Małgorzata; Niedzielski, Przemysław; Mleczek, Mirosław; Wilczak, Maciej; Rzymski, Piotr

    2017-11-01

    Rare-earth elements (REEs) are used in a growing number of applications, and their release to environment has increased over the decades. Knowledge of REEs in human milk and factors that could possibly influence their concentration is scarce. This study evaluated the concentrations of 16 REEs (Ce, Eu, Er, Gd, La, Nd, Pr, Sc, Sm, Dy, Ho, Lu, Tb, Tm, Y, and Yb) in human colostrum milk collected from Polish women (n = 100) with the ICP-OES technique. The concentrations (mean ± SD) of Pr (41.9 ± 13.2 μg L -1 ), Nd (11.0 ± 4.0 μg L -1 ), La (7.1 ± 5.2 μg L -1 ), and Er (2.2 ± 0.8 μg L -1 ) were found above detection limits. The total mean ± SD concentration of detected REEs was 60.9 ± 17.8 μg L -1 . Current smokers displayed significantly increased Nd concentrations compared to women who had never smoked. No other associations between REEs in colostrum milk and age, diet in pregnancy (food supplement use and frequency of fish, meat, and vegetable consumption) or place of living (urban/rural) were found. This study adds to general understanding of the occurrence and turnover of REEs in women and human fluids.

  20. Determination of experimental conditions for the analysis of rare-earth elements by X-ray fluorescence spectrometry. Application to oxalates and potassium sulphate matrices; Establecimiento de varibles experimentales para la determinacion de tierras raras por espectrometria de fluorescencia de rayos X. Aplicacion a los concentrados de oxalatos y sulfatos

    Energy Technology Data Exchange (ETDEWEB)

    Bayon Fuentes, A.; Bermudez Polonio, J.

    1969-07-01

    A previous theoretical and experimental study is carried out in order to analyze the rare earths elements by X-ray florescence spectrometry. All possible spectral interferences are considered. The working conditions for each element were selected, taking into account the peak/background ratio values for the following parameters: tungsten, molybdenum and chromium targets, current and voltage, analyzing crystals, and scintillation and flow proportional counters. Calibration curves were plotted showing the concentration of rare earths elements in oxalates and potassium sulphate matrices, and the theoretical detection limits for each element: are calculated. (Author) 8 refs.

  1. Energy Transfer between Post-Transition Elements & Rare Earths in Oxide & Chalcogenide Glasses.

    Science.gov (United States)

    1979-08-27

    Caird [13]. A calculation of reduced matrix elements of Pr3 in 20 Na O • 80 TeO2 glass [14] showed that they differ slightly from data of ref. [121... glasses Transition (lass 35 ZnO 65 TeO2 20 Na2 O 80 TeO 2 fX 106 fX 106 l.,eas 3a, a) Ia’l. faI f.me.s f al f+ I fal 3 H4 - 3 H6 1.56 1.65 1.12...Rare-Earth Doped Glasses 20. jIST HAEV CCnFn~m ,i cn,on ra e sideit If c."*Ar’ -- ~ 14-r by t?-h.c .: r Intensity parameters, radiative transition

  2. Extraction of rare earth elements with organophosphorus extractants as carriers in supported liquid membranes

    International Nuclear Information System (INIS)

    Kopunec, R.; Benitez, J.C.

    1991-01-01

    The membrane extraction of Y, Ce, Eu, Tm and their binary mixtures Ce-Y, Ce-Eu, Ce-Tm with supported liquid membranes containing TBP and HDEHP as carriers in decane-dodecane hydrocarbon solvent, has been studied. Upon extraction with TBP aqueous nitrate solutions of rare earth elements (REE) were used as feed phase. In some cases they also contained EDTA or DCTA. In most cases, the receiving phase was an aqueous solution of EDTA. Extraction with HDEHP was performed from nitrate and chloride solutions and the receiving phase was the corresponding dilute acid. Pertraction of an element through a membrane was studied as a function of time and of initial composition of phases. The results are presented in the following forms: flux of metal through membrane, coefficients of permeability, separation factors and effective diffusion coefficients. (author) 24 refs.; 8 figs.; 3 tabs

  3. On fluorozirconates and fluorohafnates of rare earths

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Antipov, P.I.; Novoselova, A.V.

    1980-01-01

    It has been shown by the method of X-ray phase analysis that on interaction between rare-earth fluorides and zirconium and hafnium tetrafluorides, compounds with 1:1, 1:2, 1:3 molar ratios of components are formed. Compounds of the LnHfF 4 type are prepared for all rare-earths. Fluoro-metals of the LnHf 2 F 11 composition are typical only of light lanthanides from lanthanum to neodymium, while pentafluorated salts Ln(EF 5 ) 3 are formed in the reaction between EF 4 with fluorides of heavy rare-earth elements from samarium to lutecium, as well as with yttrium trifluoride. Parameters of unit cells of heptafluohafnates and pentafluometallates are determined

  4. Some aspects of ICP-AES analysis of high purity rare earths

    International Nuclear Information System (INIS)

    Murty, P.S.; Biswas, S.S.

