WorldWideScience

Sample records for earth doped integrated

  1. Rare earth-doped integrated glass components: modeling and optimization

    DEFF Research Database (Denmark)

    Lumholt, Ole; Bjarklev, Anders Overgaard; Rasmussen, Thomas

    1995-01-01

    For the integrated optic erbium-doped phosphate silica-amplifier, a comprehensive model is presented which includes high-concentration dissipative ion-ion interactions. Based on actual waveguide parameters, the model is seen to reproduce measured gains closely. A rigorous design optimization...... is performed, and the influence of variations in the launched pump power, the core cross section, the waveguide length, the erbium concentration, and the background losses are evaluated. Optimal design proposals are given, and the process reproducibility of the proposed optimal design is examined. Requirements...

  2. Three-color integration on rare-earth-doped GaN electroluminescent thin films

    Science.gov (United States)

    Wang, Y. Q.; Steckl, A. J.

    2003-01-01

    We have realized full color integration on rare-earth-doped thin-film electroluminescent (EL) GaN using lateral integration. Tm, Er, and Eu dopants were in situ doped into GaN thin films during growth in order to obtain blue, green, and red emission, respectively. Three color pixel arrays have been fabricated using spin-on-glass films as the sacrificial layers for lift-off lithography. The pixel dimensions are 0.2×0.7 mm2, and the separation is 0.2 mm. dc EL devices were fabricated using indium tin oxide transparent electrodes. Typical applied voltage was 30-40 V. The blue emission from Tm-doped GaN has a peak at 477 nm, the green emission from Er-doped GaN has two peaks at 537 and 558 nm, while the red emission from Eu-doped GaN has a peak at 621 nm.

  3. Plasma synthesis of rare earth doped integrated optical waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Raoux, S.; Anders, S.; Yu, K.M.; Brown, I.G. [Lawrence Berkeley Lab., CA (United States); Ivanov, I.C. [Charles Evans & Associates, Redwood City, CA (United States)

    1995-03-01

    We describe a novel means for the production of optically active planar waveguides. The makes use of a low energy plasma deposition. Cathodic-arc-produced metal plasmas the metallic components of the films and gases are added to form compound films. Here we discuss the synthesis of Al{sub 2{minus}x}ER{sub x}O{sub 3} thin films. The erbium concentration (x) can vary from 0 to 100% and the thickness of the film can be from Angstroms to microns. In such material, at high active center concentration (x=l% to 20%), erbium ions give rise to room temperature 1.53{mu}m emission which has minimum loss in silica-based optical fibers. With this technique, multilayer integrated planar waveguide structures can be grown, such as Al{sub 2}O{sub 3}/Al{sub 2{minus}x}Er{sub x}O{sub 3}/Al{sub 2}O{sub 3}/Si, for example.

  4. Lateral color integration on rare-earth-doped GaN electroluminescent thin films

    Science.gov (United States)

    Lee, D. S.; Steckl, A. J.

    2002-03-01

    Lateral color integration has been obtained using GaN thin films doped with Er and Eu. These rare-earth doped GaN (GaN:RE) films were grown on Si (111) substrates by molecular beam epitaxy. Independent red and green emissions have been obtained from side-by-side Er and Eu electroluminescent devices. Photoluminescence and electroluminescence operation show green emissions at 537 and 558 nm from Er-doped GaN and red emission at 621 nm from Eu-doped GaN. Two patterning fabrication techniques have been investigated to obtain lateral integration: (a) use of shadow masks during 400 °C growth of GaN:RE films; (b) photoresist liftoff in conjunction with <100 °C GaN:RE growth. Devices fabricated by the shadow mask method were bright enough to be detected under the ambient light at a bias of 30 V. The GaN:RE films were clear and their surfaces were smooth with nanoscale GaN grains. The root mean square surface roughness was measured to be 5-10 nm.

  5. Monolithically integrated active waveguides and lasers using rare-earth doped spin-on glass

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Sullivan, C.T.; Vawter, G.A. [and others

    1996-09-01

    This LDRD program No. 3505.230 explored a new approach to monolithic integration of active waveguides and rare-earth solid state lasers directly onto III-V substrates. It involved selectively incorporating rare-earth ions into spin-on glasses (SOGs) that could be solvent cast and then patterned with conventional microelectronic processing. The patterned, rare-earth spin-on glasses (RESOGs) were to be photopumped by laser diodes prefabricated on the wafer and would serve as directly integrated active waveguides and/or rare-earth solid state lasers.

  6. Doped to Rare Earth Ions

    African Journals Online (AJOL)

    In the present work, we are interested by studying the spectroscopic properties for optical applications, mainly laser amplification, of MF2 crystals, where M is an alkaline earth (Ba, Sr) or Cadmium (Cd) doped with rare earth ions (Tb3+, Er3+, Ho3+. So far, we present the absorption and emission properties and also the ...

  7. Design and length optimization of an adiabatic coupler for on-chip vertical integration of rare-earth-doped double tungstate waveguide amplifiers

    NARCIS (Netherlands)

    Mu, Jinfeng; Sefünç, Mustafa; García Blanco, Sonia Maria

    2014-01-01

    The integration of rare-earth doped double tungstate waveguide amplifiers onto passive technology platforms enables the on-chip amplification of very high bit rate signals. In this work, a methodology for the optimized design of vertical adiabatic couplers between a passive Si3N4 waveguide and the

  8. Thermoluminescence dosimetry of rare earth doped calcium ...

    Indian Academy of Sciences (India)

    Unknown

    CaAl2O4) doped with different rare earth ions have been studied and their suitability for radiation dosimetry applications is discussed. It is observed that monocalcium aluminate doped with cerium is a good dosimeter having linear response up to ...

  9. Thermoluminescence dosimetry of rare earth doped calcium ...

    Indian Academy of Sciences (India)

    The thermoluminescence (TL) properties of calcium aluminate (CaAl2O4) doped with different rare earth ions have been studied and their suitability for radiation dosimetry applications is discussed. It is observed that monocalcium aluminate doped with cerium is a good dosimeter having linear response up to about 4 kGy of ...

  10. Rare-earth (Nd3+, Er3+, and Yb3+)-doped aluminium phosphate sol-gel films

    Science.gov (United States)

    He, Qing; Lafreniere, Sylvain; Najafi, S. Iraj; Honkanen, Seppo

    1993-04-01

    In this paper, we report on fabrication process of ordinary and rare-earth-doped aluminum phosphate sol-gel films and their physical and optical properties. The gel films are transparent, hard and of good optical quality as glass. High doping of rare-earths (Nd3+, Er3+ and Yb3+) are realized in films with this technique. This type of doped films offer potential benefits for applications in the field of active integrated optics devices for optical telecommunication systems.

  11. Monolithic Rare Earth Doped PTR Glass Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of the project is to demonstrate the feasibility of a monolithic solid state laser on the basis of PTR glass co-doped with luminescent rare earth ions....

  12. Negative Refraction in Rare-Earth Doped Crystals

    Science.gov (United States)

    2016-06-09

    AFRL-AFOSR-VA-TR-2016-0221 NEGATIVE REFRACTION IN RARE-EARTH DOPED CRYSTALS Deniz Yavuz UNIVERSITY OF WISCONSIN SYSTEM MADISON WI Final Report 06/09...DATES COVERED (From - To) March 2013-February 2016 4. TITLE AND SUBTITLE NEGATIVE REFRACTION IN RARE-EARTH DOPED CRYSTALS 5a. CONTRACT NUMBER...ABSTRACT In this project, our long-term goal is to demonstrate the first negative refraction in atomic systems. Although the concept of negative

  13. Tuning NaYF4 Nanoparticles through Alkaline Earth Doping

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2013-10-01

    Full Text Available Phase and size of lanthanide-doped nanoparticles are the most important characteristics that dictate optical properties of these nanoparticles and affect their technological applications. Herein, we present a systematic study to examine the effect of alkaline earth doping on the formation of NaYF4 upconversion nanoparticles. We show that alkaline earth doping has a dual function of tuning particle size of hexagonal phase NaYF4 nanoparticles and stabilizing cubic phase NaYF4 nanoparticles depending on composition and concentration of the dopant ions. The study described here represents a facile and general strategy to tuning the properties of NaYF4 upconversion nanoparticles.

  14. Bragg-grating-based rare-earth-ion-doped channel waveguide lasers and their applications

    NARCIS (Netherlands)

    Bernhardi, Edward

    2012-01-01

    The research presented in this thesis concerns the investigation and development of Bragggrating-based integrated cavities for the rare-earth-ion-doped Al2O3 (aluminium oxide) waveguide platform, both from a theoretical and an experimental point of view, with the primary purpose of realizing

  15. Spectroscopic characterization of manganese-doped alkaline earth ...

    Indian Academy of Sciences (India)

    Alkaline earth lead zinc phosphate glasses doped with Mn(II) are characterized by spectroscopic techniques like X-ray diffraction (XRD), UV–visible, differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), Fourier transform infrared (FTIR) and Raman. Optical absorption spectrum exhibits four ...

  16. Upconversion studies in rare earth ions-doped lanthanide materials

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... for direct vision applications. There are many applications of rare earth-doped materials. [1,2]. Er3+ ion has low photon absorption coefficient at around 976 nm. The 976 nm laser excitation wavelength is cheaply available and absorption of this wavelength in water is also low. Therefore, many researchers ...

  17. Microlasers based on high-Q rare-earth-doped aluminum oxide resonators on silicon (Conference Presentation)

    Science.gov (United States)

    Bradley, Jonathan D. B.; Su, Zhan; Frankis, Henry C.; Magden, Emir Salih; Li, Nanxi; Byrd, Matthew; Purnawirman, Purnawirman; Shah Hosseini, Ehsan; Adam, Thomas N.; Leake, Gerald; Coolbaugh, Douglas; Watts, Michael R.

    2017-02-01

    One of the key challenges in the field of silicon photonics remains the development of compact integrated light sources. In one approach, rare-earth-doped glass microtoroid and microdisk lasers have been integrated on silicon and exhibit ultra-low thresholds. However, such resonator structures are isolated on the chip surface and require an external fiber to couple light to and from the cavity. Here, we review our recent work on monolithically integrated rare-earth-doped aluminum oxide microcavity lasers on silicon. The microlasers are enabled by a novel high-Q cavity design, which includes a co-integrated silicon nitride bus waveguide and a silicon dioxide trench filled with rare-earth-doped aluminum oxide. In passive (undoped) microresonators we measure internal quality factors as high as 3.8 × 105 at 0.98 µm and 5.7 × 105 at 1.5 µm. In ytterbium, erbium, and thulium-doped microcavities with diameters ranging from 80 to 200 µm we show lasing at 1.0, 1.5 and 1.9 µm, respectively. We observe sub-milliwatt lasing thresholds, approximately 10 times lower than previously demonstrated in monolithic rare-earth-doped lasers on silicon. The entire fabrication process, which includes post-processing deposition of the gain medium, is silicon-compatible and allows for integration with other silicon-based photonic devices. Applications of such rare earth microlasers in communications and sensing and recent design enhancements will be discussed.

  18. Crystallization behavior of rare-earth doped fluorochlorozirconate glasses.

    Science.gov (United States)

    Paßlick, C; Ahrens, B; Henke, B; Johnson, J A; Schweizer, S

    2011-06-01

    A series of fluorochlorozirconate (FCZ) glasses, each doped with a different rare-earth, was prepared and examined to determine thermal stability and activation energy, Ea , of the dopant dependent BaCl2 crystallization. Non-isothermal differential scanning calorimetry (DSC) measurements were done to investigate the endothermic and exothermic reactions upon heat treatment of the glass samples. In comparison to the rare-earth free FCZ glass, significant changes in the Hruby constant, Hr , and Ea were found due to the addition of a rare-earth and also between the individual dopants.

  19. Light Emission from Rare-Earth Doped Silicon Nanostructures

    Directory of Open Access Journals (Sweden)

    P. Mascher

    2008-05-01

    Full Text Available Rare earth (Tb or Ce-doped silicon oxides were deposited by electron cyclotron resonance plasma-enhanced chemical vapour deposition (ECR-PECVD. Silicon nanocrystals (Si-ncs were formed in the silicon-rich films during certain annealing processes. Photoluminescence (PL properties of the films were found to be highly dependent on the deposition parameters and annealing conditions. We propose that the presence of a novel sensitizer in the Tb-doped oxygen-rich films is responsible for the indirect excitation of the Tb emission, while in the Tb-doped silicon-rich films the Tb emission is excited by the Si-ncs through an exciton-mediated energy transfer. In the Ce-doped oxygen-rich films, an abrupt increase of the Ce emission intensity was observed after annealing at 1200∘C. This effect is tentatively attributed to the formation of Ce silicate. In the Ce-doped silicon-rich films, the Ce emission was absent at annealing temperatures lower than 1100∘C due to the strong absorption of Si-ncs. Optimal film compositions and annealing conditions for maximizing the PL intensities of the rare earths in the films have been determined. The light emissions from these films were very bright and can be easily observed even under room lighting conditions.

  20. Promising wastewater treatment using rare earth-doped nanoferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M.A., E-mail: moala47@hotmail.com [Materials Science Lab (1), Physics Department, Faculty of Science, Cairo University, Giza (Egypt); Bishay, Samiha T.; Khafagy, Rasha M. [Physics Department, Girls College for Arts, Science and Education, Ain Shams University, Cairo (Egypt); Saleh, N.M. [Physics Department, Faculty of Science, Western Mountain University (Libya)

    2014-01-15

    Single-phases of the spinel nanoferrites Zn{sub 0.5}Co{sub 0.5}Al{sub 0.5}R{sub 0.04}Fe{sub 1.46}O{sub 4}; R=Sm, Pr, Ce and La, were synthesized using the flash auto combustion method. X-ray diffraction (XRD) results indicated that doping nanoferrites with small concentrations of rare earth elements (RE) allowed their entrance to the spinel lattice. Transmission electron microscope (TEM) images revealed that doping with different RE elements resulted in the formation of different nanometric shapes such as nanospheres and nanowires. Doping with Sm{sup 3+} and Ce{sup 3+} resulted in the formation of nanospheres with average diameter of 14 and 30 nm respectively. In addition to the granular nanospheres, doping with Pr{sup 3+} and La{sup 3+} resulted in the formation of some nanowires with different aspect ratios (average length of ≈100 nm and diameter of ≈9 nm) and (average length of ≈150 nm and outer diameter of ≈22 nm) respectively. At fixed temperature, the Ac conductivity (σ) increased as the RE ionic radius increases except for Ce, due to the role of valance fluctuation from Ce{sup 3+} to Ce{sup 4+} ions. La- and Pr-doped nanoferrites showed the highest ac conductivity values, which is most probably due to the presence of large numbers of nanowires in these two types of ferrites. For all entire samples, the effective magnetic moment (μ{sub eff}) decreased, while the Curie temperature (T{sub C}) increased as the RE ionic radius increases. The synthesized rare earth nanoferrites showed promising results in purifying colored wastewater. La-doped ferrite was capable for up-taking 92% of the dye content, followed by Pr-doped ferrite, which adsorbed 85% of the dye, while Sm- and Ce-doped ferrites showed lower dye removal efficiency of 80% and 72% respectively. High dye uptake shown by La- and Pr-doped ferrites is most probably due to the presence of nanowires and their higher Ac conductivity values. These excellent results were not previously reported

  1. Preparation and Characterization of Rare Earth Doped Fluoride Nanoparticles

    OpenAIRE

    DeVol, Timothy A.; Basak Yazgan-Kukouz; Baris Kokuoz; DiMaio, Jeffrey R.; Sprinkle, Kevin B.; Tiffany L. James; Courtney J. Kucera; Luiz G. Jacobsohn; John Ballato

    2010-01-01

    This paper reviews the synthesis, structure and applications of metal fluoride nanoparticles, with particular focus on rare earth (RE) doped fluoride nanoparticles obtained by our research group. Nanoparticles were produced by precipitation methods using the ligand ammonium di-n-octadecyldithiophosphate (ADDP) that allows the growth of shells around a core particle while simultaneously avoiding particle aggregation. Nanoparticles were characterized on their structure, morphology, and luminesc...

  2. Sensing Using Rare-Earth-Doped Upconversion Nanoparticles

    OpenAIRE

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near ...

  3. Rare earth doped zinc oxide varistors

    Science.gov (United States)

    McMillan, April D.; Modine, Frank A.; Lauf, Robert J.; Alim, Mohammad A.; Mahan, Gerald D.; Bartkowiak, Miroslaw

    1998-01-01

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.

  4. Preparation and Characterization of Rare Earth Doped Fluoride Nanoparticles

    Directory of Open Access Journals (Sweden)

    Timothy A. DeVol

    2010-03-01

    Full Text Available This paper reviews the synthesis, structure and applications of metal fluoride nanoparticles, with particular focus on rare earth (RE doped fluoride nanoparticles obtained by our research group. Nanoparticles were produced by precipitation methods using the ligand ammonium di-n-octadecyldithiophosphate (ADDP that allows the growth of shells around a core particle while simultaneously avoiding particle aggregation. Nanoparticles were characterized on their structure, morphology, and luminescent properties. We discuss the synthesis, properties, and application of heavy metal fluorides; specifically LaF3:RE and PbF2, and group IIA fluorides. Particular attention is given to the synthesis of core/shell nanoparticles, including selectively RE-doped LaF3/LaF3, and CaF2/CaF2 core/(multi-shell nanoparticles, and the CaF2-LaF3 system.

  5. Radioluminescence of rare-earth doped aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, M.; Molina, P. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Pinto 399, 7000 Tandil (Argentina); Barros, V. S.; Khoury, H. J.; Elihimas, D. R., E-mail: msantiag@exa.unicen.edu.ar [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, Recife, PE 50740-540 (Brazil)

    2011-10-15

    Carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al{sub 2}O{sub 3} samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  6. Giant optical gain in rare-earth-ion-doped thin films and waveguides

    NARCIS (Netherlands)

    Geskus, D.; Aravazhi, S.; García Blanco, Sonia Maria; Pollnau, Markus

    In a rare-earth-ion-doped double tungstate channel waveguide amplifier, we demonstrate an ultra-high modal gain of 950 dB/cm, two order of magnitude higher than in other rare-earth-ion-doped materials and comparable to modal gain in semiconductors.

  7. Rare Earth-doped Ceria Catalysts for ODHE Reaction in a Catalytic Modified MIEC Membrane Reactor

    OpenAIRE

    Lobera González, Maria Pilar; Balaguer Ramirez, Maria; García Fayos, Julio; Serra Alfaro, José Manuel

    2012-01-01

    An intensification process for the selective oxidation of hydrocarbons integrates a catalytic reactor and an oxygen separation membrane. This work presents the study of oxidative dehydrogenation of ethane at 1123 K in a catalytic membrane reactor based on mixed ionic-electronic conducting (MIEC) membranes. The surface of a membrane made of Ba0.5Sr0.5Co0.8Fe0.2O3-d has been activated using different porous catalytic layers based on rare earth-doped cerias (fluorite structure) and the porous ca...

  8. Electronic and Magnetic Properties of Rare-Earth Metals Doped ZnO Monolayer

    Directory of Open Access Journals (Sweden)

    Changlong Tan

    2015-01-01

    Full Text Available The structural, electronic, and magnetic properties of rare-earth metals doped ZnO monolayer have been investigated using the first-principles calculations. The induced spin polarization is confirmed for Ce, Eu, Gd, and Dy dopings while the induced spin polarization is negligible for Y doping. The localized f states of rare-earth atoms respond to the introduction of a magnetic moment. ZnO monolayer undergoes transition from semiconductor to metal in the presence of Y, Ce, Gd, and Dy doping. More interestingly, Eu doped ZnO monolayer exhibits half-metallic behavior. Our result demonstrates that the RE-doping is an efficient route to modify the magnetic and electronic properties in ZnO monolayer.

  9. Spectroscopy and Device Performance of Rare Earth Doped III-Nitrides

    National Research Council Canada - National Science Library

    Hommerich, Uwe

    2002-01-01

    The recent demonstration of visible thin-film electroluminescence (TFEL) devices based on rare earth doped GaN has spurred great interest in this class of materials for possible applications in full color displays...

  10. Sensing using rare-earth-doped upconversion nanoparticles.

    Science.gov (United States)

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit.

  11. Sensing Using Rare-Earth-Doped Upconversion Nanoparticles

    Science.gov (United States)

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit. PMID:23650480

  12. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  13. Ionic conductivity of rare earth doped phase stabilized Bi2O3: Effect of ionic radius

    Science.gov (United States)

    Bandyopadhyay, S.; Anirban, Sk.; Sinha, A.; Dutta, A.

    2017-05-01

    Nanostructured Bi2O3 was prepared through citrate auto ignition method and stabilized down to room temperature into rhombohedral phase by 30% doping of rare earth cations (Eu3+, Sm3+, Nd3+, La3+), which was experimentally confirmed by the XRD patterns of the doped compositions. The average crystallite size increases with increase of ionic radius. The ionic conductivity of the La-doped compound was found to be highest among other doped compounds. The change in structural and electrical properties were discussed and correlated with the ionic radius of the dopants.

  14. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles

    Science.gov (United States)

    Townley, Helen E.; Kim, Jeewon; Dobson, Peter J.

    2012-07-01

    Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo.Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal

  15. DFT Calculations using WIEN2K to determine oxygen defect structure of rare earth doped ceria

    CERN Document Server

    Khalife, Ali Rida

    2014-01-01

    We perform density functional calculations using the program WIEN2K in order to study oxygen vacancies in rare earth doped ceria. The calculation for all rare earth elements were prepared, however only those foe Cadmium and Europium were performed due to lack of time. Also a short description of my stay at CERN was presented

  16. Spectroscopy and dynamics of rare earth doped fluorides

    NARCIS (Netherlands)

    Ebens, Willem Omco

    1995-01-01

    The defect structure of RE doped Fluorides has been studied along with the conductivity properties, using a variety of techniques, both experimental and theoretical. Two systems have been studied in detail, which represent two kinds of defect states for RE doped SrFr. The system SrFr:CeF, has been

  17. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles†

    Science.gov (United States)

    Townley, Helen E.; Kim, Jeewon; Dobson, Peter J.

    2017-01-01

    Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo. PMID:22767269

  18. Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium

    Energy Technology Data Exchange (ETDEWEB)

    Page, R.H.; Schaffers, K.I.; Waide, P.A.; Tassano, J.B.; Payne, S.A.; Kruplce, W.F.; Bischel, W.K. [Gemfire Corporation, Palo Alto, CA (United States)

    1997-07-26

    We discuss the upconversion luminescence efficiencies of phosphors that generate red, green, and blue light. The phosphors studied are single crystals and powders co-doped with Er{sup 3+} and Yb{sup 3+}, and with Tm{sup 3+} and Yb{sup 3+}. The Yb ions are pumped near 980 nm; transfers of two or three quanta to the co-doped rare earth ion generate visible luminescence. The main contribution embodied in this work is the quantitative measurement of this upconversion efficiency, based on the use of a calibrated integrating sphere, determination of the fraction of pump light absorbed, and careful control of the pump laser beam profile. The green phosphors are the most efficient, yielding efficiency values as high as 4 %, with the red and blue materials giving 1 - 2 %. Saturation was observed in all cases, suggesting that populations of upconversion steps of the ions are maximized at higher power. Quasi-CW modeling of the intensity- dependent upconversion efficiency was attempted; input data included level lifetimes, transition cross sections, and cross-relaxation rate coefficients. The saturation of the Yb,Er:fluoride media is explained as the pumping of Er{sup 3+} ions into a bottleneck (long-lived state)- the {sup 4}I{sub 13/2} metastable level, making them unavailable for further excitation transfer. 32 refs., 5 figs., 3 tabs.

  19. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles.

    Science.gov (United States)

    Townley, Helen E; Kim, Jeewon; Dobson, Peter J

    2012-08-21

    Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo.

  20. Raman and Rietveld structural characterization of sintered alkaline earth doped ceria

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira Junior, Jose Marcio; Brum Malta, Luiz Fernando; Garrido, Francisco M.S. [Departamento de Quimica Inorganica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Centro de Tecnologia, Bloco A, room 632, CEP 68563, 21941-909 Rio de Janeiro, RJ (Brazil); Ogasawara, Tsuneharu [Programa de Engenharia Metalurgica e de Materiais, Coordenacao dos Programas de Pos - Graduacao de Engenharia, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Ilha do Fundao, CEP 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Medeiros, Marta Eloisa, E-mail: chico@iq.ufrj.br [Departamento de Quimica Inorganica, Instituto de Quimica, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Centro de Tecnologia, Bloco A, room 632, CEP 68563, 21941-909 Rio de Janeiro, RJ (Brazil)

    2012-08-15

    Nanocrystalline calcium and strontium singly doped ceria and co-doped ceria materials for solid electrolytes were prepared via a hydrothermal route. The effect of the hydrothermal treatment time on the solid solution composition was evaluated. Sr doped ceria was the most difficult to form, due to the Sr{sup 2+} large ionic radius. The small crystal size (12-16 nm) of powders allowed sintering into dense ceramic pellets at 1350 Degree-Sign C for 5 h. Raman spectroscopy evidenced a great lattice distortion for Sr doped and co-doped ceria materials, explaining the deterioration of the electrical properties for these ceramics. Besides that, a second phase was detected for Sr doped ceria pellet by using X-ray powder diffraction and Rietveld refinement of XRD data. Impedance measurements showed that Ca-doped ceria behaves as the best ionic conductor ({sigma}{sub g} 390 Degree-Sign C = 1.0 Multiplication-Sign 10{sup -3} S cm{sup -1}) since the nominal composition was achieved; on the other hand, Sr doped ceria performed as resistive materials since Sr incorporation into ceria lattice was critical. These results enhance the close interlace between electrical performance and chemical composition of alkaline earth doped ceria. -- Highlights: Black-Right-Pointing-Pointer Hydrothermally synthesized calcium doped ceria nanoparticles. Black-Right-Pointing-Pointer Incorporation of alkaline earth dopant into ceria lattice. Black-Right-Pointing-Pointer Raman and Rietveld structural characterization. Black-Right-Pointing-Pointer Calcium doped ceria ceramic pellets with high ionic conductivity. Black-Right-Pointing-Pointer Problems associated with the Sr{sup 2+} incorporation into ceria lattice.

  1. Optical and Spectroscopic Properties of Polymer Layers Doped with Rare Earth Ions

    OpenAIRE

    Prajzler, Vaclav; Lyutakov, Oleksiy; Huttel, Ivan; Oswald, Jiri; Jerabek, Vitezslav

    2010-01-01

    We report on spectroscopic properties of the Polymethylmethacrylate and Epoxy Novolak Resin polymer doped with Rare Earth ions. Polymer layers were fabricated by a spin coating or by pouring the polymer into a bottomless mould placed on a quartz substrate. The fabricated polymer layers doped with RE ions were examined by infrared spectroscopy and IR spectroscopy of the samples revealed absorption bands corresponding to the O-H vibrations in the region from 3340 cm-1 to 3380 cm-1. Transmission...

  2. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal.

    Science.gov (United States)

    O'Brien, Christopher; Lauk, Nikolai; Blum, Susanne; Morigi, Giovanna; Fleischhauer, Michael

    2014-08-08

    We propose a scheme to couple short single photon pulses to superconducting qubits. An optical photon is first absorbed into an inhomogeneously broadened rare-earth doped crystal using controlled reversible inhomogeneous broadening. The optical excitation is then mapped into a spin state using a series of π pulses and subsequently transferred to a superconducting qubit via a microwave cavity. To overcome the intrinsic and engineered inhomogeneous broadening of the optical and spin transitions in rare-earth doped crystals, we make use of a special transfer protocol using staggered π pulses. We predict total transfer efficiencies on the order of 90%.

  3. INFLUENCE OF RARE-EARTH DOPING ON THE ELECTRICAL PROPERTIES OF HIGH VOLTAGE GRADIENT ZnO VARISTORS

    Directory of Open Access Journals (Sweden)

    LEI KE

    2013-03-01

    Full Text Available The influence of rare-earth doping on the electrical properties of ZnO varistors was investigated. In a lower doping region, the electrical properties were greatly improved with the increase of rare-earth contents. The highest voltage gradient value of 1968.0 V/mm was obtained with a rare-earth concentration of 0.06 mol. %. The microstructure of samples with different amounts of rare-earth oxides was examined and the notable decrease of grain size was identified as the origin for the increased voltage gradient. The doped rare-earth oxides dissolved at the grain boundaries and the excessive doping reduced the voltage across the single grain/grain boundary from 2.72 V to 0.91 V. The poor electrical properties in a higher doping region resulted from the degeneration of grain boundaries and the decrease of block density.

  4. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion

    Science.gov (United States)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.

    2015-02-01

    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  5. Effects of rare earth doping on multi-core iron oxide nanoparticles properties

    Science.gov (United States)

    Petran, Anca; Radu, Teodora; Borodi, Gheorghe; Nan, Alexandrina; Suciu, Maria; Turcu, Rodica

    2018-01-01

    New multi-core iron oxide magnetic nanoparticles doped with rare earth metals (Gd, Eu) were obtained by a one step synthesis procedure using a solvothermal method for potential biomedical applications. The obtained clusters were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray microanalysis (EDX), X-ray photoelectron spectroscopy (XPS) and magnetization measurements. They possess high colloidal stability, a saturation magnetization of up to 52 emu/g, and nearly spherical shape. The presence of rare earth ions in the obtained samples was confirmed by EDX and XPS. XRD analysis proved the homogeneous distribution of the trivalent rare earth ions in the inverse-spinel structure of magnetite and the increase of crystal strain upon doping the samples. XPS study reveals the valence state and the cation distribution on the octahedral and tetrahedral sites of the analysed samples. The observed shift of the XPS valence band spectra maximum in the direction of higher binding energies after rare earth doping, as well as theoretical valence band calculations prove the presence of Gd and Eu ions in octahedral sites. The blood protein adsorption ability of the obtained samples surface, the most important factor of the interaction between biomaterials and body fluids, was assessed by interaction with bovine serum albumin (BSA). The rare earth doped clusters surface show higher afinity for binding BSA. In vitro cytotoxicity test results for the studied samples showed no cytotoxicity in low and medium doses, establishing a potential perspective for rare earth doped MNC to facilitate multiple therapies in a single formulation for cancer theranostics.

