WorldWideScience

Sample records for earth elements ce

  1. Effect of Rare Earth Element Ce on Microstructure and Properties of Aluminum Rod for Electrical Purpose

    Institute of Scientific and Technical Information of China (English)

    Li Pengfei; Wang Yunli; Gao Xizhu; Wang Zaiyun

    2004-01-01

    The effect of rare earth element Ce on microstructure, electrical conductivity and mechanical properties was studied.Using optical microscope, scanning electron microscope, transmission electron microscope and X-ray diffractometer, the microstructure and phase composition of aluminum rod for electrical purpose were measured and analyzed.The results indicate that rare earth element Ce can considerably refine grain size of aluminum rod for electrical purpose,improve the regular distribution pattern of the impurity, such as silicon and iron which present in the aluminum matrix,form stable metal compound with pernicious impurity.This metal compound precipitates on the crystal boundary.As a result, the solid solubility of impurity in aluminum reduce, and the electrical conductivity of aluminum rod for electrical purpose is improved.It is found that the mechanical properties of aluminum rod for electrical purpose are improved by rare earth element in certain range of RE addition.

  2. Mechanism of interaction relation between the rare-earth element Ce and impurity elements Pb and Bi in Ag-based filler metal

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The mechanism of interaction relation between the rare-earth element Ce and elements Pb and Bi in Ag-based filler metal has been studied. The results show that the compounds CePb and CeBi with high melting point can be easily produced between these three elements in the filler metal, which greatly limited the formation of the isolated phase Pb or Bi and also eliminated the bad effect of impurity elements Pb and Bi on the spreading property of Ag-based filler metal. The metallurgical and quantum-mechanical bond formation analysis show that a strong chemical affinity was existed between the rare-earth element Ce and impurity elements Pb and Bi, which was proved by the XRD analysis results.

  3. Effects of rare earth element Ce on solderabilities of micron-powdered Sn-Ag-Cu solder

    Institute of Scientific and Technical Information of China (English)

    XUE Song-bai; YU Sheng-lin; WANG Xu-yan; LIU lin; HU Yong-fang; YAO Li-hua

    2005-01-01

    Several important properties of the micron-powdered Sn-Ag-Cu-Ce solder, including the spreadability, spreading ratio, wetting time, and melting point, were investigated for verifying the effects of rare earth element Ce on solderabilities of micron-powdered Sn-Ag-Cu solder. The solidus and the liquidus of the micron-powdered Sn-Ag-Cu-Ce solder are 193.6℃ and 218.4℃, respectively, about 28℃ and 3℃ lower than the melting point of the block Sn-Ag-Cu solder, which reminds the existence of the surface effect of the micron-powdered solder. By adding Ce into Sn-Ag-Cu alloy, its wetting time on pure copper can be obviously decreased. For the Sn-Ag-Cu-0.03%Ce, the soldering temperature is 250℃, and the wetting time on pure copper is close to 1s, with the soldering temperature approaching to 260℃, the wetting time is dropped to 0.8s, which is close to the wetting time, 0.68s, of Sn-Pb solder at 235℃.

  4. Competition Between Organic Matter and Solid Surface for Cation Sorption: Ce and Rare Earth Element as Proxy

    Science.gov (United States)

    Davranche, M.; Pourret, O.; Gruau, G.; Dia, A.

    2006-12-01

    Aquatic or soil organic matter are well-known to be strong adsorbent of many cations due to their adsorption capacity. Among these cations, the trivalent rare earth element (REE) and particularly Ce seem to be promising tools to investigate the impact of competition in between organic or inorganic ligands. Ce (III) is oxidized into Ce (IV) by oxidative surface such as Fe and Mn oxyhydroxides. Since Ce (IV) is preferentially adsorbed (as compared to other REE), a positive and negative Ce anomaly is developed respectively onto the solid and within the solution. Previous studies (Davranche et al., 2004, 2005) highlighted the suppression of this feature when Ce occurs to be complexed with organic matter (as humate species). Recent experiments were designed to evaluate the competition between humate and Mn oxide for REE complexation (each reactant being added simultaneously). Two parameters control the competition: time and pH. While organic matter does adsorb immediately the free REE, a desorption of REE occurs through time. Desorption is marked by the development of a Ce anomaly in the REE pattern that reflects the complexation with Mn oxide surface. Along the time, solid surface becomes thus more competitive than the organic matter. PH still influences the competition since at basic pH, REE and organic matter - probably as REE-organic complexes - are adsorbed onto the solid surface. Ultrafiltration analyses at 5 KD were also performed to separate organic matter and organic complexes from the solution. Results provide evidence that in presence of a solid surface, HREE (high rare earth element) desorption from the organic matter occurs through time. This leads to HREE enrichment in solution. All these results suggest that complexation of organic matter is kinetically favoured as compared to the complexation with solid surfaces. However, the organic complex formed during the first stage of the complexation process involves weak bindings. These bindings are easily broken

  5. Role of vacancies, light elements and rare-earth metals doping in CeO2.

    Science.gov (United States)

    Shi, H; Hussain, T; Ahuja, R; Kang, T W; Luo, W

    2016-08-24

    The magnetic properties and electronic structures of pure, doped and defective cerium oxide (CeO2) have been studied theoretically by means of ab initio calculations based on the density function theory (DFT) with the hybrid HF/DFT technique named PBE0. Carbon (C), nitrogen (N), phosphorus (P), sulphur (S), lanthanum (La) and praseodymium (Pr) doped in CeO2 and CeO2 containing oxygen vacancies (Ov) were considered. Our spin-polarized calculations show that C, N, Pr dopants and Ov defects magnetize the non-magnetic CeO2 in different degree. The optical band gap related to photocatalysis for pure CeO2, corresponding to the ultraviolet region, is reduced obviously by C, N, S, Pr impurities and oxygen vacancies, shifting to the visible region and even further to the infrared range. Especially, N-, S- and Pr-doped CeO2 could be used to photocatalytic water splitting for hydrogen production. As the concentration of Ov increasing up to 5%, the CeO2 exhibits a half-metallic properties.

  6. Role of vacancies, light elements and rare-earth metals doping in CeO2

    Science.gov (United States)

    Shi, H.; Hussain, T.; Ahuja, R.; Kang, T. W.; Luo, W.

    2016-01-01

    The magnetic properties and electronic structures of pure, doped and defective cerium oxide (CeO2) have been studied theoretically by means of ab initio calculations based on the density function theory (DFT) with the hybrid HF/DFT technique named PBE0. Carbon (C), nitrogen (N), phosphorus (P), sulphur (S), lanthanum (La) and praseodymium (Pr) doped in CeO2 and CeO2 containing oxygen vacancies (Ov) were considered. Our spin-polarized calculations show that C, N, Pr dopants and Ov defects magnetize the non-magnetic CeO2 in different degree. The optical band gap related to photocatalysis for pure CeO2, corresponding to the ultraviolet region, is reduced obviously by C, N, S, Pr impurities and oxygen vacancies, shifting to the visible region and even further to the infrared range. Especially, N-, S- and Pr-doped CeO2 could be used to photocatalytic water splitting for hydrogen production. As the concentration of Ov increasing up to 5%, the CeO2 exhibits a half-metallic properties. PMID:27554285

  7. Influences of rare earth element Ce-doping and melt-spinning on microstructure and magnetostriction of Fe{sub 83}Ga{sub 17} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Zhanquan, E-mail: ndyzq@126.com [School of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018 (China); Tian, Xiao, E-mail: nsdtx@126.com [Key Laboratory for Physics and Chemistry of Functional Materials, School of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022 (China); Jiang, Liping; Hao, Hongbo; Zhang, Guangrui; Wu, Shuangxia; Zhao, Zengqi [Baotou Research Institute of Rare Earths, Baotou 014030 (China); Gerile, Naren [Key Laboratory for Physics and Chemistry of Functional Materials, School of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022 (China)

    2015-07-15

    Highlights: • The CeGa{sub 2} phase existing in the Fe{sub 83}Ga{sub 17}Ce{sub 0.8} alloy is found for the first time. • The (100) orientation of alloy become stronger after Ce doping into the Fe-Ga alloy. • The melt-spinning leads to the formation of asymmetrical DO{sub 3} phase. • The enhanced magnetostriction is credited with new phase and preferred orientation. • The Ce-doping and melt-spinning are beneficial to the improvement of magnetostriction. - Abstract: In order to improve magnetostriction of the polycrystalline Fe-Ga alloy, the rare earth element Ce was firstly doped into Fe{sub 83}Ga{sub 17} and the melt-spinning method was subsequently applied. The as-cast Fe{sub 83}Ga{sub 17} and Ce-doped Fe{sub 83}Ga{sub 17} alloys were prepared by arc melting. Then the as-cast Ce-doped Fe{sub 83}Ga{sub 17} alloy was melt-spun by the melt-spinning technique. The microstructures and magnetostrictions of all these three alloys were investigated by X-ray diffractometer (XRD), scanning electron microscopy and energy dispersive spectroscopy (SEM/EDS), differential scanning calorimeter (DSC) and magnetostriction measurements. The results indicated that the CeGa{sub 2} phase and asymmetrical DO{sub 3} phase are formed caused by Ce-doping and melt-spinning, respectively. The magnetostrictions of three alloys are ranked in sequence the melt-spun Fe{sub 83}Ga{sub 17}Ce{sub 0.8} alloy > as-cast Fe{sub 83}Ga{sub 17}Ce{sub 0.8} alloy > as-cast Fe{sub 83}Ga{sub 17} alloy. The enhanced magnetostriction is attributed to the fact that the formation of new phases and the preferred orientation along (100) direction.

  8. Rare (Earth Elements [score

    Directory of Open Access Journals (Sweden)

    Camilo Méndez

    2014-12-01

    Full Text Available Rare (Earth Elements is a cycle of works for solo piano. The cycle was inspired by James Dillon’s Book of Elements (Vol. I-V. The complete cycle will consist of 14 pieces; one for each selected rare (earth element. The chosen elements are Neodymium, Erbium, Tellurium, Hafnium, Tantalum, Technetium, Indium, Dysprosium, Lanthanium, Cerium, Europium, Terbium, Yttrium and Darmstadtium. These elements were selected due to their special atomic properties that in many cases make them extremely valuable for the development of new technologies, and also because of their scarcity. To date, only 4 works have been completed Yttrium, Technetium, Indium and Tellurium.

  9. Dissolution of Ce from Cd Solution Containing U/Ce Elements by Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Si Hyung; Kim, Gha-Young; Lee, Seung-jai; Kim, Taek-Jin; Paek, Seungwoo; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The U-TRU metal alloy can be supplied by the Pyroprocessing, specifically UTRU recovery process using liquid cadmium cathode (LCC). In a certain case, a lot of rare earth (RE) element could be recovered on the LCC with the TRU element during the Pyroprocessing when the concentration of RE ions is higher than that of the TRU ions in the salt. In this case, most of the RE element needs to be removed from the Cd solution containing U/TRU/RE elements. RAR(Residual Actinides Recovery) technique used the mixed electrolytic-chemical process. In this study, only electrolysis technique was utilized to remove Ce element from Cd solution containing U/Ce elements. U-TRU alloy having less impurity is necessary for the fabrication of SFR fuel and these U-TRU elements can be prepared by Pyroprocessing. Electrolytic method was used to reduce the amount of Ce elements from the Cd solution containing U/Ce elements. It is judged from this study that electrolytic dissolution can be one of the methods to reduce RE elements from the Cd solution containing U-TRU-RE elements.

  10. New Tl-based copper oxide containing double-MO 2-unit fluorite block: (Tl, Cu) Sr 2 (R, Ce) 3Cu 2O 11 (R: rare earth element)

    Science.gov (United States)

    Wada, Takahiro; Hamada, Kazuyuki; Ichinose, Ataru; Kaneko, Tetsuyuki; Yamauchi, H.; Tanaka, Shoji

    1991-05-01

    New Tl-based copper oxides. (Tl, Cu)Sr 2(R, Ce) 3Cu 2O 11 (R: rare earth element) (Tl-based “1232”), have been synthesized. These compounds have tetragonal unit cells with lattice constants approximately equal to a=3.8 Å and c=17.3 Å. A Rietveld analysis using X-ray powder diffraction data shows that the crystal structure of (Tl {4}/{5}Cu {1}/{5})Sr 2(Ho {1}/{3}Ce {2}/{3}) 3Cu 2O 11 consists of a double-MO 2-unit flouride block, i.e. [(Ho, Ce)O 2] 2 and a Tl-based “1212” block, i.e. (Tl, Cu)Sr 2(Ho, Ce)Cu 2O 7. The temperature dependences of the electrical resistivity for all of these compounds are semiconductive. However, these compounds are considered to be candidates for parent materials for new high- Tc superconductors.

  11. [Content of rare earth elements in wild Hypericum japonicum Thunb].

    Science.gov (United States)

    Wei, Zhen-Lin; Rui, Yu-Kui; Tian, Zhi-Huan

    2009-06-01

    Rare earth elements are important nutritional elements for human health, and today more and more attention has been paid to the effective components in Chinese traditional medicine, especially to rare earth elements. Fifteen rare earth elements in wild hypericum japonicum Thunb were analyzed by the methods of ICP-MS. The results showed that the concentrations of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Tm, Lu and Y ranged from 6 ng x g(-1) x DW to 14 522 ng x g(-1) x DW, and among them the concentrations of La, Ce and Nd were higher than 2 000 ng x g(-1) x DW. Compared with the concentration of rare earth elements in rice, corn, wheat and barley, the total concentration of rare earth elements in hypericum japonicum Thunb was much higher, which could be the mechanism of curative effect of hypericum japonicum Thunb on liverish diseases. The character of elements and the content of rare earth elements in soil should be responsible for the difference, but the distributive mechanism of rare earth elements in hypericum japonicum Thunb should be further studied.

  12. Forms of Rare Earth Elements in Soils:II.Differentiation of Rare Earth Elements

    Institute of Scientific and Technical Information of China (English)

    ZHUJIAN-GUO; XINGGUANG-XI

    1992-01-01

    The present paper deals mainly with the relationships between the distribution of rare earth elements (REE) in different forms in soils and the atomic number and with the odd-even phenomenon in the distribution of ionic lanthanides in soils.The enrichment tendency of light REE relative to heavy REE in soils was pointed out on the experimental results about the proportions of Ce-group and Y-group elements in different REE forms in soils.Meanwhile,the differentiation of Tm in different soil REE forms was compared and the reasons why Tm is enriched in soils were preliminarily discussed.

  13. Investigation on Behavior of Rare Earth Element Cerium in Aluminum-Lithium Alloys by Internal Friction Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The behavior of rare earth element Ce in 2090 Al-Li alloys was studied by the method of low frequency internal friction.The results showed that rare earth element Ce can increase the activation energy of grain boundary and improve the grain boundary strength of alloys.Rare earth element Ce can decrease the tendency of softening of elastic modulus of 2090 Al-Li alloys after heat cycle and keep high elastic modulus of initial state.

  14. Preparation and properties on rare-earth element cerium doped nano-titanium dioxide photocatalyst%Ce-TiO2光催化剂的制备与性能研究

    Institute of Scientific and Technical Information of China (English)

    燕宁宁; 张莹; 龚昌杰; 朱忠其; 柳清菊

    2012-01-01

    采用溶胶-凝胶法制备了稀土Ce离子掺杂的纳米TiO2光催化剂(Ce-TiO2),通过XRD、FT-IR、UV-Vis、PL、Nano-sizer纳米粒度分析仪等对Ce-TiO2样品进行了表征和分析,并以亚甲基蓝(MB)作为目标降解物,考察了不同掺杂浓度及经不同温度热处理后的Ce-TiO2样品对MB的光催化降解效果,结果表明所制备样品的晶型均为锐钛矿相和金红石相的混晶相,Ce离子的掺杂拓展了TiO2在可见光区的光谱响应范围,提高了TiO2光催化活性。当pH值为1.5,Ce的掺杂量为n(Ce)∶n(TiO2)=1∶300,热处理温度为600℃条件下制备的样品其催化活性显著高于Degussa P25。%The nano-TiO2 doped with Ce was prepared by sol-gel method.The samples were analyzed by X-ray diffraction(XRD),FT-IR,UV-Vis,PL,Nano-sizer nano particle size analyzer,etc.The photocatalytic activity of Ce-TiO2 was investigated at different doping dosage and different calcinated temperatures by measuring the degradation rate of methyl blue(MB) under the irradiation of fluorescent lamp,the results show that crystal phase of Ce-TiO2 samples are all mixed phase of anatase and rutile.The existence of the doped element Ce expands TiO2's spectrum absorption under the visible light,and increases the photocatalytic activity of TiO2.Meanwhile,the photocatalytic activity of the sample at pH=1.5,n(Ce)∶n(TiO2)=1∶300 and the calcinated temperature of 600℃ is the best,and it is obvious higher than that of P25.

  15. Study on rare earth/alkaline earth oxide-doped CeO2 solid electrolyte

    Institute of Scientific and Technical Information of China (English)

    YAN Kai; ZHEN Qiang; Song Xiwen

    2007-01-01

    Five types of rare earth/alkaline earth oxide-doped CeO2 superfine-powders were synthesized by a low-temperature combustion technique. The relevant solid electrolyte materials were also sintered by pressureless sintering at different temperatures. The results of X-ray diffraction and transmission electron microscopy showed that the grain size of the powders was approximately 20-30 nm, and rare earth/alkaline earth oxides were completely dissolved into ceria-based solid solution with fluorite structure. The electrical conductivities of the Sm2O3-CeO2 system were measured by the ac impedance technique in air at temperatures ranging from 513-900℃. The results indicated that the ionic conductivities of Sm0.20Ce0.8O1.875 solid electrolyte increase with increasing sintering temperature, and the relationship between the conductivities and measuring temperature obeys the Arrhenius equation. Then the Sm2O3-CeO2 material was further doped with other rare earth/alkaline earth oxide, and the conductivities improve with the effective index.

  16. Rare earth elements: end use and recyclability

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  17. Recycling of Rare Earth Elements

    Science.gov (United States)

    Lorenz, Tom; Bertau, Martin

    2017-01-01

    Any development of an effective process for rare earth (RE) recycling has become more and more challenging, especially in recent years. Since 2011, when commodity prices of REs had met their all-time maximum, prices have dropped rapidly by more than 90 %. An economic process able to offset these fluctuations has to take unconventional methods into account beside well-known strategies like acid/basic leaching or solvent extraction. The solid-state chlorination provides such an unconventional method for mobilizing RE elements from waste streams. Instead of hydrochloric acid this kind of chlorination decomposes NH4Cl thermally to release up to 400 °C hot HCl gas. After cooling the resulting solid metal chlorides may be easily dissolved in pH-adjusted water. Without producing strongly acidic wastes and with NH4Cl as cheap source for hydrogen chloride, solid-state chlorination provides various advantages in terms of costs and disposal. In the course of the SepSELSA project this method was examined, adjusted and optimized for RE recycling from fluorescent lamp scraps as well as Fe14Nd2B magnets. Thereby many surprising influences and trends required various analytic methods to examine the reasons and special mechanisms behind them.

  18. Moving KML geometry elements within Google Earth

    Science.gov (United States)

    Zhu, Liang-feng; Wang, Xi-feng; Pan, Xin

    2014-11-01

    During the process of modeling and visualizing geospatial information on the Google Earth virtual globe, there is an increasing demand to carry out such operations as moving geospatial objects defined by KML geometry elements horizontally or vertically. Due to the absence of the functionality and user interface for performing the moving transformation, it is either hard or impossible to interactively move multiple geospatial objects only using the existing Google Earth desktop application, especially when the data sets are in large volume. In this paper, we present a general framework and associated implementation methods for moving multiple KML geometry elements within Google Earth. In our proposed framework, we first load KML objects into the Google Earth plug-in, and then extract KML geometry elements from the imported KML objects. Subsequently, we interactively control the movement distance along a specified orientation by employing a custom user interface, calculate the transformed geographic location for each KML geometry element, and adjust geographic coordinates of the points in each KML objects. And finally, transformed KML geometry elements can be displayed in Google Earth for 3D visualization and spatial analysis. A key advantage of the proposed framework is that it provides a simple, uniform and efficient user interface for moving multiple KML geometry elements within Google Earth. More importantly, the proposed framework and associated implementations can be conveniently integrated into other customizable Google Earth applications to support interactively visualizing and analyzing geospatial objects defined by KML geometry elements.

  19. Rare earth elements in nuclear medicine

    OpenAIRE

    Kodina G.E.; Kulakov V.N.; Sheino I.N.

    2014-01-01

    The review focuses on the key applications of stable and radioactive isotopes of rare earth elements in the technology of nuclear medicine, radionuclide diagnostics and therapy, as well as magnetic resonance imaging and binary radiotherapy technologies.

  20. Rare earth elements in nuclear medicine

    Directory of Open Access Journals (Sweden)

    Kodina G.E.

    2014-12-01

    Full Text Available The review focuses on the key applications of stable and radioactive isotopes of rare earth elements in the technology of nuclear medicine, radionuclide diagnostics and therapy, as well as magnetic resonance imaging and binary radiotherapy technologies.

  1. Rare earth elements and strategic mineral policy

    NARCIS (Netherlands)

    Kooroshy, J.; Korteweg, R.; Ridder, M. de

    2010-01-01

    Newspapers report almost daily on international tensions around ‘strategic’ or ‘critical’ minerals such as rare earth elements. The temporary freeze of rare earth exports from China to Japan in late 2010 in retaliation of the capture of a Chinese captain is but one example of the strategic use of no

  2. Catalytic Reduction of SO2 on CeO2-La2O3 Rare Earth Mixed Compounds

    Institute of Scientific and Technical Information of China (English)

    胡辉; 李劲; 程国宏; 李胜利

    2004-01-01

    Adding rare earth oxide CeO2 with variable valences to La2O3 formed a mixture of rare earth oxides. By means of dipping CeO2, La2O3 and their mixture, whose carriers were all γ-Al2O3, were used as the catalyst for the reduction of SO2 by CO. The activation process of this catalyst and the impact of temperature and reactant concentration on the activation process were investigated. Using X-ray diffraction, the structure characteristics of catalyst before and after reaction were analyzed to reveal the change of phase structure. The result shows that the rare earth oxide mixtures composing of CeO2 and La2O3, as the catalyst for the reduction of SO2 by CO, diminish activation temperature 50~100 ℃ less and have higher activity than a single oxide CeO2 or La2O3. The reason possibl is that La2O3 goes into in the lattice of CeO2 to form solid phase complex CeO2-La2O3 and increases the capability of CeO2-La2O3/γ-Al2O3 catalyst to store oxygen, which supplies the redox of CeO2 reaction with a better condition. At the same time, elemental sulfur formed in the redox reaction impels La2O3 to be transformed to activation phase La2O2S in a lower temperature, which can be explained with the synergism between redox reaction and COS intermediate mechanism reaction.

  3. Effect of Rare Earth Elements on Anisotropy and Microstructure of Al-Li Alloy 2195 Sheets

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    For the purpose of decreasing the applied limitation resulting from the anisotropic mechanical property of Al-Li alloy 2195, this study employed a complex heat treatment process, involving the pre-tension, thermo-infiltration of the rare earth element Ce, solution treatment, and artificial aging technology. The results indicate that the infiltration of rare earth element Ce benefits the abatement of anisotropy of Al-Li alloy 2195 sheet, in contrast with that of the normal heat treatment process. The gradient of the Vickers-hardness decreases at least 50% through the thickness, and the tensile strength in the rolling direction also increases significantly. If Ce was infiltrated into the alloy under the optimum pre-deformation, the yield strength (σ0.2) increased by 30 MPa while the tensile strength (σb) enhanced by 25 MPa compared to the rare earth free samples. Meanwhile, the fractography illustrated that the fracture surface of the sample became more desirable.

  4. Geochemical Implication of Rare Earth Elements in Process of Soil Development

    Institute of Scientific and Technical Information of China (English)

    黄成敏; 龚子同

    2001-01-01

    The geochemical characteristics and behavior of rare earth elements (REE) in soils developed on the basalts in the northern part of Hainan Island erupted in different time were studied as well as the REE partition in the soil-formation process and its implication on soil development degree. The results show that the total REE content in soils is correlative with soil age significantly and can be selected as the index to show soil evolution. With the soil developing intensively, light rare earth elements (LREE) gain and heavy rare earth elements (HREE) lose. The trends of positive Ce-anomaly and negative Eu-anomaly are remarkable with soil development.

  5. Geochemical Characteristics and Behaviors of Rare Earth Elements in Process of Vertisol Development

    Institute of Scientific and Technical Information of China (English)

    黄成敏; 王成善

    2004-01-01

    Vertisol developed on argillaceous rocks has its special pedogenic processes and properties, and formed some secondary nodules. In study area, contents of rare earth elements (REE) are significantly different in different sedimentary rocks due to varied contents of clay fraction and clay mineral composition, etc. Under the dry and hot climate, REEs were less differentiated than their parent sedimentary rocks. However, REEs in secondary nodules formed in pedogenic process display their specific behaviors. They are more concentrated in iron concretions, the content of heavy REEs increases relatively, and positive Ce-anomaly appeares. But, negative Ce-anomaly was found in calcium concretions, while normal Ce content in parent rocks and vertisol.

  6. Earth Abundant Element Type I Clathrate Phases

    Directory of Open Access Journals (Sweden)

    Susan M. Kauzlarich

    2016-08-01

    Full Text Available Earth abundant element clathrate phases are of interest for a number of applications ranging from photovoltaics to thermoelectrics. Silicon-containing type I clathrate is a framework structure with the stoichiometry A8-xSi46 (A = guest atom such as alkali metal that can be tuned by alloying and doping with other elements. The type I clathrate framework can be described as being composed of two types of polyhedral cages made up of tetrahedrally coordinated Si: pentagonal dodecahedra with 20 atoms and tetrakaidecahedra with 24 atoms in the ratio of 2:6. The cation sites, A, are found in the center of each polyhedral cage. This review focuses on the newest discoveries in the group 13-silicon type I clathrate family: A8E8Si38 (A = alkali metal; E = Al, Ga and their properties. Possible approaches to new phases based on earth abundant elements and their potential applications will be discussed.

  7. Maximum Permissible Concentrations and Negligible Concentrations for Rare Earth Elements (REEs)

    NARCIS (Netherlands)

    Sneller FEC; Kalf DF; Weltje L; Wezel AP van; CSR

    2000-01-01

    In this report maximum permissible concentrations (MPCs) and negligible concentrations (NCs) are derived for Rare Earth Elements (REEs), which are also known as lanthanides. The REEs selected for derivation of environmental risk limits in this report are Yttrium (Y), Lanthanum (La), Cerium (Ce), Pra

  8. 稀土元素对冬凌草再生植株生长的影响%Effect of rare-earth elements La3+ and Ce3+ on the Growth of Regeneration Plant of Rabdosia rubescens (Hemsl.) Hara

    Institute of Scientific and Technical Information of China (English)

    曹利华; 董诚明; 张艳贞; 乔毅琳; 李洋; 冷慕婵

    2014-01-01

    目的:探讨稀土元素镧、铈对冬凌草再生植株生长的影响.方法:在冬凌草再生植株时期,添加不同浓度的稀土元素镧、铈,重量法测定均单株鲜重及干重.结果:CeCl3·7H2O对冬凌草再生植株生长的促进作用优于LaCl3·6 H2O,空白对照组农艺性状评分为51.70分,5μmol· L-CeCl3·7H2O条件下,评分最高为67.40分.结论:稀土元素铈能显著改善冬凌草再生植株农艺性状,而镧对冬凌草生长促进作用不显著.

  9. Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3

    Science.gov (United States)

    Hedrick, James B.; Sinha, Shyama P.; Kosynkin, Valery D.

    1997-01-01

    The mineral loparite (Ce, NA, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3 is the principal ore of the light-group rare-earth elements (LREE) in Russia. The complex oxide has a perovskite (ABO3) structure with coupled substitutions, polymorphism, defect chemistry and a tendency to become metamict. The A site generally contains weakly bonded, easily exchanged cations of the LREE, Na and Ca. The B site generally contains smaller, highly charged cations of Ti, Nb or Fe+3. Mine production is from Russia's Kola Peninsula. Ore is beneficiated to produce a 95% loparite concentrate containing 30% rare-earth oxides. Loparite concentrate is refined by either a chlorination process or acid decomposition process to recover rare-earths, titanium, niobium and tantalum. Rare-earths are separated by solvent extraction and selective precipitation/dissolution. The concentrate is processed at plants in Russia, Estonia and Kazakstan.

  10. Effects of Rare Earth Elements on Photocatalytic Antibacterial Properties of Nanometer TiO2 Powders

    Institute of Scientific and Technical Information of China (English)

    Gao Ning; Liang Jinsheng; Meng Junping; Ou Xiuqin

    2004-01-01

    Nanometer Ce/TiO2 functional materials with photocatalystic antibacterial properties were prepared by dipping TiO2 nanometer powders into RE( NO3 )·nH2O solutions, filtrating, drying and heat treatment, and the enhancement mechanisms of Ce on the nanometer TiO2 were studied by electronic spin resonance(ESR) The results show that TiO2 for photocatalystic antibacterial properties is strengthened evidently by adding Ce, which has a high efficiency of photocatalystic antibacterial properties with the light extent of visible light and ultraviolet radiation. The basic reason for obtaining the strengthened result is that the effective wave length of photocatalystic properties of TiO2 can be expanded to visible light area with the induction of the rare earth elements, whether or not ultraviolet light exists, nanometer TiO2 can produce a great deal of hydroxylic radical(·OH) by treating with rare earth elements.

  11. Effects of rare-earth elements La3+and Ce3+ on the growth of Rabdosia rubescens regeneration plant and the accumulation of main secondary metabolites%稀土元素镧和铈对冬凌草再生植株生长及次生代谢产物的影响

    Institute of Scientific and Technical Information of China (English)

    董诚明; 曹利华; 苏秀红; 张艳贞; 乔毅琳; 姚锋

    2015-01-01

    以冬凌草无菌苗为材料,在冬凌草再生植株时期,添加不同浓度的稀土元素镧和铈,用重量法测定其单株平均鲜重及干重,用高效液相法测定冬凌草甲素、乙素、迷迭香酸的含量,参考农作物、园艺作物种质评比的方法,根据冬凌草生产中各项指标的重要性,设置权重,计算加权后得到综合评分对其进行综合评价,探讨稀土元素镧、铈对冬凌草再生植株产量及次生代谢产物冬凌草甲素、乙素、迷迭香酸含量的影响.结果表明:空白对照组综合评分为62.99分,添加稀土元素铈的条件下,1μmol·L-1 CeCl3·7 H 2 O 评分最高为87.96分,添加稀土元素镧的条件下,5μmol·L-1 LaCl3·6 H 2 O 评分最高为74.44分,这表明 CeCl3·7 H 2 O 对冬凌草再生植株生长及次生代谢产物积累的促进作用优于 LaCl3·6 H 2 O;适宜浓度的镧、铈能促进冬凌草再生植株的生长及次生代谢产物冬凌草甲素、冬凌草乙素、迷迭香酸的合成,而高浓度10μmol·L-1 LaCl3·6 H 2 O 具有抑制的情况.该研究结果将对进一步研究稀土元素对冬凌草再生植株生长的促进作用机制奠定基础,为植物组织培养中如何科学合理地使用稀土元素提供理论依据.%Aseptic seedlings of Rabdosia rubescens were used as the experiment material.In R .rubescens regeneration period,the rare-earth elements La3+ or Ce3+ with different concentrations were added in the culture medium.Fresh and dry weight of the plant were determined by gravimetric method.HPLC method was used for the determination of oridonin,ponicidin and rosmarinic acid content.We determined weight according to evaluating methods of agricultural and horticultural crops and the importance of indexes in the production of R .rubescens .The quality synthetic evalua-tion was also carried out according to weighted mark.The effects of rare earth elements La3+ and Ce3+ on R .rubescens tissue culture and the contents of

  12. Rare earth elements and permanent magnets (invited)

    Science.gov (United States)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  13. Rare Earth Element Partition Coefficients from Enstatite/Melt Synthesis Experiments

    Science.gov (United States)

    Schwandt, Craig S.; McKay, Gordon A.

    1997-01-01

    Enstatite (En(80)Fs(19)Wo(01)) was synthesized from a hypersthene normative basaltic melt doped at the same time with La, Ce, Nd, Sm, Eu, Dy, Er, Yb and Lu. The rare earth element concentrations were measured in both the basaltic glass and the enstatite. Rare earth element concentrations in the glass were determined by electron microprobe analysis with uncertainties less than two percent relative. Rare earth element concentrations in enstatite were determined by secondary ion mass spectrometry with uncertainties less than five percent relative. The resulting rare earth element partition signature for enstatite is similar to previous calculated and composite low-Ca pigeonite signatures, but is better defined and differs in several details. The partition coefficients are consistent with crystal structural constraints.

  14. Note: Portable rare-earth element analyzer using pyroelectric crystal

    Energy Technology Data Exchange (ETDEWEB)

    Imashuku, Susumu, E-mail: imashuku.susumu.2m@kyoto-u.ac.jp; Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun [Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501 (Japan)

    2013-12-15

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera.

  15. Continental shelves as potential resource of rare earth elements.

    Science.gov (United States)

    Pourret, Olivier; Tuduri, Johann

    2017-07-19

    The results of this study allow the reassessment of the rare earth elements (REE) external cycle. Indeed, the river input to the oceans has relatively flat REE patterns without cerium (Ce) anomalies, whereas oceanic REE patterns exhibit strong negative Ce anomalies and heavy REE enrichment. Indeed, the processes at the origin of seawater REE patterns are commonly thought to occur within the ocean masses themselves. However, the results from the present study illustrate that seawater-like REE patterns already occur in the truly dissolved pool of river input. This leads us to favor a partial or complete removal of the colloidal REE pool during estuarine mixing by coagulation, as previously shown for dissolved humic acids and iron. In this latter case, REE fractionation occurs because colloidal and truly dissolved pools have different REE patterns. Thus, the REE patterns of seawater could be the combination of both intra-oceanic and riverine processes. In this study, we show that the Atlantic continental shelves could be considered potential REE traps, suggesting further that shelf sediments could potentially become a resource for REE, similar to metalliferous deep sea sediments.

  16. Rare earth elements behavior in Peruibe black mud

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da, E-mail: jeffkoy@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  17. Anthropogenic Cycles of Rare Earth Elements

    Science.gov (United States)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  18. Site-preference and valency for rare-earth sites in (R-Ce)(2)Fe14B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Alam, A; Khan, M; McCallum, RW; Johnson, DD

    2013-01-28

    Rare-earth (R) permanent magnets of R2Fe14B have technological importance due to their high energy products, and they have two R-sites (Wyckoff 4f and 4g, with four-fold multiplicity) that affect chemistry and valence. Designing magnetic behavior and stability via alloying is technologically relevant to reduce critical (expensive) R-content while retaining key properties; cerium, an abundant (cheap) R-element, offers this potential. We calculate magnetic properties and Ce site preference in (R1-xCex)(2)Fe14B [R = La, Nd] using density functional theory (DFT) methods-including a DFT+U scheme to treat localized 4f-electrons. Fe moments compare well with neutron data-almost unaffected by Hubbard U, and weakly affected by spin-orbit coupling. In La2Fe14B, Ce alloys for 0 <= x <= 1 and prefers smaller R(4f) sites, as observed, a trend we find unaffected by valence. Whereas, in Nd2Fe14B, Ce is predicted to have limited alloying (x <= 0.3) with a preference for larger R(4g) sites, resulting in weak partial ordering and segregation. The Curie temperatures versus x for (Nd, Ce) were predicted for a typical sample processing and verified experimentally. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789527

  19. Site-preference and valency for rare-earth sites in (R-Ce)2Fe14B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Aftab [Ames Laboratory; Khan, Mahmud [Ames Laboratory; McCallum, R. W. [Ames Laboratory; Johnson, Duane D [Ames Laboratory

    2013-01-28

    Rare-earth (R) permanent magnets of R2Fe14B have technological importance due to their high energy products, and they have two R-sites (Wyckoff 4f and 4g, with four-fold multiplicity) that affect chemistry and valence. Designing magnetic behavior and stability via alloying is technologically relevant to reduce critical (expensive) R-content while retaining key properties; cerium, an abundant (cheap) R-element, offers this potential. We calculate magnetic properties and Ce site preference in (R1-xCex)2Fe14B [R=La,Nd] using density functional theory (DFT) methods—including a DFT+U scheme to treat localized 4f-electrons. Fe moments compare well with neutron data—almost unaffected by Hubbard U, and weakly affected by spin-orbit coupling. In La2Fe14B, Ce alloys for 0 ≤ x ≤ 1 and prefers smaller R(4f) sites, as observed, a trend we find unaffected by valence. Whereas, in Nd2Fe14B, Ce is predicted to have limited alloying (x ≤ 0.3) with a preference for larger R(4g) sites, resulting in weak partial ordering and segregation. The Curie temperatures versus x for (Nd,Ce) were predicted for a typical sample processing and verified experimentally.

  20. Molecular catalysis of rare-earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Roesky, Peter W. (ed.) [Karlsruhe Institute of Technology (KIT) (Germany). Inst. of Inorganic Chemistry

    2010-07-01

    This volume reviews the recent developments in the use of molecular rare-earth metal compounds in catalysis. Most of the applications deal with homogenous catalysis but in some cases, heterogeneous systems are also mentioned. The rare-earth elements, which are the lanthanides and their close relatives - scandium and yttrium - have not been in the focus of molecular chemistry for a long time and therefore have also not been considered as homogenous catalysts. Although the first organometallic compounds of the lanthanides, which are tris(cyclopentadienyl) lanthanide complexes, were already prepared in the 1950s, it was only in the late 1970s and early 1980s when a number of research groups began to focus on this class of compounds. One reason for the development was the availability of single crystal X-ray diffraction techniques, which made it possible to characterize these compounds.Moreover, new laboratory techniques to handle highly air and moisture sensitive compounds were developed at the same time. Concomitant with the accessibility of this new class of compounds, the application in homogenous catalysis was investigated. One of the first applications in this field was the use of lanthanide metallocenes for the catalytic polymerization of ethylene in the early 1980s. In the last two or three decades, a huge number of inorganic and organometallic compounds of the rare-earth elements were synthesized and some of them were also used as catalysts. Although early work in homogenous catalysis basically focused only on the hydrogenation and polymerization of olefins, the scope for catalytic application today is much broader. Thus, a large number of catalytic {sigma}-bond metathesis reactions, e.g. hydroamination, have been reported in the recent years. This book contains four chapters in which part of the recent development of the use of molecular rare-earth metal compounds in catalysis is covered. To keep the book within the given page limit, not all aspects could be

  1. Formation of intermetallic compound at interface between rare earth elements and ferritic-martensitic steel by fuel cladding chemical interaction

    Institute of Scientific and Technical Information of China (English)

    Jun Hwan Kim; Byoung Oon Lee; Chan Bock Lee; Seung Hyun Jee; Young Soo Yoon

    2012-01-01

    The intermetallic compounds formation at interface between rare earth elements and clad material were investigated to demonstrate the effects of rare earth elements on fuel-cladding chemical interaction (FCCI) behavior.Mischmetal (70Ce-30La) and Nd were prepared as rare earth elements.Diffusion couple testing was performed on the rare earth elements and cladding (9Cr2W steel) near the operation temperature of(sodium-cooled fast reactor) SFR fuel.The performance of a diffusion barrier consisting of Zr and V metallic foil against the rare earth elements was also evaluated.Our results showed that Ce and Nd in the rare earth elements and Fe in the clad material interdiffused and reacted to form intermetallic species according to the parabolic rate law,describing the migration of the rare earth element.The diffusion of Fe limited the reaction progress such that the entire process was governed by the cubic rate law.Rare earth materials could be used as a surrogate for high burnup metallic fuels,and the performance of the barrier material was demonstrated to be effective.

  2. Enhanced separation of rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenhalgh, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Herbst, R. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garn, T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Soderstrom, M. D. [Cytec Solvay Group, Tempe, AZ (United States); Jakovljevic, B. [Cytec Solvay Group, Niagara Falls, ON (Canada)

    2016-09-01

    Industrial rare earth separation processes utilize PC88A, a phosphonic acid ligand, for solvent extraction separations. The separation factors of the individual rare earths, the equipment requirements, and chemical usage for these flowsheets are well characterized. Alternative ligands such as Cyanex® 572 and the associated flowsheets are being investigated at the pilot scale level to determine if significant improvements to the current separation processes can be realized. These improvements are identified as higher separation factors, reduced stage requirements, or reduced chemical consumption. Any of these improvements can significantly affect the costs associated with these challenging separation proccesses. A mid/heavy rare earth element (REE) separations flowsheet was developed and tested for each ligand in a 30 stage mixer-settler circuit to compare the separation performance of PC88A and Cyanex® 572. The ligand-metal complex strength of Cyanex® 572 provides efficient extraction of REE while significantly reducing the strip acid requirements. Reductions in chemical consumption have a significant impact on process economics for REE separations. Partitioning results summarized Table 1 indicate that Cyanex® 572 offers the same separation performance as PC88A while reducing acid consumption by 30% in the strip section for the mid/heavy REE separation. Flowsheet Effluent Compositions PC88A Cyanex® 572 Raffinate Mid REE Heavy REE 99.40% 0.60% 99.40% 0.60% Rich Mid REE Heavy REE 2.20% 97.80% 0.80% 99.20% Liquor Strip Acid Required 3.4 M 2.3 M Table 1 – Flowsheet results comparing separation performance of PC88A and Cyanex® 572 for a mid/heavy REE separation.

  3. Rare Earth Elements in Global Aqueous Media

    Science.gov (United States)

    Noack, C.; Karamalidis, A.; Dzombak, D. A.

    2012-12-01

    We are examining the occurrence and abundance of rare earth elements (REE) associated with produced waters from shale gas development, and factors controlling aqueous REE concentrations in geochemical environments, to provide information for: (1) potential recovery of REE as a valuable byproduct, and (2) utilization of unique REE signatures as a risk assessment tool. REE include the lanthanide series of elements - excluding short-lived, radioactive promethium - and yttrium. These elements are critical to a wide variety of high-tech, energy efficient applications such as phosphors, magnets, and batteries. Escalating costs of REE resulting from divergent supply and demand patterns motivates the first goal. The second goal relates to the search for a reliable, naturally occurring tracer to improve understanding of fluid migration and water-rock interactions during hydraulic fracturing and natural gas recovery. We compiled data from 100 studies of REE occurrence and concentrations in groundwaters, ocean waters, river waters, and lake waters. In the groundwater systems documented, total dissolved REE concentrations ranged over eight orders of magnitude; however the average concentrations across the lanthanides varied by less than two orders of magnitude. This leads to exceptional inter-element correlations, with a median correlation coefficient greater than 0.98, implying potential usefulness of REE ratios for groundwater signatures. Reports describing reactions governing REE solubilization were also investigated. We assembled information about important solution chemistries and performed equilibrium modeling using PHREEQC to examine common hypotheses regarding the factors controlling REE compositions. In particular, effects of pH, Eh, and common complexing ligands were evaluated. Produced and connate waters of the Marcellus shale are well characterized for their major chemical elements. There is a dearth of knowledge, however, regarding the occurrence of REE in

  4. Investigation of Kpong carbonatite as a potential source for rare earth elements (REEs) using instrumental neutron activation analysis (INAA)

    Energy Technology Data Exchange (ETDEWEB)

    Hayford, M.S.; Akiti, T.T.; Serfor-Armah, Y.; Dampare, S.B. [Ghana Univ., Accra (Ghana). School of Nuclear and Allied Sciences; Ghana Atomic Energy Commission (GAEC), Legon-Accra (Ghana). Nuclear Chemistry and Environmental Research Centre

    2013-07-01

    Instrumental neutron activation analysis (INAA) was used to investigate REEs in carbonatite from Kpong southeastern, Ghana. Total rare earth element (TREEs) obtain were in the range of 540 mg/kg to 705 mg/kg. The total number of rare earth elements (REEs) determined by INAA in the carbonatite rocks from Kpong were 11, namely; La, Ce, Nd, Sm, Eu, Tb, Dy, Ho, Tm, Yb, Lu. The INAA results from the carbonatite show a high enrichment of light rare earth elements (LREEs) deposits, marking the Kpong carbonatite as a potential REE source. (orig.)

  5. Ce-MXRF: the power of separation with bench top element sensitive detection

    Energy Technology Data Exchange (ETDEWEB)

    Miller, T. C. (Thomasin C.); Joseph, M. R. (Martha R.); Havrilla, G. J. (George J.)

    2002-01-01

    Capillary electrophoresis (CE) is a proven separation technique that offers highly efficient separation, rapid analysis, and minute sample consumption. When combined with a element specific detection scheme, it can be used for chemical speciation of biologically and environmentally relevant species such as metal containing proteins. In this study, a new tool was developed for separation and elemental detection. Specifically, a simple CE apparatus was constructed using a thin-walled fused Si capillary and interfaced with a bench top micro x-ray fluorescence (MXRF) system. X-ray excitation and detection of the separated sample volumes was performed using an EDAX Eagle II micro x-ray fluorescence system equipped with a Rh target excitation source and a SiLi detector. It was demonstrated that the system could be used for the separation and detection of two metals from one another, specifically Cu{sup 2+} and Co{sup 2+}. Free Co{sup 2+} could also be isolated from Co{sup 2+} bound to cyanocobalamin (Vitamin B-12). Other systems that were explored were the separation of two organics, ferritin from cyanocobalamin as well as the separation of the different Cu and Zn isoforms of metallothinein. CE-MXRF was also used to separate the important serum isoforms of transferrin. Direct comparisons were made between CE-MXRF system and other elemental separation techniques such as CE-PIXE, CE-synchrotron-XRF, and CE-ICPMS.

  6. Dissolved rare earth elements in the Black Sea

    NARCIS (Netherlands)

    Schijf, Johan; Baar, Hein J.W. de; Wijbrans, Jan R.; Landing, William M.

    1991-01-01

    Concentrations of rare earths in the deep anoxic Black Sea are about one order of magnitude higher than in normal open ocean waters. From a minimum at the suboxic-anoxic interface at about 107 m depth, concentrations increase strongly to a maximum at about 300–400 m depth. Concentrations of Ce range

  7. Effects of rare earth on microstructures and properties of Ni-W-P-CeO2-SiO2 nano-composite coatings

    Institute of Scientific and Technical Information of China (English)

    XU Ruidong; WANG Junli; GUO Zhongcheng; WANG Hua

    2008-01-01

    Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on common carbon steel surface by pulse electrodeposition of nickel, tungsten, phosphorus, rare earth (nano-CeO2) and silicon carbide (nano-SiO2) particles. The effects of nano-CeO2 concentrations in electrolyte on microstructures and properties of nano-composite coatings were studied. The samples were characterized with chemical compositions, elements distributions, microhardness and microstructures. The results indicated that when nano-CeO2 concentration was controlled at 10 g/L, the nano-composite coatings possessed higher microhardness and compact microstructures with clear outline of spherical matrix metal crystallites, fine crystallite sizes and uniform distribution of elements W, P, Ce and Si within the Ni-W-P matrix metal. Increasing the nano-CeO2 particles concentrations from 4 to 10 g/L led to refinement in grain structure and improvement of microstructures, while when increased to 14 g/L, the crystallite sizes began to increase again and there were a lot of small boss with nodulation shape appearing on the nano-composite coatings surface.

  8. Effect of Rare Earth Element in ZrO2-M2O3/MCM-41 (M=La, Ce, Sm, Gd) on Hydrogen Transfer Reaction%稀土元素对ZrO2-M2O3/MCM-41(M=La,Ce,Sm,Gd)氢转移催化活性的影响

    Institute of Scientific and Technical Information of China (English)

    邓冰心; 张波; 姜剑锋

    2015-01-01

    通过浸渍法制备了5%ZrO2/MCM-41、5%ZrO2-5%M2O3/MCM-41(M=La,Ce,Sm,Gd)催化剂,考察其在苯乙酮氢转移还原生成α-苯乙醇反应中的催化活性,同时对样品进行XRD、N2吸附-脱附、吡啶吸附原位红外等表征分析,研究添加稀土金属氧化物对催化剂活性的影响机理.结果表明:ZrO2及稀土金属氧化物均以无定型态或粒度低于XRD检测限的细小晶粒较好地分散在MCM-41介孔分子筛内表面;加入稀土金属氧化物对ZrO2/MCM-41的催化活性有较大影响,催化活性按5%ZrO2-5%La2O3/MCM-41 >5%ZrO2-5%Sm2O3/MCM-41 >5%ZrO2-5%Gd2O3/MCM-41 >5%ZrO2/MCM-41 >5%ZrO2-5%Ce2O3/MCM-41降低.这一方面归因于加入稀土金属氧化物增强了催化剂表面Zr-OH、L酸中心及B酸中心的酸性,另一方面归因于La2O3的加入使催化剂表面酸中心数目明显提高,Sm2O3、Gd2O3的加入使催化剂表面酸中心数目有所降低,而加入Ce2O3使催化剂表面酸中心数目显著减少.

  9. New Rare Earth Element Abundance Distributions for the Sun and Five r-Process-Rich Very Metal-Poor Stars

    CERN Document Server

    Sneden, Christopher; Cowan, John J; Ivans, Inese I; Hartog, Elizabeth A Den

    2009-01-01

    We have derived new abundances of the rare-earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally-consistent Ba, rare-earth, and Hf (56<= Z <= 72) element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.

  10. Rare earth elements in some bottled waters of Serbia

    Directory of Open Access Journals (Sweden)

    Todorović Maja

    2013-01-01

    Full Text Available Twenty-one bottled mineral and spring waters from Serbia were analyzed for 16 inorganic chemical parameters, including lanthanides and yttrium which belong to the group of so-called rare earth elements (REE. REE concentrations in the bottled water samples varied over a broad range, from 5.39 to 1585.82 ng/L. Total concentrations in the bottled water samples were calculated taking into account the classification of lanthanides into heavy (HREE and light (LREE, with yttrium added to the HREE group. The LREE concentrations ranged from 3.62 to 1449.63 ng/L, while those of the HREE were from 0 to 136.19 ng/L. Distinct REE signatures were observed in waters that drained specific rocks. The REE patterns in groundwater from granitic and related rocks showed LREE and HREE enrichment, while groundwater with mafic rock influence exhibited slightly LREE enrichment. Several bottled water samples featured naturally-occurring carbon dioxide, whose solutional capacity contributed to the highest REE concentrations in the analyzed samples. High REE concentrations are also a result of sudden changes in oxidation-reduction conditions, which particularly affect La, Ce and Eu. Aquifers developed in granitic and related rocks (methamorphic and sedimentary rocks constitute favorable environments for HREE in groundwater, corroborated by the occurrence of HREE in bottled water samples. The bottled water samples largely exhibited a negative cerium anomaly and nearly all the samples showed a positive europium anomaly.

  11. Efficient manganese luminescence induced by Ce3+-Mn2+ energy transfer in rare earth fluoride and phosphate nanocrystals

    Directory of Open Access Journals (Sweden)

    Ding Yun

    2011-01-01

    Full Text Available Abstract Manganese materials with attractive optical properties have been proposed for applications in such areas as photonics, light-emitting diodes, and bioimaging. In this paper, we have demonstrated multicolor Mn2+ luminescence in the visible region by controlling Ce3+-Mn2+ energy transfer in rare earth nanocrystals [NCs]. CeF3 and CePO4 NCs doped with Mn2+ have been prepared and can be well dispersed in aqueous solutions. Under ultraviolet light excitation, both the CeF3:Mn and CePO4:Mn NCs exhibit Mn2+ luminescence, yet their output colors are green and orange, respectively. By optimizing Mn2+ doping concentrations, Mn2+ luminescence quantum efficiency and Ce3+-Mn2+ energy transfer efficiency can respectively reach 14% and 60% in the CeF3:Mn NCs.

  12. Substitution of Nd with other rare earth elements in melt spun Nd2Fe14B magnets

    Directory of Open Access Journals (Sweden)

    D. N. Brown

    2016-05-01

    Full Text Available This is a contemporary study of rapidly quenched Nd1.6X0.4Fe14B magnetic materials (where X= Nd, Y, Ce, La, Pr, Gd and Ho. A 20% substitution of the Nd component from Nd2Fe14B can bring about some commercial advantage. However, there will be some compromise to the magnetic performance. Light rare earth elements are definitely more abundant (Y, Ce, La than the heavier rare earth elements, but when they are included in RE2Fe14B magnets they tend to lower magnetic performance and thermal stability. Substituting heavy rare earth elements (Gd, Ho for Nd in Nd2Fe14B improves the thermal stability of magnets but causes a loss in magnet remanence.

  13. Rare earth elements in Hamersley BIF minerals

    Science.gov (United States)

    Alibert, Chantal

    2016-07-01

    Minerals from the Hamersley banded iron formation, Western Australia, were analyzed for Y and rare earth elements (YREEs) by laser ablation ICP-MS to investigate diagenetic pathways, from precursor phases to BIF minerals. One group of apatites carries the seawater REE signature, giving evidence that P and REEs, thoroughly scavenged from the water column by Si-ferrihydrite particles, were released upon microbial Fe3+ reductive dissolution of Si-ferrihydrite in pore-water and finally sequestered mainly in authigenic apatite. The absence of fractionation between apatite and seawater suggests that REE were first incorporated into an amorphous calcium phosphate as fully hydrated cations, i.e. as outer-sphere complexes. The iron oxides and carbonates carry only a small fraction of the whole-rock REE budget. Their REE patterns are distinctly enriched in Yb and show some M-type tetrad effect consistent with experimental Kd(REE) between solid and saline solution with low carbonate ion concentrations. It is deduced that hematite formed at an incipient stage of Fe2+-catalyzed dissolution of Si-ferrihydrite, via a dissolution-reprecipitation pathway. The REE pattern of greenalite, found as sub-micron particles in quartz in a chert-siderite sample, is consistent with its authigenic origin by precipitation in pore-water after dissolution of a small amount of Si-ferrihydrite. Magnetite carries very low YREEs (ppb-level), has an homogeneous pattern distinctly enriched in the mid-REEs compared to hematite, and includes a late population depleted in light-REEs, Ba and As. Magnetite forming aggregates and massive laminae is tentatively interpreted as reflecting some fluid-aided hematite-magnetite re-equilibration or transformation at low-grade metamorphic temperatures.

  14. Rare earth elements (REEs): effects on germination and growth of selected crop and native plant species.

    Science.gov (United States)

    Thomas, Philippe J; Carpenter, David; Boutin, Céline; Allison, Jane E

    2014-02-01

    The phytotoxicity of rare earth elements (REEs) is still poorly understood. The exposure-response relationships of three native Canadian plant species (common milkweed, Asclepias syriaca L., showy ticktrefoil, Desmodium canadense (L.) DC. and switchgrass, Panicum virgatum L.) and two commonly used crop species (radish, Raphanus sativus L., and tomato, Solanum lycopersicum L.) to the REEs lanthanum (La), yttrium (Y) and cerium (Ce) were tested. In separate experiments, seven to eight doses of each element were added to the soil prior to sowing seeds. Effects of REE dose on germination were established through measures of total percent germination and speed of germination; effects on growth were established through determination of above ground biomass. Ce was also tested at two pH levels and plant tissue analysis was conducted on pooled samples. Effects on germination were mostly observed with Ce at low pH. However, effects on growth were more pronounced, with detectable inhibition concentrations causing 10% and 25% reductions in biomass for the two native forb species (A. syriaca and D. canadense) with all REEs and on all species tested with Ce in both soil pH treatments. Concentration of Ce in aboveground biomass was lower than root Ce content, and followed the dose-response trend. From values measured in natural soils around the world, our results continue to support the notion that REEs are of limited toxicity and not considered extremely hazardous to the environment. However, in areas where REE contamination is likely, the slow accumulation of these elements in the environment could become problematic.

  15. Distribution patterns of rare earth elements in various plant species

    Energy Technology Data Exchange (ETDEWEB)

    Wyttenbach, A.; Tobler, L.; Furrer, V. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs.

  16. Corrosion Penetration and Crystal Structure of AA5022 in HCl Solution and Rare Earth Elements

    Institute of Scientific and Technical Information of China (English)

    A.A.El-Meligi; S.H. Sanad; A.A.Ismail; A.M. Baraka

    2005-01-01

    Al-alloy (AA5022) corrosion penetration (CP) and crystal structure were investigated after running static immersion corrosion tests in 1 mol/L HCl solution and different concentrations of rare earth elements (La3+), (Ce3+) and their combination, at different temperatures. X-ray diffraction (XRD) was used to examine the surface structure before and after immersion, and secondary electron detector (SED) was operated to study surface morphology. In 1 mol/L HCl solution the corrosion penetration increased with increasing temperature and immersion time. The increase of La3+ concentrations up to 1000× 10-6 g/L led to the decrease in the corrosion penetration, and the decrease in Ce3+concentrations up to 50×10-6 g/L decreases the corrosion penetration of the alloy. Mix3 (combination of La3+ and Ce3+) dramatically reduced the corrosion penetration. This suggests that a synergistic effect exists between La3+and Ce3+. The reaction kinetics both in absence and presence of La3+ and Ce3+ and their combination would follow a parabolic rate law. The XRD patterns revealed that the intensities of certain hkl phases are affected. The crystalline structure has not been deformed either before or after testing and there are no additional peaks except that of the as-received alloy. In the case of accelerating CP, the surface morphology shows that the roughness andvoids of surface are increased.

  17. Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs.

    Science.gov (United States)

    He, Chuan; Shen, Boxiong; Chen, Jianhong; Cai, Ji

    2014-07-15

    A series of innovative Ce-Mn/Ti-pillared-clay (Ce-Mn/Ti-PILC) catalysts combining the advantages of PILCs and Ce-Mn were investigated for elemental mercury (Hg0) capture at 100-350 °C in the absence of HCl in the flue gas. The fresh and used catalysts were characterized by scanning electron microscopy (SEM), nitrogen adsorption-desorption, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The catalyst characterization indicated that the 6%Ce-6%MnOx/Ti-PILC catalyst possessed a large specific surface area and high dispersion of Ce and Mn on the surface. The experimental results indicated that the 6%Ce-6%MnOx/Ti-PILC catalyst exhibited high Hg0 capture (>90%) at 100-350 °C. During the first stage of the reaction, the main Hg0 capture mechanism for the catalyst was adsorption. As the reaction proceeded, the Hg0 oxidation ability was substantially enhanced. Both the hydroxyl oxygen and the lattice oxygen on the surface of the catalysts participated in Hg0 oxidation. At a low temperature (150 °C), the hydroxyl oxygen and lattice oxygen from Ce4+→Ce3+ and Mn3+→Mn2+ on the surface contributed to Hg0 oxidation. However, at a high temperature (250 °C), the hydroxyl oxygen and lattice oxygen from Mn4+→Mn3+ contributed to Hg0 oxidation. Hg0 oxidation was preferred at a high temperature. The 6%Ce-6%MnOx/Ti-PILC catalyst was demonstrated to a good Hg0 adsorbent and catalytic oxidant in the absence of HCl in the flue gas.

  18. A major light rare-earth element (LREE) resource in the Khanneshin carbonatite complex, southern Afghanistan

    Science.gov (United States)

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Horton, Forrest; Buttleman, Kim; Scott, Emily R.

    2012-01-01

    The rapid rise in world demand for the rare-earth elements (REEs) has expanded the search for new REE resources. We document two types of light rare-earth element (LREE)-enriched rocks in the Khanneshin carbonatite complex of southern Afghanistan: type 1 concordant seams of khanneshite-(Ce), synchysite-(Ce), and parisite-(Ce) within banded barite-strontianite alvikite, and type 2 igneous dikes of coarse-grained carbonatite, enriched in fluorine or phosphorus, containing idiomorphic crystals of khanneshite-(Ce) or carbocernaite. Type 1 mineralized barite-strontianite alvikite averages 22.25 wt % BaO, 4.27 wt % SrO, and 3.25 wt % ∑ LREE2O3 (sum of La, Ce, Pr, and Nd oxides). Type 2 igneous dikes average 14.51 wt % BaO, 5.96 wt % SrO, and 3.77 wt % ∑ LREE2O3. A magmatic origin is clearly indicated for the type 2 LREE-enriched dikes, and type 1 LREE mineralization probably formed in the presence of LREE-rich hydrothermal fluid. Both types of LREE mineralization may be penecontemporaneous, having formed in a carbonate-rich magma in the marginal zone of the central vent, highly charged with volatile constituents (i.e., CO2, F, P2O5), and strongly enriched in Ba, Sr, and the LREE. Based on several assumptions, and employing simple geometry for the zone of LREE enrichment, we estimate that at least 1.29 Mt (million metric tonnes) of LREE2O3 is present in this part of the Khanneshin carbonatite complex.

  19. Rare earth element mines, deposits, and occurrences

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset contains location, geologic and mineral economic data for world rare earth mines, deposits, and occurrences. The data in this compilation were derived...

  20. Characterization and recovery of rare earth elements from electronic scrap

    OpenAIRE

    Bristøl, Lene Marie Lysgaard

    2012-01-01

    The rare earth elements are a group of 17 elements consisting of the lantahnide series, scandium and yttrium. The application with the largest rare earth consumption is the permanent rare earth magnets. The neodymium-iron-boron magnets are the strongest permanent magnetic material known and are widely used. There is a concern that there will be a shortage in Nd-Fe-B magnets in short time. This has lead to an increased interest in the recycling of the rare earth magnets in the world.This proje...

  1. Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth of the earth's core

    Science.gov (United States)

    Newsom, H. E.; White, W. M.; Jochum, K. P.; Hofmann, A. W.

    1986-01-01

    The hypothesis that the mantle Pb isotope ratios reflect continued extraction of Pb into the earth's core over geologic time is evaluated by studying the depeletion of chalcophile and siderophile elements in the mantle. Oceanic basalt samples are analyzed in order to determine the Pb, Sr, and Nd isotropic compositions and the abundances of siderophile and chalcophile elements and incompatible lithophile elements. The data reveal that there is no systematic variation of siderophile or chalcophile element abundances relative to abundances of lithophile elements and the Pb/Ce ratio of the mantle is constant. It is suggested that the crust formation involves nonmagmatic and magmatic processes.

  2. Earth, Air, Fire and Water in Our Elements

    Science.gov (United States)

    Lievesley, Tara

    2007-01-01

    The idea that everything is made of the four "elements", earth, air, fire and water, goes back to the ancient Greeks. In this article, the author talks about the origins of ideas about the elements. The author provides an account that attempts to summarise thousands of years of theoretical development of the elements in a thousand words or so.

  3. Geochemistry of Rare Earth Elements in Aktishikan Gold Deposit, Xinjiang

    Institute of Scientific and Technical Information of China (English)

    袁峰; 周涛发; 岳书仓

    2002-01-01

    The characteristics and the models of rare earth elements in the geolo gical bodies and the hydrothermal water balanced with the adamellite were compre h ensively studied in Aktishikan gold deposit,Nurt area of Altay,Xinjiang.And th e behavior of rare earth elements during metasomatic alteration was discussed by using the isocon method of Grant.The results show that the rare earth elements a re inert during metasomatic alteration,the hydrothermal water has no relation t o the magmatic water,and the gold material sources mainly stem from the wall rock.

  4. Separation of rare earth elements by tertiary pyridine type resin

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Tatsuya [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)]. E-mail: tasuzuki@nr.titech.ac.jp; Itoh, Keisuke [Graduate School of Material Science and Engineering, Shibaura Institute of Technology, Shibaura, Minato-ku, Tokyo 108-8584 (Japan); Ikeda, Atsushi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Aida, Masao [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ozawa, Masaki [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Oarai Engineering Center, Japan Nuclear Cycle Development Institute, Narita-machi, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393 (Japan); Fujii, Yasuhiko [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2006-02-09

    The novel separation method of rare earth elements by using the tertiary pyridine type resin with methanol and nitric acid mixed solution was developed. The separating operation in this method is very simple and easy, and the waste generation in this method is expected to be low. The adsorption and separation behaviors of rare earth elements were investigated with changing the nitric acid concentration, the methanol concentration, and the alcoholic species. It was confirmed that the rare earth elements can be well separated mutually.

  5. Rare earth element enrichment using membrane based solvent extraction

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Dharmawijaya, P. T.; Zunita, M.; Wenten, I. G.

    2017-01-01

    The chemical, catalytic, electrical, magnetic, and optical properties of rare earth elements are required in broad applications. Rare earth elements have similar physical and chemical properties thus it is difficult to separate one from each other. Rare earth element is relatively abundant in earth's crust but rarely occur in high concentrated deposits. Traditionally, ion-exchange and solvent extraction techniques have been developed to separate and purify single rare earth solutions or compounds. Recently, membrane starts to gain attention for rare earth separation by combining membrane and proven technologies such as solvent extraction. Membrane-based process offers selective, reliable, energy efficient and easy to scale up separation. During membrane-based separation process, one phase passes through membrane pores while the other phase is rejected. There is no direct mixing of two phases thus the solvent loss is very low. Membrane can also lower solvent physical properties requirement (viscosity, density) and backmixing, eliminate flooding phenomenon and provide large interfacial area for mass transfer. This paper will summarize research efforts in developing membrane technology for rare earth element separation. Special attention will be given to solvent extraction related process as the commonly used method for rare earth element separation. Furthermore, membrane configuration and its potentials will also be discussed.

  6. Mechanochemical decomposition of monazite to assist the extraction of rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Wantae; Bae, Inkook; Chae, Soochun [Korea Institute of Geoscience and Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Shin, Heeyoung, E-mail: hyshin@kigam.re.k [Korea Institute of Geoscience and Mineral Resources, 92 Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2009-11-03

    Mechanochemical decomposition by milling a mixture of monazite and sodium hydroxide powder and subsequent leaching by sulfuric acid for the extraction of rare earth elements at room temperature has been investigated. The milling of the mixture allows the mechanochemical formation of rare earth hydroxides and sodium phosphate as milling progresses. Nearly all the monazite is decomposed within 120 min under the present milling conditions. A 0.05N sulfuric acid solution enables us to improve the yield of each of La, Nd and Sm to around 85% or more in the powder milled for 120 min. Also, respective Ce and Pr yields of about 20% and 70% remain un-dissolved since they are changed into oxide forms during and after the milling operation. These rare earth oxides are mostly dissolved as the acid concentration increases to 5N. The yield of rare earth elements increases with increasing milling time. Thus mechanochemical milling plays a significant role in achieving high yield of rare earth elements from the leaching of the milled powder.

  7. Influence of Ce, Nd, Sm and Gd oxides on the properties of alkaline-earth borosilicate glass sealant

    Directory of Open Access Journals (Sweden)

    Nibedita Sasmal

    2016-03-01

    Full Text Available In this study, the influence of CeO2, Nd2O3, Sm2O3 and Gd2O3 on various properties of the melt-quench route derived SrO–CaO–ZnO–B2O3–SiO2 glass have been investigated. Both the precursor glasses and heat treated glasses are characterized by dilatometry, differential scanning calorimetry (DSC, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, Fourier transformed infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS. The density and coefficient of thermal expansion of the glasses varies in the range 3.557–3.804 g cm−3 and 10.5–11.2 × 10−6 K−1 (50–800 °C respectively. Decrease in crystallization tendency with increase in cationic field strength of the ions is well supported by the increasing crystallization activation energy of the glasses calculated by Kissinger, Augis–Bennett and Ozawa models. XPS study revealed the presence of both Ce3+ and Ce4+ ions and an increase in characteristic binding energy of the respective rare earth elements from their core level studies. The Knoop hardness of the glasses varies in the range 6.03–6.28 GPa. The glass transition, glass softening and crystallization temperature; density and hardness of the glasses increased with increase in cationic field strength of the incorporated ions. The thermomechanical properties of the Gd2O3 containing glass advocate its applicability as the most promising sealant in solid oxide fuel cell.

  8. Determination of rare earth elements in plant protoplasts by MAA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A preliminary study on the speciation of rare earth elements in plant cells has been carried out by molecular activation analysis (MAA). Mesophyll protoplasts of Brassica napus were isolated by enzymatic digestion. After being washed with isosmotic solution containing EDTA for several times, the protoplasts were purified by gradient centrifugation. Then the concentration of rare earth elements (REEs) in the protoplasts was determined by neutron activation analysis. The result shows that REEs can enter the cells of the plant.

  9. Thermodynamics analysis of Al-Ti-C-RE prepared by rare earth oxide Ce2O3%稀土氧化物Ce2O3制备Al-Ti-C-RE的热力学分析

    Institute of Scientific and Technical Information of China (English)

    王连登; 魏喆良; 杨小宝; 朱定一; 陈晓; 陈永禄; 洪丽华; 李秋菊

    2013-01-01

    采用SEM、EDS和DSC等方法研究稀土氧化物对采用氟盐法制备Al-Ti-C-RE的热力学影响。结果表明:Al与K2TiF6发生铝热放热反应生成TiA13及部分游离态[Ti],在铝热反应的作用下,稀土氧化物Ce2O3与C发生碳热反应,生成大量的CeC2,该相与游离态[Ti]易反应生成TiC和原子态[Ce],反应生成的[Ce]为表面活性元素,吸附在TiA13相上形成Al2Ti20Ce。DSC分析结果表明,添加稀土氧化物Ce2O3可在1120℃左右自发产生碳热反应。因此,在铝热反应的基础上,利用稀土氧化物与石墨粉之间的碳热反应,不仅可以降低制备Al-Ti-C-RE细化剂的反应温度,同时还可提高C与铝熔体的润湿性,促进TiC粒子的生成。%The effects of the rare earth oxide on the thermodynamics of Al-Ti-C-RE master alloy prepared by mixing the potassium titanium fluoride and carbon into aluminum melt were studied by means of SEM, EDS and DSC. The results show that the aluminothermy reaction of the Al melt and K2TiF6 occurs to produce the TiA13 and [Ti] atoms. Then, based on the aluminothermy reaction, the rare earth oxide Ce2O3 reacts with carbon to produce the carbothermy reaction and abundant CeC2 phases form, which react with [Ti] atoms easily to produce the TiC particles and [Ce] atoms. The reacted [Ce] atom is a kind of surface active elements, and easily adsorbs on the TiA13 phases to form the new rare earth compounds Al2Ti20Ce. The DSC analysis results show that the rare earth oxide Ce2O3 has spontaneous carbo-thermal reaction at 1 120℃, which decreases the reacting temperature to manufacture Al-Ti-C-RE master alloys, improves the wettability between carbon and aluminum melts and promotes the formation of TiC particles.