    1991-01-01

    Inductively coupled plasma atomic emission spectrometry (ICP-AES) is a technique capable of giving high sensitivity in trace elemental analysis. While the technique possesses high sensitivity, it lacks high selectivity. Selectivity is important where substances emitting complex spectra are to be analysed for trace elements. Rare earths emit highly complex spectra in a plasma source and the determination of adjacent rare earths in a high purity rare earth matrix, with high sensitivity, is not possible due to the inadequate selectivity of ICP-AES. One approach that has yielded reasonably good spectral selectivity in the high purity rare earth analysis by ICP-AES is by employing a combination of wavelength modulation techniques and high resolution echelle grating. However, it was found that by using a high resolution monochromator senstitivities either comparable to or better than those reported by the wavelength modulation technique could be obtained. (author). 2 refs., 2 figs., 2 tabs

  5. Application of INAA in monitoring vertical migration of elements in weathering zone

    International Nuclear Information System (INIS)

    Frana, J.; Mastalka, A.; Henes, J.

    1983-01-01

    The vertical migration of elements is studied in two types of Czechoslovak soils formed on loess. The INAA method is used to determine the total value of ca 40 elements in soils. Processed are relative errors of determination and the concentrations of elements to depths of 150 cm. Tables show the distribution of elements of rare earths according to genetic horizons, graphically presented is the vertical distribution of elements with concentrations exceeding 0.1 weight %. Soil enrichment or depletion with trace elements as compared with bedrock is shown on the examples of Co, Mn and Zn. (author)

  6. Preliminary study on the existence characteristics of rare earth elements in the interstratified oxidized zone

    International Nuclear Information System (INIS)

    Wang Jinping

    2006-10-01

    There were few of studies on rare earth elements (REE) in sandstone hosted uranium deposits, except the study of sediments source tracing and REE distribution modalities. Based on the study of existence characteristics of REE in subzones of interstratified oxidized zone in Shihongtan uranium deposit, Tuha basin, the possible migration features of REE was traced, and the significance of ΣREE, LREE/HREE ratios and δEu, δCe value during the interstratified oxidation were illustrated. (authors)

  7. Rare earth elements as a tool for studying the formation of cemented layers in an area affected by acid mine drainage

    International Nuclear Information System (INIS)

    Grawunder, Anja; Lonschinski, Martin; Merten, Dirk; Büchel, Georg

    2015-01-01

    Highlights: • Spatially resolved analysis of 14 rare earth elements (REE) by LA-ICP-MS. • Positive correlation of Mn contents and (positive) Ce anomalies. • Linkage of the two cemented layer’s formation to soil solution and groundwater. - Abstract: In a profile with two cemented layers sampled in an area affected by acid mine drainage, both have rare earth element (REE) signatures with positive Ce anomalies in the Post Archean Australian Shale-normalised patterns. Both cemented layers have higher contents of environmentally relevant metals (Cd, Co, Cu, Fe, Mn, U, and Zn) than the over- and underlying unconsolidated Quaternary sediments and are depleted of Al, Ca, K, and Mg. The cemented layers are enriched in middle and heavy REE, but only the bulk pattern of the lower cemented layer reveals a positive Ce anomaly. For the upper cemented layer, this positive Ce anomaly was only determined by spatially resolved laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) studies only for segments with a high abundance of Mn, occurring as Mn phases as proven by energy dispersive X-ray spectroscopy. The Mn phases are formed secondarily to the ferric cement and are especially enriched in Ce and Co. The Ce anomaly of the lower cemented layer most probably is inherited from groundwater to the ferric cement, whereas the Ce anomaly of the upper cemented layer is the result of preferential scavenging of Ce onto the Mn phases compared to other REE

  8. Distance-based relative orbital elements determination for formation flying system

    Science.gov (United States)

    He, Yanchao; Xu, Ming; Chen, Xi

    2016-01-01

    The present paper deals with determination of relative orbital elements based only on distance between satellites in the formation flying system, which has potential application in engineering, especially suited for rapid orbit determination required missions. A geometric simplification is performed to reduce the formation configuration in three-dimensional space to a plane. Then the equivalent actual configuration deviating from its nominal design is introduced to derive a group of autonomous linear equations on the mapping between the relative orbital elements differences and distance errors. The primary linear equations-based algorithm is initially proposed to conduct the rapid and precise determination of the relative orbital elements without the complex computation, which is further improved by least-squares method with more distance measurements taken into consideration. Numerical simulations and comparisons with traditional approaches are presented to validate the effectiveness of the proposed methods. To assess the performance of the two proposed algorithms, accuracy validation and Monte Carlo simulations are implemented in the presence of noises of distance measurements and the leader's absolute orbital elements. It is demonstrated that the relative orbital elements determination accuracy of two approaches reaches more than 90% and even close to the actual values for the least-squares improved one. The proposed approaches can be alternates for relative orbit determination without assistance of additional facilities in engineering for their fairly high efficiency with accuracy and autonomy.