  6. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    CERN Document Server

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  7. Photo-Induced conductivity of heterojunction GaAs/Rare-Earth doped SnO2

    Directory of Open Access Journals (Sweden)

    Cristina de Freitas Bueno

    2013-01-01

    Full Text Available Rare-earth doped (Eu3+ or Ce3+ thin layers of tin dioxide (SnO2 are deposited by the sol-gel-dip-coating technique, along with gallium arsenide (GaAs films, deposited by the resistive evaporation technique. The as-built heterojunction has potential application in optoelectronic devices, because it may combine the emission from the rare-earth-doped transparent oxide, with a high mobility semiconductor. Trivalent rare-earth-doped SnO2 presents very efficient emission in a wide wavelength range, including red (in the case of Eu3+ or blue (Ce3+. The advantage of this structure is the possibility of separation of the rare-earth emission centers, from the electron scattering, leading to an indicated combination for electroluminescence. Electrical characterization of the heterojunction SnO2:Eu/GaAs shows a significant conductivity increase when compared to the conductivity of the individual films. Monochromatic light excitation shows up the role of the most external layer, which may act as a shield (top GaAs, or an ultraviolet light absorber sink (top RE-doped SnO2. The observed improvement on the electrical transport properties is probably related to the formation of short conduction channels in the semiconductors junction with two-dimensional electron gas (2DEG behavior, which are evaluated by excitation with distinct monochromatic light sources, where the samples are deposited by varying the order of layer deposition.

  8. Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range

    NARCIS (Netherlands)

    Dekker, R.; Worhoff, Kerstin; Stouwdam, J.W.; van Veggel, F.C.J.M.; Driessen, A.

    In the present work we applied a measurement setup to determine several relevant properties of rare-earth doped nanoparticles dispersed in polymer slab waveguides in a single absorption measurement: background absorption of the polymer host material, water absorption, polymer composition

  9. Absorption spectroscopy of complex rare earth ion doped hybrid materials over a broad wavelength range

    NARCIS (Netherlands)

    Dekker, R.; Worhoff, Kerstin; Stouwdam, J.W.; van Veggel, F.C.J.M.; Driessen, A.

    2005-01-01

    In the present work we applied a measurement setup to determine several relevant properties of rare-earth doped nanoparticles dispersed in polymer slab waveguides in a single absorption measurement: background absorption of the polymer host material, water absorption, polymer composition

  10. Radioluminescence study of rare earth doped some yttrium based phosphors

    Science.gov (United States)

    Ayvacıklı, Mehmet; Ege, Arzu; Ekdal, Elçin; Popovici, Elisabeth-Jeanne; Can, Nurdoğan

    2012-09-01

    This paper reports the luminescence emission spectra of Y(Ta,Nb)O4 activated by rare earth ions such as Eu3+ and Tb3+. The influence of these rare earth ions on the radioluminescence (RL) of yttrium niobate and tantalate phosphors was investigated. The luminescent properties were studied under X-ray and preliminary RL measurements to further evaluate prepared materials. The emission centers of the rare earth activators (Eu3+, Tb3+) were found to contribute efficiently to the total luminescence. With their various luminescence chromaticities, these rare earth activated phosphors are promising materials for solid-state lighting applications as well as for X-ray intensifying screens in medical diagnosis, providing the broad band variation of visible RL from blue to red.

  11. Electronic structure of rare-earth doped SrFBiS{sub 2} superconductors from photoemission spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, P.; Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Jha, Rajveer; Awana, V.P.S. [CSIR-National Physical Laboratory, K S Krishnan Marg, New Delhi-110012 (India); Sekhar, B.R., E-mail: sekhar@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India)

    2016-06-15

    Highlights: • Electronic structure study of Rare Earth (Ce and La) doped SrFBiS2 superconductors have been studied using photoemission spectroscopy and band structure calculations. • Rare Earth doping promotes metallicity and the Fermi level is shifted towards conduction band. • An enhanced spectral weight near E{sub F} accompanied by a reduced density of states at higher binding energy occurs for the doped compound. - Abstract: The electronic structure study of the Rare Earth (La, Ce) doped SrFBiS{sub 2} superconductors using valence band photoemission in conjugation with the band structure calculations have been presented. The spectral features shift towards higher binding energy, consistent with the electron doping, for the doped compounds. An enhanced metallicity in addition to the shift in the Fermi level towards the conduction band occurs for the Rare Earth (RE) doped compounds. Further, the degeneracy of bands along X-M direction at valence band maximum (VBM) and conduction band minimum (CBM) is lifted due to RE doping. An enhanced spectral weight near E{sub F} accompanied by a decrease in density of states at higher binding energy occurs for the doped compounds. This unusual spectral weight shift is substantiated by the change in Fermi surface topology and reduced distortion of Bi-S plane for the doped compounds.

  12. Benefit of Rare-Earth "Smart Doping" and Material Nanostructuring for the Next Generation of Er-Doped Fibers.

    Science.gov (United States)

    Savelii, Inna; Bigot, Laurent; Capoen, Bruno; Gonnet, Cedric; Chanéac, Corinne; Burova, Ekaterina; Pastouret, Alain; El-Hamzaoui, Hicham; Bouazaoui, Mohamed

    2017-12-01

    Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er (3+)-doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er (3+) ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances. On the other hand, so as to avoid such quenching effect, glass modifiers like Al (3+) or P (5+) ions are used in the fabrication of commercial EDFs but are not suitable for applications in harsh environment because these glass modifiers are precursors of radiation-induced structural defects and consequently of optical losses. In this work, we investigate the concept of smart doping via material nanostructuring as a way to fabricate more efficient optical devices. This approach aims at optimizing the glass composition of the fiber core in order to use the minimal content of glass modifiers needed to reach the suited level of performances for EDFA. Er (3+)-doped alumina nanoparticles (NPs), as precursor of Er (3+) ions in the preform fabrication process, were used to control the environment of rare-earth ions and their optical properties. Structural and optical characterizations of NP-doped preforms and optical fibers drawn from such preforms demonstrate the interest of this approach for small concentrations of aluminum in comparison to similar glass compositions obtained by a conventional technique.

  13. Benefit of Rare-Earth "Smart Doping" and Material Nanostructuring for the Next Generation of Er-Doped Fibers

    Science.gov (United States)

    Savelii, Inna; Bigot, Laurent; Capoen, Bruno; Gonnet, Cedric; Chanéac, Corinne; Burova, Ekaterina; Pastouret, Alain; El-Hamzaoui, Hicham; Bouazaoui, Mohamed

    2017-03-01

    Erbium-doped fiber amplifiers (EDFAs) for harsh environments require to develop specific fabrication methods of Er 3+-doped fibers (EDFs) so as to limit the impact of radiation-induced absorption. In this context, a compromise has to be found between the concentration of Erbium and the glass composition. On the one hand, high concentration of Er 3+ ions helps to reduce the length of the EDF and hence the cumulated attenuation but generally leads to luminescence quenching mechanisms that limit the performances. On the other hand, so as to avoid such quenching effect, glass modifiers like Al 3+ or P 5+ ions are used in the fabrication of commercial EDFs but are not suitable for applications in harsh environment because these glass modifiers are precursors of radiation-induced structural defects and consequently of optical losses. In this work, we investigate the concept of smart doping via material nanostructuring as a way to fabricate more efficient optical devices. This approach aims at optimizing the glass composition of the fiber core in order to use the minimal content of glass modifiers needed to reach the suited level of performances for EDFA. Er 3+-doped alumina nanoparticles (NPs), as precursor of Er 3+ ions in the preform fabrication process, were used to control the environment of rare-earth ions and their optical properties. Structural and optical characterizations of NP-doped preforms and optical fibers drawn from such preforms demonstrate the interest of this approach for small concentrations of aluminum in comparison to similar glass compositions obtained by a conventional technique.

  14. Spectroscopic characterization of manganese-doped alkaline earth ...

    Indian Academy of Sciences (India)

    samples at room temperature using Philips X-ray generator. (Model PW1170) with CuKα radiation (λ=1.5418 ... tution of MgO/CaO/SrO/BaO, suggests increased free space within glass structure and changes in the .... energy decreases with replacement of alkaline earth, shows the structural disorder of the system. Smaller is ...

  15. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction

    OpenAIRE

    Cramer, Alisha J.; Cole, Jacqueline M.; Fitzgerald, Vicky; Honkimaki, Veijo; Roberts, Mark A.; Brennan, Tessa; Martin, Richard A.; Saunders, George A.; Newport, Robert J.

    2013-01-01

    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3) x(R�2O3)y(P2O 5)1-(x+y), where (R, R�) denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP 5O14. Thereupon, the effects of rare-earth co-dopin...

  16. Photoelectric characteristics of rare earth element Eu-doped MoS2 thin films

    Science.gov (United States)

    Shi, Weilin; Li, Zhichao; Wang, Lin; Wu, Shuyan; Zhang, Gaoning; Meng, Miaofei; Ma, Xiying

    2018-01-01

    We present the influences of rare earth element Eu3+ doping on the photoelectric characteristics of molybdenum disulfide (MoS2) films deposited on p-Si substrates using vapor deposition method. The surface topography, crystalline structure, light absorption, and luminescence properties of Eu3+ doped and undoped MoS2 thin films were investigated in detail. We found that the Eu3+ doped MoS2 films have better crystallinity, and their electron mobility and conductivity are approximately one order of magnitude higher than those of the undoped films. In addition, we observed that the light absorption and photoluminescence intensities of the doped films in the visible light range, they were enhanced by approximately two orders of magnitude than those of the undoped MoS2 films at room temperature. Moreover, we found that the photoelectric response characteristics of the doped MoS2 / Si heterojunction improved significantly. The results show that the Eu3+ doped MoS2 films can be used to fabricate high efficiency luminescent and optoelectronic devices.

  17. Ionoluminescence of trivalent rare-earth-doped strontium barium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Calvo del Castillo, H. [Departamento de Geologia y Geoquimica, Universidad Autonoma de Madrid, Modulo C-VI, Campus de Cantoblanco, 28049 Cantoblanco, Madrid (Spain); Universidad Nacional Automoma de Mexico, Instituto de Fisica, 04510 Ciudad Universitaria, Mexico D.F. (Mexico); Ruvalcaba, J.L. [Universidad Nacional Automoma de Mexico, Instituto de Fisica, 04510 Ciudad Universitaria, Mexico D.F. (Mexico); Bettinelli, M.; Speghini, A. [Dipartimento Scientifico e Tecnologico, Universita di Verona and INSTM, UdR Verona, Ca Vignal, Strada Le Grazie 15, I-37134 Verona (Italy); Barboza Flores, M. [Centro de Investigacion en Fisica, Universidad de Sonora, Hermosillo, Sonora (Mexico); Calderon, T. [Departamento de Geologia y Geoquimica, Universidad Autonoma de Madrid, Modulo C-VI, Campus de Cantoblanco, 28049 Cantoblanco, Madrid (Spain)], E-mail: tomas.calderon@uam.es; Jaque, D.; Garcia Sole, J. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain)

    2008-05-15

    Ionoluminescence spectra for different rare-earth ion (Pr{sup 3+} and Eu{sup 3+})-activated Sr{sub x}Ba{sub 1-x}Nb{sub 2}O{sub 6} strontium barium niobate crystals (x=0.33 and 0.60) have been induced with a 3 MeV proton beam for a variety of beam current intensities (45, 40 and 20 nA). The proton-beam induced luminescent spectra have shown features associated with the presence of the rare-earth ion and some spectral features mostly related to the host crystal, which appear only for high beam current intensities. We have compared the ionoluminescence results to those obtained under UV light excitation (photoluminescence technique) where a direct excitation of the band gap would occur.

  18. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells.

    Science.gov (United States)

    Qiao, Yu; Li, Shuhan; Liu, Wenhui; Ran, Meiqing; Lu, Haifei; Yang, Yingping

    2018-01-15

    Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE) ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research.

  19. Optical Properties of Rare Earth Doped SrS Phosphor: A Review

    Science.gov (United States)

    Khare, Ayush; Mishra, Shubhra; Kshatri, D. S.; Tiwari, Sanjay

    2017-02-01

    Rare earth (RE) doped SrS phosphor has attracted a lot of attention on a wide range of photo-, cathodo-, thermo-, and electroluminescent applications. Upon doping with different RE elements (e.g., Ce, Pr, Eu, Yb), the luminescence from SrS can be varied over the entire visible region by appropriately choosing the composition of the strontium sulfide host. The main applications include flat panel displays and SrS-based powder electroluminescence (EL) for back lights. Sulfide materials known for providing Eu2+ based red emission band and preferred as a color conversion material in white light emitting diodes are discussed. Especially, the applications of RE doped SrS are described in light of their utility as conversion and storage phosphors. The effect of energy level splitting, EL efficiency, post-annealing, milling time, and impurity on luminescence properties for SrS are also discussed.

  20. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells

    Directory of Open Access Journals (Sweden)

    Yu Qiao

    2018-01-01

    Full Text Available Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research.

  1. Optimization of rare-earth-doped amplifiers for space mission through a hardening-by-system strategy

    Science.gov (United States)

    Ladaci, Ayoub; Girard, Sylvain; Mescia, Luciano; Robin, Thierry; Laurent, Arnaud; Cadier, Benoit; Boutillier, Mathieu; Ouerdane, Youcef; Boukenter, Aziz

    2017-02-01

    Rare-earth doped optical fibers (REDF, Er or Er/Yb-doped) are a key component in optical laser sources (REDFS) and amplifiers (REDFA). The high performances of these fiber-based systems made them as promising solution part of gyroscopes, telecommunication systems… However, REDFs are very sensitive to space radiations, so their degradation limits their integration in long term space missions. To overcome this issue, several studies were carried out and some innovations at the component level were proposed by our group such as the Cerium co-doping or the hydrogen loading of the REDF. More recently we initiated an original coupled simulation/experiment approach to improve the REDFA performances under irradiation by acting at the system level and not only at the component itself. This procedure optimizes the amplifier properties (gain, noise figure) under irradiation through simulation. The optimization of the system is ensured using a PSO (Particle Swarm optimization) algorithm. Using some experimental inputs, such as the Radiation Induced Attenuation (RIA) measurements and the spectroscopic features of the fiber, we demonstrate its efficiency to reproduce the amplifier degradation when exposed to radiations in various experimental configurations. This was done by comparing the obtained simulation results to those of dedicated experiments performed on various REDFA architectures. Our results reveal a good agreement between simulations and experimental data (with <2% error). Finally, exploiting the validated codes, we optimized the REDFA design in order to get the best performances during the space mission and not on-ground only.

  2. Capillary-force-induced formation of luminescent polystyrene/(rare-earth-doped nanoparticle) hybrid hollow spheres.

    Science.gov (United States)

    Chen, Min; Xie, Lin; Li, Fuyou; Zhou, Shuxue; Wu, Limin

    2010-10-01

    This paper presents a "one-pot" procedure to synthesize polystyrene/(rare-earth-doped nanoparticles) (PS/REDNPs) hybrid hollow spheres via the in situ diffusion of organic core into inorganic shell under strong capillary force. In this approach, when carboxyl-capped PS colloids were deposited by different REDNPs in aqueous medium, such as LaF3:Eu3+, LaF3:Ce3+-Tb3+, and YVO4:Dy3+, PS/REDNPs inorganic-organic hybrid hollow spheres could be directly obtained via the in situ diffusion of core PS chains into the voids between rare-earth-doped nanoparticles through the strong capillary force. Not only is the synthetic procedure versatile and very simple, but also the obtained hybrid hollow spheres are hydrophilic and luminescent and could be directly used in chemical and biological fields.

  3. Rare-earth doped (alpha'/beta')-sialon ceramics

    CERN Document Server

    Gajum, N R

    2001-01-01

    combination of light and heavy rare-earth (Yb-Nd and Gd-Nd), and then pressureless sintered and compared with the single cation materials. Materials in the as sintered state were composed of a high alpha' sialon content with a minor amount of beta' sialon and 12H A1N polytype indicating that the heavy rare-earth (which is the principal alpha' stabilizer) has a dominant effect although EDAX analysis confirmed the presence of both cations (light and heavy) within the alpha' structure. The research also compared, and developed an understanding of, the thermal stability of alpha'-sialon using single Yb or mixed cations. The Yb single cation alpha'/beta' materials exhibited excellent stability over a range of temperature (1200 - 1600 deg C) and for different periods of time up to 168 hrs. The heat treatments result in the crystallisation of the residual phase as a Yb garnet phase which formed at approx 1300 deg C. The mixed cation alpha'/beta' materials showed some alpha'-beta' transformation. The transformation w...

  4. Dosimetric and kinetic parameters of lithium cadmium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    J. Anjaiah

    2014-10-01

    Full Text Available Thermoluminescence (TL characteristics of X-ray irradiated pure and doped with four different rare earth ions (viz., Pr3+, Nd3+, Sm3+ and Eu3+ Li2O–Cdo–B2O3 glasses have been studied in the temperature range 303–573 K; the pure glass has exhibited single TL peak at 466 K. When this glass is doped with different rare earth ions no additional peaks are observed but the glow peak temperature of the existing glow peak shifted gradually towards higher temperatures with gain in intensity of TL light output. The area under the glow curve is found to be maximum for Eu3+ doped glasses. The trap depth parameters associated with the observed TL peaks have been evaluated using Chen's formulae. The possible use of these glasses in radiation dosimetry has been described. The result clearly showed that europium doped cadmium borate glass has a potential to be considered as the thermoluminescence dosimeter.

  5. Synthesis of Rare-Earth Doped and Undoped GaN Nano-Crystallites

    Science.gov (United States)

    El Nadi, Lotfia; Ahmed, Samah; Awaad, M.; Omar, Magdy; Badr, Yehia

    2013-03-01

    Semiconductor nanostructures doped with rare earth ions is a possible way to overcome the limitation of low luminescence efficiency of rare earth ions, providing that the strong confinement of carriers in dots will enhance their recombination in the vicinity of RE ions. Undoped and Eu3+-doped GaN crystallites have been synthesized by the co-precipitation method followed by nitridation reaction at 1100 °C for 2 h, under a continuous flow of NH3 gas. X-ray diffraction patterns (XRD) revealed that the synthesized undoped and Eu3+-doped GaN crystallites are of a single-phase wurtzite structure. The morphology of the samples was examined by field emission scanning electron microscope (FE-SEM) and high resolution transmission electron microscope (HR-TEM), and it was shown that the micron-sized particles are composed of agglomerated nano-crystallites. Under the above band gap excitation, all samples exhibited room-temperature photoluminescence with the characteristic GaN band-edge emission peak centered at 363 nm (˜3.4 eV, FWHM ˜ 10 nm) as well as broad defect-related emission peak centered at about 405 nm. The Eu-doped GaN sample, under below bandgap excitation, exhibited red emission peaks centered at 593 nm and 616 nm corresponding to the 5D0 → 7F1 and 5D0 → 7F2 transitions, respectively, within the 4f shell of Eu3+ ions.

  6. Luminescence quenching in rare-earth-ion-doped Al2O3 lasers and its influence on relaxation oscillation frequency

    NARCIS (Netherlands)

    Agazzi, L.; Bernhardi, Edward; Worhoff, Kerstin; Pollnau, Markus

    The impact of luminescence quenching on rare-earth-ion doped lasers is investigated, and we show that the expression for the relaxation oscillation frequency needs to be modified to take the quenching properly into account.

  7. Cross Relaxation in rare-earth-doped oxyfluoride glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, G.; Weis, Eric M. [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lira, A.C. [Unidad Académica Profesional Nezahualcóyotl, Universidad Autónoma del Estado de México, Av. Bordo de Xochiaca s/n, Nezahualcóyotl, Estado de Mexico 57000, México (Mexico); Caldiño, Ulises [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, México D.F. 09340 (Mexico); Williams, Darrick J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hehlen, Markus P., E-mail: hehlen@lanl.gov [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2013-07-15

    The excited-state relaxation dynamics of Tb{sup 3+}, Sm{sup 3+}, and Eu{sup 3+} doped into a 50SiO{sub 2}–20Al{sub 2}O{sub 3}–10Na{sub 2}O–20LaF{sub 3} (mol%) oxyfluoride glass are studied. Multiphonon relaxation of the primary emitting states in Tb{sup 3+} ({sup 5}D{sub 3} and {sup 5}D{sub 4}), Sm{sup 3+} ({sup 4}G{sub 5/2}), and Eu{sup 3+} ({sup 5}D{sub 0}) was found to be negligible in the present host. The relaxation of Tb{sup 3+} ({sup 5}D{sub 4}) and Eu{sup 3+} ({sup 5}D{sub 0}) is dominated by radiative decay. For Tb{sup 3+} ({sup 5}D{sub 3}) and Sm{sup 3+} ({sup 4}G{sub 5/2}) in contrast, radiative relaxation is in competition with several non-radiative cross-relaxation processes. This competition was found to be particularly pronounced for the {sup 5}D{sub 3} excited state in Tb{sup 3+}, where a 124-fold decrease of the ({sup 5}D{sub 3}→{sup 7}F{sub 5})/({sup 5}D{sub 4}→{sup 7}F{sub 5}) emission intensity ratio and a ∼10-fold shortening of the {sup 5}D{sub 3} lifetime was observed upon increasing the Tb{sup 3+} concentration from 0.01% to 1%. The Tb{sup 3+} concentration dependence of {sup 5}D{sub 3} also points to some degree of ion aggregation in the “as quenched” glasses. A Judd–Ofelt intensity analysis was performed for Sm{sup 3+} and used to estimate the relative magnitude of {sup 4}G{sub 5/2} cross-relaxation processes. Four cross-relaxation processes in particular were identified to account for 92% of the total {sup 4}G{sub 5/2} non-radiative decay, and a 11% quantum efficiency was estimated for the {sup 4}G{sub 5/2} excited state. Non-exponentiality in the {sup 5}D{sub 0} decay of Eu{sup 3+} is evidence for several Eu{sup 3+} coordination environments in the glass host that manifest in different {sup 5}D{sub 0} decay constants because of the hypersensitivity of the {sup 5}D{sub 0}→{sup 7}F{sub 2} transition. -- Highlights: ► Tb{sup 3+}, Sm{sup 3+}, and Eu{sup 3+} were doped into a LaF{sub 3}-rich oxyfluoride glass. ► The

  8. Structural properties of lithium borate glasses doped with rare earth ions

    Directory of Open Access Journals (Sweden)

    Thomazini D.

    2001-01-01

    Full Text Available This paper presents the study on lithium triborate glass (LBO in the system (1-x|3B2O3.Li2O| (xNb2O5 yPr3+ zYb3+ wNd3+ with 0 <= x <= 20 mol% (y, z and w in mol%. The samples were studied by Raman spectroscopy, infrared absorption and differential thermal analysis. Pr3+-doped LBO and Pr3+/Yb3+-doped LBO samples show an increase of the glass transition and crystallization temperatures and a decrease of the fusion temperature associated with the increase of the praseodymium concentration in the LBO matrix. For the Nd3+-doped LBO and Pr3+/Yb3+-doped (LBO+Nb2O5 samples, a decrease of the glass transition temperature of the samples was observed. The increase of the rare earth doping leads to an increase of the difference between the glass transition and the crystallization temperatures. From infrared analysis it was possible to identify all the modes associated to the B-O structure. The NbO6 octahedra was also identified by IR spectroscopy for samples with x=5, 10, 15 and 20 mol% and y=0.05, z=1.1 mol%. Raman spectroscopy shows the presence of boroxol rings, tetrahedral and triangular coordination for boron. For samples containing niobium, the Raman spectra show the vibrational mode associated with the Nb-O bond in the niobium octahedra (NbO6.

  9. Earth System Science: An Integrated Approach.

    Science.gov (United States)

    Environment, 2001

    2001-01-01

    Details how an understanding of the role played by human activities in global environmental change has emerged. Presents information about the earth system provided by research programs. Speculates about the direction of future research. (DDR)

  10. Microemulsion synthesis, characterization of highly visible light responsive rare earth-doped Bi2O3.

    Science.gov (United States)

    Wu, Shuxing; Fang, Jianzhang; Xu, Xiaoxin; Liu, Zhang; Zhu, Ximiao; Xu, Weicheng

    2012-01-01

    In this paper, Bi(2)O(3) and rare earth (La, Ce)-doped Bi(2)O(3) visible-light-driven photocatalysts were prepared in a Triton X-100/n-hexanol/cyclohexane/water reverse microemulsion. The resulting materials were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) surface area, photoluminescence spectra (PLS) and UV-Vis diffuse reflectance spectroscopy. The XRD patterns of the as-prepared catalysts calcined at 500 °C exhibited only the characteristic peaks of monoclinic α-Bi(2)O(3). PLS analysis implied that the separation efficiency for electron-hole has been enhanced when Bi(2)O(3) was doped with rare earth. UV-Vis diffuse reflectance spectroscopy measurements presented an extension of light absorption into the visible region. The photocatalytic activity of the samples was evaluated by degradation of methyl orange (MO) and 2,4-dichlorophenol (2,4-DCP). The results displayed that the photocatalytic activity of rare earth-doped Bi(2)O(3) was higher than that of dopant-free Bi(2)O(3). The optimal dopant amount of La or Ce was 1.0 mol%. And the mechanisms of influence on the photocatalytic activity of the catalysts were discussed. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  11. Rare-earth-doped photonic crystals for the development of solid-state optical cryocoolers

    Science.gov (United States)

    Garcia-Adeva, Angel J.; Balda, Rolindes; Fernández, Joaquín

    2009-02-01

    Optical cryocoolers made of luminescent solids are very promising for many applications in the fields of optical telecommunications, aerospace industry, bioimaging, and phototherapy. To the present day, researchers have employed a number of crystal and glass host materials doped with rare-earth ions (Yb3+, Tm3+, and Er3+) to yield anti-Stokes optical refrigeration. In these host materials, the attainable minimum temperature is limited by the average phonon energy of the lattice and the impurity concentration. However, recently Ruan and Kaviany have theoretically demonstrated that the cooling efficiency can be dramatically enhanced when the host material doped with rare-earth ions is ground into a powder made of sub-micron size grains. This is due to two facts: firstly, the phonon spectrum is modified due to finite size of the grains and, secondly, light localization effects increase the photon density, leading to an enhanced absorptivity. In the present work, we propose that using a photonic crystal doped with rare earth ions offers many advantages with regards to getting a larger cooling efficiency at room temperature when compared to standard bulk materials or nano-powders. Indeed, apart to analogous phenomena to the ones predicted in nano-crystalline powders, there is the possibility of directly controlling the spontaneous emission rate of the ions embedded in the structure and, also, the absorption rate in the Stokes side of the absorption band by adequately tuning the density of photonic states, thus obtaining a large improvement in the cooling efficiency.

  12. Rare Earth Doped Silica Optical Fibre Sensors for Dosimetry in Medical and Technical Applications

    Directory of Open Access Journals (Sweden)

    N. Chiodini

    2014-01-01

    Full Text Available Radioluminescence optical fibre sensors are gaining importance since these devices are promising in several applications like high energy physics, particle tracking, real-time monitoring of radiation beams, and radioactive waste. Silica optical fibres play an important role thanks to their high radiation hardness. Moreover, rare earths may be incorporated to optimise the scintillation properties (emission spectrum, decay time according to the particular application. This makes doped silica optical fibres a very versatile tool for the detection of ionizing radiation in many contexts. Among the fields of application of optical fibre sensors, radiation therapy represents a driving force for the research and development of new devices. In this review the recent progresses in the development of rare earth doped silica fibres for dosimetry in the medical field are described. After a general description of advantages and challenges for the use of optical fibre based dosimeter during radiation therapy treatment and diagnostic irradiations, the features of the incorporation of rare earths in the silica matrix in order to prepare radioluminescent optical fibre sensors are presented and discussed. In the last part of this paper, recent results obtained by using cerium, europium, and ytterbium doped silica optical fibres in radiation therapy applications are reviewed.

  13. Integrated Earth System Model (iESM)

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-02

    The iESM is a simulation code that represents the physical and biological aspects of Earth's climate system, and also includes the macro-economic and demographic properties of human societies. The human aspect of the simulation code is focused in particular on the effects of human activities on land use and land cover change, but also includes aspects such as energy economies. The time frame for predictions with iESM is approximately 1970 through 2100.

  14. Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide

    KAUST Repository

    Li, Yongfeng

    2013-04-29

    As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.

  15. Crystallization studies on rare-earth co-doped fluorozirconate-based glasses.

    Science.gov (United States)

    Paßlick, C; Johnson, J A; Schweizer, S

    2013-07-01

    This work focuses on the structural changes of barium chloride (BaCl2) nanoparticles in fluorochlorozirconate-based glass ceramics when doped with two different luminescent activators, in this case rare-earth (RE) ions, and thermally processed using a differential scanning calorimeter. In a first step, only europium in its divalent and trivalent oxidation states, Eu(2+) and Eu(3+), is investigated, which shows no significant influence on the crystallization of hexagonal phase BaCl2. However, higher amounts of Eu(2+) increase the activation energy of the phase transition to an orthorhombic crystal structure. In a second step, nucleation and nanocrystal growth are influenced by changing the structural environment of the glasses by co-doping with Eu(2+) and trivalent Gd(3+), Nd(3+), Yb(3+), or Tb(3+), due to the different atomic radii and electro-negativity of the co-dopants.

  16. The Progress of Photoluminescent Properties of Rare-Earth-Ions-Doped Phosphate One-Dimensional Nanocrystals

    Directory of Open Access Journals (Sweden)

    Lixin Yu

    2010-01-01

    Full Text Available One-dimensional (1D nanostructures, such as tubes, wires, rods, and belts, have aroused remarkable attentions over the past decade due to a great deal of potential applications, such as data storage, advanced catalyst, and photoelectronic devices . On the other hand, in comparison with zero-dimensional (0D nanostructures, the space anisotropy of 1D structures provided a better model system to study the dependence of electronic transport, optical and mechanical properties on size confinement and dimensionality. Rare earth (RE compounds, were intensively applied in luminescent and display devices. It is expected that in nanosized RE compounds the luminescent quantum efficiency (QE and display resolution could be improved. In this paper, we systematically reported the research progress of luminescent properties of RE-doped 1D orthophosphate nanocrystal, including the synthesis of 1D nanostructures doped with RE ions, local symmetry of host, electronic transition processes, energy transfer (ET, and so forth.

  17. Phase Transformation and Lattice Parameter Changes of Non-trivalent Rare Earth-Doped YSZ as a Function of Temperature

    Science.gov (United States)

    Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew

    2018-01-01

    To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.