  10. Leaching of Light Rare Earth Elements from Sichuan Bastnaesite: A Facile Process to Leach Trivalent Rare Earth Elements Selectively from Tetravalent Cerium

    Science.gov (United States)

    Shen, Yueyue; Jiang, Ying; Qiu, Xianying; Zhao, Shilin

    2017-07-01

    The effects of the nitric acid concentration, leaching time, leaching temperature, and solid-to-liquid ratio on leaching efficiency were examined. From those results, a facile process for the selective leaching of trivalent rare earth elements (RE(III)) from tetravalent cerium (Ce(IV)) was proposed. The roasted bastnaesite was used to leach 34.87% of RE(III) and 2.15% of Ce(IV) at 60°C for 0.5 h with an acid concentration of 0.5 mol/L. This selective leaching process can be described by the shrinking-core model that follows the kinetic model 1 - 2/3α - (1 - α)2/3. Subsequently, the leached slag was hydrothermally treated and followed by thorough leaching with 4.0-mol/L nitric acid. Furthermore, the specific surface area of the final leached slag is 57.7 m2/g, which is approximately 650 times higher than that of raw ore. Finally, selective leaching of RE(III) (>90%) was achieved without using an organic solvent for extraction, whereas lower value Ce(IV)was presented in the leached slag (>92%).

  11. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution.

    Science.gov (United States)

    Liu, Hu; Zhang, Shengen; Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin; Volinsky, Alex A

    2014-05-15

    This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y0.95Eu0.05)2O3 in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce0.67Tb0.33MgAl11O19) and the Blue phosphor (Ba0.9Eu0.1MgAl10O17) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO2 are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications.

  12. Luminescence and structural properties of RbGdS2 compounds doped by rare earth elements

    Science.gov (United States)

    Jarý, V.; Havlák, L.; Bárta, J.; Mihóková, E.; Nikl, M.

    2013-04-01

    Rare earth elements (Pr, Ce) doped ternary sulfides of formula RbGd1-xRExS2 were synthesized in the form of crystalline hexagonal platelets by chemical reaction under the flow of hydrogen sulfide. The X-ray powder diffraction detected only a single crystalline phase of rhombohedral lattice system. Optical properties of studied systems are investigated by methods of time-resolved luminescence spectroscopy. Thermal stability of the Pr3+ emission is demonstrated. Application potential in the white light-emitting diode solid state lighting or X-ray phosphors is discussed.

  13. Effects of Rare Earth Elements on Vigor Enhancement of Aged Spinach Seeds

    Institute of Scientific and Technical Information of China (English)

    刘超; 洪法水; 郑蕾; 汤萍; 王志刚

    2004-01-01

    The effect and the mechanism of action of lanthanum, cerium and neodymium on aged seeds of spinach were studied. By LaCl3, CeCl3, and NdCl3 treatment, the germination rate, germination index and vigor index of aged spinach seeds are increased and the activities of superoxide dismutase, catalase and peroxidase are enhanced. Moreover the ·O2- and malondialdehyde content are decreased and the cell membrane permeability of aged spinach seeds is reduced. Among these three rare earth elements, Ce treatment enhances vigor of aged seeds most significantly, that of Nd treatment secondly and La treatment is not as effective as the other two treatments. The reason may be from 4f electron characteristic and alternation valence of REEs.

  14. Rare earth metal doped CeO2-based catalytic materials for diesel soot oxidation at lower temperatures

    Institute of Scientific and Technical Information of China (English)

    A Rangaswamy; Putla Sudarsanam; Benjaram M Reddy

    2015-01-01

    In this work, the influence of trivalent rare-earth dopants (Sm and La) on the structure-activity properties of CeO2 was thor-oughly studied for diesel soot oxidation. For this, an optimized 40%of Sm and La was incorporated into the CeO2 using a facile co-precipitation method from ultra-high dilute aqueous solutions. A systematic physicochemical characterization was carried out using X-ray diffraction (XRD), transmission electron microscopy (TEM), Brumauer-Emmett-teller method (BET) surface area, X-ray pho-toelectron spectroscopy (XPS), Raman, and H2-temperature programmed reduction (TPR) techniques. The soot oxidation efficiency of the catalysts was investigated using a thermogravimetric method. The XRD results suggested the formation of nanocrystalline sin-gle phase CeO2-Sm2O3 and CeO2-La2O3 solid solutions. The Sm-and La-doped CeO2 materials exhibited smaller crystallite size and higher BET surface area compared with the pure CeO2. Owing to the difference in the oxidation states of the dopants (Sm3+and La3+) and the Ce4+, a number of oxygen vacancies were generated in CeO2-Sm2O3 and CeO2-La2O3 samples. The H2-TPR studies evidenced the improved reducible nature of the CeO2-Sm2O3 and CeO2-La2O3 samples compared with the CeO2. It was found that the addition of Sm and La to the CeO2 outstandingly enhanced its catalytic efficiency for the oxidation of diesel soot. The observed 50%soot con-version temperatures for the CeO2-Sm2O3, CeO2-La2O3 and CeO2 were~790, 843 and 864 K (loose contact), respectively, and similar activity order was also found under the tight contact condition. The high soot oxidation efficacy of the CeO2-Sm2O3 sample was at-tributed to numerous catalytically favourable properties, like smaller crystallite size, larger surface area, abundant oxygen vacancies, and superior reducible nature.

  15. A novel method to assess the effect of diagenesis on fossil teeth: Rare earth element signatures

    Institute of Scientific and Technical Information of China (English)

    WEN Xingyue; WANG Chengshan; HUANG Chengmin; BAI Song; ZHANG Qing

    2011-01-01

    An attempt was made to test the validity of the signatures of rare earth elements (REE) as a tool to judge the effect of diagenesis on fossil teeth.Sample REE contents and features of fossil teeth and sediments from Jinsha Relics,Sichuan,Southwest China were analyzed.The difference in REE content between fossil teeth is significantly greater than that between sediments at the Jinsha Relics.Chondrite-normalized REE patterns showed that obvious LREE enrichment and strong Ce and HREE depletion occurred in all fossil teeth samples.Meanwhile δCe and δEu values varied more dramatically in fossil teeth than in sediments.Accordingly,low content,LREE enrichment,strong Ce depletion,the significantly positive correlation between LREE/HREE and δCe,and unchanged (La/Yb)N demonstrated that the fossil teeth from Jinsha Relics have not been contaminated by diagenesis.The REE signature might be a potential proxy to assess the effect of diagenesis on fossil teeth.

  16. Geochemistry of rare earth elements in cobalt-rich crusts from the Mid-Pacific M seamount

    Institute of Scientific and Technical Information of China (English)

    CUI Yingchun; LIU Jihua; REN Xiangwen; SHI Xuefa

    2009-01-01

    Rare earth elements (REEs) and major elements of 25 cobalt-rich crusts obtained from different depths of Mid-Pacific M seamount were analyzed using inductively coupled plasma-atomic emission spectrometer and gravimetric method. The results showed that they were hydrogenous crusts with average ∑REE content of 2084.69 μg/g and the light REE (LREE)/heavy REE (HREE) ratio of 4.84. The shale-normalized REE patterns showed positive Ce anomalies. The total content of strictly trivalent REEs increased with water depth. The Ce content and LREE/HREE ratios in Fe-Mn crusts above 2000 m were lower than those below 2000 m. The change in REE with water depth could be explained by two processes: adsorptive scavenging by setting matters and behaviors of REE in seawater. However, the Ce abundance took no obvious correlation with water depth reflects the constant Ce flux. The Ce in crusts existed mainly as Ce(IV), implying that the oxidative-enriching process was controlled by kinetic factors.

  17. MaRGEE: Move and Rotate Google Earth Elements

    Science.gov (United States)

    Dordevic, Mladen M.; Whitmeyer, Steven J.

    2015-12-01

    Google Earth is recognized as a highly effective visualization tool for geospatial information. However, there remain serious limitations that have hindered its acceptance as a tool for research and education in the geosciences. One significant limitation is the inability to translate or rotate geometrical elements on the Google Earth virtual globe. Here we present a new JavaScript web application to "Move and Rotate Google Earth Elements" (MaRGEE). MaRGEE includes tools to simplify, translate, and rotate elements, add intermediate steps to a transposition, and batch process multiple transpositions. The transposition algorithm uses spherical geometry calculations, such as the haversine formula, to accurately reposition groups of points, paths, and polygons on the Google Earth globe without distortion. Due to the imminent deprecation of the Google Earth API and browser plugin, MaRGEE uses a Google Maps interface to facilitate and illustrate the transpositions. However, the inherent spatial distortions that result from the Google Maps Web Mercator projection are not apparent once the transposed elements are saved as a KML file and opened in Google Earth. Potential applications of the MaRGEE toolkit include tectonic reconstructions, the movements of glaciers or thrust sheets, and time-based animations of other large- and small-scale geologic processes.

  18. Bioleaching of rare earth elements from monazite sand.

    Science.gov (United States)

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance.

  19. Thorium and rare earth elements in crystal and brown sugar consumed in Brazil and Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Salles, Paula M.B. de; Campos, Tarcisio P. R. de, E-mail: pauladesalles@yahoo.com.br [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Menezes, Maria Angela de B.C., E-mail: menezes@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    Human exposure to contaminants in foods is a matter of general health concern. There is a growing interest in determine and quantify contaminants in food chain including natural radionuclides and rare earth elements (REE). Irradiation effects of radioactive nuclides and REE may cause lesions from their interaction with the human body. This study aimed to identify the presence of thorium and rare earth elements in crystal and brown sugar samples available for consumption in Brazil and Argentina. To determine the chemical elements, the 5g-sample methodology established at CDTN/CNEN, in Belo Horizonte, using the neutron activation technique, k{sub 0}-method, was applied. The element Sm was determined in crystal sugar samples analyzed that were available to consumption in both countries. Similarly to the brown sugar samples which presented La, Sc and Sm. The elements Ce and Th were found in brown sugar sample available to consumption in Brazil. Thus, the detection of these elements in sugar samples is important insofar as the increasing consumption of sugar around the world. The presence of impurities and its concentration may contribute to health issues to consumers. (author)

  20. Modeling rammed earth wall using discrete element method

    Science.gov (United States)

    Bui, T.-T.; Bui, Q.-B.; Limam, A.; Morel, J.-C.

    2016-03-01

    Rammed earth is attracting renewed interest throughout the world thanks to its "green" characteristics in the context of sustainable development. Several research studies have thus recently been carried out to investigate this material. Some of them attempted to simulate the rammed earth's mechanical behavior by using analytical or numerical models. Most of these studies assumed that there was a perfect cohesion at the interface between earthen layers. This hypothesis proved to be acceptable for the case of vertical loading, but it could be questionable for horizontal loading. To address this problem, discrete element modeling seems to be relevant to simulate a rammed earth wall. To our knowledge, no research has been conducted thus far using discrete element modeling to study a rammed earth wall. This paper presents an assessment of the discrete element modeling's robustness for rammed earth walls. Firstly, a brief description of the discrete element modeling is presented. Then the parameters necessary for discrete element modeling of the material law of the earthen layers and their interfaces law following the Mohr-Coulomb model with a tension cut-off and post-peak softening were given. The relevance of the model and the material parameters were assessed by comparing them with experimental results from the literature. The results showed that, in the case of vertical loading, interfaces did not have an important effect. In the case of diagonal loading, model with interfaces produced better results. Interface characteristics can vary from 85 to 100% of the corresponding earthen layer's characteristics.

  1. Ce1-xLaxOy solid solution prepared from mixed rare earth chloride for soot oxidation

    Institute of Scientific and Technical Information of China (English)

    韩雪; 王亚飞; 郝红蕊; 郭荣贵; 胡运生; 蒋文全

    2016-01-01

    Ce1–xLaxOy solid solution was simply prepared using mixed rare earth chloride (RECl3·xH2O, RE=Ce, La>99%, containing unseparated Ce and La from rare earth metallurgical industry) as precursor by ultrasonic-assisted co-precipitation method with differ-ent ultrasonic frequencies (CLf,f=200, 400, 600, 800, 1000 Hz). A compared Ce1–xLaxOy solid solution (CL*) was also prepared by the same mothod with 10% less precipitant. X-ray diffraction results confirmed the formation of Ce1–xLaxOy solid solution, and the crystal structures of these catalysts were not very sensitive to ultrasonic frequency and precipitant amount. However, both of the fac-tors had obvious effect on morphology and surface area of CL, and precipitant amount seem to play a more crucial role than ultra-sonic frequency for Ce1–xLaxOy solid solution preparation. When soot and catalyst were tight contacted, the peak temperature (Tpeak) of soot oxidation and oxygen reducing temperature for CLf catalysts decreased linearly with increasing surface area. Under loose contact condition, theTpeak had obvious negative correlation with H2 consumption. It was inferred that good reducibility of the Ce1–xLaxOy solid solution favored the soot oxidation reaction. The Ce1–xLaxOy solid solution prepared from unseparated rare earth chloride showed a good soot oxidaiton activity. Controlling the preparation conditions to prepare a CL catalyst would high surface area will enhance its reducibility and activity.

  2. Rare earth element (REE) geochemistry of phosphorites of the Sonrai area of Paleoproterozoic Bijawar basin, Uttar Pradesh, India

    Institute of Scientific and Technical Information of China (English)

    K. F. Khan; Shamim A. Dar; Saif A. Khan

    2012-01-01

    The rare earth element (REE) data from the Paleoproterozoic Bijawar basin,Sonrai phosphorites were used to interpret the depositional conditions of the phosphorites.The post archean Australian shales (PAAS) normalized REE patterns of the Sonrai phosphorites were characterized by negative Ce and positive Eu anomalies.Middle rare earth elements (MREE)-ennchment was a characteristic feature.Phosphorites showing the diagenetic effects on the REE patterns were limited.The observed Eu anomaly was indicative of an anoxic (or sulphate reducing) diagenetic environment of phosphate formation.Mixing of sea water and upwelling during the Paleoproterozoic was responsible for the recording of positive Eu and negative Ce anomalies in the Sonrai phosphorites.

  3. Alkali elements in the Earth's core: Evidence from enstatite meteorites

    Science.gov (United States)

    Lodders, K.

    1995-01-01

    The abundances of alkali elements in the Earth's core are predicted by assuming that accretion of the Earth started from material similar in composition to enstatite chondrites and that enstatite achondrites (aubrites) provide a natural laboratory to study core-mantle differentiation under extremely reducing conditions. If core formation on the aubrite parent body is comparable with core formation on the early Earth, it is found that 2600 (+/- 1000) ppm Na, 550 (+/- 260) ppm K, 3.4 (+/- 2.1) ppm Rb, and 0.31 (+/- 0.24) ppm Cs can reside in the Earth's core. The alkali-element abundances are consistent with those predicted by independent estimates based on nebula condensation calculations and heat flow data.

  4. The occurrence of rare earth elements in some Finnish mires

    Directory of Open Access Journals (Sweden)

    Yliruokanen, I.

    1995-12-01

    Full Text Available The content of the more abundant rare earths (RE (Y, La, Ce, Pr, Nd and Sm in the ash of 399 peat samples from 26 Finnish mires was determined by X-ray fluorescence spectrometry. The content of all rare earths (La-Lu, Y in 29 samples was also determined by spark source mass spectrometry. The median RE contents in peat ashes from areas where the bedrock consists of rapakivi granite, granite or archean gneiss are reported. Detailed data concerning the individual mires are also presented. The highest RE contents were found in samples from rapakivi granite areas where a strong negative Eu anomaly was also observed. The RE contents were in general highest at the basal peat layers.

  5. Synthesis, Characterization and Antibacterial Properties of Rare Earth (Ce3+, Pr3+, Nd3+, Sm3+, Er3+)Complexes with L-Aspartic Acid and o-Phenanthroline

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Five novel ternary complexes of rare earth ions with L-Aspartic acid (Asp) and o-phenanthroline (Phen) were synthesized in ethanol aqueous solution. Their compositions were characterized by elemental analysis, molar conductance, FT-IR, Raman, UV-VIS and TG-DTA. The compositions of the complexes were confirmed to be: RE(Asp)3PhenCl3·3H2O (RE: Ce3+, Pr3+, Nd3+, Sm3+, Er3+). The antibacterial activity test shows that all these complexes exhibit excellent antibacterial ability against Escherichia coli, Staphylococcus aureus and Candida albicans. The antimicrobial spectrum of the complexes are broad.

  6. Neutron Activation Analysis of the Rare Earth Elements (REE) - With Emphasis on Geological Materials

    Science.gov (United States)

    Stosch, Heinz-Günter

    2016-08-01

    Neutron activation analysis (NAA) has been the analytical method of choice for rare earth element (REE) analysis from the early 1960s through the 1980s. At that time, irradiation facilitieswere widely available and fairly easily accessible. The development of high-resolution gamma-ray detectors in the mid-1960s eliminated, formany applications, the need for chemical separation of the REE from the matrix material, making NAA a reliable and effective analytical tool. While not as precise as isotopedilution mass spectrometry, NAA was competitive by being sensitive for the analysis of about half of the rare earths (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu). The development of inductively coupled plasma mass spectrometry since the 1980s, together with decommissioning of research reactors and the lack of installation of new ones in Europe and North America has led to the rapid decline of NAA.

  7. Determination of thorium and of rare earth elements in cerium earth minerals and ores

    Science.gov (United States)

    Carron, M.K.; Skinner, D.L.; Stevens, R.E.

    1955-01-01

    The conventional oxalate method for precipitating thorium and the rare earth elements in acid solution exhibits definite solubilities of these elements. The present work was undertaken to establish conditions overcoming these solubilities and to find optimum conditions for precipitating thorium and the rare earth elements as hydroxides and sebacates. The investigations resulted in a reliable procedure applicable to samples in which the cerium group elements predominate. The oxalate precipitations are made from homogeneous solution at pH 2 by adding a prepared solution of anhydrous oxalic acid in methanol instead of the more expensive crystalline methyl oxalate. Calcium is added as a carrier. Quantitative precipitation of thorium and the rare earth elements is ascertained by further small additions of calcium to the supernatant liquid, until the added calcium precipitates as oxalate within 2 minutes. Calcium is removed by precipitating the hydroxides of thorium and rare earths at room temperature by adding ammonium hydroxide to pH > 10. Thorium is separated as the sebacate at pH 2.5, and the rare earths are precipitated with ammonium sebacate at pH 9. Maximum errors for combined weights of thorium and rare earth oxides on synthetic mixtures are ??0.6 mg. Maximum error for separated thoria is ??0.5 mg.

  8. Trace Level Rare Earth Elements Separation From Gram Scale Uranium by Calcium Fluoride Coprecipitation

    Institute of Scientific and Technical Information of China (English)

    WANG; Xiu-feng

    2013-01-01

    In the fission yield measurement of rare earth elements of uranium induced by neutron,and the analysis of rare earth elements in spent fuel,the separation of trace rare earth elements from a large number of uranium has very important significance.We separated trace level rare earth elements from gram scale uranium by calcium fluoride coprecipitation in this paper.

  9. Effect of doping elements on catalytic performance of CeO2-ZrO2 solid solutions

    Institute of Scientific and Technical Information of China (English)

    LI Mei; LIU Zhaogang; HU Yanhong; WANG Mitang; LI Hangquan

    2008-01-01

    CeZr, CeYZr, LaCeZr, LaCePrZr, LaCePrYZr, and LaCePr solid solutions were prepared via the coprecipitation method, and characterized by means of X-Ray Diffraction (XRD) and Brunauer-Emmett-Teller (BET) techniques. The oxygen storage capacity (OSC) of the solid solutions was evaluated by the pulse technique and the catalytic activity was assessed using a 4-channel catalysis device. It was seen that the solid solutions presented cubic structure. The specific surface area and thermal stability could be enhanced by doping Y into the solid solutions. Doping a small amount of La had a positive effect on the thermal durability while doping a large amount of La decreased the specific surface area and the thermal stability. LaCePrZr and LaCePrYZr solid solutions synthesized using Baotou rare earth mineral residue enriched with LaCePr after Nd extraction presented a certain higher value in specific surface area and thermal stability, thereby enabling to be used as economic catalysts for automobile exhaust purification. Coating Al2O3 or SiO2 layer on the surface of ceria-zirconia solid solutions increased the specific surface area and thermal resistance.

  10. Rare Earth Elements - A New Challenge for the World Economy

    Directory of Open Access Journals (Sweden)

    Cristina Bumbac

    2013-01-01

    Full Text Available Rare Earth Elements or Rare Earth Metals (REM are a collection of seventeen chemical elements in the periodic table, namely scandium, yttrium and fifteen lanthanides. The term "rare earth" arises from the rare earth minerals from which they were first isolated. They are uncommon oxide-type minerals (earths found in Gandolinite extracted from one mine in Sweden. The first discovery was made in 1794, but it was only in 1940 that the scientist Frank Spedding developed an ion exchange procedure for separating and purifying the REM. For the next decades, they were hardly used in some "minor" industrial fields. Only after 2000 their importance grew, once the multitude of possibilities to use them was discovered due to technological progress. Now REM are incorporated into almost all modern technological devices: superconductors, magnets, electronic polishers, refining catalysts hybrid car components and military techniques. They are used in small quantities, but due to their extraordinary properties the prices are very high. The main problem is that China dominates this market, with 97% of total global supply. The highest concentration of rare earth metals are in Inner Mongolia in China, Mountain Pass in California U.S.A. and in Mount Weld in Australia. The developed countries are far behind China regarding production and are indeed depending on Chinese exports. Hence, there is a difficult situation on this particular market, with an uncertain future.

  11. Uncovering the end uses of the rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xiaoyue, E-mail: xiaoyue.du@empa.ch [Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Yale University, 195 Prospect Street, New Haven CT 06511 (United States); Graedel, T.E. [Yale University, 195 Prospect Street, New Haven CT 06511 (United States)

    2013-09-01

    The rare earth elements (REE) are a group of fifteen elements with unique properties that make them indispensable for a wide variety of emerging and conventional established technologies. However, quantitative knowledge of REE remains sparse, despite the current heightened interest in future availability of the resources. Mining is heavily concentrated in China, whose monopoly position and potential restriction of exports render primary supply vulnerable to short term disruption. We have drawn upon the published literature and unpublished materials in different languages to derive the first quantitative annual domestic production by end use of individual rare earth elements from 1995 to 2007. The information is illustrated in Sankey diagrams for the years 1995 and 2007. Other years are available in the supporting information. Comparing 1995 and 2007, the production of the rare earth elements in China, Japan, and the US changed dramatically in quantities and structure. The information can provide a solid foundation for industries, academic institutions and governments to make decisions and develop strategies. - Highlights: • We have derived the first quantitative end use information of the rare earths (REE). • The results are for individual REE from 1995 to 2007. • The end uses of REE in China, Japan, and the US changed dramatically in quantities and structure. • This information can provide solid foundation for decision and strategy making.

  12. Template polymerization synthesis of hydrogel and silica composite for sorption of some rare earth elements.

    Science.gov (United States)

    Borai, E H; Hamed, M G; El-kamash, A M; Siyam, T; El-Sayed, G O

    2015-10-15

    New sorbents containing 2-acrylamido 2-methyl propane sulphonic acid monomer onto poly(vinyl pyrilidone) P(VP-AMPS) hydrogel and P(VP-AMPS-SiO2) composite have been synthesized by radiation template polymerization. The effect of absorbed dose rate (kGy), crosslinker concentration and polymer/monomer ratio on the degree of template polymerization of P(VP-AMPS) hydrogel was studied. The degree of polymerization was evaluated by the calculated percent conversion and swelling degree. The maximum capacity of P(VP-AMPS) hydrogel toward Cu(+2) metal ion found to be 91 mg/gm. The polymeric composite P(VP-AMPS-SiO2) has been successfully synthesized. The structure of the prepared hydrogel and composite were confirmed by FTIR, thermal analysis (TGA and DTA) and SEM micrograph. Batch adsorption studies for La(3+), Ce(3+), Nd(3+), Eu(3+) and Pb(+2) metal ions on the prepared hydrogel and composite were investigated as a function of shaking time, pH and metal ion concentration. The sorption efficiency of the prepared hydrogel and composite toward light rare earth elements (LREEs) are arranged in the order La(3+)>Ce(3+)>Nd(3+)>Eu(3+). The obtained results demonstrated the superior adsorption capacity of the composite over the polymeric hydrogel. The maximum capacity of the polymeric composite was found to be 116, 103, 92, 76, 74 mg/gm for La(3+), Ce(3+), Nd(3+), Eu(3+) and Pb(2+) metal ions respectively.

  13. Determination of rare earth, major and trace elements in authigenic fraction of Andaman Sea (Northeastern Indian Ocean) sediments by inductively coupled plasma-mass spectrometry

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.; You, C.-F.; Nath, B.N.; SijinKumar, A.V.

    Downcore variation of rare earth elements (REEs) in the authigenic Fe-Mn oxides of a sediment core (covering a record of last approx. 40 kyr) from the Andaman Sea, a part of the Indian Ocean shows distinctive positive Ce and Eu anomalies...

  14. Distribution of rare earth elements in an alluvial aquifer affected by acid mine drainage: the Guadiamar aquifer (SW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Olias, M. [Departamento de Geodinamica y Paleontologia, Universidad de Huelva, Avda. de las Fuerza Armadas s/n, 21071 Huelva (Spain)]. E-mail: manuel.olias@dgyp.uhu.es; Ceron, J.C. [Departamento de Geodinamica y Paleontologia, Universidad de Huelva, Avda. de las Fuerza Armadas s/n, 21071 Huelva (Spain); Fernandez, I. [Departamento de Geodinamica y Paleontologia, Universidad de Huelva, Avda. de las Fuerza Armadas s/n, 21071 Huelva (Spain); Rosa, J. de la [Departamento de Geologia, Universidad de Huelva, Avda. de las Fuerza Armadas s/n, 21071 Huelva (Spain)

    2005-05-01

    This work analyses the spatial distribution, the origin, and the shale-normalised fractionation patterns of the rare earth elements (REE) in the alluvial aquifer of the Guadiamar River (south-western Spain). This river received notoriety in April 1998 for a spill that spread a great amount of slurry (mainly pyrites) and acid waters in a narrow strip along the river course. Groundwaters and surface waters were sampled to analyse, among other elements, the REEs. Their spatial distribution shows a peak close to the mining region, in an area with low values of pH and high concentrations of sulphates and other metals such as Zn, Cu, Co, Ni, Pb, and Cd. The patterns of shale-normalised fractionation at the most-contaminated points show an enrichment in the middle rare earth elements (MREE) with respect to the light (LREE) and heavy (HREE) ones, typical of acid waters. The Ce-anomaly becomes more negative as pH increases, due to the preferential fractionation of Ce in oxyhydroxides of Fe. - Pollution of the aquifer with rare earth elements is documented at a site of a major spill from a mining operation.

  15. Heavy elements Ba, La, Ce, Nd, and Eu in 56 Galactic bulge red giants

    CERN Document Server

    Van der Swaelmen, M; Hill, V; Zoccali, M; Minniti, D; Ortolani, S; Gomez, A

    2016-01-01

    Aims. The aim of this work is the study of abundances of the heavy elements Ba, La, Ce, Nd, and Eu in 56 bulge giants (red giant branch and red clump) with metallicities ranging from -1.3 dex to 0.5 dex. Methods. We obtained high-resolution spectra of our giant stars using the FLAMES-UVES spectrograph on the Very Large Telescope. We inspected four bulge fields along the minor axis. Results. We measure the chemical evolution of heavy elements, as a function of metallicity, in the Galactic bulge. Conclusions. The [Ba, La, Ce, Nd/Fe] vs. [Fe/H] ratios decrease with increasing metallicity, in which aspect they differ from disc stars. In our metal-poor bulge stars, La and Ba are enhanced relative to their thick disc counterpart, while in our metal-rich bulge stars La and Ba are underabundant relative to their disc counterpart. Therefore, this contrast between bulge and discs trends indicates that bulge and (solar neighbourhood) thick disc stars could behave differently. An increase in [La, Nd/Eu] with increasing m...

  16. Effect of Rare Earths on Composition and Activities of Rare Earth Elements Binding Glycoprotein in Tea

    Institute of Scientific and Technical Information of China (English)

    汪东风; 李俊; 赵贵文; 王常红; 魏正贵; 尹明

    2001-01-01

    The effects of spraying rare earths(RE) on composition and activities of tea polysaccharide were measured by inductively coupled plasma mass spectrometry (ICP-MS), gas chromatography(GC), amino acid analyzer and animal models. The results show that there are rare earth elements binding glycoprotein in tea (REE-TGP). The effects of RE on composition and content of saccharides in REE-TGP are not obvious. The contents of Hypro and Ser in REE-TGP are evidently enhanced in comparison with that in control (not treated with rare earth), but the content of Glu is smaller than that from control. The content of La in REE-TGP from the tea garden sprayed rare earth is 193% higher than that in control. REE-TGP declines content of blood sugar in mice and enhances immunization of rat, which are very evident when the animals are treated by REE-TGP from the tea garden sprayed RE.

  17. Application of a space-time CE/SE (Conversation Element/Solution Element) method to the numerical solution of chromatographic separation processes

    DEFF Research Database (Denmark)

    For solving partial differential equations (or distributed dynamic systems), the method of lines (MOL) and the space-time conservation element and solution element (CE/SE) method are compared in terms of computational efficiency, solution accuracy and stability. Several representative examples...... including convection-difmsion-reaction PDEs are numerically solved using the two methods on the same spatial grid. Even though the CE/SE method uses a simple stencil structure and is developed on a simple mathematical basis (i.e., Gauss' divergence theorem), accurate and computationally-efficient solutions....... It is concluded that the CE/SE method is adequate to capturing shocks in PDEs but for diffusion-dominated stiff PDEs, the MOL with an ODE time integrator is complementary to the CE/SE method....

  18. Liquid Inclusions in Heat-Resistant Steel Containing Rare Earth Elements

    Science.gov (United States)

    Li, Yandong; Liu, Chengjun; Zhang, Tongsheng; Jiang, Maofa; Peng, Cheng

    2016-12-01

    Abundant thermodynamic data of pure substances were incorporated in the coupled thermodynamic model of inclusion precipitation and solute micro-segregation during the solidification of heat-resistant steel containing rare earth elements. The liquid inclusions Ce2x Al2y Si1-x-y O z (0 x x and z = 1 - x - y) were first introduced to ensure the model more accurately. And the computational method for generation Gibbs free energy of liquid inclusions in molten steel was given. The accuracy of accomplished model was validated through plant trials, lab-scale experiments, and the data published in the literature. The comparisons of results calculated by FactSage with the model were also discussed. Finally, the stable area of liquid inclusions was predicted and the liquid inclusions with larger size were found in the preliminary experiments.

  19. Geochemistry of rare earth elements in a passive treatment system built for acid mine drainage remediation.

    Science.gov (United States)

    Prudêncio, Maria Isabel; Valente, Teresa; Marques, Rosa; Sequeira Braga, Maria Amália; Pamplona, Jorge

    2015-11-01

    Rare earth elements (REE) were used to assess attenuation processes in a passive system for acid mine drainage treatment (Jales, Portugal). Hydrochemical parameters and REE contents in water, soils and sediments were obtained along the treatment system, after summer and winter. A decrease of REE contents in the water resulting from the interaction with limestone after summer occurs; in the wetlands REE are significantly released by the soil particles to the water. After winter, a higher water dynamics favors the AMD treatment effectiveness and performance since REE contents decrease along the system; La and Ce are preferentially sequestered by ochre sludge but released to the water in the wetlands, influencing the REE pattern of the creek water. Thus, REE fractionation occurs in the passive treatment systems and can be used as tracer to follow up and understand the geochemical processes that promote the remediation of AMD.

  20. Liquid Inclusions in Heat-Resistant Steel Containing Rare Earth Elements

    Science.gov (United States)

    Li, Yandong; Liu, Chengjun; Zhang, Tongsheng; Jiang, Maofa; Peng, Cheng

    2017-04-01

    Abundant thermodynamic data of pure substances were incorporated in the coupled thermodynamic model of inclusion precipitation and solute micro-segregation during the solidification of heat-resistant steel containing rare earth elements. The liquid inclusions Ce2 x Al2 y Si1- x-y O z (0 z = 1 - x - y) were first introduced to ensure the model more accurately. And the computational method for generation Gibbs free energy of liquid inclusions in molten steel was given. The accuracy of accomplished model was validated through plant trials, lab-scale experiments, and the data published in the literature. The comparisons of results calculated by FactSage with the model were also discussed. Finally, the stable area of liquid inclusions was predicted and the liquid inclusions with larger size were found in the preliminary experiments.

  1. Effect of Rare-Earth (La, Ce, and Y) Additions on the Microstructure and Mechanical Behavior of Sn-3.9Ag-0.7Cu Solder Alloy

    Science.gov (United States)

    Dudek, M. A.; Chawla, N.

    2010-03-01

    In this article, we report on the microstructure and mechanical properties of Ce- and Y-containing Sn-3.9Ag-0.7Cu solders. The microstructures of both as-processed solder and solder joints containing rare-earth (RE) elements (up to 0.5 wt pct) are more refined compared to conventional Sn-3.9Ag-0.7Cu, with decreases in secondary Sn dendrite size and spacing and a thinner Cu6Sn5 intermetallic layer at the Cu/solder interface. These results agree well with similar observations seen in La-containing solders reported previously. The monotonic shear behavior of reflowed Sn-3.9Ag-0.7Cu- X(Ce, Y)/Cu lap shear joints was studied as well as the creep behavior at 368 K (95 °C). The data were compared with results obtained for Sn-3.9Ag-0.7Cu and Sn-3.9Ag-0.7Cu- XLa alloys. All RE-containing alloys exhibited creep behavior similar to Sn-3.9Ag-0.7Cu. Alloys with Ce additions exhibited a small decrease in ultimate shear strength but higher elongations compared with Sn-Ag-Cu. Similar observations were seen in La-containing solders. The influence of the RE-containing intermetallics (CeSn3 and YSn3) that form in these alloys on the microstructural refinement, solidification behavior, and mechanical performance of these novel materials is discussed.

  2. The estuarine geochemistry of rare earth elements and indium in the Chao Phraya River, Thailand

    Science.gov (United States)

    Nozaki, Yoshiyuki; Lerche, Dorte; Alibo, Dia Sotto; Snidvongs, Anond

    2000-12-01

    A new filtration method using a 0.04 μm hollow fiber filter was applied to the river, estuarine, and coastal waters in the Chao Phraya estuary for geochemical investigation. The filtered waters were analyzed for all the lanthanides, Y and In by using inductively coupled plasma mass spectrometry (ICPMS). The dissolved concentrations of rare earth elements (REEs) are significantly lower than those reported previously for other rivers, presumably because of effective removal of river colloids by the ultra-filtration. The variation of dissolved REEs in the estuary is dependent on the season. The light REEs vary considerably in the low salinity ( S river discharge is low, the REEs show maxima in the mid salinity ( S = 5-12) zone suggesting that dissolved REEs are supplied to the waters by either desorption from suspended loads or remineralization of underlying sediments. The rapid removal of the REEs is also taking place in the turbid-clear water transition zone ( S = 12-15), presumably due to biological uptake associated with blooming of Noctilca occurred at the time of January sampling. In the medium to high discharge season (July and November), the dissolved REE(III)s at S > 3 show almost conservative trends being consistent with some of the previous works. Europium is strongly enriched in the river and estuarine waters compared to the South China Sea waters. Thus, the REE source of the Chao Phraya River must be fractionated and modified in entering to the South China Sea. Dissolved In and Ce in the high salinity ( S = 20-25) zone of the estuary are lower than those of the offshore waters, and therefore, the dissolved flux of the Chao Phraya River cannot account for the higher concentrations of dissolved In and Ce in the surface waters of the South China Sea. The negative Ce anomaly is progressively developed with increasing salinity, being consistent with continued oxidation of Ce(III) to Ce(IV) in the estuary. Fractionation of the light-to-heavy REEs seems to take

  3. Germanium and Rare Earth Element accumulation in woody bioenergy crops

    Science.gov (United States)

    Hentschel, Werner

    2016-04-01

    Germanium and REEs are strategic elements that are used for high tech devices and engineered systems, however these elements are hardly concentrated into mineable ore deposits. Since these elements occur widely dispersed in the earth crust with concentrations of several mgṡkg-1 (Ge 1.6 mgṡkg-1, Nd 25 mgṡkg-1) a new possibility to gain these elements could be phytomining, a technique that uses plants to extract elements from soils via their roots. Since knowledge about accumulating plant species is quite limited we conducted research on the concentrations of strategic elements in wood and leaves of fast growing tree species (Salix spec., Populus spec., Betula pendula, Alnus glutinosa, Fraxinus excelsior, Acer pseudoplatanus). In total 35 study sites were selected in the mining affected area around Freiberg (Saxony, Germany), differing in their species composition and degree of contamination with toxic trace metals (Pb, As, Cd). On each site plant tissues (wood and leaves, respectively) of different species were sampled. In addition soil samples were taken from a soil depth of 0 - 30 cm and 30 - 60 cm. The aim of our work was to investigate correlations between the concentrations of the target elements in plant tissues and soil characteristics like pH, texture, nutrients and concentrations in six operationally defined soil fractions (mobile, acid soluble, oxidizable, amorphic oxides, crystalline oxides, residual or siliceous). Concentrations of elements in soil extracts and plant tissues were measured with ICP-MS. The element Nd was selected as representative for the group of REEs, since this element showed a high correlation with the concentrations of the other REE We found that the concentration of Nd in the leaves (0.31 mgṡkg-1Nd) were several times higher than in herbaceous species (0.05 mgṡkg-1 Nd). The concentration of Ge in leaves were ten times lower than that of Nd whereas in herbaceous species Nd and Ge were in equal magnitude. Within the tree

  4. Biosorption of rare earth elements using biomass of Sargassum on El-Atshan Trachytic sill, Central Eastern Desert, Egypt

    Directory of Open Access Journals (Sweden)

    Nora Shenouda Gad

    2016-12-01

    Full Text Available The use of unicellular brown micro-algae has several advantages over conventional methods for removing rare earth elements (REEs from lithogenic materials. A comparative study is made to investigate the uptake and bioaccumulation of REEs from trachytic samples collected from El-Atshan mine area in the Central Eastern Desert of Egypt. The examined samples are characterized by their high REE content. Using Sargassum algae; it appears possible to reduce the abundance of the Light Rare Earths (LREEs; La, Ce, Nd, Pm, Sm and Eu that have a large atomic number. However, higher efficiency of the separation has been recorded for the heavy rare earths (HREEs which display a marked control of quantum failing (tetrad effect.

  5. Simultaneous determination of rare earth elements in ore and anti-corrosion coating samples using a portable capillary electrophoresis instrument with contactless conductivity detection.

    Science.gov (United States)

    Nguyen, Thi Anh Huong; Nguyen, Van Ri; Le, Duc Dung; Nguyen, Thi Thanh Binh; Cao, Van Hoang; Nguyen, Thi Kim Dung; Sáiz, Jorge; Hauser, Peter C; Mai, Thanh Duc

    2016-07-29

    The employment of an in-house-made capillary electrophoresis (CE) instrument with capacitively coupled contactless conductivity detection (C(4)D) as a simple and inexpensive solution for simultaneous determination of many rare earth elements (REEs) in ore samples from Vietnam, as well as in anti-corrosion coating samples is reported. 14 REEs (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) were determined using an electrolyte composed of 20mM arginine and 10mM α-hydroxyisobutyric acid adjusted to pH 4.2 with acetic acid. The best detection limit achieved was 0.24mg/L using the developed CE-C(4)D method. Good agreement between results from CE-C(4)D and the confirmation method (ICP-MS) was achieved, with a coefficient of determination (r(2)) for the two pairs of data of 0.998.

  6. Natural and anthropogenic rare earth elements in Lago de Paranoá, Brasilia, Brazil

    Science.gov (United States)

    Merschel, Gila; Baldewein, Linda; Bau, Michael; Dantas, Elton Luiz; Walde, Detlef; Bühn, Bernhard

    2014-05-01

    Rare earth elements (REE) belong to the group of particle reactive elements and occur at ultratrace levels in natural waters. They are exclusively trivalent, but Ce and Eu can also be tetravalent and divalent, respectively, depending on the redox-level, the pH and the temperature of the fluid. Due to these redox changes, normalized REE patterns may show Ce and/or Eu anomalies. Recently, these high-tech metals raised significant public attention, as they are of great economic importance and consumption and hence release into the environment increased sharply. The most prominent example of a REE contamination is anthropogenic Gd, which is derived from Gd-based contrast agents used in magnetic resonance imaging. Due to their high stabilities, these compounds are not readily removed by commonly applied waste water treatment technologies and, therefore, are released from treatment plants into surface and ground waters. Hence, this anthropogenic Gd can be used as a tracer for the presence of waste water-derived substances such as pharmaceuticals and personal care products in river, lake, ground and tap waters. Lago de Paranoá is an artificial reservoir lake in the city of Brasilia, Brazil, and is currently considered a potential freshwater resource. The city's two waste water treatment plants are located on its shore and their effluents are discharged into the lake. To investigate the level of contamination, we took water samples at 11 stations in the lake and compared the REE concentrations in unfiltered and filtered (<200 nm) lake water. The unfiltered water samples show light REE enrichment (LaSN/YbSN: 1.37-1.98) and high REE concentrations (Sum REE: 192 - 476 ng/L), while the unfiltered water samples are heavy REE enriched (LaSN/YbSN: 0.15-0.61) at lower concentrations (Sum REE: 50 - 85 ng/L). This is due to the fact that light REE are preferentially bound to particle surfaces, while the heavy REE are preferentially complexed with ligands in solution. In marked

  7. Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.

    Science.gov (United States)

    Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc

    2014-01-01

    The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.

  8. Bacterial Cell Surface Adsorption of Rare Earth Elements

    Science.gov (United States)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  9. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Y.; Barnes, J.; Fox, S.

    2016-09-01

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. We have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.

  10. Accumulation of rare earth elements by siderophore-forming Arthrobacter luteolus isolated from rare earth environment of Chavara, India

    Indian Academy of Sciences (India)

    E S Challaraj Emmanuel; T Ananthi; B Anandkumar; S Maruthamuthu

    2012-03-01

    In this study, Arthrobacter luteolus, isolated from rare earth environment of Chavara (Quilon district, Kerala, India), were found to produce catechol-type siderophores. The bacterial strain accumulated rare earth elements such as samarium and scandium. The siderophores may play a role in the accumulation of rare earth elements. Catecholate siderophore and low-molecular-weight organic acids were found to be present in experiments with Arthrobacter luteolus. The influence of siderophore on the accumulation of rare earth elements by bacteria has been extensively discussed.

  11. Diagenetic uptake of rare earth elements by conodont apatite

    Science.gov (United States)

    Zhang, L.; Algeo, T. J.; Cao, L.; Zhao, L.; Chen, Z. Q.; Li, Z.

    2015-12-01

    The rare earth element (REE) composition of bioapatite has long been used as a proxy for ancient seawater chemistry and paleomarine environmental reconstruction, based on the assumption of preservation of a hydrogenous (seawater-derived) REE signal. Recent work, however, has begun to question the provenance of REEs in conodonts, emphasizing the importance of REEs released by the lithogenous fraction of the sediment and subsequently adsorbed onto conodont apatite in the burial environment. Here, we investigate patterns of REE and trace-element abundance in conodonts and their host sediments from the Early to Late Ordovician Huanghuachang and Chenjiahe sections of Hubei Province, South China. Several lines of evidence indicate that REEs in the conodont samples were acquired mainly from clay minerals in the host sediment during burial diagenesis: (1) REEs in conodonts show a strong positive correlation to Th and other lithogenic elements; (2) conodonts and whole-rock samples show general patterns of REE and trace-element enrichment that are highly similar to each other and bear no resemblance to seawater elemental concentrations; (3) similar patterns are observed in Triassic conodonts and whole-rock samples; and (4) Y/Ho ratios in conodonts are mostly 90% of REEs from lithogenous sources. Conodonts show pronounced middle rare earth element (MREE) enrichment, a pattern that is unambiguously of diagenetic origin owing to its association with lower Y/Ho ratios. With increasing MREE enrichment of conodont samples, U concentrations and LaN/YbN ratios shift from high to low, and Mn concentrations from low to high. These patterns suggest that conodont diagenesis was initiated at shallow burial depths under suboxic conditions (i.e., in the zone of Mn(IV) and Fe(III) reduction) but continued at greater burial depths, with most acquisition of secondary REEs at later diagenetic stages. Our findings indicate that (1) conodont apatite frequently does not preserve a recognizable

  12. Rare earth elements as a by-catch of sedimentary deposits. Exploration program of rare earth elements; Selten Erd Elemente als Beifang sedimentaerer Lagerstaetten. Erkundungsprogramm Selten Erd Elemente

    Energy Technology Data Exchange (ETDEWEB)

    Linhardt, E.; Gebhardt, A. (comps.)

    2014-02-15

    The increasing demand for rare earth elements (REE) in the field of ''green technologies'' on the one hand and the shortage of raw materials on the world markets on the other hand confronted also Bavaria as an industrial location with growing supply problems in these ''high tech raw materials''. The aim of exploration was the clarification of the feedstock REE potential of heavy mineral concentrates which are obtained in the industrial extraction and processing of sand and kaolin in existing extraction operations in northern Bavaria as by catch and are potentially winnable or marketable. The in-depth investigation enabled the potential of found rare earth elements and other high-tech metal oxides that can be classified as very likely find it in terms of an economic recovery. [German] Der zunehmende Bedarf an Selten Erd Elementen (SEE) im Bereich der ''Gruenen Technologien'' zum Einen sowie die Rohstoffverknappung auf den Weltmaerkten zum Anderen konfrontiert auch Bayern als Industriestandort mit wachsenden Versorgungsproblemen bei diesen ''high tech-Grundstoffen''. Ziel der Erkundung war die Klaerung des rohstofflichen SEE-Potenzials von Schwermineralkonzentraten, die bei der grosstechnischen Gewinnung und Aufbereitung von Sand und Kaolin in vorhandenen Gewinnungsbetrieben Nordbayerns als Beifang anfallen und potenziell gewinn- bzw. vermarktbar sind. Im Zuge der Untersuchung konnten nutzbare Potenziale von Selten Erd Elementen und anderen high-tech - Metalloxiden gefunden werden, die sehr wahrscheinlich als fuendig im Hinblick auf eine wirtschaftliche Gewinnung eingestuft werden koennen.

  13. Synergism of Rare Earth Ce(III) Ion with Cysteine against Corrosion of P110 Carbon Steel in 3% NaCl Solutions

    Science.gov (United States)

    Liu, Xia; Yang, Jianshu; Liu, Yongping; Ji, Xiangyun; Lu, Ying; Yuan, Yizhi

    The synergism of CeCl3 (Ce) with cysteine (Cys) on the corrosion of P110 carbon steel in 3% NaCl solutions was investigated by electrochemical methods and surface analysis. The results showed that CeCl3 and cysteine do little to inhibit the corrosion of carbon steel, but the combination of CeCl3 with cysteine has obvious synergistic effect on the corrosion of carbon steel and the corrosion inhibition efficiency was improved significantly. The potentiodynamic polarization curves indicated that the mixture of CeCl3 and cysteine acts as a cathodic inhibitor. Scanning electron microscope (SEM) and Infrared (IR) reflection spectra showed the synergistic inhibition effect was formed by the complexes between rare earth Ce(III) ion and amino acid.

  14. Extraction of rare earth elements from their oxides using organophosphorus reagent complexes with HNO_3 and H_2O in supercritical CO_2

    Institute of Scientific and Technical Information of China (English)

    段五华; 曹丕佳; 朱永(贝睿)

    2010-01-01

    Direct extraction of metals from solids with complexing agents in supercritical CO2(SC-CO2) has recently attracted interests in separation,purification,recovery,and analysis of metals.In the present study,the static/dynamic extraction of rare earth elements(Nd,Ce) from their oxides(Nd2O3,CeO2) with organophosphorus complexes with HNO3 and H2O in SC-CO2 was investigated.The static extraction efficiency of Nd from Nd2O3 with the tri-n-butylphosphate(TBP)-HNO3 complex could reach 95% under optimized experiment...

  15. Geochemical fractionation of rare earth elements in lacustrine deposits from Qaidam Basin

    Institute of Scientific and Technical Information of China (English)

    ZHANG HuCai; ZHANG WenXiang; CHANG FengQin; YANG LunQing; LEI GuoLiang; YANG MingSheng; PU Yang; LEI YangBin

    2009-01-01

    Based on the concentration and distribution pattern analysis of the rare earth elements (REEs) at the Shell Bar section from Qaidam Basin,we studied the geochemical fractionations of REE in paleolake deposits and their paleo-environmental significance.Our results show that the REE concentration in AS (acid soluble) and AR (acid residual) fractions are 20.9 μg/g and 95.4 μg/g (except element Y) individually,showing a strong REE differentiation between AS and AR fractions.However,the two types of fractions (AS & AR) have similar REE distribution patterns,which are slightly rich in light earth rare elements (LREEs),with slightly right-tilting and negative Eu anomaly.The LREE of AR is richer than that of AS.There were no significant correlations between the REE in AS,AR and other proxies.It indicated that the lacustrine deposition had different material sources and experienced varying geochemical procedures.Correlation analysis between the REE and the content of fine grain-size (<4 μm) of the sediments,Rb/Sr ratio and Mn concentration showed high correlation coefficients.Our results demonstrated that the REE in acid soluble and residual fractions bear different environmental significances,which are strongly dependent on local environment.The REE of acid soluble fraction is closely related to the paleoclimatic changes in the lake catchment and the evolutionary processes of lake itself.Our results suggest that δCe and (La/Yb)_n could be used as proxies of the reduction-oxidation conditions and furthermore the temperature change and the lake level fluctuations.Using these proxies,we reconstructed the paleoclimate and water level fluctuation history during the high lake level period lasting between 43.5 and 22.4 cal.ka BP.

  16. Geochemical fractionation of rare earth elements in lacustrine deposits from Qaidam Basin

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the concentration and distribution pattern analysis of the rare earth elements (REEs) at the Shell Bar section from Qaidam Basin, we studied the geochemical fractionations of REE in paleolake deposits and their paleo-environmental significance. Our results show that the REE concentration in AS (acid soluble) and AR (acid residual) fractions are 20.9 μg/g and 95.4 μg/g (except element Y) individually, showing a strong REE differentiation between AS and AR fractions. However, the two types of fractions (AS & AR) have similar REE distribution patterns, which are slightly rich in light earth rare elements (LREEs), with slightly right-tilting and negative Eu anomaly. The LREE of AR is richer than that of AS. There were no significant correlations between the REE in AS, AR and other proxies. It indicated that the lacustrine deposition had different material sources and experienced varying geochemical procedures. Correlation analysis between the REE and the content of fine grain-size (<4 μm) of the sediments, Rb/Sr ratio and Mn concentration showed high correlation coefficients. Our results demonstrated that the REE in acid soluble and residual fractions bear different environmental significances, which are strongly dependent on local environment. The REE of acid soluble fraction is closely related to the paleoclimatic changes in the lake catchment and the evolutionary processes of lake itself. Our results suggest that δCe and (La/Yb)n could be used as proxies of the reduction-oxidation conditions and furthermore the temperature change and the lake level fluctuations. Using these proxies, we reconstructed the paleoclimate and water level fluctuation history during the high lake level period lasting between 43.5 and 22.4 cal. ka BP.

  17. Syntheses and Structures of Alkali Metal Rare Earth Polyphosphates CsLn(PO3)4 (Ln = La, Ce)

    Institute of Scientific and Technical Information of China (English)

    ZHU Jing; CHENG Wen-Dan; ZHANG Hao; WU Dong-Sheng; ZHAO Dan

    2008-01-01

    Alkali metal-rare earth polyphosphates, CsLn(PO3)4 (Ln = La, Ce), were synthesized by the high temperature solution reaction and studied by single-crystal X-ray diffraction technique. They crystallize in the monoclinic space group P21 (Z = 2) and feature infinite PO4 spiral chains linked with neighboring CsO10 and LnO8 polyhedra. In addition, theoretically calculated energy band structure and density of states (DOS) by the density functional theory(DFT) predict that the solid-state compound CsLa(PO3)4 possesses insulative character.

  18. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    Science.gov (United States)

    Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  19. A review of fractionations of rare earth elements in plants

    Institute of Scientific and Technical Information of China (English)

    LIANG Tao; DING Shiming; SONG Wenchong; CHONG Zhongyi; ZHANG Chaosheng; LI Haitao

    2008-01-01

    Studies were carried out on several aspects of rare earth elements (REEs), such as the theory and practice of their applications in agriculture, their geochemical behaviors in natural and agricultural ecosystems, the mechanisms for the increase of crop yield using REE fertilizer, and their toxicology. However, limited knowledge was available for the transfer processes and the features and mechanisms of distribution and fractionatious of REEs inside plants. The characteristics of REE fractionations in plants can be used to "trace" the pathway of REE transportation from soils (solution) to plants. A better understanding of the mechanisms of REE fractionations was helpful to investigate the controlling factors, including both the internal and the external ones. The characteristics and mechanisms of REE fractionatious in plants and their significance were reviewed. Furthermore, the prospect for these fields was discussed, in hope of providing a new way in studying the bioavailability of REEs and heavy metals.

  20. Contents and distribution of rare earth elements in wheat seeds

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Contents of 15 rare earth elements (REEs) in the seeds of 60 breeds of wheat have been analyzed by the inductively-coupled plasma mass spectrometry (ICP-MS). The distribution pattern of contents of REEs in wheat seeds has been observed and compared with that in soils. Comparison with literature data has also been made. The results show that the background of REEs in wheat seeds is 10-11-10-8 g.g-1, 3-4 levels lower than in soils. The distribution pattern is light REEs higher in contents and slight Eu-anomaly, similar to that in soils. The data obtained in this study can accurately represent the background content of REEs in wheat seeds.

  1. Study on Adsorption of Rare Earth Elements by Kaolinite

    Institute of Scientific and Technical Information of China (English)

    Wan Yingxin; Liu Congqiang

    2005-01-01

    For better understanding the adsorption of rare earth elements (REEs) by clay minerals and its controlling factors, the experiments on adsorption of REEs in solutions with 1 g·L-1 kaolinite were performed at different conditions. The results are as follows: the REEs reach equilibrium in the adsorption-desorption process for 24; Langmuir's adsorption curve is used for modeling the adsorption of REEs by kaolinite; a general trend is that the higher the contents of REEs are, the less obvious the fractionation is. Furthermore, there is significant effect of pH on the adsorption and fractionation of REEs by kaolinite, and the REEs distribution coefficient increases with increasing pH. When pH is nearly neutral, as reaches 7, heavy REEs are more adsorbed than light REEs.

  2. Attenuation of rare earth elements in a boreal estuary

    Science.gov (United States)

    Åström, Mats E.; Österholm, Peter; Gustafsson, Jon Petter; Nystrand, Miriam; Peltola, Pasi; Nordmyr, Linda; Boman, Anton

    2012-11-01

    This study focuses on attenuation of rare earth elements (REE) when a boreal creek, acidified and loaded with REE and other metals as a result of wetland drainage, empties into a brackish-water estuary (salinity MINTEQ version 3.0 and the Stockholm Humic Model after revision and updating, predicted that the dissolved (<0.45 μm) REE pool in the estuary is bound almost entirely to humic substances. Acid sulphate soils, the source of the REE and other metals in the creek water, are widespread on coastal plains worldwide and therefore the REE attenuation patterns and mechanisms identified in the studied estuary are relevant for recognition of similar geochemical processes and conditions in a variety of coastal locations.

  3. Effects of rare earth elements on growth and metabolism of medicinal plants

    Directory of Open Access Journals (Sweden)

    Chunhong Zhang

    2013-02-01

    Full Text Available The rare earth elements (REEs are a set of 17 chemical elements. They include the lanthanide series from lanthanum (La to lutetium (Lu, scandium (Sc, and yttrium (Y in the periodic table. Although REEs are used widely in industry and agriculture in China for a long time, there has been increasing interest in application of REEs to medicinal plants in recent years. In this paper, we summarize researches in the past few decades regarding the effects of REEs on the germination of seeds, the growth of roots, total biomass, and the production of its secondary metabolites, as well as their effects on the absorption of minerals and metals by medicinal plants. By compilation and analysis of these data, we found that REEs have promoting effects at low concentrations and negative effects at comparatively high concentrations. However, most studies focused only on a few REEs, i.e., La, cerium (Ce, neodymium (Nd and europium (Eu, and they made main emphasis on their effects on regulation of secondary metabolism in tissue-cultured plants, rather than cultivated medicinal plants. Advanced research should be invested regarding on the effects of REEs on yields of cultivated plants, specifically medicinal plants.

  4. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    M. Opiela

    2012-04-01

    Full Text Available The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%, phosphorus (from 0.006 to 0.008% and oxygen (6 ppm. The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non- metallic inclusions during hot-working.

  5. Core-Mantle Partitioning of Volatile Elements and the Origin of Volatile Elements in Earth and Moon

    Science.gov (United States)

    Righter, K.; Pando, K.; Danielson, L.; Nickodem, K.

    2014-01-01

    Depletions of siderophile elements in mantles have placed constraints on the conditions on core segregation and differentiation in bodies such as Earth, Earth's Moon, Mars, and asteroid 4 Vesta. Among the siderophile elements there are a sub-set that are also volatile (volatile siderophile elements or VSE; Ga, Ge, In, As, Sb, Sn, Bi, Zn, Cu, Cd), and thus can help to constrain the origin of volatile elements in these bodies, and in particular the Earth and Moon. One of the fundamental observations of the geochemistry of the Moon is the overall depletion of volatile elements relative to the Earth, but a satisfactory explanation has remained elusive. Hypotheses for Earth include addition during accretion and core formation and mobilized into the metallic core, multiple stage origin, or addition after the core formed. Any explanation for volatile elements in the Earth's mantle must also be linked to an explanation of these elements in the lunar mantle. New metal-silicate partitioning data will be applied to the origin of volatile elements in both the Earth and Moon, and will evaluate theories for exogenous versus endogenous origin of volatile elements.

  6. Adsorption of Ce(Ⅳ) Anionic Nitrato Complexes onto Anion Exchangers and Its Application for Ce(Ⅳ) Separation from Rare Earths(Ⅲ)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ce(Ⅳ) nitrato complexes were adsorbed on two anion exchangers based on polyvinyl pyridine (PVP) and quaternized PVP incorporated into porous silica matrix. The effect of nitric acid concentration (0.5~6 mol·L-1) and temperature (278~318 K) on Ce(Ⅳ) sorption efficiency was investigated. Sorption increased with increasing nitric acid concentration, indicating that [Ce(NO3)6]2- complex is the main adsorbed Ce(Ⅳ) species. Oxidation of sorbents by adsorbed Ce(Ⅳ) species resulting in Ce(Ⅲ) release to the solution was observed. Pyridine based anion exchangers exhibited higher oxidation stability compared to the commercial strong base anion exchanger. Ce(Ⅳ) reduction was temperature dependent and obeyed pseudo-first-order reaction kinetics. Column separation of Ce(Ⅳ) from La(Ⅲ) and Y(Ⅲ) was carried out from 6 mol·L-1 nitric acid with PVP based anion exchanger. Reasonable Ce(Ⅳ) breakthrough capacity (0.7 mol·kg-1 PVP) was achieved. No remarkable decrease of capacity was observed within 3 consequent runs. In contrast, Ce(Ⅲ) leakage due to reduction decreased and breakthrough capacity slightly increased. This effect was more pronounced with increasing temperature. Regeneration with 0.1 mol·L-1 nitric acid was successful (recovery 100%±4%) and Ce solution of high purity (>99.97%) with respect to La and Y content was gained.

  7. Evaluation of rare earth elements in groundwater of Lagos and Ogun States, Southwest Nigeria.

    Science.gov (United States)

    Ayedun, H; Arowolo, T A; Gbadebo, A M; Idowu, O A

    2016-06-11

    Rare earth elements in our environment are becoming important because of their utilization in permanent magnets, lamp phosphors, superconductors, rechargeable batteries, catalyst, ceramics and other applications. This study was conducted to evaluate the level of rare earth elements (REE) and the variability of their anomalous behavior in groundwater samples collected from Lagos and Ogun States, Southwest, Nigeria. REE concentrations were determined in 170 groundwater samples using inductively coupled plasma-mass spectrometry, while the physicochemical parameters were determined using standard methods. Lagos State groundwater is enriched with REE [sum REEs range (mean ± SD)]; [0.365-488 (69.5 ± 117)] µg L(-1) than Ogun State groundwater [sum REEs range (mean ± SD)]; [1.14-232 (22.6 ± 41.1)] µg L(-1). Boreholes are more enriched with REEs than wells. Significant (P < 0.05) positive correlation (R = Pearson) was recorded in Lagos State groundwater between sum REEs and Fe (R = 0.55). However, there were no significant correlations between sum REEs, pH (R = 0.073) and HCO3(2-) (R = 0.157) in Ogun State groundwater. Chondrite-normalized plot shows that Lagos groundwater exhibits positive Ce anomaly, while Ogun State groundwater does not. The source of REE in Lagos State may be from the ocean and leaching from wastes dumpsites, while the source in Ogun State groundwater may be from the rocks.

  8. Advanced Characterization of Rare Earth Elements in Coal Utilization Byproducts

    Science.gov (United States)

    Verba, C.; Scott, M.; Dieterich, M.; Poston, J.; Collins, K.

    2016-12-01

    Rare earth elements (REE) in various forms (e.g., crystalline mineral phases; adsorbed/absorbed state on and into organic macerals, neoformed glass from flyash or bottom ash) from domestic feedstocks such as coal deposits to coal utilization byproducts (CUB) have the potential to reduce foreign REE dependence and increase domestic resource security. Characterization is critical for understanding environmental risks related to their fate and transport as well as determining the most practical and economical techniques for concentrating the REE and converting them into chemical stocks for manufacturing. Several complementary electron microscopy (SEM-EDS, EPMA-WDS, FIB-SEM, cathodoluminescence, and XRD) and post image processing techniques were used to understand REE transition from coal to CUB. Sites of interest were identified and imaged and respective elemental x-ray maps acquired and montaged. Pixel classification of SEM imagers was completed using image analysis techniques to quantify the distribution of REE associated features. Quantitative elemental analysis of phases were completed using EMPA-WDS followed by FIB-SEM. The FIB-SEM results were reconstructed into 3D volumes and features of interest (e.g. monazite) were analyzed to determine the structure and volumetric estimation of REEs and thus predict detrital REE phases to ICP-MS results. Trace minerals were identified as pyrite, zircon, REE-phosphates' (monazite, xenotime), and barite within the coal tailings. In CUB, amorphous aluminosilicates, iron oxide cenospheres, and calcium oxides were present; monazite appear to be unaltered and unaffected by the combustion process in these samples. Thermal decomposition may have occurred due to presence of detrital zircon and xenotime and subsequent thin Ca-oxide coating enriched in trace REEs.

  9. Influence of rare-earth metal doping on the catalytic performance of CuO-CeO2 for the preferential oxidation of CO in excess hydrogen

    Institute of Scientific and Technical Information of China (English)

    Zhigang Liu; Renxian Zhou; Xiaoming Zheng

    2008-01-01

    Doping of different rare-earth metals(Pr,Nd,Y and La)had an evident influence on the catalytic performance of CuO-CeO2 for the preferential oxidation(PROX)Of CO in excess hydrogen.As for Pr,the doping enhanced the catalytic activity of CuO-CeO2 for PROX.For example,the CO conversion over the above catalyst for PROX was higher than 99%at 120℃.Especially.the doping of Pr widened the temperature window by 20℃ over CuO-CeO2 with 99%CO conversion.For Nd,Y and La,the doping depressed the catalytic activity of CuO-CeO2 for PROX.However,the doping of transition metals markedly improved the selectivity of CuO-CeO2 for PROX.

  10. Temporal variation and fluxes of dissolved rare earth elements in the lower Orinoco River

    Science.gov (United States)

    Mora, Abrahan; Laraque, Alain; Mahlknecht, Jürgen; Moreau, Cristina

    2017-04-01

    On a global scale, the Orinoco River ranks third in terms of water discharged to the oceans, with an annual mean discharge of about 37.000 m3/s; its basin covers an area of 990.000 km2 and the length of its main channel reaches 2000 km. Although the seasonal dynamics of dissolved rare earth elements (REE) has been documented in large rivers such as the Amazon and Yangtze, this issue has not yet been documented in the Orinoco River. Thus, we present a comprehensive dissolved REE data set for the Orinoco River in its lower section. Water samples of the Orinoco River were taken monthly between January 2007 and December 2008 in the Ciudad Bolivar gauging station. These water samples were filtered through 0.22 µm pore size membranes and preserved for REE determination. The concentrations of dissolved La, Ce, Pr, Nd, Sm, Gd, Dy, Er, and Yb were measured using an ICP-MS on a spectrometer equipped by collision cell. The two-year time series show that dissolved REE vary seasonally with discharge in the lower Orinoco, and indicate a hydrological dominated control. The higher concentrations of REE were observed during the high discharge period and the lower concentrations during the low water stage. The annual dissolved fluxes of REE from the Orinoco River to the Atlantic Ocean were 240 ± 67 T/yr for La, 628 ± 174 T/yr for Ce, 76 ± 20 T/yr for Pr, 336 ± 84 T/yr for Nd, 83 ± 20 T/yr for Sm, 92 ± 29 T/yr for Gd, 70 ± 17 T/yr for Dy, 35 ± 8 T/yr for Er, and 28 ± 7 T/yr for Yb. These results constitute the first estimate of dissolved REE fluxes from the Orinoco River to the Atlantic Ocean.

  11. Round Top Mountain rhyolite (Texas, USA), a massive, unique Y-bearing-fluorite-hosted heavy rare earth element (HREE) deposit

    Institute of Scientific and Technical Information of China (English)

    PINGITORE Nicholas; CLAGUE Juan; GORSKI Daniel

    2014-01-01

    Round Top Mountain in Hudspeth County, west Texas, USA is a surface-exposed rhyolite intrusion enriched in Y and heavy rare earth elements (HREEs), as well as Nb, Ta, Be, Li, F, Sn, Rb, Th, and U. The massive tonnage, estimated at well over 1 billion tons, of the deposit makes it a target for recovery of valuable yttrium and HREEs (YHREEs), and possibly other scarce ele-ments. Because of the extremely fine grain size of the mineralized rhyolite matrix, it has not been clear which minerals host the YHREEs and in what proportions. REE-bearing minerals reported in the deposit included bastnäsite-Ce, Y-bearing fluorite, xeno-time-Y, zircon, aeschynite-Ce, a Ca-Th-Pb fluoride, and possibly ancylite-La and cerianite-Ce. Extended X-ray absorption fine struc-ture (EXAFS) indicated that virtually all of the yttrium, a proxy for the HREEs, resided in a coordination in the fluorite-type crystal structure, rather than those in the structures of bastnäsite-Ce and xenotime-Y. The YREE grade of the Round Top deposit was just over 0.05%, with 72%of this consisting of YHREEs. This grade was in the range of the South China ionic clay deposits that supply essentially all of the world’s YHREEs. Because the host Y-bearing fluorite is soluble in dilute sulfuric acid at room temperature, a heap leaching of the deposit appeared feasible, aided by the fact that 90%-95%of the rock consists of unreactive and insoluble feld-spars and quartz. The absence of overburden, remarkable consistency of mineralization grade throughout the massive rhyolite, prox-imity (a few km) to a US interstate highway, major rail systems and gas and electricity, temperate climate, and stable political location in the world’s largest economy all enhanced the potential economic appeal of Round Top.

  12. Rare earth elements exploitation, geopolitical implications and raw materials trading

    Science.gov (United States)

    Chemin, Marie-Charlotte

    2015-04-01

    Rare earth elements (REE) correspond to seventeen elements of the periodic table. They are used in high technology, cracking, electric cars' magnet, metal alloy for batteries, and also in phone construction or ceramics for electronic card. REEs are an important resource for high technology. This project targets 16 years old students in the subject "personalized aid" and will last six weeks. The purpose of this project is to develop autonomy and research in groups for a transdisciplinary work. This project gathers knowledge in geology, geography and economics. During the first session students analyze the geology applications of the REE. They begin the analysis with learning the composition in different rocks such as basalt and diorite to make the link with crystallization. Then they compare it with adakite to understand the formation of these rocks. In the second session, they study REE exploitation. We can find them as oxides in many deposits. The principal concentrations of rare earth elements are associated with uncommon varieties of igneous rocks, such as carbonatites. They can use Qgis, to localize this high concentration. In the third session, they study the environmental costs of REE exploitation. Indeed, the exploitation produces thorium and carcinogenic toxins: sulphates, ammonia and hydrochloric acid. Processing one ton of rare earths produces 2,000 tons of toxic waste. This session focuses, first, on Baotou's region, and then on an example they are free to choose. In the fourth session, they study the geopolitical issues of REE with a focus on China. In fact this country is the largest producer of REE, and is providing 95% of the overall production. REE in China are at the center of a geopolitical strategy. In fact, China implements a sort of protectionism. Indeed, the export tax on REE is very high so, as a foreign company, it is financially attractive to establish a manufacturing subsidiary in China in order to use REE. As a matter of fact

  13. Rare earth elements in scleractinian cold-water corals

    Science.gov (United States)

    Raddatz, J.; Liebetrau, V.; Hathorne, E. C.; Rüggeberg, A.; Dullo, W.; Frank, M.