  9. Addressing Criticality in Rare Earth Elements via Permanent Magnets Recycling

    Science.gov (United States)

    Nlebedim, I. C.; King, A. H.

    2018-02-01

    Rare earth elements (REEs) are critical for many advanced technologies and are faced with potential supply disruptions. Recycling of permanent magnets (PMs) can be good sources for REEs which can help minimize global dependence on freshly mined REEs, but PMs are rarely recycled. Recycling of PMs has been discussed with respect to improving REEs resource sustainability. Some challenges to be addressed in order to establish industrially deployable technologies for PMs recycling have also been discussed, including profitability, energy efficiency and environmental impacts. Key considerations for promoting circular economy via PMs recycling is proposed with the focus on deciding the target points in the supply chain at which the recycled products will be inserted. Important technical considerations for recycling different forms of waste PMs, including swarfs, slags, shredded and intact hard disk drives magnets, have been presented. The aspects of circular economy considered include reusing magnets, remanufacturing magnets and recovering of REEs from waste PMs.

  10. MICROBIALLY MEDIATED LEACHING OF RARE EARTH ELEMENTS FROM RECYCLABLE MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D. W.; Fujita, Y.; Daubaras, D. L.; Bruhn, D. F.; Reiss, J. H.; Thompson, V. S.; Jiao, Y.

    2016-09-01

    Bioleaching offers a potential approach for recovery of rare earth elements (REE) from recyclable materials, such as fluorescent lamp phosphors or degraded industrial catalysts. Microorganisms were enriched from REE-containing ores and recyclable materials with the goal of identifying strains capable of extracting REE from solid materials. Over 100 heterotrophic microorganisms were isolated and screened for their ability to produce organic acids capable of leaching REE. The ten most promising isolates were most closely related to Pseudomonas, Acinetobacter and Talaromyces. Of the acids produced, gluconic acid appeared to be the most effective at leaching REE (yttrium, lanthanum, cerium, europium, and terbium) from retorted phosphor powders (RPP), fluidized cracking catalyst (FCC), and europium-doped yttrium oxide (YOEu). We found that an Acinetobacter isolates, BH1, was the most capable strain and able to leach 33% of the total REE content from the FCC material. These results support the continuing evaluation of gluconic acid-producing microbes for large-scale REE recovery from recyclable materials.

  11. Highly fractionated rare-earth elements in ferromagnesian chondrules from the Felix (CO3) meteorite

    International Nuclear Information System (INIS)

    Misawa, Keiji; Nakamura, Noboru

    1988-01-01

    Here we describe two ferromagnesian chondrules from the Felix (Ornans-subtype) carbonaceous chondrite which carry a marker signature of REE (rare earth element) fractionation in the nebula. Both show positive Ce and Yb anomalies and one exhibits a light/heavy REE fractionation. On the basis of the REE characteristics of these chondrules, as well as those of the authors' work on Allende (CV) [N Geochim. Cosmochim. Acta. in press], we suggest that one of the precursor materials of chondrules in CO-CV carbonaceous chondrites is a high-temperature condensate from the nebular gas. (author)

  12. Spacecraft Attitude Determination with Earth Albedo Corrected Sun Sensor Measurements

    DEFF Research Database (Denmark)

    Bhanderi, Dan

    -Method, Extended Kalman Filter, and Unscented Kalman Filter algorithms are presented and the results are compared. Combining the Unscented Kalman Filter with Earth albedo and enhanced Sun sensor modeling allows for three-axis attitude determination from Sun sensor only, which previously has been perceived...

  13. Next-generation Digital Earth.

    Science.gov (United States)

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  14. Long-term dynamics of watershed leaching and lake sediment sequestration of rare earth elements following deglaciation of two mountain watersheds.

    Czech Academy of Sciences Publication Activity Database

    Norton, S. A.; Pierret, M.C.; Kopáček, Jiří; Handley, M.J.; Perry, R.H.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 209-222 ISSN 0921-2728 Institutional support: RVO:60077344 Keywords : rare earth elements * aluminum * phosphorus * lake sediment * weathering Subject RIV: DJ - Water Pollution ; Quality Impact factor: 2.017, year: 2016

  15. Variation of the rare earth element concentrations in the soil, soil extract and in individual plants from the same site

    International Nuclear Information System (INIS)

    Wyttenbach, A.; Tobler, L.; Furrer, V.; Schleppi, P.