  18. On-chip quantum storage in a rare-earth-doped photonic nanocavity

    Science.gov (United States)

    Zhong, Tian; Kindem, Jonathan M.; Rochman, Jake; Miyazono, Evan; Faraon, Andrei; Ferrier, Alban; Goldner, Philippe

    2016-03-01

    Rare-earth-ion doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical and microwave photons. Here we describe our progress towards a nanophotonic quantum memory based on a rare-earth (Neodymium) doped yttrium orthosilicate (YSO) photonic crystal resonator. The Purcell-enhanced coupling of the 883 nm transitions of Neodymium (Nd3+) ions to the nano-resonator results in increased optical depth, which could in principle facilitate highly efficient photon storage via cavity impedance matching. The atomic frequency comb (AFC) memory protocol can be implemented in the Nd:YSO nano-resonator by efficient optical pumping into the long-lived Zeeman state. Coherent optical signals can be stored and retrieved from the AFC memory. We currently measure a storage efficiency on par with a bulk crystal Nd:YSO memory that is millimeters long. Our results will enable multiplexed on-chip quantum storage and thus quantum repeater devices using rare-earth-ions.

  19. Using the earth system for integrating the science curriculum

    Science.gov (United States)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  20. Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings

    Directory of Open Access Journals (Sweden)

    Erik P. Schartner

    2014-11-01

    Full Text Available We report the development of a point temperature sensor, based on monitoring upconversion emission from erbium:ytterbium-doped tellurite coatings on the tips of optical fibres. The dip coating technique allows multiple sensors to be fabricated simultaneously, while confining the temperature-sensitive region to a localised region on the end-face of the fibre. The strong response of the rare earth ions to changing temperature allows a resolution of 0.1–0.3 °C to be recorded over the biologically relevant range of temperatures from 23–39 °C.

  1. Nuclear Magnetic Resonance Studies of Rare Earth co-doped Lanthanum Cuprates

    OpenAIRE

    Grafe, Hans-Joachim

    2005-01-01

    The work described in this thesis uses oxygen NMR to probe the electronic system of rare earth co-doped La_{2-x}Sr_xCuO_4, the prototypical high temperature superconducting cuprate (HTSC). Oxygen NMR turns out to be a powerful tool for this purpose. The nucleus is located directly inside the CuO_2 planes. It has a spin of 5/2 and a quadrupole moment and therefore can probe both, interactions with the magnetic hyperfine field as well as interactions through the electric field gradient of the c...

  2. Thermally induced mode coupling in rare-earth doped fiber amplifiers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann; Alkeskjold, Thomas Tanggaard; Broeng, Jes

    2012-01-01

    We present a simple semianalytical model of thermally induced mode coupling in multimode rare-earth doped fiber amplifiers. The model predicts that power can be transferred from the fundamental mode to a higher-order mode when the operating power exceeds a certain threshold, and thus provides...... an explanation of recently reported mode instability in such fiber amplifiers under high average-power operation. We apply our model to a simple step-index fiber design, and investigate how the power threshold depends on various design parameters of the fiber....

  3. Temperature-dependent structures and chemical bonding states of the calcium chlorapatite powders doped with rare-earth-ions

    Science.gov (United States)

    Hong, Kyong-Soo; Yang, Ho-Soon

    2017-02-01

    Calcium chlorapatite powders doped with rare-earth-ions are synthesized by using the solid-state reaction method and sintering at 1,100 °C and 1,300 °C, respectively. This study focuses on the crystal structures and the chemical bonding states of calcium chlorapatite powders for different sintering temperatures, doping elements, and doping concentrations. The characterized physical properties show that the apatite powders exhibit two phases based on the sintering temperatures: the powders sintered at temperatures below 1,100 °C have a hexagonal structure while those sintered at 1,300 °C have a monoclinic structure. That is, the apatite compounds sintered at higher temperatures show a structure with a lower space symmetry. The chemical bonding states of the synthesized powders remain unchanged regardless of the amount of doped rare-earths and the sintering temperature.

  4. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction.

    Science.gov (United States)

    Cramer, Alisha J; Cole, Jacqueline M; FitzGerald, Vicky; Honkimaki, Veijo; Roberts, Mark A; Brennan, Tessa; Martin, Richard A; Saunders, George A; Newport, Robert J

    2013-06-14

    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials.

  5. High quality factor nanophotonic resonators in bulk rare-earth doped crystals

    CERN Document Server

    Zhong, Tian; Kindem, Jonathan M; Miyazono, Evan; Faraon, Andrei

    2015-01-01

    Numerous bulk crystalline materials exhibit attractive nonlinear and luminescent properties for classical and quantum optical applications. A chip-scale platform for high quality factor optical nanocavities in these materials will enable new optoelectronic devices and quantum light-matter interfaces. In this article, photonic crystal nanobeam resonators fabricated using focused ion beam milling in bulk insulators, such as rare-earth doped yttrium orthosilicate and yttrium vanadate, are demonstrated. Operation in the visible, near infrared, and telecom wavelengths with quality factors up to 27,000 and optical mode volumes close to one cubic wavelength is measured. These devices enable new nanolasers, on-chip quantum optical memories, single photon sources, and non-linear devices at low photon numbers based on rare-earth ions. The techniques are also applicable to other luminescent centers and crystals.

  6. Crystal-field investigations of rare-earth-doped wide band gap semiconductors

    CERN Multimedia

    Muller, S; Wahl, U

    Crystal field investigations play a central role in the studies of rare earth doped semiconductors. Optical stark level spectroscopy and lattice location studies of radioactive rare earth isotopes implanted at ISOLDE have provided important insight into these systems during the last years. It has been shown that despite a major site preference of the probe atoms in the lattice, several defect configurations do exist. These sites are visible in the optical spectra but their origin and nature aren't deducible from these spectra alone. Hyperfine measurements on the other hand should reveal these defect configurations and yield the parameters necessary for a description of the optical properties at the atomic scale. In order to study the crystal field with this alternative approach, we propose a new concept for perturbed $\\gamma\\gamma$-angular correlation (PAC) experiments at ISOLDE based on digital signal processing in contrast to earlier analog setups. The general functionality of the spectrometer is explained ...

  7. Numerical integration of relativistic equations of motion for Earth satellites

    Science.gov (United States)

    San Miguel, A.

    2009-01-01

    The equations of motion proposed by Brumberg for an artificial satellite around the Earth (Celest Mech Dyn Astron 88:209, 2004), in which the relativistic effects due to the Earth’s oblatness and the gravitational action caused by a third body are added to those perturbations considered in the International Earth Rotation and Reference System Service (2003) convention, are here integrated numerically. To compute the solution of the time-dependent Langrangian system for a gravitational satellite Earth Sun model we consider a six-order partitioned Runge Kutta integrator, whose coefficients satisfy the condition of symplecticity. A comparison with the classical Adams Basforth Moulton method allows to verify the good-performance of the partitioned Runge Kutta method both in the description of the evolution of the satellite energy and in the efficiency of the method when applied to a long-term integration.

  8. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals

    Science.gov (United States)

    Zhong, Tian; Kindem, Jonathan M.; Miyazono, Evan; Faraon, Andrei

    2015-09-01

    Quantum light-matter interfaces connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching and studies of fundamental physics. Rare-earth-ion-doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium rare-earth-ions to photonic nanocavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2-4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled rare-earth ions is performed via photon echoes. Long optical coherence times (T2~100 μs) and small inhomogeneous broadening are measured for the cavity-coupled rare-earth ions, thus demonstrating their potential for on-chip scalable quantum light-matter interfaces.

  9. Hydrothermal Synthesis, Microstructure and Photoluminescence of Eu3+-Doped Mixed Rare Earth Nano-Orthophosphates

    Directory of Open Access Journals (Sweden)

    Yan Bing

    2010-01-01

    Full Text Available Abstract Eu3+-doped mixed rare earth orthophosphates (rare earth = La, Y, Gd have been prepared by hydrothermal technology, whose crystal phase and microstructure both vary with the molar ratio of the mixed rare earth ions. For LaxY1–xPO4: Eu3+, the ion radius distinction between the La3+ and Y3+ is so large that only La0.9Y0.1PO4: Eu3+ shows the pure monoclinic phase. For LaxGd1–xPO4: Eu3+ system, with the increase in the La content, the crystal phase structure of the product changes from the hexagonal phase to the monoclinic phase and the microstructure of them changes from the nanorods to nanowires. Similarly, YxGd1–xPO4: Eu3+, Y0.1Gd0.9PO4: Eu3+ and Y0.5Gd0.5PO4: Eu3+ samples present the pure hexagonal phase and nanorods microstructure, while Y0.9Gd0.1PO4: Eu3+ exhibits the tetragonal phase and nanocubic micromorphology. The photoluminescence behaviors of Eu3+ in these hosts are strongly related to the nature of the host (composition, crystal phase and microstructure.

  10. Room-temperature-grown rare-earth-doped GaN luminescent thin films

    Science.gov (United States)

    Lee, D. S.; Steckl, A. J.

    2001-09-01

    Visible emission has been observed from rare-earth (RE)-doped GaN electroluminescent devices (ELDs) as-grown near room temperature on Si (50-100 °C): red from GaN:Eu, green from GaN:Er, and blue from GaN:Tm. Green emission at 537/558 nm from GaN:Er ELD had a measured brightness of ˜230 cd/m2 at 46 V bias. X-ray diffraction indicates that the low-temperature-grown GaN:Er structure was oriented with the c axis perpendicular to the substrate. Scanning electron and atomic force microscopy indicate that the films had a rough surface and a compact structure consisting of small grains. Electroluminescence intensity of GaN:RE was significantly improved with postgrowth annealing. For GaN:Er films, after 800 °C annealing, the green emission brightness efficiency increased by ˜10×.

  11. New generation high-power rare-earth-doped phosphate glass fiber and fiber laser

    Science.gov (United States)

    Wu, Ruikun; Myers, John D.; Myers, Michael J.

    2001-04-01

    High power, high brightness fiber lasers have numerous potential commercial and military applications. Fiber lasers with cladding pump designs represent a new generation of diode pumped configurations that are extremely efficient, have single mode output and may be operated with or without active cooling. Kigre has invented a new family of Er/Yb/Nd phosphate laser glass materials (designated QX) that promise to facilitate a quantum leap in fiber laser technology of this field. The new phosphate glass Rare-Earth doped fiber exhibit many advantages than Silica or Fluoride base fiber, see table.1. Instead of 30 to 50 meters of fused silica with a 50 mm bend radii; Kigre's phosphate glass fiber amplifiers may be designed to be less than 4 meters long .Laser performance and various design parameters, such as the fiber core diameter, NA, inner cladding shape and doping concentration are evaluated. Laser performances was demonstrated for an experimental QX/Er doubled clading fiber commissioned by MIT having 8 micron core, a 240 X 300 micron rectangle shaped inner cladding with 0.4 NA and 500 micron outer clading.. Kigre obtained approximately 2 dB/cm gain from 15cm long fiber under 940nm pumping The same fiber was evaluated by researcher at MIT. They used 975nm pump source. Maximum 270mW output was demonstrated by 30 cm long fiber with Fresnel reflection resonator mirrors. The slope efficiency of absorbed pump power s 47%.

  12. Photoluminescence studies of rare earth (Er, Eu, Tm) in situ doped GaN

    Energy Technology Data Exchange (ETDEWEB)

    Hoemmerich, U.; Nyein, Ei Ei; Lee, D.S.; Heikenfeld, J.; Steckl, A.J.; Zavada, J.M

    2003-12-15

    The emission properties of rare earth (RE)-doped GaN are of significant current interest for applications in full color displays, white lighting technology, and optical communications. We are currently investigating the photoluminescence (PL) properties of RE (Er, Eu, Tm)-doped GaN thin-films prepared by solid-source molecular beam epitaxy. The most intense visible PL under above-gap excitation is observed from GaN:Eu (red: 622 nm) followed by GaN:Er (green: 537 nm, 558 nm), and then GaN:Tm (blue: 479 nm). In this paper, we present spectroscopic results on the Ga-flux dependence of the Er{sup 3+} PL properties from GaN:Er and we report on the identification of different Eu{sup 3+} centers in GaN:Eu through high-resolution PL excitation (PLE) studies. In addition, we observed an enhancement of the blue Tm{sup 3+} PL from AlGaN:Tm compared to GaN:Tm. Intense blue PL from Tm{sup 3+} ions was also obtained from AlN:Tm under below-gap pumping.

  13. Sol-gel-derived hybrid materials multi-doped with rare-earth metal ions

    Science.gov (United States)

    Zelazowska, E.; Rysiakiewicz-Pasek, E.; Borczuch-Laczka, M.; Cholewa-Kowalska, K.

    2012-06-01

    Four different hybrid organic-inorganic materials based on TiO2-SiO2 matrices with organic additives and doped with rare-earth metal ions (III) from the group of europium, cerium, terbium, neodymium, dysprosium and samarium, were synthesized by sol-gel method. Tetraethyl orthosilicate, titanium (IV) isopropoxide and organic compounds, such as butyl acrylate, butyl methacrylate, ethyl acetoacetate, ethylene glycol dimethacrylate, ethyl acetate, propylene carbonate, organic solvents and certain inorganic salts were used in the synthesis. The inorganic part of the sols, which were used in the synthesis of all the hybrid materials, was prepared separately and then the organic parts were added. The materials obtained were aged for three weeks at room temperature and then heated in an electric oven for three hours at temperatures of 80 °C-150 °C. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDX); X-ray diffraction (XRD); Fourier transform infrared spectroscopy (KBr technique); 29Si magic-angle spinning nuclear magnetic resonance; and fluorescence spectroscopy were used for the examination of morphology, microstructure and luminescence properties, respectively. Photoluminescence properties with relatively intense narrow emission lines of Tb, Eu, Dy, Nd, Sm respectively to the RE-ions doping, were observed for all the hybrid materials.

  14. Intermode beating mode-locking technique for a rare-earth-doped fiber pulsed laser.

    Science.gov (United States)

    Luo, Zhengqian; Yang, Runhua; Du, Tuanjie; Ruan, Qiujun; Li, Weiwei; Chen, Nan

    2017-08-01

    In this paper, we report the intermode beating mode-locking of a 2  μm Tm 3+ -doped fiber laser (TDFL) pumped by a 1565 nm continuous-wave multi-longitudinal-mode laser. Because strong intermode beating of the 1565 nm pump source induces the periodic modulation of 2 μm intracavity power, stable mode-locking of the TDFL is successfully established by precisely matching the 2 μm cavity frequency with the intermode-beating frequency of the 1565 nm pump source. The mode-locked laser, without requiring any specific mode-locking element, can stably emit the rectangular nanosecond pulses. The mode-locking operation at the center wavelength of 1980.35 nm has a >61  dB signal-to-noise ratio and a 34.496 MHz repetition rate. Although the preliminary results are not better than those of conventional mode-locking, intermode beating mode-locking in combination with rare-earth-doped fiber lasers could provide a promising and alternative solution for compact, low-cost, and high-performance pulsed laser sources.

  15. Arsenic-doped high-resistivity-silicon epitaxial layers for integrating low-capacitance diodes

    NARCIS (Netherlands)

    Sakic, A.; Scholtes, T.L.M.; De Boer, W.B.; Golshani, N.; Derakhshandeh, J.; Nanver, L.K.

    2011-01-01

    An arsenic doping technique for depositing up to 40-?m-thick high-resistivity layers is presented for fabricating diodes with low RC constants that can be integrated in closely-packed configurations. The doping of the as-grown epi-layers is controlled down to 5 × 1011 cm?3, a value that is solely

  16. Integrating the Earth, Atmospheric, and Ocean Sciences at Millersville University

    Science.gov (United States)

    Clark, R. D.

    2005-12-01

    For nearly 40 years, the Department of Earth Sciences at Millersville University (MU-DES) of Pennsylvania has been preparing students for careers in the earth, atmospheric, and ocean sciences by providing a rigorous and comprehensive curricula leading to B.S. degrees in geology, meteorology, and oceanography. Undergraduate research is a hallmark of these earth sciences programs with over 30 students participating in some form of meritorious research each year. These programs are rich in applied physics, couched in mathematics, and steeped in technical computing and computer languages. Our success is measured by the number of students that find meaningful careers or go on to earn graduate degrees in their respective fields, as well as the high quality of faculty that the department has retained over the years. Student retention rates in the major have steadily increased with the introduction of a formal learning community and peer mentoring initiatives, and the number of new incoming freshmen and transfer students stands at an all-time high. Yet until recently, the disciplines have remained largely disparate with only minor inroads made into integrating courses that seek to address the Earth as a system. This is soon to change as the MU-DES unveils a new program leading to a B.S. in Integrated Earth Systems. The B.S. in Integrated Earth Systems (ISS) is not a reorganization of existing courses to form a marketable program. Instead, it is a fully integrated program two years in development that borrows from the multi-disciplinary backgrounds and experiences of faculty, while bringing in resources that are tailored to visualizing and modeling the Earth system. The result is the creation of a cross-cutting curriculum designed to prepare the 21st century student for the challenges and opportunities attending the holistic study of the Earth as a system. MU-DES will continue to offer programs leading to degrees in geology, meteorology, and ocean science, but in addition

  17. Motivational and social cognitive predictors of doping intentions in elite sports: an integrated approach.

    Science.gov (United States)

    Barkoukis, V; Lazuras, L; Tsorbatzoudis, H; Rodafinos, A

    2013-10-01

    Doping use is an important issue in both competitive and non-competitive sports, and poses potentially irreversible health consequences to users. Scholars increasingly call for theory-driven studies on the psychosocial processes underlying doping use that will inform subsequent policy-making and prevention interventions. The aim of the study was to implement an integrative theoretical model to assess the direct and indirect effects of motivational variables, moral orientations, and social cognitions on doping intentions. A randomly selected and representative sample of 750 elite athletes anonymously completed a battery of questionnaires on motivational and moral constructs, and social cognitions related to doping. Hierarchical linear regression analysis and multiple mediation modeling were used. The effects of achievement goals and moral orientations were significantly mediated by attitudinal, normative, and self-efficacy beliefs, in both lifetime ever and never doping users. Moral orientations indirectly predicted the doping intentions of never users, but did not predict ever users' doping intentions. Achievement goals and sportspersonship orientations influence doping intentions indirectly, through the effects of attitudes and self-efficacy beliefs. Sportspersonship (moral) orientations were relevant to doping intentions among athletes with no prior experiences with doping, while achievement goals and situational temptation were relevant to both lifetime never and ever dopers. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Structure and photoluminescence of TiO{sub 2} nanocrystals doped and co-doped with N and rare earths (Y{sup 3+}, Pr{sup 3+})

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, P.C., E-mail: carlo.ricci@dsf.unica.it [Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu Km 0,700, 09042 Monserrato (Italy); Carbonaro, C.M.; Geddo Lehmann, A.; Congiu, F.; Puxeddu, B. [Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu Km 0,700, 09042 Monserrato (Italy); Cappelletti, G.; Spadavecchia, F. [Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano (Italy)

    2013-06-05

    Highlights: ► We studied singly and co-doped N, Y and Pr:TiO{sub 2} nanoparticles. ► A mixed anatase-brookite phase with average dimension lower than 10 nm was revealed. ► The nature of defects in the TiO{sub 2} structures depends on the doping elements. ► Bulk and surface defects are related to nitrogen in the TiO{sub 2} matrix. ► Y{sup 3+} ion acts as a surface stabilizer, Pr{sup 3+} generates surface recombination centers. -- Abstract: The structural and optical properties of sol–gel synthesized TiO{sub 2} nanoparticles doped and co-doped with N and rare earth ions (Y{sup 3+} and Pr{sup 3+}) are presented. Crystal structures, phase composition, and crystallite sizes are analyzed by powder X-ray diffraction and Raman spectroscopy. The analysis of intragap excited photoluminescence indicates the formation of radiative recombinations related to different defect centers in the TiO{sub 2} structure, generated by the presence of doping elements. In particular we assign the formation of bulk and surface defects to the presence of nitrogen in the TiO{sub 2} matrix, whereas we observe different effects on the defective TiO{sub 2} structure related to the two rare earths: the presence of Y{sup 3+} ion acts as a stabilizer of the TiO{sub 2} surface whereas the presence of Pr{sup 3+} generates surface recombination centers.

  19. Mechanoluminescence glow curves of rare-earth doped strontium aluminate phosphors

    Science.gov (United States)

    Chandra, B. P.; Sonwane, V. D.; Haldar, B. K.; Pandey, S.

    2011-01-01

    The present paper reports the mechanoluminescence (ML) glow curves of rare-earth doped strontium aluminate phosphors. When Sr3Al2O6:Eu, Dy phosphor mixed in epoxy resin is compressed at a fixed pressing rate or fixed strain rate, its elastico ML (EML) intensity increases linearly with deformation time or pressure and attains a maximum value Im at the time tm, at which the deformation is stopped. Under the pressed condition, the decay time for fast decrease of EML after tm, gives the time-constant for stopping the cross-head of the testing machine used to deform the sample, and decay time for slow decrease of EML gives the lifetime of electrons in the shallow traps lying in the normal piezoelectric region of the crystals. When SrAl2O4:Eu phosphor mixed in resin is compressed at a fixed rate, then the EML intensity increases linearly with pressure and when the pressure is decreased at a fixed rate, then the EML intensity decreases exponentially with time, in which the decay time of EML is equal to the lifetime of electrons in the shallow traps lying in the normal piezoelectric region of the crystals. The EML intensity of SrAl2O4:Eu film excited by the impact stress, initially increases with time, attains a peak value and later on it decreases exponentially with time, in which the fast decay of EML intensity gives the decay time of impact stress and the decay time of the slow decrease of the EML intensity gives the lifetime of electrons in the shallow traps lying in the normal piezoelectric region of the crystals. The piezoelectrically-induced detrapping model is found to be suitable for the EML of rare-earth doped strontium aluminate phosphors. Expressions derived on the basis of the piezoelectrically-induced detrapping model are able to explain satisfactorily the characteristics of the EML of the phosphors. It is shown that several parameters of the phosphors can be determined from the ML glow curves.

  20. The unusually high Tc in rare-earth-doped single crystalline CaFe2As2

    Science.gov (United States)

    Wei, Fengyan; Lv, Bing; Deng, Liangzi; Meen, James K.; Xue, Yu-Yi; Chu, Ching-Wu

    2014-08-01

    In rare-earth-doped single crystalline CaFe2As2, the mysterious small volume fraction which superconducts up to 49 K, much higher than the bulk Tc ~ 30 s K, has prompted a long search for a hidden variable that could enhance the Tc by more than 30% in iron-based superconductors of the same structure. Here we report a chemical, structural and magnetic study of CaFe2As2 systematically doped with La, Ce, Pr and Nd. Coincident with the high Tc phase, we find extreme magnetic anisotropy, accompanied by an unexpected doping-independent Tc and equally unexpected superparamagnetic clusters associated with As vacancies. These observations lead us to conjecture that the tantalizing Tc enhancement may be associated with naturally occurring chemical interfaces and may thus provide a new paradigm in the search for superconductors with higher Tc.

  1. PHYSICAL AND ELECTRICAL PROPERTIES ENHANCEMENT OF RARE-EARTH DOPED-POTASSIUM SODIUM NIOBATE (KNN: A REVIEW

    Directory of Open Access Journals (Sweden)

    Akmal Mat Harttat Maziati

    2015-06-01

    Full Text Available Alkaline niobate mainly potassium sodium niobate, (KxNa1-x NbO3 (abreviated as KNN has long attracted attention as piezoelectric materials as its high Curie temperature (Tc and piezoelectric properties. The volatility of alkaline element (K, Na is, however detrimental to the stoichiometry of KNN, contributing to the failure to achieve high-density structure and lead to the formation of intrinsic defects. By partially doping of several rare-earth elements, the inherent defects could be improved significantly. Therefore, considerable attempts have been made to develop doped-KNN based ceramic materials with high electrical properties. In this paper, these research activities are reviewed, including dopants type and doping role in KNN perovskite structure.

  2. Influence of rare earth (Nd{sup +3}) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Pranav P., E-mail: drppn1987@gmail.com [Department of Physics, Goa University, Taleigao Plateau, Goa, 403206 (India); Tangsali, R.B. [Department of Physics, Goa University, Taleigao Plateau, Goa, 403206 (India); Meena, S.S.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2017-04-15

    Ultrafine nanopowders of Mn{sub 0.6}Zn{sub 0.4}Fe{sub 2-x}Nd{sub x}O{sub 4} (x = 0, 0.04, 0.06, 0.08, and 0.1) were prepared using combustion method. The influence of Nd{sup +3} doping on structural parameters, morphological characteristics and magnetic properties were investigated. Formation of pure spinel phase was confirmed using X-ray powder diffraction (XRPD). Nd{sup +3} doping in Mn-Zn ferrite samples have shown remarkable influence on all the properties that were under investigation. An increase in lattice constant commensurate with increasing Nd{sup +3} concentrations was observed in the samples. The crystallite size calculated from XRPD data and grain size observed from Transmission Electron Microscope showed a proportionate decrement with increment in rare earth doping. An increase in mass density, X-ray density, particle strain and decrease in porosity were the other effects noticed on the samples as a result of Nd{sup +3} doping. The corresponding tetrahedral, octahedral bond lengths and bond angles estimated from XRPD data have also shown substantial influence of the Nd{sup +3} doping. Magnetic parameters namely saturation magnetization (M{sub S}) and net magnetic moment η{sub B}, estimated using vibrating sample magnetometer (VSM) were found to depend on the Nd{sup +3} doping. Mössbauer spectroscopy was employed to study the magnetic environment of Mössbauer active ions and detection of superparamagnetic behavior in nanocrystalline rare earth ferrite material. The isomer shift values obtained from Mössbauer spectra indicate the presence of Fe{sup +3} ions at tetrahedral site (A-site) and octahedral site (B-site), respectively. - Highlights: • Synthesis of Nd doped Mn-Zn ferrite nanoparticles using combustion method. • Successful doping of Nd{sup +3} at octahedral site in ferrite structure. • Existence of Fe{sup +3} oxidation state at both A-Site and B-site. • Enhanced saturation magnetization due to altered cation distribution by Nd doping

  3. Intense luminescence emission from rare-earth-doped MoO3 nanoplates and lamellar crystals for optoelectronic applications

    Science.gov (United States)

    Vila, M.; Díaz-Guerra, C.; Jerez, D.; Lorenz, K.; Piqueras, J.; Alves, E.

    2014-09-01

    Strong and stable room-temperature photoluminescence (PL) emission is achieved in MoO3 nanoplates and lamellar crystals doped with Er and Eu by ion implantation and subsequent annealing. Micro-Raman and PL spectroscopy reveal that optical activation of the rare earth ions and recovery of the original MoO3 structure are achieved for shorter annealing treatments and for lower temperatures in nanoplates, as compared with lamellar crystals. Er seems to be more readily incorporated into optically active sites in the oxide lattice than Eu. The influence of the dimensionality of the host sample on the characteristics of the PL emission of both rare earth dopants is addressed.

  4. The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data

    Science.gov (United States)

    Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris

    2010-05-01

    Data integration is increasingly important as we strive to combine data from disparate sources and assemble better models of the complex processes operating at the Earth's surface and within its interior. These data are often large, multi-dimensional, and subject to differing conventions for data structures, file formats, coordinate spaces, and units of measure. When visualized, these data require differing, and sometimes conflicting, conventions for visual representations, dimensionality, symbology, and interaction. All of this makes the visualization of integrated Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data integration and visualization suite of applications and libraries being developed by the GEON project at the University of California, San Diego, USA. Funded by the NSF, the project is leveraging virtual globe technology from NASA's WorldWind to create interactive 3D visualization tools that combine and layer data from a wide variety of sources to create a holistic view of features at, above, and beneath the Earth's surface. The OEF architecture is open, cross-platform, modular, and based upon Java. The OEF's modular approach to software architecture yields an array of mix-and-match software components for assembling custom applications. Available modules support file format handling, web service communications, data management, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats used in the field. Each one imports data into a general-purpose common data model supporting multidimensional regular and irregular grids, topography, feature geometry, and more. Data within these data models may be manipulated, combined, reprojected, and visualized. The OEF's visualization features support a variety of conventional and new visualization techniques for looking at topography, tomography, point clouds, imagery, maps, and feature geometry. 3D data such as

  5. Synthesis and characterization of rare earth doped novel optical materials and their potential applications

    Science.gov (United States)

    Pokhrel, Madhab

    There are many application of photonic materials but selection of photonic materials are always constrained by number of factors such as cost, availability of materials, thermal and chemical stability, toxicity, size and more importantly ease of synthesis and processing along with the efficient emission. For example, quantum dots are efficient emitter but they are significantly toxic, whereas dyes are also efficient emitters but they are chemically unstable. On the other hand, display and LED requires the micron size particles but bio application requires the nano-sized particles. On the other hand, laser gain media requires the ceramics glass or single crystal not the nanoparticles. So, realization of practical optical systems critically depends on suitable materials that offer specific combinations of properties. Solid-state powders such as rare-earth ions doped nano and micron size phosphors are one of the most promising candidates for several photonic applications discussed above. In this dissertation, we investigate the upconversion (UC) fluorescence characteristics of rare earth (RE) doped M2O2S (M = Y, Gd, La) oxysulphide phosphors, for near-infrared to visible UC. Both nano and micron size phosphors were investigated depending on their applications of interest. This oxysulphide phosphor possesses several excellent properties such as chemical stability, low toxicity and can be easily mass produced at low cost. Mainly, Yb3+, Er3+, and Ho3+ were doped in the host lattice, resulting in bright red, green, blue and NIR emissions under 980 nm and 1550 nm excitation at various excitation power densities. Maximum UC quantum yields (QY) up to 6.2 %, 5.8%, and 4.6% were respectively achieved in Yb3+/Er3+ :La2O2S, Y2O2S, and Gd2O 2S. Comparisons have been made with respect to reported most efficient upconverting phosphors beta-NaYF4:20 % Yb/ 2% Er. We believe that present phosphors are the most efficient and lower excitation threshold upconverting phosphors at 980 and

  6. Ultraviolet absorption and excitation spectroscopy of rare-earth-doped glass fibers derived from glassy and crystalline preforms

    Science.gov (United States)

    Dragic, Peter D.; Liu, Yuh-Shiuan; Galvin, Thomas C.; Eden, J. G.

    2012-02-01

    Ultraviolet absorption and laser excitation spectroscopy (LES) measurements are presented for rare-earth-doped optical fibers produced from both glassy and crystalline preforms. Absorption spectra are obtained via broad-spectrum UV LEDs emitting in the 250nm region. LES measurements are obtained utilizing a tunable UV laser source. The tunable laser employed is a frequency-doubled titanium:sapphire laser-pumped optical parametric amplifier (OPA) operating down to a minimum wavelength of about 225nm. Our results indicate a roughly linear relationship between the concentration of oxygen deficiency centers (ODC) and rare-earth content, regardless of the preform type, and the slope of the line is found to vary significantly with the rare earth. Additionally, LES measurements are used to elucidate the energy transfer mechanism from pumping in the UV to emission by the rare-earth. In all cases the fibers are Al codoped and those produced from glassy preforms are manufactured via standard methods. Fibers produced from crystalline preforms start with a pure silica-sleeved rare-earth doped YAG crystal rod that becomes glassy (amorphous) post-draw.