    2012-12-01

    The Rare Earth Elements (REE) have a great potential to trace continental input, particle scavenging and the oxidation state of seawater. These REE are recorded in the skeleton of the cosmopolitan cold-water corals Lophelia pertusa. Here we use an online preconcentration ICP-MS method (Hathorne et al. 2012) to measure REE concentrations in seawater and associated cold-water coral carbonates in order to investigate their seawater origin. Scleractinian cold-water corals were collected in-situ and alive and with corresponding seawater samples covering from the European Continental Margin. The seawater REE patterns are characterized by the typical negative cerium anomaly of seawater, but are distinct for the northern Norwegian Margin and the Oslo Fjord, probably related to continental input. Initial results for the corresponding coral samples suggest that these distinct REE patterns of ambient seawater are recorded by the coral skeletons although some fractionation during incorporation into the aragonite occurs. This indicates that scleractinian cold-water corals can serve as a valuable archive for seawater derived REE signatures, as well radiogenic Nd isotope compositions. In a second step we analysed fossil coral samples from various locations, which were oxidatively and reductively cleaned prior to analysis. Initial results reveal that sediment-buried fossil (early Pleistocene to Holocene) coral samples from the Norwegian Margin and the Porcupine Seabight (Challenger Mound, IODP Site 1317) do not show the expected seawater REE patterns. In particular, the fossil coral-derived REE patterns lack a negative cerium anomaly suggesting that fossil coral-REE patterns do not represent ambient seawater. Thus, we suggest that the oxidative-reductive cleaning method widely used for cleaning of marine carbonates such as foraminifera prior to measurements of seawater-derived trace metal and isotope compositions are not sufficient for REE and Nd isotopes in sediment-buried coral

  14. Geochemical behavior of rare earth elements and other trace elements in the Amazon River

    Science.gov (United States)

    Merschel, Gila; Bau, Michael; Dantas, Elton Luiz

    2014-05-01

    Rivers transport large amounts of dissolved and suspended particulate material from the catchment area to the oceans and are a major source of trace metals to seawater. The Amazon River is the world's largest river and supplies approximately 20% of the oceans' freshwater (Molinier et al., 1997). However, the behavior of trace elements, especially particle-reactive elements such as the rare earth elements (REE), within the river as well as in the estuary is not well constrained and rather little is known about their transport mechanisms. This study aims at understanding the transport properties of particle-reactive elements in the Amazon River and some of its major tributaries, including the Rio Solimões, Rio Negro, Tapajos, Xingu and Jari Rivers. Samples were taken at 12 stations, seven of which were located in the Amazon mainstream, while the other five stations sampled its tributaries. To account for the effects of variable discharge, the samples were collected during periods of high and low discharge. We present data for major and trace elements, including REE, of the dissolved and suspended load of these samples. First results indicate that the shale-normalized REE pattern of the dissolved load (filtered through 0.2 µm membranes) of the Amazon mainstream and the Rio Solimões confirm earlier studies (Elderfield et al., 1990; Gerard et al., 2003) and show an enrichment of the middle REE relative to the light and heavy REE (LaSN/GdSN: 0.25 - 0.32; GdSN/YbSN: 1.54 - 1.78). In contrast to the Amazon mainstream and the Rio Solimões, which are considered to be whitewater rivers, blackwater rivers, such as the Rio Negro, have a flat REE pattern with higher REE concentrations than whitewater rivers. The third water-type found in the Amazon Basin is clearwater, e.g. Rio Tapajos, with REE patterns in between those of the other two types, i.e. LaSN/GdSN: 0.55 - 0.70; GdSN/YbSN: 1.26 - 1.55. A similar behavior can be identified for other major and trace elements. While

  15. Influence of the Type and Method of Injection of Oxides Admixtures of Rare Earth Elements on Colour and other Properties of Dental Porcelain

    Institute of Scientific and Technical Information of China (English)

    Ekaterina A. Kulinich; Tamara A. Khabas; Vladimir I. Vereschagin

    2010-01-01

    A glassceramic material, which can be used in stomatology for production of dentinal layer of the dental crown multilayer coating, was received. In order to colour the material the admixtures of Tb and Ce compounds were used, as well as composite admixture representing a mixture of Ce, Nd and La oxides. It was demonstrated that the admixture of Tb oxide tones the material only when it is used together with Ce oxide. It was found that the more admixtures of rare earth elements oxides are contained in the sample composition, the higher the colour strength of the sintered material is. The wave length for the test samples is in the range of 600~650 nm, which corresponds to the yellow-orange and orange-red spectral range.

  16. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy

    Science.gov (United States)

    Sindern, Sven; Meyer, F. Michael

    2016-09-01

    Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become

  17. An Integrated Rare Earth Elements Supply Chain Strategy

    Science.gov (United States)

    2011-02-24

    FL: CRC Press, 2005) 1, 61, 59. 7 Gupta and Krishnamurthy, Extractive Metallurgy of Rare Earths, 21, 22, 32; Cindy A. Hurst, ―China‘s Ace in the...Supply Chain, Briefing for Congressional Committees, 27. 17 Ibid, 24. 18 Gupta and Krishnamurthy, Extractive Metallurgy of Rare Earths, 57. 19 Ibid...Oct 12, 2010): 3. 38 Gupta and Krishnamurthy, Extractive Metallurgy of Rare Earths, 94. 39 U.S. Government Accountability Office, Rare Earth

  18. Rare earth elements in freshwater, marine, and terrestrial ecosystems in the eastern Canadian Arctic.

    Science.gov (United States)

    MacMillan, Gwyneth Anne; Chételat, John; Heath, Joel P; Mickpegak, Raymond; Amyot, Marc

    2017-09-07

    Few ecotoxicological studies exist for rare earth elements (REEs), particularly field-based studies on their bioaccumulation and food web dynamics. REE mining has led to significant environmental impacts in several countries (China, Brazil, U.S.), yet little is known about the fate and transport of these contaminants of emerging concern. Northern ecosystems are potentially vulnerable to REE enrichment from prospective mining projects at high latitudes. To understand how REEs behave in remote northern food webs, we measured REE concentrations and carbon and nitrogen stable isotope ratios (∂(15)N, ∂(13)C) in biota from marine, freshwater, and terrestrial ecosystems of the eastern Canadian Arctic (N = 339). Wildlife harvesting and tissue sampling was partly conducted by local hunters through a community-based monitoring project. Results show that REEs generally follow a coherent bioaccumulation pattern for sample tissues, with some anomalies for redox-sensitive elements (Ce, Eu). Highest REE concentrations were found at low trophic levels, especially in vegetation and aquatic invertebrates. Terrestrial herbivores, ringed seal, and fish had low total REE levels in muscle tissue (∑REE for 15 elements <0.1 nmol g(-1)), yet accumulation was an order of magnitude higher in liver tissues. Age- and length-dependent REE accumulation also suggest that REE uptake is faster than elimination for some species. Overall, REE bioaccumulation patterns appear to be species- and tissue-specific, with limited potential for biomagnification. This study provides novel data on the behaviour of REEs in ecosystems and will be useful for environmental impact assessment of REE enrichment in northern regions.

  19. Alkaline Earth Element Adsorption onto PAA-Coated Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2017-02-01

    Full Text Available In this paper, we present a study on the adsorption of calcium (Ca2+ onto polyacrylic acid-functionalized iron-oxide magnetic nanoparticles (PAA-MNPs to gain an insight into the adsorption behavior of alkaline earth elements at conditions typical of produced water from hydraulic fracturing. An aqueous co-precipitation method was employed to fabricate iron oxide magnetic nanoparticles, whose surface was first coated with amine and then by PAA. To evaluate the Ca2+ adsorption capacity by PAA-MNPs, the Ca2+ adsorption isotherm was measured in batch as a function of pH and sodium chlorite (electrolyte concentration. A surface complexation model accounting for the coulombic forces in the diffuse double layer was developed to describe the competitive adsorption of protons (H+ and Ca2+ onto the anionic carboxyl ligands of the PAA-MNPs. Measurements show that Ca2+ adsorption is significant above pH 5 and decreases with the electrolyte concentration. Upon adsorption, the nanoparticle suspension destabilizes and creates large clusters, which favor an efficient magnetic separation of the PAA-MNPs, therefore, helping their recovery and recycle. The model agrees well with the experiments and predicts that the maximum adsorption capacity can be achieved within the pH range of the produced water, although that maximum declines with the electrolyte concentration.

  20. Size distribution of rare earth elements in coal ash

    Science.gov (United States)

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  1. MICROBIALLY MEDIATED LEACHING OF RARE EARTH ELEMENTS FROM RECYCLABLE MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Reed, D. W.; Fujita, Y.; Daubaras, D. L.; Bruhn, D. F.; Reiss, J. H.; Thompson, V. S.; Jiao, Y.

    2016-09-01

    Bioleaching offers a potential approach for recovery of rare earth elements (REE) from recyclable materials, such as fluorescent lamp phosphors or degraded industrial catalysts. Microorganisms were enriched from REE-containing ores and recyclable materials with the goal of identifying strains capable of extracting REE from solid materials. Over 100 heterotrophic microorganisms were isolated and screened for their ability to produce organic acids capable of leaching REE. The ten most promising isolates were most closely related to Pseudomonas, Acinetobacter and Talaromyces. Of the acids produced, gluconic acid appeared to be the most effective at leaching REE (yttrium, lanthanum, cerium, europium, and terbium) from retorted phosphor powders (RPP), fluidized cracking catalyst (FCC), and europium-doped yttrium oxide (YOEu). We found that an Acinetobacter isolates, BH1, was the most capable strain and able to leach 33% of the total REE content from the FCC material. These results support the continuing evaluation of gluconic acid-producing microbes for large-scale REE recovery from recyclable materials.

  2. Rare earth element geochemistry of groundwater from a deep seated sandstone aquifer, northern Anhui province, China

    Institute of Scientific and Technical Information of China (English)

    Gui Herong; Sun Linhua; Chen Luwang; Chen Song

    2011-01-01

    Deep coal mines in northern Anhui province,China,provide opportunities for tracing the distribution and fractionation of rare earth elements (REEs) in deep seated environments.Major ions,as well as REE concentrations were measured in groundwater from a sandstone aquifer located between -400 and -280 m.Our results indicate that this groundwater consists of Cl·HCO3-Na or Cl·CO3-Na water types with warm temperature (30.1-31.4℃),circumneutral pH (7.27-8.61) and high levels of total dissolved solids (TDS- 1306-2165 mg/L).Concentrations of REEs in groundwater are high as expressed by their Nd concentrations (0.0086-0.018 μg/L).Except for weak heavy REEs (HREE) enrichment relative to light REEs (LREE),the similarity of REE distribution patterns between groundwater and aquifer rock indicate that enrichment of REEs is considered to be controlled by aquifer rock,as well as by their minerals,whereas the fractionation of REEs is controlled by HREE enriched minerals and,to a lesser extent,by inorganic REE complexes.Ce anomalies normalized to Post Archean Average Shale (PAAS) and aquifer rock are weak,which probably reflect the contribution of reduced conditions in combination with pH,rather than a signature of aquifer rock.

  3. Marine phosphorites as potential resources for heavy rare earth elements and yttrium

    Science.gov (United States)

    Hein, James; Koschinsky, Andrea; Mikesell, Mariah; Mizell, Kira; Glenn, Craig R.; Wood, Ray

    2016-01-01

    Marine phosphorites are known to concentrate rare earth elements and yttrium (REY) during early diagenetic formation. Much of the REY data available are decades old and incomplete, and there has not been a systematic study of REY distributions in marine phosphorite deposits that formed over a range of oceanic environments. Consequently, we initiated this study to determine if marine phosphorite deposits found in the global ocean host REY concentrations of high enough grade to be of economic interest. This paper addresses continental-margin (CM) and open-ocean seamount phosphorites. All 75 samples analyzed are composed predominantly of carbonate fluorapatite and minor detrital and authigenic minerals. CM phosphorites have low total REY contents (mean 161 ppm) and high heavy REY (HREY) complements (mean 49%), while seamount phosphorites have 4–6 times higher individual REY contents (except for Ce, which is subequal; mean ΣREY 727 ppm), and very high HREY complements (mean 60%). The predominant causes of higher concentrations and larger HREY complements in seamount phosphorites compared to CM phosphorites are age, changes in seawater REY concentrations over time, water depth of formation, changes in pH and complexing ligands, and differences in organic carbon content in the depositional environments. Potential ore deposits with high HREY complements, like the marine phosphorites analyzed here, could help supply the HREY needed for high-tech and green-tech applications without creating an oversupply of the LREY.

  4. Marine Phosphorites as Potential Resources for Heavy Rare Earth Elements and Yttrium

    Directory of Open Access Journals (Sweden)

    James R. Hein

    2016-08-01

    Full Text Available Marine phosphorites are known to concentrate rare earth elements and yttrium (REY during early diagenetic formation. Much of the REY data available are decades old and incomplete, and there has not been a systematic study of REY distributions in marine phosphorite deposits that formed over a range of oceanic environments. Consequently, we initiated this study to determine if marine phosphorite deposits found in the global ocean host REY concentrations of high enough grade to be of economic interest. This paper addresses continental-margin (CM and open-ocean seamount phosphorites. All 75 samples analyzed are composed predominantly of carbonate fluorapatite and minor detrital and authigenic minerals. CM phosphorites have low total REY contents (mean 161 ppm and high heavy REY (HREY complements (mean 49%, while seamount phosphorites have 4–6 times higher individual REY contents (except for Ce, which is subequal; mean ΣREY 727 ppm, and very high HREY complements (mean 60%. The predominant causes of higher concentrations and larger HREY complements in seamount phosphorites compared to CM phosphorites are age, changes in seawater REY concentrations over time, water depth of formation, changes in pH and complexing ligands, and differences in organic carbon content in the depositional environments. Potential ore deposits with high HREY complements, like the marine phosphorites analyzed here, could help supply the HREY needed for high-tech and green-tech applications without creating an oversupply of the LREY.

  5. Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wenming, E-mail: jwenming@163.com [State Key Lab of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Fan, Zitian; Dai, Yucheng; Li, Chi [State Key Lab of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-03-01

    The effects of rare earth (RE) containing Ce and La elements addition on the microstructures characteristics, tensile properties and fracture behavior of A357 alloy under as-cast and T6 conditions were systematically investigated in this study. Obtained results showed that the addition of RE obviously reduced the sizes of the α-Al primary phase and eutectic silicon particles as well as SDAS value and improved the morphology of eutectic silicon particles. The optimum level of added RE content were 0.2 wt%, and the aspect ratio of eutectic silicon particles of the A357 modified alloy under as-cast and T6 conditions decreased 142% and 174%, respectively, compared with the unmodified alloy. In addition, the addition of RE greatly improved the tensile properties of A357 alloy as result of the significant improvement in microstructure, especially in elongation under T6 condition. The fracture surfaces of the A357 unmodified alloy tensile samples showed a clear brittle fracture nature, and its fracture path passed through the eutectic silicon particles and displayed a transgranular fracture mode, leading to poorer ductility. The fracture path of the A357 modified alloys passed through the eutectic phase along the grain boundaries of the α-Al primary phase, and the fracture generated by dimple rupture with cracked eutectic silicon particles, and it showed an intergranular fracture mode, resulting in superior ductility.

  6. Influence of rare earth elements on corrosion behavior of Al-brass in marine water

    Institute of Scientific and Technical Information of China (English)

    LIN Gaoyong; ZHOU Yuxiong; ZENG Juhua; ZOU Yanming; LIU Jian; SUN Liping

    2011-01-01

    The corrosion behaviors of Al-brass in stagnant and flowing marine water as a function of combinative rare earths (Ce and La) addition were investigated by electrochemical techniques,X-ray diffraction (XRD) and scanning electron microscopy (SEM).It was demonstrated that RE elements could make the corrosion product layer more protective and strengthen the cohesion between the film and matrix in stagnant seawater.The electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) analysis confirmed that a duplex layer,which was mainly composed of an inner A12O3 with trace amounts of RE compounds and an outer basic chloride of copper or zinc like (Cu,Zn)2Cl(OH)3,Cu(OH)Cl and CuCl2·3Cu(OH)2 layer was formed on RE-contained Al-brass surface and that the inner layer was responsible for the good corrosion resistance of the alloy.While only a porous and non-protective corrosion product layer was formed on the Al-brass alloy without RE addition,which made small values of the corrosion resistance.Additionally,in flowing marine water with velocity about 2 m/s,pitting corrosion occurred on the M-brass surface and RE addition could availably decrease pitting sensitivity of the alloy.

  7. Thin films of rare-earth (Y, La, Ce, Pr, Nd, Sm) oxides formed by the spray-ICP technique

    Science.gov (United States)

    Suzuki, M.; Kagawa, M.; Syono, Y.; Hirai, T.

    1991-07-01

    Thin films of Y 2O 3, La 2O 3, CeO 2, PrO 2, Nd 2O 3 and Sm 2O 3 were synthesized by injecting ultrasonically atomized metal nitrate solutions into a high temperature inductively coupled RF plasma above 5000 K generated under atmospheric pressure (the spray-ICP technique). Fused quartz plates and single crystal sapphire plates giving no background X-ray reflection peaks were used as substrates. About 0.4 μm thick transparent films could be prepared by 10 min of running. The films of CeO 2 and PrO 2, both belonging to the cubic flourite type, revealed (100) and (111) orientations, respectively. With the remaining oxides having A (hexagonal), B (monoclinic) and C (cubic) rare-earth structures, film orientations were A (001) for La 2O 3, A (001)+C (111) for Nd 2O 3, and C (111) for Y 2O 3. Sm 2O 3 films were composed of a phase with C (111) and an extra phase with an orientation close to (001) of A-Sm 2O 3 or its equivalent, (20 overline1) of B-Sm 2O 3.

  8. The effect of Ce3+ ions on the spectral and decay characteristics of luminescence phosphate-borate glasses doped with rare-earth ions

    Science.gov (United States)

    Valiev, D. T.; Polisadova, E. F.; Belikov, K. N.; Egorova, N. L.

    2014-05-01

    The luminescent characteristics of Li2O-B2O3-P2O5-CaF2 (LBPC) glasses doped with Gd3+ and Tb3+ ions and codoped with Ce3+ are studied by pulsed optical spectrometry under electron beam excitation. It is found that in glass with Ce3+ and Gd3+ ions a decrease in the decay time of gadolinium luminescence in the 312-nm band (6 P J → 8 S 7/2) was observed. It is shown that in the glass LBPC: Tb, Ce, an increase in the emission intensity in the main radiative transitions in terbium ion was observed. In the kinetics of luminescence band 545 nm of LBPC: Tb, Ce glasses, is present stage of buildup, the character of which changes with the doped of Ce3+ ions. The mechanism of energy transfer in LBP glasses doped with rare elements is discussed.

  9. Seawater-derived rare earth element addition to abyssal peridotites during serpentinization

    Science.gov (United States)

    Frisby, Carl; Bizimis, Michael; Mallick, Soumen

    2016-04-01

    Serpentinized abyssal peridotites are evidence for active communication between the Earth's hydrosphere and the upper mantle, where exchange and retention of both major and trace elements occur. Bulk rock Nd isotopes in serpentinized abyssal peridotites imply interaction of seawater with the peridotite. In contrast, the Nd isotopes of clinopyroxenes from serpentinized abyssal peridotites retain their primary magmatic signature. It is currently unclear if, how and where seawater-derived Nd and other REE are being added or exchanged with the mantle peridotite minerals during serpentinization. To remedy this knowledge gap, we present in situ trace and major element concentrations, bulk rock and sequential leaching experiment trace element concentrations as well as Nd, Sr isotope data on refertilized and depleted serpentinized abyssal peridotites from the Southwest Indian Ridge. The secondary serpentine matrix and magnetite veins in these peridotites have elevated LREE concentrations, with variable negative Ce anomalies and large Rb, Sr, Pb and U enrichments that resemble seawater trace element patterns. The LREE concentrations in the serpentine phase are higher than those expected for the primary mantle mineralogy (olivine, orthopyroxene) based on data from relic clinopyroxenes and equilibrium partition coefficients. These data are consistent with seawater-derived REE addition to the peridotite during serpentinization. The bulk rocks have more radiogenic Sr and more unradiogenic Nd isotopes than their clinopyroxene (up to 8 εNd units lower than clinopyroxene). Sequential leaching experiments designed to mobilize secondary carbonates and Fe-oxides show even more unradiogenic Nd isotope ratios in the leachates than the bulk rock and clinopyroxene, approaching seawater compositions (up to 15 εNd units lower than clinopyroxene). Mass balance calculations using trace elements or Nd isotopes suggest that up to 30% of the bulk peridotite Nd budget is of seawater origin and

  10. Water—Soluble Rare Earth Elements in Some Soils of China

    Institute of Scientific and Technical Information of China (English)

    ZHUJIANGUO; SUNJUN; 等

    1997-01-01

    Water-soluble rare earth elements(WSREEs) of four typical soil profiles in China were determined by using a high-resolution inductively coupled plasma mass spectrometer, Results showed that the conents of WSREEs decreased from upper layer to lower layer of soils in the southern part of Chian with a high rainfall and low pH but increased for soils in the northern part of China with a low rainfall and relatively higher pH. Contents of WSREEs in soils were olwer than 100μg kg-1 in most cases ,and varied greatly with both different soils and different layers of the same profile .The highest content was 2816.3μg kg-1 but the lowest was 17.6μg kg-1 only.The content of individual rare earth lement(REE) in the soil solution also varied greatly with the highest one ranging from 8.4 to 1373μg kg-1 for Ce and the lowest one from 0.05 to 4.48μg kg-1 for Lu.The sum of WSREEs in the first soil layers ranged from 121.5 to 345.6μg kg-1.Great variaions existed among ratios of REEs in the first soil layers ranged from 121.5 to 345.6μg kg-1.Great variations existed among ratios of REEs extracted with water to the total REEs of soils,ranging from 0.02×10-3 to 13.2×0-3 .But as the upper layer was consiered,the ratio showed only a small difference, ranging from 0.79×10-3 to 1.69×10-3.

  11. A new family of nonstoichiometric layered rare-earth tin antimonides, RESn{sub x}Sb{sub 2} (RE = La, Ce, Pr, Nd, Sm): Crystal structure of LaSn{sub 0.75}Sb{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, M.J.; Hushagen, R.W.; Mar, A. [Univ. of Alberta, Edmonton (Canada)

    1996-07-17

    Rare earth tin antimonides, RESn{sub x}Sb{sub 2} (RE = La, Ce, Pr, Nd, Sm) were synthesized by stoichiometric combination of the elements at high temperature. For the La compound, Sn content was varied from 0.1 {le} x {le} 0.8 and the crystal structure of x = 0.75 is reported. LaSn{sub 0.75}Sb{sub 2} crystallizes in the orthorhombic space group D{sup 17}{sub 2h}-Cmcm.

  12. Photon management properties of rare-earth (Nd,Yb,Sm)-doped CeO2 films prepared by pulsed laser deposition.

    Science.gov (United States)

    Balestrieri, Matteo; Colis, Silviu; Gallart, Mathieu; Schmerber, Guy; Bazylewski, Paul; Chang, Gap Soo; Ziegler, Marc; Gilliot, Pierre; Slaoui, Abdelilah; Dinia, Aziz

    2016-01-28

    CeO2 is a promising material for applications in optoelectronics and photovoltaics due to its large band gap and values of the refractive index and lattice parameters, which are suitable for silicon-based devices. In this study, we show that trivalent Sm, Nd and Yb ions can be successfully inserted and optically activated in CeO2 films grown at a relatively low deposition temperature (400 °C), which is compatible with inorganic photovoltaics. CeO2 thin films can therefore be efficiently functionalized with photon-management properties by doping with trivalent rare earth (RE) ions. Structural and optical analyses provide details of the electronic level structure of the films and of their energy transfer mechanisms. In particular, we give evidence of the existence of an absorption band centered at 350 nm from which energy transfer to rare earth ions occurs. The transfer mechanisms can be completely explained only by considering the spontaneous migration of Ce(3+) ions in CeO2 at a short distance from the RE(3+) ions. The strong absorption cross section of the f-d transitions in Ce(3+) ions efficiently intercepts the UV photons of the solar spectrum and therefore strongly increases the potential of these layers as downshifters and downconverters.

  13. The influence of different alkaline earth oxides on the structural and optical properties of undoped, Ce-doped, Sm-doped, and Sm/Ce co-doped lithium alumino-phosphate glasses

    Science.gov (United States)

    Othman, H. A.; Arzumanyan, G. M.; Möncke, D.

    2016-12-01

    Undoped, singly Sm doped, Ce doped, and Sm/Ce co-doped lithium alumino-phosphate glasses with different alkaline earth modifiers were prepared by melt quenching. The structure of the prepared glasses was investigated by FT-IR and Raman, as well as by optical spectroscopy. The effect of the optical basicity of the host glass matrix on the added active dopants was studied, as was the effect doping had on the phosphate structural units. The optical edge shifts toward higher wavelengths with an increase in the optical basicity due to the increased polarizability of the glass matrix, but also with increasing CeO2 concentration as a result of Ce3+/Ce4+ inter valence charge transfer (IV-CT) absorption. The optical band gap for direct and indirect allowed transitions was calculated for the undoped glasses. The glass sample containing Mg2+ modifier ions is found to have the highest value (4.16 eV) for the optical band gap while Ba2+ has the lowest value (3.61 eV). The change in the optical band gap arises from the structural changes and the overall polarizability (optical basicity). Refractive index, molar refractivity Rm and molar polarizability αm values increase with increasing optical basicity of the glasses. The characteristic absorption peaks of Sm3+ were also investigated. For Sm/Ce co-doped glasses, especially at high concentration of CeO2, the absorption of Ce3+ hinders the high energy absorption of Sm3+ and this effect becomes more obvious with increasing optical basicity.

  14. Investigating Rare Earth Element Systematics in the Marcellus Shale

    Science.gov (United States)

    Yang, J.; Torres, M. E.; Kim, J. H.; Verba, C.

    2014-12-01

    The lanthanide series of elements (the 14 rare earth elements, REEs) have similar chemical properties and respond to different chemical and physical processes in the natural environment by developing unique patterns in their concentration distribution when normalized to an average shale REE content. The interpretation of the REE content in a gas-bearing black shale deposited in a marine environment must therefore take into account the paleoredox conditions of deposition as well as any diagenetic remobilization and authigenic mineral formation. We analyzed 15 samples from a core of the Marcellus Shale (Whipkey ST1, Greene Co., PA) for REEs, TOC, gas-producing potential, trace metal content, and carbon isotopes of organic matter in order to determine the REE systematics of a black shale currently undergoing shale gas development. We also conducted a series of sequential leaching experiments targeting the phosphatic fractions in order to evaluate the dominant host phase of REEs in a black shale. Knowledge of the REE system in the Marcellus black shale will allow us to evaluate potential REE release and behavior during hydraulic fracturing operations. Total REE content of the Whipkey ST1 core ranged from 65-185 μg/g and we observed three distinct REE shale-normalized patterns: middle-REE enrichment (MREE/MREE* ~2) with heavy-REE enrichment (HREE/LREE ~1.8-2), flat patterns, and a linear enrichment towards the heavy-REE (HREE/LREE ~1.5-2.5). The MREE enrichment occurred in the high carbonate samples of the Stafford Member overlying the Marcellus Formation. The HREE enrichment occurred in the Union Springs Member of the Marcellus Formation, corresponding to a high TOC peak (TOC ~4.6-6.2 wt%) and moderate carbonate levels (CaCO3 ~4-53 wt%). Results from the sequential leaching experiments suggest that the dominant host of the REEs is the organic fraction of the black shale and that the detrital and authigenic fractions have characteristic MREE enrichments. We present our

  15. Geochemistry of Platinum Group and Rare Earth Elements of the Polymetallic Layer in the Lower Cambrian,Weng'an,Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    FU Yong; WU Chaodong; GUAN Ping; QU Wenjun; CHEN Jiafu

    2009-01-01

    The black shales of the Lower Cambrian Niutitang Formation in Weng'an.on the Yangtze platform of south China,contain voluminous polymetallic sulfide deposits.A comprehensive geochemical investigation of trace,rare earth,and platinum group elements(PGE)has been undertaken in order to discuss its ore genesis and correlation with the tectono.depositional setting.The ore-bearing layers enrich molybdenum(Mo),nickeI(Ni),vanadium(V),lead(Pb),strontium(Sr), bariam(Ba),uranium(U),arsenic(As),and rare earth elements(REE)in abundance.High uranium/thorium(U/Th)ratios(U/Th>1)indicated that mineralization was mainly influenced by the hydrothermal process.The δU value Was above 1.9.showing a reducing sedimentary condition.The REE patterns showed high enrichment in Iight rare earth elements (LREE)(heavy rare earth elements (HREE)(LREE/HREE=5-17),slightly negative europium(EU)and cerium(Ce)anomalies(δEu=0.81-0.93).and positive Ce anomalies(δCe=0.76-1.12).PGE abundance was characterized by the PGE-type distribution patterns,enriching platinum(Pt),palladium(Pd),ruthenium(RuJ and osmium(Os).The Pt,Pd ratio was 0.8.which is close to the ratios of seawater and ultramafic rocks.AII of these geochemical features suggest that the mineralization was triggered by hydrothermal activity in an extensionai setting in the context of break-up of the Rodinian supercontinent.

  16. Recovery and separation of rare Earth elements using salmon milt.

    Directory of Open Access Journals (Sweden)

    Yoshio Takahashi

    Full Text Available Recycling rare earth elements (REEs used in advanced materials such as Nd magnets is important for the efficient use of REE resources when the supply of several REEs is limited. In this work, the feasibility of using salmon milt for REE recovery and separation was examined, along with the identification of the binding site of REEs in salmon milt. Results showed that (i salmon milt has a sufficiently high affinity to adsorb REEs and (ii the adsorption capacity of the milt is 1.04 mEq/g, which is comparable with that of commercial cation exchange resin. Heavier REEs have higher affinity for milt. A comparison of stability constants and adsorption patterns of REEs discussed in the literature suggests that the phosphate is responsible for the adsorption of REE in milt. The results were supported by dysprosium (Dy and lutetium (Lu LIII-edge extended x-ray absorption fine structure (EXAFS spectroscopy. The REE-P shell was identified for the second neighboring atom, which shows the importance of the phosphate site as REE binding sites. The comparison of REE adsorption pattern and EXAFS results between the milt system and other adsorbent systems (cellulose phosphate, Ln-resin, bacteria, and DNA-filter hybrid revealed that the coordination number of phosphate is correlated with the slope of the REE pattern. The separation column loaded with milt was tested to separate REE for the practical use of salmon milt for the recovery and separation of REE. However, water did not flow through the column possibly because of the hydrophobicity of the milt. Thus, sequential adsorption-desorption approach using a batch-type method was applied for the separation of REE. As an example of the practical applications of REE separation, Nd and Fe(III were successfully separated from a synthetic solution of Nd magnet waste by a batch-type method using salmon milt.

  17. Accumulation of Rare Earth Elements in Various Microorganisms

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The removal of rare earth elements (REEs) from solution in various microorganisms was examined. Seventy-six strains from 69 species (22 bacteria, 20 actinomycetes, 18 fungi, and 16 yeasts) were tested. Initially, Sm was used to test the removal capabilities of the various organisms. Gram-positive bacteria, such as Bacillus licheniformis, B. subtilis, Brevibacterium helovolum, and Rhodococcus elythropolis, exhibited a particularly high capacity for accumulating Sm. In particular, the B. lichemiformis cells accumulated approximately 316 μmol Sm per gram dry wt. of microbial cells. A full suite of screenings was then conducted to compare the abilities of the organisms to remove Sc, Y, La, Er, and, Lu from solution. Tests were done with solutions containing one REE at a time. Accumulation was nearly identical for the various metals and organisms. However, when solutions with equimolar amounts of two REEs were used, preferential removal from solution was observed. When an Eu/Gd solution was used, gram-positive bacteria removed more Eu and Gd as compared to actinomycetes. When Eu/Sm combination was used, gram-positive bacteria removed equal mounts of both metals and some actinomycetes removed more Eu. The selective removal was quantified by calculating separation factors (S. F.), which indicated that Streptomyces levoris cells accumulated the greatest proportion of Eu. The removal of REEs from a solution containing five metals (Y, La, Sm, Er, and Lu) was then examined. Mucor javanicus preferentially accumulated Sm and S. flavoviridis preferentially accumulated Lu. The effects of pH and Sm concentration on the accumulation of Sm by B. licheniformis were also examined. Accumulation increased at higher pH and at greater solution concentrations.

  18. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  19. Effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    KaikunWang; KuiZhang; 等

    2002-01-01

    The effects of rare earth elements on the microstructure and properties of Magnesium alloy AZ91D alloy were studied.The different proportion of rare earth elements was added to the AZ91D and the tensile tests were carried out at different temperatures.The experimental results show that at room temperature or at 120℃ the AZ91D's decrease with the increasing amount of the rare earth elements.however,the ductility is improved.The influence of 0.14%Sb(mass fraction)on the AZ91D's strength is like that of rare earth elements(0.2%-0.4%)(mass fraction).Microstructure graphs demonstrate that appropriate amount of rare earth elements (0.1%-0.2%) can fine AZ91D's grain and improve its ductility.

  20. Effects of rare earth elements on the microstructureand properties of magnesium alloy AZ91D

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of rare earth elements on the microstructure and properties of magnesium alloy AZ91D alloy were studied. The different proportion of rare earth elements was added to the AZ91D and the tensile tests were carried out at different temperatures. The experimental results show that at room temperature or at 120℃ the AZ91D's strength decrease with the increasing amount of the rare earth elements. However, the ductility is improved. The influence of 0.14%Sb (mass fraction) on the AZ91D's strength is like that of rare earth elements (0.2%-0.4%) (mass fraction). Microstructure graphs demonstrate that appropriate amount of rare earth elements (0.1%-0.2%) can fine AZ91D's grain and improve its ductility.

  1. Effect of rare earth elements on the microstructure and property for magnesium alloy AM60B

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of rare earth elements on the microstructure and properties of magnesium alloy AM60B alloy were studied. Different proportions of rare earth elements were added to AM60B and the tensile tests were carried out under different temperatures. The experimental results show that at room temperature the tensile strength of AM60B can be improved with the addition of rare earth elements. The ductility of which at room or elevated temperature (120℃) can also be improved, and the ductility is to some extent in proportion with the amount of rare earth elements. The ductility at 120℃ is better than that at room temperature. The microstructure graphs demonstrate that appropriate amount of rare earth elements (0.1%-0.2%, mass fraction) can fine AM60B's grain and improve its ductility.

  2. Synergistic inhibition effect of L-phenylalanine and rare earth Ce(IV) ion on the corrosion of copper in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Daquan, E-mail: zhangdaquan@shiep.edu.cn [Department of Environmental Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Wu Huan; Gao Lixin [Department of Environmental Engineering, Shanghai University of Electric Power, Shanghai 200090 (China)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Synergistic effect of L-phenylalanine (L-Phe) and Ce(SO{sub 4}){sub 2} on the corrosion of copper on the corrosion inhibition of copper in 0.5 M HCl solution. Black-Right-Pointing-Pointer Structure of the complex film formed by the interaction of L-phenylalanine (L-Phe) and Ce(SO{sub 4}){sub 2} on the copper surface. Black-Right-Pointing-Pointer Mechanism of the improvement of the inhibition property of amino acids by the addition of rare earth compound. - Abstract: The synergistic inhibition effect of L-phenylalanine (L-Phe) and Ce(SO{sub 4}){sub 2} on the corrosion of copper in 0.5 M HCl solution was investigated by weight-loss, electrochemical methods and surface analysis. The electrochemical results showed that L-Phe has definite inhibition effects for copper, while Ce(IV) promoted the anodic process of copper corrosion. The combination L-Phe with Ce(IV) ion produced strong synergistic effect on corrosion inhibition for copper. The maximum inhibition efficiency was 82.7% for 5 mM L-Phe + 2 mM Ce(IV). The results of EIS and potentiodynamic polarization are in good agreement. SEM showed that L-Phe and Ce(IV) can form a dense protective film on the copper surface.

  3. Mechanisms of inclusion evolution and intra-granular acicular ferrite formation in steels containing rare earth elements

    Institute of Scientific and Technical Information of China (English)

    Xiaoxuan DENG; Min JIANG; Xinhua WANG

    2012-01-01

    Inclusion characteristic and microstructure of rare earth (RE) elements containing steel were evaluated with scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS),element-mapping,optical microscopy (OM),and automated feature analysis (AFA) option equipped with ASPEX PSEM.Factsage was used tocalculate the equilibrium inclusion composition.Based on the calculation,an inclusion evolution mechanism was proposed.Furthermore,line scanning analysis was used to elucidate the intra-granular acicular ferrite (IAF) nucleation mechanism.The result showed that two different inclusions exist in sample steel:(Mn-Al-Si-Ti-La-Ce-O)+MnS complex inclusion and isolated MnS inclusion.Almost all nucleation sites for IAF are complex inclusions,while single MnS inclusion cannot induce IAF.A possible formation mechanism of complex inclusion is proposed based on calculated results using Factsage,which agrees well with experimental results.A Mn-depletion zone (MDZ) which exists adjacent to the (Mn-A1-Si-Ti-La-Ce-O) +-MnS complex inclusion can account for the IAF formation.However,the low volume fraction (1.49× 10-7)of effective inclusion may result in onlv 10% (volume fraction) IAF.

  4. Accumulation of Rare Earth Elements in Spinach and Soil under Condition of Using REE and Acid Rain Stress

    Institute of Scientific and Technical Information of China (English)

    严重玲; 洪业汤; 林鹏; 王世杰; 李心清; 梁洁

    2002-01-01

    The content and distribution characteristics of REE in spinach and soil under using REE and acid rain stress were studied by pot experiments. The results show that the content of REE is 0.527~0.696 (μgg-1) in the above-ground portion of spinach, 2.668~3.003 (μg*g-1) in the under-ground portion of spinach and 229.09~250.30 (μg*g-1) in the soil. With the acidity of acid rain increasing, the leaching of REE in plants and soil is strengthened and the amount of REE reduces with decreasing of pH value. After REE are used, though plants show the selective absorption to Ce group elements (especially spraying on leaves), regardless under acid rain stress or using REE or not, the distribution model of REE in the above-ground and under-ground portion of plants is basically the same with the control. Plants also follow the Oddo-Harkins rule of the REE of distribution abundance, light rare earth elements is enriched, the minus of Eu is abnormal and admeasure of Ce is a rich model. The results show that REE in plants mainly come from soil and are affected by it.

  5. Core-Mantle Partitioning of Volatile Siderophile Elements and the Origin of Volatile Elements in the Earth

    Science.gov (United States)

    Nickodem, K.; Righter, K.; Danielson, L.; Pando, K.; Lee, C.

    2012-01-01

    There are currently several hypotheses on the origin of volatile siderophile elements in the Earth. One hypothesis is that they were added during Earth s accretion and core formation and mobilized into the metallic core [1], others claim multiple stage origin [2], while some hypothesize that volatiles were added after the core already formed [3]. Several volatile siderophile elements are depleted in Earth s mantle relative to the chondrites, something which continues to puzzle many scientists. This depletion is likely due to a combination of volatility and core formation. The Earth s core is composed of Fe and some lighter constituents, although the abundances of these lighter elements are unknown [4]. Si is one of these potential light elements [5] although few studies have analyzed the effect of Si on metal-silicate partitioning, in particular the volatile elements. As, In, Ge, and Sb are trace volatile siderophile elements which are depleted in the mantle but have yet to be extensively studied. The metal-silicate partition coefficients of these elements will be measured to determine the effect of Si. Partition coefficients depend on temperature, pressure, oxygen fugacity, and metal and silicate composition and can constrain the concentrations of volatile, siderophile elements found in the mantle. Reported here are the results from 13 experiments examining the partitioning of As, In, Ge, and Sb between metallic and silicate liquid. These experiments will examine the effect of temperature, and metal-composition (i.e., Si content) on these elements in or-der to gain a greater understanding of the core-mantle separation which occurred during the Earth s early stages. The data can then be applied to the origin of volatile elements in the Earth.

  6. Modelling of Rare Earth Elements Complexation With Humic Acid

    Science.gov (United States)

    Pourret, O.; Davranche, M.; Gruau, G.; Dia, A.

    2006-12-01

    The binding of rare earth elements (REE) to humic acid (HA) was studied by combining Ultrafiltration and ICP- MS techniques. REE-HA complexation experiments were performed at various pH conditions (ranging from 2 to 10.5) using a standard batch equilibration method. Results show that the amount of REE bound to HA strongly increase with increasing pH. Moreover, a Middle REE (MREE) downward concavity is evidenced by REE distribution patterns at acidic pH. Modelling of the experimental data using Humic Ion Binding Model VI provided a set of log KMA values (i.e. the REE-HA complexation constants specific to Model VI) for the entire REE series. The log KMA pattern obtained displays a MREE downward concavity. Log KMA values range from 2.42 to 2.79. These binding constants are in good agreement with the few existing datasets quantifying the binding of REE with humic substances except a recently published study which evidence a lanthanide contraction effect (i.e. continuous increase of the constant from La to Lu). The MREE downward concavity displayed by REE-HA complexation pattern determined in this study compares well with results from REE-fulvic acid (FA) and REE-acetic acid complexation studies. This similarity in the REE complexation pattern shapes suggests that carboxylic groups are the main binding sites of REE in HA. This conclusion is further supported by a detailed review of published studies for natural, organic-rich, river- and ground-waters which show no evidence of a lanthanide contraction effect in REE pattern shape. Finally, application of Model VI using the new, experimentally determined log KMA values to World Average River Water confirms earlier suggestions that REE occur predominantly as organic complexes (> 60 %) in the pH range between 5-5.5 and 7-8.5 (i.e. in circumneutral pH waters). The only significant difference as compared to earlier model predictions made using estimated log KMA values is that the experimentally determined log KMA values

  7. Rare Earth elements as sediment tracers in Mangrove ecosystems

    Science.gov (United States)

    Ramanathan, A. L.; Swathi, S.

    2013-05-01

    Rare earth elements have been widely used as geochemical source fingerprints of rocks and sediments to study processes involving cosmo-chemistry, igneous petrology, tectonic setting and for investigations of water-rock interactions and weathering processes including transport of weathering products to the oceans.Many studies have addressed the use of REEs in investigating the environmental impact of human activity and demonstrated that the REE natural distribution in sediment from densely industrialised and populated regions can be altered by anthropogenic influences.The coastal wetlands like Mangroves are ultimate sinks for all the material derived from the terrestrial and marine environment.The high productivity and low ratio of sediment respiration to net primary production gives mangrove sediments the potential for long-term sequestration of these pollutants/metals before reaching the coastal ocean. Geochemical study of REE in these sedimentary systems is useful for determining the nature of the biogeochemical processes. In particular, REE show a great sensitivity to pH changes, redox conditions and adsorption/ desorption reactions. So, they may be used as markers of discharge provenance, weathering processes, changes in environmental conditions in the water and sediments of Mangrove/wetland systems. Our study aims to establish the abundance, distribution and enrichment of REEs to track the sediment sources and biogeochemical processes occurring in the mangrove environment.Core sediments were collected from the different environmental settings within the Pichavaram mangrove area.Higher REE concentration in Pichavaram sediments indicated greater input from sources like terrestrial weathering and anthropogenic activities which in turn are affected by saline mixing and dynamic physico-chemical processes occurring in the mangrove environment. REE enrichment order was attributed to the alkaline pH (7-8.5) and reducing conditions prevailing in the mangrove

  8. Electronic and optical properties of rare earth trifluorides RF{sub 3} (R La, Ce, Pr, Nd, Gd and Dy)

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Sapan Mohan [National Institute of Technology Raipur (C.G.) (India); Nautiyal, Tashi, E-mail: tashifph@iitr.ernet.in [Indian Institute of Technology Roorkee, Roorkee (U.K.) (India); Auluck, Sushil [Indian Institute of Technology Roorkee, Roorkee (U.K.) (India)

    2011-09-15

    Highlights: {yields} The electronic structure and optical properties of some rare earth trifluorides. {yields} Band structure and optical properties indicate these are large band gap insulators. {yields} The 4f electrons do not play a decisive role in the optical properties of these. - Abstract: This work presents the electronic structure and optical properties of some rare earth trifluorides (RF{sub 3}) coarsely covering a large range of rare-earths with R La, Ce, Pr, Nd, Gd and Dy. Our theoretical investigations are based on the first principles, using the full potential linearized augmented plane wave method with the inclusion of spin orbit coupling. The local spin density approximation (LSDA) and the Coulomb-corrected LSDA + U method have been employed. We find that the standard LSDA approach is incapable of correctly describing the electronic properties of such materials since it positions the f-bands incorrectly resulting in an incorrect metallic ground state. On the other hand, LSDA + U approximation, known for treating the highly correlated 4f electrons properly, is able to reproduce the correct insulating ground state. Interestingly, however, we do not find any significant differences in the optical properties calculated using LSDA and LSDA + U suggesting that the 4f electrons do not play a decisive role in the optical properties of these compounds. The reflectivity for all the compounds stays low till {approx}7 eV which is consistent with their large energy gaps. The calculated energy gaps are in good agreement with experiments. Our calculated reflectivity compares well with the experimental data and the results are analyzed in the light of band to band transitions.

  9. Strong broad green UV-excited photoluminescence in rare earth (RE = Ce, Eu, Dy, Er, Yb) doped barium zirconate

    Energy Technology Data Exchange (ETDEWEB)

    Borja-Urby, R. [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico); Diaz-Torres, L.A., E-mail: ditlacio@cio.mx [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro, Qro. 76000 (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Ciudad de Mexico, D. F. 07730 (Mexico); Meza, O. [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico)

    2011-10-25

    Highlights: > Trivalent rare earth (RE) substitution on Zr{sup 4+} sites in BaZrO{sub 3} lead to band gap narrowing. > RE substitution lead to enhanced blue-green intrinsic emission of nanocrystalline BaZrO{sub 3} > Blue-green hue of BaZrO3:RE depends on RE dopant and excitation UV wavelength > BaZrO3: Dy{sup 3+} PL chromatic coordinates correspond to pure white color coordinates of CIE 1931 model - Abstract: The wet synthesis hydrothermal method at 100 deg. C was used to elaborate barium zirconate (BaZrO{sub 3}) unpurified with 0.5 mol% of different rare earth ions (RE = Yb, Er, Dy, Eu, Ce). Morphological, structural and UV-photoluminescence properties depend on the substituted rare earth ionic radii. While the crystalline structure of RE doped BaZrO{sub 3} remains as a cubic perovskite for all substituted RE ions, its band gap changes between 4.65 and 4.93 eV. Under 267 nm excitation the intrinsic green photoluminescence of the as synthesized BaZrO{sub 3}: RE samples is considerably improved by the substitution on RE ions. For 1000 deg. C annealed samples, under 267 nm, the photoluminescence is dominated by the intrinsic BZO emission. It is interesting to notice that Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+} doped samples present whitish emissions that might be useful for white light generation under 267 nm excitation. CIE color coordinates are reported for all samples.

  10. RARE EARTH ELEMENTS: A REVIEW OF PRODUCTION, PROCESSING, RECYCLING, AND ASSOCIATED ENVIRONMENTAL ISSUES

    Science.gov (United States)

    Rare earth elements (REEs) are a group of 15 chemical elements in the periodic table, specifically the lanthanides. Two other elements, scandium and yttrium, have a similar physiochemistry to the lanthanides, are commonly found in the same mineral assemblages, and are often refe...

  11. Separation and Recycling for Rare Earth Elements by Homogeneous Liquid-Liquid Extraction (HoLLE Using a pH-Responsive Fluorine-Based Surfactant

    Directory of Open Access Journals (Sweden)

    Shotaro Saito

    2015-08-01

    Full Text Available A selective separation and recycling system for metal ions was developed by homogeneous liquid-liquid extraction (HoLLE using a fluorosurfactant. Sixty-two different elemental ions (e.g., Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, Ir, La, Lu, Mg, Mn, Mo, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Re, Rh, Ru, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn, and Zr were examined. By changing pH from a neutral or alkaline solution (pH ≥ 6.5 to that of an acidic solution (pH < 4.0, gallium, zirconium, palladium, silver, platinum, and rare earth elements were extracted at >90% efficiency into a sedimented Zonyl FSA® (CF3(CF2n(CH22S(CH22COOH, n = 6–8 liquid phase. Moreover, all rare earth elements were obtained with superior extraction and stripping percentages. In the recycling of rare earth elements, the sedimented phase was maintained using a filter along with a mixed solution of THF and 1 M sodium hydroxide aqueous solution. The Zonyl FSA® was filtrated and the rare earth elements were recovered on the filter as a hydroxide. Furthermore, the filtrated Zonyl FSA was reusable by conditioning the subject pH.

  12. Earth's moderately volatile element composition may not be chondritic: Evidence from In, Cd and Zn

    Science.gov (United States)

    Wang, Zaicong; Laurenz, Vera; Petitgirard, Sylvain; Becker, Harry

    2016-02-01

    Current models assume that siderophile volatile elements (SVE) are depleted in bulk Earth to the same extent as lithophile elements of similar volatility. The observed additional depletion of many SVE relative to lithophile elements in the bulk silicate Earth (BSE) is ascribed to partitioning of SVE into Earth's core. However, the assumption of similar volatility of moderately volatile elements during Earth formation processes as in solar gas is quite uncertain. Here, these assumptions will be tested by assessing abundances and ratios of indium and cadmium in the BSE using new data on mantle rocks, and the application of high- and low-pressure-temperature metal-silicate partitioning data. New bulk rock abundance data of In and Cd obtained on bulk rocks of peridotite tectonites and xenoliths by isotope dilution refine previous results inferred from basalts and in-situ analyses of silicate minerals in peridotite xenoliths. The CI chondrite-normalized abundance of In in the BSE is similar to zinc and is 3-4 times higher than Cd. New and published low- and high-P-T metal-silicate partitioning data indicate that, during core formation at a range of conditions, In is always more siderophile than Zn and Cd. Adding the fraction of these elements in Earth's core to the BSE results in bulk Earth compositions that yield higher CI chondrite normalized abundances of In in the bulk Earth compared to Zn and Cd. Because In is more volatile than Zn and Cd in gas of solar composition, suprachondritic In/Zn and In/Cd in the bulk Earth suggest that during formation of Earth or its building materials, the volatilities of these elements and perhaps other volatile elements likely have changed significantly (i.e. In became less volatile). The results also suggest that known carbonaceous chondrites likely did not deliver the main volatile element-rich fraction of the Earth. Various arguments suggest that the loss of moderately volatile elements during planetary accretion should be limited

  13. Synthesis, structure and properties of bimetallic sodium rare-earth (RE) borohydrides, NaRE(BH4)4, RE = Ce, Pr, Er or Gd.

    Science.gov (United States)

    Payandeh GharibDoust, SeyedHosein; Ravnsbæk, Dorthe B; Černý, Radovan; Jensen, Torben R

    2017-09-26

    Formation, stability and properties of new metal borohydrides within RE(BH4)3-NaBH4, RE = Ce, Pr, Er or Gd is investigated. Three new bimetallic sodium rare-earth borohydrides, NaCe(BH4)4, NaPr(BH4)4 and NaEr(BH4)4 are formed based on an addition reaction between NaBH4 and halide free rare-earth metal borohydrides RE(BH4)3, RE = Ce, Pr, Er. All the new compounds crystallize in the orthorhombic crystal system. NaCe(BH4)4 has unit cell parameters of a = 6.8028(5), b = 17.5181(13), c = 7.2841(5) Å and space group Pbcn. NaPr(BH4)4 is isostructural to NaCe(BH4)4 with unit cell parameters of a = 6.7617(2), b = 17.4678(7), c = 7.2522(3) Å. NaEr(BH4)4 crystallizes in space group Cmcm with unit cell parameters of a = 8.5379(2), b = 12.1570(4), c = 9.1652(3) Å. The structural relationships, also to the known RE(BH4)3, are discussed in detail and related to the stability and synthesis conditions. Heat treatment of NaBH4-Gd(BH4)3 mixture forms an unstable amorphous phase, which decomposes after one day at RT. NaCe(BH4)4 and NaPr(BH4)4 show reversible hydrogen storage capacity of 1.65 and 1.04 wt% in the fourth H2 release, whereas that of NaEr(BH4)4 continuously decreases. This is mainly assigned to formation of metal hydrides and possibly slower formation of sodium borohydride. The dehydrogenated state clearly contains rare-earth metal borides, which stabilize boron in the dehydrogenated state.

  14. Geochemistry of Rare Earth Elements in Aktishikan Gold Deposit,Xinjiang

    Institute of Scientific and Technical Information of China (English)

    袁峰; 周涛发; 等

    2002-01-01

    The characteristics and the models of rare earth elements in the geological bodies and the hydrothermal water balancel with the adamellite were comprehensivealy studied in Aktishikan gold deposit,Nurt area of Altay,Xinjiang,And the behavior of rare earth elements during metasomatic alteration was discussed by using the isocon method of Grant,The results show that the rare earth elements are inert during metasomatic alteration,the hydrotheraml water has no relation to the magmatic water,and the gold material sources mainly stem from the wall rock.

  15. Effect of Rare Earth Elements on Exchange Performances of Cesium Ion-Sieve

    Institute of Scientific and Technical Information of China (English)

    张惠源; 王榕树; 林灿生; 张先业

    2003-01-01

    The exchange performances and the distribution coefficient of Cesium Ion-Sieve (Cs-IS) for cesium and for some rare earth elements were compared. In particular, the effects of neodymium on the cesium ion exchange and the Cs+ selectivity variation on Cs-IS owing to introduction of rare earth elements into HLLW were studied. Though rare earth elements exhibit a small influence on the distribution coefficient for Cs+, they impair Cs-exchange capacity of Cs-IS to some extent. This interruption on the selectivity to Cs+ can be significantly eliminated provided an appropriate ratio of liquid to solid V:m is used.

  16. Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater

    Science.gov (United States)

    Bau, M.; Koschinsky, A.; Dulski, P.; Hein, J.R.

    1996-01-01

    In order to evaluate details of the partitioning behaviours of Y, rare earth elements (REEs), and Ti between inorganic metal oxide surfaces and seawater, we studied the distribution of these elements in hydrogenetic marine ferromanganese (Fe-Mn) crusts from the Central Pacific Ocean. Nonphosphatized Fe-Mn crusts display shale-normalized rare earths and yttrium (REYSN) patterns (Y inserted between Dy and Ho) that are depleted in light REEs (LREEs) and which show negative anomalies for YSN, and positive anomalies for LaSN, EuSN, GdSN, and in most cases, CeSN. They show considerably smaller Y/ Ho ratios than seawater or common igneous and clastic rocks, indicating that Y and Ho are fractionated in the marine environment. Compared to P-poor crusts, REYSN patterns of phosphatized Fe-Mn crusts are similar, but yield pronounced positive YSN anomalies, stronger positive LaSN anomalies, and enrichment of the HREEs relative to the MREEs. The data suggest modification of REY during phosphatization and indicate that studies requiring primary REY distributions or isotopic ratios should be restricted to nonphosphatized (layers of) Fe-Mn crusts. Apparent bulk coefficients, KMD, describing trace metal partitioning between nonphosphatized hydrogenetic Fe-Mn crusts and seawater, are similar for Pr to Eu and decrease for Eu to Yb. Exceptionally high values of KCeD, which are similar to those of Ti, result from oxidative scavenging of Ce and support previous suggestions that Ce(IV) is a hydroxide-dominated element in seawater. Yttrium and Gd show lower KD values than their respective neighbours in the REY series. Results of modelling the exchange equilibrium between REY dissolved in seawater and REY sorbed on hydrous Fe-Mn oxides corroborate previous studies that suggested the surface complexation of REY can be approximated by their first hydroxide binding constant. Negative "anomalies" occur for stabilities of bulk surface complexes of Gd, La, and particularly Y. The differences in

  17. Control of oxygen vacancies and Ce{sup +3} concentrations in doped ceria nanoparticles via the selection of lanthanide element

    Energy Technology Data Exchange (ETDEWEB)

    Shehata, N., E-mail: nader83@vt.edu; Meehan, K.; Hudait, M.; Jain, N. [Virginia Tech, Bradley Department of Electrical and Computer Engineering (United States)

    2012-10-15

    The effect of lanthanides that have positive association energies with oxygen vacancies, such as samarium and neodymium, and the elements with negative association energies, such as holmium and erbium, on ionization state of cerium and, consequentially, the oxygen vacancy concentration in doped ceria nanoparticles are investigated in this article. Structural and optical characterizations of the doped and undoped ceria nanoparticles, synthesized using chemical precipitation, are carried out using transmission electron microscopy, X-ray diffractometry, optical absorption spectroscopy, and fluorescence spectroscopy. It is deduced that the negative association energy dopants decrease the conversion of Ce{sup +4} into Ce{sup +3} and, hence, scavenge the oxygen vacancies, evidenced by the observed increase in the allowed direct bandgap, decrease in the integrated fluorescence intensity, and increased the size of doped nanoparticles. The opposite trends are obtained when the positive association dopants are used. It is concluded that the determining factor as to whether a lanthanide dopant in ceria acts as a generator or scavenger of oxygen vacancies in ceria nanoparticles is the sign of the association energy between the element and the oxygen vacancies. The ability to tailor the ionization state of cerium and the oxygen vacancy concentration in ceria has applications in a broad range of fields, which include catalysis, biomedicine, electronics, and environmental sensing.

  18. Geochemistry of Rare Earth Elements (REE) in the Weathered Crusts from the Granitic Rocks in Sulawesi Island, Indonesia

    Institute of Scientific and Technical Information of China (English)

    Adi Maulana; Kotaro Yonezu; Koichiro Watanabe

    2014-01-01

    We report for the first time the geochemistry of rare earth elements (REE) in the weath-ered crusts of I-type and calc-alkaline to high-K (shoshonitic) granitic rocks at Mamasa and Palu re-gion, Sulawesi Island, Indonesia. The weathered crusts can be divided into horizon A (lateritic profile) and B (weathered horizon). Quartz, albite, kaolinite, halloysite and montmorrilonite prevail in the weathered crust. Both weathered profiles show that the total REE increased from the parent rocks to the horizon B but significantly decrease toward the upper part (horizon A). LREE are enriched toward the upper part of the profile as shown by La/YbN value. However, HREE concentrations are high in horizon B1 in Palu profile. The total REE content of the weathered crust are relatively elevated com-pared to the parent rocks, particularly in the lower part of horizon B in Mamasa profile and in horizon B2 in Palu profile. This suggests that REE-bearing accessory minerals may be resistant against weath-ering and may remain as residual phase in the weathered crusts. The normalized isocon diagram shows that the mass balance of major and REE components between each horizon in Mamasa and Palu weathering profile are different. The positive Ce anomaly in the horizon A of Mamasa profile indicated that Ce is rapidly precipitated during weathering and retain at the upper soil horizon.

  19. Rare earth elements in street dust and associated health risk in a municipal industrial base of central China.

    Science.gov (United States)

    Sun, Guangyi; Li, Zhonggen; Liu, Ting; Chen, Ji; Wu, Tingting; Feng, Xinbin

    2017-05-26

    The content levels, distribution characteristics, and health risks associated with 15 rare earth elements (REEs) in urban street dust from an industrial city, Zhuzhou, in central China were investigated. The total REE content (∑REE) ranged from 66.1 to 237.4 mg kg(-1), with an average of 115.9 mg kg(-1), which is lower than that of Chinese background soil and Yangtze river sediment. Average content of the individual REE in street dust decreased in the order Ce > La > Nd > Y > Pr > Sm > Gd > Dy > Er > Yb > Eu > Ho > Tb > Tm > Lu. The chondrite-normalized REE pattern indicated light REE (LREE) enrichment, a relatively steep LREE trend, heavy REE (HREE) depletion, a flat HREE trend, a Eu-negative anomaly and a Ce-positive anomaly. Foremost heavy local soil and to less degree anthropogenic pollution are the main sources of REE present in street dust. Health risk associated with the exposure of REE in street dust was assessed based on the carcinogenic and non-carcinogenic effect and lifetime average daily dose. The obtained cancer and non-cancer risk values prompt for no augmented health hazard. However, children had greater health risks than that of adults.

  20. Cyanex 923 as the extractant in a rare earth element impurity analysis of high-purity cerium oxide.

    Science.gov (United States)

    Duan, Taicheng; Li, Hongfei; Kang, JianZhen; Chen, Hangting

    2004-06-01

    In this work, the feasibility of employing Cyanex 923 as an extractant into the non-cerium REE (rare earth elements) impurity analysis of high-purity cerium oxide was investigated. Through investigations on the choice of the extraction medium, the optimium extraction acidity, matrix Ce4+ effect on the non-cerium REE ion extraction, the optimium extractant concentration and suitable extracting time, and oscillation strengh, it was found that when the phase ratio was at 1:1 and the acicidity was about 2% H2SO4, by gently shaking by hand for about 2 min, 10 mL of 30% Cyanex 923 could not extract even for a 20 ng amount of non-cerium REE3+ ions. However, the extraction efficiency for Ce4+ of 100 mg total amount under the same conditions was about 96%, indicating that a 25-fold preconcentration factor could be achieved. Thus, it was concluded that Cyanex 923 could be used in a REE impurity analysis of 99.9999% or so pure cerium oxide for primary sepapation to elimilate matrix-induced interferences encountered in an ICP-MS (inductively coupled plasma mass spectroscopy) determination.

  1. Petrogenetic significance of rare-earth element behavior in the basement rocks of southern Obudu Plateau, Bamenda Massif, southeastern Nigeria

    Institute of Scientific and Technical Information of China (English)

    UKAEGBU V.U.; EKWUEME B.N.

    2005-01-01

    Rock samples representing various igneous and metamorphic rocks of southern Obudu Plateau were analyzed for rare-earth element (REE) behavior by ICP-MS. Results of the analyses indicate a range of REE abundances and distinctive patterns from highly fractionated patterns with negative Eu anomalies in granitic rocks to relatively low abundances and less REE fractionated flat patterns with little Eu anomaly in some paragneisses, schists, enderbites and dolerites to unfractionated patterns with positive Eu anomalies in some paragneisses and charnockites. Over all, there are low to high ∑REE contents with negative to positive Eu anomalies. The ratios of different parameters, especially La/Yb and Ce/Yb, show behaviors consistent with crustal to mantle derivation. The heterogeneity of REE abundances and REE patterns reflects mantle to crustal petrogenetic variations of different rock suites on the Plateau. The LREE content is higher than the HREE content in the highly differentiated rocks, as evidenced by their La/Yb, Ce/Yb and La/Sm ratios, which are normally higher in residual products than in primary melts. The dominantly intermediate nature of the source rock of the orthogneisses is suggested by the generally low ∑REE . The granites enriched in LREE and depleted in HREE and some of the charnockites with negative Eu anomalies were probably formed by partial melting and crystallization.

  2. Rare earth element patterns of the Central Indian Basin sediments related to their lithology

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Roelandts, I.; Sudhakar, M.; Pluger, W.L.

    Rare earth element (REE) concentration have been determined in terrigenous, siliceous (nodule barren and nodule bearing), calcareous, and red clay from the Central Indian Basin. The bulk distribution of REE, and in particular the relative cerium...

  3. Diagenetic remobilization of rare earth elements in a sediment core from the central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Banakar, V.K.

    Rare earth elements (REE) distribution in a 36 cm long sediment box core from the Central Indian Basin is studied. REE concentration is generally higher in the upper oxic zone than in intermediate suboxic zone suggesting REE diffusion upwards...

  4. Rare earth element concentrations and Nd isotopes in the Southeast Pacific Ocean

    National Research Council Canada - National Science Library

    Jeandel, C; Delattre, H; Grenier, M; Pradoux, C; Lacan, F

    2013-01-01

    .... At this station Nd isotopic compositions are clearly more radiogenic than in the open ocean, suggesting that boundary exchange process is releasing lithogenic rare earth element from the volcanic Andes...

  5. Successively separation method of uranium and rare earth element having supercritical fluid as extracting medium

    Energy Technology Data Exchange (ETDEWEB)

    Iso, Shuichi; Meguro, Yoshihiro; Yoshida, Yoshiyuki

    1996-08-30

    In a method of separating by extraction of coolants uranium and rare earth elements by using supercritical fluid in a supercritical state and a hydrophobic organic chelating agent, a plurality of extraction steps having different extraction efficiencies are provided. As the fluid in the supercritical state, carbon dioxide, carbon monoxide, ammonia, sulfur tetrafluoride and nitrogen are mentioned. A hydrophobic organic chelating agent can form a chelating compound with uranium and rare earth elements, and the formed complex compounds are easily dissolved into the supercritical fluid thereby enabling to provide an excellent extraction effect. A suitable hydrophobic organic chelating agent includes organic phosphor compounds, {beta}-diketone compounds and microcyclic compounds. Then, there can be provided an extraction method using a supercritical liquid as an extraction medium capable of successively separating uranium and rare earth elements selectively having high safety and performed safely and also performed in a case where a plurality of rare earth elements exist together. (N.H.)

  6. Assessing anthropogenic levels, speciation, and potential mobility of rare earth elements (REEs) in ex-tin mining area.

    Science.gov (United States)

    Khan, Aysha Masood; Yusoff, Ismail; Bakar, Nor Kartini Abu; Bakar, Ahmad Farid Abu; Alias, Yatimah

    2016-12-01

    A study was carried out to determine the level of rare earth elements (REEs) in water and sediment samples from ex-mining lakes and River in Kinta Valley, Perak, Malaysia. Surface water and sediments from an ex-mining lake and Kinta River water samples were analyzed for REEs by inductively coupled plasma mass spectrometry. The total concentration of REEs in the ex-mining lake water samples and sediments were found to be 3685 mg/l and 14159 mg/kg, respectively, while the total concentration of REEs in Kinta River water sample was found to be 1224 mg/l. REEs in mining lake water were found to be within 2.42 mg/l (Tb) to 46.50 mg/l (Ce), while for the Kinta River, it was 1.33 mg/l (Ho) to 29.95 mg/l (Ce). Sediment samples were also found with REEs from 9.81 mg/kg (Ho) to 765.84 mg/kg (Ce). Ce showed the highest average concentrations for mining lake (3.88 to 49.08 mg/l) and Kinta River (4.44 to 33.15 mg/l) water samples, while the concentration of La was the highest (11.59 to 771.61 mg/kg) in the mining lake sediment. Lu was shown to have the highest enrichment of REEs in ex-mining lake sediments (107.3). Multivariate statistical analyses such as factor analysis and principal component analysis indicated that REEs were associated and controlled by mixed origin, with similar contributions from anthropogenic and geogenic sources. The speciation study of REEs in ex-tin mining sediments using a modified five-stage sequential extraction procedure indicated that yttrium (Y), gadolinium (Gd), and lanthanum (La) were obtained at higher percentages from the adsorbed/exchanged/carbonate fraction. The average potential mobility of the REEs was arranged in a descending order: Yb > Gd > Y = Dy > Pr > Er > Tm > Eu > Nd > Tb > Sc > Lu > Ce > La, implying that under favorable conditions, these REEs could be released and subsequently pollute the environment.

  7. [Effects of Arbuscular Mycorrhizal Fungi on the Growth and Ce Uptake of Maize Grown in Ce-contaminated Soils].

    Science.gov (United States)

    Wang, Fang; Guo, Weil; Ma, Peng-kun; Pan, Liang; Zhang, Jun

    2016-01-15

    A greenhouse pot experiment was conducted to investigate the effects of arbuscular mycorrhizal (AM) fungi Glomus aggregatum (GA) and Funneliformis mosseae (FM) on AM colonization rate, biomass, nutrient uptake, C: N: P stoichiometric and Ce uptake and transport by maize (Zea mays L.) grown in soils with different levels of Ce-contaminated (100, 500 and 1000 mg x kg(-1)). The aim was to provide basic data and technical support for the treatment of soils contaminated by rare earth elements. The results indicated that symbiotic associations were successfully established between the two isolates and maize, and the average AM colonization rate ranged from 7. 12% to 74.47%. The increasing concentration of Ce in soils significantly decreased the mycorrhizal colonization rate, biomass, nutrition contents and transport rate of Ce from root to shoot of maize, and significantly increased C: P and N: P ratios and Ce contents in shoot and root of maize. Both AM fungi inoculations promoted the growth of maize, but the promoting role of FM was more significant than that of GA in severe Ce-contaminated soils. There were no significant differences in the growth of maize between two AM fungi in mild and moderate Ce-contaminated soils. Inoculation with AM fungi significantly improved nutritional status of maize by increasing nutrient uptake and decreasing C: N: P ratios. GA was more efficient than FM in enhancing nutrient uptake in mild and moderate Ce-contaminated soils, while FM was more efficient in severe Ce-contaminated soils. Moreover, inoculation with AM fungi significantly increased Ce contents of shoot and root in mild Ce-contaminated soils, but had no significant effect on Ce contents of maize in moderate and severe Ce-contaminated soils, and promoted the transport of Ce from root to shoot. The experiment demonstrates that AM fungi can alleviate toxic effects of Ce on plants and have a potential role in the phytoremediation of soils contaminated by rare earth elements.

  8. Effects of rare earth element lanthanum on the microstructure of copper matrix diamond tool materials

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Effects of rare earth element La on the microstructure of Cu matrix diamond tools were researched under the conditions of various materials componentsand the process parameters in order to improve materials properties. SEM, XPS and X-ray were used to investigate the fracture section, microstructure and the element valence in materials. The results shown that the combination of rare earth element La and transition element Ti is advantageous to the bonding state between diamond particles and matrix, so it can improve the materials properties. Suitable sintering temperature is 790℃.

  9. Developing alternative resources of rare earth elements in Europe - EURARE and the red mud challenge

    Science.gov (United States)

    Deady, Eimear; Mouchos, Evangelos; Goodenough, Kathryn; Wall, Frances; Williamson, Ben

    2015-04-01

    Resources conference, Milos, Greece, (5-6/09/2014). [7] A. Wagh and W. Pinnock, "Occurrence of scandium and rare earth elements in Jamaican bauxite waste", Economic Geology, vol. 82, no. 3, pp. 757-761, May 1987. [8] G. Mongelli, "Ce-anomalies in the textural components of Upper Cretaceous karst bauxites from the Apulian carbonate platform (southern Italy)", Chemical Geology, vol. 140, no. 1, pp. 69-79, June 1997. Additional resources: www.eurare.eu; www.redmud.org.

  10. Electronic Theoretical Study of the Interaction between Rare Earth Elements and Impurities at Grain Boundaries in Steel

    Institute of Scientific and Technical Information of China (English)

    刘贵立; 张国英; 李荣德

    2003-01-01

    The model of dislocations was used to construct the model of grain boundary (GB) with pure rare earths, and rare earth elements and impurities. The influence of the interaction between rare earth elements and impurities on the cohesive properties of 5.3° low angle GB of Fe was investigated by the recursion method. The calculated results of environment sensitive embeding energy(EESE) show that the preferential segregation of rare earth elements towards GBs exists. Calculations of bond order integrals (BOI) show that rare earth elements increase the cohesive strength of low angle GB, and impurities such as S, P weaken the intergranular cohesion of the GB. So rare earth element of proper quantity added in steel not only cleanses other harmful impurities off the GBs, but also enhances the intergranular cohesion. This elucidates the action mechanism of rare earth elements in steel from electronic level and offers theoretical evidence for applications of rare earth elements in steels.

  11. Simultaneous Determination of Trace Rare Earth Elements and Other Elements in High Purity Terbium Oxide (Tb4O7) by ICP-AES After HPLC Separation Using P507 Resin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This article describes a new method for the simultaneous determination of trace rare earth elements (REEs) and non rare earth elements (NREEs) in high purity terbium oxide by ICP-AES after HPLC separation using P507 resin. The chromatographic separation of the analytes from the matrix using dilute nitric acid as mobile phase was studied. The experimental results showed that a favorable separation of trace metals (Cu and Gd) from the matrix (Tb) can easily be achieved by elution with dilute nitric acid within 25 min. The proposed method was applied to the determination of trace metals (Ca, Cu, Mg, Mn, Ni, Si, La, Ce, Pr, Nd, Sm, Eu and Gd) in high purity terbium oxide. The detection limits (DLs) for the analytes ranged from 0.4-4.0 μg\\5g-1, and the recoveries are from 78%-105%.