    1998-01-01

    Samples of various types (spruce needles, blackberry leaves, soils, and soil extracts) have each been taken at 6 places from the same site. In addition, 4 whirls each from 2 spruce trees were sampled. Rare earth elements (REEs) were determined in these samples by neutron activation analysis with a chemical group separation. Variations between places were found to be small with soils and soil extracts, but large with plants. Variations between whirls were small. Plants neither reflected the soil nor the soil extract. Both plant species were dissimilar, but the logarithm of their ratio was a linear function of the atomic number of the REE. A negative Ce anomaly (with respect to soil) was found in both plant species. (author)

  16. Vertical distributions and speciation of dissolved rare earth elements in the anoxic brines of Bannock Basin, eastern Mediterranean Sea

    NARCIS (Netherlands)

    Schijf, Johan; Baar, Hein J.W. de; Millero, Frank J.; Byrne, R.H.

    1995-01-01

    Vertical distributions of dissolved rare earth elements (REEs) are presented for the anoxic, highly sulfidic brines of Bannock Basin in the eastern Mediterranean Sea. REE concentrations at the seawater-brine interface are the highest ever recorded in the water column of an anoxic basin and

  17. Features of rare earth element (3) complexing

    International Nuclear Information System (INIS)

    Martynenko, L.I.

    1991-01-01

    Reasons for nonobeyance to the regularity of tetrad ''W'' effect of rare earth chelate complex compounds are discussed in the review. The concept of metal-ligand ionic bond in rare earth complexes is put in the basis of the consideration. From this viewpoint mutual influence of ligands in lower, higher, polynuclear and different-ligand complexes, formed by the ligands of low, medium and high denticity, is discussed. Problems of intermolecular interaction of complexes with different structure are considered in relation to problems of variation of chelate volatility and selectivity in the processes of sublimation and precipitation

  18. On the prospects to detect superheavy elements (SHE) in the earth's crust using the high energy synchrotron radiation and the mass spectrometry

    International Nuclear Information System (INIS)

    Schnier, C.

    2001-01-01

    There are many indications for the existence of superheavy elements (SHE) in the Earth's crust. The appropriate detection methods are X-ray fluorescence (XRF) using the high energy synchrotron radiation and the mass spectrometry. The characteristic X-rays of each element up to Z >120 (corresponding binding energy of the K-electrons E b >230 keV) can be precisely excited with synchrotron XRF. Up to now, the XRF with high energy photons has never been applied to the quest for SHE. New methods of mass spectrometry eg using resonance ionization (RIMS) are promising to detect unambiguously atomic masses about 300 in solid matrices. It is proposed to restart the quest for SHE in the nature. Finding a SHE in the Earth's crust would be very important, because of what it will tell us about the origin of the elements eg about the nucleosynthesis during a super nova explosion, the structure of the atomic nuclei and the site of SHE in the periodic table of elements. (orig.) [de

  19. Chemical separation and ICP-AES determination of rare earths in Al2O3 matrix

    International Nuclear Information System (INIS)

    Argekar, A.A.; Kulkarni, M.J.; Page, A.G.; Manchanda, V.K.

    2005-01-01

    A chemical separation-ICP-AES method has been developed for determination of rare earths in alumina matrix. The quantitative separation of rare earths has also been confirmed using radiotracers. (author)

  20. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.

    Science.gov (United States)

    Thomas, Philippe J; Carpenter, David; Boutin, Céline; Allison, Jane E

    2014-02-01

    The phytotoxicity of rare earth elements (REEs) is still poorly understood. The exposure-response relationships of three native Canadian plant species (common milkweed, Asclepias syriaca L., showy ticktrefoil, Desmodium canadense (L.) DC. and switchgrass, Panicum virgatum L.) and two commonly used crop species (radish, Raphanus sativus L., and tomato, Solanum lycopersicum L.) to the REEs lanthanum (La), yttrium (Y) and cerium (Ce) were tested. In separate experiments, seven to eight doses of each element were added to the soil prior to sowing seeds. Effects of REE dose on germination were established through measures of total percent germination and speed of germination; effects on growth were established through determination of above ground biomass. Ce was also tested at two pH levels and plant tissue analysis was conducted on pooled samples. Effects on germination were mostly observed with Ce at low pH. However, effects on growth were more pronounced, with detectable inhibition concentrations causing 10% and 25% reductions in biomass for the two native forb species (A. syriaca and D. canadense) with all REEs and on all species tested with Ce in both soil pH treatments. Concentration of Ce in aboveground biomass was lower than root Ce content, and followed the dose-response trend. From values measured in natural soils around the world, our results continue to support the notion that REEs are of limited toxicity and not considered extremely hazardous to the environment. However, in areas where REE contamination is likely, the slow accumulation of these elements in the environment could become problematic. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.