  7. Rare Earth Ion-Doped Upconversion Nanocrystals: Synthesis and Surface Modification

    Directory of Open Access Journals (Sweden)

    Hongjin Chang

    2014-12-01

    Full Text Available The unique luminescent properties exhibited by rare earth ion-doped upconversion nanocrystals (UCNPs, such as long lifetime, narrow emission line, high color purity, and high resistance to photobleaching, have made them widely used in many areas, including but not limited to high-resolution displays, new-generation information technology, optical communication, bioimaging, and therapy. However, the inherent upconversion luminescent properties of UCNPs are influenced by various parameters, including the size, shape, crystal structure, and chemical composition of the UCNPs, and even the chosen synthesis process and the surfactant molecules used. This review will provide a complete summary on the synthesis methods and the surface modification strategies of UCNPs reported so far. Firstly, we summarize the synthesis methodologies developed in the past decades, such as thermal decomposition, thermal coprecipitation, hydro/solvothermal, sol-gel, combustion, and microwave synthesis. In the second part, five main streams of surface modification strategies for converting hydrophobic UCNPs into hydrophilic ones are elaborated. Finally, we consider the likely directions of the future development and challenges of the synthesis and surface modification, such as the large-scale production and actual applications, stability, and so on, of the UCNPs.

  8. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants.

    Science.gov (United States)

    Goodall, Josephine B M; Illsley, Derek; Lines, Robert; Makwana, Neel M; Darr, Jawwad A

    2015-02-09

    In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases.

  9. Rare Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications

    CERN Document Server

    O’Donnell, Kevin

    2010-01-01

    This book provides a snapshot of recent progress in the field of rare-earth-doped group III-nitride semiconductors, especially GaN, but extending to AlN and the alloys AlGaN, AlInN and InGaN. This material class is currently enjoying an upsurge in interest due to its ideal suitability for both optoelectronic and spintronic applications. The text first introduces the reader to the historical background and the major theoretical challenges presented when 4f electron systems are embedded in a semiconductor matrix. It details the preparation of samples for experimental study, either by in-situ growth or ion implantation/annealing, and describes their microscopic structural characterisation. Optical spectroscopy is a dominant theme, complicated by site multiplicity, whether in homogeneous hosts or in heterostructures such as quantum dots, and enlivened by the abiding fascination of the energy transfer mechanism between the host material and the lumophore. Finally, the rapid progress towards prospective optoelectro...

  10. Emission properties of Ce-doped alkaline earth borate glasses for scintillator applications

    Science.gov (United States)

    Torimoto, Aya; Masai, Hirokazu; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2017-11-01

    We investigate the photoluminescence (PL) and X-ray-induced luminescence properties of 0.1 mol% Ce-doped MO-B2O3 (M = Ca, Sr, and Ba) glasses. We also determine the Ce3+/(Ce3++Ce4+) ratio by X-ray absorption near-edge structure analyses. The emission intensities of PL, X-ray scintillation, and thermally stimulated luminescence (TSL) depend on the host glass composition. The order of the PL intensity from highest to lowest is as follows: Ca-substituted glass, Ba-substituted glass, and Sr-substituted glass. Our results suggest that the optical absorption edge and quantum yield (QY) are influenced by the local coordination state of Ce3+, which, in turn, is likely to be affected by the optical basicity. The order of the X-ray scintillation intensity from highest to lowest is reverse of that of the PL intensity. This is probably because the interaction probability of X-rays with matter depends on the effective atomic number of the material and the effective atomic number has a stronger influence on the scintillation intensity than does the QY. Though the TSL glow curves reveal that the density and energy depth of the trap sites depend on the substituted alkaline earth oxides, we are unable to correlate the electron spin resonance (ESR) spectra with the TSL results. Therefore, it is considered that the ESR active sites are not responsible for the TSL in these systems.

  11. Axion dark matter detection by laser induced fluorescence in rare-earth doped materials.

    Science.gov (United States)

    Braggio, Caterina; Carugno, Giovanni; Chiossi, Federico; Lieto, Alberto Di; Guarise, Marco; Maddaloni, Pasquale; Ortolan, Antonello; Ruoso, Giuseppe; Santamaria, Luigi; Tasseva, Jordanka; Tonelli, Mauro

    2017-11-09

    We present a detection scheme to search for QCD axion dark matter, that is based on a direct interaction between axions and electrons explicitly predicted by DFSZ axion models. The local axion dark matter field shall drive transitions between Zeeman-split atomic levels separated by the axion rest mass energy m a c 2 . Axion-related excitations are then detected with an upconversion scheme involving a pump laser that converts the absorbed axion energy (~hundreds of μeV) to visible or infrared photons, where single photon detection is an established technique. The proposed scheme involves rare-earth ions doped into solid-state crystalline materials, and the optical transitions take place between energy levels of 4f N electron configuration. Beyond discussing theoretical aspects and requirements to achieve a cosmologically relevant sensitivity, especially in terms of spectroscopic material properties, we experimentally investigate backgrounds due to the pump laser at temperatures in the range 1.9 - 4.2 K. Our results rule out excitation of the upper Zeeman component of the ground state by laser-related heating effects, and are of some help in optimizing activated material parameters to suppress the multiphonon-assisted Stokes fluorescence.

  12. Direct quantification of rare earth doped titania nanoparticles in individual human cells

    Science.gov (United States)

    Jeynes, J. C. G.; Jeynes, C.; Palitsin, V.; Townley, H. E.

    2016-07-01

    There are many possible biomedical applications for titania nanoparticles (NPs) doped with rare earth elements (REEs), from dose enhancement and diagnostic imaging in radiotherapy, to biosensing. However, there are concerns that the NPs could disintegrate in the body thus releasing toxic REE ions to undesired locations. As a first step, we investigate how accurately the Ti/REE ratio from the NPs can be measured inside human cells. A quantitative analysis of whole, unsectioned, individual human cells was performed using proton microprobe elemental microscopy. This method is unique in being able to quantitatively analyse all the elements in an unsectioned individual cell with micron resolution, while also scanning large fields of view. We compared the Ti/REE signal inside cells to NPs that were outside the cells, non-specifically absorbed onto the polypropylene substrate. We show that the REE signal in individual cells co-localises with the titanium signal, indicating that the NPs have remained intact. Within the uncertainty of the measurement, there is no difference between the Ti/REE ratio inside and outside the cells. Interestingly, we also show that there is considerable variation in the uptake of the NPs from cell-to-cell, by a factor of more than 10. We conclude that the NPs enter the cells and remain intact. The large heterogeneity in NP concentrations from cell-to-cell should be considered if they are to be used therapeutically.

  13. Improving the Photoelectric Characteristics of MoS2 Thin Films by Doping Rare Earth Element Erbium.

    Science.gov (United States)

    Meng, Miaofei; Ma, Xiying

    2016-12-01

    We investigated the surface morphologies, crystal structures, and optical characteristics of rare earth element erbium (Er)-doped MoS2 (Er: MoS2) thin films fabricated on Si substrates via chemical vapor deposition (CVD). The surface mopography, crystalline structure, light absorption property, and the photoelectronic characteristics of the Er: MoS2 films were studied. The results indicate that doping makes the crystallinity of MoS2 films better than that of the undoped film. Meanwhile, the electron mobility and conductivity of the Er-doped MoS2 films increase about one order of magnitude, and the current-voltage (I-V) and the photoelectric response characteristics of the Er:MoS2/Si heterojunction increase significantly. Moreover, Er-doped MoS2 films exhibit strong light absorption and photoluminescence in the visible light range at room temperature; the intensity is enhanced by about twice that of the undoped film. The results indicate that the doping of MoS2 with Er can significantly improve the photoelectric characteristics and can be used to fabricate highly efficient luminescence and optoelectronic devices.

  14. First-principles prediction of Si-doped Fe carbide as one of the possible constituents of Earth's inner core

    Science.gov (United States)

    Das, Tilak; Chatterjee, Swastika; Ghosh, Sujoy; Saha-Dasgupta, Tanusri

    2017-09-01

    We perform a computational study based on first-principles calculations to investigate the relative stability and elastic properties of the doped and undoped Fe carbide compounds at 200-364 GPa. We find that upon doping a few weight percent of Si impurities at the carbon sites in Fe7C3 carbide phases, the values of Poisson's ratio and density increase while VP, and VS decrease compared to their undoped counterparts. This leads to marked improvement in the agreement of seismic parameters such as P wave and S wave velocity, Poisson's ratio, and density with the Preliminary Reference Earth Model (PREM) data. The agreement with PREM data is found to be better for the orthorhombic phase of iron carbide (o-Fe7C3) compared to hexagonal phase (h-Fe7C3). Our theoretical analysis indicates that Fe carbide containing Si impurities can be a possible constituent of the Earth's inner core. Since the density of undoped Fe7C3 is low compared to that of inner core, as discussed in a recent theoretical study, our proposal of Si-doped Fe7C3 can provide an alternative solution as an important component of the Earth's inner core.

  15. Spintronics: Towards room temperature ferromagnetic devices via manganese and rare earth doped gallium nitride

    Science.gov (United States)

    Luen, Melvyn Oliver

    . Simultaneously, post-growth diffusion of ferromagnetic, rare earth species into GaN template thin films also was investigated. Structural, electrical, optical and magnetic characterization of diffused films grown on sapphire was performed. Optimization of the conditions leading to the first successful diffusion of neodymium into GaN thin films, and the magnetic and optical studies that followed are detailed. A mechanism governing and conditions promoting ferromagnetism in rare earth (RE) doped GaN is proposed. The magnetic relationship between two similar and dissimilar rare earth elements, in a single GaN crystal are investigated. Finally, spin valve and magnetic tunnel junction devices based on the magnetic properties of RE-GaN thin films are investigated.

  16. An Integrated Concept on Earth and Environmental Sciences Postgraduate Education

    Science.gov (United States)

    Grosfeld, Klaus; Lohmann, Gerrit; Ladstätter-Weißenmayer, Annette; Burrows, John; Sprengel, Claudia; Bijma, Jelle

    2010-05-01

    Today's graduate and postgraduate education in the field of Earth System and Environmental Science is a highly interdisciplinary and inter-institutional challenge. The integration of observations, palaeoclimate data, and climate modelling requires networks and collaborations of experts and specialists in order to better understand natural climate variations over a broad range of timescales and disciplines, and to cope with the challenges of recent climate change. The existing research infrastructure at the Alfred-Wegener-Institut Bremerhaven (AWI), University of Bremen, and Jacobs University Bremen offers a unique research environment in north-western Germany to study past, present and future changes of the climate system, with special focus on high latitudinal processes. It covers all kind of disciplines, climate science, geosciences and biosciences, and provides a consistent framework for education and qualification of a new generation of expertly trained, internationally competitive master and PhD students. On postgraduate level, the Postgraduate Programme Environmental Physics (PEP) at the University of Bremen (www.pep.uni-bremen.de) educates the participants on the complex relationship between atmosphere, hydrosphere (ocean), cryosphere (ice region) and solid earth (land). Here, the learning of experimental methods in environmental physics at the most advanced level, numerical data analysis using supercomputers, and data interpretation via sophisticated methods prepare students for a scientific career. Within cooperation with the Ocean University of China (OUC) students are participating one year in the PEP programme during their master studies since 2006, to get finally a double degree of both universities. Based on this successful cooperation a similar programme is in preparation with the Lulea University of Technology, Sweden. The Earth System Science Research School (ESSReS) (www.earth-system-science.org) at the AWI enables PhD students from a variety of

  17. Postgraduate Education in Earth and Environmental Sciences: an Integrated Concept

    Science.gov (United States)

    Grosfeld, K.; Lohmann, G.; Ladstätter-Weißenmayer, A.; Burrows, J.; Sprengel, C.; Bijma, J.

    2009-04-01

    Today's graduate and postgraduate education in the field of Earth System and Environmental Science is a highly interdisciplinary and inter-institutional challenge. The integration of observations, palaeoclimate data, and climate modelling requires networks and collaborations of experts and specialists in order to better understand natural climate variations over a broad range of timescales and disciplines, and to cope with the challenges of recent climate change. The existing research infrastructure at the Alfred-Wegener-Institut Bremerhaven (AWI), University of Bremen (Uni-HB), and Jacobs University Bremen offers a unique research environment in north-western Germany to study past, present and future changes of the climate system, with special focus on high latitudinal processes. It covers all kind of disciplines, climate science, geosciences and biosciences, and provides a consistent framework for education and qualification of a new generation of expertly trained, internationally competitive master and PhD students. On postgraduate level, the Postgraduate Programme Environmental Physics (PEP) at University of Bremen (www.pep.uni-bremen.de) educates the participants on the complex relationship between atmosphere, hydrosphere (ocean), cryosphere (ice region) and solid earth (land). Here, the learning of experimental methods in environmental physics at the most advanced level, numerical data analysis using supercomputers, and data interpretation via sophisticated methods prepare students for a scientific career. The foundation of an Earth System Research School (ESSReS) (www.earth-system-science.org) at the AWI enables PhD students from a variety of disciplines to cooperate and exchange views on the common theme of ‘linking data and modelling', leading to a better understanding of local processes within a global context. Computational and conceptual models of the Earth system provide the ability to investigate different scenarios in biogeochemistry, such as the

  18. Potency of (doped) rare earth oxide particles and their constituent metals to inhibit algal growth and induce direct toxic effects.

    Science.gov (United States)

    Joonas, Elise; Aruoja, Villem; Olli, Kalle; Syvertsen-Wiig, Guttorm; Vija, Heiki; Kahru, Anne

    2017-09-01

    Use of rare earth elements (REEs) has increased rapidly in recent decades due to technological advances. It has been accompanied by recurring rare earth element anomalies in water bodies. In this work we (i) studied the effects of eight novel doped and one non-doped rare earth oxide (REO) particles (aimed to be used in solid oxide fuel cells and gas separation membranes) on algae, (ii) quantified the individual adverse effects of the elements that constitute the (doped) REO particles and (iii) attempted to find a discernible pattern to relate REO particle physicochemical characteristics to algal growth inhibitory properties. Green algae Raphidocelis subcapitata (formerly Pseudokirchneriella subcapitata) were used as a test species in two different formats: a standard OECD201 algal growth inhibition assay and the algal viability assay (a 'spot test') that avoids nutrient removal effects. In the 24h 'spot' test that demonstrated direct toxicity, algae were not viable at REE concentrations above 1mgmetal/L. 72-hour algal growth inhibition EC50 values for four REE salts (Ce, Gd, La, Pr) were between 1.2 and 1.4mg/L, whereas the EC50 for REO particles ranged from 1 to 98mg/L. The growth inhibition of REEs was presumably the result of nutrient sequestration from the algal growth medium. The adverse effects of REO particles were at least in part due to the entrapment of algae within particle agglomerates. Adverse effects due to the dissolution of constituent elements from (doped) REO particles and the size or specific surface area of particles were excluded, except for La2NiO4. However, the structure of the particles and/or the varying effects of oxide composition might have played a role in the observed effects. As the production rates of these REO particles are negligible compared to other forms of REEs, there is presumably no acute risk for aquatic unicellular algae. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Toxicity of Nine (Doped) Rare Earth Metal Oxides and Respective Individual Metals to Aquatic Microorganisms Vibrio fischeri and Tetrahymena thermophila.

    Science.gov (United States)

    Kurvet, Imbi; Juganson, Katre; Vija, Heiki; Sihtmäe, Mariliis; Blinova, Irina; Syvertsen-Wiig, Guttorm; Kahru, Anne

    2017-07-05

    Despite the increasing use of rare earth elements (REEs) and oxides (REOs) in various technologies, the information on their ecotoxicological hazard is scarce. Here, the effects of La(3+), Ce(3+), Pr(3+), Nd(3+), Gd(3+), CeO₂, and eight doped REOs to marine bacteria Vibrio fischeri and freshwater protozoa Tetrahymena thermophila were studied in parallel with REO dopant metals (Co(2+), Fe(3+), Mn(2+), Ni(2+), Sr(2+)). The highest concentrations of REOs tested were 100 mg/L with protozoa in deionized water and 500 mg/L with bacteria in 2% NaCl. Although (i) most REOs produced reactive oxygen species; (ii) all studied soluble REEs were toxic to bacteria (half-effective concentration, EC50 3.5-21 mg metal/L; minimal bactericidal concentration, MBC 6.3-63 mg/L) and to protozoa (EC50 28-42 mg/L); and (iii) also some dopant metals (Ni(2+), Fe(3+)) proved toxic (EC50 ≤ 3 mg/L), no toxicity of REOs to protozoa (EC50 > 100 mg/L) and bacteria (EC50 > 500 mg/L; MBC > 500 mg/L) was observed except for La₂NiO₄ (MBC 25 mg/L). According to kinetics of V. fischeri bioluminescence, the toxicity of REEs was triggered by disturbing cellular membrane integrity. Fortunately, as REEs and REOs are currently produced in moderate amounts and form in the environment insoluble salts and/or oxides, they apparently present no harm to aquatic bacteria and protozoa.

  20. Polarization dependence of two-photon transition intensities in rare-earth doped crystals

    Energy Technology Data Exchange (ETDEWEB)

    Le Nguyen, An-Dien [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    A polarization dependence technique has been developed as a tool to investigate phonon scattering (PS), electronic Raman scattering (ERS), and two-photon absorption (TPA) transition intensities in vanadate and phosphate crystals. A general theory for the polarization dependence (PD) of two-photon transition intensities has been given. Expressions for the polarization dependent behavior of two-photon transition intensities have been tabulated for the 32 crystallographic point groups. When the wavefunctions for the initial and final states of a rare-earth doped in crystals are known, explicit PD expressions with no unknown parameters can be obtained. A spectroscopic method for measuring and interpreting phonon and ERS intensities has been developed to study PrVO4, NdVO4, ErVO4, and TmVO4 crystals. Relative phonon intensities with the polarization of the incident and scattered light arbitrarily varied were accurately predicted and subsequently used for alignment and calibration in ERS measurements in these systems for the first time. Since ERS and PS intensities generally follow different polarization curves as a function of polar angles, the two can be uniquely identified by comparing their respective polarization behavior. The most crucial application of the technique in ERS spectroscopy is the establishment of a stringent test for the Axe theory. For the first time, the F1/F2 ratio extracted from the experimental fits of the ERS intensities were compared with those predicted by theories which include both the second- and third-order contributions. Relatively good agreement between the fitted values of F1/F2 and the predicted values using the second-order theory has been found.

  1. Arsenic-Doped High-Resistivity-Silicon Epitaxial Layers for Integrating Low-Capacitance Diodes

    Directory of Open Access Journals (Sweden)

    Jaber Derakhshandeh

    2011-12-01

    Full Text Available An arsenic doping technique for depositing up to 40-μm-thick high-resistivity layers is presented for fabricating diodes with low RC constants that can be integrated in closely-packed configurations. The doping of the as-grown epi-layers is controlled down to 5 × 1011 cm−3, a value that is solely limited by the cleanness of the epitaxial reactor chamber. To ensure such a low doping concentration, first an As-doped Si seed layer is grown with a concentration of 1016 to 1017 cm−3, after which the dopant gas arsine is turned off and a thick lightly-doped epi-layer is deposited. The final doping in the thick epi-layer relies on the segregation and incorporation of As from the seed layer, and it also depends on the final thickness of the layer, and the exact growth cycles. The obtained epi-layers exhibit a low density of stacking faults, an over-the-wafer doping uniformity of 3.6%, and a lifetime of generated carriers of more than 2.5 ms. Furthermore, the implementation of a segmented photodiode electron detector is demonstrated, featuring a 30 pF capacitance and a 90 Ω series resistance for a 7.6 mm2 anode area.

  2. Evidence for interface superconductivity in rare-earth doped CaFe2As2 single crystals

    Science.gov (United States)

    Lv, Bing; Deng, L. Z.; Wei, F. Y.; Xue, Y. Y.; Chu, C. W.

    2014-03-01

    To unravel to the mysterious non-bulk superconductivity up to 49K observed in rare-earth (R =La, Ce, Pr and Nd) doped CaFe2As2 single-crystals whose Tc is higher than that of any known compounds consisting of one or more of its constituent elements of R, Ca, Fe, and As at ambient or under pressures, systematic magnetic, compositional and structural have carried out on different rare-earth-doped (Ca1-xRx) Fe2As2 samples. We have detected extremely large magnetic anisotropy, doping-level independent Tc, unexpected superparamagnetic clusters associated with As vacancies and their close correlation with the superconducting volume fraction, the existence of mesoscopic-2D structures and Josephson-junction arrays in this system. These observations lead us to conjecture that the Tc enhancement may be associated with naturally occurring chemical interfaces and thus provided evidence for the possible interface-enhanced Tc in naturally-grown single crystals of Fe-based superconductors.

  3. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.

    Science.gov (United States)

    Ganem, Joseph; Bowman, Steven R

    2013-11-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

  4. Rare earth doped SnO2 nanoscaled powders and coatings: enhanced photoluminescence in water and waveguiding properties.

    Science.gov (United States)

    Gonçalves, R R; Messaddeq, Y; Aegerter, M A; Ribeiro, S J L

    2011-03-01

    Luminescent Eu3+ and Er3+ doped SnO2 powders have been prepared by Sn4+ hydrolysis followed by a controlled growth reaction using a particle's surface modifier in order to avoid particles aggregation. The powders so obtained doped with up to 2 mol% rare earth ions are fully redispersable in water at pH > 8 and present the cassiterite structure. Particles size range from 3 to 10 nm as determined by Photon Correlation Spectroscopy. Rare earth ions were found to be essentially incorporated into the cassiterite structure, substituting for Sn4+, for doping concentration smaller than 0.05 mol%. For higher concentration they are also located at the particles surface. The presence of Eu3+ ions at the surface of the particles hinder their growth and has therefore allowed the preparation of new materials consisting of water redispersable powders coated with Eu(3+)-beta diketonate complexes. Enhanced UV excited photoluminescence was observed in water. SnO2 single layers with thickness up to 200 nm and multilayer coatings were spin coated on borosilicate glass substrates from the colloidal suspensions. Waveguiding properties were evaluated by the prism coupling technique. For a 0.3 microm planar waveguide single propagating mode was observed with attenuation coefficient of 3.5 dB/cm at 632.8 nm.

  5. Spectroscopic and optical properties of Nd{sup 3+} doped fluorine containing alkali and alkaline earth zinc-aluminophosphate optical glasses

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasa Rao, A., E-mail: drsrallam@yahoo.co.i [Department of Physics, K.L. University, Green Fields, Vaddeswaram, 522 502 Guntur (Dt.), A.P. (India); Rupa Venkateswara Rao, B.; Prasad, M.V.V.K.S.; Shanmukha Kumar, J.V. [Department of Physics, K.L. University, Green Fields, Vaddeswaram, 522 502 Guntur (Dt.), A.P. (India); Jayasimhadri, M. [Department of Physics, Changwon National University, 9 Sarimdong, Changwon, Kyongnam 641 773 (Korea, Republic of); Rao, J.L. [Department of Physics, Sri Venkateswara University, Tirupati 517 502, A.P. (India); Chakradhar, R.P.S. [Glass Technology Laboratory, Central Glass and Ceramic Research Institute (CSIR), Kolkata 700 032 (India)

    2009-11-01

    Nd{sup 3+} doped fluorine containing zinc-aluminophosphate glasses have been prepared with alkali and alkaline earth content to understand the effect of network modifiers on radiative process. The physical and optical properties of these glasses have been evaluated. The Judd-Ofelt model for the intensity analysis of induced electric dipole transitions has been applied to the measured oscillator strengths of the absorption bands to determine the three phenomenological intensity parameters OMEGA{sub 2}, OMEGA{sub 4} and OMEGA{sub 6} for each glass. Using these parameters, transition probability (A), total transition probability (A{sub T}), branching ratios (beta{sub R}) radiative life times (tau{sub R}) and integrated cross-section (sigma{sub a}) for the stimulated emission have been theoretically calculated for certain excited Nd{sup 3+} fluorescent levels. From the obtained results the conclusion is made about the possibility of using these glasses as laser material.

  6. Earth From Space: "Beautiful Earth's" Integration of Media Arts, Earth Science, and Native Wisdom in Informal Learning Environments

    Science.gov (United States)

    Casasanto, V.; Hallowell, R.; Williams, K.; Rock, J.; Markus, T.

    2015-12-01

    "Beautiful Earth: Experiencing and Learning Science in an Engaging Way" was a 3-year project funded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science. An outgrowth of Kenji Williams' BELLA GAIA performance, Beautiful Earth fostered a new approach to teaching by combining live music, data visualizations and Earth science with indigenous perspectives, and hands-on workshops for K-12 students at 5 science centers. Inspired by the "Overview Effect," described by many astronauts who were awestruck by seeing the Earth from space and their realization of the profound interconnectedness of Earth's life systems, Beautiful Earth leveraged the power of multimedia performance to serve as a springboard to engage K-12 students in hands-on Earth science and Native wisdom workshops. Results will be presented regarding student perceptions of Earth science, environmental issues, and indigenous ways of knowing from 3 years of evaluation data.

  7. Rare-earth doped nanocomposites enable multiscale targeted short-wave infrared imaging of metastatic breast cancer

    Science.gov (United States)

    Pierce, Mark C.; Higgins, Laura M.; Ganapathy, Vidya; Kantamneni, Harini; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.

    2017-02-01

    We are investigating the ability of targeted rare earth (RE) doped nanocomposites to detect and track micrometastatic breast cancer lesions to distant sites in pre-clinical in vivo models. Functionalizing RE nanocomposites with AMD3100 promotes targeting to CXCR4, a recognized marker for highly metastatic disease. Mice were inoculated with SCP-28 (CXCR4 positive) and 4175 (CXCR4 negative) cell lines. Whole animal in vivo SWIR fluorescence imaging was performed after bioluminescence imaging confirmed tumor burden in the lungs. Line-scanning confocal fluorescence microscopy provided high-resolution imaging of RE nanocomposite uptake and native tissue autofluorescence in ex vivo lung specimens. Co-registered optical coherence tomography imaging allowed assessment of tissue microarchitecture. In conclusion, multiscale optical molecular imaging can be performed in pre-clinical models of metastatic breast cancer, using targeted RE-doped nanocomposites.

  8. Preparation of Ultrahigh Potential Gradient of ZnO Varistors by Rare-Earth Doping and Low-Temperature Sintering

    Directory of Open Access Journals (Sweden)

    Lei Ke

    2013-01-01

    Full Text Available The effects of rare-earth doping and low-temperature sintering on electrical properties of ZnO varistors were investigated. The potential gradient (E1mA of the ZnO varistors increased significantly to 2247.2 V/mm after doping 0.08 mol% of Y2O3 and sintering at 800°C for 2 h. The notable decrease of the grain size with the given experimental conditions was the origin for the increase in E1mA. During the process of high-temperature sintering, both the oxygen at the grain boundary interface and the neutralisation of the ions on the depletion layer were directly reduced, which caused the weight loss and the internal derangement of double Schottky barriers.

  9. Silicon rich nitride ring resonators for rare - earth doped telecommunications-band amplifiers pumped at the O-band.

    Science.gov (United States)

    Xing, P; Chen, G F R; Zhao, X; Ng, D K T; Tan, M C; Tan, D T H

    2017-08-22

    Ring resonators on silicon rich nitride for potential use as rare-earth doped amplifiers pumped at 1310 nm with amplification at telecommunications-band are designed and characterized. The ring resonators are fabricated on 300 nm and 400 nm silicon rich nitride films and characterized at both 1310 nm and 1550 nm. We demonstrate ring resonators exhibiting similar quality factors exceeding 10,000 simultaneously at 1310 nm and 1550 nm. A Dysprosium-Erbium material system exhibiting photoluminescence at 1510 nm when pumped at 1310 nm is experimentally demonstrated. When used together with Dy-Er co-doped particles, these resonators with similar quality factors at 1310 nm and 1550 nm may be used for O-band pumped amplifiers for the telecommunications-band.

  10. Building thematic and integrated services for solid Earth sciences: the EPOS integrated approach

    Science.gov (United States)

    Cocco, Massimo; Consortium, Epos

    2016-04-01

    EPOS has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. A long-term integration plan is necessary to accomplish the EPOS mission. EPOS is presently in its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project and consists of two key activities: the legal establishment of the EPOS-ERIC and the EPOS IP project. The EPOS implementation phase will last from 2015 to 2019. Key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core

  11. The manipulated left-handedness in a rare-earth-ion-doped optical fiber by the incoherent pumping field

    Science.gov (United States)

    Zhao, Shun-Cai; Guo, Hong-Wei; Wei, Xiao-Jing

    2017-10-01

    The left-handedness was demonstrated by the simulation with a three-level quantum system in an Er3+ -dopped ZrF4-BaF2-LaF3- AlF3-NaF (ZBLAFN) optical fiber. And the left-handedness can be regulated by the incoherent pumping field. Our scheme may provide a solid candidate other than the coherent atomic vapor for left-handedness, and may extend the application of the rare-earth-ion-doped optical fiber in metamaterials and of the incoherent pumping light field in quantum optics.

  12. Excimer laser doping technique for application in an integrated CdTe imaging device

    CERN Document Server

    Mochizuki, D; Aoki, T; Tomita, Y; Nihashi, T; Hatanaka, Y

    1999-01-01

    CdTe is an attractive semiconductor material for applications in solid-state high-energy X-ray and gamma-ray imaging systems because of its high absorption coefficient, large band gap, good mobility lifetime product of holes and stability at normal atmospheric conditions. We propose a new concept for fabricating an integrated CdTe with monolithic circuit configuration for two-dimensional imaging systems suitable for medical, research or industrial applications and operation at room temperature. A new doping technique has been recently developed that employs excimer laser radiation to diffuse impurity atoms into the semiconductor. Accordingly, heavily doped n- and p-type layers with resistivities less than 1 OMEGA cm can be formed on the high resistive CdTe crystals. We have further extended this technique for doping with spatial pattern. We will present the laser doping technique and various results thus obtained. Spatially patterned doping is demonstrated and we propose the use of these doping techniques for...