  12. The impact of transport processes on rare earth element patterns in marine authigenic and biogenic phosphates

    Science.gov (United States)

    Auer, Gerald; Reuter, Markus; Hauzenberger, Christoph A.; Piller, Werner E.

    2017-04-01

    Rare earth elements (REEs) are commonly used proxies to reconstruct water chemistry and oxygen saturation during the formation of authigenic and biogenic phosphates in marine environments. In the modern ocean REEs exhibit a distinct pattern with enrichment of heavy REEs and strong depletion in cerium (Ce). The wide range of REE enrichment patterns found in ancient marine phosphates lead to the proposition that water chemistry has been very different in the Earth's past. However, both early and late diagenesis are known to affect REE signatures in phosphates altering primary marine signals. Herein we present a dataset of REE signatures in 38 grain specific LA-ICP-MS measurements of isolated phosphate and carbonate grains in three discrete rock samples. The phosphates mainly consist of authigenic phosphates and phosphatized microfossils that formed in a microbially mediated micro-milieu. In addition, isolated biogenic and reworked phosphatic grains are also present. The phosphates are emplaced in bioclastic grain- to packstones deposited on a carbonate ramp setting in the central Mediterranean Sea during the middle Miocene Monterey event. The results reveal markedly different REE patterns (normalized to the Post Archean Australian Shale standard) in terms of total enrichment and pattern shape. Analyses of REE diagenesis proxies show that diagenetic alteration affected the samples only to a minor degree. Grain shape and REE patterns together indicate that authigenic, biogenic and reworked phosphates have distinct REE patterns irrespective of the sample. Our study shows that while REE patterns in phosphates do reflect water chemistry during authigenesis, they are often already heavily altered during reworking, a process, which can occur in geologically negligible timespans. REE patterns are therefore more likely to reflect complex enrichment processes after their formation. Similarities in the REE patterns of reworked and biogenic phosphate further suggest that the

  13. Quantitative Analysis of Life Index of Electrothermal-Film Coated Ceramic Heating Elements with Rare-Earth Element Doped

    Institute of Scientific and Technical Information of China (English)

    He Ping

    2004-01-01

    For electrothermal-film heating elements for ceramics, the quantitative expression of the relation between the contents of multicomponent semiconductor dope and rare-earth element additive through the multivariate statistical regression analysis was presented, and the optimum control index of the multicomponent semiconductor dope and the rareearth element for the maximum life was also determined. The research shows that the life value ranging from 15 to 20 thousand hours can be ensured only if the evaluation grade of metal oxide dope in the compounding formula is controlled between grades 0.5 to 1.2. The relation of the content of multicomponent rare-earth element dope and the life index of electrothermal-film heating material for ceramics was determined theoretically.

  14. Effect of Ce-rich rare earth on microstructure and mechanical properties of Mg-10Zn-5Al-0.1Sb magnesium alloy

    Directory of Open Access Journals (Sweden)

    You Zhiyong

    2012-05-01

    Full Text Available To improve the comprehensive mechanical properties of Mg-10Zn-5Al-0.1Sb magnesium alloy, different amount of Ce-rich rare earth (RE was added to the alloy, and the effect of RE addition on the microstructure and mechanical properties of Mg-10Zn-5Al-0.1Sb alloy was investigated by means of Brinell hardness measurement, scanning electron microscopy (SEM, energy dispersive spectroscope (EDS and X-ray diffraction (XRD. The results show that an appropriate amount of Ce-rich rare earth addition can make the Al4Ce phase particles and CeSb phase disperse more evenly in the alloy. These phases refine the alloy抯 matrix and make the secondary phases [t-Mg32(Al,Zn49 phase and f-Al2Mg5Zn2 phase] finer and more dispersive, therefore significantly improve the mechanical properties of the Mg-10Zn-5Al-0.1Sb alloy. When the RE addition is 1.0 wt.%, the tensile strengths of the alloy both at room temperature and 150 篊 reach the maximum values while the impact toughness is slightly lower than that of the matrix alloy. The hardness increases with the increase of RE addition.

  15. DEVELOPMENT OF CERTIFIED REFERENCE MATERIALS OF HEAT RESISTING NICKEL ALLOYS FOR DETERMINATION OF DETRIMENTAL IMPURITIES AND RARE EARTH ELEMENTS BY SPECTRAL METHODS

    Directory of Open Access Journals (Sweden)

    2015-01-01

    Full Text Available Results of development and certification of reference materials of composition of heat resisting nickel alloy with the certified values of content of detrimental impurities (Zn, Cd, Pb, Tl, Bi, In, Ag, Sb, Ga, Ge, As, Se, Sn, Te, Mn, Cu, rare earth elements (Pr, Nd, Dy, Gd, Ho, Er, Nb, Sc, Y, La, Ce, and also other impurities (P, B, Fe, Si, V, Ru, Zr, Hf, Ca, Mg are given. Developed CRMs are used for calibration of optical emission spectrometers, mass-spectrometers with glow discharge and laser sampling and others.

  16. Effect of Rare Earth Elements on Depositing Rate of Nickel Alloy Brush Plating Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effect of four kinds of rare earth elements on the depositing rate of Ni-based alloy brush plating coatings was investigated. The results indicate that all of the selected rare earth elements increase the depositing rate of Ni-based alloy coatings, and Sm increases the depositing rate most obviously. There is an optimum amount of rare earth addition in the plating solution. With the change of plating voltage to a certain extent, the results reveal no differences. The mechanism of the increase of the depositing rate was analyzed.

  17. Interaction of rare earth elements and components of the Horonobe deep groundwater.

    Science.gov (United States)

    Kirishima, Akira; Kuno, Atsushi; Amamiya, Hiroshi; Kubota, Takumi; Kimuro, Shingo; Amano, Yuki; Miyakawa, Kazuya; Iwatsuki, Teruki; Mizuno, Takashi; Sasaki, Takayuki; Sato, Nobuaki

    2017-02-01

    To better understand the migration behavior of minor actinides in deep groundwater, the interactions between doped rare earth elements (REEs) and components of Horonobe deep groundwater were investigated. Approximately 10 ppb of the REEs, i.e. Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, and Yb were doped into a groundwater sample collected from a packed section in a borehole drilled at 140 m depth in the experiment drift of Horonobe Underground Research Laboratory in Hokkaido, Japan. The groundwater sample was sequentially filtered with a 0.2 μm pore filter, and 10 kDa, 3 kDa and 1 kDa nominal molecular weight limit (NMWL) ultrafilters with conditions kept inert. Next, the filtrate solutions were analyzed with inductively coupled plasma mass spectrometry (ICP-MS) to determine the concentrations of the REEs retained in solution at each filtration step, while the used filters were analyzed through neutron activation analysis (NAA) and TOF-SIMS element mapping to determine the amounts and chemical species of the trapped fractions of REEs on each filter. A strong relationship between the ratios of REEs retained in the filtrate solutions and the ionic radii of the associated REEs was observed; i.e. smaller REEs occur in larger proportions dissolved in the solution phase under the conditions of the Horonobe groundwater. The NAA and TOF-SIMS analyses revealed that portions of the REEs were trapped by the 0.2 μm pore filter as REE phosphates, which correspond to the species predicted to be predominant by chemical equilibrium calculations for the conditions of the Horonobe groundwater. Additionally, small portions of colloidal REEs were trapped by the 10 kDa and 3 kDa NMWL ultrafilters. These results suggest that phosphate anions play an important role in the chemical behavior of REEs in saline (seawater-based) groundwater, which may be useful for predicting the migration behavior of trivalent actinides released from radioactive waste repositories in the far

  18. The fractionation and geochemical characteristics of rare earth elements measured in ambient size-resolved PM in an integrated iron and steelmaking industry zone.

    Science.gov (United States)

    Dai, Qili; Li, Liwei; Yang, Jiamei; Liu, Baoshuang; Bi, Xiaohui; Wu, Jianhui; Zhang, YuFen; Yao, Lin; Feng, Yinchang

    2016-09-01

    Improved understanding of the fractionation and geochemical characteristic of rare earth elements (REEs) from steel plant emissions is important due to the unclear atmospheric signature of these elements and their adverse impact on human health and the environment. In this study, ambient particulate matter of different sizes was collected from one site in an integrated iron and steelmaking industrial zone (HG) and one urban background site with no direct industrial emissions (ZWY) during a 1-year sampling campaign in China. The total concentrations of REEs for TSP, PM10, and PM2.5 were 27.248, 14.989, 3.542 ng/m(3) in HG and 6.326, 5.274, 1.731 ng/m(3), respectively, in ZWY, which revealed the local influence of the steelmaking activities to the air quality. With respect to ZWY, the REEs in HG site are obviously fractionated in the coarser fraction, and LREEs account for more than 80 % of the total REE burden in all of the samples. Additionally, the REEs in HG and ZWY show a homogeneous trend with successively increased LREE/HREE ratios from the coarse particles to the fine particles. In our samples, La, Ce, Nd, and Sm are the most enriched rare earth elements, especially in the HG site. Moreover, ternary diagrams of LaCeSm indicate that the REEs in HG are potentially contributed by steelworks, carrier vehicles, coal combustion, and road dust re-suspension.

  19. Effect of Rare Earth Elements on Quantity Growth of Ctrps

    Institute of Scientific and Technical Information of China (English)

    张自立; 常江; 等

    2002-01-01

    The effects of rare earth on the growth of rice,rape and soybean in three kinds of soils were studied with the method supposed by Economic Co-operation and Development organization(OECD),and the EC50(median growth concenrtation)values were obtained,The inhibition of RE on the growth of rice and rape in red soil and on the growth of soybeanin yellow fouvo-aquic soil is higher with stronger poison effects.Compared with other heavy metals such as Hg,Cd,Pb,As,the poison of RE on crops in weaker.

  20. Effect of Rare Earth Elements on Quantity Growth of Crops

    Institute of Scientific and Technical Information of China (English)

    张自立; 常江; 汪成胜; 柴绍明; 韩修明; 李瑞

    2002-01-01

    The effects of rare earth on the growth of rice, rape and soybean in three kinds of soils were studied with the method supposed by Economic Co-operation and De velopment organization (OECD), and the EC50(median growth concentration)value s were obtained . The inhibition of RE on the growth of rice and rape in red soil and on the gro wth of soybean in yellow fluvo-aquic soil is higher with stronger poison effect s. Compared with other heavy metals such as Hg, Cd, Pb, As, the poison of RE on crops is weaker.

  1. Rare earth element recycling from waste nickel-metal hydride batteries.

    Science.gov (United States)

    Yang, Xiuli; Zhang, Junwei; Fang, Xihui

    2014-08-30

    With an increase in number of waste nickel-metal hydride batteries, and because of the importance of rare earth elements, the recycling of rare earth elements is becoming increasingly important. In this paper, we investigate the effects of temperature, hydrochloric acid concentration, and leaching time to optimize leaching conditions and determine leach kinetics. The results indicate that an increase in temperature, hydrochloric acid concentration, and leaching time enhance the leaching rate of rare earth elements. A maximum rare earth elements recovery of 95.16% was achieved at optimal leaching conditions of 70°C, solid/liquid ratio of 1:10, 20% hydrochloric acid concentration, -74μm particle size, and 100min leaching time. The experimental data were best fitted by a chemical reaction-controlled model. The activation energy was 43.98kJ/mol and the reaction order for hydrochloric acid concentration was 0.64. The kinetic equation for the leaching process was found to be: 1-(1-x)(1/3)=A/ρr0[HCl](0.64)exp-439,8008.314Tt. After leaching and filtration, by adding saturated oxalic solution to the filtrate, rare earth element oxalates were obtained. After removing impurities by adding ammonia, filtering, washing with dilute hydrochloric acid, and calcining at 810°C, a final product of 99% pure rare earth oxides was obtained.

  2. Effects of supplementing rare earth element cerium on rumen fermentation, nutrient digestibility, nitrogen balance and plasma biochemical parameters in beef cattle.

    Science.gov (United States)

    Lin, S X; Wei, C; Zhao, G Y; Zhang, T T; Yang, K

    2015-12-01

    The objectives of the trial were to investigate the effects of supplementing rare earth element (REE) cerium (Ce) on rumen fermentation, nutrient digestibility, methane (CH4 ) production, nitrogen (N) balance and plasma biochemical parameters in beef cattle. Four Simmental male cattle, aged at 14 months, with initial liveweight of 355 ± 8 kg and fitted with permanent rumen cannulas, were used as experimental animals. The cattle were fed with a total mixed ration (TMR) composed of concentrate mixture and corn silage. Four levels of cerium chloride (CeCl3 ·7H2 O, purity 99.9%), that is 0, 80, 160 and 240 mg CeCl3 /kg DM, were added to basal ration in a 4 × 4 Latin square design. Each experimental period lasted 15 days, of which the first 12 days were for pre-treatment and the last 3 days were for sampling. The results showed that supplementing CeCl3 at 160 or 240 mg/kg DM increased neutral detergent fibre (NDF) digestibility (p cattle increased the digestibility of NDF, decreased the molar ratio of rumen acetate to propionate, increased N retention and microbial N flow and decreased CH4 /kg DMI.

  3. Determination of rare-earth elements in rocks by isotope-excited X-ray fluorescence spectrometry

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar; Wollenberg, H.A.

    1970-01-01

    by the least-squares method to yield the fractions of La, Ce, Pr, and Nd in the samples. A calibration was established between the fractions of Ce and Nd and their abundances determined by mass spectrometry. Statistical considerations indicated that detection limits are of the order of 10 ppm. An X......-ray spectrometric scan of a longitudinally sliced drill core showed a close correlation between rare-earth abundances and appropriate minerals....

  4. Rare earth element and uranium-thorium variations in tufa deposits from the Mono Basin, CA

    Science.gov (United States)

    Wilcox, E. S.; Tomascak, P. B.; Hemming, N.; Hemming, S. R.; Rasbury, T.; Stine, S.; Zimmerman, S. R.

    2009-12-01

    Samples of fossil tufa deposits from several localities in the Mono Basin, eastern California, were analyzed for trace element concentrations in order to better understand changes in lake composition in the past. These deposits were formed during the last glacial cycle, mostly during deglaciation (Benson et al., 1990, PPP). Three elevations are represented by the analyses. Samples from near Highway 167 were sampled between 2063 and 2069 m asl. Samples from near Thompson Road were sampled between 2015 and 2021 m. One layered mound was sampled at 1955 m. Concentrations of the lanthanide rare earth elements (REE), in particular the heavy/light (HREE/LREE) distributions, have been shown to be sensitive to alkalinity in modern saline lakes (e.g., Johannesson et al., 1994, GRL, 21, 773-776), and the same has been suggested for U/Th (Anderson et al., 1982, Science, 216, 514-516). Holocene to near-modern tufa towers exist in shallow water and around the current shoreline (1945 m). Tufa towers above 2000 m include a characteristic morphology termed thinolite, interpreted to represent pseudomorphs after the very cold water mineral ikaite. Most lower elevation towers do not have the thinolite morphology, but some layered tufa mounds at low elevations include several layers of thinolite, such as the one sampled for this project. Analyses were made on millimeter-scale bulk samples from tufa towers. Measurements were made on sample solutions with a Varian 820MS quadrupole ICP-MS. Mono Basin tufa samples have total REE concentrations ranging from 0.029 to 0.77 times average shales. Samples have flat to moderately HREE-enriched shale-normalized patterns with limited overall variability ([La/Lu]SN of 1.8 to 9.6) but with some variability in the slope of the HREE portion of the patterns. Tufa towers sampled from three elevations have (Gd/Lu)SN of 0.40 to 1.5. The REE patterns of most samples have small positive Ce anomalies, but a minority of samples, all from the layered tufa mound

  5. Modification Mechanism of Rare Earth Elements in ZA27 Casting Alloys

    Institute of Scientific and Technical Information of China (English)

    刘贵立; 李荣德

    2003-01-01

    The model of the liquid-phase ZA27 alloys was set up by molecular dynamics theory. The atomic structure of phase, RE-compounds, and the phase-liquid interface in ZA27 alloys were constructed by computer programming. Electronic structures of phase with rare earth elements dissolved and of phase-liquid interfaces with rare earth elements enrichment in ZA27 casting alloys were investigated by using the Recursion method. The ESE energy of RE elements and the structure energy of RE-compounds, phase, and the liquid-phase ZA27 alloys were calculated. The results show that rare earth elements are more stable to be in the phase interface than in phase, which explains the fact of very small solid so lubility of rare earth elements in phase, and the enrichment in the solid-liquid growth front. This makes dendrite melt and break down, dissociate and propagate. RE-compounds can act as heterogeneous nuclei for phase, leading to phase refinement. All above elucidates the modification mechanism of rare earth elements in zinc-aluminum casting alloys at electronic level.

  6. Effect of cerium on the corrosion behaviour of sintered (Nd,Ce)FeB magnet

    Science.gov (United States)

    Yang, Lijing; Bi, Mengxue; Jiang, Jianjun; Ding, Xuefeng; Zhu, Minggang; Li, Wei; Lv, Zhongshan; Song, Zhenlun

    2017-06-01

    For the balanced consumption of rare-earth elements, cerium (Ce) was partially used for NdFeB magnets instead of Nd. The corrosion behaviour of the (Nd,Ce)FeB magnet with different Ce contents in 3.5% NaCl solution was investigated by SEM, XRD, EDS and electrochemical tests. After immersion, the weight loss was calculated and the magnetic properties of the samples were measured. Results showed that Ce affected the corrosion of the (Nd,Ce)FeB magnet. Compared with the NdFeB magnet without Ce but of the same grade as the magnetic energy product, (Nd,Ce)FeB magnet showed better corrosion resistance. With increased Ce content, the corrosion resistances and magnetic properties of (Nd,Ce)FeB magnets were investigated.

  7. Mobile DNA Elements: The Seeds of Organic Complexity on Earth.

    Science.gov (United States)

    Habibi, Laleh; Pedram, Mehrdad; AmirPhirozy, Akbar; Bonyadi, Khadijeh

    2015-10-01

    Mobile DNA or transposable elements (TEs) are genomic sequences capable of moving themselves independently into different parts of the genome. Viral invasion of eukaryotic genomes is assumed to be the main source of TEs. Selfish transposition of these elements could be a serious threat to the host cell, as they can insert themselves into the middle of coding genes and/or induce genomic instability. In response, through millions of years of evolution, cells have come up with various mechanisms such as genomic imprinting, DNA methylation, heterochromatin formation, and RNA interference to deactivate them. Interestingly, these processes have also greatly contributed to important cellular functions involved in cell differentiation, development, and differential gene expression. Propagation of TE copies during the course of evolution have resulted in increasing the genome size and providing proper space and flexibility in shaping the genome by creating new genes and establishing essential cellular structures such as heterochromatin, centromere, and telomeres. Yet, these elements are mostly labeled for playing a role in pathogenesis of human diseases. Here, we attempt to introduce TEs as factors necessary for making us human rather than just selfish sequences or obligatory guests invading our DNA.

  8. Fast and simultaneously determination of light and heavy rare earth elements in monazite using combination of ultraviolet-visible spectrophotometry and multivariate analysis

    Science.gov (United States)

    Anggraeni, Anni; Arianto, Fernando; Mutalib, Abdul; Pratomo, Uji; Bahti, Husein H.

    2017-05-01

    Rare Earth Elements (REE) are elements that a lot of function for life, such as metallurgy, optical devices, and manufacture of electronic devices. Sources of REE is present in the mineral, in which each element has similar properties. Currently, to determining the content of REE is used instruments such as ICP-OES, ICP-MS, XRF, and HPLC. But in each instruments, there are still have some weaknesses. Therefore we need an alternative analytical method for the determination of rare earth metal content, one of them is by a combination of UV-Visible spectrophotometry and multivariate analysis, including Principal Component Analysis (PCA), Principal Component Regression (PCR), and Partial Least Square Regression (PLS). The purpose of this experiment is to determine the content of light and medium rare earth elements in the mineral monazite without chemical separation by using a combination of multivariate analysis and UV-Visible spectrophotometric methods. Training set created 22 variations of concentration and absorbance was measured using a UV-Vis spectrophotometer, then the data is processed by PCA, PCR, and PLSR. The results were compared and validated to obtain the mathematical equation with the smallest percent error. From this experiment, mathematical equation used PLS methods was better than PCR after validated, which has RMSE value for La, Ce, Pr, Nd, Gd, Sm, Eu, and Tb respectively 0.095; 0.573; 0.538; 0.440; 3.387; 1.240; 1.870; and 0.639.

  9. Anthropogenic gadolinium anomalies and rare earth elements in the water of Atibaia River and Anhumas Creek, Southeast Brazil.

    Science.gov (United States)

    de Campos, Francisco Ferreira; Enzweiler, Jacinta

    2016-05-01

    The concentrations of rare earth elements (REE), measured in water samples from Atibaia River and its tributary Anhumas Creek, Brazil, present excess of dissolved gadolinium. Such anthropogenic anomalies of Gd in water, already described in other parts of the world, result from the use of stable and soluble Gd chelates as contrast agents in magnetic resonance imaging. Atibaia River constitutes the main water supply of Campinas Metropolitan area, and its basin receives wastewater effluents. The REE concentrations in water samples were determined in 0.22-μm pore size filtered samples, without and after preconcentration by solid-phase extraction with bis-(2-ethyl-hexyl)-phosphate. This preconcentration method was unable to retain the anthropogenic Gd quantitatively. The probable reason is that the Gd chelates dissociate slowly in acidic media to produce the free ion that is retained by the phosphate ester. Strong correlations between Gd and constituents or parameters associated with effluents confirmed the source of most Gd in water samples as anthropogenic. The shale-normalized REE patterns of Atibaia River and Anhumas Creek water samples showed light and heavy REE enrichment trends, respectively. Also, positive Ce anomalies in many Atibaia River samples, as well as the strong correlations of the REE (except Gd) with terrigenous elements, imply that inorganic colloidal particles contributed to the REE measured values.

  10. Tensile Properties of Surface-Treated Glass Fiber Reinforced PTFE Composite with Rare Earth Elements

    Institute of Scientific and Technical Information of China (English)

    薛玉君; 程先华

    2003-01-01

    The optimum amount of rare earth elements (RE) for treating glass fiber surface and its effect on the tensile properties of glass fiber reinforced polytetrafluoroethylene (GF/PTFE) composites were investigated. The tensile properties of GF/PTFE composites with different surface treatment conditions were measured. The fracture surface morphologies were observed and analyzed by SEM. The results indicate that rare earth elements can effectively promote the interfacial adhesion between the glass fiber and PTFE, owing to the effects of rare earth elements on the compatibility. The tensile properties of GF/PTFE composites can be improved considerably when the content of RE in surface modifier is 0.2%~0.4%, and the optimum performance of GF/PTFE composites is obtained at 0.3%RE content.

  11. The effect of rare earth elements on the microstructure of as-cast AM50 alloy

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2010-01-01

    Full Text Available As-cast Mg-5Al-0.4Mn-xRE (x = 0, 1, 2 wt.% magnesium alloys were prepared successfully and influence of rare earth (RE elements on the microstructure has been investigated by light microscopy and X-ray diffraction (XRD. The results revealed that the as-cast Mg-5Al-0.4Mn alloy consist of α - Mg matrix and eutectic α + γ (where γ is Mg17Al12. With the addition of rare earth elements Al11RE3 precipitates were formed. The amount of the Al11RE3 precipitates increased with increasing addition of RE, but the amount of γ - Mg17Al12 decreased. Additionally, in alloys with rare earth elements no aluminium-manganese precipitates were observed, instead of that ternary intermetallic compound Al10RE2Mn7 was formed.

  12. Alkali element depletion by core formation and vaporization on the early Earth

    Science.gov (United States)

    Lodders, K.; Fegley, B., Jr.

    1994-01-01

    The depletion of Na, K, Rb, and Cs in the Earth's upper mantle and crust relative to their abundances in chondrites is a long standing problem in geochemistry. Here we consider two commonly invoked mechanisms, namely core formation, and vaporization, for producing the observed depletions. Our models predict that a significant percentage of the Earth's bulk alkali element inventory is in the core (30 percent for Na, 52 percent for K, 74 percent for Rb, and 92 percent for Cs). These predictions agree with independent estimates from nebular volatility trends and (for K) from terrestrial heat flow data. Our models also predict that vaporization and thermal escape during planetary accretion are unlikely to produce the observed alkali element depletion pattern. However, loss during the putative giant impact which formed the Moon cannot be ruled out. Experimental, observational, and theoretical tests of our predictions are also described. Alkali element partitioning into the Earth's core was modeled by assuming that alkali element partitioning during core formation on the aubrite parent body (APB) is analogous to that on the early Earth. The analogy is reasonable for three reasons. First, the enstatite meteorites are the only known meteorites with the same oxygen isotope systematics as the Earth-Moon system. Second, the large core size of the Earth and the V depletion in the mantle requires accretion from planetesimals as reduced as the enstatite chondrites. Third, experimental studies of K partitioning between silicate and metal plus sulfide show that more K goes into the metal plus sulfide at higher pressures than at one atmosphere pressure. Thus partitioning in the relatively low pressure natural laboratory of the APB is a good guide to alkali elemental partitioning during the growth of the Earth.

  13. A New Family of Ce6MoO15 as Fast Oxide Ion Conductor

    Institute of Scientific and Technical Information of China (English)

    Feng Jing; Meng Jian; Bo Qibing; Che Ping; Wang Jingping; Liu Jianfen; Lu Minfeng; Zhang Deping; Fang Daqing; Cao Xueqiang

    2004-01-01

    A novel solid solution Ce6MoO15 was achieved. Their structure and oxide ionic conductivity were studied.Based on Ce6MoO15, rare earth element substitution on cerium site shows that all resulting oxides enhance the conductivity further, and have high oxide-ion conductivity, which may be a kind of promising material for SOFCs.

  14. Rare Earth Elements of the Permian-Triassic Conodonts from Shelf Basin to Shallow Platform: Implications for Oceanic Redox Conditions immediately After the End-Permian Mass Extinction

    Science.gov (United States)

    Li, Y.; Zhao, L.; Chen, Z.; Chen, J.; Chen, Y.

    2013-12-01

    Rare-earth elements (REEs) can provide information regarding the influence of weathering fluxes and hydrothermal inputs on seawater chemistry as well as processes that fractionate REEs between solid and aqueous phases. Of these, cerium (Ce) distributions may provide information about variations in dissolved oxygen in seawater, and thus assess the redox conditions. The short residence times of REEs in seawater (~300-1,000 yr) can result in unique REE signatures in local watermasses. REE patterns preserved in biogenic apatite such as conodonts are ideal proxies for revealing original seawater chemistry. Here, we measured the REE content of in-situ, single albid crowns using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in combination with an ArF (λ=193 nm) excimer laser (Lambda Physiks GeoLas 2005) and quadrupole ICP-MS (Agilent 7500a). LA-ICP-MS is ideally suited for analyzing conodonts due to its ability to measure compositional variation within single conodont elements. It has the capability to determine, with high spatial resolution, continuous compositional depth profiles through the concentric layered structure of component histologies. To evaluate paleoceanographic conditions immediately after the Permian-Triassic (P-Tr) mass extinction in various depositional settings, we sampled a nearly contemporaneous strata unit, the P-Tr boundary bed, just above the extinction horizon from six sections in South China. They represent various depositional settings from shelf basin (Chaohu and Daxiakou sections), lower part of ramp (Meishan section), normal shallow platform (Yangou section), and platform microbialite (Chongyang and Xiushui sections). The sampled unit is constrained by conodonts Hindeodus changxingensis, H. parvus, and H. staeschei Zones in Meishan. REE results obtained from conodont albid crowns show that the seawater in lower ramp and shelf basin settings contains much higher REE concentrations than that in shallow platform. Ce/Ce

  15. Addressing Rare-Earth Element Criticality: An Example from the Aviation Industry

    Science.gov (United States)

    Ku, Anthony Y.; Dosch, Christopher; Grossman, Theodore R.; Herzog, Joseph L.; Maricocchi, Antonio F.; Polli, Drew; Lipkin, Don M.

    2014-11-01

    Rare-earth (RE) elements are enablers for a wide range of technologies, including high-strength permanent magnets, energy-efficient lighting, high-temperature thermal barrier coatings, and catalysts. While direct material substitution is difficult in many of these applications because of the specific electronic, optical, or electrochemical properties imparted by the individual rare-earth elements, we describe an example from the aviation industry where supply chain optimization may be an option. Ceramic matrix composite engine components require environmental barrier coatings (EBCs) to protect them from extreme temperatures and adverse reactions with water vapor in the hot gas path. EBC systems based on rare-earth silicates offer a unique combination of environmental resistance, thermal expansion matching, thermal conductivity, and thermal stability across the service temperature window. Several pure rare-earth silicates and solid solutions have been demonstrated in EBC applications. However, all rely on heavy rare-earth elements (HREEs) for phase stability. This article considers the possibility of using separation tailings containing a mixture of HREEs as a source material in lieu of using the high-purity HREE oxides. This option arises because the desired properties of RE-silicate EBCs derive from the average cation size rather than the electronic properties of the individual rare-earth cations. Because separation tailings have not incurred the costs associated with the final stages of separation, they offer an economical alternative to high-purity oxides for this emerging application.

  16. Distribution, evolution and the effects of rare earths Ce and Y on the mechanical properties of ZK60 alloys

    Institute of Scientific and Technical Information of China (English)

    Anru Wu; Changqing Xia; Jiewen Wang

    2006-01-01

    Eight kinds of Mg-RE alloys were prepared. The distribution, evolution, and effects of RE Ce and Y in the investigated alloys were studied by examining the mechanical properties of Mg alloys using X-ray diffraction and scan electron analysis, and by TEM observation. The results show that among the investigated alloys, ZK60-1.5%Ce and ZK60-1.0%Y possessed the optimal mechanical properties. Ce and Y were distributed on the grain boundary during casting. After extrusion and T5 (150℃/0-24 h) heattreatment, Ce and Y were distributed along the extrusion direction and they existed in compound form for both as-casting and asextrusion specimens. The mechanical properties of the investigated alloys were better than those of ZK60 because of the solid solution strengthening of RE and the dispersion strengthening of Mg-RE or Mg-Zn-RE compounds.

  17. Role of multi-microalloying by rare earth elements in ductilization of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2014-03-01

    Full Text Available The present work investigates the influences of microalloying with rare earths on the mechanical properties of magnesium alloys. The amount of each rare earth element is controlled below 0.4 wt.% in order not to increase the cost of alloy largely. The synergic effects from the multi-microalloying with rare earths on the mechanical properties are explored. The obtained results show that the as-cast magnesium alloys multi-microalloying with rare earths possesses a quite high ductility with a tensile strain up to 25–30% at room temperature. Moreover, these alloys exhibit much better corrosion resistance than AZ31 alloy. The preliminary in situ neutron diffractions on the deformation of these alloys indicate that the multi-microalloying with rare earths seems to be beneficial for the activation of more slip systems. The deformation becomes more homogeneous and the resultant textures after deformation are weakened.

  18. Preparation and characterization of zirconium dioxide catalyst supports modified with rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Masakuni; Kimura, Mareo (Toyota Central Research and Development Labs., Inc., Aichi (Japan))

    1991-08-15

    ZrO{sub 2} catlyst supports modified with rare earth elements were prepared by coprecipitation from an aqueous solution of zirconium oxychloride and rare earth chlorides. The crystallization of amorphous hydrous ZrO{sub 2} was inhibited by doping with rare earths; the crystallization temperature was elevated as the amount and ionic radius of the rare earth modifiers was increased. Only modification using cerium had no effect on the crystallization process. The behavior of cerium was different from that of other rare earth elements with valency +3. A metastable cubic phase was formed for ZrO{sub 2} modified with 10 mol.% lanthanum, neodymium and samarium by heating at 600degC. X-ray diffraction and Raman data indicated that the metastable phase had large microstrain and short-range ordering similar to tetragonal symmetry. Rare earth modified ZrO{sub 2} showed a large surface area and good thermal stability as a catalyst support. The carbon monoxide oxidation activity of iron was enhanced by modification with neodymium of ZrO{sub 2} supports. The results suggest the effectiveness of rare earth modified ZrO{sub 2} as catalyst supports. (orig.).

  19. Rare earth elements stratigraphic significance in late Permian coal measure from Bijie City, Guizhou Province, China

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; YANG Ruidong; BAO Miao

    2008-01-01

    Rare earth elements (REEs) are good geological indicators. In order to understand REEs stratigraphic significance, REEs m Late Permian coal measure from Bijie City, western Guizhou Province, China were studied. The results showed that the contents of both light rare earth element (LREE) and ∑ REE were sharply increased in the boundary between Longtan Formation and Changxing Formation, which resulted from the gyration and discontinuity eruption of Emeishan basalt (REEs source) and frequent transgression-regression during forming coal. The coal measure and strata could be subdivided and correlate, and the sea-level change could be under stood by studying REEs content variation in coal measure.

  20. Effect of Rare Earth Elements on Powder Boro-Carbo-Nitriding at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The process of the co-cementation layers of low temperature powder multicomponent thermochemical treatment with B-C-N-RE and the structure and properties were studied and compared with those of conventional boro-carbo-nitriding (B-C-N) by X-ray diffractometer, potentiostat and wear machine. The results show that rare earth elements have significant catalytic effect within proper limits. Both wear resistance and corrosion resistance of the B-C-N-RE co-cementation layer are greatly increased in comparison with those of the B-C-N. The function mechanism of rare earth elements is also discussed.

  1. Preparation and thermoelectric properties of ternaryrare earth sulfide γ-Ce3-xEuxS4

    Institute of Scientific and Technical Information of China (English)

    YUAN Haibin; ZHANG Jianhui; YU Ruijin; SU Qiang

    2008-01-01

    The effect of Eu-substitution on the density and thermoelectric properties of ternary sulfide Ce3-xEuxS4 (0≤x≤0.8) compacts was investigated. Ce3-xEuxZ4 powders were prepared via the sulfurization of the oxide using CS2 gas at 1473 K. The pressureless sintered Ce3-xEuxS4 compacts in the atmosphere were crystallized in the γ-phase. The density of the Ce3-xEuxS4 compacts increased with the increas-ing of Eu-substitution. Eu-substitution yielded a higher Seebeck coefficient and lower electrical resistivity. The highest value of the thermoe-lectric power factor of 1.41×10-4 W/K2m was obtained for the Ce2.2Eu0.8S4 compact at 673 K. It indicated that Eu-substitution was effective for improving thermoelectric properties of Ce3-xEuxS4.

  2. 稀土乙酰丙氨酸咪唑配合物的合成及光谱性质%Synthesis and Spectral Property of the Rare Earth (Ce, Pr) Complexes with Acetyl-alanine and Imidazole

    Institute of Scientific and Technical Information of China (English)

    杨一心; 王艳; 赵天成; 王党辉; 郝惠娣; 武祥龙; 谢志海

    2005-01-01

    Two new coordination compounds of rare earth chloride with N-acetyl-DL-alanine and imidazole have been prepared from absolute alcohol. The general formula RE(C5H8NO3)2(C3H5N2)2Cl3·4H2O (RE=Ce, Pr) of these compounds were identified, by chemical and elemental analysis, FTIR spectra, UV spectra, 1H NMR and 13C NMR spectra, and molar conductance. The processes of thermal decomposition were identified by TG-DSC curves. The possible reaction mechanisms and the kinetics equation were investigated by comparing the kinetics parameters. The activation entropy of dehydration, as well as enthalpy values of dehydration and decomposition were obtained by DSC curve. The three-dimensional fluorescence spectra of liquid compounds were measured. The phenomenon of the up-conversion fluorescence is discussed.

  3. Determination of trace rare earth elements in gadolinium aluminate by inductively coupled plasma time of flight mass spectrometry

    Science.gov (United States)

    Saha, Abhijit; Deb, S. B.; Nagar, B. K.; Saxena, M. K.

    An analytical methodology was developed for the precise quantification of ten trace rare earth elements (REEs), namely, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, and Tm, in gadolinium aluminate (GdAlO3) employing an ultrasonic nebulizer (USN)-desolvating device based inductively coupled plasma mass spectrometry (ICP-MS). A microwave digestion procedure was optimized for digesting 100 mg of the refractory oxide using a mixture of sulphuric acid (H2SO4), phosphoric acid (H3PO4) and water (H2O) with 1400 W power, 10 min ramp and 60 min hold time. An USN-desolvating sample introduction system was employed to enhance analyte sensitivities by minimizing their oxide ion formation in the plasma. Studies on the effect of various matrix concentrations on the analyte intensities revealed that precise quantification of the analytes was possible with matrix level of 250 mg L- 1. The possibility of using indium as an internal standard was explored and applied to correct for matrix effect and variation in analyte sensitivity under plasma operating conditions. Individual oxide ion formation yields were determined in matrix matched solution and employed for correcting polyatomic interferences of light REE (LREE) oxide ions on the intensities of middle and heavy rare earth elements (MREEs and HREEs). Recoveries of ≥ 90% were achieved for the analytes employing standard addition technique. Three real samples were analyzed for traces of REEs by the proposed method and cross validated for Eu and Nd by isotope dilution mass spectrometry (IDMS). The results show no significant difference in the values at 95% confidence level. The expanded uncertainty (coverage factor 1σ) in the determination of trace REEs in the samples were found to be between 3 and 8%. The instrument detection limits (IDLs) and the method detection limits (MDLs) for the ten REEs lie in the ranges 1-5 ng L- 1 and 7-64 μg kg- 1 respectively.

  4. Potassium chloride and rare earth elements improve plant growth and increase the frequency of the Agrobacterium tumefaciens-mediated plant transformation.

    Science.gov (United States)

    Boyko, Alex; Matsuoka, Aki; Kovalchuk, Igor

    2011-04-01

    Plant transformation efficiency depends on the ability of the transgene to successfully interact with plant host factors. Our previous work and the work of others showed that manipulation of the activity of host factors allows for increased frequency of transformation. Recently we reported that exposure of tobacco plants to increased concentrations of ammonium nitrate increases the frequency of both homologous recombination and plant transgenesis. Here we tested the influence of KCl and salts of rare earth elements, Ce and La on the efficiency of Agrobacterium-mediated plant transformation. We found that exposure to KCl, CeCl(3) and LaCl(3) leads to an increase in recombination frequency in Arabidopsis and tobacco. Plants grown in the presence of CeCl(3) and LaCl(3) had higher biomass, longer roots and greater root number. Analysis of transformation efficiency showed that exposure of tobacco plants to 50 mM KCl resulted in ~6.0-fold increase in the number of regenerated calli and transgenic plants as compared to control plants. Exposure to various concentrations of CeCl(3) showed a maximum increase of ~3.0-fold in both the number of calli and transgenic plants. Segregation analysis showed that exposure to KCl and cerium (III) chloride leads to more frequent integrations of the transgene at a single locus. Analysis of transgene intactness showed better preservation of right T-DNA border during transgene integration. Our data suggest that KCl and CeCl(3) can be effectively used to improve quantity and quality of transgene integrations.

  5. Mineral chemistry of Rare Earth Element (REE) mineralization, Browns Ranges, Western Australia

    Science.gov (United States)

    Cook, Nigel J.; Ciobanu, Cristiana L.; O'Rielly, Daniel; Wilson, Robin; Das, Kevin; Wade, Benjamin

    2013-07-01

    ‘Green energy futures’ are driving unprecedented demand for Rare Earth Elements (REE), underpinning significant exploration activity worldwide. Understanding how economic REE concentrations form is critical for development of exploration models. REE mineralisation in the Browns Ranges, Gordon Downs Region, Western Australia, comprises xenotime-dominant mineralisation hosted within Archaean to Palaeoproterozoic metasedimentary units (Browns Range Metamorphics). Mineralogical, petrographic and mineral-chemical investigation, including trace element analysis by Laser-Ablation Inductively-Coupled Plasma Mass Spectroscopy, gives insights into the mineralogical distribution and partitioning of REE, and also provides evidence for the genetic evolution of the Browns Range REE mineralisation via a succession of hydrothermal processes. Two main REE-bearing minerals are identified: xenotime [(Y,REE)PO4], which is HREE selective; and subordinate florencite [(REEAl3(PO4)2(OH)6] which is LREE selective. Two morphological generations of xenotime are recognised; compositions are however consistent. Xenotime contains Dy (up to 6.5 wt.%), Er (up to 4.35 wt.%), Gd (up to 7.56 wt.%), Yb (up to 4.65 wt.%) and Y (up to 43.3 wt.%). Laser Ablation ICP-MS element mapping revealed a subtle compositional zoning in some xenotime grains. LREE appear concentrated in the grain cores or closest to the initial point of growth whereas HREE, particularly Tm, Yb and Lu, are highest at the outer margins of the grains. The HREE enrichment at the outer margins is mimicked by As, Sc, V, Sr, U, Th and radiogenic Pb. Florencite is commonly zoned and contains Ce (up to 11.54 wt.%), Nd (up to 10.05 wt.%) and La (up to 5.40 wt.%) and is also notably enriched in Sr (up to 11.63 wt.%) and Ca. Zircon (which is not a significant contributor of REEs overall due to its low abundance in the rocks) is also enriched in REE (up to 13 wt.% ΣREE) and is the principal host of Sc (up to 0.8 wt.%). Early, coarse

  6. Rare earth elements in CO2-fluid inclusions in mantle lherzolite

    Institute of Scientific and Technical Information of China (English)

    Jiuhua Xu; Yuling Xie; Lijun Wang; Heping Zhu; Liquan Wang

    2003-01-01

    Trace elements including REE (Rare Earth Elements) in fluid inclusions in lherzolite, olivine, orthopyroxene, and clinopy-roxene have been determined by heating-decrepitation and ICP-MS (Element Type Inductively Coupled Plasma-Mass Spectrometry)method. Normalized CO2 fluid/chondrite data show that mantle fluids are rich in REEs, especially LREEs (Light Rare Earth Ele-ments), several times or dozen times higher than mantle rocks and mantle mininerals. There are close relationships among the REEdata of olivine, orthopyroxene, clinopyroxene and lherzolite. Compared to the data of chemical dissolution method, it is believed thatREE data obtained from heating-decrepitation and ICP-MS technique are contributed by CO2 fluid inclusions. About 60% (massfraction) of tiny inclusions are observed not to be decrepitated above 1000℃, so REE data obtained are only contributed by decrepi-tated inclusions. Mantle fluids rich in LREE play an important role in mantle metasomatism, partial melting and mineralization.

  7. Rare-earth elements as source indicators of Pan-African granites from Obudu Plateau, Southeastern Nigeria

    Institute of Scientific and Technical Information of China (English)

    Ukaegbu V.U; Beka F.T

    2008-01-01

    The rare-earth element (REE) concentrations of representative granite samples from the southeast of the Obudu Plateau, Nigeria, were analyzed with an attempt to determine the signatures of their source, evolutionary history and tectonic setting. Results indicated that the granites have high absolute REE concentrations (190×10-6-1191×10-6; av.=549×10-6) with the chondrite-normalized REE patterns characterized by steep negative slopes and prominent to slight or no negative Eu anomalies. All the samples are also characterized by high and variable concentrations of the LREE (151×10-6-1169×10-6; av.= 466×10-6), while the HREE show low abundance (4×10-6-107×10-6; av.=28×10-6). These are consistent with the variable levels of REE fractionation, and differentiation of the granites. This is further supported by the range of REE contents, the chondrite-normalized patterns and the ratios of LaN/YbN (2.30-343.37), CeN/YbN (5.94-716.87), LaN/SmN (3.14-11.68) and TbN/YbN (0.58-1.65). The general parallelism of the REE patterns, suggest that all the granites were comagmatic in origin, while the high Eu/Eu* ratios (0.085-2.807; av.=0.9398) indicate high fO2 at the source. Similarly, irregular variations in LaN/YbN, CeN/YbN and Eu/Eu* ratios and REE abundances among the samples suggest behaviors that are related to mantle and crustal sources.

  8. Determination of rare-earth elements in Luna 16 regolith sample by chemical spectral method

    Science.gov (United States)

    Stroganova, N. S.; Ryabukhin, V. A.; Laktinova, N. V.; Ageyeva, L. V.; Galkina, I. P.; Gatinskaya, N. G.; Yermakov, A. N.; Karyakin, A. V.

    1974-01-01

    An analysis was made of regolith from layer A of the Luna 16 sample for rare earth elements, by a chemical spectral method. Chemical and ion exchange concentrations were used to determine the content of 12 elements and Y at the level 0.001 to 0.0001 percent with 10 to 15 percent reproducibility of the emission determination. Results within the limits of reproducibility agree with data obtained by mass spectra, activation, and X-ray fluorescent methods.

  9. DYNAMIC ANALYSIS FOR THE DISCRETE PARTICLE MODEL BY DISTINCT ELEMENT METHOD : APPLICATION TO CALCULATION OF COEFFICIENT OF EARTH PRESSURE

    OpenAIRE

    大西, 泰史

    2017-01-01

    The purpose of this study is to perform to earth pressure coefficient calculation simulation using the Distinct Element Method (DEM). Earth pressure theory has been established since long ago and is still in use. Therefore, simulation based on Coulomb and Rankine's theory of earth pressure is carried out to confirm usability of DEM. As a result of the static earth pressure coefficient calculation simulation, good results were obtained. However, in the passive earth pressure coefficient calcul...

  10. A New Family of Nonstoichiometric Layered Rare-Earth Tin Antimonides, RESn(x)()Sb(2) (RE = La, Ce, Pr, Nd, Sm): Crystal Structure of LaSn(0.75)Sb(2).

    Science.gov (United States)

    Ferguson, Michael J.; Hushagen, Ryan W.; Mar, Arthur

    1996-07-17

    A new class of nonstoichiometric layered ternary rare-earth tin antimonides, RESn(x)()Sb(2) (RE = La, Ce, Pr, Nd, Sm), has been synthesized through reaction of the elements at 950 degrees C. In the lanthanum series LaSn(x)()Sb(2), tin can be incorporated from a maximum content of x approximately 0.7 or 0.8 to as low as x approximately 0.10. The structure of lanthanum tin diantimonide with the maximum tin content, LaSn(0.75)Sb(2), has been determined by single-crystal X-ray diffraction methods. It crystallizes in the orthorhombic space group -Cmcm with a = 4.2425(5) Å, b = 23.121(2) Å, c = 4.5053(6) Å, and Z = 4. The isostructural rare-earth analogues were characterized by powder X-ray diffraction. The structure of LaSn(0.75)Sb(2) comprises layers of composition "LaSb(2)" in which La atoms are coordinated by Sb atoms in a square-antiprismatic geometry. Between these layers reside chains of Sn atoms distributed over three crystallographically independent sites, each partially occupied at about 20%. The structure of LaSn(0.75)Sb(2) can be regarded as resulting from the excision of RE-Sb and Sb-Sb bonds in the related structures of binary rare-earth diantimonides, RESb(2), and then intercalation of Sn atoms between layers.

  11. Geochemistry of some rare earth elements in groundwater, Vierlingsbeek, the Netherlands

    NARCIS (Netherlands)

    Janssen RPT; Verweij W; Versteegh JFM; LWD

    1997-01-01

    Speciation calculations were carried out on groundwater samples to shed more light on the chemical processes of rare earth elements (REE). These samples were taken from seven boreholes at several depths near the drinking water pumping station, Vierlingsbeek, The Netherlands. Complexation and precip

  12. Tracing sediment movement on semi-arid watershed using Rare Earth Elements 1988

    Science.gov (United States)

    A multi-tracer method employing rare earth elements (REE) was used to determine sediment yield and to track sediment movement in a small semiarid watershed. A 0.33 ha watershed near Tombstone, AZ was divided into five morphological units, each tagged with one of five REE oxides. Relative contributi...

  13. A CONTRIBUTION TO THE RESEARCH ON RARE EARTH ELEMENTS IN SEDIMENTARY ROCKS

    Directory of Open Access Journals (Sweden)

    Josip Crnički

    1989-12-01

    Full Text Available The main features of the geochemistry of rare earth elements (REE, REE mineralogy and the REE i contents and distributions in sedimentary rocks are presented. A new classification of REE minerals as well as a new systematic order of the REE behaviour in sedimentology is introduced and explained.

  14. Precious metals and rare earth elements in municipal solid waste – Sources and fate in a Swiss incineration plant

    Energy Technology Data Exchange (ETDEWEB)

    Morf, Leo S., E-mail: leo.morf@bd.zh.ch [Baudirektion Kanton Zürich, Amt für Abfall, Wasser, Energie und Luft, Zurich (Switzerland); Gloor, Rolf; Haag, Olaf [Bachema AG, Schlieren (Switzerland); Haupt, Melanie [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland); Skutan, Stefan [Bachema AG, Schlieren (Switzerland); Lorenzo, Fabian Di; Böni, Daniel [Zentrum für nachhaltige Abfall-und Ressourcennutzung ZAR, Hinwil (Switzerland)

    2013-03-15

    Highlights: ► We carefully addressed all the very valuable comments and suggestions of the reviewers. ► We also have shortened the size of the paper and tried simplify it substantially, as requested by the reviewers (introduction 25% reduced!). ► We have decided to take the chance and have replaced the data for the “additional” elements (Cu, Cd, Zn, Pb, Sn, Cr, Ni, Fe, Al) of the earlier MFA (Morf, 2011) with data that belong to the samples of this study. ► We are convinced that with the revision the paper has significantly improved in quality and attractiveness. - Abstract: In Switzerland many kinds of waste, e.g. paper, metals, electrical and electronic equipment are separately collected and recycled to a large extent. The residual amount of municipal solid waste (MSW) has to be thermally treated before final disposal. Efforts to recover valuable metals from incineration residues have recently increased. However, the resource potential of critical elements in the waste input (sources) and their partitioning into recyclable fractions and residues (fate) is unknown. Therefore, a substance flow analysis (SFA) for 31 elements including precious metals (Au, Ag), platinum metal group elements (Pt, Rh) and rare earth elements (La, Ce, etc.) has been conducted in a solid waste incinerator (SWI) with a state-of-the-art bottom ash treatment according to the Thermo-Re® concept. The SFA allowed the determination of the element partitioning in the SWI, as well as the elemental composition of the MSW by indirect analysis. The results show that the waste-input contains substantial quantities of precious metals, such as 0.4 ± 0.2 mg/kg Au and 5.3 ± 0.7 mg/kg Ag. Many of the valuable substances, such as Au and Ag are enriched in specific outputs (e.g. non-ferrous metal fractions) and are therefore recoverable. As the precious metal content in MSW is expected to rise due to its increasing application in complex consumer products, the results of this study are

  15. A political economy of China's export restrictions on rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Pothen, Frank [Zentrum fuer Europaeische Wirtschaftsforschung GmbH (ZEW), Mannheim (Germany); Fink, Kilian [Frankfurt Univ. (Germany)

    2015-04-20

    We investigate why governments restrict exports of exotic raw materials taking rare earth elements as a case study. Trade restrictions on exotic materials do not have immediate macroeconomic effects. Relocating rare earth intensive industries is found to be the main reason behind China's export barriers. They are part of a more extensive strategy aiming at creating comparative advantages in these sectors and at overcoming path dependencies. Moreover, export barriers serve as a second-best instrument to reduce pollution and to slow down the depletion of exhaustible resources. Growing domestic rare earth consumption renders those increasingly ineffective. Rising reliance on mine-site regulation indicates that this fact is taken into account. Rare earth extraction is dominated by a few large companies; the demand side is dispersed. That speaks against successful lobbying for export restrictions. It appears as if the export barriers are set up to compensate mining firms.

  16. Effect of Rare Earth Elements on Quenching Crack Resistance of Steel 9Cr2Mo

    Institute of Scientific and Technical Information of China (English)

    杨庆祥; 李慧; 郭铁波; 张兰萍

    2001-01-01

    The effect of rare earth elements on quenching crack resistance of steel 9Cr2Mo was investigated by means of scanning electron microscopy (SEM) and optical microscopy. Experimental results show that, by adding RE elements to steel 9Cr2Mo, the number of quenching for crack initiation is increased. Meanwhile the propagation of quenching cracks is postponed and the paths of crack propagation are changed. Therefore, quenching crack resistance can be improved by adding RE elements to steel 9Cr2Mo.

  17. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    Science.gov (United States)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2014-02-01

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) & 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) &29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of 232Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  18. Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas advanced materials plant (LAMP)

    Energy Technology Data Exchange (ETDEWEB)

    AL-Areqi, Wadeeah M., E-mail: walareqi@yahoo.com; Majid, Amran Ab., E-mail: walareqi@yahoo.com; Sarmani, Sukiman, E-mail: walareqi@yahoo.com [Nuclear Science Programme, School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi (Malaysia)

    2014-02-12

    Lynas Advanced Materials Plant (LAMP) has been licensed to produce the rare earths elements since early 2013 in Malaysia. LAMP processes lanthanide concentrate (LC) to extract rare earth elements and subsequently produce large volumes of water leach purification (WLP) residue containing naturally occurring radioactive material (NORM). This residue has been rising up the environmental issue because it was suspected to accumulate thorium with significant activity concentration and has been classified as radioactive residue. The aim of this study is to determine Th-232, U-238 and rare earth elements in lanthanide concentrate (LC) and water leach purification (WLP) residue collected from LAMP and to evaluate the potential radiological impacts of the WLP residue on the environment. Instrumental Neutron Activation Analysis and γ-spectrometry were used for determination of Th, U and rare earth elements concentrations. The results of this study found that the concentration of Th in LC was 1289.7 ± 129 ppm (5274.9 ± 527.6Bq/kg) whereas the Th and U concentrations in WLP were determined to be 1952.9±17.6 ppm (7987.4 ± 71.9 Bq/kg) and 17.2 ± 2.4 ppm respectively. The concentrations of Th and U in LC and WLP samples determined by γ- spectrometry were 1156 ppm (4728 ± 22 Bq/kg) and 18.8 ppm and 1763.2 ppm (7211.4 Bq/kg) and 29.97 ppm respectively. This study showed that thorium concentrations were higher in WLP compare to LC. This study also indicate that WLP residue has high radioactivity of {sup 232}Th compared to Malaysian soil natural background (63 - 110 Bq/kg) and come under preview of Act 304 and regulations. In LC, the Ce and Nd concentrations determined by INAA were 13.2 ± 0.6% and 4.7 ± 0.1% respectively whereas the concentrations of La, Ce, Nd and Sm in WLP were 0.36 ± 0.04%, 1.6%, 0.22% and 0.06% respectively. This result showed that some amount of rare earth had not been extracted and remained in the WLP and may be considered to be reextracted.

  19. Radiological Impacts and Regulation of Rare Earth Elements in Non-Nuclear Energy Production

    Directory of Open Access Journals (Sweden)

    Timothy Ault

    2015-03-01

    Full Text Available Energy industries account for a significant portion of total rare earth usage, both in the US and worldwide. Rare earth minerals are frequently collocated with naturally occurring radioactive material, imparting an occupational radiological dose during recovery. This paper explores the extent to which rare earths are used by various non-nuclear energy industries and estimates the radiological dose which can be attributed to these industries on absolute and normalized scales. It was determined that typical rare earth mining results in an occupational collective dose of approximately 0.0061 person-mSv/t rare earth elements, amounting to a total of 330 person-mSv/year across all non-nuclear energy industries (about 60% of the annual collective dose from one pressurized water reactor operated in the US, although for rare earth mining the impact is spread out over many more workers. About half of the collective dose from non-nuclear energy production results from use of fuel cracking catalysts for oil refining, although given the extent of the oil industry, it is a small dose when normalized to the energy equivalent of the oil that is used annually. Another factor in energy industries’ reliance on rare earths is the complicated state of the regulation of naturally occurring radiological materials; correspondingly, this paper also explores regulatory and management implications.

  20. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    Science.gov (United States)

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  1. Elemental analysis of samples of rare earths; Analisis elemental de muestras de tierras raras

    Energy Technology Data Exchange (ETDEWEB)

    Lopez M, J.; Ramirez T, J.J.; Sandoval J, R.A.; Aspiazu F, J.; Villasenor S, P. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Lugo L, M.F. [IFUNAM, 04500 Mexico D.F. (Mexico)

    2003-07-01

    Applying the PIXE technique (Particle Induced X-Ray Emission) it was analyzed the purity of the samples that will be used to measure the production section of X rays with Li and B beams. It is not necessary to determine the concentrations of the pollutant elements. (Author)

  2. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.

    Science.gov (United States)

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Zhang, Junying

    2011-09-01

    CeO(2)-TiO(2) (CeTi) catalysts synthesized by an ultrasound-assisted impregnation method were employed to oxidize elemental mercury (Hg(0)) in simulated low-rank (sub-bituminous and lignite) coal combustion flue gas. The CeTi catalysts with a CeO(2)/TiO(2) weight ratio of 1-2 exhibited high Hg(0) oxidation activity from 150 to 250 °C. The high concentrations of surface cerium and oxygen were responsible for their superior performance. Hg(0) oxidation over CeTi catalysts was proposed to follow the Langmuir-Hinshelwood mechanism whereby reactive species from adsorbed flue gas components react with adjacently adsorbed Hg(0). In the presence of O(2), a promotional effect of HCl, NO, and SO(2) on Hg(0) oxidation was observed. Without O(2), HCl and NO still promoted Hg(0) oxidation due to the surface oxygen, while SO(2) inhibited Hg(0) adsorption and subsequent oxidation. Water vapor also inhibited Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. However, the combination of SO(2) and NO without HCl also resulted in high Hg(0) oxidation efficiency. This superior oxidation capability is advantageous to Hg(0) oxidation in low-rank coal combustion flue gas with low HCl concentration.

  3. Rubidium isotopes in primitive chondrites: Constraints on Earth's volatile element depletion and lead isotope evolution

    Science.gov (United States)

    Nebel, O.; Mezger, K.; van Westrenen, W.

    2011-05-01

    The bulk silicate Earth (BSE) shows substantial deficits in volatile elements compared to CI-chondrites and solar abundances. These deficits could be caused by pre-accretionary depletion in the solar nebula during condensation of solids, or by later heat-driven evaporation during collision of small bodies that later accreted to form the Earth. The latter is considered to result in isotope fractionation for elements with low condensation temperatures that correlates with the degree of depletion. Here, we report first high-precision isotope ratio measurements of the moderately volatile and lithophile trace element Rb. Data from seventeen chondrite meteorites show that their Rb isotope abundances are nearly indistinguishable from Earth, not deviating more than 1 per mil in their 87Rb/85Rb. The almost uniform solar system Rb isotope pool suggests incomplete condensation or evaporation in a single stage is unlikely to be the cause of the volatile element deficit of the Earth. As Rb and Pb have similar condensation temperatures, we use their different degrees of depletion in the BSE to address the mechanisms and timing of terrestrial volatile depletion. The Rb isotope data are consistent with a scenario in which the volatile budget of the Earth was generated by a mixture of a highly volatile-element depleted early Proto-Earth with undepleted material in the course of terrestrial accretion. Observed Pb and Rb abundances and U-Pb and Rb-Sr isotope systematics suggest that volatile addition occurred at approximately the same time at which last core-mantle equilibration was achieved. In line with previous suggestions, this last equilibration involved a second stage of Pb (but not Rb) depletion from the BSE. The timing of this second Pb loss event can be constrained to ~ 110 Ma after the start of the solar system. This model supports a scenario with core storage of Pb in the aftermath of a putative Moon forming giant impact that also delivered the bulk of the volatile

  4. Electronic structure and optical properties of rare earth hexaborides RB{sub 6} (R = La, Ce, Pr, Nd, Sm, Eu, Gd)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nirpendra [Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667 (India); Saini, Sapan Mohan [Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667 (India); Nautiyal, Tashi [Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667 (India); Auluck, S [Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667 (India)

    2007-08-29

    The optical and electronic properties of the rare earth hexaborides RB{sub 6} (R = La, Ce, Pr, Nd, Sm, Eu, Gd) are studied using the full potential linearized augmented plane wave method. To account better for the on-site f-electron correlation, we adopted the Coulomb corrected local spin density approximation (LSDA+U) to the exchange correlation functional in the calculations. Our electronic structure calculation shows the overlapping of R 5d states and B 2p states at the X symmetry point. The magnetic moment of the ferromagnetic rare earth hexaborides increases with increasing 4f occupation. The calculated reflectivity and optical conductivity spectra are in agreement with the experimental data, although the structures in the calculated optical spectra are sharper.

  5. Mineralogy and geochemistry of trace and Rare Earth Element from the Manaila massive sulphide deposit (Eastern Carpathians, Romania)

    Science.gov (United States)

    Moldoveanu, S.; Iancu, O. G.; Kasper, H. U.

    2012-04-01

    Keywords: Eastern Carpathians, Mănăila deposit, REE, trace elements, pyrite The present paper deal with the mineralogy and trace elements geochemistry of sulphide deposits from Mănăila mine field located in NE area of Eastern Carpathians Mountains (Romania). The mineralization occurs within metamorphic rocks of Tulgheş terrane, part of Crystalline-Mezozoic zone of the Eastern Carpathians. The metamorphic rocks in Mănăila area consist of felsic metavolcanics rocks with quartzites and quartz-feldspathic rocks as prevailing types. The P-T metamorphic conditions are typical of greenschis facies with biotite and garnet (Mn-Grt) in mineral assemblage. The mineralogical study was performed using reflected light microscope and Scanning Electron Microscopy (SEM) methods. Thus, the both methods show that the main sulphides minerals are represented by pyrite and chalcopyrite, being followed by sphalerite, galena and little amount of Cu sulphosalts (tetrahedrite and bournonite) and also by gangue minerals (quartz and carbonates). Pyrite occurs as large euhedral to subhedral grains in quartz and small rounded inclusion in chalcopyrite. The trace elements analysis was achieved on whole-rock samples and involved the determination of REE, LIL (Rb, Ba, Sr) and HFS (Y, Zr, Hf, U, Th, Nb, Ta) by ICP-MS method. The concentration of LIL and HFS trace elements in mineralized rocks decrease as follows: Ba > Bi > As > Sb > Co > Ga > Ni > Cd. Even if the barium contents in Mănăila ore is high, baritina (BaSO4) was not identified throught the mineralogical analyses carried out so far. The total rare earth element content (REE) of the samples from Mănăila range from 26.84 to 246.46 ppm. Chondrite - normalized REE patterns of the mineralized rocks show that the LREE are enriched in relation to the HREE. Also a positive Ce anomalies and negative Eu anomalies are present. Y/Ho and Zr/Hf ratios are close to the chondritic ratios indicating Charge-and-Radius-Controlled (CHARAC

  6. Improvement of corrosion resistance of magnesium metal by rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Toshihide [Department of Production Systems Engineering, Toyohashi University of Technology, Toyohashi 441-8580 (Japan)], E-mail: takenaka@pse.tut.ac.jp; Ono, Takami; Narazaki, Yuji; Naka, Yusuke; Kawakami, Masahiro [Department of Production Systems Engineering, Toyohashi University of Technology, Toyohashi 441-8580 (Japan)

    2007-11-20

    Mg metal containing rare earth metals (REs) can be electrowon directly by molten salt electrolysis. The clarification of the optimum RE content in Mg is necessary to fix the electrolytic conditions in the direct electrowinning of Mg with RE. From this point of view, effect of RE addition in Mg metal on its corrosion property was studied in detail in this study. The specimen was prepared by adding La, Nd, or Ce in melted Mg metal, and its corrosion resistance was examined by an immersion test in 3 mass%-NaCl solution at room temperature. The corrosion resistance of Mg was improved greatly by adding a small amount of RE, whereas the excess addition of RE deteriorated the corrosion resistance. The optimum RE content was about 0.5 mass%. In this study, the corrosion property of Mg with an artificial surface oxide layer was also studied to clarify the effect of surface oxide. The corrosion resistance of Mg was particularly strengthened by conversion coating in a solution including La(NO{sub 3}){sub 3}, Nd(NO{sub 3}){sub 3}, or Ce(NO{sub 3}){sub 3}, with Mg(NO{sub 3}){sub 2}. This result suggests that the surface oxide film consisting of both Mg and RE gives ideal corrosion resistance to Mg metal. Mg metal with conversion coating including RE should also be of use as a corrosion-resistant material.

  7. Origin of the earth's moon - Constraints from alkali volatile trace elements

    Science.gov (United States)

    Kreutzberger, M. E.; Drake, M. J.; Jones, J. H.

    1986-01-01

    Although the moon is depleted in volatile elements compared to the earth, these depletions are not in accord with simple volatility. For example, the Cs/Rb ratios of the earth and moon inferred from basalt are approximately one seventh and one half of the CI ratio, respectively. Volatility considerations alone predict that the lunar Cs/Rb ratio should be equal to or lower than the terrestrial ratio if the moon was derived entirely from earth mantle material. Thus hypotheses such as rotational fission which invoke derivation of lunar material entirely from the earth's mantle may be excluded. The collisional ejection hypothesis of lunar origin requires at least 18 percent of lunar material to be derived from a projectile with dehydrated CI composition to match the lunar Cs/Rb ratio, and 25-50 percent to match both the lunar Cs/Rb ratio and absolute concentrations of Cs and Rb. It remains to be demonstrated that this relatively large contribution of projectile material is consistent with other elemental abundances and element ratios in the moon.

  8. Trace and Rare Earth Element Geochemistry of Black Shales in Triassic Kasimlar Formation, Anamas-Akseki Platform, Western Taurids, Turkey

    Science.gov (United States)

    Kuşcu, Mustafa; Özsoy, Rifat; Özçelik, Orhan; Altunsoy, Mehmet

    2016-10-01

    The Triassic black shale sequence of Kasimlar Formation in the Anamas - Akseki Platform, Western Taurids, Turkey do not show any trace element enrichment. But trace element values of Black shales from the Kasimlar Formation are broadly comparable with those of the average upper continental crust. While there are slightly enrichments in As, Bi, Zn, Nb, Cu, Pb, Cs and Sb. The other elements are slightly depleted in black shales according to those of upper continental crust (UC). Organic carbon content of the black shales is between 05 and 0.71% but reach 3.78% (averaging as 0.52%). The black shales do not show metal/TOC correlation. Compared to the black shales of Kasimlar Formation and upper continental crust; The black shales show a significant increase in HREE and LREE. Our data show slightly negative Ce anomalies (Ce/Ce* as low as 0.94) and positive Eu anomalies (Eu/Eu* as high as 3.33). Ce/Ce* and Eu/Eu* values recorded in the depositional environment indicate low oxygenated and anaerobic (reducing) conditions.

  9. Structural Responses and Finite Element Modeling of Hakka Tulou Rammed Earth Structures

    Science.gov (United States)

    Sranislawski, Daniel

    Hakka Tulous are rammed earth structures that have survived the effects of aging and natural elements upwards of even over a thousand years. These structures have housed the Hakka people of the Fujian Province, China in natural yet modern housing that has provided benefits over newer building materials. The key building material, rammed earth, which is used for the walls of the Hakka Tulou structures, has provided structural stability along with thermal comfort to the respective inhabitants of the Hakka Tulous. Through material testing and analysis this study has examined how the Tulou structures have maintained their structural stability while also providing thermal comfort. Reports of self healing cracks in the rammed earth walls were also analyzed for their validity in this study. The study has found that although the story of the self healing crack cannot be validated, there is reason to believe that with the existence of lime, some type of autogenous healing could occur on a small scale. The study has also found, through the use of nondestructive testing, that both the internal wooden systems (flooring, roof, and column support) and the rammed earth walls, are still structurally sound. Also, rammed earth's high thermal mass along with the use of sufficient shading has allowed for a delay release of heat energy from the walls of the Tulous, thus providing thermal comfort that can be felt during both night and day temperatures. The Hakka Tulou structures have been found to resist destruction from natural disasters such as strong earthquakes even when more modern construction has not. Through finite element modeling, this study has shown that the high volume of rammed earth used in the construction of the Hakka Tulous helps dissipate lateral force energy into much lower stresses for the rammed earth wall. This absorption of lateral force energy allows the rammed earth structures to survive even the strongest of earthquakes experienced in the region. The Hakka

  10. Thermal effects on rare earth element and strontium isotope chemistry in single conodont elements

    Science.gov (United States)

    Armstrong, H. A.; Pearson, D. G.; Griselin, M.

    2001-02-01

    A low-blank, high sensitivity isotope dilution, ICP-MS analytical technique has been used to obtain REE abundance data from single conodont elements weighing as little as 5 μg. Sr isotopes can also be measured from the column eluants enabling Sr isotope ratios and REE abundance to be determined from the same dissolution. Results are comparable to published analyses comprising tens to hundreds of elements. To study the effects of thermal metamorphism on REE and strontium mobility in conodonts, samples were selected from a single bed adjacent to a basaltic dyke and from the internationally used colour alteration index (CAI) "standard set." Our analyses span the range of CAI 1 to 8. Homogeneous REE patterns, "bell-shaped" shale-normalised REE patterns are observed across the range of CAI 1 to 6 in both sample sets. This pattern is interpreted as the result of adsorption during early diagenesis and could reflect original seawater chemistry. Above CAI 6 REE patterns become less predictable and perturbations from the typical REE pattern are likely to be due to the onset of apatite recrystallisation. Samples outside the contact aureole of the dyke have a mean 87Sr/ 86Sr ratio of 0.708165, within the broad range of published mid-Carboniferous seawater values. Our analysis indicates conodonts up to CAI 6 record primary geochemical signals that may be a proxy for ancient seawater.