  13. Integrating Permafrost into an Earth System Model: First Sensitivity Experiments

    Science.gov (United States)

    Kitover, Danielle; Renssen, Hans; van Balen, Ronald; Vandenberghe, Jef

    2010-05-01

    Approximately one-fifth of the Northern Hemisphere's land surface is underlain by permafrost. Yet, to date, few global climate models have incorporated freeze/thaw soil processes and permafrost evolution into their simulations. This may be a significant component to omit since it has been well-established that like many parts of the Arctic system, permafrost is responding to a warming climate. As been observed at many sites around the circumpolar arctic, subarctic, and alpine locations, this includes warming soil temperatures, decreasing permafrost extent, and thickening active layer. Not only do freezing and thawing processes play a significant role in the land surface energy and moisture balance but such changes imply potential feedback effects as well. Specifically, changes in the permafrost regime can feedback to the climate system via three mechanisms: 1) as a source/sink of thermal energy through latent heat exchange, 2) as a regulator of regional hydrology, and 3) as a carbon reservoir. The best way to analyze these feedback effects, and hence the overall role of permafrost within the earth system, is to incorporate surface and subsurface freeze/thaw processes within a climate model. Therefore, as impetus to narrow this research gap, our project will be enhancing an existing earth system model of intermediate complexity called LOVECLIM by integrating a frozen soil algorithm within the land surface component. An examination of the permafrost-climate relationship will be done at both present climate and the last glacial maximum climate. We specifically focus at paleoclimate time scales that allow the simulations to capture the slow response time (relative to other earth system components) of permafrost and allow changes in permafrost and associated functions to feedback to the climate. However, before coupling to LOVECLIM, we first performed sensitivity experiments on the algorithm to determine the parameterization most fitting for the research scope. This

  14. Fabrication of planar beamsplitter integrated with Er-doped waveguide amplifier for optical fiber communication

    Science.gov (United States)

    Li, Cheng-Chung; Kim, Hong Koo

    1998-06-01

    We developed planar beamsplitter integrated with an Er-doped waveguide amplifier to compensate for the loss of the beamsplitter. In thin-film waveguide, a vertical dimension is determined by an Er-doped layer thickness, whereas a lateral dimension is defined by a patterning process that usually involves photolithography and etching techniques. Etching of Er-doped glass is known to be a challenging process. Chemical etching usually results in rough surfaces. Dry etching of Er-doped glasses containing alkaline metals shows a low etch-rate problem. Some researchers have used an ion milling technique to form a ridge structure with variable success. However, high temperature reflow is still required to minimize side wall roughness. We have developed a new fabrication process for Er-doped 2D waveguides. The process does not require etching of an Er-doped film, and therefore is simple, economical, and highly reproducible in defining a lateral dimension of a waveguide. Under-cladding silica layer was grown by Microwave Plasma Assisted Chemical Vapor Deposition on silicon substrate. Patterning of waveguide was defined on the under cladding layer. After that, an Er-doped soda-lime silicate glass film was deposited with rf magnetron sputtering, and jointed with core layer region of waveguide beam splitter which has compatible mode profile with optical fiber.A 1.7-cm-long Er- doped waveguide shows 7.2 dB gain at 980 nm pump power of 40 mW. This demonstrates that the amplifier can provide an optical gain sufficiently to compensate for the splitter losses.

  15. Spectroscopic and neutron detection properties of rare earth and titanium doped LiAlO 2 single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, Peter T.; Marcial, José; McCloy, John; McDonald, Benjamin S.; Lynn, Kelvin G.

    2017-10-01

    In this study, LiAlO2 crystals doped with rare-earth elements and Ti were produced by the CZ method and spectroscopic and neutron detection properties were investigated. Photoluminescence revealed no clear luminescent activation of LiAlO2 by the rare-earth dopants though some interesting luminescence was observed from secondary phases within the crystal. Gamma-ray pulse height spectra collected using a 137Cs source exhibited only a Compton edge for the crystals. Neutron modeling using Monte Carlo N-Particle Transport Code revealed most neutrons used in the detection setup are thermalized, and while using natural lithium in the crystal growth, which contains 7.6 % 6Li, a 10 mm Ø by 10 mm sample of LiAlO2 has a 70.7 % intrinsic thermal neutron capture efficiency. Furthermore, the pulse height spectra collected using a 241Am-Be neutron source demonstrated a distinct neutron peak.

  16. GeS2-In2S3-CsI Chalcogenide Glasses Doped with Rare Earth Ions for Near- and Mid-IR Luminescence.

    Science.gov (United States)

    Li, Legang; Bian, Junyi; Jiao, Qing; Liu, Zijun; Dai, Shixun; Lin, Changgui

    2016-11-21

    Chalcogenide glass has been considered as a promising host for the potential laser gain and amplifier media operating in near- and mid-IR spectral region. In this work, the IR luminescence spectra of rare earth ions (Tm(3+), Er(3+), and Dy(3+)) doped 65GeS2-25In2S3-10CsI chalcogenide glasses were measured under the excitation of an 808 nm laser diode. To the best of our knowledge, it firstly provides the luminescence spectra of a full near- and mid-IR spectral range from 1 to 4 μm in rare earth ions doped chalcogenide glasses. The results of absorption spectra, luminescence spectra, and fluorescence decay curves were obtained in these samples with singly-, co- and triply-doping behaviors of Tm(3+), Er(3+), and Dy(3+) ions. In order to search possible efficient IR emissions, the luminescence behavior was investigated specifically with the variation of doping behaviors and dopant ions, especially in the samples co- and triply-doped active ions. The results suggest that favorable near- and mid-IR luminescence of rare earth ions can be further modified in chalcogenide glasses through an elaborated design of doping behavior and optically active ions.

  17. The Role of Defect Complexes in the Magneto-Optical Properties of Rare Earth Doped Gallium Nitride

    Science.gov (United States)

    Mitchell, Brandon

    Wide band gap semiconductors doped with rare earth ions (RE) have shown great potential for applications in optoelectronics, photonics, and spintronics. The 1.54mum Erbium (Er) emission has been extensively utilized in optical fiber communications, and Europium (Eu) is commonly used as a red color component for LEDs and fluorescence lamps. For the realization of spintronic-type devices, a dilutely doped semiconductor that exhibits room temperature ferromagnetic behavior would be desirable. Such behavior has been observed in GaN:Er. Furthermore, it was demonstrated that strain may play an important role in the control of this ferromagnetism; however, this requires further investigation. One motivation of this work is the realization of an all solid state white light source monolithically integrated into III/V nitride semiconductor materials, ideally GaN. For this, the current AlGaAs-based LEDs need to be replaced. One approach for achieving efficient red emission from GaN is dilute doping with fluorescent ions. In this regard, Eu has consistently been the most promising candidate as a dopant in the active layer for a red, GaN based, LED due to the sharp 5D0 to 7F2 transitions that result in red emission around 620nm. The success of GaN:Eu as the active layer for a red LED is based on the ability for the Eu ions to be efficiently excited by electron hole pairs. Thus, the processes by which energy is transferred from the host to the Eu ions has been studied. Complications arise, however, from the fact that Eu ions incorporate into multiple center environments, the structures of which are found to have a profound influence on the excitation pathways and efficiencies of the Eu ion. Therefore the nature of Eu incorporation and the resulting luminescence efficiency in GaN has been extensively investigated. By performing a comparative study on GaN:Eu samples grown under a variety of controlled conditions and using a variety of experimental techniques, the majority site has

  18. Strong broad green UV-excited photoluminescence in rare earth (RE = Ce, Eu, Dy, Er, Yb) doped barium zirconate

    Energy Technology Data Exchange (ETDEWEB)

    Borja-Urby, R. [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico); Diaz-Torres, L.A., E-mail: ditlacio@cio.mx [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico); Salas, P. [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, A.P. 1-1010, Queretaro, Qro. 76000 (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Ciudad de Mexico, D. F. 07730 (Mexico); Meza, O. [Grupo de Espectroscopia de Materiales Avanzados y Nanoestructurados (EMANA), Centro de Investigaciones en Optica A. C., Leon, Gto. 37150 (Mexico)

    2011-10-25

    Highlights: > Trivalent rare earth (RE) substitution on Zr{sup 4+} sites in BaZrO{sub 3} lead to band gap narrowing. > RE substitution lead to enhanced blue-green intrinsic emission of nanocrystalline BaZrO{sub 3} > Blue-green hue of BaZrO3:RE depends on RE dopant and excitation UV wavelength > BaZrO3: Dy{sup 3+} PL chromatic coordinates correspond to pure white color coordinates of CIE 1931 model - Abstract: The wet synthesis hydrothermal method at 100 deg. C was used to elaborate barium zirconate (BaZrO{sub 3}) unpurified with 0.5 mol% of different rare earth ions (RE = Yb, Er, Dy, Eu, Ce). Morphological, structural and UV-photoluminescence properties depend on the substituted rare earth ionic radii. While the crystalline structure of RE doped BaZrO{sub 3} remains as a cubic perovskite for all substituted RE ions, its band gap changes between 4.65 and 4.93 eV. Under 267 nm excitation the intrinsic green photoluminescence of the as synthesized BaZrO{sub 3}: RE samples is considerably improved by the substitution on RE ions. For 1000 deg. C annealed samples, under 267 nm, the photoluminescence is dominated by the intrinsic BZO emission. It is interesting to notice that Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+} doped samples present whitish emissions that might be useful for white light generation under 267 nm excitation. CIE color coordinates are reported for all samples.

  19. Up-conversion in rare earth-doped silica hollow spheres

    Science.gov (United States)

    Fortes, Luís M.; Li, Yigang; Réfega, Ricardo; Clara Gonçalves, M.

    2012-06-01

    In the present work, Er/Yb co-doped silica hollow spheres are prepared in a two-step process. In a first step, polystyrene-core is silica coated in situ by a modified Stöber sol-gel method and in the second one, the sacrificial polystyrene core is thermally removed. The core-shell and the hollow spheres are characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy (PL). PL measurements show up-conversion phenomena upon excitation at 975 nm, through the emission of blue (˜490 nm), green (˜523 nm and ˜536 nm) and red (˜655 nm) light. The up-conversion phenomena are discussed and modelled. The developed model explains the up-conversion phenomena of Er/Yb co-doped silica hollow spheres, with special agreement for high Yb/Er ratio.

  20. Nonlinear Optics in Doped Silica Glass Integrated Waveguide Structures

    CERN Document Server

    Duchesne, David; Razzari, Luca; Morandotti, Roberto; Little, Brent; Chu, Sai T; Moss, David J

    2015-01-01

    Integrated photonic technologies are rapidly becoming an important and fundamental milestone for wideband optical telecommunications. Future optical networks have several critical requirements, including low energy consumption, high efficiency, greater bandwidth and flexibility, which must be addressed in a compact form factor.

  1. White emission materials from glass doped with rare Earth ions: A review

    Energy Technology Data Exchange (ETDEWEB)

    Yasaka, P.; Kaewkhao, J., E-mail: mink110@hotmail.com [Center of Excellence in Glass Technology and Materials Science (CEGM), Nakhon Pathom Rajabhat University, Nakhon Pathom 73000 (Thailand); Physics Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, 73000 (Thailand)

    2016-03-11

    Solid State Lighting (SSL) based devices are predicted to play a crucial role in the coming years. Development of W-LED, which have an edge over traditional lighting sources due to their compact size, higher reliability, shock resistance, interesting design possibilities, higher transparency and an extremely long lifetime. Over the fifteen trivalent lanthanide ions, Dy{sup 3+} ions doped glasses are most appropriate for white light generation because of the fact that it exhibits two intense emission bands corresponds to the {sup 4}F{sub 9/2}→{sup 6}H{sub 15/2} (magnetic dipole) and {sup 4}F{sub 9/2}→{sup 6}H{sub 13/2} (electric dipole) transitions at around 480-500 nm and 580-600 nm pertaining to blue and yellow regions respectively. In this work, the developments of Dy3+ doped in several glass structures for white emitting materials application have reviewed. Properties of Dy{sup 3+} doped in glasses were discussed for use as a solid state lighting materials application.

  2. The effect of surface OH-population on the photocatalytic activity of rare earth-doped P25-TiO2 in methylene blue degradation

    NARCIS (Netherlands)

    Du, P.; Bueno-López, A.; Verbaas, M.; Almeida, A.R.; Makkee, M.; Moulijn, J.A.; Mul, Guido

    2008-01-01

    Commercial TiO2 (P25, from Degussa) was modified with variable amounts of La, Ce, Y, Pr, Sm (generally rare earth (RE)), by thermal treatment of physical mixtures of TiO2 and the nitrates of the various RE. Doping of P25 with RE, combined with calcination at 600 or 800 °C, yields materials with

  3. Physical and optical absorption studies of Fe{sup 3+} - ions doped lithium borate glasses containing certain alkaline earths

    Energy Technology Data Exchange (ETDEWEB)

    Bhogi, Ashok [VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, Telangana (India); Kumar, R. Vijaya [School of Physics, University of Hyderabad, Hyderabad, Telangana (India); Kistaiah, P., E-mail: pkistaiah@yahoo.com [Department of Physics, Osmania University, Hyderabad, Telangana (India)

    2016-05-23

    Iron ion doped lithium borate glasses with the composition 15RO-25Li{sub 2}O-59B{sub 2}O{sub 3}-1Fe{sub 2}O{sub 3} (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to {sup 6}A{sub 1g}(S) → 4E{sub g} (G) of Fe{sup 3+} ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties is discussed.

  4. Microwave-Assisted Adsorptive Desulfurization of Model Diesel Fuel Using Synthesized Microporous Rare Earth Metal-Doped Zeolite Y

    Directory of Open Access Journals (Sweden)

    N. Salahudeen

    2015-06-01

    Full Text Available The microwave-assisted adsorptive desulfurization of model fuel (thiophene in n-heptane was investigated using a synthesized rare earth metal-doped zeolite Y (RE Y. Crystallinity of the synthesized zeolite was 89.5%, the silicon/aluminium (Si/Al molar ratio was 5.2, the Brunauer–Emmett–Teller (BET surface area was 980.9 m2/g, and the pore volume and diameter was 0.3494 cm3/g and 1.425 nm, respectively. The results showed that the microwave reactor could be used to enhance the adsorptive desulfurization process with best efficiency of 75% at reaction conditions of 100 °C and 15 minutes. The high desulfurization effect was likely due to the higher efficiency impact of microwave energy in the interaction between sulfur in thiophene and HO-La(OSiAl.

  5. Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide

    Science.gov (United States)

    Li, Jinhuan; Yang, Xia; Yu, Xiaodan; Xu, Leilei; Kang, Wanli; Yan, Wenhua; Gao, Hongfeng; Liu, Zhonghe; Guo, Yihang

    2009-01-01

    Rare-earth oxide-doped titania nanocomposites (RE 3+/TiO 2, where RE = Eu 3+, Pr 3+, Gd 3+, Nd 3+, and Y 3+) were prepared by a one-step sol-gel-solvothermal method. The products exhibited anatase phase structure, mesoporosity, and interesting surface compositions with three oxygen species and two titanium species. The products were used as the photocatalysts to degrade a partially hydrolysis polyacrylamide (HPAM) under UV-light irradiation, a very useful polymer in oil recovery. For comparison, Degussa P25 and as-prepared pure TiO 2 were also tested under the same conditions. The enhanced photocatalytic activity was obtained on as-prepared Eu 3+ (Gd 3+, Pr 3+)/TiO 2 composites, and the reasons were explained. Finally, the degradation pathway of HPAM over the RE 3+/TiO 2 composite was put forward based on the intermediates produced during the photocatalysis procedure.

  6. Optical properties and size distribution of the nanocolloids made of rare-earth ion-doped NaYF4

    Science.gov (United States)

    Patel, Darayas N.; Lewis, Ashley; Wright, Donald M.; Lewis, Danielle; Valentine, Rueben; Valentine, Maucus; Wessley, Dennis; Sarkisov, Sergey; Darwish, Abdalla M.

    2015-03-01

    In this paper we investigate optical properties and size distribution of the nano-colloids made of trivalent rare-earth ion doped fluorides: holmium and ytterbium, thulium and ytterbium, and erbium and ytterbium co-doped NaYF4. These materials were synthesized by using simple co-precipitation synthetic method. The initially prepared micro-crystals had very weak or no visible upconversion fluorescence signals when being pumped with a 980-nm laser. The fluorescence intensity significantly increased after the crystals were annealed at a temperature of 400°C - 600°C undergoing the transition from cubic alpha to hexagonal beta phase of the fluoride host. Nano-colloids of the crystals were made in polar solvents using the laser ablation and ball milling methods. Size analyses of the prepared nano-colloids were conducted using a dynamic light scatterometer and atomic force microscope. The nano-colloids were filled in holey PCFs and their fluorescent properties were studied and the feasibility of new a type of fiber amplifier/laser was evaluated.

  7. Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba)

    Energy Technology Data Exchange (ETDEWEB)

    Janek, Joanna, E-mail: janek.joanna@gmail.com; Sołtys, Marta; Żur, Lidia; Pietrasik, Ewa; Pisarska, Joanna; Pisarski, Wojciech A.

    2016-09-01

    Series of lead-free borate glasses with different oxide modifiers and lanthanide ions were prepared. The effect of oxide modifiers MO (M = Ca, Sr, Ba) on spectroscopic properties of trivalent Ln{sup 3+} (Ln = Eu, Er, Pr) were systematically investigated. Especially, the luminescence spectra of Ln{sup 3+}-doped lead-free borate glasses are presented and discussed in relation to the impact of selective components (CaO, SrO and BaO). Several spectroscopic parameters, such as the fluorescence intensity ratio R/O (Eu{sup 3+}) and measured luminescence lifetimes for the {sup 5}D{sub 0} (Eu{sup 3+}), {sup 4}I{sub 13/2} (Er{sup 3+}) and {sup 1}D{sub 2} (Pr{sup 3+}) excited states of lanthanide ions were analyzed in details. The research proved that spectroscopic properties of trivalent Ln{sup 3+} depend significantly on kind of presence oxide modifiers MO (M = Ca, Sr, Ba) in glass host matrices. - Highlights: • Luminescence of Ln{sup 3+}-doped borate glasses was presented and discussed. • Effect of glass modifiers on spectroscopic properties of rare earths was studied. • Measured luminescence lifetimes of Ln{sup 3+} (Ln = Eu, Er, Pr) were analyzed. • Luminescence intensity ratios R/O (Eu{sup 3+}) were determined.

  8. Robust Visible and Infrared Light Emitting Devices Using Rare-Earth-Doped GaN

    National Research Council Canada - National Science Library

    Steckl, Andrew

    2006-01-01

    Rare earth (RE) dopants (such as Er, Eu, Tm) in the wide bandgap semiconductor (WBGS) GaN are investigated for the fabrication of robust visible and infrared light emitting devices at a variety of wavelengths...

  9. Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

    Science.gov (United States)

    Cone, R. L.; Thiel, C. W.; Sun, Y.; Böttger, Thomas; Macfarlane, R. M.

    2012-02-01

    Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.

  10. Nitrogen-Doped Carbon Nanocoil Array Integrated on Carbon Nanofiber Paper for Supercapacitor Electrodes.

    Science.gov (United States)

    Choi, Won Ho; Choi, Mi Jin; Bang, Jin Ho

    2015-09-02

    Integrating a nanostructured carbon array on a conductive substrate remains a challenging task that presently relies primarily on high-vacuum deposition technology. To overcome the problems associated with current vacuum techniques, we demonstrate the formation of an N-doped carbon array by pyrolysis of a polymer array that was electrochemically grown on carbon fiber paper. The resulting carbon array was investigated for use as a supercapacitor electrode. In-depth surface characterization results revealed that the microtextural properties, surface functionalities, and degree of nitrogen incorporated into the N-doped carbon array can be delicately controlled by manipulating carbonization temperatures. Furthermore, electrochemical measurements showed that subtle changes in these physical properties resulted in significant changes in the capacitive behavior of the N-doped carbon array. Pore structures and nitrogen/oxygen functional groups, which are favorable for charge storage, were formed at low carbonization temperatures. This result showed the importance of having a comprehensive understanding of how the surface characteristics of carbon affect its capacitive performance. When utilized as a substrate in a pseudocapacitive electrode material, the N-doped carbon array maximizes capacitive performance by simultaneously achieving high gravimetric and areal capacitances due to its large surface area and high electrical conductivity.

  11. Direct Reuse of Rare Earth Permanent Magnets—Coating Integrity

    DEFF Research Database (Denmark)

    Høgberg, Stig; Holbøll, Joachim; Mijatovic, Nenad

    2017-01-01

    Rare earth permanent magnets can be reused directly as an alternative to traditional recycling methods, in which scrapped magnets are reprocessed into new magnets by undergoing many of the original energy-intensive and expensive production processes. Direct reuse entails using segmented magnet...... assemblies built by several small standard-sized magnets that can be reused directly in a number of different applications. A central part of the direct reuse strategy is to separate and demagnetize magnets by heating them to the Curie temperature. We investigated the validity of direct reuse as a rare earth...

  12. Efficient Nitrogen Doping of Single-Layer Graphene Accompanied by Negligible Defect Generation for Integration into Hybrid Semiconductor Heterostructures.

    Science.gov (United States)

    Sarau, George; Heilmann, Martin; Bashouti, Muhammad; Latzel, Michael; Tessarek, Christian; Christiansen, Silke

    2017-03-22

    While doping enables application-specific tailoring of graphene properties, it can also produce high defect densities that degrade the beneficial features. In this work, we report efficient nitrogen doping of ∼11 atom % without virtually inducing new structural defects in the initial, large-area, low defect, and transferred single-layer graphene. To shed light on this remarkable high-doping-low-disorder relationship, a unique experimental strategy consisting of analyzing the changes in doping, strain, and defect density after each important step during the doping procedure was employed. Complementary micro-Raman mapping, X-ray photoelectron spectroscopy, and optical microscopy revealed that effective cleaning of the graphene surface assists efficient nitrogen incorporation accompanied by mild compressive strain resulting in negligible defect formation in the doped graphene lattice. These original results are achieved by separating the growth of graphene from its doping. Moreover, the high doping level occurred simultaneously with the epitaxial growth of n-GaN micro- and nanorods on top of graphene, leading to the flow of higher currents through the graphene/n-GaN rod interface. Our approach can be extended toward integrating graphene into other technologically relevant hybrid semiconductor heterostructures and obtaining an ohmic contact at their interfaces by adjusting the doping level in graphene.

  13. Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, Luke B.; Witcher, Jon J.; Troy, Neil; Krol, Denise M. [Department of Applied Science, University of California Davis, Davis, California 95616 (United States); Reis, Signo T.; Brow, Richard K. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States)

    2012-07-15

    We have investigated waveguide writing in Er-Yb doped zinc polyphosphate glass using a femtosecond laser with a repetition rate of 1 KHz. We find that fabrication of good waveguides requires a glass composition with an O/P ratio of 3.25. The dependence on laser writing parameters including laser fluence, focusing conditions, and scan speed is reported. Waveguide properties together with absorption and emission data indicate that these glasses can be used for the fabrication of compact, high gain amplifying devices.

  14. Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass

    Science.gov (United States)

    Fletcher, Luke B.; Witcher, Jon J.; Troy, Neil; Reis, Signo T.; Brow, Richard K.; Krol, Denise M.

    2012-07-01

    We have investigated waveguide writing in Er-Yb doped zinc polyphosphate glass using a femtosecond laser with a repetition rate of 1 KHz. We find that fabrication of good waveguides requires a glass composition with an O/P ratio of 3.25. The dependence on laser writing parameters including laser fluence, focusing conditions, and scan speed is reported. Waveguide properties together with absorption and emission data indicate that these glasses can be used for the fabrication of compact, high gain amplifying devices.

  15. Ultraslow Light Propagation in an Inhomogeneously Broadened Rare-Earth Ion-Doped Crystal

    Science.gov (United States)

    Baldit, E.; Bencheikh, K.; Monnier, P.; Levenson, J. A.; Rouget, V.

    2005-09-01

    We show that coherent population oscillations effect allows us to burn a narrow spectral hole (26 Hz) within the homogeneous absorption line of the optical transition of an erbium ion-doped crystal. The large dispersion of the index of refraction associated with this hole permits us to achieve a group velocity as low as 2.7m/s with a transmission of 40%. We especially benefit from the inhomogeneous absorption broadening of the ions to tune both the transmission coefficient, from 40% to 90%, and the light group velocity from 2.7m/s to 100m/s.

  16. Advancing radiation balanced lasers (RBLs) in rare-earth (RE)-doped solids

    Energy Technology Data Exchange (ETDEWEB)

    Hehlen, Markus Peter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-21

    These slides cover the following topics: Mid-IR lasers in crystals using two-tone RBL (Single-dopant two-tone RBLs: Tm3+, Er3+, and Co-doped two-tone RBLs: (Yb3+, Nd3+) and (Ho3+, Tm3+); Advanced approaches to RBL crystals (Precursor purification, Micro-pulling-down crystal growth, and Bridgman crystal growth); Advanced approaches to RBL fibers (Materials for RBL glass fibers, Micro-structured fibers for RBL, and Fiber preform synthesis); and finally objectives.

  17. Characterizing the Purple Earth: Modeling the globally integrated spectral variability of the Archean Earth

    Energy Technology Data Exchange (ETDEWEB)

    Sanromá, E.; Pallé, E.; López, R.; Montañés-Rodríguez, P. [Instituto de Astrofísica de Canarias (IAC), Vía Láctea s/n E-38200, La Laguna (Spain); Parenteau, M. N. [NASA Ames Research Center, Exobiology Branch, Mountain View, CA 94035 (United States); Kiang, N. Y. [NASA Goddard Institute for Space Studies, New York, NY 10025 (United States); Gutiérrez-Navarro, A. M., E-mail: mesr@iac.es [Department of Microbiology, Faculty of Biology, University of La Laguna, ES-38206 La Laguna (Spain)

    2014-01-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At that time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  18. Injection Laser Using Rare Earth Doped GaN Thin Films for Visible and Infrared Applications

    Science.gov (United States)

    2010-05-01

    MBE control software: Crystal V7. Fig 3.3 Spectrum of residual gas analyzer (RGA). Fig 3.4 RHEED pattern on (a) 2d wurtzite and (b) 3d cubic GaN...mixture subflow will help reactant gas of main flow to reach the surface and promote 2D growth but suppress 3D growth. The effect of AlN and GaN buffer...reported by Chu-Kung. 1.3. Rare Earth Elements: Mysterious Lighting Sources Rare earth (RE) elements, also called Lanthanides , include fifteen

  19. Characterization of rare-earth doped Si 3 N4 /SiC micro/nanocomposites

    Directory of Open Access Journals (Sweden)

    Peter Tatarko

    2010-03-01

    Full Text Available Influence of various rare-earth oxide additives (La2O3, Nd2O3, Sm2O3, Y2O3, Yb2O3 and Lu2O3 on the mechanical properties of hot-pressed silicon nitride and silicon nitride/silicon carbide micro/nano-composites has been investigated. The bimodal character of microstructures was observed in all studied materials where elongated β-Si3N4 grains were embedded in the matrix of much finer Si3N4 grains. The fracture toughness values increased with decreasing ionic radius of rare-earth elements. The fracture toughness of composites was always lower than that of monoliths due to their finer Si3N4/SiC microstructures. Similarly, the hardness and bending strength values increased with decreasing ionic radius of rare-earth elements either in monoliths or composites. On the other hand, the positive influence of finer microstructure of the composites on strength was not observed due to the present defects in the form of SiC clusters and non-reacted carbon zones. Wear resistance at room temperature also increased with decreasing ionic radius of rare-earth element. Significantly improved creep resistance was observed in case either of composite materials or materials with smaller radius of RE3+.

  20. Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions

    Czech Academy of Sciences Publication Activity Database

    Kostka, Petr; Zavadil, Jiří; Iovu, M.S.; Ivanova, Z. G.; Furniss, D.; Seddon, A.B.

    2015-01-01

    Roč. 648, NOV 5 (2015), s. 237-243 ISSN 0925-8388 R&D Projects: GA ČR GAP106/12/2384 Institutional support: RVO:67985891 ; RVO:67985882 Keywords : chalcogenide glasses * rare earth ions * low-temperature photoluminescence * optical transmission Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 3.014, year: 2015

  1. An Integrated Rare Earth Elements Supply Chain Strategy

    Science.gov (United States)

    2011-02-24

    of the Master of Strategic Studies Degree. The views expressed in this student academic research paper are those of the author and do not reflect...U.S. Secretary of Education and the Council for Higher Education Accreditation. The views expressed in this student academic research paper are...Resource Transformation Act of 2010 – S. 3521, Section 2. Findings. LexisNexis Congressional (accessed November 24, 2010). 26 Mark Humphries, Rare Earth

  2. Efficient dual-wavelength excitation of Tb3+ emission in rare-earth doped KYF4 cubic nanocrystals dispersed in silica sol-gel matrix

    Science.gov (United States)

    del-Castillo, J.; Yanes, A. C.; Santana-Alonso, A.; Méndez-Ramos, J.

    2014-11-01

    Energy transfer from Ce3+ to Tb3+ ions under UV excitation, giving rise to visible emissions, is investigated in sol-gel derived transparent nano-glass-ceramics containing cubic KYF4 nanocrystals, for different doping concentrations of rare-earth ions. Moreover, visible emissions of Tb3+ are also obtained under near-infrared excitation through energy transfer from Yb3+ ions by means of cooperative up-conversion processes. Thus, Ce3+-Tb3+-Yb3+ doped nano-glass-ceramics can be activated in a dual-wavelength mode yielding efficient blue-green emissions of particular interest in photovoltaic silicon solar cells and white-light emitting diodes.

  3. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    Science.gov (United States)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  4. Electronic Characteristics of Rare Earth Doped GaN Schottky Diodes

    Science.gov (United States)

    2013-03-21

    233U and 235U) and plutonium (239Pu) must fall within the limitations of the detector. These isotopes primarily undergo alpha decay [3, 4], which might...2001). Portal, freight and vehicle monitor performance using scintillating glass fiber detectors for the detection of plutonium in the Illicit...Trafficking Radiation Assessment Program. Journal of Radioanalytical and Nuclear Chemistry , 248, 699–705. [7] McHale, Stephen R. “The Effects of Rare Earth

  5. Integration of Earth System Models and Workflow Management under iRODS for the Northeast Regional Earth System Modeling Project

    Science.gov (United States)

    Lengyel, F.; Yang, P.; Rosenzweig, B.; Vorosmarty, C. J.

    2012-12-01

    The Northeast Regional Earth System Model (NE-RESM, NSF Award #1049181) integrates weather research and forecasting models, terrestrial and aquatic ecosystem models, a water balance/transport model, and mesoscale and energy systems input-out economic models developed by interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. NE-RESM is intended to forecast the implications of planning decisions on the region's environment, ecosystem services, energy systems and economy through the 21st century. Integration of model components and the development of cyberinfrastructure for interacting with the system is facilitated with the integrated Rule Oriented Data System (iRODS), a distributed data grid that provides archival storage with metadata facilities and a rule-based workflow engine for automating and auditing scientific workflows.

  6. Study the influence of zinc oxide addition on cobalt doped alkaline earth borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, F., E-mail: F.Ahmad378@yahoo.com [Department of Physics, Faculty of Science, Alazhar University (Girls Branch), Nasr City, Cairo (Egypt); Hassan Aly, E. [Department of Physics, Faculty of Science, Ain Shams University, P.O. Box 11566, Abbassia, Cairo (Egypt); Atef, M.; ElOkr, M.M. [Department of Physics, Faculty of Science, Alazhar University, Nasr City, Cairo (Egypt)

    2014-04-01

    Highlights: • The glassy system xZnO–(79.9−x)B{sub 2}O{sub 3}–20BaO–0.1Co{sub 3}O{sub 4} was prepared by a quenching method. • XRD patterns revealed that the amorphous nature of the present glasses matrix. • The results show that Zn{sup 2+} ions occupy both forming and modifying positions. • Optical parameters are reported as a function of ZnO content. - Abstract: The glasses of the composition 79.9B{sub 2}O{sub 3}–20BaO–0.1Co{sub 3}O{sub 4} doped with different concentrations of ZnO (5, 10, 15, 20, 25 and 30 mol%) were prepared using melt quenching technique. Various studies such as XRD, density, theoretical optical basicity, FT-IR and optical absorption have been carried out to study the role of ZnO on the physical and structural properties of the investigated system. Powder X-ray diffraction patterns confirmed the glassy nature of all the glassy samples. The density and molar volume of glassy samples showed opposite behavior to each other. An increment of the theoretical optical basicity with increasing ZnO content, which is due to an increase in the polarizability and a decrease in the single bond strength is observed. FT-IR analysis revealed that an increase in non-bridging oxygen’s (NBO’s) up to ZnO ⩽ 15 mol% and then a decrease at ZnO > 15 mol%. The results indicated that the Zn{sup 2+} ions are likely to occupy network modifier positions at a concentration of ZnO ⩽ 15 mol%. Above which these ions occupy network forming positions. From ultraviolet absorption edges calculations, the optical band gap energy and steepness parameter decrease whilst Urbach energy and refractive index increase by the addition of ZnO up to 15 mol% above which then the behavior follows reversal trend. The values of the crystal field strength and the interelectronic repulsion Racah parameter calculated from the optical transitions energies of cobalt doped glassy samples. All prepared samples exhibit blue color, indicating that mostly Co ions are acted upon

  7. Prospects for rare earth doped GaN lasers on Si

    OpenAIRE

    Steckl, Andrew J.; Park, Jeong Ho; John M. Zavada

    2007-01-01

    The recent surge of interest and research activity in Si-based lasers underscores the potential benefits that full capability in photonics could bring to the Si world. We highlight some of the recent advances in lasing based on emission from rare earth (RE) elements contained in GaN heteroepitaxially grown on Si. This approach has led to the first demonstration of visible lasing on Si. We discuss the current understanding of RE lasing sites in GaN, the intimate relationship between materials ...

  8. Laser refrigeration of rare-earth doped sodium-yttrium-fluoride nanowires

    Science.gov (United States)

    Zhou, Xuezhe; Roder, Paden B.; Smith, Bennett E.; Pauzauskie, Peter J.

    2017-02-01

    Hexagonal sodium yttrium fluoride (β-NaYF4) crystals are currently being studied for a wide range of applications including color displays, solar cells, photocatalysis, and bio-imagβing. β-NaYF4 has also been predicted to be a promising host material for laser refrigeration of solids. However, due to challenges with growing Czochralski β- NaYF4 single-crystals, laser refrigeration of bulk β-NaYF4 has not yet been achieved6. Recently hydrothermal processing has been reported to produce Yb-doped β-NaYF4 nanowires (NWs) that undergo laser refrigeration during single-beam optical trapping experiments in heavy water. The local refrigeration of the individual nanowire is quantified through the analysis of its Brownian motion through the analysis of forward scattered light that is focused onto a quadrant photodiode. The individual β-NaYF4 nanowires show maximum local cooling of 9°C below ambient conditions. Here we present the emission lifetime for the 4S3/2 - 4I15/2 transition for Er(III) ions in Yb/Er-codoped -NaYF4 NW ensembles was measured to be (220 +/- 6) μs using a an electron multiplying charge coupled device (EMCCD) as a detector with high spatial resolution. This lifetime is consistent with values reported in the literature.

  9. Thermoluminescence of double fluorides doped with rare earths; Termoluminiscencia de fluoruros dobles dopados con tierras raras

    Energy Technology Data Exchange (ETDEWEB)

    Azorin N, J.; Sanchez R, A. [UAM-I, 09340 Mexico D.F. (Mexico); Khaidukov, N.M. [Kurnakov Institute of General and Inorganic Chemistry, 119991 Moscow (Russian Federation)

    2004-07-01

    In this work the thermoluminescent characteristics of double fluorides K{sub 2}YF{sub 5}, K{sub 2}GdF{sub 5} and K{sub 2}LuF{sub 5} doped are presented with Tb{sup 3+}, studied in the interval of temperature from 30 to 400 C. The materials that presented better answer to the irradiation with particles beta and with ultraviolet light they were the K{sub 2}YF{sub 5}: Tb (1% at. Tb{sup 3+}) and the K{sub 2}LuF{sub 5}: Tb (1% at. Tb{sup 3+}); while the K{sub 2}YF{sub 5}: Tb to high concentrations (10% and 20% at. Tb{sup 3+}) and the K{sub 2}LuF{sub 5}: Tb (1% at. Tb{sup 3+}) and the K{sub 2}LuF{sub 5}: Tb (1% at. Tb{sup 3+}) they presented an acceptable answer in front of the gamma radiation. The intensity of the Tl answer induced in these materials is a decisive factor to continue studying its dosimetric characteristics, what allows to consider them as the base for the development of potential materials to use them in the dosimetry of beta particles, of the UV light of the gamma radiation using the thermoluminescence method. (Author)

  10. Luminescence properties of rare earth doped metal oxide nanostructures: A case of Eu-ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, D. [School of Basic Sciences, Centurion University of Technology and Management, Odisha-752050 India (India); Acharya, B. S. [Department of Physics, C.V. Raman College of Engineering, Bhubaneswar, Odisha, India-752054 (India); Panda, N. R., E-mail: nihar@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha-751013 India (India)

    2016-05-06

    The present study reports the growth and luminescence properties of Eu doped ZnO nanostructures. The experiment has been carried out by synthesizing the materials by simple wet-chemical method. X-ray diffraction (XRD) studies show expansion of ZnO lattice with the incorporation of Eu ions which has been confirmed from the appearance of Eu{sub 2}O{sub 3} as a minor phase in the XRD pattern. The estimation of crystallite size from XRD results matches closely with the results obtained from transmission electron microscopy. Further, these results show the formation of nanosized Eu-ZnO particles of average size around 60 nm stacked on each other. FTIR studies show the presence of both Zn-O and Eu-O modes in the spectra supporting the results obtained from XRD. The interesting results obtained from photoluminescence (PL) measurements show the presence of both band edge emission in UV region and the defect emissions in violet, blue and green region. The appearance of {sup 5}D{sub 0}→{sup 7}F{sub J} transitions of Eu{sup 3+} ions in red region clearly suggests the possible occurrence of energy transfer between the energy states of ZnO host and Eu{sup 3+} ions.

  11. The optical antenna system design research on earth integrative network laser link in the future

    Science.gov (United States)

    Liu, Xianzhu; Fu, Qiang; He, Jingyi

    2014-11-01

    Earth integrated information network can be real-time acquisition, transmission and processing the spatial information with the carrier based on space platforms, such as geostationary satellites or in low-orbit satellites, stratospheric balloons or unmanned and manned aircraft, etc. It is an essential infrastructure for China to constructed earth integrated information network. Earth integrated information network can not only support the highly dynamic and the real-time transmission of broadband down to earth observation, but the reliable transmission of the ultra remote and the large delay up to the deep space exploration, as well as provide services for the significant application of the ocean voyage, emergency rescue, navigation and positioning, air transportation, aerospace measurement or control and other fields.Thus the earth integrated information network can expand the human science, culture and productive activities to the space, ocean and even deep space, so it is the global research focus. The network of the laser communication link is an important component and the mean of communication in the earth integrated information network. Optimize the structure and design the system of the optical antenna is considered one of the difficulty key technologies for the space laser communication link network. Therefore, this paper presents an optical antenna system that it can be used in space laser communication link network.The antenna system was consisted by the plurality mirrors stitched with the rotational paraboloid as a substrate. The optical system structure of the multi-mirror stitched was simulated and emulated by the light tools software. Cassegrain form to be used in a relay optical system. The structural parameters of the relay optical system was optimized and designed by the optical design software of zemax. The results of the optimal design and simulation or emulation indicated that the antenna system had a good optical performance and a certain

  12. Synthesis, structural and optical properties of pure and rare-earth ion doped TiO{sub 2} nanowire arrays by a facile hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Bandi, Vengala Rao; Raghavan, Chinnambedu Murugesan; Grandhe, Bhaskar kumar; Kim, Sang Su [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Jang, Kiwan, E-mail: kwjang@changwon.ac.kr [Department of Physics, Changwon National University, Changwon 641-773 (Korea, Republic of); Shin, Dong-Soo [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Yi, Soung-Soo [Department of Photonics, Silla University, Busan 617-736 (Korea, Republic of); Jeong, Jung-Hyun [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2013-11-29

    Single crystalline pure and rare-earth metal ions (Eu{sup 3+} and Ce{sup 3+}) doped TiO{sub 2} nanowire arrays were prepared on conductive fluorine doped indium tin oxide substrates by a facile hydrothermal method. Initially the conditions and parameters were optimized to prepare the high quality TiO{sub 2} nanowire arrays in the absence of organic additives. The average diameter and length of the TiO{sub 2} nanowire were found to be ∼ 30–50 nm and ∼ 0.5–1.5 μm, respectively. The formations of rutile phase structure in all the samples were confirmed by x-ray diffractometric analysis while the transmission electron microscopy confirms the single crystallinity and the maximum orientation of growth direction along [001] for the as-grown TiO{sub 2} nanowire. The optical properties of all the samples were analyzed using photoluminescence spectroscopy. The photocatalytic properties of the pure and doped TiO{sub 2} were investigated for the decomposition of organic toludine blue-O dye under ultraviolet irradiation. The result demonstrates that the Ce{sup 3+}: TiO{sub 2} decomposed almost 90% of the organic dye within 80 min. - Highlights: • Rare-earth (RE) doped TiO{sub 2} nanowire arrays were prepared by hydrothermal method • RE doping enhanced the growth rate of TiO{sub 2} nanowire arrays • The catalysts used to check their photocatalytic activity by toludine blue-O dye • RE doped TiO2 act as unprecedented photocatalyst for organic dye decomposition.

  13. Structural, electrical and magnetic properties of rare-earth and transition element co-doped bismuth ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vivek, E-mail: vermavivek.neel@gmail.com

    2015-08-25

    Highlights: • Sm-doping increases the symmetry and decreases the second phase formation. • Ferromagnetic, ferroelectric and dielectric properties enhanced with doping. • M–H loops represents weak ferromagnetic (FM) behavior. • A modification in dielectric constant is observed due to doping of Mn, Co and Cr. • Saturation polarization (P{sub s}), remnant polarization (P{sub r}) and coercive field (E{sub c}) increased with doping. - Abstract: Pure and doped multiferroic samples of bismuth ferrites (BFO) were successfully synthesized by the sol–gel technique. Detailed investigations were made on the influence of (Sm and Mn, Co, Cr) co-doping on structural, electrical, ferroelectric and magnetic properties of the BFO. A structural phase transformation from rhombohedral to orthorhombic with co-doping is confirmed through XRD. It is also observed that Sm-doping increases the symmetry and decreases the second phases noticeably. Microstructure investigation using the scanning electron microscope showed a reduction of grain size with doping in BFO. Magnetic hysteresis loops showed that retentivity (Mr), coercivity (Hc) and saturation magnetization (Ms) of the doped samples were improved. Furthermore, the co-doping enhances the dielectric properties as a result of the reduction in the Fe{sup 2+} ions and oxygen vacancies. The room temperature P–E loop study shows that ferroelectric properties are strongly depend on doping.

  14. Structural/surface characterization and catalytic evaluation of rare-earth (Y, Sm and La) doped ceria composite oxides for CH3SH catalytic decomposition

    Science.gov (United States)

    He, Dedong; Chen, Dingkai; Hao, Husheng; Yu, Jie; Liu, Jiangping; Lu, Jichang; Liu, Feng; Wan, Gengping; He, Sufang; Luo, Yongming

    2016-12-01

    A series of rare earth (Y, Sm and La) doped ceria composite oxides and pure CeO2 were synthesized and evaluated by conducting CH3SH catalytic decomposition test. Several characterization studies, including XRD, BET, Raman, H2-TPR, XPS, FT-IR, CO2-TPD and CH3SH-TPD, were undertaken to correlate structural and surface properties of the obtained ceria-based catalysts with their catalytic performance for CH3SH decomposition. More oxygen vacancies and increased basic sites exhibited in the rare earth doped ceria catalysts. Y doped ceria sample (Ce0.75Y0.25O2-δ), with a moderate increase in basic sites, contained more oxygen vacancies. More structural defects and active sites could be provided, and a relatively small amount of sulfur would accumulate, which resulted in better catalytic performance. The developed catalyst presented good catalytic behavior with stability very similar to that of typical zeolite-based catalysts reported previously. However, La doped ceria catalyst (Ce0.75La0.25O2-δ) with the highest alkalinity was not the most active one. More sulfur species would be adsorbed and a large amount of cerium sulfide species (Ce2S3) would accumulate, which caused deactivation of the catalysts. The combined effect of increased oxygen vacancies and alkalinity led to the catalytic stability of Ce0.75Sm0.25O2-δ sample was comparable to that of pure CeO2 catalyst.

  15. Integrated Modular Avionics for Spacecraft: Earth Observation Use Case Demonstrator

    Science.gov (United States)

    Deredempt, Marie-Helene; Rossignol, Alain; Hyounet, Philippe

    2013-08-01

    Integrated Modular Avionics (IMA) for Space, as European Space Agency initiative, aimed to make applicable to space domain the time and space partitioning concepts and particularly the ARINC 653 standard [1][2]. Expected benefits of such an approach are development flexibility, capability to provide differential V&V for different criticality level functionalities and to integrate late or In-Orbit delivery. This development flexibility could improve software subcontracting, industrial organization and software reuse. Time and space partitioning technique facilitates integration of software functions as black boxes and integration of decentralized function such as star tracker in On Board Computer to save mass and power by limiting electronics resources. In aeronautical domain, Integrated Modular Avionics architecture is based on a network of LRU (Line Replaceable Unit) interconnected by AFDX (Avionic Full DupleX). Time and Space partitioning concept is applicable to LRU and provides independent partitions which inter communicate using ARINC 653 communication ports. Using End System (LRU component) intercommunication between LRU is managed in the same way than intercommunication between partitions in LRU. In such architecture an application developed using only communication port can be integrated in an LRU or another one without impacting the global architecture. In space domain, a redundant On Board Computer controls (ground monitoring TM) and manages the platform (ground command TC) in terms of power, solar array deployment, attitude, orbit, thermal, maintenance, failure detection and recovery isolation. In addition, Payload units and platform units such as RIU, PCDU, AOCS units (Star tracker, Reaction wheels) are considered in this architecture. Interfaces are mainly realized through MIL-STD-1553B busses and SpaceWire and this could be considered as the main constraint for IMA implementation in space domain. During the first phase of IMA SP project, ARINC653

  16. Computer modelling of defect structure and rare earth doping in LiCaAlF sub 6 and LiSrAlF sub 6

    CERN Document Server

    Amaral, J B; Valerio, M E G; Jackson, R A

    2003-01-01

    This paper describes a computational study of the mixed metal fluorides LiCaAlF sub 6 and LiSrAlF sub 6 , which have potential technological applications when doped with a range of elements, especially those from the rare earth series. Potentials are derived to represent the structure and properties of the undoped materials, then defect properties are calculated, and finally solution energies for rare earth elements are calculated, enabling preferred dopant sites and charge compensation mechanisms to be predicted.

  17. Ethyl Acetate Abatement on Copper Catalysts Supported on Ceria Doped with Rare Earth Oxides.

    Science.gov (United States)

    Carabineiro, Sónia Alexandra Correia; Konsolakis, Michalis; Marnellos, George Emmanouil-Nontas; Asad, Muhammad Faizan; Soares, Olívia Salomé Gonçalves Pinto; Tavares, Pedro Bandeira; Pereira, Manuel Fernando Ribeiro; Órfão, José Joaquim de Melo; Figueiredo, José Luís

    2016-05-17

    Different lanthanide (Ln)-doped cerium oxides (Ce0.5Ln0.5O1.75, where Ln: Gd, La, Pr, Nd, Sm) were loaded with Cu (20 wt. %) and used as catalysts for the oxidation of ethyl acetate (EtOAc), a common volatile organic compound (VOC). For comparison, both Cu-free (Ce-Ln) and supported Cu (Cu/Ce-Ln) samples were characterized by N₂ adsorption at -196 °C, scanning/transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and temperature programmed reduction in H₂. The following activity sequence, in terms of EtOAc conversion, was found for bare supports: CeO₂ ≈ Ce0.5Pr0.5O1.75 > Ce0.5Sm0.5O1.75 > Ce0.5Gd0.5O1.75 > Ce0.5Nd0.5O1.75 > Ce0.5La0.5O1.75. Cu addition improved the catalytic performance, without affecting the activity order. The best catalytic performance was obtained for Cu/CeO₂ and Cu/Ce0.5Pr0.5O1.75 samples, both achieving complete EtOAc conversion below ca. 290 °C. A strong correlation was revealed between the catalytic performance and the redox properties of the samples, in terms of reducibility and lattice oxygen availability. Νo particular correlation between the VOC oxidation performance and textural characteristics was found. The obtained results can be explained in terms of a Mars-van Krevelen type redox mechanism involving the participation of weakly bound (easily reduced) lattice oxygen and its consequent replenishment by gas phase oxygen.

  18. Why the quest of new rare earth doped phosphors deserves to go on

    Science.gov (United States)

    Moine, B.; Bizarri, G.

    2006-01-01

    The scientific research on phosphors has a long history starting more than 100 years ago. But recently the appearance of new kinds of displays and lighting devices (plasma display, fluorescent lamp without mercury…) induced an increase of the research of new phosphors with better luminous efficiency than those available up to now. It has been shown that the behaviour of "classical" phosphors in a plasma display panel is quite different than in a cathode ray tube and that the vacuum ultraviolet (VUV) excitation process has to be studied with care in order to improve the phosphors efficiency. It is well established now that a good phosphor for electronic or ultraviolet excitation, is not necessarily a good choice for excitation in VUV. This is probably due to the fact that the excitation process is very different in that case. We will illustrate this difference on the well-known LaPO 4:Ce 3+, Tb 3+ phosphor. The penetration depth of the VUV photons is extremely small inducing a large contribution of the surface of the phosphor. We have shown that, for most phosphors, only a few tens of nanometers of the phosphor grain are really useful and we propose a way to realize phosphors powders using less than 20% of doped materials. However the traps of the material play a crucial role in the fluorescence properties due to the fact that autoionization process is likely when dopant ions absorb high energy photons. Fast aging process is one of the main drawbacks of VUV excitation. We demonstrate this effect on BaMgAl 10O 17:Eu 2+, the blue emitting phosphor widely used up to now in Plasma Displays Panels and fluorescent lamps. Low energetic efficiency is another drawback of VUV excitation that can be solved only in the framework of fundamental studies. Quantum cutting emission may be a solution and calls new research to find good phosphors characterized by a high quantum efficiency, a high fluorescence efficiency and an adapted colorimetry.

  19. Rare earth oxide-doped titania nanocomposites with enhanced photocatalytic activity towards the degradation of partially hydrolysis polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Li Jinhuan [Key Laboratory of Education Ministry for Enhanced Oil Recovery, Daqing Petroleum Institute, Daqing 163318 (China); Yang Xia; Yu Xiaodan; Xu, Leilei [School of Chemistry, Northeast Normal University, Changchun 130024 (China); Kang Wanli [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China) and Enhanced Oil Recovery Research Center, China University of Petroleum, Qingdao 266555 (China)], E-mail: kangwanli@126.com; Yan Wenhua; Gao Hongfeng; Liu Zhonghe [Key Laboratory of Education Ministry for Enhanced Oil Recovery, Daqing Petroleum Institute, Daqing 163318 (China); Guo Yihang [School of Chemistry, Northeast Normal University, Changchun 130024 (China)], E-mail: guoyh@nenu.edu.cn

    2009-01-01

    Rare-earth oxide-doped titania nanocomposites (RE{sup 3+}/TiO{sub 2}, where RE = Eu{sup 3+}, Pr{sup 3+}, Gd{sup 3+}, Nd{sup 3+}, and Y{sup 3+}) were prepared by a one-step sol-gel-solvothermal method. The products exhibited anatase phase structure, mesoporosity, and interesting surface compositions with three oxygen species and two titanium species. The products were used as the photocatalysts to degrade a partially hydrolysis polyacrylamide (HPAM) under UV-light irradiation, a very useful polymer in oil recovery. For comparison, Degussa P25 and as-prepared pure TiO{sub 2} were also tested under the same conditions. The enhanced photocatalytic activity was obtained on as-prepared Eu{sup 3+} (Gd{sup 3+}, Pr{sup 3+})/TiO{sub 2} composites, and the reasons were explained. Finally, the degradation pathway of HPAM over the RE{sup 3+}/TiO{sub 2} composite was put forward based on the intermediates produced during the photocatalysis procedure.

  20. Enhanced blue and green emission in rare-earth-doped GaN electroluminescent devices by optical photopumping

    Science.gov (United States)

    Lee, D. S.; Steckl, A. J.

    2002-09-01

    Electroluminescence (EL) from rare-earth-doped GaN (GaN:RE) EL devices (ELD) emission has been observed to be greatly enhanced by ultraviolet (UV) photopumping. With radiation from a HeCd laser (325 nm) both blue (from GaN:Tm) and green (from GaN:Er) EL brightness have been enhanced up to 2 orders of magnitude, depending on bias conditions. We explain the luminescence increase by the following mechanism: photoelectrons generated by above GaN band-gap excitation are accelerated by the electric field along with electrically injected electrons and both types of carriers contribute to EL emission through RE impact excitation. The EL intensity increases monotonically with increasing applied bias and with photopumping power. The photopumped-induced EL gain is most efficient at relatively low bias, reaching values of 50-100×. This increase in EL emission can be applied to flat panel displays with enhanced brightness, especially blue, and with improved color balance. Other applications include UV indicators and detectors, and infrared emitters.

  1. Thermal effects on light emission in Yb sup 3 sup + -sensitized rare-earth doped optical glasses

    CERN Document Server

    Gouveia, E A; Gouveia-Neto, A S

    2001-01-01

    The temperature effect upon infrared-to-visible frequency upconversion fluorescence emission in off-resonance infrared excited Yb sup 3 sup + -sensitized rare-earth doped optical glasses is theoretically and experimentally investigated. We have examined samples of Er3+/Yb sup 3 sup + -codoped Ga sub 2 S sub 3 :La sub 2 O sub 3 chalcogenide glasses and germanosilicate optical fibers, and Ga2O3:La sub 2 O sub 3 chalcogenide and fluoroindate glasses codoped with Pr sup 3 sup + /Yb sup 3 sup + , excited off-resonance at 1.064 mu m. The experimental results revealed thermal induced enhancement in the visible upconversion emission intensity as the samples temperatures were increased within the range of 20 deg C to 260 deg C. The fluorescence emission enhancement is attributed to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium-sensitizer. A theoretical approach that takes into account a sensitizer temperature dependent effective absorption cross section, which depends u...

  2. Control of the visible emission in the SrZrO3 nano-crystals with the rare earth ion doping.

    Science.gov (United States)

    Kim, Dong Hwan; Kim, Ji Hyun; Chung, Jin Seok; Lee, Yunsang

    2013-11-01

    We investigated the emission property of SrZrO3 nano-crystals (NCs) with the doping of rare earth (RE) ions, Eu3+ and Tm3+, by using 325 nm photo-excitation. SrZrO3 NCs show a sizable violet-blue emission, while the Eu3+ and Tm3+ ions are well known to be good red and blue phosphors, respectively. Combined emissions of the host and the RE ion dopant might suggest a new white luminescent source. The RE ion doped SrZrO3 NCs were initially synthesized by using the combustion method, and then the as-synthesized crystals were annealed at different temperatures from 650 degrees C to 1450 degrees C. The Eu3+-doped SrZrO3 NCs showed the sharp red emission near 600 nm, in addition to a violet-blue emission of the host material in itself. While the red emission is enhanced in the high temperature post-annealing, the blue emission is suppressed in an opposite way. This close relation between the emissions of the host and dopant was observed similarly in the Tm3+-doped NCs. We could control the emission property in the SrZrO3:Eu3+/Tm3+ NCs from blue to red by thermal annealing and RE ion doping.

  3. First-principles prediction of electronic structure and magnetic ordering of rare-earth metals doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.J. [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China); Mi, W.B., E-mail: miwenbo@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China); Wang, X.C. [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300191 (China); Bai, H.L. [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China)

    2014-12-25

    Highlights: • Doping of La and Ce is more energetically favorable than Pr, Nd and Eu doping. • The magnetic ground state of Pr, Nd and Eu doped ZnO display weak AFM. • The Ce doped ZnO displays FM ground states. • n-Type doping were obtained by replacing a Zn with Ce, Pr and Nd in ZnO. - Abstract: The electronic structure and magnetism of RE (RE = La, Ce, Pr, Nd and Eu) doped ZnO are investigated by first-principles calculations. La doping can result in a diamagnetic ground state. The total magnetic moment of a single Ce, Pr, Nd and Eu doped ZnO are 0.92, 1.97, 3.01 and 6.82 μ{sub B} in a 2 × 2 × 2 supercell, respectively, followed by the appearance of spin splitting for initially O p and Zn s, d states at low energy range in the valence band and the localized magnetic influence of RE on ZnO. Doping of La and Ce is more stable than that of Pr, Nd and Eu. The ground states of Pr, Nd and Eu dopants at Zn sites are weakly antiferromagnetic, but the ground state of Ce dopants is ferromagnetic. Meanwhile, n-type doping is observed in Ce, Pr and Nd-doped ZnO systems as the donor states are near the conduction bands.

  4. Thermochemistry of rare earth doped uranium oxides Ln x U 1-x O 2-0.5x+y (Ln = La, Y, Nd)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Navrotsky, Alexandra

    2015-10-01

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10–50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO1.5, UO2 and UO3 in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of LnxU1-xO2-0.5x+y is similar to that of UO2 to UO3 for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U5+, U6+, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements.

  5. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  6. Physical and spectroscopic studies of Cr{sup 3+} doped mixed alkaline earth oxide borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Samdani, E-mail: samdanimohd82@gmail.com [Department of Engineering, Salalah College of Technology, Salalah (Oman); Ramadevudu, G. [Department of Physics, Vasavi College of Engineering, Ibrahimbagh, Hyderabad 500031, Telangana (India); Chary, M. Narasimha; Shareefuddin, Md. [Department of Physics, Osmania University, Hyderabad 500007, Telangana (India)

    2017-01-15

    A series of mixed alkaline earth oxide glasses xMgO-(30-x)BaO-69.8B{sub 2}O{sub 3}-0.2Cr{sub 2}O{sub 3} were prepared and studied using electron paramagnetic resonance (EPR), optical absorption, Raman spectroscopy and photoluminescence experimental techniques. The optical absorption spectra revealed the characteristic octahedral symmetry of Cr{sup 3+}ions through three broad band transitions {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 1g}(F), and {sup 4}A{sub 2g}(F)→ {sup 2}T{sub 1g}(P). The crystal field (Dq) and Racah parameters (B and C), the optical band gap and Urbach energies of the glass samples were also reported along with the physical properties like density and molar volume. In the EPR spectra three resonance signals corresponding to Cr3+ ions were observed. A broad signal with g = 5.110 was observed which belongs to the isolated Cr3+ centers localized in the strongly distorted octahedral (rhombic) sites of the glass network, a narrow signal (g = 1.960) corresponding to the Cr{sup 3+} centers in the weekly distorted (cubic) sites of the glass network, and a third very broad signal (g = 2.210) was also observed corresponding to Cr{sup 3+}- Cr{sup 3+} paired centers coupled by magnetic dipolar interaction. Another resonance signal with effective value g ≈ 4.220 was attributed to Fe{sup 3+} ions impurity. The number of spins (N) participating in the resonance and susceptibility (χ) values at room temperature were reported and their values varied in a non-linear manner with the composition exhibiting mixed oxide effect. The estimated molecular bonding coefficients (α) values indicated stronger ionic contribution. The Raman spectral investigations were carried out. The Photoluminescence spectra bands near 690 and 750 nm correspond to the Cr{sup 3+} centers in high and low field sites respectively. - Highlights: • Spectroscopic studies were made on alkaline earth borate glasses. • Three resonance signals

  7. Structural elucidation and magnetic behavior evaluation of rare earth (La, Nd, Gd, Tb, Dy) doped BaCoNi-X hexagonal nano-sized ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Abdul, E-mail: abdulmajeed2276@gmail.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Raheem, Faseeh ur; Hussain, Altaf; Iqbal, F. [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, Government College University, Lahore 54000 (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Shakir, Imran [Deanship of Scientific Research, College of Engineering, King Saud University, PO Box 800, Riyadh 11421 (Saudi Arabia); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2016-06-15

    Rare-earth (RE=La{sup 3+}, Nd{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) doped Ba{sub 2}NiCoRE{sub x}Fe{sub 28−x}O{sub 46} (x=0.25) hexagonal ferrites were synthesized for the first time via micro-emulsion route, which is a fast chemistry route for obtaining nano-sized ferrite powders. These nanomaterials were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), as well as vibrating sample magnetometer (VSM). The XRD analysis exhibited that all the samples crystallized into single X-type hexagonal phase. The crystalline size calculated by Scherrer's formula was found in the range 7–19 nm. The variations in lattice parameters elucidated the incorporation of rare-earth cations in these nanomaterials. FTIR absorption spectra of these X-type ferrites were investigated in the wave number range 500–2400 cm{sup −1.} Each spectrum exhibited absorption bands in the low wave number range, thereby confirming the X-type hexagonal structure. The enhancement in the coercivity was observed with the doping of rare-earth cations. The saturation magnetization was lowered owing to the redistribution of rare-earth cations on the octahedral site (3b{sub VI}). The higher values of coercivity (664–926 Oe) of these nanomaterials suggest their use in longitudinal recording media. - Graphical abstract: Nano-sized rare-earth (RE=La{sup 3+}, Nd{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}) doped Ba{sub 2}NiCoRE{sub x}Fe{sub 28−x}O{sub 46} (x=0.25) hexagonal ferrites were synthesized for the first time via micro-emulsion route and the crystallite size was found in the range 7–19 nm. The enhancement in the coercivity was observed with the doping of rare-earth cations. The higher values of coercivity (664–926 Oe) of these nanomaterials suggest their use in longitudinal recording media. - Highlights: • Micro-emulsion route was used to synthesize Ba{sub 2}NiCoRE{sub x}Fe{sub 28−x}O{sub 46} ferrites. • The crystallite size was found

  8. Quantum efficiency of silica-coated rare-earth doped yttrium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes-Vásquez, D., E-mail: dcervant@cnyn.unam.mx [Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, B.C., México (Mexico); Contreras, O.E.; Hirata, G.A. [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km. 107 Carretera Tijuana-Ensenada, C.P. 22800 Ensenada, B.C., México (Mexico)

    2013-11-15

    The photoluminescent properties of rare earth-activated white-emitting Y{sub 2}SiO{sub 5}:Ce,Tb nanocrystalline phosphor prepared by two different methods, pressure-assisted combustion synthesis and sol–gel, were studied. The synthesized phosphor samples were post-annealed at 1373 K and 1623 K in order to obtain the X1-Y{sub 2}SiO{sub 5} and X2-Y{sub 2}SiO{sub 5} phases, respectively, which were confirmed by X-ray diffraction measurements. Photoluminescence analysis showed the contribution of two blue-emission bands within the 380–450 nm region originating from 5d–4f transitions in Ce{sup 3+} ions and a well-defined green emission of Tb{sup 3+} ions located at 545 nm corresponding to {sup 5}D{sub 4}→{sup 7}F{sub 5} electronic transitions. Thereafter, Y{sub 2}SiO{sub 5}:Ce,Tb powders were coated with colloidal silica in order to investigate the effect of silica coatings on their luminescent properties. Absolute fluorescence quantum efficiency measurements were carefully performed, which revealed an increase of 12% of efficiency in coated compared with bare-Y{sub 2}SiO{sub 5}:Ce,Tb phosphor. -- Highlights: • Y{sub 2}SiO{sub 5}:Ce,Tb phosphor powders were successfully coated with colloidal silica. • Post-annealing treatments improved the quantum efficiency of silica-coated Y{sub 2}SiO{sub 5}:Ce,Tb phosphors. • Absolute fluorescence quantum efficiency measurements showed an increase of 12%.