  11. Modeling of rare earth element sorption to the Gram positive Bacillus subtilis bacteria surface.

    Science.gov (United States)

    Martinez, Raul E; Pourret, Olivier; Takahashi, Yoshio

    2014-01-01

    In this study, rare earth element (REE) binding constants and site concentration on the Gram+ bacteria surfaces were quantified using a multi-site Langmuir isotherm model, along with a linear programming regression method (LPM), applied to fit experimental REE sorption data. This approach found one discrete REE binding site on the Gram+ Bacillus subtilis surface for the pH range of 2.5-4.5. Average log10 REE binding constants for a site j on these bacteria ranged from 1.08±0.04 to 1.40±0.04 for the light REE (LREE: La to Eu), and from 1.36±0.03 to 2.18±0.14 for the heavy REE (HREE: Gd to Lu) at the highest biomass concentration of 1.3 g/L of B. subtilis bacteria. Similar values were obtained for bacteria concentrations of 0.39 and 0.67 g/L indicating the independence of REE sorption constants on biomass concentration. Within the experimental pH range in this study, B. subtilis was shown to have a lower affinity for LREE (e.g. La, Ce, Pr, Nd) and a higher affinity for HREE (e.g. Tm, Yb, Lu) suggesting an enrichment of HREE on the surface of Gram+ bacteria. Total surface binding site concentrations of 6.73±0.06 to 5.67±0.06 and 5.53±0.07 to 4.54±0.03 mol/g of bacteria were observed for LREE and HREE respectively, with the exception of Y, which showed a total site concentration of 9.53±0.03, and a log K(REE,j) of 1.46±0.02 for a biomass content of 1.3 g/L. The difference in these values (e.g. a lower affinity and increased binding site concentration for LREE, and the contrary for the HREE) suggests a distinction between the LREE and HREE binding modes to the Gram+ bacteria reactive surface at low pH. This further implies that HREE may bind more than one monoprotic reactive group on the cell surface. A multisite Langmuir isotherm approach along with the LPM regression method, not requiring prior knowledge of the number or concentration of cell surface REE complexation sites, were able to distinguish between the sorption constant and binding site concentration

  12. Highly siderophile elements were stripped from Earth's mantle by iron sulfide segregation

    CERN Document Server

    Rubie, David C; Jacobson, Seth A; Morbidelli, Alessandro; Palme, Herbert; Vogel, Antje K; Frost, Daniel J

    2016-01-01

    Highly siderophile elements (HSEs) are strongly depleted in the bulk silicate Earth (BSE) but are present in near-chondritic relative abundances. The conventional explanation is that the HSEs were stripped from the mantle by the segregation of metal during core formation but were added back in near-chondritic proportions by late accretion, after core formation had ceased. Here we show that metal-silicate equilibration and segregation during Earth's core formation actually increased HSE mantle concentrations because HSE partition coefficients are relatively low at the high pressures of core formation within Earth. The pervasive exsolution and segregation of iron sulfide liquid from silicate liquid (the "Hadean matte") stripped magma oceans of HSEs during cooling and crystallization, before late accretion, and resulted in slightly suprachondritic palladium/iridium and ruthenium/iridium ratios.

  13. Evolution of Mg-5Al-0.4Mn microstructure after rare earth elements addition

    Directory of Open Access Journals (Sweden)

    A. Żydek

    2011-04-01

    Full Text Available Mg-5Al-0.4Mn-xRE (x = 0, 1, 2, 3 wt.% magnesium alloys were prepared successfully by casting method. The microstructure wasinvestigated by light microscopy. The influence of rare earth (RE elements on the area fraction of eutectic was analysed. The obtainedresults revealed that the as-cast Mg-5Al-0.4Mn alloy consist of α - Mg matrix and eutectic α + γ (where γ is Mg17Al12. However, whilerare earth elements were added to the Mg-Al type alloy, Al11RE3 precipitates were formed. The amount of the Al11RE3 precipitatesincreased with increasing addition of RE, but the amount of γ - Mg17Al12 decreased.

  14. Analytical approach using KS elements to near-earth orbit predictions including drag

    Science.gov (United States)

    Sharma, Ram Krishnan

    1991-04-01

    An analytical theory for the motion of near-earth satellite orbits with the air drag effect is evolved in terms of the KS elements, using an analytical oblate exponential atmospheric density model. Due to the symmetry of the KS element equations, only one of the eight equations is integrated analytically to acquire the state vector at the close of each revolution. In the numerical studies performed, it is shown that after 100 revolutions, with a ballistic coefficient of 50, a maximum difference of 39 meters is found in the semimajor axis comparison for a very small eccentricity (0.001) instance having an initial perigee height of 391.425 km.

  15. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    OpenAIRE

    Opiela M.; Grajcar A.

    2012-01-01

    The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and...

  16. Major, Trace, and Rare Earth Element Abudances in Boninitic Lavas from the Ogasawara Forearc

    OpenAIRE

    1985-01-01

    Dredged andesites and dacites from the Ogasawara forearc contain high abundances of MgO at high SiO2, high K2O, low rare earth element abundances and flat patterns, and very low TiO2 contents. The chemical character and geologic setting support the interpretation that these lavas are evolved members of the boninite series formed by high degrees of partial melting of a previously depleted arc source, followed by enrichment in K, Th, and large-ion lithophile elements, and finally differentiated...

  17. Modeling viscoelastic deformation of the earth due to surface loading by commercial finite element package - ABAQUS

    Science.gov (United States)

    Kit Wong, Ching; Wu, Patrick

    2017-04-01

    Wu (2004) developed a transformation scheme to model viscoelatic deformation due to glacial loading by commercial finite element package - ABAQUS. Benchmark tests confirmed that this method works extremely well on incompressible earth model. Bangtsson & Lund (2008),however, showed that the transformation scheme would lead to incorrect results if compressible material parameters are used. Their study implies that Wu's method of stress transformation is inadequate to model the load induced deformation of a compressible earth under the framework of ABAQUS. In light of this, numerical experiments are carried out to find if there exist other methods that serve this purpose. All the tested methods are not satisfying as the results failed to converge through iterations, except at the elastic limit. Those tested methods will be outlined and the results will be presented. Possible reasons of failure will also be discussed. Bängtsson, E., & Lund, B. (2008). A comparison between two solution techniques to solve the equations of glacially induced deformation of an elastic Earth. International journal for numerical methods in engineering, 75(4), 479-502. Wu, P. (2004). Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress. Geophysical Journal International, 158(2), 401-408.

  18. Radiochemical neutron activation analysis of rare earth elements in peridotitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Joron, J.L. (Laboratoire d' Analyse par Activation Pierre Sue, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)); Ottonello, G. (Consiglio Nationale delle Ricerche, Pisa (Italy). Ist. di Petrografia)

    1985-02-01

    A radiochemical neutron activation analytical method based on various methods published earlier was used to determine rare earth elements (REE). The method involves a post-irradiation sample fusion, two separate ion-exchange chromatographic stages, and, finally, a fluoride precipitation. The RNAA procedure is capable of providing very precise REE data for peridotitic samples and was used for the analysis of rocks from several geodynamic environments.

  19. SUSTAINABLE ALLOY DESIGN: SEARCHING FOR RARE EARTH ELEMENT ALTERNATIVES THROUGH CRYSTAL ENGINEERING

    Science.gov (United States)

    2016-02-26

    Force Base, Dayton OH, March 20th 2013 23. Informatics Aided Discovery of Energy Materials 2013 Kentucky Workshop on Renewable Energy and Energy ...AFRL-AFOSR-VA-TR-2016-0122 Sustainable Alloy Design Searching for Rare Earth Element Alternatives through Crystal Engineering Krishna Rajan IOWA...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching

  20. Extended defects in Si wafers implanted with ions of rare-earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V.I. E-mail: icpm@mail.girmet.ru; Yugova, T.G.; Sobolev, N.A.; Shek, E.I.; Makovijchuk, M.I.; Parshin, E.O

    1999-01-01

    Structural defects arising in Cz-Si wafers after implantation with high-energy ions of rare-earth elements (Er, Ho, Dy) and annealing in a chlorine-containing ambience were studied by transmission electron microscopy and chemical etching/Nomarski microscopy. Regularities of extended defect formation in dependence on implant and annealing conditions as well as evolution of structural defect patterns during thermal annealing have been established.

  1. Hyperfine Magnetic Anomaly in the Atomic Spectra of the Rare-Earth Elements

    CERN Document Server

    Gangrsky, Yu P; Karaivanov, D V; Kolesnikov, N N; Marinova, K P; Markov, B N; Rostovsky, V S

    2001-01-01

    The constants of the hyperfine splitting in the atomic optical spectra of the rare-earth elements - Nd, Eu, Gd and Lu - were measured. The method of laser resonance fluorescence in the parallel atomic beam was used. The values of the hyperfine magnetic anomaly were determined from the comparison of magnetic dipole constant ratios of the neighbouring odd Z or N isotopes for the different atomic levels. The connection of these values and the parameters of atomic and nuclear structure is discussed.

  2. The Mobility of Rare—Earth Elements During Hydrothermal Activity:A Review

    Institute of Scientific and Technical Information of China (English)

    熊永良; 翟裕生

    1991-01-01

    The mobility of the rare-earth elements(REE)during hydrothermal activities is increasingly documented.Geological and experimental evidence suggests that REE may be mobile in solutions rich in F-,Cl-,HCO3-,CO2- 3,HPO42-,PO43-,or in combinations of the above ligands,even though little has been known about which ligand or which combination is most effective in mobilizing REE. The fractionation of REE resulting from hydrothermal activities is inconsistent.One set of field data implies the prererential mobility of the light rare-earth elements(LREE).whereas another set of field observations indicates the dominant mobilization of the heavy rare earth elements(HREE),and some theoretical prediction is comtradictory to the field evidence.The Eu anomalies due to hydrothermal activities are complex and plausible explanation is not available.The existing experimental approaches dealing with REE are not adequate for explanation ofREE behaviour in aqueous solutions.Systematic experimental approaches are suggested.

  3. Evaluating rare earth element availability: a case with revolutionary demand from clean technologies.

    Science.gov (United States)

    Alonso, Elisa; Sherman, Andrew M; Wallington, Timothy J; Everson, Mark P; Field, Frank R; Roth, Richard; Kirchain, Randolph E

    2012-03-20

    The future availability of rare earth elements (REEs) is of concern due to monopolistic supply conditions, environmentally unsustainable mining practices, and rapid demand growth. We present an evaluation of potential future demand scenarios for REEs with a focus on the issue of comining. Many assumptions were made to simplify the analysis, but the scenarios identify some key variables that could affect future rare earth markets and market behavior. Increased use of wind energy and electric vehicles are key elements of a more sustainable future. However, since present technologies for electric vehicles and wind turbines rely heavily on dysprosium (Dy) and neodymium (Nd), in rare-earth magnets, future adoption of these technologies may result in large and disproportionate increases in the demand for these two elements. For this study, upper and lower bound usage projections for REE in these applications were developed to evaluate the state of future REE supply availability. In the absence of efficient reuse and recycling or the development of technologies which use lower amounts of Dy and Nd, following a path consistent with stabilization of atmospheric CO(2) at 450 ppm may lead to an increase of more than 700% and 2600% for Nd and Dy, respectively, over the next 25 years if the present REE needs in automotive and wind applications are representative of future needs.

  4. Enhancement Effects of Three Rare Earth Elements on the Growth of Chaetoceros Mulleri

    Institute of Scientific and Technical Information of China (English)

    曲克明; 辛福言

    2001-01-01

    Enhancement effects of rare earth elements on the growth of Chaetoceros mulleri is studied in this paper. The results show that all of the light, middle and heavy rare earth elements have similar enhancement effect on the growth of Chaetoceros mulleri, with the beneficial concentrations of La, Gd and Yb being 7.28~87.40 μ mol/L, 6.36~57.23 μ mol/L and 5.78~17.34 μ mol/L. The optimum concentrations of La, Gd and Yb are 7.28 ~50.98 μ mol/L,31.80~44.52 μ m ol/L and 5.78~17.34 1μ mol/L, respectively. When the concentrations of La, Gd and Yb are 7.28~87.40 μ mol/L, 6.36~57.23 μ mol/L and 5.78~ 17,34 μ mol/L, the concentrations of chlorophyll have increased by 9.3~47.0%, 33.4~44.3%, and 36.5~40.3%, respectively as compared with the control group. The mechanism of enhancement of rare earth elements on the growth ot Chaetoceros mulleri is also discussed in this paper.

  5. Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: a review.

    Science.gov (United States)

    Khan, Aysha Masood; Bakar, Nor Kartini Abu; Bakar, Ahmad Farid Abu; Ashraf, Muhammad Aqeel

    2016-10-10

    Rare earths (RE), chemically uniform group of elements due to similar physicochemical behavior, are termed as lanthanides. Natural occurrence depends on the geological circumstances and has been of long interest for geologist as tools for further scientific research into the region of ores, rocks, and oceanic water. The review paper mainly focuses to provide scientific literature about rare earth elements (REEs) with potential environmental and health effects in understanding the research. This is the initial review of RE speciation and bioavailability with current initiative toward development needs and research perceptive. In this paper, we have also discussed mineralogy, extraction, geochemistry, analytical methods of rare earth elements. In this study, REEs with their transformation and vertical distribution in different environments such as fresh and seawater, sediments, soil, weathering, transport, and solubility have been reported with most recent literature along key methods of findings. Speciation and bioavailability have been discussed in detail with special emphasis on soil, plant, and aquatic ecosystems and their impacts on the environment. This review shows that REE gained more importance in last few years due to their detrimental effects on living organisms, so their speciation, bioavailability, and composition are much more important to evaluate their health risks and are discussed thoroughly as well.

  6. Direct Quantification of Rare Earth Elements Concentrations in Urine of Workers Manufacturing Cerium, Lanthanum Oxide Ultrafine and Nanoparticles by a Developed and Validated ICP-MS

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-03-01

    Full Text Available Rare earth elements (REEs have undergone a steady spread in several industrial, agriculture and medical applications. With the aim of exploring a sensitive and reliable indicator of estimating exposure level to REEs, a simple, accurate and specific ICP-MS method for simultaneous direct quantification of 15 REEs (89Y, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb and 175Lu in human urine has been developed and validated. The method showed good linearity for all REEs in human urine in the concentrations ranging from 0.001–1.000 μg∙L−1 with r2 > 0.997. The limits of detection and quantification for this method were in the range of 0.009–0.010 μg∙L−1 and 0.029–0.037 μg∙L−1, the recoveries on spiked samples of the 15 REEs ranged from 93.3% to 103.0% and the relative percentage differences were less than 6.2% in duplicate samples, and the intra- and inter-day variations of the analysis were less than 1.28% and less than 0.85% for all REEs, respectively. The developed method was successfully applied to the determination of 15 REEs in 31 urine samples obtained from the control subjects and the workers engaged in work with manufacturing of ultrafine and nanoparticles containing cerium and lanthanum oxide. The results suggested that only the urinary levels of La (1.234 ± 0.626 μg∙L−1, Ce (1.492 ± 0.995 μg∙L−1, Nd (0.014 ± 0.009 μg∙L−1 and Gd (0.023 ± 0.010 μg∙L−1 among the exposed workers were significantly higher (p < 0.05 than the levels measured in the control subjects. From these, La and Ce were the primary components, and accounted for 88% of the total REEs. Lanthanum comprised 27% of the total REEs while Ce made up the majority of REE content at 61%. The remaining elements only made up 1% each, with the exception of Dy which was not detected. Comparison with the previously published data, the levels of urinary La and Ce in workers and the control subjects show a

  7. Direct Quantification of Rare Earth Elements Concentrations in Urine of Workers Manufacturing Cerium, Lanthanum Oxide Ultrafine and Nanoparticles by a Developed and Validated ICP-MS.

    Science.gov (United States)

    Li, Yan; Yu, Hua; Zheng, Siqian; Miao, Yang; Yin, Shi; Li, Peng; Bian, Ying

    2016-03-22

    Rare earth elements (REEs) have undergone a steady spread in several industrial, agriculture and medical applications. With the aim of exploring a sensitive and reliable indicator of estimating exposure level to REEs, a simple, accurate and specific ICP-MS method for simultaneous direct quantification of 15 REEs ((89)Y, (139)La, (140)Ce, (141)Pr, (146)Nd, (147)Sm, (153)Eu, (157)Gd, (159)Tb, (163)Dy, (165)Ho, (166)Er, (169)Tm, (172)Yb and (175)Lu) in human urine has been developed and validated. The method showed good linearity for all REEs in human urine in the concentrations ranging from 0.001-1.000 μg ∙ L(-1) with r² > 0.997. The limits of detection and quantification for this method were in the range of 0.009-0.010 μg ∙ L(-1) and 0.029-0.037 μg ∙ L(-1), the recoveries on spiked samples of the 15 REEs ranged from 93.3% to 103.0% and the relative percentage differences were less than 6.2% in duplicate samples, and the intra- and inter-day variations of the analysis were less than 1.28% and less than 0.85% for all REEs, respectively. The developed method was successfully applied to the determination of 15 REEs in 31 urine samples obtained from the control subjects and the workers engaged in work with manufacturing of ultrafine and nanoparticles containing cerium and lanthanum oxide. The results suggested that only the urinary levels of La (1.234 ± 0.626 μg ∙ L(-1)), Ce (1.492 ± 0.995 μg ∙ L(-1)), Nd (0.014 ± 0.009 μg ∙ L(-1)) and Gd (0.023 ± 0.010 μg ∙ L(-1)) among the exposed workers were significantly higher (p < 0.05) than the levels measured in the control subjects. From these, La and Ce were the primary components, and accounted for 88% of the total REEs. Lanthanum comprised 27% of the total REEs while Ce made up the majority of REE content at 61%. The remaining elements only made up 1% each, with the exception of Dy which was not detected. Comparison with the previously published data, the levels of urinary La and Ce in workers and

  8. Effect of rare earth element cerium on preparation of tungsten powders

    Institute of Scientific and Technical Information of China (English)

    何文; 谭敦强; 李亚蕾; 杨欣; 陆磊; 陆德平

    2015-01-01

    Tungsten powders and Ce doped powders were prepared by hydrogen reduction combined with the liquid-solid doping method. The phase composition, particle size and powder morphology of Ce doped tungsten powders were analyzed by X-ray diffrac-tion, scanning electron microscopy and transmission electron microscopy, respectively. The results indicated that 10000 ppm Ce doped tungsten oxide powders were consisted of WO3 phase and Ce4W9O33 phase. The hydrogen reduction of Ce doped tungsten powders was basically accomplished at 800 ºC for 3 h. The size of Ce doped W powders was remarkably decreased compared to the undoped W powders. The phase of Ce4W9O33 was reduced to Ce2 (WO4)3 phase and Ce2W2O9 phase during the process of hydrogen reduction. Moreover, Ce2 (WO4)3 phase and Ce2W2O9 phase were observed form their morphologies, where the doping content of Ce was more than 100 ppm. The ternary phase embedding into W particles was assigned to Ce2 (WO4)3, while the ternary phase distrib-uting among W particles corresponded to Ce2W2O9. The phase of Ce2 (WO4)3 might be the nucleus of W particles and increase the number of the nucleus. And the particles of Ce2W2O9 covered WO2 particles and might inhibit the growth of W particles. These two reasons resulted in the decrease of the size of Ce doped W particles. Uniform fine W powders were fabricated with the doping content of Ce more than 100 ppm.

  9. Trace element and rare earth element of cap carbonate in Ediacaran Doushantuo Formation in Yangtze Gorges

    Institute of Scientific and Technical Information of China (English)

    HUANG Jing; CHU XueLei; CHANG HuaJin; FENG LianJun

    2009-01-01

    For the Doushantuo cap carbonate at the Jiulongwan section in the Yangtze Gorges,its concentrations of redox sensitive elements suggest two distinct enrichments in stratigraphy. These enrichments occur at about 0.8 m and 3.3 m above the bottom of cap carbonate,respectively. They are interpreted as the temporary anoxic depositional conditions due to the oxidation of seeped methane. REE+Y patterns of the cap carbonate are classified into three types with different styles:(1) from the bottom to 2.45 m,representing the behaviors of freshwater and suggesting that massive meltwater swarmed into surface oceans during the deglaciation; (2) from 2.45 m to 3.3 m,indicating the pattern of ancient seawater possibly due to upwelling of deep water; and (3) from 3.3 m to the top,showing "MREE bulge"pattern with HREE-depletion as a result of diagenesis. The three-stage REE+Y patterns represent the transformations of shallow water in the wake of the Marinoan glaciation in this region:the fresh meltwater was dominant first,end then it interfused into the oceanic basin by the transgression and upwelling.Bloom of plankton further introduced anoxia near the water-sediment interface.

  10. Grain boundary engineering in sintered Nd-Fe-B permanent magnets for efficient utilization of heavy rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Loewe, Konrad

    2016-10-18

    The first part of the thesis investigates the diffusion of rare-earth (RE) elements in commercial sintered Nd-Fe-B based permanent magnets. A strong temperature dependence of the diffusion distance and resulting change in magnetic properties were found. A maximum increase in coercivity of ∼+350 kA/m using a Dy diffusion source occurred at the optimum annealing temperature of 900 C. After annealing for 6 h at this temperature, a Dy diffusion distance of about 4 mm has been observed with a scanning Hall probe. Consequently, the maximum thickness of grain boundary diffusion processed magnets with homogeneous properties is also only a few mm. The microstructural changes in the magnets after diffusion were investigated by electron microscopy coupled with electron probe microanalysis. It was found that the diffusion of Dy into sintered Nd-Fe-B permanent magnets occurs along the grain boundary phases, which is in accordance with previous studies. A partial melting of the Nd-Fe-B grains during the annealing process lead to the formation of so - called (Nd,Dy)-Fe-B shells at the outer part of the grains. These shells are μm thick at the immediate surface of the magnet and become thinner with increasing diffusion distance towards the center of the bulk. With scanning transmission electron microscopy coupled with electron probe analysis a Dy content of about 1 at.% was found in a shell located about 1.5 mm away from the surface of the magnet. The evaluation of diffusion speeds of Dy and other RE (Tb, Ce, Gd) in Nd-Fe-B magnets showed that Tb diffuses significantly faster than Dy, and Ce slightly slower than Dy, which is attributed to differences in the respective phase diagrams. The addition of Gd to the grain boundaries has an adverse effect on coercivity. Exemplary of the heavy rare earth element Tb, the nano - scale elemental distribution around the grain boundaries after the diffusion process was visualized with high resolution scanning transmission electron microscopy

  11. A reference Earth model for the heat producing elements and associated geoneutrino flux

    CERN Document Server

    Huang, Yu; Mantovani, Fabio; Rudnick, Roberta L; McDonough, William F

    2013-01-01

    The recent geoneutrino experimental results from KamLAND and Borexino detectors reveal the usefulness of analyzing the Earth geoneutrino flux, as it provides a constraint on the strength of the radiogenic heat power and this, in turn, provides a test of compositional models of the bulk silicate Earth (BSE). This flux is dependent on the amount and distribution of heat producing elements (HPEs: U, Th and K) in the Earth interior. We have developed a geophysically-based, three-dimensional global reference model for the abundances and distributions of HPEs in the BSE. The structure and composition of the outermost portion of the Earth, the crust and underlying lithospheric mantle, is detailed in the reference model, this portion of the Earth has the greatest influence on the geoneutrino fluxes. The reference model combines three existing geophysical models of the global crust and yields an average crustal thickness of 34.4+-4.1 km in the continents and 8.0+-2.7 km in the oceans. In situ seismic velocity provided...

  12. Adsorption ability of rare earth elements on clay minerals and its practical performance

    Institute of Scientific and Technical Information of China (English)

    肖燕飞; 龙志奇; 黄莉; 冯宗玉; 王良士

    2016-01-01

    The adsorption behaviors of rare earth elements on clay minerals would have great influence on the mineralization process and the leaching process of the ion-adsorption type rare earths ore. In this work, the adsorption thermodynamics of REEs on kaolin were investigated thoroughly and systematically. The experimental results showed that the adsorption characteristics of La, Nd, Y on kaolin did fit well with the Langmuir isotherm model and their saturated adsorption capacities were 1.731, 1.587 and 0.971 mg/g, re-spectively. The free energy change (ΔG) values were –16.91 kJ/mol (La), –16.05 kJ/mol (Nd) and –15.58 kJ/mol (Y), respectively. The negative values ofΔG demonstrated that the adsorption of rare earth on kaolin was a spontaneously physisorption process. The deposit characteristic of the volcanic ion-adsorption type rare earths ore and the behavior of the rare earth in the column leaching process were also developed here. With the increase of the ore body depth, the distribution of the LREEs decreased and the HREEs increased. And the slight differences in the adsorption ability of REEs on clay minerals led to the fractionation effect in the column leaching process. These developed more evidences and better understanding of metallogenic regularity, and provided a theoretical ba-sis and scientific approach to separation of the HREEs and LREEs in the leaching process.

  13. Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact.

    Science.gov (United States)

    Jacobson, Seth A; Morbidelli, Alessandro; Raymond, Sean N; O'Brien, David P; Walsh, Kevin J; Rubie, David C

    2014-04-01

    According to the generally accepted scenario, the last giant impact on Earth formed the Moon and initiated the final phase of core formation by melting Earth's mantle. A key goal of geochemistry is to date this event, but different ages have been proposed. Some argue for an early Moon-forming event, approximately 30 million years (Myr) after the condensation of the first solids in the Solar System, whereas others claim a date later than 50 Myr (and possibly as late as around 100 Myr) after condensation. Here we show that a Moon-forming event at 40 Myr after condensation, or earlier, is ruled out at a 99.9 per cent confidence level. We use a large number of N-body simulations to demonstrate a relationship between the time of the last giant impact on an Earth-like planet and the amount of mass subsequently added during the era known as Late Accretion. As the last giant impact is delayed, the late-accreted mass decreases in a predictable fashion. This relationship exists within both the classical scenario and the Grand Tack scenario of terrestrial planet formation, and holds across a wide range of disk conditions. The concentration of highly siderophile elements (HSEs) in Earth's mantle constrains the mass of chondritic material added to Earth during Late Accretion. Using HSE abundance measurements, we determine a Moon-formation age of 95 ± 32 Myr after condensation. The possibility exists that some late projectiles were differentiated and left an incomplete HSE record in Earth's mantle. Even in this case, various isotopic constraints strongly suggest that the late-accreted mass did not exceed 1 per cent of Earth's mass, and so the HSE clock still robustly limits the timing of the Moon-forming event to significantly later than 40 Myr after condensation.

  14. Rare earth elements, S and Sr isotopes and origin of barite from Bahariya Oasis, Egypt: Implication for the origin of host iron ores

    Science.gov (United States)

    Baioumy, Hassan M.

    2015-06-01

    Based on their occurrences and relation to the host iron ores, barites are classified into: (1) fragmented barite occurs as pebble to sand-size white to yellowish white barite along the unconformity between the Bahariya Formation and iron ores, (2) interstitial barite is present as pockets and lenses of large and pure crystals inside the iron ores interstitial barite inside the iron ores, and (3) disseminated barite occurs at the top of the iron ores of relatively large crystals of barite embedded in hematite and goethite matrix. In the current study, these barites have been analyzed for their rare earth elements (REE) as well as strontium and sulfur isotopes to assess their source and origin as well as the origin of host iron ores. Barite samples from the three types are characterized by low ΣREE contents ranging between 12 and 21 ppm. Disseminated barite shows relatively lower ΣREE contents (12 ppm) compared to the fragmented (19 ppm) and interstitial (21 ppm) barites. This is probably due to the relatively higher Fe2O3 in the disseminated barite that might dilute its ΣREE content. Chondrite-normalized REE patterns for the three barite mineralizations exhibit enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) as shown by the high (La/Yb)N ratios that range between 14 and 45 as well as pronounced negative Ce anomalies varying between 0.03 and 0.18. The 87Sr/86Sr ratios in the analyzed samples vary between 0.707422 and 0.712237. These 87Sr/86Sr values are higher than the 87Sr/86Sr ratios of the seawater at the time of barite formation (Middle Eocene with 87Sr/86Sr ratios of 0.70773 to 0.70778) suggesting a contribution of hydrothermal fluid of high Sr isotope ratios. The δ34S values in the analyzed barites range between 14.39‰ and 18.92‰. The lower δ34S ratios in the studied barites compared with those of the seawater at the time of barite formation (Middle Eocene with δ34S ratios of 20-22‰) is attributed to a

  15. Influence of Rare Earth Elements on Microstructure and Mechanical Properties of Mg-Li Alloys

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A series of α-based Mg-Li-Al-Zn-xRE alloys were prepared. These alloys have low density ranging from 1.5 to 1.7 g·cm-3 and high strength properties. The influence of RE element on the microstructure and the mechanical properties of these alloys were studied. The results indicate that the addition of RE (La, Pr, Ce) leads to the formation of rod-shaped intermetallic compound Al2Zn2La distributed in the matrix. Al2Zn2La induces reduction of the laminar spacing and causes refinement of the microstructure. Therefore, this compound improves the strength of alloys at a high temperature.

  16. Variation of Aging Precipitates and Mechanical Strength of Al-Cu-Li Alloys Caused by Small Addition of Rare Earth Elements

    Science.gov (United States)

    Ma, Yun-long; Li, Jin-feng

    2017-09-01

    The effect of small rare earth (RE) addition of 0.11%Ce, 0.2%Er and 0.082%Sc on aging precipitates and mechanical strength of an Al-(3.3-4.2)Cu-1.2Li-X alloy were investigated. It is found that Cu-rich residual particles containing RE element exist in the solutionized alloy, which leads to a decrease of dissolved Cu concentration in the solutionized matrix. Like RE-free alloy, the main aging precipitate types in RE-containing alloy are T1 (Al2CuLi) and θ' (Al2Cu), but their fraction is decreased. The strength of the corresponding alloys is therefore lowered by the small RE addition. Combined with the analysis of some reported references, it is proposed that the effect of small RE addition on Al-Cu-Li alloy strength is also associated with the Cu and Li concentrations and their ratio.

  17. Influence of Ce, Nd, Sm and Gd oxides on the properties of alkaline-earth borosilicate glass sealant

    OpenAIRE

    Nibedita Sasmal; Mrinmoy Garai; Basudeb Karmakar

    2016-01-01

    In this study, the influence of CeO2, Nd2O3, Sm2O3 and Gd2O3 on various properties of the melt-quench route derived SrO–CaO–ZnO–B2O3–SiO2 glass have been investigated. Both the precursor glasses and heat treated glasses are characterized by dilatometry, differential scanning calorimetry (DSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The density and coefficient of ...

  18. Determination of trace rare earth elements in gadolinium aluminate by inductively coupled plasma time of flight mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhijit; Deb, S.B.; Nagar, B.K.; Saxena, M.K., E-mail: saxenamk@barc.gov.in

    2014-04-01

    An analytical methodology was developed for the precise quantification of ten trace rare earth elements (REEs), namely, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, and Tm, in gadolinium aluminate (GdAlO{sub 3}) employing an ultrasonic nebulizer (USN)-desolvating device based inductively coupled plasma mass spectrometry (ICP-MS). A microwave digestion procedure was optimized for digesting 100 mg of the refractory oxide using a mixture of sulphuric acid (H{sub 2}SO{sub 4}), phosphoric acid (H{sub 3}PO{sub 4}) and water (H{sub 2}O) with 1400 W power, 10 min ramp and 60 min hold time. An USN-desolvating sample introduction system was employed to enhance analyte sensitivities by minimizing their oxide ion formation in the plasma. Studies on the effect of various matrix concentrations on the analyte intensities revealed that precise quantification of the analytes was possible with matrix level of 250 mg L{sup −1}. The possibility of using indium as an internal standard was explored and applied to correct for matrix effect and variation in analyte sensitivity under plasma operating conditions. Individual oxide ion formation yields were determined in matrix matched solution and employed for correcting polyatomic interferences of light REE (LREE) oxide ions on the intensities of middle and heavy rare earth elements (MREEs and HREEs). Recoveries of ≥ 90% were achieved for the analytes employing standard addition technique. Three real samples were analyzed for traces of REEs by the proposed method and cross validated for Eu and Nd by isotope dilution mass spectrometry (IDMS). The results show no significant difference in the values at 95% confidence level. The expanded uncertainty (coverage factor 1σ) in the determination of trace REEs in the samples were found to be between 3 and 8%. The instrument detection limits (IDLs) and the method detection limits (MDLs) for the ten REEs lie in the ranges 1–5 ng L{sup −1} and 7–64 μg kg{sup −1} respectively. - Highlights: • A

  19. Rare—Earth Elements and Genesis of Lamprophyres in the Laowangzhai Gold Orefield,Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    黄智龙; 朱成明; 等

    1996-01-01

    The Laowangzhai super-large gold orefield,which is situated in northern Mt.Ailao tectonic zone,Yunnan Province,is a typical gold orefield where lamprophyres are temporally and spatially related to gold mineralization.Major element data show that lamprophyres in the orefield are of alkalic series and can be divided into potassic and K-rich calc-alkaline lamprophyres.The rocks are enriched in rare-earth elements as compared with the primary mantle and mid-ocean ridge basalts(MORB).Modelled calculations by the least squares method of Petrological Mixing show that the mantle-source for the lamprophyres in enriched in rarc earth elemeots.The geotectonic development of western Yunnan,Sr and Nd isotopic compositions,incompatible element patterns and linear programing calculations indicate that the fluids were derived from dehydration of submaine sediments which are enriched in ALK,LREE and incompatible elements and then were carried to mantle wedges as a result of plate subduction.That is the main factor leading to the formation of a metasonatic fertile mantle in the area studied.

  20. Concentrations and health risk assessment of rare earth elements in vegetables from mining area in Shandong, China.

    Science.gov (United States)

    Zhuang, Maoqiang; Zhao, Jinshan; Li, Suyun; Liu, Danru; Wang, Kebo; Xiao, Peirui; Yu, Lianlong; Jiang, Ying; Song, Jian; Zhou, Jingyang; Wang, Liansen; Chu, Zunhua

    2017-02-01

    To investigate the concentrations of rare earth elements in vegetables and assess human health risk through vegetable consumption, a total of 301 vegetable samples were collected from mining area and control area in Shandong, China. The contents of 14 rare earth elements were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The total rare earth elements in vegetables from mining and control areas were 94.08 μg kg(-1) and 38.67 μg kg(-1), respectively, and the difference was statistically significant (p mining and control areas, respectively) and gourd vegetable had the lowest rare earth elements concentration (37.34 μg kg(-1) and 24.63 μg kg(-1) for mining and control areas, respectively). For both areas, the rare earth elements concentration in vegetables declined in the order of leaf vegetable > taproot vegetable > alliaceous vegetable > gourd vegetable. The rare earth elements distribution patterns for both areas were characterized by enrichment of light rare earth elements. The health risk assessment demonstrated that the estimated daily intakes (0.69 μg kg(-1) d(-1) and 0.28 μg kg(-1) d(-1) for mining and control areas, respectively) of rare earth elements through vegetable consumption were significantly lower than the acceptable daily intake (70 μg kg(-1) d(-1)). The damage to adults can be neglected, but more attention should be paid to the effects of continuous exposure to low levels of rare earth elements on children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Study of the hyperfine magnetic field acting on Ce probes substituting for the rare earth and the magnetic ordering in intermetallic compounds RAg (R=rare earth) by first principles calculations; Estudo do campo hiperfino magnetico na sonda de Ce colocada nos compostos intermetalicos do tipo RAg (R=terra rara) e do ordenamento magnetico desses compostos usando calculos de primeiros principios

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Luciano Fabricio Dias

    2006-07-01

    In this work the magnetic hyperfine field acting on Ce atoms substituting the rare-earths in R Ag compounds (R = Gd e Nd) was studied by means of first-principles electronic structure calculations. The employed method was the Augmented Plane Waves plus local orbitals (APW+lo), embodied in the WIEN2k program, within the framework of the Density Functional Theory (DFT) and with the Generalized Gradient Approximation (GGA) for the exchange and correlation potential. The super-cell approach was utilized in order to simulate for the Ce atoms acting as impurities in the R Ag matrix. In order to improve for correlation effects within the 4f shells, a Hubbard term was added to the DFT Hamiltonian, within a procedure called GGA+U. It was found that the magnetic hyperfine field (MHF) generated by the Ce 4f electron is the main component of the total MHF and that the Ce 4f ground state level is probably a combination of the m{sub l} = -2 and m{sub l} = -1 sub-levels. In addition, the ground-state magnetic structure was determined for Ho Ag and Nd Ag by observing the behavior of the total energy as a function of the lattice volume for several possible magnetic ordering in these compounds, namely, ferromagnetic, and the (0,0,{pi}), ({pi},{pi},0) and (({pi},{pi},{pi}) types of anti-ferromagnetic ordering of rare-earth atoms. It was found that the ground-state magnetic structure is anti-ferromagnetic of type ({pi},{pi},0) for both, the Ho Ag and Nd Ag compounds. The energy difference of the ferromagnetic and antiferromagnetic ordering is very small in the case of the Nd Ag compound. (author)

  2. Recovery of rare earth elements from El-Sela effluent solutions

    Directory of Open Access Journals (Sweden)

    Y.M. Khawassek

    2015-10-01

    Full Text Available The study area of Gabal El Sela at Halaib environ is located at about 20 km west of Abu Ramad City, Egypt. An uraniferous ore material associated with REE was subjected to sulphuric acid leaching for the extraction of uranium mainly and REEs as a by-product. 93.9% of U and 60% of REEs content were leached using −0.5 mm ground ore with 100 g/l sulfuric acid, acid/ore ratio of 2.0 and agitate for 6 h at 40 °C. After uranium extraction, effluent solutions containing 135 ppm rare earths were treated with 30% ammonium hydroxide to pH of 9.3 to enhance the rare earth elements concentration. The precipitated cake was filtered then dried at 110 °C. The dried cake containing 16.2% rare earth elements was dissolved by hydrochloric acid at pH 1.0. The rare earths precipitated cakes of 36.9, 45.7 and 48.7% REEs were recovered successfully from the chloride leach liquor of 900 ppm rare earths by using 5% v/v from 50% HF, 6% wt/v oxalic acid and 4.8% wt/v oxalic acid to chloride solution with heating for one hour which respectively. 73.5% REEs precipitated cake was achieved by double precipitation, firstly by hydrofluoric acid followed by oxalic acid precipitation.

  3. Assessment of metal, trace and rare earth element concentrations in a sedimentary profile from Ponte Nova reservoir, Sao Paulo state, Brazil, by NAA

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Flavio R.; Bordon, Isabella C.C.L.; Silva, Paulo S.C.; Favaro, Deborah I.T., E-mail: flavio@baquara.com, E-mail: defavaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Silva, Sharlleny A.; Franklin, Robson L.; Ferreira, Francisco J., E-mail: shasilva@sp.gov.br, E-mail: rfranklin@sp.gov.br [Companhia Ambiental do Estado de Sao Paulo (ELAI/CETESB), SP (Brazil). Setor de Quimica Inorganica

    2015-07-01

    Ponte Nova reservoir, located in the upper basin of the Tiete River in the southern region of Sao Paulo State, covers an area of 25.7 km{sup 2} and drains an area of 320 km{sup 2}. It was built in 1972 to control the rivers flow in the Metropolitan Region of Sao Paulo (MRSP) and water supply. A 30 cm sediment core was collected in the dam in August 2014, sliced at every 2.5 cm. Instrumental neutron activation analysis (INAA) was applied to the sediment samples to determine some major (Fe, K and Na), trace (As, Ba, Br, Co, Cr, Cs, Hf, Rb, Sb, Sc, Ta, Tb, Th, U and Zn) and rare earth (Ce, Eu, La, Lu, Nd, Sm, Tb and Yb) elements. The enrichment factor (EF) and Igeo were applied to the results by using NASC (North American Shale Composite) as reference values for sediment contamination index assessment. An EF>1.5 was obtained for As, Hf, Rb, Ta, Th, U, and rare earths Ce, Eu, La, Nd and Sm when NASC values were used, but only for Br, when the last layer concentration values were used as reference values. Similar results were obtained for the Igeo index. For semi-metal As and metals Cr and Zn concentration values were compared to oriented values from Environmental Canada (TEL and PEL) only Cr exceeded TEL value in some slices of the profile. These results may indicate that there is no anthropogenic contribution for the elements analyzed in this reservoir. Multivariate statistical analysis was applied to the results. (author)

  4. Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions

    Science.gov (United States)

    Piper, David Z.; Bau, Michael

    2013-01-01

    The concentrations of the rare earth elements (REE) in surface waters and sediments, when normalized on an element-by-element basis to one of several rock standards and plotted versus atomic number, yield curves that reveal their partitioning between different sediment fractions and the sources of those fractions, for example, between terrestrial-derived lithogenous debris and seawater-derived biogenous detritus and hydrogenous metal oxides. The REE of ancient sediments support their partitioning into these same fractions and further contribute to the identification of the redox geochemistry of the sea water in which the sediments accumulated. The normalized curves of the REE that have been examined in several South American wine varietals can be interpreted to reflect the lithology of the bedrock on which the vines may have been grown, suggesting limited fractionation during soil development.

  5. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10.

    Science.gov (United States)

    Qu, Yang; Lian, Bin

    2013-05-01

    The aim of this work is to investigate biological leaching of rare earth elements (REEs) and radioactive elements from red mud, and to evaluate the radioactivity of the bioleached red mud used for construction materials. A filamentous, acid-producing fungi named RM-10, identified as Penicillium tricolor, is isolated from red mud. In our bioleaching experiments by using RM-10, a total concentration of 2% (w/v) red mud under one-step bioleaching process was generally found to give the maximum leaching ratios of the REEs and radioactive elements. However, the highest extraction yields are achieved under two-step bioleaching process at 10% (w/v) pulp density. At pulp densities of 2% and 5% (w/v), red mud processed under both one- and two-step bioleaching can meet the radioactivity regulations in China.

  6. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Fox, Dr. Richard V [Idaho National Laboratory (INL); Miziolek, Andrzej W [United States Army Research Laboratory; DeLucia, Frank C [United States Army Research Laboratory; Andre, Nicolas O [ORNL

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  7. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z [ORNL; Fox, Dr. Richard V [Idaho National Laboratory (INL); Miziolek, Andrzej W [United States Army Research Laboratory; DeLucia, Frank C [United States Army Research Laboratory; Andre, Nicolas O [ORNL

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  8. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Madhavi Z. Martin; Robert V. Fox; Andrzej W. Miziolek; Frank C. DeLucia, Jr.; Nicolas Andre

    2001-05-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  9. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuefei [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Jiang Zucheng [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); He Man [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China)]. E-mail: binhu@whu.edu.cn

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3}(Eu) to 6.7 pg m{sup -3}(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c = 1 {mu}g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. - A new method for direct determination of trace rare earth elements in coal fly ash and atmospheric particulates by fluorination ETV-ICP-MS with slurry sampling.

  10. Measurements of natural carbonate rare earth elements in femtogram quantities by inductive coupled plasma sector field mass spectrometry.

    Science.gov (United States)

    Shen, Chuan-Chou; Wu, Chung-Che; Liu, Yi; Yu, Jimin; Chang, Ching-Chih; Lam, Doan Dinh; Chou, Chien-Ju; Lo, Li; Wei, Kuo-Yen

    2011-09-01

    A rapid and precise standard-bracketing method has been developed for measuring femtogram quantity rare earth element (REE) levels in natural carbonate samples by inductively coupled plasma sector field mass spectrometry that does not require chemical separation steps. A desolvation nebulization system was used to effectively reduce polyatomic interference and enhance sensitivity. REE/Ca ratios are calculated directly from the intensities of the ion beams of (46)Ca, (139)La, (140)Ce, (141)Pr, (146)Nd, (147)Sm, (153)Eu, (160)Gd, (159)Tb, (163)Dy, (165)Ho, (166)Er, (169)Tm, (172)Yb, and (175)Lu using external matrix-matched synthetic standards to correct for instrumental ratio drifting and mass discrimination. A routine measurement time of 3 min is typical for one sample containing 20-40 ppm Ca. Replicate measurements made on natural coral and foraminiferal samples with REE/Ca ratios of 2-242 nmol/mol show that external precisions of 1.9-6.5% (2 RSD) can be achieved with only 10-1000 fg of REEs in 10-20 μg of carbonate. We show that different sources for monthly resolved coral ultratrace REE variability can be distinguished using this method. For natural slow growth-rate carbonate materials, such as sclerosponges, tufa, and speleothems, the high sample throughput, high precision, and high temporal resolution REE records that can be produced with this procedure have the potential to provide valuable time-series records to advance our understanding of paleoclimatic and paleoenvironmental dynamics on different time scales.

  11. How Do Rare Earth Elements (Lanthanoids Affect Root Development and Protocorm-Like Body Formation in Hybrid CYMBIDIUM?

    Directory of Open Access Journals (Sweden)

    Teixeira da Silva Jaime A.

    2014-09-01

    Full Text Available Only few studies in the plant tissue culture literature have examined the impact of lanthanoids, or rare earth elements, on in vitro plant organogenesis. In this study, using a model plant, hybrid Cymbidium Twilight Moon ‘Day Light’, the impact of six lanthanoids (lanthanum (III nitrate hexahydrate (La(NO33 · 6H2O, cerium (III nitrate hexahydrate (Ce(NO33 · 6H2O, neodymium (III nitrate hexahydrate (Nd(NO33 · 6H2O, praseodymium (III nitrate hexahydrate (Pr(NO33 · 6H2O, samarium (III nitrate hexahydrate (Sm(NO33 · 6H2O, gadolinium (III nitrate hexahydrate (Gd(NO33 · 6H2O on new protocorm-like body (neo-PLB formation on Teixeira Cymbidium (TC medium was examined. 0 (control, 1, 2, 4 and 8 mg·dm-3 of each lanthanoid was tested. All lanthanoids could produce more neo-PLBs and neo-PLB fresh weight than TC medium lacking plant growth regulators (PGRs, suggesting some PGR-like ability of lanthanoids, although PLB-related traits (percentage of half-PLBs forming neo-PLBs; number of neo-PLBs formed per half-PLB; fresh weight of half-PLB + neo-PLBs was always significantly lower than TC medium containing PGRs. Except for Gd, all other lanthanoids had no negative impact on the number of new leaves from neo-PLB-derived shoots, but all lanthanoids showed a significantly lower plant height, shoot fresh weight and shoot dry weight and, in most cases, SPAD (chlorophyll content value. In addition, using the same concentration of the six lanthanoids, the ability to fortify root formation of neo-PLB-derived plantlets was also assessed. Except for Sm, all other lanthanoids significantly increased the number of roots, root fresh and dry weight.

  12. Metal, trace and rare earth element assessment in a sedimentary profile from Promissao reservoir, Sao Paulo state, Brazil, by INAA

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sharlleny A.; Franklin, Robson L., E-mail: shasilva@sp.gov.br [Companhia Ambiental do Estado de Sao Paulo (ELAI/CETESB), SP (Brazil). Setor de Quimica Inorganica; Luiz-Silva, Wanilson [Universidade Estadual de Campinas (DGRN/UNICAMP), SP (Brazil). Instituto de Geociencias. Departamento de Geologia e Recursos Naturais; Favaro, Deborah I.T., E-mail: defavaro@ipen.gov.br [Instituto de Pesquisas Energeticas e Nucleares (LAN/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Laboratorio de Analise por Ativacao Neutronica

    2015-07-01

    In the present study the preliminary results for the Promissao reservoir, situated in the Lower Tiete region covering a little more than 1% of the SP state population, is characterized by intense agropastoral activities. Its operations for generating electrical energy started in 1975. It is located at Tiete River and its hydrographic basin has a drainage area of 530 km{sup 2}. The total extension of the reservoir is 110 km along the Tiete River, with a medium depth of 20 m. A core sampler was used and a 33 cm sediment core was collected from the dam in January 2013, sliced at every 2.5 cm, totaling 13 samples. Instrumental neutron activation analysis was applied to the sediment samples in order to determine some major (Fe, K, and Na), trace (As, Ba, Br, Co, Cr, Cs, Hf, Rb, Sb, Sc, Ta, Tb, Th, U, and Zn) and rare earth elements (Ce, Eu, La, Lu, Nd, Sm, Tb, and Yb). The enrichment factor (EF) was applied to the results obtained by using North American Shale Composite, Upper Continental Crust and the concentration values of the last layer of this profile as reference values for sediment contamination index assessment. When the results for As, Cr, and Zn were compared to threshold effect level (TEL) and probable effect level (PEL) oriented values, sediments from 0-10 cm exceeded the TEL values for As (5.9 mg kg{sup -1}), all samples exceeded the PEL values for Cr (90 mg kg{sup -1}), and all samples had much lower values than TEL values for Zn (123 mg kg{sup -1}). (author)

  13. A novel approach for acid mine drainage pollution biomonitoring using rare earth elements bioaccumulated in the freshwater clam Corbicula fluminea.

    Science.gov (United States)

    Bonnail, Estefanía; Pérez-López, Rafael; Sarmiento, Aguasanta M; Nieto, José Miguel; DelValls, T Ángel

    2017-09-15

    Lanthanide series have been used as a record of the water-rock interaction and work as a tool for identifying impacts of acid mine drainage (lixiviate residue derived from sulphide oxidation). The application of North-American Shale Composite-normalized rare earth elements patterns to these minority elements allows determining the origin of the contamination. In the current study, geochemical patterns were applied to rare earth elements bioaccumulated in the soft tissue of the freshwater clam Corbicula fluminea after exposure to different acid mine drainage contaminated environments. Results show significant bioaccumulation of rare earth elements in soft tissue of the clam after 14 days of exposure to acid mine drainage contaminated sediment (ΣREE=1.3-8μg/gdw). Furthermore, it was possible to biomonitor different degrees of contamination based on rare earth elements in tissue. The pattern of this type of contamination describes a particular curve characterized by an enrichment in the middle rare earth elements; a homologous pattern (EMREE=0.90) has also been observed when applied NASC normalization in clam tissues. Results of lanthanides found in clams were contrasted with the paucity of toxicity studies, determining risk caused by light rare earth elements in the Odiel River close to the Estuary. The current study purposes the use of clam as an innovative "bio-tool" for the biogeochemical monitoring of pollution inputs that determines the acid mine drainage networks affection. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Enhanced phytoextraction of germanium and rare earth elements - a rhizosphere-based approach

    Science.gov (United States)

    Wiche, Oliver

    2016-04-01

    Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that have become an integral part of our modern high tech society. While most of these elements are not actually rare in terms of general amounts in the earth's crust, they are rarely found in sufficient abundances in single locations for their mining to be economically viable. The average concentration of Ge in soils is estimated at 1.6 μg g-1. The REEs comprise a group of 16 elements including La, the group of lanthanides and Y that are abundant in the earth crust with concentrations varying from 35 μg g-1 (La), 40 μg g-1 (Nd), 6 μg g-1 (Gd) and 3.5 μg g-1 (Er) to 0.5 μg g-1 in Tm. Thus, a promising chance to improve supply of these elements could be phytomining. Unfortunately, bioavailability of Ge and REEs in soils appears to be low, in particular in neutral or alkaline soils. A sequential dissolution analysis of 120 soil samples taken from the A-horizons of soils in the area of Freiberg (Saxony, Germany) revealed that only 0.2% of total Ge and about 0.5% of La, Nd, Gd and Er of bulk concentrations were easily accessible by leaching with NH4-acetate (pH 7). Most of the investigated elements were bound to Fe-/Mn-oxides and silicates and were therefore only poorly available for plant uptake. Here we report an environmentally friendly approach for enhanced phytoextraction of Ge and REEs from soils using mixed cultures of plant species with efficient mechanisms for the acquisition of nutrients in the rhizosphere. The rhizosphere is characterized as the zone in soil sourrounding a plant root that consists of a gradient in chemical, physical and biological soil properties driven by rhizodeposits like carboxylates and protons. Some species like white lupin (Lupinus albus) are able to excrete large amounts of organic acid anions(predominantly citrate and malate) and show a particularly high potential for the acidification of the rhizosphere. In our experiments, mixed cultures

  15. Importance of vertical geochemical processes in controlling the oceanic profiles of dissolved rare earth elements in the northeastern Indian Ocean

    Science.gov (United States)

    Nozaki, Yoshiyuki; Alibo, Dia Sotto

    2003-01-01

    Vertical profiles of dissolved rare earth elements (REEs) were obtained in the Bay of Bengal and the Andaman Sea. The REE concentrations at various depths in the Bay of Bengal are the highest in the Indian Ocean. This is attributable ultimately to the large outflow of the Ganges-Brahmaputra and Irrawaddy rivers, but the dissolved REE flux to surface waters alone cannot explain the large and near-constant REE enrichment throughout the entire water column. The underlying fan sediments serve as not a source but a sink for dissolved REE(III)s. Absence of excess 228Ra in the deep waters suggests that lateral input of dissolved REEs from slope sediments is also small in these regions. Partial (rivers and lateral surface currents and subsequently settle through the water column, appears to be a predominant source for the dissolved REEs. Vertical profiles showing an almost linear increase with depth are common features for the light and middle REEs everywhere, but their concentration levels are variable from basin to basin and from element to element. This suggests that their oceanic distributions respond quickly to the variation of particle flux and its REE composition through reversible exchange equilibrium with suspended and sinking particles much like the case for Th. The relative importance of the vertical geochemical processes of reversible scavenging over the horizontal basin-scale ocean circulation with passive regeneration like nutrients decreases systematically from the light to the heavy REEs. Using a model, the mean oceanic residence times of REEs in the Bay of Bengal are estimated to range from 37 years for Ce to 140-1510 years for the strictly trivalent REEs. In the deep water of the Andaman Sea, isolated from the Bay of Bengal by the Andaman-Nicobar Ridge (maximum sill depth of ˜1800 m), the REE concentrations are almost uniform presumably due to rapid vertical mixing. The REE(III) concentrations are similar to that of ˜1250 m depth water in the Bay of

  16. Effect of Rare Earth Elements Burning Loss on Microstructure and Properties in TbDyFe

    Directory of Open Access Journals (Sweden)

    DENG Zhong-hua

    2016-08-01

    Full Text Available In order to simulate low vacuum experimental environment,Tb0.27Dy0.73Fe1.91 alloy round bars were prepared through melting with Tb, Dy and Fe elements, directional solidification and heat treatment in low vacuum environment. The magnetostriction of the alloy rods was tested. The microstructures and the causes of defects in the alloy were investigated. The results indicate that under the low vacuum experimental environment, there are plenty of twin dendritic lamellar microstructures and ordinary twin microstructures are generated in alloy, among which the mechanical properties and "jump" effect of twin dendritic lamellar structures are good, while the ordinary twins are bad to the magnetostrictive property in the alloy. REFe2 and REFe3 coupling phase is the main phase in the matrix, the burning loss of rare earth elements lead variations in chemical composition, resulting coupling growth with REFe3 phase and REFe2 phase. The thermal stress and the burning loss of rare earth elements segregate at grain boundaries resulting in the presence of micro-cracks and micro-holes. These microstructures and defects generate bad impact on mechanical properties and magnetostriction of TbDyFe alloy rods.

  17. Biological availability and environmental behaviour of Rare Earth Elements in soils of Hesse, Central Germany

    Science.gov (United States)

    Loell, M.; Duering, R.-A.; Felix-Henningsen, P.

    2009-04-01

    Rare earth elements (REEs) comprise a group of 17 transition metals with very similar chemical and physical properties. They include the elements scandium (Sc), yttrium (Y) and lanthanum (La) and the 14 elements (cerium to lutetium) that follow La in the periodic table. Their average abundance in the earth's crust varies from 0,01 to 0,02% so they are as common as Cu and Pb. Beside their widespread use in industry, REEs are applied in Chinese agriculture. Their beneficial effects both on crop yield and on animal production are reported in various investigations. As a result - by using microelement fertilisers and manure - REEs enter the pedosphere while their fate and behaviour in the environment up to now remains unexamined. The first aim of our investigation was to evaluate the concentration of REEs in agricultural used soils in central Germany (Hesse) by ICP-MS. In addition to their total concentration (aqua regia digestion) their bioavailable contents - determined by EDTA (potentially available fraction) and ammonium nitrate extraction (mobile fraction) - were analysed. The occurrence of the three REE fractions in different soils will be discussed and influencing soil properties (e.g. pH-value, content of clay and organic carbon) will be revealed. Additionally the uptake of REEs by grassland plants was determined and resulting transfer factors will be presented.

  18. Oxygen Evolution at Nickel Hydroxide Films Co-deposited Light Rare Earth Elements

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Composite nickel hydroxide films were prepared by cathodic co-electrodeposition from metal nitrate solution and characterized by cyclic voltammetry in 1.0 mol/L KOH solution. The codeposited light rare earth elements were lanthanum, cerium, praseodymium and neodymium. The films were analyzed by spectrophotometry and optical transmission. The results of the cyclic voltammetry in 1.0 mol/L KOH solution showed that the current density for oxygen evolution at the film electrode was affected by the co-deposited rare earth metal ions in the film. About 20 mA/cm2 increase of current density for oxygen evolution was found when the film was obtained from the solution with cerium (7% v/v) and nickel (93% v/v) nitrate. The effects of galvanostatic cathodic current density for the film formation on the oxygen evolution at the film electrodes from the alkaline were discussed.

  19. Behavior of rare earth elements in coexisting manganese macronodules, micronodules, and sediments from the central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Colley, S.; Higgs, N.C.

    Associated manganese macronodules, micronodules, and sediments from the Central Indian Basin (CIB) were analyzed for major, trace, and rare earth elements (REE) to understand REE carrier phases and their fractionation pattern among three...

  20. Distribution of rare earth elements in agricultural soil and human body (scalp hair and urine) near smelting and mining areas of Hezhang, China

    Institute of Scientific and Technical Information of China (English)

    玛瑞亚; 季宏兵; 高阳; 丁淮剑; 李彩

    2016-01-01

    Rare earth elements (REEs) in recent decade are widely used and lead to the accumulation of REE in the environment and human body. The aim of this study was to evaluate the concentrations of REEs in soil and human body (scalp hair and urine) of peo-ple living in agricultural soil near smelting and mining areas in Hezhang County, China. The results showed that mean concentrations of determined REEs in agricultural soil from smelting areas were higher than background. However, concentration was slightly higher in soil in mining area. In addition, REEs concentrations of hair and urine in smelting areas were higher than those in mining areas.ΣREEs for soil in mining and smelting areas were 177.79 and 277.06 mg/kg, respectively.ΣREEs for hair in mining and smelting were 1.13 and 1.55 mg/kg, respectively, andΣREEs for urine in mining and smelting were 0.58 and 0.59 µg/L, respectively. Results showed that La, Ce and Nd were enriched in soil, hair and urine. Eu in smelting area showed a positive anomaly. In smelting and mining areas, females were more likely than male to expose to REEs. The relationship between REEs concentration and age group showed that hair’s high concentrations of REE existed in 18–40 years age for people from smelting areas and females from mining areas. While high concentrations distributed in the age of 41–65 for males from mining area. However, urine did not present similar distribution for different age group. Compared with hair and urine, soil showed the same distribution of REEs. And according to the Ce/Ce* value vs. LaN/YbN ratio showed that hair and soil tended to increase, with the stability of Ce/Ce* value. Thus the distri-bution of REEs in soil was closely related with the accumulation in human body. This is a preliminary study which may be suggested to the other research, and this study data may be useful for adding up the data pool on REEs levels in China.

  1. Investigation of recovery and recycling of rare earth elements from waste fluorescent lamp phosphors

    Science.gov (United States)

    Eduafo, Patrick Max

    Characterization techniques and experimental measurements were used to evaluate a process for recycling rare earth elements (REEs) from spent fluorescent lamp phosphors. QEMSCAN analysis revealed that over 60% of the rare earth bearing minerals was less than 10 microm. A representative sample of the as-received feed contained 14.59 wt% total rare earth elements (TREE) and upon sieving to below 75 microm, the grade increased to 19.60 wt% REE with 98.75% recovery. Based on experimental work, a new process for extracting the chief REEs from end of life fluorescent lamps has been developed. The proposed flowsheet employs a three-stage leaching and precipitation process for selective extraction and recovery of the REEs. Hydrochloric acid was used as lixiviant in batch leach experiments on the phosphor powder. The maximum extraction obtained was 100% for both yttrium and europium under the following leaching conditions: 2.5 M HCl, 70°C, 1 hour, 180 g/L and 600 rpm. However, the solubility of cerium, lanthanum and terbium remained low at these conditions. Kinetic data of the leaching of yttrium and europium showed best fit to the logarithmic rate expression of the empirical model of leaching. Activation energy was calculated to be 77.49 kJ/mol for Y and 72.75 kJ/mol for Eu in the temperature range of 298 to 343 K. Precipitation tests demonstrate that at least 50% excess the stoichiometric amount of oxalic acid is needed to recover yttrium and europium efficiently to produce a pure (Y, Eu) mixed oxide. Total recovery of the REEs was achieved even at very low pH or without any base added. Over 99% pure mixed rare earth oxide at 99% recovery has been attained. An economic assessment of the developed process using operating and capital cost have be undertaken and based on the analysis of the three economic scenarios, two are economic and one is non-economic.

  2. Anomalous scattering factors of some rare earth elements evaluated using photon interaction cross-sections

    Indian Academy of Sciences (India)

    S B Appaji Gowda; M L Mallikarjuna; R Gowda; T K Umesh

    2003-09-01

    The real and imaginary parts, '() and ''() of the dispersion corrections to the forward Rayleigh scattering amplitude (also called anomalous scattering factors) for the elements La, Ce, Pr, Nd, Sm, Gd, Dy, Ho and Er, have been determined by a numerical evaluation of the dispersion integral that relates them through the optical theorem to the photoeffect cross-sections. The photoeffect cross-sections are derived from the total attenuation cross-section data set experimentally determined using high resolution high purity germanium detector in a narrow beam good geometry set-up for these elements in the photon energy range 5 to 1332 keV and reported earlier by the authors. Below 5 keV, Scofield’s photoeffect cross-sections compiled in XCOM program have been interpolated and used. Simple formulae for '' in terms of atomic number and energy have also been obtained. The data cover the energy region from 6 to 85 keV and atomic number from 57–68. The results obtained are found to agree fairly well with the other available data.

  3. Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    Science.gov (United States)

    Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.

    2015-01-01

    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.

  4. Mining and Exploitation of Rare Earth Elements in Africa as an Engagement Strategy in US Africa Command

    Science.gov (United States)

    2011-06-17

    extraction difficult and costly, since they pose the risk of radiation leaks.”8 “In the few cases in which the rare-earth ion can be oxidized or... solvents are then applied to the bastnaesite to separate out the rare earths. Once separated, they are reprocessed to increase the purity level...material was the rare earth element flourocarbonate bastnaesite.29 The discouraged miners moved on. The Molybdenum Corporation laid claim to the

  5. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran

    Science.gov (United States)

    Shakeri, Ata; Ghoreyshinia, Sayedkazem; Mehrabi, Behzad; Delavari, Morteza

    2015-10-01

    Concentrations of rare earth elements (REEs) were determined in springs and andesitic-dacitic rocks of Taftan geothermal field. Hydrochemical results of major ions indicate that thermal springs are Na-SO4-Cl and Ca-SO4-Cl types. Concentrations of REEs are in ranges of 10- 4 to 1.2 and 49 to ~ 62 times of chondrite for springwater and rock samples, respectively. The thermal (STS and TTS) and the cold (APS) springs with low pH values exhibit a very high REE contents (0.64 to 3.15 mg/l). Saturation index indicates that Fe and Al phases can control dissolved REE concentration in FTS and PF cold springs. The speciation of REE complexes indicates dominant presence of LnSO4+ and free ion in the Taftan thermal springs. In APS cold spring with pH ~ 4, fluoride complexes are dominate over the free ion and sulfate species, while in PF and FTS cold springs with pH 6.4 and 7, respectively, carbonate complexes (LnCO3+) are predominant species. Chondrite-normalized pattern for the low-pH waters show very distinctive gull-wing patterns, characteristic feature of acid-sulfate geothermal systems, and are similar to those of the host rocks. Chemical characteristics of rare earth elements in spring and volcanic rock samples indicate that REEs are originated from the andesitic-dacitic host rocks. Whole-rock-normalized REE patterns and petrographic evidences show that rare earth elements leached mainly from marginal alteration of minerals and matrix decomposition in volcanic rocks. In chondrite-normalized REE patterns, significant negative Eu anomaly in the cold springs compare to the thermal and acidic springs indicates that alteration of plagioclase is more intense in the later, corresponding to increasing in temperature and acidic state of reactant water.

  6. Distribution and fractionation of rare earth elements and Yttrium in suspended and bottom sediments of the Kali estuary, western India

    Digital Repository Service at National Institute of Oceanography (India)

    Suja, S.; Fernandes, L.L.; Rao, V.P.

    around the Yellow Sea: implications for sediment provenance. Geo-Marine Lett 29: 291-300. Yang SY, Jung HS, Choi MS, Li CX (2002) The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth Planet Sci...

  7. Thulium anomalies and rare earth element patterns in meteorites and Earth: Nebular fractionation and the nugget effect

    CERN Document Server

    Dauphas, N

    2015-01-01

    This study reports the bulk rare earth element (REEs, La-Lu) compositions of 41 chondrites, including 32 falls and 9 finds from carbonaceous (CI, CM, CO and CV), enstatite (EH and EL) and ordinary (H, L and LL) groups, as well as 2 enstatite achondrites (aubrite). The CI-chondrite-normalized REE patterns and Eu anomalies in ordinary and enstatite chondrites show more scatter in more metamorphosed than in unequilibrated chondrites. This is due to parent-body redistribution of the REEs in various carrier phases during metamorphism. The dispersion in REE patterns of equilibrated ordinary chondrites is explained by the nugget effect associated with concentration of REEs in minor phosphate grains. Terrestrial rocks and samples from ordinary and enstatite chondrites display negative Tm anomalies of ~-4.5 % relative to ca chondrites. In contrast, CM, CO and CV (except Allende) show no significant Tm anomalies. Allende CV chondrite shows large excess Tm (~+10 %). These anomalies are similar to those found in group II...

  8. Impact Wear Properties of Metal-Plastic Multilayer Composites Filled with Glass Fiber Treated with Rare Earth Element Surface Modifier

    Institute of Scientific and Technical Information of China (English)

    程先华; 薛玉君

    2001-01-01

    The friction and wear properties of metal-plastic multilayer composites filled with glass fiber, which is treated with rare earth element surface modifier, under impact load and dry friction conditions were investigated. Experimental results show that the metal-plastic multilayer composite filled with glass fiber exhibits excellent friction and impact wear properties when using rare earth elements as surface modifier for the surface treatment of glass fiber.

  9. Separation and Enrichment of Rare Earth Elements in Phosphorite in Xinhua, Zhijin, Guizhou

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The phosphorite ores-deposits rich in rare earth elements(REE) in Zhijin, Xinhua, Guizhuo occurs in the early Cambrian Meishucun and at the bottom part of Qiongzhusi stage (the upper layer of phosphorites), belonging to Yangzi stratum section. The living creature scraps was proved existent in dolomitic-phosphorites by experiments, The REE could be extracted to provide the worthy data for the further using. Adopting the HNO3 to extract REE, through the ion exchange method, the REE recovery rate could be reached 85.44%, having certain reference value.

  10. Thermalization of different alkali and alkali-earth elements at the TRI{mu}P facility

    Energy Technology Data Exchange (ETDEWEB)

    Shidling, P.D., E-mail: P.Shidling@rug.n [Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands); Giri, G.S.; Hoek, D.J. van der; Jungmann, K.; Kruithof, W.L.; Onderwater, C.J.G.; Santra, B.; Sohani, M.; Versolato, O.O.; Willmann, L.; Wilschut, H.W. [Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, 9747 AA Groningen (Netherlands)

    2010-10-01

    Radioactive isotopes produced by the in-flight method are converted into low-energy ions with a thermal ionizer (TI) ion catcher, the operation of which is based on a hot cavity ion source. The extraction efficiency of the TI for different alkali and alkali-earth elements has been studied and compared to a model based on diffusion only. The model describes the stationary limit, i.e. the extraction efficiency, as well as the dynamic response of the TI output when the primary beam is switched on and off.

  11. Use of X-ray Fluorescence Analysis for the Determination of Rare Earth Elements

    Science.gov (United States)

    Schramm, Rainer

    2016-09-01

    X-ray fluorescence spectrometry (XRF) is a powerful tool for the analysis of solid material. That is the reason why the technique was applied for the determination of rare earth elements (REEs) since about 1970. At present, energy-dispersive XRF and wavelength-dispersive XRF are used for the analysis of pressed powder pellets or fused Li-borate beads containing REEs. The production of reliable results can only be achieved by careful optimization of the parameter, in particular the selection of spectral lines. The quantification is based on a calibration realized by using reference samples.

  12. Effect of Anion on Adsorption of Rare Earth Elements on Kaolinite

    Institute of Scientific and Technical Information of China (English)

    Wan Yingxin; Liu Jianjun

    2007-01-01

    For a better understanding the adsorption of rare earth elements (REEs) on minerals and its controlling factors, adsorption experiments were performed with kaolin in a matrix of various concentration of anion (Cl-, ClO4-, SO42-) in the pH 6.5. The adsorption of REEs onto the kaolin increase with increasing anion concentration, especially in the presence of SO42-, which is ascribe to the Na+ mass effect and anion complexation. furthermore, the heavy REEs are more adsorbed onto kaolin in presence of higher concentration of anion, especially for Cl- and SO42-, presumably due to the difference of anion complexation with light REE and heavy REEs.

  13. The rare-earth elements: vital to modern technologies and lifestyles

    Science.gov (United States)

    Van Gosen, Bradley S.; Verplanck, Philip L.; Long, Keith R.; Gambogi, Joseph; Seal, Robert R., II

    2014-01-01

    Until recently, the rare-earth elements (REEs) were familiar to a relatively small number of people, such as chemists, geologists, specialized materials scientists, and engineers. In the 21st century, the REEs have gained visibility through many media outlets because of (1) the public has recognized the critical, specialized properties that REEs contribute to modern technology, as well as (2) China's dominance in production and supply of the REEs and (3) international dependence on China for the majority of the world's REE supply.

  14. Recycling rare earth elements from industrial wastewater with flowerlike nano-Mg(OH)(2).

    Science.gov (United States)

    Li, Chaoran; Zhuang, Zanyong; Huang, Feng; Wu, Zhicheng; Hong, Yangping; Lin, Zhang

    2013-10-09

    Treatment of wastewater containing low-concentration yet highly-expensive rare earth elements (REEs) is one of the vital issues in the REEs separation and refining industry. In this work, the interaction and related mechanism between self-supported flowerlike nano-Mg(OH)2 and low-concentration REEs wastewater were investigated. More than 99% REEs were successfully taken up by nano-Mg(OH)2. Further analysis revealed that the REEs could be collected on the surface of Mg(OH)2 as metal hydroxide nanoparticles (recycling of valuable REEs in practical industrial applications.

  15. Distributions of rare-earth elements in two Chinese coals and their burnt products

    Institute of Scientific and Technical Information of China (English)

    YAO Duo-xi; ZHI Xia-chen

    2005-01-01

    The concentrations of two fresh Chinese coals (lignitie and fatty coal ) from different geological origin and the corresponding fly and bottom ashes were determined using inductively coupled plasma mass spectrometry(ICP-MS). The ranges and means of concentrations of these elemennts were given. Based on the combustion simulating experiment in the one-dismensional boiler, the contents of REE (rare-earth element) of 18samples in lignite, fatty coal and their fly and bottom ashes in different combustion condition were determined, and geochemical feature of REE were analyzed.

  16. Examination of Sarikaya(Yozgat-Turkey) iron mineralization with rare earth element(REE) method

    Institute of Scientific and Technical Information of China (English)

    Nursel; OKSUZ; Sukru; KOC

    2010-01-01

    Iron mineralizations in the study area are found in amphibolites in the localities of Buyukoren,Uzunkuyu-Atkayasi,and Karabacak and they display a predominantly banded texture.Their paragenesis is dominated by magnetite and hematite.In this study,iron mineralizations in Sarikaya were examined in terms of rare earth element(REE) contents and attempts were made to determine some physicochemical conditions that had an impact upon their formation.For this purpose,42 ore samples and 17 enriched magnetite samples...