  9. The EPOS Implementation Phase: building thematic and integrated services for solid Earth sciences

    Science.gov (United States)

    Cocco, Massimo; Epos Consortium, the

    2015-04-01

    The European Plate Observing System (EPOS) has a scientific vision and approach aimed at creating a pan-European infrastructure for Earth sciences to support a safe and sustainable society. To follow this vision, the EPOS mission is integrating a suite of diverse and advanced Research Infrastructures (RIs) in Europe relying on new e-science opportunities to monitor and understand the dynamic and complex Earth system. To this goal, the EPOS Preparatory Phase has designed a long-term plan to facilitate integrated use of data and products as well as access to facilities from mainly distributed existing and new research infrastructures for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. Since its conception EPOS has been built as "a single, Pan-European, sustainable and distributed infrastructure". EPOS is, indeed, the sole infrastructure for solid Earth Science in ESFRI and its pan-European dimension is demonstrated by the participation of 23 countries in its preparatory phase. EPOS is presently moving into its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase project (EPOS IP) builds on the achievements of the successful EPOS preparatory phase project. The EPOS IP objectives are synergetic and coherent with the establishment of the new legal subject (the EPOS-ERIC in Italy). EPOS coordinates the existing and new solid Earth RIs within Europe and builds the

  10. InP HEMT Integrated Circuits for Submillimeter Wave Radiometers in Earth Remote Sensing

    Science.gov (United States)

    Deal, William R.; Chattopadhyay, Goutam

    2012-01-01

    The operating frequency of InP integrated circuits has pushed well into the Submillimeter Wave frequency band, with amplification reported as high as 670 GHz. This paper provides an overview of current performance and potential application of InP HEMT to Submillimeter Wave radiometers for earth remote sensing.

  11. Enhanced Electroresponse of Alkaline Earth Metal-Doped Silica/Titania Spheres by Synergetic Effect of Dispersion Stability and Dielectric Property.

    Science.gov (United States)

    Yoon, Chang-Min; Lee, Seungae; Cheong, Oug Jae; Jang, Jyongsik

    2015-09-02

    A series of alkaline earth metal-doped hollow SiO2/TiO2 spheres (EM-HST) are prepared as electrorheological (ER) materials via sonication-mediated etching method with various alkaline earth metal hydroxides as the etchant. The EM-HST spheres are assessed to determine how their hollow interior and metal-doping affects the ER activity. Both the dispersion stability and the dielectric properties of these materials are greatly enhanced by the proposed one-step etching method, which results in significant enhancement of ER activity. These improvements are attributed to increased particle mobility and interfacial polarization originating from the hollow nature of the EM-HST spheres and the effects of EM metal-doping. In particular, Ca-HST-based ER fluid exhibits ER performance which is 7.1-fold and 3.1-fold higher than those of nonhollow core/shell silica/titania (CS/ST) and undoped hollow silica/titania (HST)-based ER fluids, respectively. This study develops a versatile and simple approach to enhancing ER activity through synergetic effects arising from the combination of dispersion stability and the unique dielectric properties of hollow EM-HST spheres. In addition, the multigram scale production described in this experiment can be an excellent advantage for practical and commercial ER application.

  12. Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions

    Science.gov (United States)

    Spangelo, Sara; Dalle, Derek; Longmier, Benjamin

    2015-01-01

    This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.

  13. Observation and integrated Earth-system science: A roadmap for 2016-2025

    Science.gov (United States)

    Simmons, Adrian; Fellous, Jean-Louis; Ramaswamy, Venkatachalam; Trenberth, Kevin; Asrar, Ghassem; Balmaseda, Magdalena; Burrows, John P.; Ciais, Philippe; Drinkwater, Mark; Friedlingstein, Pierre; Gobron, Nadine; Guilyardi, Eric; Halpern, David; Heimann, Martin; Johannessen, Johnny; Levelt, Pieternel F.; Lopez-Baeza, Ernesto; Penner, Joyce; Scholes, Robert; Shepherd, Ted

    2016-05-01

    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the

  14. Enhancement of pump absorption efficiency by bending and twisting of double clad rare earth doped fibers (Conference Presentation)

    Science.gov (United States)

    Koška, Pavel; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Kasik, Ivan; Podrazký, Ondřej

    2017-05-01

    chaotic double-clad fiber amplifier," Opt. Lett., vol. 26, no. 12, pp. 872-874, (2001). [2] Kouznetsov, D., Moloney, J. V., "Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry," J. Opt. Soc. Am. B, vol. 19, no. 6, pp. 1259-1263, June 2002. [3] Li, Y., Jackson, S. D., Fleming, S., "High absorption and low splice loss properties of hexagonal double-clad fiber," IEEE Photonics Technol. Lett., vol 16, no. 11, pp. 2502-2504, Nov. 2004. [4] Ko\\vska, P. and Peterka, P., "Numerical analysis of pump propagation and absorption in specially tailored double-clad rare-earth doped fiber," Optical and Quantum Electronics, vol. 47, no. 9, pp. 3181-3191 (2015). [5] Ko\\vska, P., Peterka, P., and Doya, V., "Numerical modeling of pump absorption in coiled and twisted double-clad fibers," IEEE J. Sel. Top. Quantum Electron., vol. 22, no. 2 (2016). [6] Ko\\vska, P., Peterka, P., Aubrecht, J., Podrazký, O., Todorov, F., Becker, M., Baravets, Y., Honzátko, P., and Kašík, I., "Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers," Opt. Express, vol. 24, no. 1, pp. 102-107 (2016).

  15. Facile fabrication and photoluminescence properties of rare-earth-doped Gd₂O₃ hollow spheres via a sacrificial template method.

    Science.gov (United States)

    Gao, Yu; Zhao, Qian; Fang, Qinghong; Xu, Zhenhe

    2013-08-21

    Rare-earth-doped gadolinium oxide (Gd₂O₃) hollow spheres were successfully fabricated on a large scale by using PS spheres as sacrificed templates and urea as a precipitating agent, which involved the deposition of an inorganic coating Gd(OH)CO3 on the surface of PS spheres and subsequent calcination in the air. Various approaches including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), as well as photoluminescence spectroscopies were used to characterize the samples. The results indicate that the sample is composed of uniform hollow Gd₂O₃ spheres with a mean particle size of about 2.3 μm and these hollow spheres have the mesoporous shell that are composed of a large amount of nanoparticles. The possible mechanism of evolution from PS spheres to the amorphous precursor and to the final hollow Gd₂O₃ spheres have been proposed. The as-obtained samples show strong light emission with different colors corresponding to different Ln³⁺ ions under ultraviolet-visible light and electron-beam excitation. Under 980 nm NIR irradiation, Gd₂O₃:Ln³⁺ (Ln³⁺ = Yb³⁺/Er³⁺, Yb³⁺/Tm³⁺ and Yb³⁺/Ho³⁺) exhibit characteristic up-conversion (UC) emissions of red (Er³⁺, ²H11/2, ⁴S3/2, ⁴F9/2 → ⁴I15/2), blue (Tm³⁺, ¹G₄ → ³H₆) and green (Ho³⁺, ⁵F₄, ⁵S₂ → ⁵I₈), respectively. These merits of multicolor emissions in the visible region endow these kinds of materials with potential applications in the field of light display systems, lasers, optoelectronic devices, and MRI contrast agents.

  16. Carbon-climate-human interactions in an integrated human-Earth system model

    Science.gov (United States)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.

    2016-12-01

    The C4MIP and CMIP5 results highlighted large uncertainties in climate projections, driven to a large extent by limited understanding of the interactions between terrestrial carbon-cycle and climate feedbacks, and their associated uncertainties. These feedbacks are dominated by uncertainties in soil processes, disturbance dynamics, ecosystem response to climate change, and agricultural productivity, and land-use change. This research addresses three questions: (1) how do terrestrial feedbacks vary across different levels of climate change, (2) what is the relative contribution of CO2 fertilization and climate change, and (3) how robust are the results across different models and methods? We used a coupled modeling framework that integrates an Integrated Assessment Model (modeling economic and energy activity) with an Earth System Model (modeling the natural earth system) to examine how business-as-usual (RCP 8.5) climate change will affect ecosystem productivity, cropland extent, and other aspects of the human-Earth system. We find that higher levels of radiative forcing result in higher productivity growth, that increases in CO2 concentrations are the dominant contributors to that growth, and that our productivity increases fall in the middle of the range when compared to other CMIP5 models and the AgMIP models. These results emphasize the importance of examining both the anthropogenic and natural components of the earth system, and their long-term interactive feedbacks.

  17. Crystal growth, characterization and theoretical studies of alkaline earth metal-doped tetrakis(thiourea)nickel(II) chloride

    Science.gov (United States)

    Agilandeshwari, R.; Muthu, K.; Meenatchi, V.; Meena, K.; Rajasekar, M.; Aditya Prasad, A.; Meenakshisundaram, SP.

    2015-02-01

    The influence of Sr(II)-doping on the properties of tetrakis(thiourea)nickel(II) chloride (TTNC) has been described. The reduction in the intensity observed in powder X-ray diffraction of doped specimen and slight shifts in vibrational frequencies of doped specimens confirm the lattice stress as a result of doping. Surface morphological changes due to doping of the Sr(II) are observed by scanning electron microscopy. The incorporation of metal into the host crystal lattice was confirmed by energy dispersive X-ray spectroscopy. Lattice parameters are determined by single crystal XRD analysis. The thermogravimetric and differential thermal analysis studies reveal the purity of the materials and no decomposition is observed up to the melting point. The nonlinear optical properties of the doped and undoped specimens were studied. Theoretical calculations were performed using the Density functional theory (DFT) method with B3LYP/LANL2DZ as the basis set. The molecular geometry and vibrational frequencies of TTNC in the ground state were calculated and the observed structural parameters of TTNC are compared with parameters obtained from single crystal X-ray studies. The atomic charge distributions are obtained by Mulliken charge population analysis. The first-order molecular hyperpolarizability, polarizability and dipole moment were derived.

  18. Structure and optical properties of rare earth doped Y{sub 2}O{sub 3} waveguide films derived by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.; Zhang, W.; Lou, L.; Brioude, A.; Mugnier, J

    2004-06-30

    Pure and rare earth ions doped yttrium oxide (Y{sub 2}O{sub 3}) waveguide films were prepared by a simple sol-gel process and dip-coating technique. Y{sub 2}O{sub 3} were successfully synthesized by hydrolysis of yttrium acetate. The structural evolution of Y{sub 2}O{sub 3} films with annealing temperature was investigated by X-ray diffraction, Fourier transform infrared spectroscopy, waveguide Raman spectroscopy and High-resolution transmission electron microscopy. The propagation loss of Y{sub 2}O{sub 3} thin films at 632.8 nm measured by scattering-detection method is approximately 1.5 dB/cm. The fluorescence of Er{sup 3+} and Eu{sup 3+} doped Y{sub 2}O{sub 3} waveguide thin films were studied under the waveguide configuration. The fluorescence intensities evolution with annealing temperature of Y{sub 2}O{sub 3}:Er{sup 3+} films has been studied and was explained by the multi-phonon non-radiative processes. Our results show that Y{sub 2}O{sub 3} is a good host material for optically active waveguide thin films and sol-gel process is a useful method to derive pure and doped Y{sub 2}O{sub 3} waveguide films.

  19. Astro-Venture: An Integrated Earth and Space Science Curriculum Supplement Focused on Astrobiology

    Science.gov (United States)

    O'Guinn, C. M.; Wilmoth, K. L.; Coe, L. K.

    2005-05-01

    Astro-Venture is an example of a NASA educational product that successfully integrates Earth and space science by engaging students in grades 5-8 in the search for and design of a planet with the necessary characteristics for human habitation. Students study the Earth to understand how it meets human needs for survival in the areas of astronomy, geology, biology and atmospheric sciences. They then extend these ideas in simulated searches and analyses of stellar and planetary data sets to determine whether other planets or moons might be habitable. Astro-Venture uses online multimedia activities and off-line inquiry explorations to engage students in guided inquiry aligned with the 5 E inquiry model. For each core science area, students engage in an online training module in which they isolate variables and observe the affects on Earth. They then draw conclusions about which characteristics allow Earth to remain habitable. Following this experience, students engage in classroom, hands-on activities that teach them core standards-based concepts and focus on why the identified characteristics are vital to human habitability. These concepts include: states of matter, flow of energy, chemical properties, planetary geology, plate tectonics, human health and systems theory. With an understanding of the "whats" and the "whys" students then engage in a mission module in which they simulate the methods scientists would use to go about finding a planet with these characteristics. This helps them to understand the "hows". By meeting education standards, teachers can easily integrate this product into their classroom curriculum. Students apply all that they've learned to design a planet that meets the requirements for human habitability in all areas. Through this process, they learn about the Earth within the context of the solar system and how all parts work as a system in meeting our needs.

  20. Information Requirements for Integrating Spatially Discrete, Feature-Based Earth Observations

    Science.gov (United States)

    Horsburgh, J. S.; Aufdenkampe, A. K.; Lehnert, K. A.; Mayorga, E.; Hsu, L.; Song, L.; Zaslavsky, I.; Valentine, D. L.

    2014-12-01

    Several cyberinfrastructures have emerged for sharing observational data collected at densely sampled and/or highly instrumented field sites. These include the CUAHSI Hydrologic Information System (HIS), the Critical Zone Observatory Integrated Data Management System (CZOData), the Integrated Earth Data Applications (IEDA) and EarthChem system, and the Integrated Ocean Observing System (IOOS). These systems rely on standard data encodings and, in some cases, standard semantics for classes of geoscience data. Their focus is on sharing data on the Internet via web services in domain specific encodings or markup languages. While they have made progress in making data available, it still takes investigators significant effort to discover and access datasets from multiple repositories because of inconsistencies in the way domain systems describe, encode, and share data. Yet, there are many scenarios that require efficient integration of these data types across different domains. For example, understanding a soil profile's geochemical response to extreme weather events requires integration of hydrologic and atmospheric time series with geochemical data from soil samples collected over various depth intervals from soil cores or pits at different positions on a landscape. Integrated access to and analysis of data for such studies are hindered because common characteristics of data, including time, location, provenance, methods, and units are described differently within different systems. Integration requires syntactic and semantic translations that can be manual, error-prone, and lossy. We report information requirements identified as part of our work to define an information model for a broad class of earth science data - i.e., spatially-discrete, feature-based earth observations resulting from in-situ sensors and environmental samples. We sought to answer the question: "What information must accompany observational data for them to be archivable and discoverable within

  1. Coupling integrated assessment and earth system models: concepts and an application to land use change

    Science.gov (United States)

    O'Neill, B. C.; Lawrence, P.; Ren, X.

    2016-12-01

    Collaboration between the integrated assessment modeling (IAM) and earth system modeling (ESM) communities is increasing, driven by a growing interest in research questions that require analysis integrating both social and natural science components. This collaboration often takes the form of integrating their respective models. There are a number of approaches available to implement this integration, ranging from one-way linkages to full two-way coupling, as well as approaches that retain a single modeling framework but improve the representation of processes from the other framework. We discuss the pros and cons of these different approaches and the conditions under which a two-way coupling of IAMs and ESMs would be favored over a one-way linkage. We propose a criterion that is necessary and sufficient to motivate two-way coupling: A human process must have an effect on an earth system process that is large enough to cause a change in the original human process that is substantial compared to other uncertainties in the problem being investigated. We then illustrate a test of this criterion for land use-climate interactions based on work using the Community Earth System Model (CESM) and land use scenarios from the Representative Concentration Pathways (RCPs), in which we find that the land use effect on regional climate is unlikely to meet the criterion. We then show an example of implementing a one-way linkage of land use and agriculture between an IAM, the integrated Population-Economy-Technology-Science (iPETS) model, and CESM that produces fully consistent outcomes between iPETS and the CESM land surface model. We use the linked system to model the influence of climate change on crop yields, agricultural land use, crop prices and food consumption under two alternative future climate scenarios. This application demonstrates the ability to link an IAM to a global land surface and climate model in a computationally efficient manner.

  2. Can We Better Integrate the Role of Anti-Doping in Sports and Society? A Psychological Approach to Contemporary Value-Based Prevention.

    Science.gov (United States)

    Petróczi, Andrea; Norman, Paul; Brueckner, Sebastian

    2017-01-01

    In sport, a wide array of substances with established or putative performance-enhancing properties is used. Most substances are fully acceptable, whilst a defined set, revised annually, is prohibited; thus, using any of these prohibited substances is declared as cheating. In the increasingly tolerant culture of pharmacological and technical human enhancements, the traditional normative approach to anti-doping, which involves telling athletes what they cannot do to improve their athletic ability and performance, diverges from the otherwise positive values attached to human improvement and enhancement in society. Today, doping is the epitome of conflicting normative expectations about the goal (performance enhancement) and the means by which the goal is achieved (use of drugs). Owing to this moral-functional duality, addressing motivations for doping avoidance at the community level is necessary, but not sufficient, for effective doping prevention. Relevant and meaningful anti-doping must also recognise and respect the values of those affected, and consolidate them with the values underpinning structural, community level anti-doping. Effective anti-doping efforts are pragmatic, positive, preventive, and proactive. They acknowledge the progressive nature of how a "performance mindset" forms in parallel with the career transition to elite level, encompasses all levels and abilities, and directly addresses the reasons behind doping use with tangible solutions. For genuine integration into sport and society, anti-doping should consistently engage athletes and other stakeholders in developing positive preventive strategies to ensure that anti-doping education not only focuses on the intrinsic values associated with the spirit of sport but also recognises the values attached to performance enhancement, addresses the pressures athletes are under, and meets their needs for practical solutions to avoid doping. Organisations involved in anti- doping should avoid the image of

  3. Earth science information: Planning for the integration and use of global change information

    Science.gov (United States)

    Lousma, Jack R.

    1992-01-01

    The Consortium for International Earth Science Information Network (CIESIN) was founded in 1989 as a non-profit corporation dedicated to facilitating access to, use and understanding of global change information worldwide. The Consortium was created to cooperate and coordinate with organizations and researchers throughout the global change community to further access the most advanced technology, the latest scientific research, and the best information available for critical environmental decision making. CIESIN study efforts are guided by Congressional mandates to 'convene key present and potential users to assess the need for investment in integration of earth science information,' to 'outline the desirable pattern of interaction with the scientific and policy community,' and to 'develop recommendations and draft plans to achieve the appropriate level of effort in the use of earth science data for research and public policy purposes.' In addition, CIESIN is tasked by NASA to develop a data center that would extend the benefits of Earth Observing System (EOS) to the users of global change information related to human dimensions issues. For FY 1991, CIESIN focused on two main objectives. The first addressed the identification of information needs of global change research and non-research user groups worldwide. The second focused on an evaluation of the most efficient mechanisms for making this information available in usable forms.

  4. From the Earth Summit to Rio+20: integration of health and sustainable development.

    Science.gov (United States)

    Haines, Andy; Alleyne, George; Kickbusch, Ilona; Dora, Carlos

    2012-06-09

    In 2012, world leaders will meet at the Rio+20 conference to advance sustainable development--20 years after the Earth Summit that resulted in agreement on important principles but insufficient action. Many of the development goals have not been achieved partly because social (including health), economic, and environmental priorities have not been addressed in an integrated manner. Adverse trends have been reported in many key environmental indicators that have worsened since the Earth Summit. Substantial economic growth has occurred in many regions but nevertheless has not benefited many populations of low income and those that have been marginalised, and has resulted in growing inequities. Variable progress in health has been made, and inequities are persistent. Improved health contributes to development and is underpinned by ecosystem stability and equitable economic progress. Implementation of policies that both improve health and promote sustainable development is urgently needed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Thermoelectric properties of rare earth-doped n-type Bi2Se0∙ 3Te2 ...

    Indian Academy of Sciences (India)

    -Type R0.2Bi1.8Se0.3Te2.7 (R = Ce, Y and Sm) nanopowders were synthesized by hydrothermal method and the thermoelectric properties of the bulk samples made by hot-pressing these nanopowders were investigated. The Ce, Y and Sm doping have significant effects on the morphologies of the synthesized ...

  6. Dual function of rare earth doped nano Bi2O3: white light emission and photocatalytic properties.

    Science.gov (United States)

    Dutta, Dimple P; Roy, Mainak; Tyagi, A K

    2012-09-14

    Undoped Bi(2)O(3) and single and double doped Bi(2)O(3) : M (where M = Tb(3+) and Eu(3+)) nanophosphors were synthesized through a simple sonochemical process and characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), EDS, diffuse reflectance (DRS) and photoluminescence (PL) spectrophotometry. The TEM micrographs show that resultant nanoparticles have a rod-like shape. Energy transfer was observed from host to the dopant ions. Characteristic green emissions from Tb(3+) ions and red emissions from Eu(3+) ions were observed. Interestingly, the Commission International de l'Eclairage (CIE) coordinates of the double doped Bi(2)O(3) : Eu(3+)(0.8%) : Tb(3+)(1.2%) nanorods lie in the white light region of the chromaticity diagram and it has a quantum efficiency of 51%. The undoped Bi(2)O(3) showed a band gap of 3.98 eV which is red shifted to 3.81eV in the case of double doped Bi(2)O(3) : Eu(3+)(0.8%) : Tb(3+)(1.2%) nanorods. The photocatalytic activities of undoped nano Bi(2)O(3) and double doped nano Bi(2)O(3) : Eu(3+)(0.8%) : Tb(3+)(1.2%) were evaluated for the degradation of Rhodamine B under UV irradiation of 310 nm. The results showed that Bi(2)O(3) : Eu(3+)(0.8%) : Tb(3+)(1.2%) had better photocatalytic activity compared to undoped nano Bi(2)O(3). The evolution of CO(2) was realized and these results indicated the continuous mineralization of rhodamine B during the photocatalytic process. Thus double doped Bi(2)O(3) : Eu(3+)(0.8%) : Tb(3+)(1.2%) nanorods can be termed as a bifunctional material exhibiting both photocatalytic properties and white light emission.

  7. Structural/surface characterization and catalytic evaluation of rare-earth (Y, Sm and La) doped ceria composite oxides for CH{sub 3}SH catalytic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    He, Dedong; Chen, Dingkai; Hao, Husheng; Yu, Jie; Liu, Jiangping; Lu, Jichang; Liu, Feng [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China); Wan, Gengping [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China); Research Center for Analysis and Measurement, Hainan University, Haikou, 570228 (China); He, Sufang [Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, 650093 (China); Luo, Yongming, E-mail: environcatalysis222@yahoo.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China)

    2016-12-30

    Highlights: • Ce{sub 0.75}RE{sub 0.25}O{sub 2-δ} (RE = Y, Sm and La) were synthesized by citrate complexation method. • Ce{sub 0.75}Y{sub 0.25}O{sub 2-δ} exhibited the best stability for the decomposition of CH{sub 3}SH. • Cation radius played a key role in determining structure and surface characteristics. • Catalytic behavior depended on synergistic role of oxygen vacancies and basic sites. • Ce{sub 2}S{sub 3} accumulation on the surface was responsible for the deactivation of catalyst. - Abstract: A series of rare earth (Y, Sm and La) doped ceria composite oxides and pure CeO{sub 2} were synthesized and evaluated by conducting CH{sub 3}SH catalytic decomposition test. Several characterization studies, including XRD, BET, Raman, H{sub 2}-TPR, XPS, FT-IR, CO{sub 2}-TPD and CH{sub 3}SH-TPD, were undertaken to correlate structural and surface properties of the obtained ceria-based catalysts with their catalytic performance for CH{sub 3}SH decomposition. More oxygen vacancies and increased basic sites exhibited in the rare earth doped ceria catalysts. Y doped ceria sample (Ce{sub 0.75}Y{sub 0.25}O{sub 2-δ}), with a moderate increase in basic sites, contained more oxygen vacancies. More structural defects and active sites could be provided, and a relatively small amount of sulfur would accumulate, which resulted in better catalytic performance. The developed catalyst presented good catalytic behavior with stability very similar to that of typical zeolite-based catalysts reported previously. However, La doped ceria catalyst (Ce{sub 0.75}La{sub 0.25}O{sub 2-δ}) with the highest alkalinity was not the most active one. More sulfur species would be adsorbed and a large amount of cerium sulfide species (Ce{sub 2}S{sub 3}) would accumulate, which caused deactivation of the catalysts. The combined effect of increased oxygen vacancies and alkalinity led to the catalytic stability of Ce{sub 0.75}Sm{sub 0.25}O{sub 2-δ} sample was comparable to that of pure Ce

  8. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  9. Assessing Student Learning about the Earth through the InTeGrate Project

    Science.gov (United States)

    Gilbert, L. A.; Iverson, E. A. R.; Steer, D. N.; Birnbaum, S. J.; Manduca, C. A.

    2016-12-01

    InTeGrate, a five-year community-based project comprised of faculty in the sciences and other disciplines, educational specialists, and evaluation experts at diverse institutions, instills learning about Earth in the context of societal issues through teaching materials developed into 2-3 week modules or courses. Materials were tested by over 135 materials authors and faculty interested in using these materials in undergraduate courses at a range of institution types across the US in geoscience, engineering, humanities, and social science courses. To assess impact on student learning, the InTeGrate project has collected student work from over 4,600 students enrolled in courses using these materials. To evaluate the influence of the materials on learning gains related to geoscience literacy, a set of 8 multiple choice items were developed, tested, and then administered in the first and last week of class in approximately 180 courses. The items were developed by 14 community members with assessment expertise and address content and concepts in the Earth, Climate, Atmosphere, and Ocean Science literacy documents. In a sample of 2,023 paired first and last week responses, students exhibit a 10% normalized gain (equivalent to 1 point of a 12 point total) regardless of their initial score. Students in the lowest quartile at the beginning of the course demonstrate the highest gains (4th quartile gain of 1.8) versus the higher quartile where a ceiling effect is present. In addition, a free-response essay was administered in the last week of the course which tests students' understanding for how Earth system interactions influence people's ability to make decisions about global societal challenges. Analysis of these essays demonstrates a strong relationship between the InTeGrate content and the subject matter of the student essay. These preliminary findings suggest that the use of InTeGrate materials increases students' understanding of geoscience literacies and the

  10. Integrating emerging earth science technologies into disaster risk management: an enterprise architecture approach

    Science.gov (United States)

    Evans, J. D.; Hao, W.; Chettri, S. R.

    2014-12-01

    Disaster risk management has grown to rely on earth observations, multi-source data analysis, numerical modeling, and interagency information sharing. The practice and outcomes of disaster risk management will likely undergo further change as several emerging earth science technologies come of age: mobile devices; location-based services; ubiquitous sensors; drones; small satellites; satellite direct readout; Big Data analytics; cloud computing; Web services for predictive modeling, semantic reconciliation, and collaboration; and many others. Integrating these new technologies well requires developing and adapting them to meet current needs; but also rethinking current practice to draw on new capabilities to reach additional objectives. This requires a holistic view of the disaster risk management enterprise and of the analytical or operational capabilities afforded by these technologies. One helpful tool for this assessment, the GEOSS Architecture for the Use of Remote Sensing Products in Disaster Management and Risk Assessment (Evans & Moe, 2013), considers all phases of the disaster risk management lifecycle for a comprehensive set of natural hazard types, and outlines common clusters of activities and their use of information and computation resources. We are using these architectural views, together with insights from current practice, to highlight effective, interrelated roles for emerging earth science technologies in disaster risk management. These roles may be helpful in creating roadmaps for research and development investment at national and international levels.