  17. Characterization of the electrical behaviour of rare earth elements during the upgrading of monazite

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, R M [Radiation Physics Department, National Center for Radiation Research and Technology NCRRT, PO Box 29, Nasr City, Cairo (Egypt); Fawzy, Y H A [Radiation Physics Department, National Center for Radiation Research and Technology NCRRT, PO Box 29, Nasr City, Cairo (Egypt); Ashry, H A [Radiation Physics Department, National Center for Radiation Research and Technology NCRRT, PO Box 29, Nasr City, Cairo (Egypt); Soliman, F A S [Nuclear Materials Authority, El-Horrya, PO Box 2404, Heliopolis-11361, Cairo (Egypt)

    2004-03-07

    Electrical properties of rare earth elements (REEs) in some geological materials were characterized during the upgrading of monazite from Egyptian black sand. It has been found that there was a significant relationship between concentrations of REEs and dc conductivity. Also, dielectric constant, dielectric loss, polarization, relaxation time and resonance frequency of samples containing REEs, were measured at a frequency range up to 1 MHz. From these measurements, it has been found that the values of electrical conductivity, resonance frequency and dielectric polarization are inversely proportional to the concentration of REEs. For most relations, the correlation coefficients were found to be better than 99%.

  18. Extraction of rare earth elements from hydrate-phosphate precipitates of apatite processing

    Science.gov (United States)

    Andropov, M. O.; Anufrieva, A. V.; Buynovskiy, A. S.; Makaseev, Y. N.; Mazov, I. N.; Nefedov, R. A.; Sachkov, V. I.; Stepanova, O. B.; Valkov, AV

    2016-01-01

    The features of extraction of rare earth elements (REE) were considered from hydrate-phosphate precipitates of REE of apatite processing by nitric acid technology. The preliminary purification of nitrate solution of REE from impurities of titanium, aluminum, iron, uranium and thorium was suggested to obtain stable solutions not forming precipitates. Washing the extract was recommended with the evaporated reextract that allows to obtain directly on the cascade of REE extraction the concentrated solutions suitable for the separation into groups by the extraction method. Technical decisions were suggested for the separation of REE in groups without the use of salting-out agent.

  19. Effect of Rare Earth Elements on Thermal Fatigue Property of Low Chromium Semi-Steel

    Institute of Scientific and Technical Information of China (English)

    常立民; 刘建华; 张瑞军; 邵利; 于升学; 谌岩

    2003-01-01

    The effect of rare earth elements on eutectic carbide′s morphology of low chromium semi-steel in as-cast state and after heat treatment was investigated, and accordingly, the thermal fatigue property of this material was studied. The results show that RE can improve the eutectic carbide′s morphology, inhibit the formation and propagation of thermal fatigue cracks, therefore, promote the thermal fatigue property, which is more noticeable in case of the RE modification in combination with heat treatment. The optimal thermal fatigue property can be obtained when treated with 0.2% RE modification as well as normalization at 950 ℃ for 3 h.

  20. New neutron-deficient isotopes of barium and rare-earth elements

    CERN Document Server

    Bogdanov, D D; Karnaukhov, V A; Petrov, L A; Plochocki, A; Subbotin, V G; Voboril, J

    1976-01-01

    The authors present an investigation of the short-lived neutron- deficient isotopes of barium and rare-earth elements. By using the BEMS-2 isotope separator on a heavy ion beam, 19 new isotopes were produced with mass numbers ranging from 117 to 138. Five of these (/sup 117/Ba, /sup 129,131/Nd and /sup 133,135/Sm) turned out to be delayed proton emitters. The beta -decay probabilities for the new isotopes have been analyzed in terms of the beta -strength function. An analysis of the proton spectrum shape has been performed using the statistical model for delayed proton emission.

  1. Influence of rare earth elements (Nd, Sm, Gd) on the physicochemical properties of ges crystal

    Science.gov (United States)

    Madatov, R. S.; Alekperov, A. S.; Magerramova, Dzh. A.

    2015-11-01

    Layered semiconductors (including GeS), which are widely used in modern electronics, are of great interest for researchers. New GeS-based devices have been developed for holographic recording, optical processing, and storage of information. In the last few years, American scientists have developed a unique GeS-based device that makes it possible to accumulate an immense amount of solar energy. The introduction of rare earth elements (REEs) facilitates the healing of metal and chalcogenide vacancies, removes polytypism, and enhances interlayer interaction.

  2. Electrodeposition Techniques for the Preparation of Beta-Sprectroscopy Sources of Rare-Earth Elements

    DEFF Research Database (Denmark)

    Hansen, P. Gregers; Høgh, J.; Nielsen, H. L.

    1964-01-01

    Thin, uniform radioactive deposits of rare earths and related elements can be prepared by cathodic electrodeposition of their hydroxides. The main theoretical and experimental features of this process are reviewed and plating cell design and the choice of conditions are described together...... with the associated radio-chemical methods. The use of copper-backed nickel films is shown to allow the preparation of beta sources on quite thin (down to 45 μg cm−2) backings, if the copper layer is etched selectively after the radioactivity has been plated onto the nickel....

  3. Rare-earth element patterns in conodont albid crowns: Evidence for massive inputs of volcanic ash during the latest Permian biocrisis?

    Science.gov (United States)

    Zhao, Laishi; Chen, Zhong-Qiang; Algeo, Thomas J.; Chen, Jianbo; Chen, Yonglin; Tong, Jinnan; Gao, Shan; Zhou, Lian; Hu, Zhaochu; Liu, Yongsheng

    2013-06-01

    Rare-earth element (REE) profiles were generated from conodont bioapatite for two Permian-Triassic boundary sections in South China (Meishan and Daxiakou) in order to investigate environmental changes following the latest Permian mass extinction (LPME). REE concentrations were measured in albid crowns, the conodont histology that is densest and least susceptible to diagenetic alteration, in an effort to recover seawater REE signatures. However, an analysis of REE sources demonstrated that 80-100% of REEs in the study samples were derived from siliciclastic sources, presumably the abundant clay minerals present in the study sections. Interval I (pre-LPME) exhibited lower ΣREE concentrations and distinctly different REE distribution patterns than Intervals II (syn-LPME) and III (post-LPME) of the study sections. REE "fingerprinting" suggests that the latter two intervals contain a large fraction of REEs derived from volcanic clays, characterized by low Eu/Eu* and LaN/YbN and high Th/La ratios. The presence of volcanically derived REEs in post-LPME Interval III indicates that volcanic eruptions continued to spew ash for an extended interval following the boundary crisis or, perhaps more likely, that substantial ash deposits that fell on landmasses during the LPME were slowly eroded and transported to the marine environment. The most probable source of this volcanic ash is the Siberian Traps magmatic province. Ce/Ce* ratios of 0.8-1.0 around the LPME may reflect suboxic to anoxic seawater conditions, although it is uncertain whether Ce in the study sections is mainly of hydrogenous or detrital origin.

  4. Alkali and alkaline earth element geochemistry of Los Humeros Caldera, Puebla, Mexico

    Science.gov (United States)

    Verma, Surendra P.

    1984-03-01

    Results of the measurements of alkali (K, Rb and Cs) and alkaline earth (Ba and Sr) elements on seven pre-caldera and twenty post-caldera samples of Los Humeros volcanics (Pliocene to Recent) are described. These data are interpreted in terms of the known solid-liquid partition coefficients. It appears that fractional crystallization is a dominant petrogenetic process and is controlled by the observed modal phases, namely plagioclase, olivine and clinopyroxene (in decreasing importance), and perhaps, in addition, biotite and titanomagnetite in the later stages of the differentiation sequence. The available major element chemistry and mass-balance calculations support these conclusions. Sr and Nd isotopic data further suggest that these magmas were generated in the underlying mantle, fractionated in a shallow-level magma chamber and underwent very insignificant sialic contamination before eruption.

  5. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements

    Energy Technology Data Exchange (ETDEWEB)

    Branquinho, Cristina [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande C2, Piso 4, 1749-016 Lisbon (Portugal) and Universidade Atlantica, Antiga Fabrica da Polvora de Barcarena, 2745-615 Barcarena (Portugal)]. E-mail: cmbranquinho@fc.ul.pt; Serrano, Helena Cristina [Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal); Pinto, Manuel Joao [Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal); Martins-Loucao, Maria Amelia [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande C2, Piso 4, 1749-016 Lisbon (Portugal); Universidade de Lisboa, Museu Nacional de Historia Natural, Jardim Botanico (Portugal)

    2007-03-15

    The several established criteria to define a hyperaccumulator plant were applied to a rare and endangered species, Plantago almogravensis, and to the 3rd most abundant element in the earth crust, Al. Using the most common criteria, P. almogravensis undoubtedly is an Al hyperaccumulator plant. If the recent proposed requirements were considered, most of them matching those for a plant to be used in phytoextraction, it can only be considered an unusual accumulator of Al. A discussion is made concerning the several criteria of a hyperaccumulator plant in order to include rare and endemic ones and abundant elements. In ecological terms, the enrichment in Al and Fe observed may account for the differences in the vegetation pattern. Due to the rarity and endangered nature of this plant, the contribution of this work is also relevant for the ecological understanding and the development of conservation options of this endemic species. - Revisiting plant hyperaccumulation criteria.

  6. Rare earth elements determination in medicinal plants by Neutron Activation Analisys

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Rodolfo D.M.R.; Francisconi, Lucilaine S.; Silva, Paulo S.C. da, E-mail: rdmrg89@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Rare Earth Elements (REEs) have been considered nontoxic for human health and for the environment; however, the use of REEs in the development of recent technologies has increased the interest un their biological effects. Some studies related to their concentration in foodstuffs were published but REEs levels in medicinal plants are still unknown. The objective of this study was to determine the Rees concentration in the set of 59 medicinal herbs commonly used by Brazilian folk. Results showed that plants can concentrate REEs in their aerial parts, but the amount transferred to the extract of these plants is relatively low, resulting in little ingestion of these elements by the population during the extract consumption. (author)

  7. Rationally designed mineralization for selective recovery of the rare earth elements

    Science.gov (United States)

    Hatanaka, Takaaki; Matsugami, Akimasa; Nonaka, Takamasa; Takagi, Hideki; Hayashi, Fumiaki; Tani, Takao; Ishida, Nobuhiro

    2017-05-01

    The increasing demand for rare earth (RE) elements in advanced materials for permanent magnets, rechargeable batteries, catalysts and lamp phosphors necessitates environmentally friendly approaches for their recovery and separation. Here, we propose a mineralization concept for direct extraction of RE ions with Lamp (lanthanide ion mineralization peptide). In aqueous solution containing various metal ions, Lamp promotes the generation of RE hydroxide species with which it binds to form hydrophobic complexes that accumulate spontaneously as insoluble precipitates, even under physiological conditions (pH ~6.0). This concept for stabilization of an insoluble lanthanide hydroxide complex with an artificial peptide also works in combination with stable scaffolds like synthetic macromolecules and proteins. Our strategy opens the possibility for selective separation of target metal elements from seawater and industrial wastewater under mild conditions without additional energy input.

  8. Effects of rare earth elements and REE-binding proteins on physiological responses in plants.

    Science.gov (United States)

    Liu, Dongwu; Wang, Xue; Chen, Zhiwei

    2012-02-01

    Rare earth elements (REEs), which include 17 elements in the periodic table, share chemical properties related to a similar external electronic configuration. REEs enriched fertilizers have been used in China since the 1980s. REEs could enter the cell and cell organelles, influence plant growth, and mainly be bound with the biological macromolecules. REE-binding proteins have been found in some plants. In addition, the chlorophyll activities and photosynthetic rate can be regulated by REEs. REEs could promote the protective function of cell membrane and enhance the plant resistance capability to stress produced by environmental factors, and affect the plant physiological mechanism by regulating the Ca²⁺ level in the plant cells. The focus of present review is to describe how REEs and REE-binding proteins participate in the physiological responses in plants.

  9. Determination of rare earth elements in high purity rare earth oxides by liquid chromatography, thermionic mass spectrometry and combined liquid chromatography/thermionic mass spectrometry

    Science.gov (United States)

    Stijfhoorn, D. E.; Stray, H.; Hjelmseth, H.

    1993-03-01

    A high-performance liquid Chromatographie (HPLC) method for the determination of rare earth elements in rocks has been modified and used for the determination of rare earth elements (REE) in high purity rare earth oxides. The detection limit was 1-1.5 ng or 2-3 mg/kg when a solution corresponding to 0.5 mg of the rare earth oxide was injected. The REE determination was also carried out by adding a mixture of selected REE isotopes to the sample and analysing the collected HPLC-fractions by mass spectrometry (MS) using a thermionic source. Since the matrix element was not collected, interference from this element during the mass spectrometric analysis was avoided. Detection limits as low as 0.5 mg/kg could then be obtained. Detection limits as low as 0.05 mg/kg were possible by MS without HPLC-pre-separation, but this approach could only be used for those elements that were not affected by the matrix. Commercial samples of high purity Nd 2O 3, Gd 2O 3 and Dy 2O 3 were analysed in this study, and a comparison of results obtained by HPLC, combined HPLC/MS and direct MS are presented.

  10. Notes on Contributions to the Science of Rare Earth Element Enrichment in Coal and Coal Combustion Byproducts

    Directory of Open Access Journals (Sweden)

    James C. Hower

    2016-03-01

    Full Text Available Coal and coal combustion byproducts can have significant concentrations of lanthanides (rare earth elements. Rare earths are vital in the production of modern electronics and optics, among other uses. Enrichment in coals may have been a function of a number of processes, with contributions from volcanic ash falls being among the most significant mechanisms. In this paper, we discuss some of the important coal-based deposits in China and the US and critique classification systems used to evaluate the relative value of the rare earth concentrations and the distribution of the elements within the coals and coal combustion byproducts.

  11. Precise determination of rare earth elements, thorium and uranium in chondritic meteorites by inductively coupled plasma mass spectrometry. A comparative study with radiochemical neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shinotsuka, Kazunori; Ebihara, Mitsuru [Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Tokyo (Japan)

    1997-02-20

    An inductively coupled plasma mass spectrometry (ICP-MS) procedure for determining trace amounts of rare earth elements (REEs), Th and U in chondritic meteorites (chondrites) is presented. As chondrites have low contents of these elements (10{sup -2} to 10{sup -4}xcrustal rock averages), the procedure was designed to be performed in as small a scale as possible in order to reduce the procedural blank. Serious matrix effects (ion suppression) may be caused by high Fe contents (20-35 wt.), which could be eliminated by applying appropriate internal standards (Rh for Y, In and Tl for lanthanides, and Bi for Th and U) and dilution factors (10{sup 4} for Y and 10{sup 3} for the rest of elements). Radiochemical neutron activation analysis (RNAA) was also applied for determining 10 REEs (La, Ce, Nd, Sm, Eu, Gd, Tb, Tm, Yb and Lu) in chondrites. It is found that both ICP-MS and RNAA have comparable detection limits for REEs. ICP-MS, however, has the great advantage that all REEs (including Y), Th and U can be determined with similar precision. Three Antarctic chondrites for which some anomalous REE abundances had been reported by RNAA, were also analyzed by ICP-MS but no anomalies were found, which implies the limitation of RNAA data in discussing the REE abundances in detail.

  12. Seawater rare-earth element patterns preserved in apatite of Pennsylvanian conodonts?

    Science.gov (United States)

    Bright, Camomilia A.; Cruse, Anna M.; Lyons, Timothy W.; MacLeod, Kenneth G.; Glascock, Michael D.; Ethington, Raymond L.

    2009-03-01

    Past workers have used rare-earth element patterns recorded in biogenic apatite as proxies for original seawater chemistry. To explore the potency of this approach, we analyzed Pennsylvanian conodonts from limestones, gray shales, and black shales of the Fort Scott and Pawnee formations (Desmoinesian) and Swope and Dennis formations (Missourian) in Kansas, Missouri, and Iowa, U.S.A. Analysis of individual platform conodonts from seven taxa using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed a consistent enrichment in the middle rare-earth elements (MREE). Analogous MREE enrichment has been observed in authigenic apatite and bulk samples of phosphate-rich black shales from the same formations. Importantly, however, phosphate-depleted shales intimately associated with the P-rich intervals are relatively depleted in MREE. These antithetic patterns argue convincingly for secondary migration from the bulk sediment into the phosphate, and the extent of MREE enrichment in the conodonts is correlated positively with the total REE content. MREE enrichment in conodonts does not vary systematically as a function of lithology, stratigraphic level, conodont genus, geographic location, or with independent estimates of paleoredox conditions in the bottom waters. Collectively, these results argue for postmortem (diagenetic) REE uptake resulting in a pronounced (and progressive) MREE enrichment. Any cerium anomalies, if initially present, were masked by diagenetic uptake of REE. Paleoenvironmental interpretations of conodont REE, particularly for samples exhibiting MREE enrichment, should therefore be viewed with caution.

  13. Investigation on the status of rare earth elements contained in the powder of spent fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Belardi, G. [Institute of Environmental Geology and Geoengineering (CNR) Area della Ricerca CNR, via Salaria km 29300, Monterotondo, Rome 00016 (Italy); Ippolito, N. [Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, via Eudossiana 84, Rome 00184 (Italy); Piga, L., E-mail: luigi.piga@uniroma1.it [Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, via Eudossiana 84, Rome 00184 (Italy); Serracino, M. [Institute of Environmental Geology and Geoengineering (CNR) Area della Ricerca CNR, via Salaria km 29300, Monterotondo, Rome 00016 (Italy)

    2014-09-10

    Highlights: • Most of rare earth elements are contained in particles of size finer than 7 μm. • Most of Si, K and Na are contained in the coarser size-fractions. • The phases in the size-fractions of the fluorescent powder have been determined. • Europium is contained in yttrium oxide and in vanadium–yttrium oxides. • The crystallo–chemical composition of all the phases has been determined. - Abstract: The aim of this study is to examine the status of rare earth elements (REE) contained in the chemical compounds that make up the powder of spent fluorescent lamps, with a view of their recovery. The status of REE in the as-received powder, as well as in a few size-class fractions of it, has been established. This way, only those size-class fractions containing high REE concentrations can be considered in a recovery process. The investigation has been carried out using particle-size, chemical, TGA/DTA, XRPD, SEM-EDS and EMPA analyses. The last technique enabled to establish the status of REE within the lattice of the chemical compounds present in the powder. The fineness of the as-received powder and the higher REE concentration in the finest size-classes suggest that physical methods of separation should not be used to separate the REE-containing chemical compounds from each other. Leaching methods seem more suitable with a material of such size.

  14. The Suppression Effect of Light Rare Earth Elements on Proliferation of Two Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    JIYUN-JING; XIAOBAI; 等

    2000-01-01

    To study the suppression effect of light rare earth elements(RE) on proliferation of two cancer cell lines.Two cancer cell lines PAMC82 and K562 were used to examine their colony-forming ability in soft agar,microtubule structure,calmodulin levels and regulation of smoe gene expressions y Northern blot analysis with and without treatment by RE.The results showed that on soft agar culture the colony-forming ability of human gastric cancer cell line PAMC82 treated by RE chloride decreased and the PAMC82 cell microtubule abnormal structure became normal.The calmodulin (CaM) levels decreased in human leukemia cells(k562) treated with cerium chloride and neodymium chloride.The Northern blot analysis revealed marked up-regulation of p53,p16(MTS1),p21(WAF1) gene expressions in PAMC82 cells treated with lanthanum chloride and cerium chloride,as compared to control PAMC82 cells,The light rare earth elements studied have certain suppression effects on proliferation of cancer cells,This effect might be realted to the decrease of calmodulin and up-regulationg of smoe gene expressions in cancer cells.

  15. The Suppression Effect of Light Rare Earth Elements on Proliferation of Two Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    To study the suppression effect of light rare earth elements (RE) on proliferation of two cancer cell lines. Two cancer cell lines PAMC82 and K562 were used to examine their colony-forming ability in soft agar, microtubule structure, calmodulin levels and regulation of some gene expressions by Northern blot analysis with and without treatment by RE. The results showed that on soft agar culture the colony-forming ability of human gastric cancer cell line PAMC82 treated by RE chloride decreased and the PAMC82 cell microtubule abnormal structure became normal. The calmodulin (CaM) levels decreased in human leukemia cells (K562) treated with cerium chloride and neodymium chloride. The Northern blot analysis revealed marked up-regulation of p53, p16(MTS1), p21(WAF1) gene expressions in PAMC82 cells treated with lanthanum chloride and cerium chloride, as compared to control PAMC82 cells. The light rare earth elements studied have certain suppression effects on proliferation of cancer cells. This effect might be related to the decrease of calmodulin and up-regulation of some gene expressions in cancer cells.

  16. Rare earth element composition of Paleogene vertebrate fossils from Toadstool Geologic Park, Nebraska, USA

    Energy Technology Data Exchange (ETDEWEB)

    Grandstaff, D.E., E-mail: grand@temple.edu [Department of Earth and Environmental Science, Temple University, Philadelphia, PA 19122 (United States); Terry, D.O. [Department of Earth and Environmental Science, Temple University, Philadelphia, PA 19122 (United States)

    2009-04-15

    Fossil bones and teeth from terrestrial environments encode unique rare earth and trace element (REE and TE) signatures as a function of redox conditions, pH, concentrations of complexing ligands, and water-colloid interactions. This signature is set early in the fossilization process and serves as a paleoenvironmental and paleoclimatic proxy. These signatures can also be used to interpret temporal and spatial averaging within vertebrate accumulations, and can help relocate displaced fossil bones back into stratigraphic context. Rare earth elements in vertebrate fossils from upper Eocene and Oligocene strata of Toadstool Geologic Park, northwestern Nebraska, record mixing and evolution of Paleogene vadose or groundwaters and variations in paleoenvironments. REE signatures indicate that HREE-enriched alkaline groundwater reacted with LREE- and MREE-enriched sediments to produce 3-component mixtures. REE signatures become increasingly LREE- and MREE-enriched toward the top of the studied section as the paleoenvironment became cooler and drier, suggesting that REE signatures may be climate proxies. Time series analysis suggests that REE ratios are influenced by cycles of ca. 1050, 800, 570, 440, and 225 ka, similar to some previously determined Milankovitch astronomical and climate periodicities.

  17. Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Mingyong [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Tan Shuduan [College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China); Dang Haishan [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China); Zhang Quanfa, E-mail: qzhang@wbgcas.cn [Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 (China)

    2011-12-15

    A field experiment using rare earth elements (REEs) as tracers was conducted to investigate soil erosion processes on slope surfaces during rainfall events. A plot of 10 m x 2 m x 0.16 m with a gradient of 20{sup o} (36.4%) was established and the plot was divided into two layers and four segments. Various REE tracers were applied to the different layers and segments to determine sediment dynamics under natural rainfall. Results indicated that sheet erosion accounted for more than 90% of total erosion when the rainfall amount and density was not large enough to generate concentrated flows. Sediment source changed in different sections on the slope surface, and the primary sediment source area tended to move upslope as erosion progressed. In rill erosion, sediment discharge mainly originated from the toe-slope and moved upwards as erosion intensified. The results obtained from this study suggest that multi-REE tracer technique is valuable in understanding the erosion processes and determining sediment sources. - Highlights: > Soil erosion processes with rare earth elements was conducted under natural rainfall. > Experimental setup developed here has seldom implemented in the world. > Sheet erosion is the main erosion type and main contributor to sediment loss. > Sediment source changed in different sections on the slope surface. > The primary sediment source area tended to move upslope as erosion progressed.

  18. Sources of Extraterrestrial Rare Earth Elements:To the Moon and Beyond

    Science.gov (United States)

    McLeod, C. L.; Krekeler, M. P. S.

    2017-08-01

    The resource budget of Earth is limited. Rare-earth elements (REEs) are used across the world by society on a daily basis yet several of these elements have up to 3% of the PKT. Other lunar REE-bearing lunar phases include monazite, yittrobetafite (up to 94,500 ppm yttrium), and tranquillityite (up to 4.6 wt % yttrium, up to 0.25 wt % neodymium), however, lunar sample REE abundances are low compared to terrestrial ores. At present, there is no geological, mineralogical, or chemical evidence to support REEs being present on the Moon in concentrations that would permit their classification as ores. However, the PKT region has not yet been mapped at high resolution, and certainly has the potential to yield higher REE concentrations at local scales (date, constituting <0.6% of the total sample. Nonetheless, they dominate a samples REE budget with their abundances typically 1-2 orders of magnitude enriched relative to their host rock. As with the Moon, though phases which host REEs have been identified, no extraterrestrial REE resource, or ore, has been identified yet. At present extraterrestrial materials are therefore not suitable REE-mining targets. However, they are host to other resources that will likely be fundamental to the future of space exploration and support the development of in situ resource utilization, for example: metals (Fe, Al, Mg, PGEs) and water.

  19. The History and Use of Our Earth's Chemical Elements: A Reference Guide (by Robert E. Krebs)

    Science.gov (United States)

    Bracken, Reviewed By Jeffrey D.

    1999-04-01

    Greenwood Press: Westport, CT, 1998. 282 pp + 25 pp glossary + 37 pp index. 15.9 x 24.1 cm. ISBN 0-313-30123-9. $39.95. This book is an excellent resource for chemical educators at the high school and college levels. The format of the text is consistent and the writing style is clear and concise, making it ideally suited for student use also. The first three chapters serve to introduce the reader to a brief history of chemistry, early models of the atom, and the development of the periodic table. Names of the contributing scientists are mentioned whenever necessary, but the overall purpose of these introductory chapters is simply to lay a foundation for the subsequent seven chapters. A complete glossary of important scientific terms mentioned in the text should allow beginning students to use this book without feeling overwhelmed. Each entry for the 112 elements contains the following information: elemental symbol, atomic number, period, common valence, atomic weight, natural state, common isotopes, properties, characteristics, abundance, natural sources, history, common uses and compounds, and safety hazards. This information is well organized, with clear headings and separate sections making the book extremely user-friendly. Readers can easily obtain the information they desire without having to skim the full entry for a chosen element. One very nice feature of this book is that the elements entries are arranged by their locations in the periodic table. For example, chapter 4 contains the alkali metals and alkaline earth metals. This organizational scheme allows one to quickly see the patterns and trends within groups of elements. This format is significantly better than arranging the elements in alphabetical order, which places the entry for sodium far removed from the entries for lithium and potassium. I would highly recommend this book to high school teachers and college chemistry professors. It is well written and is an excellent source of information for

  20. Toward understanding early Earth evolution: Prescription for approach from terrestrial noble gas and light element records in lunar soils

    OpenAIRE

    Ozima, Minoru; Yin, Qing-Zhu; Podosek, Frank A.; Miura, Yayoi N.

    2008-01-01

    Because of the almost total lack of geological record on the Earth's surface before 4 billion years ago, the history of the Earth during this period is still enigmatic. Here we describe a practical approach to tackle the formidable problems caused by this lack. We propose that examinations of lunar soils for light elements such as He, N, O, Ne, and Ar would shed a new light on this dark age in the Earth's history and resolve three of the most fundamental questions in earth science: the onset ...

  1. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid.

    Science.gov (United States)

    Minoda, Ayumi; Sawada, Hitomi; Suzuki, Sonoe; Miyashita, Shin-ichi; Inagaki, Kazumi; Yamamoto, Takaiku; Tsuzuki, Mikio

    2015-02-01

    The demand for rare earth elements has increased dramatically in recent years because of their numerous industrial applications, and considerable research efforts have consequently been directed toward recycling these materials. The accumulation of metals in microorganisms is a low-cost and environmentally friendly method for the recovery of metals present in the environment at low levels. Numerous metals, including rare earth elements, can be readily dissolved in aqueous acid, but the efficiency of metal biosorption is usually decreased under the acidic conditions. In this report, we have investigated the use of the sulfothermophilic red alga Galdieria sulphuraria for the recovery of metals, with particular emphasis on the recovery of rare earth metals. Of the five different growth conditions investigated where G. sulphuraria could undergo an adaptation process, Nd(III), Dy(III), and Cu(II) were efficiently recovered from a solution containing a mixture of different metals under semi-anaerobic heterotrophic condition at a pH of 2.5. G. sulphuraria also recovered Nd(III), Dy(III), La(III), and Cu(II) with greater than 90% efficiency at a concentration of 0.5 ppm. The efficiency remained unchanged at pH values in the range of 1.5-2.5. Furthermore, at pH values in the range of 1.0-1.5, the lanthanoid ions were collected much more efficiently into the cell fractions than Cu(II) and therefore successfully separated from the Cu(II) dissolved in the aqueous acid. Microscope observation of the cells using alizarin red suggested that the metals were accumulating inside of the cells. Experiments using dead cells suggested that this phenomenon was a biological process involving specific activities within the cells.

  2. Recent advances in rare-earth elements modification of inorganic semiconductorbased photocatalysts for efficient solar energy conversion:A review

    Institute of Scientific and Technical Information of China (English)

    于耀光; 陈刚; 周彦松; 韩钟慧

    2015-01-01

    This review focused on rare-earth elements containing inorganic semiconductor photocatalysts for efficient solar energy conversion. We also summarized the recent progress in the modification of the transition metal oxides and mixed oxides with rare earth ions. In the first section, we surveyed a variety of rare-earth elements modified TiO2 photocatalysts. Attributed to the modifica-tion with rare-earth elements, phase transformation of TiO2 from anatase to rutile was inhibited. Furthermore, the light-absorbing property of the TiO2 modified with rare-earth elements was also enhanced. In the second section, we summarized the effects of rare-earth elements on the modification of transition metal mixed oxides. It was believed that the corner-shared octahedral units in the form of networks, chains and slabs within the mixed oxide lattice were essential for the enhancement of the photocatalytic activity. In the last section, the strategy for the design of NIR or IR response upconversion composite photocatalysts was also discussed.

  3. Electrical transport mechanism in a newly synthesized rare earth double perovskite oxide Sr{sub 2}CeTaO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Bharti, Chandrahas, E-mail: bharti.chandrahas@gmail.com [Sensor and Actuator Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja SC Mullick Road, Kolkata 700032 (India); Chanda, Sadhan; Sinha, T.P. [Department of Physics, Bose Institute, 93/1, Acharya Prafulla Chandra Road, Kolkata 700009 (India)

    2013-01-15

    A rare earth double perovskite oxide strontium cerium tantalate, Sr{sub 2}CeTaO{sub 6} (SCT) is synthesized by the solid state reaction technique for the first time. The determination of lattice parameters and the identification of phase are carried out by the Rietveld refinement method (RRM) using the Fullprof program in the space group P2{sub 1}/n (C{sup 5}{sub 2h}). A structure of SCT is obtained from RRM. The bond angle and bond length are calculated and listed in Table 1 for SCT. A small amount of impurity of CeO{sub 2} is found in the refinement with space group Fm3m. The scanning electron micrograph shows the average grain size {approx}2 {mu}m. The ac electrical property is investigated in the temperature range from 303 to 703 K and in the frequency range from 0.1 kHz to 1 MHz using impedance spectroscopy. The relaxation mechanism of SCT is explained in detail by fitting experimental impedance and electric modulus data with the modified Debye (Cole-Cole) model. The frequency-dependent electrical data are analyzed in the framework of the conductivity and modulus formalisms. The {sigma}{sub ac} data are fitted with Jonscher's universal power law. The dc conductivity ({sigma}{sub dc}) (calculated from {sigma}{sub ac}) follows an Arrhenius law with the estimated conduction activation energy =0.78 eV. The scaling behavior of imaginary part of electrical impedance (Z Double-Prime ) shows that the relaxation describes the same mechanism at various temperatures.

  4. Study of rare earth element effect on microstructures and mechanical properties of an Al-Cu-Mg-Si cast alloy

    Institute of Scientific and Technical Information of China (English)

    WAN Weiwei; HAN Jianmin; LI Weijing; WANG Jinhua

    2006-01-01

    The improvements of microstructures and properties of a high strength aluminum cast alloy were studied.The effects of rare earth elements on the microstructures and mechanical properties of the high strength cast alloy Al-Cu-Mg-Si were investigated.The result shows that the addition of rare earth elements can change the microstructures in refining the grain size of the alloy and making the needle-like and laminar eutectic Si to a granular Si.With the increase of the rare earth, the tensile strength and elongation of the alloy increase first and then fall down.The mechanical properties of the alloy will reach the highest value when the content of rare earth elements is about 0.7%.

  5. Effects of the accumulation of the rare earth elements on soil macrofauna community

    Institute of Scientific and Technical Information of China (English)

    LI

    2010-01-01

    The accumulation of rare earth elements(REEs)in soil has occurred due to the pollution caused by the exploitation of rare earth resources and the wide rare earth fertilizers in agriculture.The accumulation of REEs has a toxic effect on the soil macrofauna community.12study samples were collected near a mine tailings dam with a large amount of REEs by distance gradient sample method.The total concentration of REEs was analyzed and the results were compared with that of the sample from a control site.The effects of the amount of REEs in the soil on the soil macrofauna community were also analyzed.The results showed that the accumulation of REEs in soil was significant in the study area and its concentration was strongly correlated with the distance from the pollution source.One-way ANOVA analysis indicated the significant differences in soil macrofauna communities among the different sites.The ordination obtained through the redundancy analysis demonstrated that the concentration of REEs and the total nitrogen,total potassium and pH,had affected the soil macrofauna community.A small amount of REEs in the soil can promote the diversity of soil macrofauna,but a large amount of REEs can reduce its diversity.The insect groups of Carabidae and Dermaptera were comparatively sensitive to the concentration of REEs in soil,and could be used as an indicator of soil pollution of REEs.However,the Formicidae and Stibaropus formosanus exhibited a high tolerance to REEs in soil.We believe that it is very important for the soil environment protection to strictly control the application of the rare earth fertilizers in agriculture in China.

  6. Assessing the utility of trace and rare earth elements as biosignatures in microbial iron oxyhydroxides

    Directory of Open Access Journals (Sweden)

    Christine eHeim

    2015-02-01

    Full Text Available Microbial iron oxyhydroxides are common deposits in natural waters, recent sediments and mine drainage systems and often contain significant accumulations of trace and rare earth elements (TREE. TREE patterns are widely used to characterize minerals and rocks, and to elucidate their evolution and origin. Whether and which characteristic TREE signatures distinguish between a biological and an abiological origin of iron minerals is still not well understood. Long-term flow reactor studies were performed in the Äspö Hard Rock Laboratory to investigate the development of microbial mats dominated by iron-oxidizing bacteria, namely Mariprofundus sp. and Gallionella sp. The experiments investigated the accumulation and fractionation of TREE under controlled conditions and enabled us to assess potential biosignatures evolving within the microbial iron oxyhydroxides. Concentrations of Be, Y, Zn, Zr, Hf, W, Th, Pb, and U in the microbial mats were 1e3- to 1e5-fold higher than in the feeder fluids whereas the rare earth elements and Y (REE+Y contents were 1e4 and 1e6 fold enriched. Except for a hydrothermally induced Eu anomaly, the normalized REE+Y patterns of the microbial iron oxyhydroxides were very similar to published REE+Y distributions of Archaean Banded Iron Formations. The microbial iron oxyhydroxides from the flow reactors were compared to iron oxyhydroxides that were artificially precipitated from the same feeder fluid. These abiotic and inorganic iron oxyhydroxides show the same REE+Y distribution patterns. Our results indicate that the REE+Y mirror quite exactly the water chemistry, but they do not allow to distinguish microbially mediated from inorganic iron precipitates. All TREE studied showed an overall similar fractionation behavior in biogenic, abiotic and inorganic iron oxyhydroxides. Exceptions are Ni and Tl, which were only accumulated in the microbial iron oxyhydroxides and may point to a potential usage of these elements as

  7. On Re-Entry Prediction of Near Earth Objects with Genetic Algorithm Using KS Elements

    Science.gov (United States)

    Sharma, R. K.; Anilkumar, A. K.; Xavier James Raj, M.; Sabarinath, A.

    2009-03-01

    The accurate orbit prediction of the near-Earth objects is an important requirement for the re-entry and the life time estimation. The method of Kustaanheimo and Stiefel (KS) total energy element equations is one of the powerful methods for orbit prediction. Recently, due to the reentries of large number of risk objects, which posses threat to the human life and property, a great concern is developed in the space scientific community. Consequently, the prediction of risk objects re-entry time and location has got much importance for the proper planning of mitigation strategies and hazard assessment. This paper discusses an integrated procedure for orbit life time prediction combining the KS elements and genetic algorithm (GA). The orbit prediction is carried out by numerically integrating the KS element equations. In this methodology, the ballistic coefficient is estimated from a set of observed orbital parameters in terms of the Two Line Elements (TLE) by minimizing the variance of the predicted re-entry time from different TLE using GA. A software, KSGEN, systematically developed in-house using KS elements and genetic algorithm is utilized for predicting the re-entry time of the risk objects. This software has been effectively used for the prediction of the re-entry time in the past seven re-entry exercise campaigns conducted by the Inter Agency Space Debris Coordination Committee (IADC). The predicted re-entry time matched quite well with the actual re-entry time for all the seven IADC re-entry campaigns. A detailed analysis is carried out with two case studies.

  8. Cracking the Code of Soil Genesis. The Early Role of Rare Earth Elements

    Science.gov (United States)

    Zaharescu, D. G.; Dontsova, K.; Burghelea, C. I.; Maier, R. M.; Huxman, T. E.; Chorover, J.

    2014-12-01

    Soil is terrestrial life support system. Its genesis involves tight interactions between biota and mineral surfaces that mobilize structural elements into biogeochemical cycles. Of all chemical elements rare earth elements (REE) are a group of 16 non-nutrient elements of unusual geochemical similarity and present in all components of the surface environment. While much is known about the role of major nutrients in soil development we lack vital understanding of how early biotic colonization affects more conservative elements such as REE. A highly controlled experiment was set up at University of Arizona's Biosphere-2 that tested the effect of 4 biological treatments, incorporating a combination of microbe, grass, mycorrhiza and uninoculated control on REE leaching and uptake in 4 bedrock substrates: basalt, rhyolite, granite and schist. Generally the response of REE to biota presence was synergistic. Variation in total bedrock chemistry could explain major trends in pore water REE. There was a fast transition from chemistry-dominated to a biota dominated environment in the first 3-4 months of inoculation/seeding which translated into increase in REE signal over time. Relative REE abundances in water were generally reflected in plant concentrations, particularly in root, implying that below ground biomass is the main sync of REE in the ecosystem. Mycorrhiza effect on REE uptake in plant organs was significant and increased with infection rates. Presence of different biota translated into subtle differences in REE release, reveling potential biosignatures of biolota-rock colonization. The results thus bring fundamental insight into early stages non-nutrient cycle and soil genesis.

  9. Rare earth element studies of surficial sediments from the southwestern Carlsberg Ridge, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N; Higgs, N

    into these sediments is suggested from the weak positive Eu/Eu anomaly. Shale-normalized (NASC) pattern along with La sub((n)/Yb sub((n) ratio suggest enrichment of heavy REE (HREE) relative to the light REE (LREE) with a negative Ce/Ce anomaly implying retention of a...

  10. Valence determination of rare earth elements in lanthanide silicates by L 3-XANES spectroscopy

    Science.gov (United States)

    Kravtsova, Antonina N.; Guda, Alexander A.; Goettlicher, Joerg; Soldatov, Alexander V.; Taroev, Vladimir K.; Kashaev, Anvar A.; Suvorova, Lyudmila F.; Tauson, Vladimir L.

    2016-05-01

    Lanthanide silicates have been hydrothermally synthesized using Cu and Ni containers. Chemical formulae of the synthesized compounds correspond to K3Eu[Si6O15] 2H2O, HK6Eu[Si10O25], K7Sm3[Si12O32], K2Sm[AlSi4O12] 0.375H2O, K4Yb2[Si8O21], K4Ce2[Al2Si8O24]. The oxidation state of lanthanides (Eu, Ce, Tb, Sm, Yb) in these silicates has been determined using XANES spectroscopy at the Eu, Ce, Tb, Sm, Yb, L 3- edges. The experimental XANES spectra were recorded using the synchrotron radiation source ANKA (Karlsruhe Institute of Technology) and the X-ray laboratory spectrometer Rigaku R- XAS. By comparing the absorption edge energies and white line intensities of the silicates with the ones of reference spectra the oxidation state of lanthanides Eu, Ce, Tb, Sm, Yb has been found to be equal to +3 in all investigated silicates except of the Ce-containing silicate from the run in Cu container where the cerium oxidation state ranges from +3 (Ce in silicate apatite and in a KCe silicate with Si12O32 layers) to +4 (starting CeO2 or oxidized Ce2O3).

  11. Use of nuclear techniques in the study of the behavior of rare earth elements on the use of phosphogypsum in cerrado agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Kerley A.P.; Sperling, Eduardo von, E-mail: kerley@ufmg.b, E-mail: eduardo@desa.ufmg.b [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Menezes, Maria A.B.C.; Brito, Walter; Jacomino, Vanusa M.F., E-mail: menezes@cdtn.b, E-mail: britol@cdtn.b, E-mail: vmfj@cdtn.b [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Phosphogypsum (PG) is a by-product of the 'wet process', whereby sulfuric acid reacts with phosphate rock to produce phosphoric acid. The Brazilian production of this material is around 12 million tons per year which is stacked in piles at the same place where it is produced. Researches carried out in several countries worldwide have demonstrated the potential use of PG in agriculture not only as a source for calcium and sulphur, but also as a conditioner for soils that contain high levels of aluminum. In Brazil, these studies are mainly focused on the application of phosphogypsum to the Cerrado region, the main agriculture region of the country. Taking into account the presence of natural radionuclides and rare earth elements (REE) in this material and the fact that the mobility and bioaccumulation of these elements can vary significantly with changes in climate, a research project has been conducted in partnership with the Brazilian Nuclear Energy Commission (CNEN) and Department of Sanitary and Environmental Engineering of Federal University of Minas Gerais in order to investigate the impact of using phosphogypsum in crops cultivated in Cerrado soils. For this purpose a set of greenhouse experiments have been conducted in two types of soil (one clayey and other sandy loam textured) to determine the transfer factor of rare earth elements from soil to crops (lettuce, corn and soybean). This paper aims to report preliminary results of the study, including the characterization of mineralogical phases and the determination of REE (La, Ce, Nd, Sm, Eu, Tb, Ho and Yb) concentration in PG samples. The characterization of mineralogical phases has been carried out by X-ray diffraction analyses and determination of REE concentration in PG samples has been conducted by neutron activation analysis (k{sub 0}-standardization method). The REE most present in PG samples was Ce (1730 ppm), followed by La (936 ppm) and Nd (791 ppm). Sm (85 ppm), Eu (29 ppm) and Yb (5 ppm

  12. Evaluating the primary and/or diagenetic origin of rare earth element abundances in Ediacaran to early Cambrian phosphate deposits, Yangtze Platform (South China) by LA-ICPMS

    Science.gov (United States)

    Hippler, Dorothee; Klügel, Andreas; Biedermann, Nicole; Guo, Qingjun; Franz, Gerhard

    2014-05-01

    The Precambrian-Cambrian time interval represents one of the greatest phosphogenic episodes in Earth's history with giant and well-preserved phosphate deposits occurring on the Yangtze Platform in South China. We investigated concentrations of rare earth elements (REE) and yttrium of shallow and deep-water sedimentary phosphate deposits of the Ediacaran Doushantou Formation and the early Cambrian Zhongyicun Formation by using LA-ICP mass spectrometry. The aim is to examine the temporal and spatial variability of seawater chemistry in conjunction with the conditions of phosphate formation and the evaluation of the extent of diagenetic modification. The mineralogical and textural composition of the samples was pre-screened using SEM and XRD, and polished thick sections were prepared for subsequent high-resolution LA-ICPMS analyses. Overall concentrations in REE range between 18 and 657 ppm, with elevated concentrations (> 200 ppm) in apatite from the deep-water phosphate deposits. REE+Y patterns of shallow-water phosphate deposits exhibit the evolution from flat shale-like to gently inclined seawater-derived patterns, with the early Cambrian phosphate deposits revealing distinct negative Ce- and positive Y-anomalies indicative for oxygenated surface waters. REE+Y patterns of phosphate deposits of the deep-water facies are flat to highly enriched in MREE, which is manifested in variably pronounced concave-down patterns. In detail, these patterns display different Ce-anomalies, as well as small positive Eu-anomalies. We propose that REE+Y patterns of Ediacaran and early Cambrian sedimentary phosphate deposits can inherit both primary and secondary signatures reflecting either seawater composition or diagenetic modification and fluid flow. The combination of imaging techniques and in-situ LA-ICPMS thereby enables a more sophisticated examination of the potential sources and processes than whole rock determinations. Placing the results in stratigraphic order and assuming

  13. Influence of Rare Earth Elements on Microstructure and Mechanical Properties of Cast High-Speed Steel Rolls

    Institute of Scientific and Technical Information of China (English)

    Wang Mingjia; Mu Songmei; Sun Feifei; Wang Yan

    2007-01-01

    The influence of rare earth (RE) elements on the solidification process and eutectic transformation and mechanical properties of the high-V type cast, high-speed steel roll was studied. Test materials with different RE additions were prepared on a horizontal centrifugal casting machine. The solidification process, eutectic structure transformation, carbide morphology, and the elements present, were all investigated by means of differential scanning calorimetry (DSC) and scanning electron microscopy energy dispersive spectrometry (SEM-EDS). The energy produced by crack initiation and crack extension was analyzed using a digital impact test machine. It was found that rare earth elements increased the tensile strength of the steel by inducing crystallization of earlier eutectic γ-Fe during the solidification process, which in turn increased the solidification temperature and thinned the dendritic grains. Rare earth elements with large atomic radius changed the lattice parameters of the MC carbide by forming rare earth carbides. This had the effect of dispersing long-pole MC carbides to provide carbide grains, thereby, reducing the formation of the gross carbide and making more V available, to increase the secondary hardening process and improve the hardness level. The presence of rare earth elements in the steel raised the impact toughness by changing the mechanism of MC carbide formation, thereby increasing the crack initiation energy.

  14. Predictive model for ionic liquid extraction solvents for rare earth elements

    Science.gov (United States)

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Eckert, Franck; Shibata, Etsuro; Nakamura, Takashi

    2015-12-01

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF3-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids' ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF3 were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  15. Naturally occurring radionuclides and rare earth elements in weathered Japanese soil samples

    Science.gov (United States)

    Sahoo, Sarata; Hosoda, Masahiro; Prasad, Ganesh; Takahashi, Hiroyuki; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji; Uchida, Shigeo

    2013-08-01

    The activity concentrations of 226Ra and 228Ac in weathered Japanese soils from two selected prefectures have been measured using a γ-ray spectroscopy system with high purity germanium detector. The uranium, thorium, and rare earth elements (REEs) concentrations were determined from the same soil samples using inductively coupled plasma mass spectrometry (ICP-MS). For example, granitic rocks contain higher amounts of U, Th, and light REEs compared to other igneous rocks such as basalt and andesites. Therefore, it is necessary to understand the interaction between REEs and nature of soils since soils are complex heterogeneous mixture of organic and inorganic solids, water, and gases. In this paper, we will discuss about distribution pattern of 238U and 232Th along with REEs in soil samples of weathered acid rock (granite) collected from two prefectures of Japan: Hiroshima and Miyagi.

  16. Accumulation and Fractionation of Rare Earth Elements in a Soil-Wheat System

    Institute of Scientific and Technical Information of China (English)

    DING Shi-Ming; LIANG Tao; ZHANG Chao-Sheng; WANG Li-Jun; SUN Qin

    2006-01-01

    Time series bioaccumulation of rare earth elements (REEs) in field-grown wheat with and without a dressing of extraneous REE fertilizer at different growth stages and fractionation of REEs during their transport in a soil-wheat system were determined. Time-dependent accumulation of extraneous REEs was found in different parts of wheat. An upward transport of extraneous REEs from roots to shoots under a soil dressing and a downward transport from leaves to roots with a foliar dressing were also observed. Moreover, fractionation of REEs occurred in the soil-wheat system.Compared to the host soil a positive Eu anomaly in the stems and grains as well as heavy REE enrichment in the grains were found. The ability of the different wheat organs to fractionate Eu from the REE series was ranked in the order of stems ≥ grains > leaves > roots.

  17. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  18. Geochemical Characteristics of Rare Earth Elements in Sewage Discharge Channels of Tianjin

    Institute of Scientific and Technical Information of China (English)

    王立军; 梁涛; 丁力强; 张朝生; 李国胜; 闫欣; 王秀丽

    2003-01-01

    The geochemical features of rare earth elements (REEs) in the North and South sewage discharge channels of Tianjin were studied. The results show that concentrations of dissolved REEs in water of the sewage discharge channels are very low, while concentrations of Eu and heavy REEs are higher than those in natural rivers. Concentrations of REEs in unfiltered water are high and they mainly resided on suspended matter. Distribution patterns of the dissolved and susp ended light REEs vary reversely with the atomic number. Concentrations of REEs in the sediments and suspended matter are lower than those in natural rivers, and concentrations of REEs in the suspended matter are much lower than those in the sediments. Distribution patterns of REEs in sediments and suspended matter were similar with light REE enrichment and positive Eu-anomaly. This distributi on pattern is different from those of natural rivers. The differences may cause by the large amount of organic pollutants in sewage.

  19. Predictive model for ionic liquid extraction solvents for rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Grabda, Mariusz; Oleszek, Sylwia [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2,1-Katahira, 2-Chome, 980-8577 Sendai (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, ul. M. Sklodowskiej-Curie 34, 41-819, Zabrze (Poland); Panigrahi, Mrutyunjay; Kozak, Dmytro; Shibata, Etsuro; Nakamura, Takashi [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2,1-Katahira, 2-Chome, 980-8577 Sendai (Japan); Eckert, Franck [COSMOlogic GmbH & Co KG, Imbacher Weg 46, 50379 Leverkusen (Germany)

    2015-12-31

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  20. Fractionations of rare earth elements in plants and their conceptive model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fractionations of rare earth elements (REEs) and their mechanisms in soybean were studied through application of exogenous mixed REEs under hydroponic conditions. Significant enrichment of middle REEs (MREEs) and heavy REEs (HREEs) was observed in plant roots and leaves respectively, with slight fractionation between light REEs (LREEs) and HREEs in stems. Moreover, the tetrad effect was observed in these organs. Investigations into REE speciation in roots and in the xylem sap using X-ray absorption spectroscopy (XAS) and nanometer-sized TiO2 adsorption techniques, associated with other controlled experiments, demonstrated that REE fractionations should be dominated by fixation mechanism in roots caused by cell wall absorption and phosphate precipitation, and by the combined effects of fixation mechanism and transport mechanism in aboveground parts caused by solution complexation by intrinsic organic ligands. A conceptive model was established for REE fractionations in plants based on the above studies.

  1. Effects of Rare Earth Element Lan on the Activities of Earthworm Enzyme

    Institute of Scientific and Technical Information of China (English)

    Xu Dongmei; Liu Wenli; Liu Weiping

    2007-01-01

    The effects of Rare Earth Element Lan on the activities of cellulose, catalase, peroxidase and superoxide dismutasein in earthworm were carried out by natural soil test. The results indicated that Lan can significantly suppress the activity of cellulose. The responses of three enzymes in earthworm to Lan were different, Lan mostly affects catalase activity and inhibited catalase activity throughout the experiment. Peroxidase activity tend to "promote weakly and inhibited strongly" when short term of exposure to Lan, while "inhibited weakly and promote strongly" as a function of time. In comparison, Lan had little influence on the activity of superoxide dismutase. The variance analysis results showed that the concentration of Lan significantly affected the activities of cellulose and CAT but had no obvious influence on the activities of SOD and POD. The treatment time and the interactive effect between treatment concentrations and time had very significant effect on the activities of cellulose, SOD, CAT and POD.

  2. Quantitative estimation of concentrations of dissolved rare earth elements using reflectance spectroscopy

    Science.gov (United States)

    Dai, Jingjing; Wang, Denghong; Wang, Runsheng; Chen, Zhenghui

    2013-01-01

    Characteristic spectral parameters such as the wavelength and depth of absorption bands are widely used to quantitatively estimate the composition of samples from hyperspectral reflectance data in soil science, mineralogy as well as vegetation study. However, little research has been conducted on the spectral characteristic of rare earth elements (REE) and their relationship with chemical composition of aqueous solutions. Reflectance spectra of ore leachate solutions and contaminated stream water from a few REE mines in the Jiangxi Province, China, are studied for the first time in this work. The results demonstrate that the six diagnostic absorption features of the rare earths are recognized in visible and near-infrared wavelengths at 574, 790, 736, 520, 861, and 443 nm. The intensity of each of these six absorption bands is linearly correlated with the abundance of total REE, with the r2 value >0.95 and the detection limit at ≥75,000 μg/L. It is suggested that reflectance spectroscopy provides an ideal routine analytical tool for characterizing leachate samples. The outcome of this study also has implications for monitoring the environmental effect of REE mining, in particular in stream water systems by hyperspectral remote sensing.

  3. Planktonic foraminiferal rare earth elements as a potential new aeolian dust proxy

    Science.gov (United States)

    Chou, C.; Liu, Y.; Lo, L.; Wei, K.; Shen, C.

    2012-12-01

    Characteristics of rare earth elements (REEs) have widely been used as important tracers in many fields of earth sciences, including lithosphere research, environmental change, ocean circulation and other natural carbonate materials. Foraminiferal test REE signatures have been suggested to reflect ambient seawater conditions and serve as valuable proxies in the fields of paleoceanography and paleoclimate. Here we present a 60-kyr planktonic foraminifera Globigerinoides ruber (white, 250-300 μm) REE record of a sediment core MD05-2925 (9°20.61'S, 151°27.61'E, water depth 1660 m) from the Solomon Sea. The REE diagram shows two dominant sources of local seawater and nearby terrestrial input. The variability of foraminiferal REE/Ca time series is different from Mg/Ca-inferred sea surface temperature and δ18O records during the past 60-kyr. This inconsistency suggests that planktonic foraminiferal REE content cannot result only from changes in ice volume and temperature. Synchroneity between high planktonic foraminiferal REE content and Antarctic ice core dust amount record implies the same dust sources, probably from Australia or mainland China. Our results suggest that foraminiferal REE can potentially be as a new dust proxy and record dry/humid conditions at the source area.

  4. Estimation of Soil Electrical Properties in a Multilayer Earth Model with Boundary Element Formulation

    Directory of Open Access Journals (Sweden)

    T. Islam

    2012-01-01

    Full Text Available This paper presents an efficient model for estimation of soil electric resistivity with depth and layer thickness in a multilayer earth structure. This model is the improvement of conventional two-layer earth model including Wenner resistivity formulations with boundary conditions. Two-layer soil model shows the limitations in specific soil characterizations of different layers with the interrelationships between soil apparent electrical resistivity (ρ and several soil physical or chemical properties. In the multilayer soil model, the soil resistivity and electric potential at any points in multilayer anisotropic soil medium are expressed according to the variation of electric field intensity for geotechnical investigations. For most soils with varying layers, multilayer soil resistivity profile is therefore more suitable to get soil type, bulk density of compacted soil and to detect anomalous materials in soil. A boundary element formulation is implemented to show the multilayer soil model with boundary conditions in soil resistivity estimations. Numerical results of soil resistivity ratio and potential differences for different layers are presented to illustrate the application, accuracy, and efficiency of the proposed model. The nobility of the research is obtaining multilayer soil characterizations through soil electric properties in near surface soil profile.

  5. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags.

    Science.gov (United States)

    Park, Dan M; Reed, David W; Yung, Mimi C; Eslamimanesh, Ali; Lencka, Malgorzata M; Anderko, Andrzej; Fujita, Yoshiko; Riman, Richard E; Navrotsky, Alexandra; Jiao, Yongqin

    2016-03-01

    With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.

  6. Rare earth element components in atmospheric particulates in the Bayan Obo mine region

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingqing, E-mail: wanglq@igsnrr.ac.cn; Liang, Tao, E-mail: liangt@igsnrr.ac.cn; Zhang, Qian; Li, Kexin

    2014-05-01

    The Bayan Obo mine, located in Inner Mongolia, China, is the largest light rare earth body ever found in the world. The research for rare earth elements (REEs) enrichment in atmospheric particulates caused by mining and ore processing is fairly limited so far. In this paper, atmospheric particulates including total suspended particulate (TSP) matter and particles with an equivalent aerodynamic diameter less than 10 μm (PM{sub 10}) were collected around the Bayan Obo mine region, in August 2012 and March 2013, to analyze the levels and distributions of REEs in particles. The total concentrations of REEs for TSP were 149.8 and 239.6 ng/m{sup 3}, and those for PM{sub 10} were 42.8 and 68.9 ng/m{sup 3}, in August 2012 and March 2013, respectively. Enrichment factor was calculated for all 14 REEs in the TSP and PM{sub 10} and the results indicated that REEs enrichment in atmosphere particulates was caused by anthropogenic sources and influenced by the strong wind in springtime. The spatial distribution of REEs in TSP showed a strong gradient concentration in the prevailing wind direction. REE chondrite normalized patterns of TSP and PM{sub 10} were similar and the normalized curves inclined to the right side, showing the conspicuous fractionation between the light REEs and heavy REE, which supported by the chondrite normalized concentration ratios calculated for selected elements (La{sub N}/Yb{sub N}, La{sub N}/Sm{sub N}, Gd{sub N}/Yb{sub N}). - Highlights: • TSP and PM{sub 10} samples were collected to analyze the levels and distributions of REE. • Enrichment factors indicated that REE enrichment was caused by anthropogenic sources. • The distribution of REEs showed a strong gradient in the prevailing wind direction. • Obvious fractionation between LREEs and HREEs is observed in atmospheric particulates.

  7. Natural radioactivity and Rare Earth elements in feldspar samples, Central Eastern desert, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Walley El-Dine, Nadia, E-mail: nadia_walley5@hotmail.co [Department of physics, Faculty of girls for Art, Science and Education, Ain Shams University, Heliopolis, Cairo (Egypt); El-Shershaby, Amal [Department of physics, Faculty of girls for Art, Science and Education, Ain Shams University, Heliopolis, Cairo (Egypt); Afifi, Sofia [Nuclear Materials Authority (Egypt); Sroor, Amany; Samir, Eman [Department of physics, Faculty of girls for Art, Science and Education, Ain Shams University, Heliopolis, Cairo (Egypt)

    2011-05-15

    The pegmatite bodies of the Eastern Desert of Egypt are widely distributed especially along the Marsa-Alam-Idfu road. The Abu Dob area covers about 150 km{sup 2} of the Arabian Nubian shield at the central part of the Eastern Desert of Egypt. Most of the pegmatite is zoned; the zonation starts with milky quartz at the core followed by alkali feldspar at the margins. The feldspars vary in color from rose to milky and in composition from K-feldspar to Na-feldspar, sometimes interactions of both types are encountered. Thirteen feldspar samples were collected from different locations in the Abu Dob area for measuring the natural radioactivity of {sup 238}U, {sup 232}Th and {sup 40}K using an HPGe detector. The variation in concentration of radionuclides for the area under investigation can be classified into regions of high, medium and low natural radioactivity. The average concentration in BqKg{sup -1} has been observed to be from 9.5 to 183675.7 BqKg{sup -1} for {sup 238}U, between 6.1 and 94,314.2 BqKg{sup -1} for {sup 232}Th and from 0 to 7894.6 BqKg{sup -1} for {sup 40}K. Radium equivalent activities (Ra{sub eq}), dose rate (D{sub R}) and external hazard (H{sub ex}) have also been determined. In the present work, the concentration of rare earth elements are measured for two feldspar samples using two techniques, Environmental Scanning Electron microscope XIL 30 ESEM, Philips, and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The existence of rare earth elements in this area are very high and can be used in different important industries.

  8. Hyperspectral REE (Rare Earth Element Mapping of Outcrops—Applications for Neodymium Detection

    Directory of Open Access Journals (Sweden)

    Nina Kristine Boesche

    2015-04-01

    Full Text Available In this study, an in situ application for identifying neodymium (Nd enriched surface materials that uses multitemporal hyperspectral images is presented (HySpex sensor. Because of the narrow shape and shallow absorption depth of the neodymium absorption feature, a method was developed for enhancing and extracting the necessary information for neodymium from image spectra, even under illumination conditions that are not optimal. For this purpose, the two following approaches were developed: (1 reducing noise and analyzing changing illumination conditions by averaging multitemporal image scenes and (2 enhancing the depth of the desired absorption band by deconvolving every image spectrum with a Gaussian curve while the rest of the spectrum remains unchanged (Richardson-Lucy deconvolution. To evaluate these findings, nine field samples from the Fen complex in Norway were analyzed using handheld X-ray fluorescence devices and by conducting detailed laboratory-based geochemical rare earth element determinations. The result is a qualitative outcrop map that highlights zones that are enriched in neodymium. To reduce the influences of non-optimal illumination, particularly at the studied site, a minimum of seven single acquisitions is required. Sharpening the neodymium absorption band allows for robust mapping, even at the outer zones of enrichment. From the geochemical investigations, we found that iron oxides decrease the applicability of the method. However, iron-related absorption bands can be used as secondary indicators for sulfidic ore zones that are mainly enriched with rare earth elements. In summary, we found that hyperspectral spectroscopy is a noninvasive, fast and cost-saving method for determining neodymium at outcrop surfaces.

  9. Geology and market-dependent significance of rare earth element resources

    Science.gov (United States)

    Simandl, G. J.

    2014-12-01

    China started to produce rare earth elements (REEs) in the 1980s, and since the mid-1990s, it has become the dominant producer. Rare earth element export quotas first introduced by the Chinese government in the early 2000s were severely reduced in 2010 and 2011. This led to strong government-created disparity between prices within China and the rest of the world. Industrialized countries identified several REEs as strategic metals. Because of rapid price increases of REE outside of China, we have witnessed a world-scale REE exploration rush. The REE resources are concentrated in carbonatite-related deposits, peralkaline igneous rocks, pegmatites, monazite ± apatite veins, ion adsorption clays, placers, and some deep ocean sediments. REE could also be derived as a by-product of phosphate fertilizer production, U processing, mining of Ti-Zr-bearing placers, and exploitation of Olympic Dam subtype iron oxide copper gold (IOCG) deposits. Currently, REEs are produced mostly from carbonatite-related deposits, but ion adsorption clay deposits are an important source of heavy REE (HREE). Small quantities of REE are derived from placer deposits and one peralkaline intrusion-related deposit. The ideal REE development targets would be located in a politically stable jurisdiction with a pro-mining disposition such as Canada and Australia. REE grade, HREE/light REE (LREE) ratio of the mineralization, tonnage, mineralogy, and permissive metallurgy are some of the key technical factors that could be used to screen potential development projects. As REEs are considered strategic metals from economic, national security, and environmental points of view, technical and economic parameters alone are unlikely to be used in REE project development decision-making. Recycling of REE is in its infancy and unless legislated, in the short term, it is not expected to contribute significantly to the supply of REE.

  10. TerraFERMA: The Transparent Finite Element Rapid Model Assembler for multiphysics problems in Earth sciences

    Science.gov (United States)

    Wilson, Cian R.; Spiegelman, Marc; van Keken, Peter E.

    2017-02-01

    We introduce and describe a new software infrastructure TerraFERMA, the Transparent Finite Element Rapid Model Assembler, for the rapid and reproducible description and solution of coupled multiphysics problems. The design of TerraFERMA is driven by two computational needs in Earth sciences. The first is the need for increased flexibility in both problem description and solution strategies for coupled problems where small changes in model assumptions can lead to dramatic changes in physical behavior. The second is the need for software and models that are more transparent so that results can be verified, reproduced, and modified in a manner such that the best ideas in computation and Earth science can be more easily shared and reused. TerraFERMA leverages three advanced open-source libraries for scientific computation that provide high-level problem description (FEniCS), composable solvers for coupled multiphysics problems (PETSc), and an options handling system (SPuD) that allows the hierarchical management of all model options. TerraFERMA integrates these libraries into an interface that organizes the scientific and computational choices required in a model into a single options file from which a custom compiled application is generated and run. Because all models share the same infrastructure, models become more reusable and reproducible, while still permitting the individual researcher considerable latitude in model construction. TerraFERMA solves partial differential equations using the finite element method. It is particularly well suited for nonlinear problems with complex coupling between components. TerraFERMA is open-source and available at http://terraferma.github.io, which includes links to documentation and example input files.

  11. Natural radioactivity and rare earth elements in feldspar samples, Central Eastern desert, Egypt.

    Science.gov (United States)

    Walley El-Dine, Nadia; El-Shershaby, Amal; Afifi, Sofia; Sroor, Amany; Samir, Eman

    2011-05-01

    The pegmatite bodies of the Eastern Desert of Egypt are widely distributed especially along the Marsa-Alam-Idfu road. The Abu Dob area covers about 150km(2) of the Arabian Nubian shield at the central part of the Eastern Desert of Egypt. Most of the pegmatite is zoned; the zonation starts with milky quartz at the core followed by alkali feldspar at the margins. The feldspars vary in color from rose to milky and in composition from K-feldspar to Na-feldspar, sometimes interactions of both types are encountered. Thirteen feldspar samples were collected from different locations in the Abu Dob area for measuring the natural radioactivity of (238)U, (232)Th and (40)K using an HPGe detector. The variation in concentration of radionuclides for the area under investigation can be classified into regions of high, medium and low natural radioactivity. The average concentration in BqKg(-1) has been observed to be from 9.5 to 183675.7BqKg(-1) for (238)U, between 6.1 and 94,314.2BqKg(-1) for (232)Th and from 0 to 7894.6BqKg(-1) for (40)K. Radium equivalent activities (Ra(eq)), dose rate (D(R)) and external hazard (H(ex)) have also been determined. In the present work, the concentration of rare earth elements are measured for two feldspar samples using two techniques, Environmental Scanning Electron microscope XIL 30 ESEM, Philips, and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The existence of rare earth elements in this area are very high and can be used in different important industries.

  12. Impact of plant species, substrate types and porosity on the fractionation of rare-earth elements in plants

    Science.gov (United States)

    Semhi, K.; Clauer, N.; Chaudhuri, S.

    2009-04-01

    The distribution and content of rare-earth elements (REEs) were determined in two radish species (Raphanus sativus and Raphanus raphanistrum) that were grown under laboratory-controlled conditions, in three substrates consisting in illite for one and in smectite for the two others, the two latter being of the same type but with different porosities. The plants were split into two segments: the leaves and the stems+roots. The results indicate that both species pick up systematically higher amounts of REEs when grown in the illite substrate, considering that the smectite contains about 3 times more REEs. In R. sativus, the REE concentration of the leaves and of the stems+roots, whatever the substrate, ranges from 1.4 to 1.9 g/g. After normalization to the substrate in which they grew, the distribution patterns for the leaves of those from illite substrate are nearly flat, but irregular with a positive Eu anomaly. Those for the stems+roots are similar, but enriched in heavy REEs, also with a positive Eu anomaly. The REE concentrations of the leaves and the stems+roots of R. sativus grown in smectite are analytically similar at 1.6 and 1.4 g/g, respectively. The REE distribution patterns for the two organs, normalized again to those of the substrate, are very similar, flat with a distinct Eu anomaly. The heavy REE of the stems+roots of R. sativus grown on illite are enriched relative to those of the leaves, and a distinct positive Eu anomaly is observed in both the leaves and stems+roots from species grown on both illite and smectite. In the case of R. raphanistrum, the REE concentrations of the leaves and the stems+roots for those grown in the illite substrate were found to be significantly different at 11.0 and 6.6 g/g, respectively. The REE distribution patterns for the two different plant organs normalized to those of the substrates were found to be quite similar, all being quite flat, with a more or less pronounced Ce negative anomaly, and a prominent

  13. The importance of sulfur for the behavior of highly-siderophile elements during Earth's differentiation

    Science.gov (United States)

    Laurenz, Vera; Rubie, David C.; Frost, Daniel J.; Vogel, Antje K.

    2016-12-01

    The highly siderophile elements (HSEs) are widely used as geochemical tracers for Earth's accretion and core formation history. It is generally considered that core formation strongly depleted the Earth's mantle in HSEs, which were subsequently replenished by a chondritic late veneer. However, open questions remain regarding the origin of suprachondritic Ru/Ir and Pd/Ir ratios that are thought to be characteristic for the primitive upper mantle. In most core-formation models that address the behavior of the HSEs, light elements such as S entering the core have not been taken into account and high P-T experimental data for S-bearing compositions are scarce. Here we present a comprehensive experimental study to investigate the effect of increasing S concentration in the metal on HSE metal-silicate partitioning at 2473 K and 11 GPa. We show that the HSEs become less siderophile with increasing S concentrations in the metal, rendering core-forming metal less efficient in removing the HSEs from the mantle if S is present. Furthermore, we investigated the FeS sulfide-silicate partitioning of the HSEs as a function of pressure (7-21 GPa) and temperature (2373-2673 K). The sulfide-silicate partition coefficient for Pt increases strongly with P, whereas those for Pd, Ru and Ir all decrease. The combined effect is such that above ∼20 GPa Ru becomes less chalcophile than Pt, which is opposite to their behavior in the metal-silicate system where Ru is always more siderophile than Pt. The newly determined experimental results are used in a simple 2-stage core formation model that takes into account the effect of S on the behavior of the HSEs during core formation. Results of this model show that segregation of a sulfide liquid to the core from a mantle with substantial HSE concentrations plays a key role in reproducing Earth's mantle HSE abundances. As Ru and Pd are less chalcophile than Pt and Ir at high P-T, some Ru and Pd remain in the mantle after sulfide segregation

  14. Improved Laboratory Transition Probabilities for Ce II, Application to the Cerium Abundances of the Sun and Five r-process Rich, Metal-Poor Stars, and Rare Earth Lab Data

    CERN Document Server

    Lawler, J E; Cowan, J J; Ivans, I I; Hartog, E A Den

    2009-01-01

    Recent radiative lifetime measurements accurate to +/- 5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS) to determine transition probabilities for 921 lines of Ce II. This improved laboratory data set has been used to determine a new solar photospheric Ce abundance, log epsilon = 1.61 +/- 0.01 (sigma = 0.06 from 45 lines), a value in excellent agreement with the recommended meteoritic abundance, log epsilon = 1.61 +/- 0.02. Revised Ce abundances have also been derived for the r-process-rich metal-poor giant stars BD+17 3248, CS 22892-052, CS 31082-001, HD 115444 and HD 221170. Between 26 and 40 lines were used for determining the Ce abundance in these five stars, yielding a small statistical uncertainty of 0.01 dex similar to the Solar result. The relative abundances in the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun, matches r-process ...

  15. Subduction Zone Redox and the Deep Earth Cycles of Sulfur and Chalcophile Elements

    Science.gov (United States)

    Canil, D.

    2013-12-01

    Subduction at convergent plate margins is a return flux to the mantle of rocks influenced by weathering, hydrothermal activity, atmospheric exchange, or bio-mineralization in the exosphere. The latter exogenic processes modify the long-term abundance and behaviour of certain elements in the deeper earth that can be traced over time in the chemistry of mantle-derived magmas. The redox budget of subduction is controlled by the flux of oxidized versus reduced forms of Fe, S, H, or C, and impacts the long-term evolution of oxygen on the planet, critical for life in the exosphere. In particular, the sulfur cycle is specifically tied to the evolution of oxygen on Earth's surface over time and critical to biogeochemical cycles on the surface. The behaviour of sulfur in the exogenic system is well-studied and fairly well understood using sedimentary records. An originally sulfidic ocean on Earth gave way with time and oxygenation to one that is sulfate dominated over the last two billion years. In contrast, far less is known of the deep earth cycle of S, and more so its history. The record of the endogenic cycle can only be monitored via what comes out of the mantle (magmas and their gases), or what goes down via subduction (hydrothermally-altered or weathered subducted lithosphere). Interest in the endogenic cycle of S is not new but several outstanding conundrums remain for sulfur in arc magmas that point to the importance of the subduction process. A hitherto ignored component of the paradox of the sulfur cycle is the sedimentary veneer that sits atop the subducted oceanic basalt crust. Compilations show only 0.12 wt% S in altered ocean basalt crust, but up to 10 times that amount in oceanic sediments, tied to their Fe content (in pyrite). These abundances may seem trivial, but the behaviour of this small amount of S in subduction is not fully appreciated and its oxidation potential in the arc mantle is enormous. The conversion of subducted sulfide to sulfate is a 8

  16. Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations?

    Science.gov (United States)

    Borovička, Jan; Kubrová, Jaroslava; Rohovec, Jan; Randa, Zdeněk; Dunn, Colin E

    2011-10-01

    Concentrations of uranium, thorium and rare earth elements (REE) in 36 species of ectomycorrhizal (26 samples) and saprobic (25 samples) macrofungi from unpolluted sites with differing bedrock geochemistry were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Analytical results are supported by use of certified reference materials (BCR-670, BCR-667, NIST-1575a) and the reliability of the determination of uranium was verified by epithermal neutron activation analysis (ENAA). It appears that data recently published on these elements are erroneous, in part because of use of an inappropriate analytical method; and in part because of apparent contamination by soil particles resulting in elevated levels of thorium and REE. Macrofungi from unpolluted areas, in general, did not accumulate high levels of the investigated metals. Concentrations of uranium and thorium were generally below 30 and 125 μg kg(-1) (dry weight), respectively. Concentrations of REE in macrofungi did not exceed 360 μg kg(-1) (dry weight) and their distribution more or less followed the trend observed in post-Archean shales and loess.

  17. Microbial mobilization of rare earth elements (REE from mineral solids—A mini review

    Directory of Open Access Journals (Sweden)

    Fabienne Barmettler

    2016-06-01

    Full Text Available In the light of an expected supply shortage of rare earth elements (REE measures have to be undertaken for an efficient use in all kinds of technical, medical, and agricultural applications as well as—in particular—in REE recycling from post-use goods and waste materials. Biologically- based methods might offer an alternative and supplement to physico-chemical techniques for REE recovery and recycling. A wide variety of physiologically distinct microbial groups have the potential to be applied for REE bioleaching form solid matrices. This source is largely untapped until today. Depending of the type of organism, the technical process (including a series of influencing factors, the solid to be treated, and the target element, leaching efficiencies of 80 to 90% can be achieved. Bioleaching of REEs can help in reducing the supply risk and market dependency. Additionally, the application of bioleaching techniques for the treatment of solid wastes might contribute to the conversion towards a more sustainable and environmental friendly economy.

  18. Ecosystem Composition Controls the Fate of Rare Earth Elements during Incipient Soil Genesis

    Science.gov (United States)

    Zaharescu, Dragos G.; Burghelea, Carmen I.; Dontsova, Katerina; Presler, Jennifer K.; Maier, Raina M.; Huxman, Travis; Domanik, Kenneth J.; Hunt, Edward A.; Amistadi, Mary K.; Gaddis, Emily E.; Palacios-Menendez, Maria A.; Vaquera-Ibarra, Maria O.; Chorover, Jon

    2017-02-01

    The rare earth elements (REE) are increasingly important in a variety of science and economic fields, including (bio)geosciences, paleoecology, astrobiology, and mining. However, REE distribution in early rock-microbe-plant systems has remained elusive. We tested the hypothesis that REE mass-partitioning during incipient weathering of basalt, rhyolite, granite and schist depends on the activity of microbes, vascular plants (Buffalo grass), and arbuscular mycorrhiza. Pore-water element abundances revealed a rapid transition from abiotic to biotic signatures of weathering, the latter associated with smaller aqueous loss and larger plant uptake. Abiotic dissolution was 39% of total denudation in plant-microbes-mycorrhiza treatment. Microbes incremented denudation, particularly in rhyolite, and this resulted in decreased bioavailable solid pools in this rock. Total mobilization (aqueous + uptake) was ten times greater in planted compared to abiotic treatments, REE masses in plant generally exceeding those in water. Larger plants increased bioavailable solid pools, consistent with enhanced soil genesis. Mycorrhiza generally had a positive effect on total mobilization. The main mechanism behind incipient REE weathering was carbonation enhanced by biotic respiration, the denudation patterns being largely dictated by mineralogy. A consistent biotic signature was observed in La:phosphate and mobilization: solid pool ratios, and in the pattern of denudation and uptake.

  19. Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. "Glera".

    Science.gov (United States)

    Pepi, Salvatore; Sansone, Luigi; Chicca, Milvia; Marrocchino, Elena; Vaccaro, Carmela

    2016-08-01

    The renowned Vitis vinifera L. cultivar "Glera" (Magnoliopsida Vitaceae) has been grown for hundreds of years in the Italian regions of Veneto and Friuli to produce the sparkling Prosecco wine, with controlled designation of origin (DOC). We evaluated the relationship among the concentrations of rare earth elements (REE) in soil and in "Glera" grape berries in vineyards belonging to five different localities in the Veneto alluvial plain, all included in the DOC area of Prosecco. The concentration of REE in samples of soil and juice or solid residues of grape berries was determined by inductively coupled plasma mass spectrometry (ICP-MS), and the index of bioaccumulation was calculated to define the specific assimilation of these elements from soil to grape berries. The concentration of REE in soil samples allowed an identification of each locality examined, and REE were mostly detected in solid grape berry residues in comparison to juice. These data may be useful to associate REE distribution in soil and grape berries to a specific geographical origin, in order to prevent fraudulent use of wine denomination labels.

  20. Maximum Permissible Concentrations and Negligible Concentrations for Rare Earth Elements (REEs)

    NARCIS (Netherlands)

    Sneller FEC; Kalf DF; Weltje L; Wezel AP van; CSR

    2000-01-01

    In dit rapport worden maximaal toelaatbare risiconiveaus (MTR) en verwaarloosbare risiconiveaus (VR) afgeleid voor zeldzame aardmetalen (ZAM). De geselecteerde ZAMs zijn Yttrium (Y), Lanthanum (La), Cerium (Ce), Praseodymium (Pr), Neodymium (Nd), Samarium (Sm), Gadolinium (Gd), en Dysprosium (Dy

  1. Characteristics of Rare Earth Elements of Zircons from Mesozoic Volcanic Rocks in Luanping Region, Hebei

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong; Yuan Hongli; Hu Zhaochu; Liu Xiaoming

    2005-01-01

    Rare earth elements of the zircons from the Mesozoic volcanic rocks in Luanping region, Hebei, were analyzed the results reflect that the average values of δEu and (Lu/Gd)N are 0.49 and 21.8 respectively in the zircons from the top part of Tiaojishan Formation;but the average values of δEu and (Lu/Gd)N are 0.15, 0.06, 0.09 and 14.51, 15.66, 16.25 respectively in the zircons from the lower, and upper part of the Tuchengzi Formation and the bottom bed of the Zhangjiakou Formation. The results show that the characteristics of the zircons from the Tuchengzi Formation are coincident with those of the zircons from the Zhangjiakou Formation, but are different from those of the zircons from the Tiaojishan Formation, and imply that the Tuchengzi Formation has close relation with the Zhangjiakou Formation. Combining the results above with the former isotopic dating results of the volcanic rocks, the authors draw the conclusions as follows: The Tuchengzi Formation not only has a long interval period with the Tiaojishan Formation, but also is very different from the Tiaojishan Formation in zircon geochemical characteristics. The Tuchengzi Formation not only is nearly continuous with the Zhangjiakou Formation in time, but also is coincident with the Zhangjiakou Formation in geochemistry of zircons. The results imply that the Tuchengzi Formation and the Zhangjiakou Formation were formed in the same geological background, that is, there are not the boundary of the J3-K1 and the interface of the transition of tectonic framework between the Tuchengzi Formation and the Zhangjiakou Formation in the Luanping region. The research shows that the (Lu/Gd)N, δEu are two important parameters which are relatively stable in the analysis of zircons from Crust-source;but the values of ∑LREE of zircons from Crust-source change greatly, especially the abundance of La element, so some ratios of rare earth elements related with La (or ∑LREE) are not usable in determining the characteristics

  2. Separation of Rare Earth Elements (Sm, Eu, Gd) in Bastnaesite by Displacement Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Se Mann; Lee, Jin Young; Han, Choon [Kwangwoon University, Seoul (Korea); Kim, Sung Don; Yoon, Ho Sung; Kim, Joon Soo [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-10-31

    Rare earth elements (Sm, Eu, Gd) in bastnaesite were separated by displacement chromatography. Experiments were conducted to investigate elution characteristics and effects of retaining ions on separations of those elements. During separation processes, ions were exchanged in loading and separation columns packed with the cation-exchange resin (DOWEX 50WX8-200). Various retaining ions such as Cu{sup 2+}, Zn{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Fe{sup 3+} and Al{sup 3+} were employed in the separation column. When the EDTA solution was used as an eluent, acidity and concentrations were regulated. Also, rare earth elements(RE) in bastnaesite ore were ionized by hydrochloric acid prior to separations. According to experimental results, Gd, Eu and Sm were eluated by turns and the order was in accord with that of stability constants for chelating complex with EDTA. During the eluation of RE, the acidity of eluate was lowered (pH 5-6) because retaining ions formed chelating complex with EDTA and hydrogen ion was formed as a result. The highest separation efficiency ({alpha}{sub Gd}{sup Sm} = 0.9388) was obtained when Al{sup 3+} was employed as a retaining ion. On the other hand, the lowest ({alpha}{sub Gd}{sup Sm} = 0.3876) was when Fe{sup 3+} was employed as a retaining ion. Another series of experiments were conducted to investigate effects of RE{sub 1}-EDTA eluent on the separation of RE. For experiments, Cu{sup 2+}, in the separation column was exchanged with retaining ion. Then, pure RE{sub 1}(Sm, Eu) was mixed with EDTA to form RE{sub 1}-EDTA solution(O.015 M) which was fed to the column as an eluent. Results showed that the separation efficiency improved because the eluation of RE{sub 1} in RE{sub 1}-EDTA solution was retarded compared to other RE. That is, the separation efficiency({alpha}{sub Gd}{sup Sm}) increased to 1.1612 and 1.4545 when SM-EDTA and EU-EDTA solution were used respectively. When EDTA solution was only used as an eluent, {alpha}{sub Gd}{sup Sm

  3. Using rare earth elements for the identification of the geographic origin of food

    Science.gov (United States)

    Meisel, T.; Bandoniene, D.; Joebstl, D.

    2009-04-01

    The European Union defined regimes within the Protected Geographical Status (PGS) framework to protect names of regional food specialities. Thus only food produced in a specific geographical area with a specific way of production or quality can be protected by a protected geographical indication (PGI) label. As such Styrian Pumpkin Seed Oil has been approved with this label, but as with many other high priced regional specialities, fraud cannot be excluded or nor identified. Thus the aim of this work is, to develop an analytical method for the control of the geographic origin of pumpkin seed oil and also to test the method for other protected products. The development of such a method is not only of interest for scientists, but also of importance for the consumer wanting to know the origin of the food products and the assurance of the purity and quality. The group of rare earth elements (REE) in plants also have a characteristic distribution pattern similar to upper crustal REE distributions. Since the REE concentrations are extremely low in pumpkin seed oil (ppt to low ppb), ICP-MS was the only sensitive tool able to produce validated results. The carrier of the REE are most likely small particles distributed within the pumpkin seed oil. Unlike, e.g., olive oil, pumpkin seed oil is bottled and sold unfiltered, which makes this Styrian speciality an interesting sampling target. As pumpkin seed oils from different geographic origin show variable trace element and rare earth distribution patterns, is should possible to trace the origin of these oils. In the current project pumpkin seeds from different regions in Austria and from abroad were sampled. The trace element patterns in the extracted oil of these seeds were determined and a preliminary classification with discriminate analysis was successfully done on a statistical basis. In addition to the study of the geographic origin it was demonstrated that REE distribution patterns can also be used for the

  4. Ce{sub 2}B{sub 8}O{sub 15}. High-pressure synthesis and crystal structure determination of a rare-earth polyborate exhibiting a new 'Fundamental Building Block'

    Energy Technology Data Exchange (ETDEWEB)

    Glaetzle, Matthias; Heymann, Gunter; Huppertz, Hubert [Innsbruck Univ. (Austria). Inst. fuer Allgemeine, Anorganische und Theoretische Chemie

    2013-10-01

    The new cerium polyborate Ce{sub 2}B{sub 8}O{sub 15} was synthesized under high-pressure/high-temperature conditions of 6 GPa and 1050 C in a Walker-type multianvil apparatus. The single-crystal structure determination revealed that the new compound crystallizes in the space group P2/c with the lattice parameters a = 916.6(2), b = 421.0(1), c = 1248.9(3) pm, {beta} = 116.7(1) , V = 0.4303(2) nm{sup 3}, R1 = 0.0356, and wR2 = 0.0504. The crystal structure of Ce{sub 2}B{sub 8}O{sub 15} exhibits a new fundamental building block (FBB) in borate chemistry that consists of four BO{sub 4} tetrahedra and can be written as 4{open_square}: [{Phi}] left angle 3{open_square} right angle vertical stroke {open_square} vertical stroke. These FBB are interconnected via common corners, forming a complex threedimensional network that contains the Ce{sup 3+} cations. Ce{sub 2}B{sub 8}O{sub 15} represents the most boron rich rare-earth borate synthesized under high-pressure/high-temperature conditions so far. We report about the synthetic conditions, structural details, thermal behaviour, and the IR/Raman spectra of Ce{sub 2}B{sub 8}O{sub 15}. (orig.)

  5. Comment on “Synthesis of ceria (CeO{sub 2} and CeO{sub 2−x}) nanoparticles via decarbonation and Ce(III) oxidation of synthetic bastnaesite (CeCO{sub 3}F)” by Montes-Hernandez et al

    Energy Technology Data Exchange (ETDEWEB)

    Gysi, Alexander P., E-mail: agysi@mines.edu [Department of Geology and Geological Engineering, Colorado School of Mines, 1516 Illinois Street, Golden, CO, 80401 (United States); Williams-Jones, Anthony E. [Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, QC, Canada, H3A 2A7 (Canada)

    2016-11-01

    Montes-Hernandez et al. [5] recently reported results of a study of the decarbonation of fine-grained synthetic bastnäsite-(Ce) precipitates involving the oxidation of Ce(III) to Ce(IV) and the formation of ceria (CeO{sub 2} and CeO{sub 2-x} with oxygen vacancies) nano-particles. The purpose of their study was to show that oxidation of Ce(III) to Ce(IV) occurs spontaneously during heating of bastnäsite-(Ce) in air, a vacuum, N{sub 2} or Ar gas. However, their interpretation of the formation of CeO{sub 2} is not supported by the findings of Gysi and Williams-Jones [3], who showed that natural bastnäsite-(Ce) decomposes to form rare earth element (REE) oxyfluorides (REEOF). The latter was documented using differential scanning calorimetric (DSC) and thermogravimetric (TGA) experiments under a deoxygenated N{sub 2} atmosphere. In their experiments, Gysi and Williams-Jones [3] found no evidence for the oxidation of Ce(III) to Ce(IV). This raises the question of whether the experiments of Montes-Hernandez et al. [5] in a N{sub 2} atmosphere (and by extension in an Ar atmosphere) were compromised because of contamination by O{sub 2} and that, as a result, they reached the erroneous conclusion that Ce(III) oxidizes spontaneously to Ce(IV) during heating of bastnäsite-(Ce) under these conditions. In order to explain the disagreement between their findings and those of Gysi and Williams-Jones [3], Montes-Hernandez et al. [5], proposed that the X-ray diffraction data of the former study were incorrectly interpreted. Here, we provide further evidence that the natural bastnäsite-(Ce) employed in the study by Gysi and Williams-Jones [3] decomposed to form REE oxyfluorides (i.e., CeOF, LaOF, PrOF and NdOF) and not CeO{sub 2}, and supply explanations for why Montes-Hernandez et al. [5] erroneously concluded that CeO{sub 2} is produced during decomposition of this mineral under N{sub 2} and Ar atmospheres. In so doing, we hope to provide new insights into the decomposition of

  6. Rare earth elements minimal harvest year variation facilitates robust geographical origin discrimination: The case of PDO "Fava Santorinis".

    Science.gov (United States)

    Drivelos, Spiros A; Danezis, Georgios P; Haroutounian, Serkos A; Georgiou, Constantinos A

    2016-12-15

    This study examines the trace and rare earth elemental (REE) fingerprint variations of PDO (Protected Designation of Origin) "Fava Santorinis" over three consecutive harvesting years (2011-2013). Classification of samples in harvesting years was studied by performing discriminant analysis (DA), k nearest neighbours (κ-NN), partial least squares (PLS) analysis and probabilistic neural networks (PNN) using rare earth elements and trace metals determined using ICP-MS. DA performed better than κ-NN, producing 100% discrimination using trace elements and 79% using REEs. PLS was found to be superior to PNN, achieving 99% and 90% classification for trace and REEs, respectively, while PNN achieved 96% and 71% classification for trace and REEs, respectively. The information obtained using REEs did not enhance classification, indicating that REEs vary minimally per harvesting year, providing robust geographical origin discrimination. The results show that seasonal patterns can occur in the elemental composition of "Fava Santorinis", probably reflecting seasonality of climate.

  7. New reversed phase-high performance liquid chromatographic method for selective separation of yttrium from all rare earth elements employing nitrilotriacetate complexes in anion exchange mode.

    Science.gov (United States)

    Dybczyński, Rajmund S; Kulisa, Krzysztof; Pyszynska, Marta; Bojanowska-Czajka, Anna

    2015-03-20

    Separation of Y from other rare earth elements (REE) is difficult because of similarity of its ionic radius to ionic radii of Tb, Dy and Ho. In the new RP-HPLC system with C18 column, tetra-n-butyl ammonium hydroxide (TBAOH) as an ion interaction reagent (IIR), nitrilotriacetic acid (NTA) as a complexing agent at pH=2.8-3.5, and post column derivatization with Arsenazo III, yttrium is eluted in the region of light REE, between Nd and Sm and is base line separated from Nd and Sm and even from promethium. Simple model employing literature data on complex formation of REE with NTA and based on anion exchange mechanism was developed to foresee the order of elution of individual REE. The model correctly predicted that lanthanides up to Tb will be eluted in the order of increasing Atomic Number (At.No.) but all heavier REE will show smaller retention factors than Tb. Concurrent UV/VIS detection at 658nm and the use of radioactive tracers together with γ-ray spectrometric measurements made possible to establish an unique elution order of elution of REE: La, Ce, Pr, Nd, Pm, Y, Sm, Er, Ho, Tm, Yb, Eu, Lu, Dy+Gd, Tb, Sc. The real place of Y however, in this elution series differs from that predicted by the model (Y between Sm and Eu). The method described in this work enables selective separation of Y from La, Ce, Pr, Nd, Pm, Sm and all heavier REE treated as a group.

  8. Assessing the chemical behavior and spatial distribution of yttrium and rare earth elements (YREEs) in a coastal aquifer adjacent to the Urmia Hypersaline Lake, NW Iran.

    Science.gov (United States)

    Sohrabi, Nassim; Kalantari, Nasrollah; Amiri, Vahab; Nakhaei, Mohammad

    2017-07-15

    This study aims to shed light on the seasonal behavior of yttrium and rare earth elements (YREEs) in the Urmia Aquifer (UA), in the immediate vicinity of Urmia Lake (UL) in Iran. Samples of groundwater, collected under dry and wet conditions in coastal wells of UA, suggest a large degree of variability in both YREE abundance and normalized patterns. Although weathering or water-rock interactions (between the surface/groundwater and rock samples) were predicted to be the most probable source in explaining YREEs in groundwater samples, results to the contrary indicate that the groundwater do not inherit aquifer rock-like YREE signatures in the study area; this might be due to the relative stability of YREEs during the process of water-rock interactions, which suggest that methods based on YREEs can be beneficial in discrimination of water sources. Furthermore, findings demonstrated no significant relationship between Ce/Ce* and salinity (0.08 and 0.05 in wet and dry seasons, respectively), and between Eu/Eu* and salinity (0.1 and -0.04 in wet and dry seasons, respectively). Dissimilarity of patterns of YREEs in rock and water samples reveals YREEs as no conservative tracers in determining the UL saltwater intrusion into coastal groundwater. Therefore, the groundwater YREE concentrations and fractionation patterns in UA warrant controlling by coastal aquifer need to be controlled by other chemical weathering, adsorption, desorption, and solution complexation reactions. Finally, comparison of REE concentration values in groundwater samples with corresponding indicative admissible drinking water concentrations (IAC) demonstrated their suitability for drinking purposes.

  9. Magnetic properties of the layered oxypnictides (LnOMnAs (Ln = La, Ce, Pr, Nd

    Directory of Open Access Journals (Sweden)

    Morosawa Y.

    2014-07-01

    Full Text Available We have investigated the rare earth elements dependence on the magnetism to understand the contribution to physical properties of the 4f electrons of (LnOMnAs (Pn = La, Ce, Pr, Nd. (CeOMnAs, (PrOMnAs and (NdOMnAs shows the antiferromagnetic behaviors at low temperature. (CeOMnAs and (NdOMnAs have the magnetic anomalies around 34 K and 24 K, respectively. So, it is speculated that the anomalies depend on the Mn -Mn distance directly

  10. Using rare earth elements to control phosphorus and track manure in runoff.

    Science.gov (United States)

    Buda, Anthony R; Church, Clinton; Kleinman, Peter J A; Saporito, Lou S; Moyer, Barton G; Tao, Liang

    2010-01-01

    Concern over the enrichment of agricultural runoff with phosphorus (P) from land applied livestock manures has prompted the development of manure amendments that minimize P solubility. In this study, we amended poultry, dairy, and swine manures with two rare earth chlorides, lanthanum chloride (LaCl(3).7H(2)O) and ytterbium chloride (YbCl(3).6H(2)O), to evaluate their effects on P solubility in the manure following incubation in the laboratory as well as on the fate of P and rare earth elements (REEs) when manures were surface-applied to packed soil boxes and subjected to simulated rainfall. In terms of manure P solubility, La:water-extractable P (WEP) ratios close to 1:1 resulted in maximum WEP reduction of 95% in dairy manure and 98% in dry poultry litter. Results from the runoff study showed that REE applications to dry manures such as poultry litter were less effective in reducing dissolved reactive phosphorus (DRP) in runoff than in liquid manures and slurries, which was likely due to mixing limitations. The most effective reductions of DRP in runoff by REEs were observed in the alkaline pH soil, although reductions of DRP in runoff from the acidic soil were still >50%. Particulate REEs were strongly associated with particulate P in runoff, suggesting a potentially useful role in tracking the fate of P and other manure constituents from manure-amended soils. Finally, REEs that remained in soil following runoff had a tendency to precipitate WEP, especially in soils receiving manure amendments. The findings have valuable applications in water quality protection and the evaluation of P site assessment indices.

  11. Bioavailability of heavy metals, germanium and rare earth elements at Davidschacht dump-field in mine affected area of Freiberg (Saxony)

    Science.gov (United States)

    Midula, Pavol; Wiche, Oliver

    2016-04-01

    with the other elements from this group. High amounts of As, Cd, Pb in mould horizons were proved. The surprisingly highest concentrations were determined for As (in average 3328 mg kg-1). The results of the pH measurement indicates acid conditions (in average 4.86, min. 3.89) for whole mine heap. Due to the mobility of Cd and Pb in acid environment, a high mobility of Cd in mobile soil fractions (in average 0.58 mg kg-1) was found, that seems to be responsible for the Cd pollution of Freiberger Mulde river, situated near the dump-field in the East direction from the studied area. The Pb content was in the average 1513 mg kg-1. SE analyses shows, that only the minor amounts of these metals were accounted in fractions I - IV (As: 7.75 %, Pb: 5.48 %, Cd: 26.77 %). The total Ge content in soil samples was 2.7 mg.kg-1in average. The concentrations of Nd and Ce were 17.7 mg kg-1and 38.5 mg kg-1, which is even lower than the average Nd and Ce contents in the Earth crust. However, the concentration of Ge was roughly a factor of two higher, than this average showing a large pool of Ge that could be accessed by phytoextraction. The SE analyses shows, that the average in fractions I - IV is even much lower, than in the case of the above mentioned heavy metals in comparison with Ge (1.75 %), Nd (3.28 %) and Ce (3.12 %). The BCF calculated for plants shows, that the only element, which could be possibly used as the object of phytoaccumulation is Cd (the BCF > 1) in species Populus tremula (3.0, 1.7), Spirea douglasii (1.4, 2.2) and Tanacetum vulgare (3.2, 1.3) at the most sampling places. Since these species represent the natural occurring vegetation of the dump, the use of these species together with soil amendments enhancing the plant availability of elements in soil fractions hold promise for phytoextraction of economically valuable metalloids and consequently an in situ bioremediation of the dump field. This work was realised with the support of Christin Jahns on behalf of the

  12. The study of major, trace and rare earth elements geochemistry in Shahrestanak Mn deposit, south of Qom: Implications for genesis

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou

    2015-04-01

    Full Text Available Introduction The Shahrestanak Mn deposit is located in southern Qom province, 12 km southwest of the city of Kahak. Based on geological-structural divisions of Iran, the deposit belongs to central volcanic belt or Urumieh-Dokhtar zone. The Venarch deposit is one the most important known manganese deposits in Iran. The Sharestanak and Venarch deposits are spatially and temporally related to each other, and have similar geology, mineral texture and structure, host rocks, relationships with faults, and depositional environment. So, their magmatism and deposition conditions can be related to each other. Since no systematic study on the Shahrestanak deposit had been performed before discussing its geological and geochemical characteristics, here it is being attempted to study the geology, petrography, geochemistry of major, minor and trace elements, and Rare Earth Elements (REE of ore, to distinguish the depositional environments and genesis of this deposit and to compare REE of ore in this deposit with other deposits. Sampling and method of study Fourteen samples of manganese ore were selected for geochemical study and analyzing of major, minor, trace elements and REE by ICP-AES and ICP-MS and were sent to SGS Co., Toronto. Detection limits for major elements and trace elements are 0.01% and 0.05ppm, respectively. Result and discussion The deposit is characterized by various lithology and stratigraphy units, consist of: 1 Middle to -Upper Eocene volcano-sedimentary rocks, 2 Oligocene lower red conglomerate and sandstone, 3 Oligo-Miocene limestone and marl (Qom Formation, and 4 Eocene and Lower Miocene basic to intermediate dykes. The most abundant minerals of the deposit are braunite, hausmannite, pyrolusite, and manganite. Evidences such as high Mn/Fe (11.33 and Si/Al (4.86 ratios, low contents of trace elements specially Co (11.40 ppm, Ni (24 ppm, Cu (81.85 ppm, and Ce, with high amounts of SiO2, Mn, Fe, Ba, Zn, As and Sr, all represent

  13. Rare-earth elements enrichment of Pacific seafloor sediments: the view from volcanic islands of Polynesia

    Science.gov (United States)

    Melleton, Jérémie; Tuduri, Johann; Pourret, Olivier; Bailly, Laurent; Gisbert, Thierry

    2014-05-01

    Rare-earth elements (REEs) are key metals for «green» technologies such as energy saving lamps or permanent magnets used in, e.g., wind turbines, hard disk drives, portable phone or electric or hybrid vehicles. Since several years, world demand for these metals is therefore drastically increasing. The quasi-monopolistic position of China, which produces around 95 % of global REEs production, generates risks for the industries that depend on a secure supply of REEs. In response, countries are developing and diversifying their supply sources, with new mining projects located outside China and efforts in the area of REEs recycling. Most of these projects focus on deposits related to carbonatites and alkaline-peralkaline magmatism, which are generally enriched in light REEs (LREEs) compared to the heavy REEs (HREEs)-enriched deposits of the ion-adsorption types, located in southern China. However, a recent study revealed new valuable resources corresponding to seafloor sediments located in the south-eastern and north-central Pacific. The deep-sea mud described by these authors show a higher HREE/LREE ratio than ion-adsorption deposits, a feature which significantly increases their economic interest. The authors suggest mid-ocean ridge hydrothermal activity as an explanation to this anomalous enrichment. However, several contributions have documented considerable REEs enrichment in basalts and peridotitic xenoliths from French Polynesia. Several arguments have been exposed in favour of a supergene origin, with a short migration, suggesting that REEs were collected from weathered basalts. The Tahaa volcanic island (Sous-le-Vent Island, Society Archipelago, French Polynesia) is the first location where such enrichment has been described. New petrographic and mineralogical investigations confirm a supergene mobilization of this abnormal occurrence. REE-bearing minerals (mainly phosphates of the rhabdophane group) are primarily located within basalt vesicles but also in

  14. Rare earth elements and critical metal content of extracted landfilled material and potential recovery opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Gutiérrez-Gutiérrez, Silvia C.; Coulon, Frédéric; Jiang, Ying; Wagland, Stuart, E-mail: s.t.wagland@cranfield.ac.uk

    2015-08-15

    Highlights: • Samples from multiple core drills were obtained from 4× landfill sites in the UK. • Each sample analysed for rare earth elements, critical metals and valuable metals. • Two stage microwave digestion method ensuring high yield. • High quantities of copper and aluminium were observed in the soil layers of landfill. • Across 4× landfills aluminium and copper present has a value of around $400 million. - Abstract: Rare earth elements (REEs), Platinum group metals (PGMs) and other critical metals currently attract significant interest due to the high risks of supply shortage and substantial impact on the economy. Their uses in many applications have made them present in municipal solid waste (MSW) and in commercial and industrial waste (C&I), since several industrial processes produce by-products with high content of these metals. With over 4000 landfills in the UK alone, the aim of this study was to assess the existence of these critical metals within landfills. Samples collected from four closed landfills in UK were subjected to a two-step acid digestion to extract 27 metals of interest. Concentrations across the four landfill sites were 58 ± 6 mg kg{sup −1} for REEs comprising 44 ± 8 mg kg{sup −1} for light REEs, 11 ± 2 mg kg{sup −1} for heavy REEs and 3 ± 1 mg kg{sup −1} for Scandium (Sc) and 3 ± 1.0 mg kg{sup −1} of PGMs. Compared to the typical concentration in ores, these concentrations are too low to achieve a commercially viable extraction. However, content of other highly valuable metals (Al and Cu) was found in concentrations equating to a combined value across the four landfills of around $400 million, which increases the economic viability of landfill mining. Presence of critical metals will mainly depend on the type of waste that was buried but the recovery of these metals through landfill mining is possible and is economically feasible only if additional materials (plastics, paper, metallic items and other) are

  15. Investigation of chemical composition and crystal structure in sintered Ce15Nd15FebalB1 magnet

    Directory of Open Access Journals (Sweden)

    Shu-lin Huang

    2014-10-01

    Full Text Available The substitution of cerium, a more abundant rare-earth element, for sintered Nd-Fe-B magnets has drawn intense interest. In the present work, nominal composition of Ce15Nd15FebalB1 (wt. %, with cerium constitutes increased to 50% of the total rare-earth content, was used. And Ce-free Nd30FebalB1 (wt. % was prepared by the same preparation process as comparison. The microstructure of the sintered magnets has been investigated by means of X-ray diffraction and transmission electron microscope. The results show that there are three kinds of RE-rich phases in the same magnet, i.e., fcc-(Ce,NdOx (a=0.547nm, hcp-(Ce,Nd2O3 (a=0.386nm, c=0.604nm and bcc-(Ce,Nd2O3 (a=1.113nm. Ors of (140(Ce,Nd2Fe14B// (1-21bcc-(Ce,Nd2O3(∼3°, [001](Ce,Nd2Fe14B// [-214]bcc-(Ce,Nd2O3; (01-1(Ce,Nd2Fe14B// (101fcc- (Ce,NdOx(∼2°, [101](Ce,Nd2Fe14B// [12-1]fcc-(Ce,NdOx were found through selected area electron diffraction (SAED analysis. According to the analysis, it can be concluded that cerium has partly substituted for neodymium by occupying the corresponding atom sites in the Ce15Nd15FebalB1 magnet, without changing the crystal configuration.

  16. Signatures of rare-earth elements in banded corals of Kalpeni atoll-Lakshadweep archipelago in response to monsoonal variations

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.A.S.; Nath, B.N.; Balaram, V.

    Concentrations of rare-earth elements (REE) have been determined in seasonal bands of Porites species collected from the Lakshadweep lagoon. Total REE (REE) are very low (less than 3 ppm) in these corals. Seasonal variations in REE appear to have...

  17. Rare earth element distribution and mineralization in Sweden: an application of principal component analysis to FOREGS soil geochemistry

    NARCIS (Netherlands)

    Sadeghi, Martiya; Morris, George A.; Carranza, Emmanuel John M.; Laderberger, Anna; Andersson, Madelen

    2013-01-01

    This paper presents results of statistical analyses and spatial interpretations of distributions of rare earth elements (REEs) in Sweden using the Forum of European Geological Surveys (FOREGS) geochemical database of topsoil, subsoil and stream sediment compositions. Raster maps depicting spatial di

  18. Investigate and analysis of 16 rare earth element residues in grain in Hebei province%河北省粮食中16种稀土元素的残留状况调查

    Institute of Scientific and Technical Information of China (English)

    赵晨曦; 付志斌; 李锦; 王景涛

    2015-01-01

    Objective To research the detection methods of rare earth elements residues in food, in order to realize the rare earth residue in this area.MethodsAccording to the detection methods in 2014 food safety monitoring program, which were carried out in 10 main areas in Hebei province of China, 16 rare earth element in grain, including Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, were determined by inductively coupled plasma mass spectrometry (ICP-MS).ResultsIn all 296 samples, Y was found in all samples. Other rare earth elements were found in several samples. All samples detected did not contain the rare earth elements beyond the Maximum Residue Limit (MRLs) of the national requirement.ConclusionThe ICP-MS is an efficient method to detect the 16 rare earth element in grain. It is necessary to assure safety and health of human beings by monitoring the rare earth element residue in grain uninterruptedly.%目的:研究粮食中稀土元素残留的检测方法,了解本地区粮食中稀土残留情况。方法2014年河北10个重要地区开展的食品安全监测项目中,采用ICP-MS法对Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu 16种稀土元素进行检测。结果在所检测的296份样品中,全部样品均检测出Y元素,其余元素均在样品中部分检出,检出样品均未超出国家规定的稀土元素的最大残留限量(MRLs)。结论 ICP-MS法可以有效地检出Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu共16种稀土元素,通过检测结果可看到有必要持续监测和控制粮食中稀土元素的残留情况,从而保障人们的安全健康。

  19. A chemical-spectrochemical method for the determination of rare earth elements and thorium in cerium minerals

    Science.gov (United States)

    Rose, H.J.; Murata, K.J.; Carron, M.K.

    1954-01-01

    In a combined chemical-spectrochemical procedure for quantitatively determining rare earth elements in cerium minerals, cerium is determined volumetrically, a total rare earths plus thoria precipitate is separated chemically, the ceria content of the precipitate is raised to 80??0 percent by adding pure ceria, and the resulting mixture is analyzed for lanthanum, praseodymium, neodymium, samarium, gadolinium, yttrium, and thorium spectrochemically by means of the d.c. carbon arc. Spectral lines of singly ionized cerium are used as internal standard lines in the spectrochemical determination which is patterned after Fassel's procedure [1]. Results of testing the method with synthetic mixtures of rare earths and with samples of chemically analyzed cerium minerals show that the coefficient of variation for a quadruplicate determination of any element does not exceed 5??0 (excepting yttrium at concentrations less than 1 percent) and that the method is free of serious systematic error. ?? 1954.

  20. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  1. Rare Earth Elements and Geochemical Partitioning of Zn and Pb in Sediments of an Urban River

    Directory of Open Access Journals (Sweden)

    Shaila Sharmin

    2010-01-01

    Full Text Available Problem statement: Urban river sediment pollution due to Zn and Pb is a serious problem in all over the world. The source and level of Zn and Pb pollution in sediments of Nomi River of Ota Ward, one of the most industrialized areas in Tokyo, Japan is still lacking. Approach: The present study focused on Rare Earth Elements (REEs and geochemical partitioning of Zn and Pb in sediments of 19 sampling sites of Nomi River in order to examine the mobility pattern. The amounts of Zn and Pb in the liquid extract of 5 (five geochemical phases were measured by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS and the concentrations of REEs in sediments were determined by using X-ray Fluorescence Spectroscopy (XRF. Results: Speciation data indicate dominant labile fraction of Zn, which is related to the presence of several anthropogenic influence of the investigated area. Enrichment Factor (EFc and Index of geoaccumulation (Igeo value were compatible with the result, which confirm pollution status of Zn. Environmental risk of Zn and Pb were also evaluated using the Risk Assessment Code (RAC and sequential extraction results and found Zn poses high to very high risk (34-59, whereas Pb poses low to medium environmental risk (0-19. Conclusion: The mean values of REEs and other minor elements were lower or very close to average shale and Japanese river sediment value but Sr, Sn, Zr and Sb contents were little bit higher than average Japanese river sediment values. Anthropogenic activities, prevalent in the study area play a key role in the accumulation of Zn and Pb in aquatic system. Early warning on the sediment pollution to respective authorities help in preserving the aquatic system from further degradation of the river.

  2. Rare earth elements in the phosphatic-enriched sediment of the Peru shelf

    Science.gov (United States)

    Piper, D.Z.; Baedecker, P.A.; Crock, J.G.; Burnett, W.C.; Loebner, B.J.

    1988-01-01

    Apatite-enriched materials from the Peru shelf have been analyzed for their major oxide and rare earth element (REE) concentrations. The samples consist of (1) the fine fraction of sediment, mostly clay material, (2) phosphatic pellets and fish debris, which are dispersed throughout the fine-grained sediment, (3) tabular-shaped phosphatic crusts, which occur within the uppermost few centimeters of sediment, and (4) phosphatic nodules, which occur on the seafloor. The bulk REE concentrations of the concretions suggest that these elements are partitioned between the enclosed detrital material and the apatite fraction. Analysis of the fine-grained sediment with which the samples are associated suggested that this detrital fraction in the concretions should have shale REE values; the analysis of the fish debris suggested that the apatite fraction might have seawater values. The seawater contribution of REE's is negligible in the nodules and crust, in which the apatite occurs as a fine-grained interstitial cement. That is, the concentration of REE's and the REE patterns are predominantly a function of the amount of enclosed fine-grained sediment. By contrast, the REE pattern of the pelletal apatite suggests a seawater source and the absolute REE concentrations are relatively high. The REE P2O5 ratios of the apatite fraction of these samples thus vary from approximately zero (in the case of the crust and nodules) to as much as approximately 1.2 ?? 10-3 (in the case of the pellets). The range of this ratio suggests that rather subtle variations in the depositional environment might cause a significant variation in the REE content of this authigenic fraction of the sediment. Pelletal glauconite was also recovered from one sediment core. Its REE concentrations closely resemble those of the fish debris. ?? 1988.

  3. Leaching of rare earth elements from fluorescent powder using the tea fungus Kombucha.

    Science.gov (United States)

    Hopfe, Stefanie; Flemming, Katrin; Lehmann, Falk; Möckel, Robert; Kutschke, Sabine; Pollmann, Katrin

    2017-04-01

    In most modern technologies such as flat screens, highly effective magnets and lasers, as well as luminescence phosphors, Rare Earth Elements (REE) are used. Unfortunately no environmentally friendly recycling process exists so far. In comparison to other elements the interaction of microorganisms with REE has been studied to a less extent. However, as REE are ubiquitously present in nature it can be assumed that microorganisms play an important role in the biogeochemistry of REE. This study investigates the potential of organic acid-producing microbes for extracting REE from industrial waste. In Germany, 175 tons of fluorescent phosphor (FP) are collected per year as a distinct fraction from the recycling of compact fluorescent lamps. Because the FP contains about 10% of REE-oxides bound in the so-called triband dyes it is a readily accessible secondary resource of REE. Using the symbiotic mixed culture Kombucha, consisting of yeasts and acetic acid bacteria, REE were leached at a significant rate. The highest leaching-rates were observed in shake cultures using the entire Kombucha-consortium or its supernatant as leaching agent compared to experiments using the isolates Zygosaccharomyces lentus and Komagataeibacter hansenii as leaching organisms. During the cultivation, the pH decreased as a result of organic acid production (mainly acetic and gluconic acid). Thus, the underlying mechanism of the triband dye solubilisation is probably linked to the carboxyl-functionality or a proton excess. In accordance with the higher solubility of REE-oxides compared to REE-phosphates and -aluminates, the red dye Y2O3:Eu(2+) containing relatively expensive REE was shown to be preferentially solubilized. These results show that it is possible to dissolve the REE-compounds of FP with the help of microbial processes. Moreover, they provide the basis for the development of an eco-friendly alternative to the currently applied methods that use strong inorganic acids or toxic

  4. Ultrasound-assisted extraction of rare-earth elements from carbonatite rocks.

    Science.gov (United States)

    Diehl, Lisarb O; Gatiboni, Thais L; Mello, Paola A; Muller, Edson I; Duarte, Fabio A; Flores, Erico M M

    2017-04-12

    In view of the increasing demand for rare-earth elements (REE) in many areas of high technology, alternative methods for the extraction of these elements have been developed. In this work, a process based on the use of ultrasound for the extraction of REE from carbonatite (an igneous rock) is proposed to avoid the use of concentrated reagents, high temperature and excessive extraction time. In this pioneer work for REE extraction from carbonatite rocks in a preliminary investigation, ultrasonic baths, cup horn systems or ultrasound probes operating at different frequencies and power were evaluated. In addition, the power released to the extraction medium and the ultrasound amplitude were also investigated and the temperature and carbonatite mass/volume of extraction solution ratio were optimized to 70°C and 20mg/mL, respectively. Better extraction efficiencies (82%) were obtained employing an ultrasound probe operating at 20kHz for 15min, ultrasound amplitude of 40% (692Wdm(-3)) and using a diluted extraction solution (3% v/v HNO3+2% v/v HCl). It is important to mention that high extraction efficiency was obtained even using a diluted acid mixture and relatively low temperature in comparison to conventional extraction methods for REE. A comparison of results with those obtained by mechanical stirring (500rpm) using the same conditions (time, temperature and extraction solution) was carried out, showing that the use of ultrasound increased the extraction efficiency up to 35%. Therefore, the proposed ultrasound-assisted procedure can be considered as a suitable alternative for high efficiency extraction of REE from carbonatite rocks. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Life cycle assessment of the production of rare earth elements for energy applications: a review

    Directory of Open Access Journals (Sweden)

    Julio eNavarro

    2014-11-01

    Full Text Available Rare earth elements (REEs are a group of seventeen elements with similar chemical properties, including fifteen in the lanthanide group, yttrium, and scandium. Due to their unique physical and chemical properties REEs gain increasing importance in many new energy technologies and systems that contribute to reduce greenhouse gas emissions and fossil fuel depletion (e.g., wind turbine, electric vehicles, high efficiency lighting, batteries, and hydrogen storage. However, it is well known that production of REEs is far from environmentally sustainable as it requires significant material and energy consumption while generating large amounts of air/water emissions and solid waste. Although life cycle assessment (LCA has been accepted as the most comprehensive approach to quantify the environmental sustainability of a product or process, to date, there have been only very limited LCA studies on the production of REEs. With the continual growth of renewable energy and energy efficient technologies, global production of REEs will increase. Therefore reducing environmental footprints of REE production becomes critical and identifying environmental hotspots based on a holistic and comprehensive assessment on environmental impacts serves as an important starting point. After providing an overview of LCA methodology and a high-level description of the major REE production routes used from 1990s to today, this paper reviews the published LCA studies on the production of REEs. To date, almost all the LCA studies are based on process information collected from the operation of Mountain Pass facility in U.S. in 1990s and the operation of facilities in Bayan Obo, China. Knowledge gaps are identified and future research efforts are suggested to advance understanding on environmental impacts of REE production from the life cycle perspective.

  6. Rare earth element fingerprints in Korean coastal bay sediments: Association with provenance discrimination

    Science.gov (United States)

    Kang, Jeongwon; Woo, Han Jun; Jang, Seok; Jeong, Kap-Sik; Jung, Hoi-Soo; Hwang, Ha Gi; Lee, Jun-Ho; Cho, Jin Hyung

    2016-09-01

    Rare earth elements (REEs: La-Lu) in surface sediments collected from the mouth and middle tidal flats of Gomso Bay, South Korea, in August 2011 and May 2012 were analyzed to investigate the fine-grained sediment provenance. The upper continental crust (UCC)-normalized light REEs (LREEs: La to Nd) were more enriched than the middle REEs (MREEs: Sm to Dy) and heavy REEs (HREEs: Ho to Lu), resulting in large (La/Yb)UCC (1.9 ± 0.4) to (Gd/Yb)UCC (1.4 ± 0.2) ratios. The monthly (La/Yb)UCC values differed between the mouth and middle tidal flats due to deposition of fine-grained sediments that originated from distant rivers (the Geum and Yeongsan) and the Jujin Stream, located on the southern shore of the inner bay. We observed relative reductions in the (La/Yb)UCC value and REE content in the sediments from the mouth of the bay compared with those from Jujin Stream sediments. Confined to the middle tidal flat around the KH Line of Jujin Stream, the sediments, most enriched in LREEs but depleted in Eu, were distributed in August as strong Jujin Stream runs. Here, we suggest that an increase in LREE/HREE and decrease in MREE/LREE ratios can be used as a proxy to identify the Jujin Stream provenance in mixed riverine sediments and to trace Jujin Stream sediments within the Gomso Bay tidal flat, especially in the summer rainy season.

  7. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    Science.gov (United States)

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  8. Rare earth elements tracing the soil erosion processes on slope surface under natural rainfall.

    Science.gov (United States)

    Zhu, Mingyong; Tan, Shuduan; Dang, Haishan; Zhang, Quanfa

    2011-12-01

    A field experiment using rare earth elements (REEs) as tracers was conducted to investigate soil erosion processes on slope surfaces during rainfall events. A plot of 10m×2m×0.16m with a gradient of 20° (36.4%) was established and the plot was divided into two layers and four segments. Various REE tracers were applied to the different layers and segments to determine sediment dynamics under natural rainfall. Results indicated that sheet erosion accounted for more than 90% of total erosion when the rainfall amount and density was not large enough to generate concentrated flows. Sediment source changed in different sections on the slope surface, and the primary sediment source area tended to move upslope as erosion progressed. In rill erosion, sediment discharge mainly originated from the toe-slope and moved upwards as erosion intensified. The results obtained from this study suggest that multi-REE tracer technique is valuable in understanding the erosion processes and determining sediment sources.

  9. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?

    Science.gov (United States)

    Emsbo, Poul; McLaughlin, Patrick I.; Breit, George N.; du Bray, Edward A.; Koenig, Alan E.

    2015-01-01

    The critical role of rare earth elements (REEs), particularly heavy REEs (HREEs), in high-tech industries has created a surge in demand that is quickly outstripping known global supply and has triggered a worldwide scramble to discover new sources. The chemical analysis of 23 sedimentary phosphate deposits (phosphorites) in the United States demonstrates that they are significantly enriched in REEs. Leaching experiments using dilute H2SO4 and HCl, extracted nearly 100% of their total REE content and show that the extraction of REEs from phosphorites is not subject to the many technological and environmental challenges that vex the exploitation of many identified REE deposits. Our data suggest that phosphate rock currently mined in the United States has the potential to produce a significant proportion of the world's REE demand as a byproduct. Importantly, the size and concentration of HREEs in some unmined phosphorites dwarf the world's richest REE deposits. Secular variation in phosphate REE contents identifies geologic time periods favorable for the formation of currently unrecognized high-REE phosphates. The extraordinary endowment, combined with the ease of REE extraction, indicates that such phosphorites might be considered as a primary source of REEs with the potential to resolve the global REE (particularly for HREE) supply shortage.

  10. Ab initio energetic study of oxide ceramics with rare-earth elements

    Institute of Scientific and Technical Information of China (English)

    WU Bo; Matvei Zinkevich; WANG Chong; Fritz Aldinger

    2006-01-01

    Ab initio energetic calculations based on the density functional theory (DFT) and the projector augmented wave method (PAW) for determining the polymorphisms of lanthanide sesquioxides Ln2O3 (where Ln = rare-earth element. Y,and Sc), LnMO3 perovskites (where M = Al and Ga), and Ln2B2O7 pyrochlores (where B = Ti, Zr, and Hf) were reported. The relative lattice stabilities agreed well with the critically assessed results or the experimental results except the C-type Ln2O3 with a cubic structure, for which the calculated total energies were considerably more negative. With the increase of the Ln3+-cation radius, the polymorphic structures showed a degenerative tendency. The tendencies and quantities of the enthalpies of formation of the ternary oxide ceramics synthesized from their constituent binary oxides reasonably agreed with the available experimental results, and valuable thermodynamic properties were afforded to the compound, for which no experimental data is available. The enthalpies of formation of both perovskites and pyrochlores tend to become more negative with the increase of the Ln3+-cation radius.

  11. Innovative Application of Mechanical Activation for Rare Earth Elements Recovering: Process Optimization and Mechanism Exploration

    Science.gov (United States)

    Tan, Quanyin; Deng, Chao; Li, Jinhui

    2016-01-01

    With the rapidly expanding use of fluorescent lamps (FLs) and increasing interest in conservation and sustainable utilization of critical metals such as rare earth elements (REEs), the recovering of REEs from phosphors in waste FLs is becoming a critical environmental and economic issue. To effectively recycle REEs with metallurgical methods, mechanical activation by ball milling was introduced to pretreat the waste phosphors. This current study put the emphasis on the mechanical activation and leaching processes for REEs, and explored the feasibility of the method from both theoretical and practical standpoints. Results showed physicochemical changes of structural destruction and particle size reduction after mechanical activation, leading to the easy dissolution of REEs in the activated samples. Under optimal conditions, dissolution yields of 89.4%, 93.1% and 94.6% for Tb, Eu and Y, respectively, were achieved from activated waste phosphors using hydrochloric acid as the dissolution agent. The shrinking core model proved to be the most applicable for the leaching procedure, with an apparent activation energy of 10.96 ± 2.79 kJ/mol. This novel process indicates that mechanical activation is an efficient method for recovering REEs from waste phosphors, and it has promising potential for REE recovery with low cost and high efficiency.

  12. Accumulation and Fractionation of Rare Earth Elements in Soil-Rice Systems

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Accumulation and fractionation of rare earth elements (REEs) were studied through applications of exogenous REEs in soils with pot-cultured rice for 2 years. The results show that the biomass of rice consistently decreases at sproutto exogenous REE exposure is much weaker than that of wheat. The distribution patterns of REEs in rice of the control are similar to that in the soil, both exhibiting light REE (LREE) enrichment and positive Tb in the roots and the aboveground terns of REEs in roots, some effects in stems and leaves, and almost no effects in grains. Accumulation rates of REEs in different organs follow the order of roots > leaves > stems > panicle axes and crusts > grains. The roots take up different REEs at almost the same rates, except for the selective accumulation of Tb. In the aboveground parts, the accumulation rates of middle REEs (MREEs) and heavy REEs (HREEs) are higher than those of LREEs, there are significant selective accumulations of Eu and Tb. Accumulation rates of REEs in the roots, stems and leaves increase with the increasing applications of exogenous REEs, but they change slightly in the panicle axes, crusts and grains, demonstrating that it is easier for the roots, stems and leaves to accumulate exogenous REEs. Selective accumulation and fractionation of exogenous Nd are also observed in rice organs including grains.

  13. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.

    Science.gov (United States)

    Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R

    2015-08-18

    The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  14. Competition between humic acid and carbonates for rare earth elements complexation.

    Science.gov (United States)

    Pourret, Olivier; Davranche, Mélanie; Gruau, Gérard; Dia, Aline

    2007-01-01

    The competitive binding of rare earth elements (REE) to humic acid (HA) and carbonates was studied experimentally at various pH and alkalinity values by combining ultrafiltration and inductively coupled plasma mass spectrometry techniques. The results show that the REE species occur as binary humate or carbonate complexes but not as ternary REE-carbonate-humate as previously proposed. The results also reveal the strong pH and alkalinity dependence of the competition as well as the existence of a systematic fractionation across the REE series. Specifically, carbonate complexation is at a maximum at pH 10 and increase with increasing alkalinity and with the atomic number of the REE (LuCO(3)>LaCO(3)). Modeling of the data using Model VI and recently published stability constants for complexation of REE by humic acid well reproduced the experimental data, confirming the ability of Model VI to accurately determine REE speciation in natural waters. This modeling also confirms the reliability of recently published stability constants. This work shed more light not only on the competition between carbonates and HA for REE complexation but also on the reliability of WHAM 6 and Model VI for calculating the speciation of REE with organic matter in alkaline organic-rich water.

  15. Responses of plant calmodulin to endocytosis induced by rare earth elements.

    Science.gov (United States)

    Wang, Lihong; Cheng, Mengzhu; Chu, Yunxia; Li, Xiaodong; Chen, David D Y; Huang, Xiaohua; Zhou, Qing

    2016-07-01

    The wide application of rare earth elements (REEs) have led to their diffusion and accumulation in the environment. The activation of endocytosis is the primary response of plant cells to REEs. Calmodulin (CaM), as an important substance in calcium (Ca) signaling systems, regulating almost all of the physiological activities in plants, such as cellular metabolism, cell growth and division. However, the response of CaM to endocytosis activated by REEs remains unknown. By using immunofluorescence labeling and a confocal laser scanning microscope, we found that trivalent lanthanum [La(III)], an REE ion, affected the expression of CaM in endocytosis. Using circular dichroism, X-ray photoelectron spectroscopy and computer simulations, we demonstrated that a low concentration of La(III) could interact with extracellular CaM by electrostatic attraction and was then bound to two Ca-binding sites of CaM, making the molecular structure more compact and orderly, whereas a high concentration of La(III) could be coordinated with cytoplasmic CaM or bound to other Ca-binding sites, making the molecular structure more loose and disorderly. Our results provide a reference for revealing the action mechanisms of REEs in plant cells.

  16. Rare earth element geochemistry of outcrop and core samples from the Marcellus Shale.

    Science.gov (United States)

    Noack, Clinton W; Jain, Jinesh C; Stegmeier, John; Hakala, J Alexandra; Karamalidis, Athanasios K

    2015-01-01

    In this work, the geochemistry of the rare earth elements (REE) was studied in eleven outcrop samples and six, depth-interval samples of a core from the Marcellus Shale. The REE are classically applied analytes for investigating depositional environments and inferring geochemical processes, making them of interest as potential, naturally occurring indicators of fluid sources as well as indicators of geochemical processes in solid waste disposal. However, little is known of the REE occurrence in the Marcellus Shale or its produced waters, and this study represents one of the first, thorough characterizations of the REE in the Marcellus Shale. In these samples, the abundance of REE and the fractionation of REE profiles were correlated with different mineral components of the shale. Namely, samples with a larger clay component were inferred to have higher absolute concentrations of REE but have less distinctive patterns. Conversely, samples with larger carbonate fractions exhibited a greater degree of fractionation, albeit with lower total abundance. Further study is necessary to determine release mechanisms, as well as REE fate-and-transport, however these results have implications for future brine and solid waste management applications.

  17. Environmental geochemistry reflected by rare earth elements in Bohai Bay (North China) core sediments.

    Science.gov (United States)

    Xu, Ya-Yan; Song, Jin-Ming; Duan, Li-Qin; Li, Xue-Gang; Zhang, Ying; Sun, Pei-Yan

    2010-08-05

    In Bohai Bay sediment, two cores were collected to estimate the source of sediments, and assess the environmental changes. Sequential extractions were carried out in this study. Rare earth elements (REE) were leached out from four labile fractions: Exchangeable (L1), Bound to carbonates (L2), Bound to Fe-Mn oxides (L3), Bound to organic matter (L4), and the remainder was Residual (R5). The percentages of REE in different fractions follow the order: R5 > L3 > L2 > L4 > L1. With heavy REE depletion and no pronounced REE fractionation, NASC-normalized REE patterns of Bohai Bay sediments are quite consistent with that of Haihe River sediment, which is the key river of Bohai Bay. Y/Ho ratios of total contents are all much lower than the average value of continental crust, while Y/Ho ratios of L2 are higher than those of other fractions. Based on the patterns of REE and Y/Ho ratios of samples, sediments of Bohai Bay mainly come from terrigenous matters, which are mainly brought by Haihe River. And REE combined with carbonates may be partly inherited from anthropogenic matter. Moreover, environmental changes exert significant influences on the patterns and fractionations of REE, and they can be deduced from the characteristics of REE. Our results on the patterns and burial fluxes of REE reflect two environmental changes: Bohai Bay has been shifting towards more reducing conditions in the last one hundred years, and there was a large flood in 1939.

  18. State of rare earth elements in different environmental components in mining areas of China.

    Science.gov (United States)

    Liang, Tao; Li, Kexin; Wang, Lingqing

    2014-03-01

    China has relatively abundant rare earth elements (REEs) reserves and will continue to be one of the major producers of REEs for the world market in the foreseeable future. However, due to the large scale of mining and refining activities, large amounts of REEs have been released to the surrounding environment and caused harmful effects on local residents. This paper summarizes the data about the contents and translocation of REEs in soils, waters, atmosphere, and plants in REE mining areas of China and discusses the characteristics of their forms, distribution, fractionation, and influencing factors. Obviously high concentrations of REEs with active and bioavailable forms are observed in all environmental media. The mobility and bioavailability of REEs are enhanced. The distribution patterns of REEs in soils and water bodies are all in line with their parent rocks. Significant fractionation phenomenon among individual members of REEs was found in soil-plant systems. However, limited knowledge was available for REEs in atmosphere. More studies focusing on the behavior of REEs in ambient air of REE mining areas in China are highly suggested. In addition, systematic study on the translocation and circulation of REEs in various media in REEs mining areas and their health risk assessment should be carried out. Standard analytical methods of REEs in environments need to be established, and more specific guideline values of REEs in foods should also be developed.

  19. Effects of rare earth elements on properties of AB5-type electrode materials at different temperature

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Discharge property is an important factor to evaluate electrode materials. The discharge capacity of the hydrogen-storing alloys are not only influenced by its thermodynamic property but also closely related to its dynamic property. When the temperature changes, the degrees of influence of the above-mentioned two factors on the discharge performance vary accordingly. As a consequence, adjusting compositions of the alloys to make them have good discharge performance under a relatively wide range of temperature is of great significance. On the basis of great deal of experimental investigation, the optimum combination of rare earth elements in hydrogen-storing electrode materials using at-30-55℃ is determined and the relationships between the cell parameters and discharge performance of alloys at -30℃ are discussed. Additionally, the DFEC calculation method has been improved to predict the discharge capacities, which is in good agreement with the experimental ones. This is of theoretical significance in investigating new hydrogen-storing alloys of the AB5 type.

  20. Unusual seeding mechanism for enhanced performance in solid-phase magnetic extraction of Rare Earth Elements

    Science.gov (United States)

    Polido Legaria, Elizabeth; Rocha, Joao; Tai, Cheuk-Wai; Kessler, Vadim G.; Seisenbaeva, Gulaim A.

    2017-03-01

    Due to the increasing demand of Rare Earth Elements (REE or RE), new and more efficient techniques for their extraction are necessary, suitable for both mining and recycling processes. Current techniques such as solvent extraction or solid adsorbents entail drawbacks such as using big volumes of harmful solvents or limited capacity. Hybrid nanoadsorbents based on SiO2 and highly stable γ-Fe2O3-SiO2 nanoparticles, proved recently to be very attractive for adsorption of REE, yet not being the absolute key to solve the problem. In the present work, we introduce a highly appealing new approach in which the nanoparticles, rather than behaving as adsorbent materials, perform as inducers of crystallization for the REE in the form of hydroxides, allowing their facile and practically total removal from solution. This induced crystallization is achieved by tuning the pH, offering an uptake efficiency more than 20 times higher than previously reported (up to 900 mg RE3+/g vs. 40 mg RE3+/g). The obtained phases were characterized by SEM-EDS, TEM, STEM and EFTEM and 13C and 29Si solid state NMR. Magnetic studies showed that the materials possessed enough magnetic properties to be easily removed by a magnet, opening ways for an efficient and industrially applicable separation technique.

  1. Inorganic Speciation of Rare Earth Elements in Chaohu Lake and Longganhu Lake, East China

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Inorganic speciation of dissolved rare earth elements (REEs) were calculated for Chaohu Lake and Longganhu Lake by using the program MINTEQ 2. 30. The result shows that REE-Carbonate complexes, which account for more than 93 % of total REE are the dominate and typically species in solution. Moreover, carbonator complexes (LnCO3 +) were predicted to be the dominant species when pH between 7.2 and 8.0 and bicarbonate complexes (Ln (CO3)2-) were predicted to be the dominant species when pH > 8.0. The free ion specie (i. e., Ln3 + ) increases in these waters with pH decreasing and accounts for about 5. 03 %. The percentage of REE-phosphate complexes account for 1.61% of the dissolved REEs. REE-phosphate for light REEs complexes are supersaturated in Chaohu Lake and Longganhu Lake. Furthermore,LnPO4 for heavy REEs are supersaturated in west of Chaohu Lake in high water period. PO43- is responsible for limiting the dissolved REEs concentrations. REE-sulfate, REE-chloride, REE-fluoride and REE-hydroxide complexes, are negligible and generally account for less than 1% of the total dissolved REEs.

  2. Ionic conductivity of binary fluorides of potassium and rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, N. I., E-mail: nsorokin1@yandex.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2016-01-15

    The ionic conductivity s of KYF{sub 4} and K{sub 2}RF{sub 5} single crystals (R = Gd, Ho, Er) and KNdF{sub 4} and K{sub 2}RF{sub 5} ceramic samples (R = Dy, Er) has been studied in the temperature range of 340–500°C. A comparative analysis of the σ values for these objects has been performed. Binary fluorides of potassium and rare earth elements were synthesized by the hydrothermal method (temperature 480°C, pressure 100–150 MPa) in the R{sub 2}O{sub 3}–KF–H{sub 2}O systems. The σ values of tetraf luorides are 3 × 10{sup –5} S/cm (KYF{sub 4} single crystal) and 3 × 10{sup –6} S/cm (KNdF{sub 4} ceramics) at 435°C. A K{sub 2}ErF{sub 5} single crystal with σ = 1.2 × 10{sup –4} S/cm at 435°C has the maximum value of ionic conductivity among pentafluorides. The anisotropy of ionic transport was found in K{sub 2}HoF{sub 5} single crystals, σ{sub ∥c}/σ{sub ⊥c} = 2.5, where σ{sub ∥c} and σ{sub ⊥c} are, respectively, the conductivities along the crystallographic c axis and in the perpendicular direction.

  3. Source and mobility of Rare Earth Elements in a sedimentary aquifer system: Aquitaine basin (Southern France)

    Science.gov (United States)

    Negrel, P. J.; Petelet-Giraud, E.; Millot, R.; Malcuit, E.

    2011-12-01

    The study of rare earth elements (REEs) in natural waters initially involved an examination of their occurrence and behavior in seawater and coastal waters such as estuaries. Since the 1990s, REE geochemistry has been applied to continental waters such as rivers and lakes and groundwaters. Rare earth elements) are of great interest because of their unique characteristics and have been used in the study of many geological processes like weathering and water-rock interaction processes, provenance of sediments, etc... With the evolution of analytical techniques like new generation ICP-MS, much attention had been paid towards the water geochemistry of REEs. However, there is a need of more investigations devoted to REEs in large groundwater systems, especially on the understanding of the distribution of REEs and their evolution in such systems. In this frame, large sedimentary aquifer systems often constitute strategic water resources for drinking water supply, agriculture irrigation and industry, but can also represent an energetic resource for geothermal power. Large water abstractions can induce complete modification of the natural functioning of such aquifer systems. These large aquifer systems thus require water management at the basin scale in order to preserve both water quantity and quality. The large Eocene Sand aquifer system of the Aquitaine sedimentary basin was studied through various hydrological, chemical and isotopic tools. This system extends over 116,000 km2 in the South west part of the French territory. The aquifer being artesian in the west of the district and confined with piezometric levels around 250-m depth in the east. The 'Eocene Sands', composed of sandy Tertiary sediments alternating with carbonate deposits, is a multi-layer system with high permeability and a thickness of several tens of metres to a hundred metres. The Eocene Sand aquifer system comprises at least five aquifers: Paleocene, Eocene infra-molassic sands (IMS), early Eocene

  4. Rare earth elements (REEs in vertebrate microremains from the upper Pridoli Ohesaare beds of Saaremaa Island, Estonia: geochemical clues to palaeoenvironment c

    Directory of Open Access Journals (Sweden)

    Živilė Žigaitė

    2015-02-01

    Full Text Available Rare earth element (REE compositions of Nostolepis sp. scales, spines, plates and tesserae from Ohesaare bone beds were measured by in situ microsampling using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS. The obtained REE concentrations, normalized to Post-Archean Australian Shale concentrations, were evaluated using basic geochemical calculations and quantifications. The REE compositions were nearly identical across all the morphotypes and histologies of Nostolepis microremains, showing flat REE patterns with slight depletion in heavy REEs. There was no visible enrichment in middle REEs, indicating good geochemical preservation of bioapatite and absence of any pronounced fractionated REE incorporation during later stages of diagenesis. The shale-normalized (La/YbSN and (La/SmSN REE ratio compilations indicated adsorption as the dominating REE uptake mechanism across all datapoints. The absence of well-defined Ce anomaly suggested oxic palaeoseawater conditions, which agrees with the existing interpretations of the Ohesaare sequence as high-energy shoal and regressive open ocean sedimentary environments.

  5. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.F.; Jiang, Z.C.; He, M.; Hu, B. [Wuhan University, Wuhan (China). Dept. of Chemistry

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3} (Eu) to 6.7 Pg m{sup -3} (Nd) with the precisions of 4.1% (Yb) to 10% (La) = 1 {mu} g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  6. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling.

    Science.gov (United States)

    Zhang, Yuefei; Jiang, Zucheng; He, Man; Hu, Bin

    2007-07-01

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m(-3)(Eu) to 6.7 pg m(-3)(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c=1 microg L(-1), n=9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  7. Improved detection of transition and rare earth elements in marine samples with the CETAC DSX-100 preconcentration/matrix elimination system and ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, M. [Technical Univ., Hamburg-Harburg (Germany). Inst. of Water Management and Water Supply; Kriews, M. [Alfred-Wegener-Institut fuer Polar- und Meeresforschung, Bremerhaven (Germany)

    2000-07-01

    A new method for detection of trace metals in saline samples is described using batch preconcentration with subsequent ICP-MS analyses after direct sample insertion of the analyte loaded chelating resin. The samples were prepared using a CETAC DSX-100 system, which preconcentrates analytes and removes matrix components by a suspended particulate reagent (SPR). The SPR is consisting of polymeric beads of 0.2 {mu}m size that selectively binds the trace metals by iminodiacetic chelating groups. The beads with bound analytes are then nebulized directly into the ICP-MS. The enrichment factors lay between 40 and 48 due to the enrichment of 120 mL suspension to 2.5-3.0 mL eluate. The method was applied and validated to the successful determination of traces of the transition metals Mn, Fe, Ni, Co, Cu, Zn, Cd, and Pb in the Open Ocean Seawater certified reference material NASS-4 and the Coastal Seawater certified reference material CASS-3. In addition to the certified constituents the rare earth elements La, Ce, Eu, Gd, Yb, and Lu were determined. (orig.)

  8. Determination of rare earth elements in waters by inductively coupled plasma optical emission spectrometry after preconcentration with 6-(2-thienyl)-2-pyridinecarboxaldehyde functionalized Amberlite XAD-4 resin.

    Science.gov (United States)

    Karadaş, Cennet; Kara, Derya

    2014-01-01

    A new method has been developed for the determination of rare earth elements (REEs) (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) in water samples based on preconcentration with a mini-column packed with 6-(2-thienyl)-2-pyridinecarboxaldehyde functionalized Amberlite XAD-4 resin prior to their determination using inductively coupled plasma optical emission spectrometry (ICP-OES). The optimum experimental parameters for preconcentration of REEs, such as pH of the sample, sample and eluent flow rates and sample volume, were investigated. The optimum pH values for quantitative (90-110%) sorption of the REE ions were between 6.0 and 8.0. The elution process was carried out using 2 mL of 1.0 mol L(-1) HNO3 solution. Under the optimum conditions, detection limits between 0.032 and 0.963 μg L(-1) for a 10 mL sample volume and 0.006 and 0.193 μg L(-1) for a 50 mL sample volume were determined. The proposed method was successfully applied to the determination of REEs in water samples with recoveries in the range of 90.1-110.5%.

  9. Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition

    Science.gov (United States)

    Planavsky, Noah; Bekker, Andrey; Rouxel, Olivier J.; Kamber, Balz; Hofmann, Axel; Knudsen, Andrew; Lyons, Timothy W.

    2010-11-01

    The ocean and atmosphere were largely anoxic in the early Precambrian, resulting in an Fe cycle that was dramatically different than today's. Extremely Fe-rich sedimentary deposits—i.e., Fe formations—are the most conspicuous manifestation of this distinct Fe cycle. Rare Earth Element (REE) systematics have long been used as a tool to understand the origin of Fe formations and the corresponding chemistry of the ancient ocean. However, many earlier REE studies of Fe formations have drawn ambiguous conclusions, partially due to analytical limitations and sampling from severely altered units. Here, we present new chemical analyses of Fe formation samples from 18 units, ranging in age from ca. 3.0 to 1.8 billion years old (Ga), which allow a reevaluation of the depositional mechanisms and significance of Precambrian Fe formations. There are several temporal trends in our REE and Y dataset that reflect shifts in marine redox conditions. In general, Archean Fe formations do not display significant shale-normalized negative Ce anomalies, and only Fe formations younger than 1.9 Ga display prominent positive Ce anomalies. Low Y/Ho ratios and high shale-normalized light to heavy REE (LREE/HREE) ratios are also present in ca. 1.9 Ga and younger Fe formations but are essentially absent in their Archean counterparts. These marked differences in Paleoproterozoic versus Archean REE + Y patterns can be explained in terms of varying REE cycling in the water column. Similar to modern redox-stratified basins, the REE + Y patterns in late Paleoproterozoic Fe formations record evidence of a shuttle of metal and Ce oxides across the redoxcline from oxic shallow seawater to deeper anoxic waters. Oxide dissolution—mainly of Mn oxides—in an anoxic water column lowers the dissolved Y/Ho ratio, raises the light to heavy REE ratio, and increases the concentration of Ce relative to the neighboring REE (La and Pr). Fe oxides precipitating at or near the chemocline will capture these REE

  10. Assessment of Bioavailable Concentrations of Germanium and Rare Earth Elements in the Rhizosphere of White Lupin (Lupinus albus L.)

    Science.gov (United States)

    Wiche, Oliver; Fischer, Ronny; Moschner, Christin; Székely, Balázs

    2015-04-01

    Concentrations of Germanium (Ge) and Rare Earth Elements in soils are estimated at 1.5 mg kg -1 (Ge), 25 mg kg -1 (La) and 20 mg kg -1 (Nd), which are only roughly smaller than concentrations of Pb and Zn. Germanium and rare earth elements are thus not rare but widely dispersed in soils and therefore up to date, only a few minable deposits are available. An environmental friendly and cost-effective way for Ge and rare earth element production could be phytomining. However, the most challenging part of a phytomining of these elements is to increase bioavailable concentrations of the elements in soils. Recent studies show, that mixed cultures with white lupine or other species with a high potential to mobilize trace metals in their rhizosphere due to an acidification of the soil and release of organic acids in the root zone could be a promising tool for phytomining. Complexation of Ge and rare earth elements by organic acids might play a key role in controlling bioavailability to plants as re-adsorption on soil particles and precipitation is prevented and thus, concentrations in the root zone of white lupine increase. This may also allow the complexes to diffuse along a concentration gradient to the roots of mixed culture growing species leading to enhanced plant uptake. However, to optimize mixed cultures it would be interesting to know to which extend mobilization of trace metals is dependent from chemical speciation of elements in soil due to the interspecific interaction of roots. A method for the identification of complexes of germanium and rare earth elements with organic acids, predominantly citric acid in the rhizosphere of white lupine was developed and successfully tested. The method is based on coupling of liquid chromatography with ICP-MS using a zic-philic column (SeQuant). As a preliminary result, we were able to show that complexes of germanium with citric acid exist in the rhizosphere of white lupin, what may contribute to the bioavailability of this

  11. Broadband Luminescence in Rare Earth Doped Sr2SiS4: Relating Energy Levels of Ce3+ and Eu2+

    Directory of Open Access Journals (Sweden)

    Anthony B. Parmentier

    2013-08-01

    Full Text Available Sr2SiS4:Ce3+ is an efficient blue-emitting (460 nm phosphor, excitable with light of wavelengths up to 420 nm. From the excitation spectrum, we construct the energy level scheme and use it to check the predictive power of the Dorenbos model, relating the positions of the Ce3+ energy levels with those of Eu2+ in the same host. For strontium thiosilicate, this method gives excellent results and allows us to determine which of two available crystallographic sites is occupied by cerium. We use the Dorenbos method for extracting information on the coordination of Ce3+ from the observed crystal field splitting.

  12. Magnetic hyperfine interactions on Cd sites of the rare-earth cadmium compounds R Cd (R =Ce , Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er)

    Science.gov (United States)

    Cavalcante, F. H. M.; Leite Neto, O. F. L. S.; Saitovitch, H.; Cavalcante, J. T. P. D.; Carbonari, A. W.; Saxena, R. N.; Bosch-Santos, B.; Pereira, L. F. D.; Mestnik-Filho, J.; Forker, M.

    2016-08-01

    This paper reports the investigation of the magnetic hyperfine field Bh f in a series of rare-earth (R ) cadmium intermetallic compounds R Cd and GdCd2 measured by perturbed angular correlation (PAC) spectroscopy using 111In/111Cd as probe nuclei at Cd sites as well as first-principles calculations of Bh f at Cd sites in the studied compounds. Vapor-solid state reaction of R metals with Cd vapor and the 111In radioisotope was found to be an appropriate route of doping rare-earth cadmium compounds with the PAC probe 111In/111Cd. The observation that the hyperfine parameters depend on details of the sample preparation provides information on the phase preference of diffusing 111In in the rare-earth cadmium phase system. The 111Cd hyperfine field has been determined in the compounds R Cd for the R constituents Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Er, in several cases as a function of temperature. For most R constituents, the temperature dependence Bh f(T ) of 111Cd:R Cd is consistent with ferromagnetic order of the compound. DyCd, however, presents a remarkable anomaly: a finite magnetic hyperfine field is observed only in the temperature interval 35 K ≤ T ≤ 80 K which indicates a transition from ferromagnetic order to a spin arrangement where all 4 f -induced contributions to the magnetic hyperfine field at the Cd site cancel. First-principles calculation results for DyCd show that the (π , π , 0) antiferromagnetic configuration is energetically more favorable than the ferromagnetic. The approach used in the calculations to simulate the R Cd system successfully reproduces the experimental values of Bh f at Cd sites and shows that the main contribution to Bh f comes from the valence electron polarization. The de Gennes plot of the hyperfine field Bh f of 111Cd:R Cd vs the 4 f -spin projection (g -1 )J reflects a decrease of the strength of indirect 4 f -4 f exchange across the R series. Possible mechanisms are discussed and the experimental results indicate that

  13. Modeling the geochemical distribution of rare earth elements (REEs using multivariate statistics in the eastern part of Marvast placer, the Yazd province

    Directory of Open Access Journals (Sweden)

    Amin Hossein Morshedy

    2017-07-01

    Full Text Available Introduction Nowadays, exploration of rare earth element (REE resources is considered as one of the strategic priorities, which has a special position in the advanced and intelligent industries (Castor and Hedrick, 2006. Significant resources of REEs are found in a wide range of geological settings, including primary deposits associated with igneous and hydrothermal processes (e.g. carbonatite, (per alkaline-igneous rocks, iron-oxide breccia complexes, scarns, fluorapatite veins and pegmatites, and secondary deposits concentrated by sedimentary processes and weathering (e.g. heavy-mineral sand deposits, fluviatile sandstones, unconformity-related uranium deposits, and lignites (Jaireth et al., 2014. Recent studies on various parts of Iran led to the identification of promising potential of these elements, including Central Iran, alkaline rocks in the Eslami Peninsula, iron and apatite in the Hormuz Island, Kahnouj titanium deposit, granitoid bodies in Yazd, Azerbaijan, and Mashhad and associated dikes, and finally placers related to the Shemshak formation in Marvast, Kharanagh, and Ardekan indicate high concentration of REE in magmatogenic iron–apatite deposits in Central Iran and placers in Marvast area in Yazd (Ghorbani, 2013. Materials and methods In the present study, the geochemical behavior of rare earth elements is modeled by using multivariate statistical methods in the eastern part of the Marvast placer. Marvast is located 185 km south of the city of Yazd in central Iran between Yazd and Mehriz. This area lies within the southeastern part of the Sanandaj-Sirjan Zone (Alipour-Asll et al., 2012. The samples of 53 wells were analyzed for Whole-rock trace-element concentrations (including REE by inductively coupled plasma-mass spectrometry (ICP-MS (GSI, 2004. The clustering techniques such as multivariate statistical analysis technique can be employed to find appropriate groups in data sets. One of the main objectives of data clustering

  14. Ce isotope systematics of island arc lavas from the Lesser Antilles

    Science.gov (United States)

    Bellot, Nina; Boyet, Maud; Doucelance, Régis; Pin, Christian; Chauvel, Catherine; Auclair, Delphine

    2015-11-01

    The La-Ce systematics has one of the longest half-lifes (T1/2 = 292.5 Ga) of radioactive decay systems used in isotope geochemistry. Variations of the 138Ce/142Ce ratio are expected to be small and the use of Ce as isotopic tracer requires a very precise measurement. Compared to Sm-Nd studies, the La-Ce decay system can provide additional information about the nature of sediments recycled in subduction zones, because unusually large Ce anomalies relative to the neighboring rare earth elements exist in marine sediments such as fish teeth or hydrothermal deposits. Here, we present a chemical purification technique for Ce, and mass spectrometric technique to perform accurate and reproducible analyses of Ce isotopes of natural samples. We report a large set of Ce isotope data including analysis of 2 Ce reference material solutions (AMES and JMC-304), 2 rock standards (BCR-2 and BHVO-2), 2 chondrites (the carbonaceous chondrite Allende and the enstatite chondrite Sahara 97072), 4 mid-ocean ridge basalts, 30 arc lavas from the Martinique Island and 5 oceanic sediments from DSDP-site 144 drilled on the Demerara rise. The long-term, external precision obtained on the AMES reference material is 80 ppm (2 s.d., 138Ce/142Ce = 0.0225732 ± 18, n = 89). However, we note an evolution of isotopic ratios measured in static mode over the duration of this study (33 months). When the reproducibility is calculated from the AMES reference material measured during the same analytical session, it averages 40 ppm. All the 138Ce/142Ce ratios have been normalized to the AMES value of 0.0225746 (measured in session 7, 2 s.d. = 14 ppm, n = 8), a session during which the chondritic value has been defined and the peak tailing was negligible. The 138Ce/142Ce ratio measured for the JMC-304 Ce reference reagent is 0.0225706 ± 9 (2 s.d. = 38 ppm, n = 10). The analytical precision on natural samples is improved by a factor of about 4 in relation to previous studies on island arcs (Tanaka et al

  15. Study on optical properties of rare-earth ions in nanocrystalline monoclinic SrAl2O4: Ln (Ln = Ce3+, Pr3+, Tb3+).

    Science.gov (United States)

    Fu, Zuoling; Zhou, Shihong; Zhang, Siyuan

    2005-08-01

    SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) nanocrystals have been synthesized by the combustion method. The results of XRD indicated that the resulting SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) nanocrystals have a reduced and distorted monoclinic lattice compared with bulk materials. The spectral properties are measured, and it is found that the excitation peaks of 5d energy levels red shift in nanocrystals in contrast to that in bulk crystals. The mechanism of spectra and energy changes is investigated. The order of the degree of red shift for nano SrAl(2)O(4): Ln (Ln = Ce(3+), Pr(3+), Tb(3+)) crystals is Pr(3+) > Ce(3+) > Tb(3+), which is in good agreement with our predicted results.

  16. Study of the influence of light rare earth elements on the zirconia-ceria-yttria ceramics; Estudo da influencia do teor de elementos de terras raras leves nas ceramicas zirconia-ceria-itria

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Cristiane Aparecida Barros de

    2001-07-01

    samples prepared using light rare earth concentrates and high purity oxides of these elements. It was observed that light rare earths, such a as lanthanum, neodymium and praseodymium exert no significant influence on the microstructure and mechanical properties of ZrO{sub 2}-CeO{sub 2}-Y{sub 2}O{sub 3} ceramics, although these elements have a higher tendency to stabilize the cubic phase. For this reason the feasibility of the light rare earth concentrates employment was verified. Ceramics that present high values of Vickers hardness (10-12 GPa) and fracture toughness (4-5 MPa.m{sup 1/2}) were obtained, even after the ageing tests in humid atmosphere at low temperatures. (author)

  17. The Use of Lead Isotope and Rare Earth Element Geochemistry for Forensic Geographic Provenancing

    Science.gov (United States)

    Carey, A.; Darrah, T.; Harrold, Z.; Prutsman-Pfeiffer, J.; Poreda, R.

    2008-12-01

    Lead isotope and rare earth element composition of modern human bones are analyzed to explore their utility for geographical provenancing. DNA analysis is the standard for identification of individuals. DNA analysis requires a DNA match for comparison. Thus, DNA analysis is of limited use in cases involving unknown remains. Trace elements are incorporated into bones and teeth during biomineralization, recording the characteristics of an individual's geochemical environment. Teeth form during adolescence, recording the geochemical environment of an individual's youth. Bones remodel throughout an individual's lifetime. Bones consist of two types of bone tissue (cortical and trabecular) that remodel at different rates, recording the geochemical environment at the time of biomineralization. Cortical bone tissue, forming the outer surface of bones, is dense, hard tissue that remodels in 25-30 yrs. Conversely, trabecular bone tissue, the inner cavity of bones, is low density, porous and remodels in 2-5 years. Thus, analyzing teeth and both bone tissues allows for the development of a geographical time line capable of tracking immigration patterns through time instead of only an individual's youth. Geochemical isotopic techniques (Sr, O, C, N) have been used for geographical provenancing in physical anthropology. The isotopic values of Sr, C, O, N are predominantly a function of soil compositions in areas where food is grown or water is consumed. Application of these provenancing techniques has become difficult as an individual's diet may reflect the isotopic composition of foods obtained at the local grocer as opposed to local soil compositions. Thus, we explore the use of REEs and Pb isotopes for geographical provenancing. Pb and REEs are likely more reliable indicators of modern geographical location as their composition are high in bio-available sources such as local soils, atmospheric aerosols, and dust as opposed to Sr, C, O, N that are controlled by food and

  18. Understanding rhizosphere processes to enhance phytoextraction of germanium and rare earth elements

    Science.gov (United States)

    Wiche, Oliver

    2017-04-01

    Germanium (Ge) and rare earth elements (REEs) are economically valuable raw materials that are not actually rare in terms of concentrations in soils but they are hardly available for plant uptake due to interactions with organic matter (SOM), secondary soil constituents such as Fe/Mn oxides and P bearing soil fractions. Processes in the rhizosphere might influence availability of Ge and REEs in the soil-plant system, since lowering of the pH and presence of carboxylates and siderophores (small molecules that strongly chelate Fe and other elements) strongly influences the chemical speciation of Ge and REEs in soil and consequently this comprehensive knowledge helps us to improve phytomining. In a series of field and greenhouse experiments 16 plant species from the functional groups of grasses, herbs and legumes were tested with regard to their accumulation efficiency of Ge and REEs in shoots. Subsequently, we conducted mixed culture experiments in which inefficient species (e.g. cereals like Avena sativa, Hordeum vulgare, Panicum miliaceum) were cultivated in mixed cultures with efficient species (Lupinus albus, Lupinus angustifolius). Based on the plant concentrations a principal component analysis (PCA) was performed to identify significant factors that explain the accumulation behavior of different plant species with regard to Ge, REEs, Si, Fe and Mn. In this analysis Mn was used to identify plant species with efficient mechanisms to access sparingly available P-resources in soils. Particularly in nonmycorrhizal species concentrations of Mn in leaves often indicate a carboxylate based P-mobilising strategy. Herbaceous plant species accumulated significantly higher amounts of REEs while grasses accumulated significantly higher amounts of Ge. Concentrations of Ge in shoots of grasses correlated significantly positive with Si, but negatively with concentrations of Mn. Indeed, the results of the PCA clearly show that plants with high Mn concentrations tend to have

  19. Rare earth element geochemistry of Cambrian phosphorites from the Yangtze Region

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiyan; YANG Ruidong; WEI Huairui; GAO Junbo

    2013-01-01

    Analysis on P2O5 and REE (rare earth elements) in basal Cambrian phosphorites from the Yangtze Region,showed that the phosphofites from Bailongtan in Yunnan Province,Zhijin,Jinsha,Xishui,Zunyi,Tianzhu and Tongren in Guizhou Province,Shangrao in Jiangxi Province,Jiangshan in Zhejiang Province and Nanjing in Jiangsu Province contained high REE contents in phosphorites,especially those from Tianzhu and Tongren in Guizhou Province,Shangrao in Jiangxi Province,Jiangshan in Zhejiang Province and Nanjing in Jiangsu Province.Among them,the highest REE contents reached up to 1361.59× 10-6 and P2O5 contents up to 29.45%.In contrast,phosphofites from Kaiyang,Qingzhen and Zhenyuan in Guizhou Province had relatively low total REE contents and low P2O5 contents,with the lowest total REE content of 53.19× 10-6,and the lowest P2O5 content of 0.07%.REE contents exhibited a positive correlation with phosphorous contents,indicating a close genetic relationship between REE and phosphorous element.The main reason was the difference of the sedimentary environments and the contents of phosphorous and REE in deep water mass formed in upwelling currents,at an upper slope facies (Slu) in reducing condition due to relatively closed sedimentary environment.It was very difficult for the upswelling phosphorous and REE to deposit,massive phosphorous deposits were hard to be formed.At a deep water ramp facies (DRa) in the ascending process of currents,phosphorus and REE underwent differentiation rather than sedimentation.Consequently,the contents of P2O5 sediments and REE were low.At a shallow water ramp facies (including shoals and tidal fiats) (SRa),with active seawater circulation and phosphatic supplement,sunny weather,high nutrition and rapid growth of algae,were benefitial for the physical enrichment of carbonate sediments.Therefore,massive phosphorite deposits were easy to be formed with abundant REE minerals,and finally turned into high REE beating phosphorous deposits.

  20. LiF - a spectroscopic method for rare earth elements identification

    Science.gov (United States)

    Fuchs, Margret; Gloaguen, Richard; Beyer, Jan; Jacob, Sandra; Heitmann, Johannes

    2016-04-01

    Laser-induced fluorescence (LiF) has a great potential for the exploration and identification of rare earth elements (REE) in natural environments. This spectroscopic technique can provide an efficient way to secure resource availability, while the economic and ecological costs are reduced. No time-consuming sample preparation and analysis is needed prior to decisions along the raw material processing chain. Such non-destructive approaches allow for a fast access to analytical results and hence, are the basis for an immediate adjustment of processing steps. The method uses the material-specific luminescence emissions that are induced by laser-stimulation of a certain wavelength. The distinct emission lines of REE make them well suited for the development of a LiF-based exploration technique. However, typical REE emission peaks known from the free elements may shift or be masked in natural materials due to their position in the crystal lattice, varying compositions of minerals or other natural conditions such as water content. The natural variability therefore, demands for comprehensive investigations of REE and their spectral characteristics in minerals. To identify those spectral information that are robust and unequivocal, we analyse spectra of REE standards measured in different matrix minerals including phosphates and fluorides. We use variable laser wavelengths from UV (325 nm) to green (532 nm) and a detection range from 340 nm to 1080 nm. Results show spectral characteristics that sort REE in three groups due to: no distinct emission lines, absorption features, distinct luminescence emission lines. Measured in different matrix minerals, we determine shifts for some of the spectral features and some disappear or decline in intensity. Changing the wavelength of the laser allows for a more selective stimulation of REE emissions, especially wavelengths longer than UV can reduce the unspecific emission of all luminescent components of a sample and thus enhance

  1. Geochemical investigation and statistical analysis on rare earth elements in Lakehsiyah deposit, Bafq district

    Science.gov (United States)

    Rahimi, Elham; Maghsoudi, Abbas; Hezarkhani, Ardeshir

    2016-12-01

    The Kashmar-Kerman volcano-plutonic arc in central Iran is an important mining province and hosts several large deposits of magmatic iron ores. Some of these ores are characterized by considerable amounts of REE-bearing minerals like apatite, monazite, and xenotime. The Lakehsiyah iron-apatite deposits in the Bafq district (central Iran), are hosted by late Precambrian-Cambrian igneous and dolomite rocks. In order to investigate geochemical characteristics of the rare earth elements related to their genesis, statistical analysis was carried out. The Interpretation of these data led to the identification of four different zones as follows: iron ore, phosphate rich, metasomatic and host rock. Chemical analysis of the zones shows high LREE/HREE ratio with a considerable negative Eu anomaly being a characteristic of the Kiruna ore-type. The distribution of REE patterns resembles, but in different contents, indicating a genetic relationship, and a similar source of magnetite and apatite ores that are similar to most of the iron-apatite deposits in central Iran. Two generations of apatite (type-I and II) are recognized, including coarse-grained euhedral crystals (type-I) and fine grained crystals (type- II) present in the matrix. Apatite-Ι shows a heterogeneous pattern which consists of dark and light phases due to variable concentrations of REE and traces of Si, Na, and Cl. The REEs enrichment explains the presence of monazite and xenotime inclusions within dark apatite grains being a result of hydrothermal activity. The final stage of the hydrothermal system was accompanied by gold overprinting with minor iron ore during metasomatism, probably driven from a deep-seated intrusion, usually found along micro-fractures cutting the previously formed minerals.

  2. Aeromagnetic expression of rare earth element (REE) deposits in New Mexico, USA

    Science.gov (United States)

    Li, M.

    2016-12-01

    With the development of high-tech devices and the expanding demands in industrial production, rare earth elements(REE) has been playing an increasingly important role in the global economy in the past several decades. Different types of REE serve irreplaceable functions in high-tech industry, as well as for developing sustainable energy and catalysis of manufacturing. Given that the global supply of REE has become strained since 2009 and no known substitutes for REE have been found, exploration for new REE deposits is imperative for economic sustainability. Ten main regions have REE deposits in New Mexico, some of which have not been exploited, while some sites such as Gallinas mountains vein deposits are in early exploration stage. Exploration for the reserves and quantization of mineral compositions of New Mexico's REE depositional districts can have economic benefits in general. In this study, high-resolution airborne magnetic and gravity data were used for studying the Gallinas mountains REE deposit. The purposes of this study are to: (1) characterize specific aeromagnetic anomaly and gravity features from the REE deposits, and (2) apply the characterized features to suggest other areas among the ten REE depositional regions for further exploration. All REE deposits in the study area are found associated with alkaline to alkali-calcic volcanic rocks. A quantitative modeling based on aeromagnetic and gravity anomaly mapping was constructed with an assumption of three units: carbonatites, alkaline volcanic intrusions and REE-concentrated minerals (barite, bastnaesite, etc.). The results of this study show that alkaline deposit is characterized by negative magnetic anomalies and carbonatite is associated with gravity anomaly and vertical gravity gradient high. The area with significantly high aeromagnetic anomaly area and also gravity anomaly high supposed to reflect REE-concentrated minerals such as bastnaesite. For further research, hyperspectral information and

  3. Rare earth elements in human and animal health: State of art and research priorities.

    Science.gov (United States)

    Pagano, Giovanni; Aliberti, Francesco; Guida, Marco; Oral, Rahime; Siciliano, Antonietta; Trifuoggi, Marco; Tommasi, Franca

    2015-10-01

    A number of applications have been developed using rare earth elements (REE), implying several human exposures and raising unsolved questions as to REE-associated health effects. A MedLine survey was retrieved from early reports (1980s) up to June 2015, focused on human and animal exposures to REE. Literature from animal models was selected focusing on REE-associated health effects. Some REE occupational exposures, in jobs such as glass polishers, photoengravers and movie projectionists showed a few case reports on health effects affecting the respiratory system. No case-control or cohort studies of occupational REE exposures were retrieved. Environmental exposures have been biomonitored in populations residing in REE mining areas, showing REE accumulation. The case for a iatrogenic REE exposure was raised by the use of gadolinium-based contrast agents for nuclear magnetic resonance. Animal toxicity studies have shown REE toxicity, affecting a number of endpoints in liver, lungs and blood. On the other hand, the use of REE as feed additives in livestock is referred as a safe and promising device in zootechnical activities, possibly suggesting a hormetic effect both known for REE and for other xenobiotics. Thus, investigations on long-term exposures and observations are warranted. The state of art provides a limited definition of the health effects in occupationally or environmentally REE-exposed human populations. Research priorities should be addressed to case-control or cohort studies of REE-exposed humans and to life-long animal experiments. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Quantifying Post-Fire Aeolian Sediment Transport Using Rare Earth Element Tracers.

    Science.gov (United States)

    Dukes, D.; Ravi, S.; Grandstaff, D. E.; Gonzales, H. B.; Li, J. J.; Sankey, J. B.; Wang, G.; Van Pelt, R. S.

    2016-12-01

    Grasslands and rangelands in arid and semi-arid regions of the world, which provide fundamental ecosystem services, are undergoing rapid increases in fire activity and are highly susceptible to post-fire accelerated soil erosion by wind. A quantitative assessment that integrates fire-wind erosion feedbacks is therefore critically needed in understanding vegetation change, soil biogeochemical cycling, air quality, and landscape evolution. We investigated the applicability of a novel tracer technique - the use of rare earth element (REE) tracers - to quantify soil erosion by wind and to identify sources and sinks of wind-blown sediments in both a burned and unburned shrub-grass transition zone within the Chihuahuan desert (New Mexico, USA). At the beginning of the windy season, March 2016, silt and sand sized particles in shrub, grass, and bare microsites were each tagged with a unique REE oxide, Ho, Eu, and Yb respectively. Samples were then taken directly after application prior to a prescribed fire and again at the end of the windy season in June 2016. All REE tracers showed signs of depletion and mixing, with the depletion in the burned site up to 20% greater than the unburned. REE concentration comparisons between the burned and unburned plots reveal a shift in the source and sink dynamics of sediment post fire. In unburned plots, changes in microsite REE concentrations indicate that sediment moved from the bare to vegetated microsites, whereas the opposite occurred in burned plots. However, burned plot grass microsites acted as a sink for sediment from shrub microsites, whereas unburned plot grass microsites exhibited no enrichment from shrub microsite-sourced sediment. Though fires are known to immediately increase aeolian sediment transport, accompanying changes in the sources and sinks of wind borne sediment may influence biogeochemical cycling and vegetation shifts possibly providing a feedback mechanism for land degradation in dryland ecosystems.

  5. Photosynthetic Characterization of the Plant Dicranopteris dichotoma Bernh. in a Rare Earth Elements Mine

    Institute of Scientific and Technical Information of China (English)

    Li-Feng WANG; Hong-Bing JI; Ke-Zhi BAI; Liang-Bi LI; Ting-Yun KUANG

    2005-01-01

    In order to investigate the distribution of rare earth elements (REEs) in the natural hyperaccumulator fern Dicranopteris dichotoma Bernh. and to characterize this plant photosynthetically,concentrations of REEs in D. dichotoma from mines mining heavy and light REEs (HREEs and LREEs,respectively), as well as in D. dichotoma from an area in which no mining occurred, in southern Jiangxi Province were determined using inductively coupled plasma-mass spectrometry. The REE concentrations in the lamina of D. dichotoma were in the order LREEs mine > HREEs mine > non-mining area. The maximum REE content in the lamina of D. dichotoma from the LREE mine was approximately 2 648 mg/kg dry weight.The photosynthetic activity of D. dichotoma from areas of HREE and LREE mines was improved by the presence of high concentrations of REEs in the lamina compared with D. dichotoma from the non-mining area. However, this enhancement varied according to the concentrations of the REEs, as well as their type.In addition, 77K fluorescence, electron transport rate, and chlorophyll-protein complex studies showed that the enhancement of the photosynthetic activity of D. dichotoma from HREE mines was mainly due to an increase in the chlorophyll-protein complex of the reaction center of photosystem (PS) I, whereas the enhancement observed in D. dichotoma from LREE mines was due to an increase in the internal antennae chlorophyll-protein complex of PS Ⅱ and greater light energy distribution to the light-harvesting chlorophyll-protein complex of PS Ⅱ.

  6. Bioleaching of some Rare Earth Elements from Egyptian Monazite using Aspergillus ficuum and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Wesam Abdel Ghany HASSANIEN

    2013-12-01

    Full Text Available Aspergillus ficuum and Pseudomonas aeruginosa exhibit good potential in generating varieties of organic acids effective for bioleaching some rare earth elements (REEs from Egyptian monazite (purity 97 % and (thorium-uranium concentrate. Batch experiments are performed to compare the bioleaching efficiencies of the one and 2-step bioleaching processes. The highest percentages of bioleached REEs from monazite and (Th-U concentrate directly by A. ficuum are found to be 75.4, 63.8 % at a pulp density 0.6, 1.2 % (w/v, respectively, after 9 days of incubation at 30 °C and 63.5, 52.6 % by P. aeruginosa after 8 days of incubation at 35 °C using a shaking incubator at 175 rpm. It is also found that 14.3 and 1.4 g/l of citric and oxalic acid, respectively, are produced by A. ficuum, while 6.3 g/l of 2-ketogluconic acid is produced by P. aeruginosa. The highest percentages of chemical leaching of REEs from 0.6 % monazite using citric acid 14.3 g/l, oxalic acid 1.4 g/l, citric/oxalic acids 15.7 g/l and 2- ketogluconic acid 6.3 g/l after 24 h are 55.7, 26.0, 58.8 and 45.6 %, respectively. This work addresses the area of beneficiation of the used mineral to solubilize REEs through the biotechnological route in Egypt, where the bioleaching method is more effective than the chemical one using organic acids.doi:10.14456/WJST.2014.85

  7. Use of Phosphate Solubilizing Bacteria to Leach Rare Earth Elements from Monazite-Bearing Ore

    Directory of Open Access Journals (Sweden)

    Doyun Shin

    2015-04-01

    Full Text Available In the present study, the feasibility to use phosphate solubilizing bacteria (PSB to develop a biological leaching process of rare earth elements (REE from monazite-bearing ore was determined. To predict the REE leaching capacity of bacteria, the phosphate solubilizing abilities of 10 species of PSB were determined by halo zone formation on Reyes minimal agar media supplemented with bromo cresol green together with a phosphate solubilization test in Reyes minimal liquid media as the screening studies. Calcium phosphate was used as a model mineral phosphate. Among the test PSB strains, Pseudomonas fluorescens, P. putida, P. rhizosphaerae, Mesorhizobium ciceri, Bacillus megaterium, and Acetobacter aceti formed halo zones, with the zone of A. aceti being the widest. In the phosphate solubilization test in liquid media, Azospirillum lipoferum, P. rhizosphaerae, B. megaterium, and A. aceti caused the leaching of 6.4%, 6.9%, 7.5%, and 32.5% of calcium, respectively. When PSB were used to leach REE from monazite-bearing ore, ~5.7 mg/L of cerium (0.13% of leaching efficiency and ~2.8 mg/L of lanthanum (0.11% were leached by A. aceti, and Azospirillum brasilense, A. lipoferum, P. rhizosphaerae and M. ciceri leached 0.5–1 mg/L of both cerium and lanthanum (0.005%–0.01%, as measured by concentrations in the leaching liquor. These results indicate that determination of halo zone formation was found as a useful method to select high-capacity bacteria in REE leaching. However, as the leaching efficiency determined in our experiments was low, even in the presence of A. aceti, further studies are now underway to enhance leaching efficiency by selecting other microorganisms based on halo zone formation.

  8. Rare earth elements as indicators of hydrothermal processes within the East Scotia subduction zone system

    Science.gov (United States)

    Cole, Catherine S.; James, Rachael H.; Connelly, Douglas P.; Hathorne, Ed C.

    2014-09-01

    The East Scotia subduction zone, located in the Atlantic sector of the Southern Ocean, hosts a number of hydrothermal sites in both back-arc and island-arc settings. High temperature (>348 °C) 'black smoker' vents have been sampled at three locations along segments E2 and E9 of the East Scotia back-arc spreading ridge, as well as 'white smoker' (Mg = 0 mmol/kg) is markedly different, with pH ranging from andesite-hosted, providing an ideal opportunity for investigating the geochemical controls on rare earth element (REE) behaviour. Endmember hydrothermal fluids from E2 and E9 have total REE concentrations ranging from 7.3 to 123 nmol/kg, and chondrite-normalised distribution patterns are either light REE-enriched (LaCN/YbCN = 12.8-30.0) with a positive europium anomaly (EuCN/Eu∗CN = 3.45-59.5), or mid REE-enriched (LaCN/NdCN = 0.61) with a negative Eu anomaly (EuCN/Eu∗CN = 0.59). By contrast, fluids from the Kemp Caldera have almost flat REE patterns (LaCN/YbCN = 2.1-2.2; EuCN/Eu∗CN = 1.2-2.2). We demonstrate that the REE geochemistry of fluids from the East Scotia back-arc spreading ridge is variably influenced by ion exchange with host minerals, phase separation, competitive complexation with ligands, and anhydrite deposition, whereas fluids from the Kemp submarine volcano are also affected by the injection of magmatic volatiles which enhances the solubility of all the REEs. We also show that the REE patterns of anhydrite deposits from Kemp differ from those of the present-day fluids, potentially providing critical information about the nature of hydrothermal activity in the past, where access to hydrothermal fluids is precluded.

  9. The effects of rare earth elements on an anaerobic hydrogen producing microorganism

    Science.gov (United States)

    Fujita, Y.; St Jeor, J. D.; Reed, D. W.

    2016-12-01

    Rapid growth of new energy technologies and consumer electronics is leading to increased fluxes of rare earth elements (REE), during the phases of resource extraction, product usage, recycling, and disposal. However, little is known about the impacts of these increased REE fluxes on environmental ecosystems, whether natural or engineered (e.g., biological waste treatment systems). We have been evaluating the effects of europium and yttrium on hydrogen production by an anaerobic fermenting microorganism, Sporacetigenium mesophilum, originally isolated from an anaerobic digester at a wastewater treatment plant.1 Europium and yttrium are important components of phosphors used in fluorescent lighting, and are expected to be recycled in larger quantities in the future. Also tested was the compound tributyl phosphate (TBP), a widely used complexing agent in lanthanide and actinide separations. TBP and related compounds may be used in recycling processes for REE. S. mesophilumcultures were amended with Eu at 100 ppb, 1 ppm and 10 ppm and hydrogen production was measured. While the lowest Eu concentration had minimal effect on hydrogen production compared to the no Eu control, the two higher Eu amendment levels appeared to enhance hydrogen production. TBP at 0.1 g/L completely inhibited hydrogen production. Measurements of aqueous Eu concentrations indicated that >85% of the added Eu remained soluble at all three of the Eu addition levels tested. Experiments to ascertain whether enhancement (or inhibition) occurs at even higher Eu concentrations are underway, as are corresponding experiments with yttrium. This work contributes to the assessment of the potential impacts of increased REE recycling and processing on ecosystems, and supports decision making with respect to disposal of wastewaters generated during these industrial practices. 1Chen, S., Song, L. and X. Dong. Int J. Syst. Evol. Microbiol. 56, 721-725, doi: 10.1099/ijs.0.63686-0 (2006).

  10. Comparative study on rare earth elements from Flos Sophorae and Fructus Sophorae

    Institute of Scientific and Technical Information of China (English)

    LI Yumei; ZHONG Hao; LU Yuanqi

    2012-01-01

    Flos Sophorae and Fructus Sophorae are two kinds of traditional Chinese medicines.In this work,the two kinds of traditional Chinese medicines collected from eleven areas of Dezhou,were analyzed by inductively couple plasma-mass spectrometry (ICP-MS) to compare the content and distribution of 14 kinds of rare earth elements (REEs).The method was verified by analyzing GBW07605 certified reference material.The results showed that ICP-MS is an accurate,sensitive and reliable technique for determining REEs in traditional Chinese medicine.There were big differences in contents for REEs in Flos Sophorae and Fructus Sophorae from different areas.The contents of total REEs in Flos Sophorae samples from different areas ranged from 1.0785 to 2.2659 μg/g,while those in Fructus Sophorae from 0.6826 to 1.0527μg/g.The contents of total REEs in Flos Sophorae samples from different areas were obviously higher than those in Fructus Sophorae of the same area and there was big difference between various Flos Sophorae samples.Interestingly,the higher the content of total REEs in Flos Sophorae samples,the lower the content of total REEs in Fructus Sophorae samples of the same area.The plots of normalized dement concentration versus atomic number showed some characteristic distribution trends.The distribution trend of light REEs (La-Gd) was relatively flat except a positive Eu anomaly,however,that was steep and discrepant for heavy REEs (Tb-Lu).The results could provide a valuable reference for understanding the relationship between the crrative mechanism,pharmacology characteristics and their geological condition for the two traditional Chinese medicines investigated.

  11. Characteristics of Rare Earth and Trace Element Patterns in Bedded Cherts from the Bottom of the Lower Cambrian in the Northern Tarim Basin, Northwest China and Their Genetic Significance

    Institute of Scientific and Technical Information of China (English)

    YU Bingsong; DONG Hailiang; CHEN Jianqiang; LI Xingwu; LIN Changsong

    2005-01-01

    The sedimentary sequence of the Lower Cambrian is a key interval to reveal the early evolution history of the Earth and there occur widespread cherts worldwide. These cherts possibly carry important information to decipher the breakup process of the Rodinia Continent. Black rock series at the bottom of the Lower Cambrian in the Northern Tarim Basin, China, is composed of black shales interbedded with thin-bedded cherts. Ten chert samples were systematically collected from two outcrops at Xiaoerbulak and Sogatbulak, 8.8 and 7.5 m thick respectively. The cherts were crashed, and were analyzed for trace element and rare earth concentrations. Trace elements such as V, Cu, Zn, U, Pb, Ba, Cd, Ag, Mo,As and Sb are highly enriched, and others such as Rb, Zr, Cs, Hf, Ta, W, Tl, Bi and Th are highly depleted in the cherts.These trace element patterns suggest that the cherts may be of deep crustal origin. The low ratios of Th/U and Rb/Sr further suggest that the cherts are of earth interior sources or received hydrothermal input during their deposition. Chondritenormalized Eu/Eu* value markedly decreases upward in the section from 5.54 at the lowermost to 0.73 at the top, and NASC-normalized Eu/Eu* value decreases from 8.05 to 1.03. The relatively high Eu/Eu* ratio for the cherts from the northem Tarim Basin is most likely due to a hydrothermal input (e.g., Eu/Eu* ~10). The systematic decrease of Eu/Eu*ratio from the bottom to the top of the section reflects that the hydrothermal input is the largest in the lowermost portion of the section and gradually decreases upward. The chondrite-normalized Ce/Ce* ratio ranges from 0.42 to 0.83, with an average of 0.60. North American Shale Composite (NASC)-normalized Ce/Ce* ratio ranges from 0.42 to 0.79, with an average of 0.57. Negative Ce anomalies are distinct. ∑REEs in the cherts generally increase from 10.50 ppm at the bottom to 35.97 ppm at the top of the sampled section. NASC-normalized (La/Lu)N ratio decreases from 2.72 at

  12. A new N-hydroxyethyliminodiacetic acid modified core-shell silica phase for chelation ion chromatography of alkaline earth, transition and rare earth elements.

    Science.gov (United States)

    McGillicuddy, Nicola; Nesterenko, Ekaterina P; Nesterenko, Pavel N; Stack, Elaine M; Omamogho, Jesse O; Glennon, Jeremy D; Paull, Brett

    2013-12-20

    Bare core-shell silica (1.7μm) has been modified with iminodiacetic acid functional groups via standard silane chemistry, forming a new N-hydroxyethyliminodiacetic acid (HEIDA) functionalised core-shell stationary phase. The column was applied in high-performance chelation ion chromatography and evaluated for the retention of alkaline earth, transition and heavy metal cations. The influence of nitric acid eluent concentration, addition of complexing agent dipicolinic acid, eluent pH and column temperature on the column performance was investigated. The efficiencies obtained for transition and heavy metal cations (and resultant separations) were comparable or better than those previously obtained for alternative fully porous silica based chelation stationary phases, and a similarly modified monolithic silica column, ranging from ∼15 to 56μm HETP. Increasing the ionic strength of the eluent with the addition of KNO3 (0.75M) and increasing the column temperature (70°C) facilitated the isocratic separation of a mixture of 14 lanthanides and yttrium in under 12min, with HETP averaging 18μm (7μm for Ce(III)). Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Method validation for high resolution sector field inductively coupled plasma mass spectrometry determination of the emerging contaminants in the open ocean: Rare earth elements as a case study

    Science.gov (United States)

    Wysocka, Irena; Vassileva, Emilia

    2017-02-01

    Analytical procedure for the determination of fourteen rare earth elements (REEs) in the seawater samples has been developed and validated. The elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) at ultra-trace level were measured by high resolution sector field inductively coupled plasma mass spectrometry (HR ICP-SFMS) after off-line analytes pre-concentration and matrix separation. The sample pre-treatment was carried out by commercially available automated system seaFAST-pico™, which is a low-pressure ion chromatography technique, based on solid phase extraction principles. Efficient elimination of seawater matrix and up to 50-fold pre-concentration of REEs enabled their accurate and precise quantification at ng L- 1 level. A validation approach in line with the requirements of ISO/IEC 17025 standard and Eurachem guidelines were followed. With this in mind, selectivity, working range, linearity, recovery (from 92% to 102%), repeatability (1%-4%), intermediate precision (2%-6%), limits of detection (0.001-0.08 ng L- 1) were systematically assessed. The total uncertainty associated to each result was estimated and the main sources of uncertainty sorted out. All major contributions to the combined uncertainty of the obtained results were identified and propagated together, following the ISO/GUM guidelines. The relative expanded uncertainty was estimated at range from 10.4% to 11.6% (k = 2). Demonstration of traceability of measurement results was also presented. Due to the low limits of detection, this method enables the determination of ultra-low levels of REEs in the open seawater as well as small variations in their concentrations. The potential of the proposed analytical procedure, based on combination of seaFAST-pico™ for sample preparation and HR ICP-SFMS, was demonstrated by direct analysis of seawater form different regions of the world.

  14. In Situ Scanning Electron Microscopy Observation of Tensile Deformation in Sn-Ag-Cu Alloys Containing Rare-Earth Elements

    Science.gov (United States)

    Xiao, Wei Min; Shi, Yao Wu; Lei, Yong Ping; Xia, Zhi Dong; Guo, Fu

    2008-11-01

    The effects of rare-earth (RE) element additions on the tensile deformation mechanism of the Sn-3.8Ag-0.7Cu solder alloy have been investigated. The results show that adding RE elements can remarkably improve the tensile strength and elongation of the Sn-3.8Ag-0.7Cu alloy. The increase in the mechanical properties are attributed to the constraints of microcrack growth and grain boundary sliding in the eutectic phase as well as the relaxation of stress concentration in the β-Sn phase due to the addition of the RE elements. It is considered that the RE elements strengthen the eutectic phase and increase the deformation resistance of this alloy.

  15. Stabilization effects of third element on CaCu5 type derivatives of rare-earth transition-metal intermetallics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Part of the results of the key project "Search for novel rare-earth functional materials" supported by the National Natural Science Foundation of China is reviewed. In combination with reports in literature, the effects of the third element M on the formation and stability of La2(Co, M)17, R(Fe, M)12 and R3(Fe, M)29 intermetallic compounds are discussed by considering mixing enthalpy of M with rare-earth, Fe and Co, and atomic radius, electronegativity and electronic configurations, etc. It is concluded that the mixing en thalpy and atomic radius dominate the preferential sites and the minimum amount of M required to stabilize a structure, which ultimately affect the magnetic properties of a compound prominently. This review should provide some heuristic hints for exploiting novel rare-earth transition metal functional materials and for improving their performance.

  16. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology.

    Science.gov (United States)

    Allajbeu, Sh; Yushin, N S; Qarri, F; Duliu, O G; Lazo, P; Frontasyeva, M V

    2016-07-01

    Rare earth elements (REEs) are typically conservative elements that are scarcely derived from anthropogenic sources. The mobilization of REEs in the environment requires the monitoring of these elements in environmental matrices, in which they are present at trace level. The determination of 11 REEs in carpet-forming moss species (Hypnum cupressiforme) collected from 44 sampling sites over the whole territory of the country were done by using epithermal neutron activation analysis (ENAA) at IBR-2 fast pulsed reactor in Dubna. This paper is focused on REEs (lanthanides) and Sc. Fe as typical consistent element and Th that appeared good correlations between the elements of lanthanides are included in this paper. Th, Sc, and REEs were never previously determined in the air deposition of Albania. Descriptive statistics were used for data treatment using MINITAB 17 software package. The median values of the elements under investigation were compared with those of the neighboring countries such as Bulgaria, Macedonia, Romania, and Serbia, as well as Norway which is selected as a clean area. Geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. Geochemical behavior of REEs in moss samples has been studied by using the ternary diagram of Sc-La-Th, Spider diagrams and multivariate analysis. It was revealed that the accumulation of REEs in current mosses is associated with the wind-blowing metal-enriched soils that is pointed out as the main emitting factor of the elements under investigation.

  17. A new type of rare earth elements deposit in weathering crust of Permian basalt in western Guizhou, NW China

    Institute of Scientific and Technical Information of China (English)

    YANG Ruidong; WANG Wei; ZHANG Xiaodong; LIU Ling; WEI Huairui; BAO Miao; WANG Jingxin

    2008-01-01

    A new type of rare earth elements (REEs) deposit was discovered from the gaolinite mudstone in the weathering crust of Permian basalt, Bijie region, western Guizhou, China. It contained ∑-RE2O3 0.065%-1.086%. This type of REEs deposit was widely distributed with steady horizon and thickness of 3-4 m. The ore-bearing weathering crust (kaolinite) of the three discovered REEs deposits belonged to the third episode of the Emeishan basalt eruption. The new type of REEs deposit was suggested that basalt (tuff) weathering could lead to the en- richment of the rare earth elements. Therefore, it is of important economic significance to explore REEs deposits in the weathering crust of basalt (tufts) in Yunnan, Guizhou, and Sichuan Provinces.

  18. Spectrochemical and thermal behaviours of the 2,4- and 3,4-dimethoxybenzoates of rare earth elements

    Directory of Open Access Journals (Sweden)

    AGNIESZKA WALKÓW-DZIEWULSKA

    2000-11-01

    Full Text Available The physicochemical properties and thermal stability in air of the 2,4- and 3,4-dimethoxybenzoates of rare earth elements were compared in order to observe the influence of the position of the –OCH3 substituent on their thermal stability. The complexes of these two series are crystalline, hydrated or anhydrous salts with colours typical of trivalent rare earth ions. The carboxylate group is a bidentate, chelating ligand. The thermal stability of the 2,4- and 3,4-dimethoxybenzoates of the lanthanide elements was studied in the temperature range 273–1173 K. The positions of methoxy- groups in the benzene ring influence the number of crystallization water molecules in the complexes and their thermal stability, which is connected with the varying influence of inductive and mesomeric effects of the –OCH3 substituent on the electron density in the benzene ring.

  19. 茶叶中稀土元素的研究进展%Research progress of rare earth element in tea plants (Camelliasinensis L.)

    Institute of Scientific and Technical Information of China (English)

    彭传燚; 李大祥; 宛晓春; 蔡荟梅

    2015-01-01

    稀土元素对茶树生长和茶叶品质有系列影响。茶树对轻稀土(La, Ce, Y和Nd等)具有较强的生物富集作用,茶树各部位稀土总量大小为:根>茎>老叶>成熟叶>叶柄>芽头,其中茶树叶片中的稀土含量与其老嫩度呈显著的正相关。据报道,我国居民膳食摄入稀土含量均值为0.133 mg/d,而通过饮茶摄入稀土的含量估算为0~0.1129 mg/d,均远小于文献报道的稀土日允许摄入量(1.2~57.6 mg/d),稀土元素饮食暴露水平很低。目前,还没有稀土日允许摄入量的相关标准,但茶叶中稀土总量限量标准和粮食作物一样(2 mg/kg),茶叶不同于粮食作物,在限量的相关标准制订中应充分考虑茶叶的日消费量及稀土元素的水溶性。建议加强稀土食品安全的基础研究和系统性风险评估,以便为完善食品(茶叶)中稀土限量标准提供科学依据。%Rare earth element can be both a help and a hindrance for tea plants growth and tea quality. Tea plant had an enrichment impact on light rare earth element (La, Ce, Y and Nd,etc.), and the rare earth oxides (RE2O3) content of tea plant in descending order was: root > stem > old leave > mature leave > petiole > bud. There was a significant positive correlation between tenderness of tea leaves and RE2O3content. It was reported that daily intake of RE2O3content from diet was 0.133 mg/d, and the intake through tea consumptionwas estimated to be from 0 mg/d to 0.1129 mg/d, which was far below the acceptable daily intake reported (1.2~57.6 mg/d) and suggested that exposure to level of RE2O3was quite low. Currently, no standard limit for RE2O3 daily intake has been recommended by government. However, the limit for content of RE2O3 in tea was the same with food crops (2 mg/kg). Tea was different from food crops, so we should take full account of its daily consumption quantity and solubility of RE2O3 for setting the limitation. Consequently, basic researches on RE2O3 in food

  20. Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos

    Institute of Scientific and Technical Information of China (English)

    Jun'an Cui; Zhiyong Zhang; Wei Bai; Ligang Zhang; Xiao He; Yuhui Ma; Yan Liu; Zhifang Chai

    2012-01-01

    In recent years,with the wide applications and mineral exploitation of rare earth elements,their potential environmental and health effects have caused increasing public concern.Effect of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos were studied.The embryos were exposed to La3+ or Yb3+ at 0,0.01,0.1,0.3,0.5 and 1.0 mmol/L,respectively.Early life stage parameters such as egg and embryo mortality,gastrula development,tail detachment,eyes,somite formation,circulatory system,pigmentation,malformations,hatching rate,length of larvae and mortality were investigated.The results showed La3+ and Yb3+ delayed zebrafish embryo and larval development,decreased survival and hatching rates,and caused tail malformation in a concentration-dependent way.Moreover,heavy rare-earth ytterbium led to more severe acute toxicity of zebrafish embryo than light rare-earth lanthanum.

  1. Estimation of the physico-chemical parameters of materials based on rare earth elements with the application of computational model

    Science.gov (United States)

    Mamaev, K.; Obkhodsky, A.; Popov, A.

    2016-01-01

    Computational model, technique and the basic principles of operation program complex for quantum-chemical calculations of material's physico-chemical parameters with rare earth elements are discussed. The calculating system is scalable and includes CPU and GPU computational resources. Control and operation of computational jobs and also Globus Toolkit 5 software provides the possibility to join computer users in a unified system of data processing with peer-to-peer architecture. CUDA software is used to integrate graphic processors into calculation system.

  2. Distribution of major, trace and rare-earth elements in surface sediments of the Wharton Basin, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Rao, Ch.M.; Higgs, N.C.; Colley, S.; Parthiban, G.

    lithologies (including calcareous ooze, siliceous and red clays) with variable pro- ductivity, aeolian input and influence of Antarc- tic Bottom Water have been studied to address the source, abundance, mode of incorporation and factors controlling....G. and Bruland, K.W., 1985. Rare earth elements in the Pacific and Atlan- tic Oceans. Geochim. Cosmochim. Acta, 49: 1943-1957. Dehairs, F., Chesselet, R. and Jedwab, J., 1980. Discrete sus- pended particles of barite and the barium cycle in the open ocean...

  3. Nanocrystalline Ce1- x La x O2- δ Solid Solutions Synthesized by Hydrolyzing and Oxidizing

    Science.gov (United States)

    Hou, Xueling; Xue, Yun; Han, Ning; Lu, Qianqian; Wang, Xiaochen; Phan, Manh-Huong; Zhong, Yunbo

    2016-05-01

    We undertook a novel batch production approach for the synthesis of CeO2 nanopowders doped with rare earth elements. Solid solution nanopowders of Ce1- x La x O2- δ ( x = 0.15) were successfully synthesized in a large-scale and low-cost production by hydrolyzing and oxidizing Ce-La-C alloys at room temperature and subsequent calcining of their powders at different temperatures (873-1073 K) for 1 h. The Ce-La-C alloys were prepared in a vacuum induction melting furnace. The final products were characterized by x-ray diffraction, transmission electron microscopy, Brunner-Emmet-Teller (BET) surface area analyzer, and Raman spectroscopy. The calculated lattice parameters of the cubic fluorite-type phase of CeO2 tended to increase when La3+ was incorporated into CeO2. The F 2g band shift and the absence of a peak corresponding to La2O3 in the Raman spectra consistently confirmed the incorporation of the La3+ ion into CeO2, and the formation of Ce1- x La x O2- δ solid solutions as manifested by increased oxygen vacancy defects. High-quality Ce1- x La x O2- δ nanopowders of ~10-15 nm diameter with a high BET surface area of ~77 m2 g-1 were obtained. The average crystallite size of Ce1- x La x O2- δ was found to be smaller than that of CeO2 for the same calcination temperature of 1073 K, demonstrating that the introduction of La3+ into CeO2 can stabilize the host lattice and refine the grain size at high temperatures.

  4. Rare-earth-element minerals in martian breccia meteorites NWA 7034 and 7533: Implications for fluid-rock interaction in the martian crust

    Science.gov (United States)

    Liu, Yang; Ma, Chi; Beckett, John R.; Chen, Yang; Guan, Yunbin

    2016-10-01

    Paired martian breccia meteorites, Northwest Africa (NWA) 7034 and 7533, are the first martian rocks found to contain rare-earth-element (REE) phosphates and silicates. The most common occurrence is as clusters of anhedral monazite-(Ce) inclusions in apatite. Occasionally, zoned, irregular merrillite inclusions are also present in apatite. Monazite-bearing apatite is sometimes associated with alkali-feldspar and Fe-oxide. Apatite near merrillite and monazite generally contains more F and OH (F-rich region) than the main chlorapatite host and forms irregular boundaries with the main host. Locally, the composition of F-rich regions can reach pure fluorapatite. The chlorapatite hosts are similar in composition to isolated apatite without monazite inclusions, and to euhedral apatite in lithic clasts. The U-Th-total Pb ages of monazite in three apatite are 1.0 ± 0.4Ga (2σ), 1.1 ± 0.5Ga (2σ), and 2.8 ± 0.7Ga (2σ), confirming a martian origin. The texture and composition of monazite inclusions are mostly consistent with their formation by the dissolution of apatite and/or merrillite by fluid at elevated temperatures (>100 °C). In NWA 7034, we observed a monazite-chevkinite-perrierite-bearing benmoreite or trachyandesite clast. Anhedral monazite and chevkinite-perrierite grains occur in a matrix of sub-micrometer REE-phases and silicates inside the clast. Monazite-(Ce) and -(Nd) and chevkinite-perrierite-(Ce) and -(Nd) display unusual La and Ce depletion relative to Sm and Nd. In addition, one xenotime-(Y)-bearing pyrite-ilmenite-zircon clast with small amounts of feldspar and augite occurs in NWA 7034. One xenotime crystal was observed at the edge of an altered zircon grain, and a cluster of xenotime crystals resides in a mixture of alteration materials. Pyrite, ilmenite, and zircon in this clast are all highly altered, zircon being the most likely source of Y and HREE now present in xenotime. The association of xenotime with zircon, low U and Th contents, and the

  5. Study of Suspended Solid in Constructed Wetland Using Rare Earth Elements

    Science.gov (United States)

    Xiao, Z. X. Z.

    2015-12-01

    Constructed wetland (CW) is one of the commonly used technologies in wastewater treatment. By means of the biochemical interactions among water, microscopic organism, aquatic plant and sediments in natural environment CW can remove biochemical oxygen demand (BOD), ammoniacal nitrogen, suspended solid (SS) and heavy metals. In this study, rare earth elements (REEs) were used as a natural tracer for the study of SS in the CW. The studied CW, Hebao Island free water surface CW, is located in Chiayi County, south Taiwan. The CW is designed for removing SS and BOD due to the pollution from livestock farms in the upstream area. However, the removal of SS was not effective. In some cases, the SS concentration of inflow is even higher than that of outflow. That the sediments on the slope were flushed into the CW was considered as the main problem. After all the refinement, the issue has not improved yet. In the study, the water samples were filtered with 1.0μm filter paper. Then, part of water samples were digested by ultrapure nitric acid to obtain the water representing the total of dissolved and suspended matters. The others were filtered by 0.1μm filter, which represent the matters in dissolved form. REEs and most of metals were subsequently measured with ICP-MS. REEs generally have a unique source and would fractionate in certain regular patterns during biochemical reactions due to lanthanide contraction. They can be an excellent natural tracer in the environmental researches. After normalized by North American Shale Composite, the REEs pattern for the samples with the total of dissolved and suspended matters is characterized by a middle REE (MREE) enrichment and light REE (LREE) depletion. According to the previous theoretical studies, the MREE enrichment could be achieved by a selected adsorption of MREEs by organic matters, which is generally humic substance in natural surface water. It is suggested that the refinement of removal efficiency of SS should focus on

  6. Rare Earth Element Speciation in Geothermal Fluids from Yellowstone National Park, Wyoming, USA

    Science.gov (United States)

    Lewis, A. J.; Komninou, A.; Yardley, B. W. D.; Palmer, M. R.

    1998-02-01

    Elevated concentrations (20-1133 nmol/kg) of rare earth elements (REE) are present in acid-sulphate and acid-sulphate-chloride hydrothermal waters of the Yellowstone National Park (YNP). We used recently estimated thermodynamic data ( Haas et al 1995) to speciate seventeen YNP hydrothermal fluids with the EQ3NR code. The fluids show a range in pH (2.0-4.0) and temperature (70°-93°C) and are of varied chemistry, with TDS = 155-2,075 ppm, sulphate = 100-10,325 μmol/kg, chloride = 190-24,580 μmol/kg, fluoride = 26-1,790 μmol/kg, and SO 4/F = 0.8-323. Field temperature and pH measurements were used in the modelling and saturation with kaolinite and quartz was assumed, although quartz was actually supersaturated. Where possible, oxygen fugacity was calculated from the analytical sulphate/sulphide ratios, otherwise it was set above the hematite-magnetite buffer and pyrite saturation (although speciation calculations show that this is not critical). Carbonate and phosphate levels were set at the analytical detection limit, with the exception of 4 waters for which analytical data for phosphate existed. The waters show little fractionation of REE relative to their host rhyolitic volcanics; it appears that the REE abundances of hydrothermal fluids resulting from alteration of YNP rhyolites are unaffected by the presence of potential complexing species, i.e., that acid-alteration completely strips REE from the portion of the rocks that it affects without any fractionation across the REE series. The main control over REE speciation is the relative abundances of potential complexing agents; however, pH and absolute abundances are also important. In the most acidic waters (pH ˜ 2.0) the free ion is the major species when salinity and SO 4/Cl are low (60-80% of each REE), and REE complexes with chloride can be significant (up to 5%). For higher SO 4/Cl values, sulphate complexes dominate (80-90%). For less acid waters (pH 2.8-4.0) fluoride is the main complexing agent in

  7. Biogeochemical Cycle and Residue of Extraneous Rare Earth Elements in Agricultural Ecosystem

    Institute of Scientific and Technical Information of China (English)

    王立军; 梁涛; 丁士明; 张朝生; 张国梁; 王秀丽

    2004-01-01

    Four groups of field experiments including foliage dressing with a regular amount of rare earth elements(REEs),soil dressing with a regular amount of REEs,soil dressing with a triple regular amount of REEs and the control were carried out in Panggezhuang Village,Daxing County,Beijing,where REE fertilizers are widely applied. The input and output fluxes of all kinds of REEs in the soil and plant system were measured using ICP-MS. The results show that the total amount of REEs carried by rain,snow,irrigation water,composite fertilizer and dust is at a very low level in the control field,which is only about 19.3 g·nm-1 per year. The amounts of REE input in the fields with application of extraneous REEs are much higher than that under control. The total amounts of REE input in the fields with foliage dressing and soil dressing are 9.7 and 106 times higher than that under control,respectively. However,the total outputs of REEs via wheat and infiltrated water are quite similar among the four experimental fields. Uptake of wheat is the main way of output and concentrations of REEs in different organs follow a descending order of roots>leaves>stems>crusts>seeds. Based on calculation,the amount of REE output is slightly higher than that of input in the control field,which implies that it is hard for REEs to accumulate in the soils without application of REE fertilizers. In the fields with the application of extraneous REEs,the amount of REEs in soils can increase with the increasing input of REEs. If REE-fertilizers are applied regularly via soil dressing with the ordinary amount,the concentrations of REEs in the surface soils may double in 159 years. The speed of REE accumulation with foliage dressing is much lower than that with soil dressing,and it needs 2008 years to double the concentrations of REEs in surface soils.

  8. Metal loading effect on rare earth element binding to humic acid: Experimental and modelling evidence

    Science.gov (United States)

    Marsac, Rémi; Davranche, Mélanie; Gruau, Gérard; Dia, Aline

    2010-03-01

    The effect of metal loading on the binding of rare earth elements (REE) to humic acid (HA) was studied by combining ultrafiltration and Inductively Coupled Plasma Mass Spectrometry techniques. REE-HA complexation experiments were performed at pH 3 for REE/C molar ratios ranging from ca 4 × 10 -4 to 2.7 × 10 -2. Results show that the relative amount of REE bound to HA strongly increases with decreasing REE/C. A middle-REE (MREE) downward concavity is shown by patterns at high metal loading, whereas patterns at low metal loading display a regular increase from La to Lu. Humic Ion Model VI modelling are close to the experimental data variations, provided that (i) the ΔLK 2 parameter (i.e. the Model VI parameter taken into account the presence of strong but low density binding sites) is allowed to increase regularly from La to Lu (from 1.1 to 2.1) and (ii) the published log KMA values (i.e. the REE-HA binding constants specific to Model VI) are slightly modified, in particular with respect to heavy REE. Modelling approach provided evidence that logKdREE patterns with varying REE/C likely arises because REE binding to HA occurs through two types of binding sites in different density: (i) a few strong sites that preferentially complex the heavy REE and thus control the logKdREE atterns at low REE/C; (ii) a larger amount of weaker binding sites that preferentially complex the middle-REE and thus control the logKdREE pattern at high REE/C. Hence, metal loading exerts a major effect on HA-mediated REE binding, which could explain the diversity of published conditional constants for REE binding with HA. A literature survey suggests that the few strong sites activated at low REE/C could be multidentate carboxylic sites, or perhaps N-, or P-functional groups. Finally, an examination of the literature field data proposed that the described loading effect could account for much of the variation in REE patterns observed in natural organic-rich waters (DOC > 5 mg L -1 and 4

  9. Peculiarities of the valence state of Ce and Yb in RM{sub 4}Al{sub 8} (R=rare earth; M=Cr, Mn, Fe, Cu)

    Energy Technology Data Exchange (ETDEWEB)

    Shcherba, I.D. [L`vovskij Gosudarstvennyj Univ., Lvov (Ukraine); Koterlyn, M.D. [L`vovskij Gosudarstvennyj Univ., Lvov (Ukraine); Kushnir, A.P. [L`vovskij Gosudarstvennyj Univ., Lvov (Ukraine); Kutjanskyj, R.R. [L`vovskij Gosudarstvennyj Univ., Lvov (Ukraine); Synjushko, V.G. [L`vovskij Gosudarstvennyj Univ., Lvov (Ukraine); Tsybukh, Yu.D. [L`vovskij Gosudarstvennyj Univ., Lvov (Ukraine); Yatsyk, B.M. [L`vovskij Gosudarstvennyj Univ., Lvov (Ukraine); Margolych, I.I. [L`vovskij Gosudarstvennyj Univ., Lvov (Ukraine)

    1996-05-01

    L{sub III} X-ray absorption (77 and 300 K) and magnetic susceptibility measurements have been performed on RM{sub 4}Al{sub 8} compounds. The mixed valence state of Ce was observed in CeM{sub 4}Al{sub 8} with M=Cr,Mn,Fe. In the case of M=Cu the Ce{sup 3+} state is stabilized, but the Yb-based compound shows intermediate valence (V{sub Yb}{approx}2.5). In other Yb-based compounds, the Yb ion is mainly in the trivalent state. The temperature dependence of the magnetic susceptibility of RFe{sub 4}Al{sub 8} compounds fits the Curie-Weiss law over a wide temperature range. (orig.).

  10. Study On The Separation And Extraction Of Rare-Earth Elements From The Phosphor Recovered From End Of Life Fluorescent Lamps

    Directory of Open Access Journals (Sweden)

    Shin D.-W.

    2015-06-01

    Full Text Available In this study, recovered phosphor from end of life three-wavelength fluorescent lamp was selected for reuse rare earth elements in the phosphor. The effect of a type of acid, concentration, and time was investigated as solubility of rare earth elements. In addition, precipitate heat-treated was investigated as possibility of reusable phosphor. The results showed that the amount of the rare earth elements was different values depending on the type of acid, and it was investigated with concentration of acid and reaction time. After precipitation reaction, the precipitate was sintered in electric furnace in order to reuse rare earth elements as phosphor. It was confirmed that yttrium, europium, oxygen, and carbon through X-ray diffraction and inductively coupled plasma analysis. Following the results, it can assume that rare earth oxide reuse the phosphor as three-wavelength fluorescent lamp.

  11. Rare earth element behavior during groundwater – seawater mixing along the Kona Coast of Hawaii

    Science.gov (United States)

    Johannesson, Karen H.; Palmore, C. Dianne; Fackrell, Joseph; Prouty, Nancy G.; Swarzenski, Peter W.; Chevis, Darren A.; Telfeyan, Katherine; White, Christopher D.; Burdige, David J.

    2017-01-01

    Groundwater and seawater samples were collected from nearshore wells and offshore along the Kona Coast of the Big Island of Hawaii to investigate rare earth element (REE) behavior in local subterranean estuaries. Previous investigations showed that submarine groundwater discharge (SGD) is the predominant flux of terrestrial waters to the coastal ocean along the arid Kona Coast of Hawaii. Groundwater and seawater samples were filtered through 0.45 μm and 0.02 μm pore-size filters to evaluate the importance of colloidal and soluble (i.e., truly dissolved ionic species and/or low molecular weight [LMW] colloids) fractions of the REEs in the local subterranean estuaries. Mixing experiments using groundwater collected immediately down gradient from a wastewater treatment facility (WWTF) proximal to the Kaloko-Hanokohau National Historic Park, and more “pristine” groundwater from a well constructed in a lava tube at Kiholo Bay, were mixed with local seawater to study the effect of solution composition (i.e., pH, salinity) on the concentrations and fractionation behavior of the REEs as groundwater mixes with seawater in Kona Coast subterranean estuaries. The mixed waters were also filtered through 0.45 or 0.02 μm filters to ascertain the behavior of colloidal and soluble fractions of the REEs across the salinity gradient in each mixing experiment. Concentrations of the REEs were statistically identical (two-tailed Student t-test, 95% confidence) between the sequentially filtered sample aliquots, indicating that the REEs occur as dissolved ionic species and/or LMW colloids in Kona Coast groundwaters. The mixing experiments revealed that the REEs are released to solution from suspended particles or colloids when Kona Coast groundwater waters mix with local seawater. The order of release that accompanies increasing pH and salinity follows light REE (LREE) > middle REE (MREE) > heavy REE (HREE). Release of REEs in the mixing experiments is driven by decreases in the

  12. Rare earth element behavior during groundwater-seawater mixing along the Kona Coast of Hawaii

    Science.gov (United States)

    Johannesson, Karen H.; Palmore, C. Dianne; Fackrell, Joseph; Prouty, Nancy G.; Swarzenski, Peter W.; Chevis, Darren A.; Telfeyan, Katherine; White, Christopher D.; Burdige, David J.

    2017-02-01

    Groundwater and seawater samples were collected from nearshore wells and offshore along the Kona Coast of the Big Island of Hawaii to investigate rare earth element (REE) behavior in local subterranean estuaries. Previous investigations showed that submarine groundwater discharge (SGD) is the predominant flux of terrestrial waters to the coastal ocean along the arid Kona Coast of Hawaii. Groundwater and seawater samples were filtered through 0.45 μm and 0.02 μm pore-size filters to evaluate the importance of colloidal and soluble (i.e., truly dissolved ionic species and/or low molecular weight [LMW] colloids) fractions of the REEs in the local subterranean estuaries. Mixing experiments using groundwater collected immediately down gradient from a wastewater treatment facility (WWTF) proximal to the Kaloko-Hanokohau National Historic Park, and more "pristine" groundwater from a well constructed in a lava tube at Kiholo Bay, were conducted with local seawater to study the effect of solution composition (i.e., pH, salinity) on the concentrations and fractionation behavior of the REEs as groundwater mixes with seawater in Kona Coast subterranean estuaries. The mixed waters were also filtered through 0.45 or 0.02 μm filters to ascertain the behavior of colloidal and soluble fractions of the REEs across the salinity gradient in each mixing experiment. Concentrations of the REEs were statistically identical (two-tailed Student t-test, 95% confidence) between the sequentially filtered sample aliquots, indicating that the REEs occur as dissolved ionic species and/or LMW colloids in Kona Coast groundwaters. The mixing experiments revealed that the REEs are released to solution from suspended particles or colloids when Kona Coast groundwater waters mix with local seawater. The order of release that accompanies increasing pH and salinity follows light REE (LREE) > middle REE (MREE) > heavy REE (HREE). Release of REEs in the mixing experiments is driven by decreases in the

  13. Element Partitioning Constraints on Formation and Composition of the Earth's Core

    Science.gov (United States)

    Li, J.; Agee, C. B.; Fei, Y.

    1998-01-01

    Element partitioning study provides a number of constraints on the formation and composition of the core. First, partitioning of siderophile elements between the core and mantle should explain the "excess" siderophile elements in the mantle. Second, partitioning of light element(s) between the core and mantle should supply the core with the right amount of light element(s) to account for the density deficit in the core. Third, partitioning of light element(s) between the inner and outer core should be consistent with the observed difference in density deficits (relative to pure Fe) between these two reservoirs. In this study, high-pressure and high-temperature experiments have been conducted to investigate the pressure, temperature, and composition effects on partitioning of siderophile elements Ni and Co between core-forming Fe alloy and mantle silicate melt and minerals, partitioning of light elements S, O, and Si between core-forming Fe alloy and mantle silicate melt and minerals, and partitioning of light elements S and C between solid and liquid Fe. The implications of these results for mechanism of core formation and the composition of the core are discussed.

  14. First determination of s-process element abundances in pre-main sequence clusters. Y, Zr, La, and Ce in IC 2391, the Argus association, and IC 2602

    Science.gov (United States)

    D'Orazi, V.; De Silva, G. M.; Melo, C. F. H.

    2017-02-01

    Context. Several high-resolution spectroscopic studies have provided compelling observational evidence that open clusters display a decreasing trend of their barium abundances as a function of the cluster's age. Young clusters (ages ≲ 200 Myr) exhibit significant enhancement in the [Ba/Fe] ratios, at variance with solar-age clusters where the Ba content has been found to be [Ba/Fe] 0 dex. Different viable solutions have been suggested in the literature; nevertheless, a conclusive interpretation of such a peculiar trend has not been found. Interestingly, it is debated whether the other species produced with Ba via s-process reactions follow the same trend with age. Aims: Pre-main sequence clusters (≈10-50 Myr) show the most extreme behaviour in this respect: their [Ba/Fe] ratios can reach 0