  11. Tunable Solid-State Quantum Memory Using Rare-Earth-Ion-Doped Crystal, Nd3(+):GaN

    Science.gov (United States)

    2017-04-26

    than the desired c-plane), which posses differing growth rates and lead to the observed structuring of the periodic sample. Fig. 26 TEM images...interaction between light and the ions in a semiconductor. We investigated the energy level structure of the neodymium (Nd) ions embedded into the...provide a tunable memory. To vary the applied field, we designed and grew a series of Nd-doped GaN p-i-n structures , strain-balanced superlattice

  12. Integrating Authentic Earth Science Data in Online Visualization Tools and Social Media Networking to Promote Earth Science Education

    Science.gov (United States)

    Carter, B. L.; Campbell, B.; Chambers, L.; Davis, A.; Riebeek, H.; Ward, K.

    2008-12-01

    The Goddard Space Flight Center (GSFC) is one of the largest Earth Science research-based institutions in the nation. Along with the research comes a dedicated group of people who are tasked with developing Earth science research-based education and public outreach materials to reach the broadest possible range of audiences. The GSFC Earth science education community makes use of a wide variety of platforms in order to reach their goals of communicating science. These platforms include using social media networking such as Twitter and Facebook, as well as geo-spatial tools such as MY NASA DATA, NASA World Wind, NEO, and Google Earth. Using a wide variety of platforms serves the dual purposes of promoting NASA Earth Science research and making authentic data available to educational communities that otherwise might not otherwise be granted access. Making data available to education communities promotes scientific literacy through the investigation of scientific phenomena using the same data that is used by the scientific community. Data from several NASA missions will be used to demonstrate the ways in which Earth science data are made available for the education community.

  13. Earth science information: Planning for the integration and use of global change information

    Science.gov (United States)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  14. Visible light responsive sulfated rare earth doped TiO(2)@fumed SiO(2) composites with mesoporosity: enhanced photocatalytic activity for methyl orange degradation.

    Science.gov (United States)

    Zhan, Changchao; Chen, Feng; Yang, Jintao; Dai, Daoxing; Cao, Xiaohua; Zhong, Mingqiang

    2014-02-28

    Visible light (VL) responsive mesoporous sulfated rare earth ions (Nd(3+), La(3+), Y(3+)) incorporated TiO2@fumed SiO2 photocatalysts were prepared by sol-gel method with P123 (EO20PO70EO20) as a template. The resultant samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption measurements (BET), UV-vis diffuse reflectance spectroscopy, photoluminescence (PL) spectra, Fourier transform infrared spectroscopy (FTIR) and thermal analyses (TG-DTA). In comparison with nondoped sample, RE-doped samples showed not only an increase in the surface areas and pore volumes, but also an inhibition of titania phase transition from anatase to rutile. Photo-degradation results revealed that RE-doped samples could greatly improve the photocatalytic activity, and the experimental degradation rates of methyl orange (MO) were higher than that catalyzed by undoped samples and Degussa P-25, obeyed the order of Nd(3+)>La(3+)>Y(3+). Nd-doped sample expressed the highest photoactivity and the optimal dosage was 0.25mol%, which resulted in MO degradation rates of 99.8% and 90.05% irradiation under UV for 60min and VL (λ>400nm) for 40h, respectively. The enhanced photocatalytic activity could be attributed to the higher specific area, good crystallinity, strong VL absorption and effective separation of photogenerated electron-hole pairs in the catalyst. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Zn-doped etch-and-rinse model dentin adhesives: Dentin bond integrity, biocompatibility, and properties.

    Science.gov (United States)

    Barcellos, Daphne Câmara; Fonseca, Beatriz Maria; Pucci, César Rogério; Cavalcanti, Bruno das Neves; Persici, Erasmo De Souza; Gonçalves, Sérgio Eduardo de Paiva

    2016-07-01

    This study assessed a 6 month resin/dentin bond's durability and cytotoxic effect of Zn-doped model dentin adhesives. The mechanical and physicochemical properties were also tested. A model etch-and-rinse single-bottle adhesive was formulated (55wt.% Bis-GMA, 45wt.% HEMA, 0.5wt.% CQ, 0.5wt.% DMAEMA) and Zinc methacrylate (Zn-Mt) or ZnO nanoparticles (ZnOn) were added to the model's adhesive, resulting in three groups: Group Control (control model adhesive); Group Zn-Mt (1wt.% Zn-Mt incorporated to adhesive) and Group ZnOn (1wt.% ZnOn incorporated to adhesive). The microtensile bond strength (mTBS) was assessed after 24h or 6 months in water storage. Mechanical properties (diametral tensile strength/DTS, flexural strength/FS, flexural modulus/FM, resilience modulus/RM, and compressive strength/CS) and physicochemical properties (polymerization shrinkage/PS, contact angle/CA, water sorption/WS, and water solubility/WS) were also tested. Cytotoxicity was evaluated with SRB biochemical assay. No significant difference in the DTS, FS, FM, CS, CA, WS, and WS were found when 1% of ZnOn or Zn-Mt was added to the model dentin adhesive. Group Zn-Mt decreased the RM of adhesive. Groups Zn-Mt and ZnOn decreased the PS of adhesives. Group ZnOn reduced the cytotoxicity of adhesive. Group ZnOn preserved mTBS after 6 months storage without degradation areas as seen by SEM analysis. The 1wt.% ZnOn may preserve the integrity of the hybrid layer and may reduce cytotoxicity and polymerization shrinkage of model dentin adhesive. The addition of Zn-Mt to the adhesive had no beneficial effects. Copyright © 2016 The Academy of Dental Materials. All rights reserved.

  16. Evaluation of rare earth oxides doping SnO2.(Co1/4,Mn3/4O-based varistor system

    Directory of Open Access Journals (Sweden)

    Alessandro Dibb

    2006-09-01

    Full Text Available The present paper aims to verify the inuence of rare earth oxide such as lanthanum (La2O3 and neodymium (Nd2O3 doping SnO2 + 0.25%CoO + 0.75%MnO2 + 0.05%Ta2O5 system. The analysis focus on microstructural inuence on electrical properties. Microstructural analysis were made by using Transmission Electron Microscopy (TEM at different regions of the samples. From such analysis it was found that La2O3 and Nd2O3 oxides cause heterogeneous segregation and precipitation at grain boundary concerning cobalt and manganese, decreasing the nonohmic electrical properties, as discussed, likely due to the increasing of grain boundary non-active potential barriers.

  17. Atomic-Level Structure Studies of Rare-Earth Doped Sodium Phosphate Glasses Using High Energy X-Ray Diffraction and Complementary Techniques

    Science.gov (United States)

    Amir, Faisal

    The atomic-scale structure of a series of (RE2 O3)x ( Na2O)y ( P2O5)1- x-y glasses (RE = Pr, Nd, Er) where has been characterized by high-energy X-ray diffraction technique (HEXRD). In addition, differential thermal analysis (DTA), Fourier transform infrared (FTIR) spectroscopy, and absorption and emission spectroscopy in visible and near IR ranges have been used as supplementary tools to validate structural features obtained from HEXRD techniques.Structural features such as inter-atomic distances and coordination numbers and their dependence on the concentration of RE 2 O3 have been obtained by analyzing pair distribution functions (PDF) extracted from diffraction data. Coordination numbers for P-O, Na-O, O-O, and P-P were found to be independent of the RE 2 O3 concentration. In contrast, the RE-O coordination number varies between ≈ 8 and 7.2 as the RE2 O3 concentration increases from 0.005 to 0.05. The variation of the bond distance between large rare-earth ions (Pr, Nd) and small rare-earth ion (Er) is approximately 0.2 A, which is attributed to lanthanide contraction. The Na-O coordination number in these glasses was observed to ≈ 5.0 as the RE2 O 3 content increases. The overlapping correlation of RE-O, Na-O, and O-O in the same vicinity makes it difficult to calculate these coordination numbers. DTA measurements were used for the investigation of thermal characteristics of glasses. From these measurements, it is evident that the glass transition temperature increases with increasing the RE2 O3 (RE=Pr, Er) content. FTIR was used to inspect the structural changes of the glasses. The doping of RE 2 O3 (RE=Pr, Er) induces depolymerization of the glasses at the Q3 tetrahedral sites. The forming of the ionic linkages between phosphate chains is attributed to the increase in non-bridging oxygen (NBO). The cross-linkages density (CLD) increases with the RE2 O3 (RE=Pr, Er) concentrations. Absorption spectra for x = 0.01 of Er 3+ and 0.005-0.05 for Nd3+ doped

  18. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.

    Science.gov (United States)

    Smirnov, Waldemar; Kriele, Armin; Hoffmann, René; Sillero, Eugenio; Hees, Jakob; Williams, Oliver A; Yang, Nianjun; Kranz, Christine; Nebel, Christoph E

    2011-06-15

    In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are

  19. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation.

    Science.gov (United States)

    Ma, Jin-Gang; Zhang, Cai-Rong; Gong, Ji-Jun; Wu, You-Zhi; Kou, Sheng-Zhong; Yang, Hua; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-08-24

    Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs) to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  20. Synergistic effects of ultrasonication and ethanol washing in controlling the stoichiometry, phase-purity and morphology of rare-earth doped ceria nanoparticles.

    Science.gov (United States)

    Singh, Kushal; Kumar, Rishu; Chowdhury, Anirban

    2017-05-01

    Over a period of last thirty years, use of ethanol has been historically reported for obtaining nanopowders with low agglomeration for various oxide systems. In addition to these benefits, we show for the first time that treatments in ethanol medium coupled with an ultrasonication step can impart crucial additional advantages in controlling the phase purity and stoichiometry/composition for such systems. This is an important issue especially for any complex multicationic oxide nanoparticles system and hence we selected one of the most popular catalyst systems of doped-ceria (CeO 2 ) nanoparticles with very high (50%) level of rare-earth (lanthanum) doping for this case study. The effect of an ultrasonication combined ethanol treatment was compared with the other solvent media (pure water and ethanol) without ultrasonication. The underlying mechanism for this process involves lowering the deprotonation rate in ethanol medium which eventually reduces the condensation of the individual metal oxides while the ultrasonication ensures the reproducibility of the synthesis by providing a homogeneous colloidal solution for each washing stages. This novel modification in synthesis of nanoparticles aims to provide meaningful solutions in optimising the phase, composition and morphology of multicationic complex system of nanocrystals. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Rare-earth doped YF{sub 3} nanocrystals embedded in sol-gel silica glass matrix for white light generation

    Energy Technology Data Exchange (ETDEWEB)

    Mendez-Ramos, J. [Departamento Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain); Santana-Alonso, A. [Departamento Fisica Basica, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain); Yanes, A.C., E-mail: ayanesh@ull.e [Departamento Fisica Basica, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain); Castillo, J. del [Departamento Fisica Basica, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain); Rodriguez, V.D. [Departamento Fisica Fundamental y Experimental, Electronica y Sistemas, Universidad de La Laguna, 38206 La Laguna, Tenerife (Spain)

    2010-12-15

    YF{sub 3} nanocrystals triply-doped with Yb{sup 3+}, Ho{sup 3+} and Tm{sup 3+} ions embedded in amorphous silica matrix have been successfully obtained by heat treatment of precursor sol-gel glasses for the first time to our knowledge and confirmed by X-ray diffraction and luminescence measurements. Simultaneous UV and visible efficient up-conversion emissions, with well-resolved Stark structure, under 980 nm infrared pump are observed, indicating the effective partition of rare-earth ions into a crystalline-like environment of the YF{sub 3} nanocrystals. Corresponding energy transfer mechanisms have been analyzed and overall colour emission has been quantified in terms of standard chromaticity diagram. By an adequate doping level and heat treatment temperature of precursor sol-gel glasses, a bright white colour has been accomplished, close to the standard equal energy white light illumination point, with potential applications in photo-electronic devices and information processing.

  2. Efficient Dual-Modal NIR-to-NIR Emission of Rare Earth Ions Co-doped Nanocrystals for Biological Fluorescence Imaging.

    Science.gov (United States)

    Zhou, Jiajia; Shirahata, Naoto; Sun, Hong-Tao; Ghosh, Batu; Ogawara, Makoto; Teng, Yu; Zhou, Shifeng; Sa Chu, Rong Gui; Fujii, Minoru; Qiu, Jianrong

    2013-02-07

    A novel approach has been developed for the realization of efficient near-infrared to near-infrared (NIR-to-NIR) upconversion and down-shifting emission in nanophosphors. The efficient dual-modal NIR-to-NIR emission is realized in a β-NaGdF4/Nd(3+)@NaGdF4/Tm(3+)-Yb(3+) core-shell nanocrystal by careful control of the identity and concentration of the doped rare earth (RE) ion species and by manipulation of the spatial distributions of these RE ions. The photoluminescence results reveal that the emission efficiency increases at least 2-fold when comparing the materials synthesized in this study with those synthesized through traditional approaches. Hence, these core-shell structured nanocrystals with novel excitation and emission behaviors enable us to obtain tissue fluorescence imaging by detecting the upconverted and down-shifted photoluminescence from Tm(3+) and Nd(3+) ions, respectively. The reported approach thus provides a new route for the realization of high-yield emission from RE ion doped nanocrystals, which could prove to be useful for the design of optical materials containing other optically active centers.

  3. The Electronic Structures and Optical Properties of Alkaline-Earth Metals Doped Anatase TiO2: A Comparative Study of Screened Hybrid Functional and Generalized Gradient Approximation

    Directory of Open Access Journals (Sweden)

    Jin-Gang Ma

    2015-08-01

    Full Text Available Alkaline-earth metallic dopant can improve the performance of anatase TiO2 in photocatalysis and solar cells. Aiming to understand doping mechanisms, the dopant formation energies, electronic structures, and optical properties for Be, Mg, Ca, Sr, and Ba doped anatase TiO2 are investigated by using density functional theory calculations with the HSE06 and PBE functionals. By combining our results with those of previous studies, the HSE06 functional provides a better description of electronic structures. The calculated formation energies indicate that the substitution of a lattice Ti with an AEM atom is energetically favorable under O-rich growth conditions. The electronic structures suggest that, AEM dopants shift the valence bands (VBs to higher energy, and the dopant-state energies for the cases of Ca, Sr, and Ba are quite higher than Fermi levels, while the Be and Mg dopants result into the spin polarized gap states near the top of VBs. The components of VBs and dopant-states support that the AEM dopants are active in inter-band transitions with lower energy excitations. As to optical properties, Ca/Sr/Ba are more effective than Be/Mg to enhance absorbance in visible region, but the Be/Mg are superior to Ca/Sr/Ba for the absorbance improvement in near-IR region.

  4. Integrated SFM Techniques Using Data Set from Google Earth 3d Model and from Street Level

    Science.gov (United States)

    Inzerillo, L.

    2017-08-01

    Structure from motion (SfM) represents a widespread photogrammetric method that uses the photogrammetric rules to carry out a 3D model from a photo data set collection. Some complex ancient buildings, such as Cathedrals, or Theatres, or Castles, etc. need to implement the data set (realized from street level) with the UAV one in order to have the 3D roof reconstruction. Nevertheless, the use of UAV is strong limited from the government rules. In these last years, Google Earth (GE) has been enriched with the 3D models of the earth sites. For this reason, it seemed convenient to start to test the potentiality offered by GE in order to extract from it a data set that replace the UAV function, to close the aerial building data set, using screen images of high resolution 3D models. Users can take unlimited "aerial photos" of a scene while flying around in GE at any viewing angle and altitude. The challenge is to verify the metric reliability of the SfM model carried out with an integrated data set (the one from street level and the one from GE) aimed at replace the UAV use in urban contest. This model is called integrated GE SfM model (i-GESfM). In this paper will be present a case study: the Cathedral of Palermo.

  5. Research priorities in land use and land-cover change for the Earth System and Integrated Assessment Modelling

    NARCIS (Netherlands)

    Hibbard, K.; Janetos, A.; Vuuren, van D.; Pongratz, J.; Rose, S.; Betts, R.; Herold, M.; Feddema, J.

    2010-01-01

    This special issue has highlighted recent and innovative methods and results that integrate observations and modelling analyses of regional to global aspect of biophysical and biogeochemical interactions of land-cover change with the climate system. Both the Earth System and the Integrated

  6. Thermoluminescence investigations of sol–gel derived and γ-irradiated rare earth (Eu and Nd) doped YAG nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Kurrey, M.S. [Department of Applied Physics, Government Engineering College, Bilaspur 495006 (India); Tiwari, Ashish, E-mail: ashisht048@gmail.com [Department of Chemistry, Government Lahiri College, Chirimiri 497449 (India); Khokhar, M.S.K. [Department of Rural Technology, Guru Ghasidas Vishwavidyalaya, Bilaspur 495006 (India); Kher, R.S. [Department of Physics, Government E.R.R. PG Science College, Bilaspur 495006 (India); Dhoble, S.J. [Department of Physics, RTM Nagpur University, Nagpur 440033 (India)

    2015-08-15

    Nanocrystalline YAG doped with Eu{sup 3+} and Nd{sup 3+} has been synthesized by a sol–gel technique. The prepared nanophosphors were calcined and characterized by XRD, SEM. The XRD analysis revealed well-defined cubic phase. Electron microscopy showed spherical morphologies with an average size of 15–20 nm. The thermoluminescence (TL) properties of as prepared nanophosphors were investigated after γ-irradiation using {sup 60}Co source at room temperature. It has been found that there is a prominent TL glow peak at 290–295 °C for the as prepared doped samples. The TL glow curve showed variation in TL peak intensity as the concentration of dopant is changed. Kinetic data and trap depth for the synthesized samples were calculated by a peak shape method. It has been found that TL response is nonlinear in the range 0.29–1.16 kGy. This paper discusses about the optimal doping concentration of Eu and Nd in YAG nanophosphors. - Highlights: • TL properties of YAG:Eu{sup 3+}/Nd{sup 3+} nanoparticles were investigated after γ-irradiation. • TL peak intensity and glow curve structure varies with concentration of dopant. • Optimal TL intensity was obtained for YAG:Eu{sub 3.0}. and YAG:Nd{sub 3.0}. • Blue-shift in the TL peaks was observed as the gamma dose is increased for YAG:Eu{sub 5.0}. • TL response was found to be nonlinear in the range 0.29–1.16 kGy.

  7. Self-Guided Field Explorations: Integrating Earth Science into Students' Lives

    Science.gov (United States)

    Kirkby, K. C.; Kirkby, S.

    2013-12-01

    Self-guided field explorations are a simple way to transform an earth science class into a more pedagogically effective experience. Previous experience demonstrated that self-guided student explorations of museum and aquarium exhibits were both extremely popular and remarkably effective. That success led our program to test an expansion of the concept to include self-guided student explorations in outdoor field settings. Preliminary assessment indicates these self-guided field explorations are nearly as popular with students as the museum and aquarium explorations and are as pedagogically effective. Student gains on post-instruction assessment match or exceed those seen in instructor-assisted, hands-on, small group laboratory activities and completely eclipse gains achieved by traditional lecture instruction. As importantly, self-guided field explorations provide a way to integrate field experiences into large enrollment courses where the sheer scale of class trips makes them logistically impossible. This expands course breadth, integrating new topics that could not be as effectively covered by the original class structure. Our introductory program assessed two models of self-guided field explorations. A walking/cycling exploration of the Saint Anthony Falls area, a mile from campus, focuses on the intersections of geological processes with human history. Students explore the geology behind the waterfalls' evolution as well as its subsequent social and economic impacts on human history. A second exploration focuses on the campus area geology, including its building stones as well as its landscape evolution. In both explorations, the goal was to integrate geology with the students' broader understanding of the world they live in. Although the explorations' creation requires a significant commitment, once developed, self-guided explorations are surprisingly low maintenance. These explorations provide a model of a simple, highly effective pedagogical tool that is

  8. Integrated oxygen sensors based on Mg-doped SrTiO3 fabricated by screen-printing

    DEFF Research Database (Denmark)

    Zheng, H.; Toft Sørensen, O.

    1998-01-01

    This paper describes the fabrication and testing of Mg-doped SrTiO3 thick-film oxygen sensors with an integrated Pt heater. The results show that the sensor exhibits a PO2 dependence according to R proportional to PO2-1/4 in the considered PO2 range(2.5 x 10(-5) bar ... and recovery time of 1-2 and 50 s respectively. A temperature of 600 degrees C could be reached by a relative low power comsumption of the Pt heater....

  9. Integrated oxygen sensors based on Mg-doped SrTiO3 fabricated by screen-printing

    DEFF Research Database (Denmark)

    Zheng, H.; Sørensen, Ole Toft

    2000-01-01

    This paper describes the fabrication and testing of Mg-doped SrTiO3 thick-film oxygen sensors with an integrated Pt heater. The results show that the sensor exhibits a P-o2 dependence according to R proportional to p(o2)(-1/4) in the considered P-o2 range(2.5 x 10(-5) bar ...) and a response and recovery time of 1-2 and 50 s, respectively. A temperature of 600 degrees C could be reached by a relative low power consumption of the Pt heater. (C) 2000 Elsevier Science S.A. All rights reserved....

  10. Integration of external metadata into the Earth System Grid Federation (ESGF)

    Science.gov (United States)

    Berger, Katharina; Levavasseur, Guillaume; Stockhause, Martina; Lautenschlager, Michael

    2015-04-01

    International projects with high volume data usually disseminate their data in a federated data infrastructure, e.g.~the Earth System Grid Federation (ESGF). The ESGF aims to make the geographically distributed data seamlessly discoverable and accessible. Additional data-related information is currently collected and stored in separate repositories by each data provider. This scattered and useful information is not or only partly available for ESGF users. Examples for such additional information systems are ES-DOC/metafor for model and simulation information, IPSL's versioning information, CHARMe for user annotations, DKRZ's quality information and data citation information. The ESGF Quality Control working team (esgf-qcwt) aims to integrate these valuable pieces of additional information into the ESGF in order to make them available to users and data archive managers by (i) integrating external information into ESGF portal, (ii) integrating links to external information objects into the ESGF metadata index, e.g. by the use of PIDs (Persistent IDentifiers), and (iii) automating the collection of external information during the ESGF data publication process. For the sixth phase of CMIP (Coupled Model Intercomparison Project), the ESGF metadata index is to be enriched by additional information on data citation, file version, etc. This information will support users directly and can be automatically exploited by higher level services (human and machine readability).

  11. Integrating Earth System Science Data Into Tribal College and University Curricula

    Science.gov (United States)

    Tilgner, P. J.; Perkey, D. J.

    2007-12-01

    , surface energy budgets, climate and climate change, impacts, etc. GIS and remote sensing training has focused on importing, converting and displaying data sets related to drought and fires. The Integrated Science courses at SGU, designed primarily for pre-service elementary teachers, have incorporated physical science concepts and teaching approaches presented at the TRESTE annual workshops. The content of the courses follows the PBL teaching approach and is organized around a relevant, local problem such as prairie dog control and prairie management. Concepts from Earth, life and physical sciences are included in the course design. The fall course is introduced using recent news articles on legislation to control prairie dogs. After expressing their ideas based solely on experience and emotion, students determine what knowledge they will need to write an informed opinion on the issue. One of the instructional units for the course includes instruction and practice in interpreting satellite images of the local reservation to determine impact of prairie dog towns on vegetation. Students also conduct soil studies in the disturbed areas and nearby undisturbed areas. Data is gathered on soil chemistry, soil temperatures, and surface temperatures, measured with an infrared sensor provided by the TRESTE grant. Additional topics covered in the course that contain information from the annual workshops, include prairie fires, climate and climate change, and effects of the drought on local bodies of water.

  12. CIM-EARTH: Community integrated model of economic and resource trajectories for humankind.

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J.; Foster, I.; Judd, K.; Moyer, E.; Munson, T.; Univ. of Chicago; Hoover Inst.

    2010-01-01

    Climate change is a global problem with local climatic and economic impacts. Mitigation policies can be applied on large geographic scales, such as a carbon cap-and-trade program for the entire U.S., on medium geographic scales, such as the NOx program for the northeastern U.S., or on smaller scales, such as statewide renewable portfolio standards and local gasoline taxes. To enable study of the environmental benefits, transition costs, capitalization effects, and other consequences of mitigation policies, we are developing dynamic general equilibrium models capable of incorporating important climate impacts. This report describes the economic framework we have developed and the current Community Integrated Model of Economic and Resource Trajectories for Humankind (CIM-EARTH) instance.

  13. Deposition and characterization of PECVD phosphorus doped silicon oxynitride layers for integrated optics applications

    NARCIS (Netherlands)

    Hussein, M.G.; Worhoff, Kerstin; Sengo, G.; Sengo, G.; Driessen, A.; Devi, A.; Parala, H.; Hitchman, M.L.; Fischer, R.; Allendorf, M.D.

    Phosphorus-doped silicon oxynitride layers have been deposited by a Plasma Enhanced Chemical Vapor Deposition process from $N_20$, 2% $SiH_4/N_2$ and 5% $PH_3/Ar$ gaseous mixtures. The $PH_3/Ar$ flow rate was varied to investigate the effect of the dopant to the layer properties. As deposited and

  14. New Data Services for Polar Investigators from Integrated Earth Data Applications (IEDA)

    Science.gov (United States)

    Nitsche, F. O.; Ferrini, V.; Morton, J. J.; Arko, R. A.; McLain, K.; O'hara, S. H.; Carbotte, S. M.; Lehnert, K. A.; IEDA Team, I.

    2013-12-01

    Accessibility and preservation of data is needed to support multi-disciplinary research in the key environmentally sensitive Polar Regions. IEDA (Integrated Earth Data Applications) is a community-based data facility funded by the US National Science Foundation (NSF) to support, sustain, and advance the geosciences by providing data services for observational solid earth data from the Ocean, Earth, and Polar Sciences. IEDA tools and services relevant to the Polar Research Community include the Antarctic and Southern Ocean Data System (ASODS), the U.S. Antarctic Program Data Coordination Center (USAP-DCC), GeoMapApp, as well as a number of services for sample-based data (SESAR and EarthChem). In addition to existing tools, which assist Polar investigators in archiving their data, and creating DIF records for global searches in AMD, IEDA recently added several new tools and services that will provide further support for investigators with the data life cycle process. These include a data management plan (http://www.iedadata.org/compliance/plan) and data compliance reporting tool (http://www.iedadata.org/compliance/report) that will help investigators comply with the requirements of funding agencies such as the National Science Foundation (NSF). Data, especially from challenging Polar Regions, are likely to be used by other scientists for future studies. Therefore, data acknowledgment is an important concern of many investigators. To encourage data acknowledgments by data users, we link references of publications (when known) to datasets and cruises registered within the ASODS system as part of our data curation services (http://www.marine-geo.org/portals/antarctic/references.php). In addition, IEDA offers a data publication service to register scientific data with DOI's, making data sets citable as publications with attribution to investigators as authors. IEDA is a publication agent of the DataCite consortium. Offering such services provides additional incentives

  15. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    Science.gov (United States)

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Photoemission from In-situ Rare-Earth-Doped GaN Grown by MBE and MOCVD

    Science.gov (United States)

    Steckl, Andrew; Lee, Don; Pan, Ming; Heikenfeld, Jason

    2003-03-01

    of excited RE ions. By appropriately choosing the RE dopant, narrow linewidth emission can be obtained at selected wavelengths from the ultraviolet to the infrared. This represents an interesting multi-color emission alternative to conventional bandgap engineering. The deposition of in-situ doped GaN (and AlxGa1-xN:RE ) layers was carried out by MBE and MOCVD. The MBE growth is performed with solid (effusion) sources for group III (Ga, Al) and RE elements (Er, Eu, Tm) and a N2 gas (plasma) source. The MOCVD growth is carried out with MO sources for group III and RE elements and with a hydride (NH3) for group V. The complex relationship between growth mechanisms and RE emission in the GaN layers is becoming better understood. The study of the effects of RE concentration, growth temperature, and III-V ratio on materials properties and on resulting photoemission has led to different models of the relation between growth and RE-based emission mechanisms for MBE- and MOCVD-grown films.

  17. RIMS: An Integrated Mapping and Analysis System with Applications to Earth Sciences and Hydrology

    Science.gov (United States)

    Proussevitch, A. A.; Glidden, S.; Shiklomanov, A. I.; Lammers, R. B.

    2011-12-01

    A web-based information and computational system for analysis of spatially distributed Earth system, climate, and hydrologic data have been developed. The System allows visualization, data exploration, querying, manipulation and arbitrary calculations with any loaded gridded or vector polygon dataset. The system's acronym, RIMS, stands for its core functionality as a Rapid Integrated Mapping System. The system can be deployed for a Global scale projects as well as for regional hydrology and climatology studies. In particular, the Water Systems Analysis Group of the University of New Hampshire developed the global and regional (Northern Eurasia, pan-Arctic) versions of the system with different map projections and specific data. The system has demonstrated its potential for applications in other fields of Earth sciences and education. The key Web server/client components of the framework include (a) a visualization engine built on Open Source libraries (GDAL, PROJ.4, etc.) that are utilized in a MapServer; (b) multi-level data querying tools built on XML server-client communication protocols that allow downloading map data on-the-fly to a client web browser; and (c) data manipulation and grid cell level calculation tools that mimic desktop GIS software functionality via a web interface. Server side data management of the system is designed around a simple database of dataset metadata facilitating mounting of new data to the system and maintaining existing data in an easy manner. RIMS contains "built-in" river network data that allows for query of upstream areas on-demand which can be used for spatial data aggregation and analysis of sub-basin areas. RIMS is an ongoing effort and currently being used to serve a number of websites hosting a suite of hydrologic, environmental and other GIS data.

  18. Svalbard Integrated Arctic Earth Observing System - A New Coordinated Foundation for Environmental Services in and around Svalbard

    Science.gov (United States)

    Lilja Bye, Bente

    2015-04-01

    Svalbard Integrated Earth Observing System (SIOS) is an international infrastructure project. There were 28 partners from Europe and Asia involved in the preparatory phase of this ESFRI project. The essential objectives are to establish a mechanism for integration among the existing research institutions in Svalbard to create a joint state-of-the-art observing system in Earth System Science, and better coordinated services for the International Research community with respect to access, data and knowledge management, logistics and training. In addition to the SIOS members various data services, SIOS itself will provide a few new services such as processed satellite data (from Copernicus' Sentinels as well as others) and combined in-situ and satellite data. All in all SIOS represent a new capacity and foundation for more Earth System Science, including climate and environment, data services in and around Svalbard. A presentation of SIOS including time schedule for implementation of the basic services will be given.

  19. The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025

    Science.gov (United States)

    Fellous, Jean-Louis

    2016-07-01

    The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of

  20. Gamma ray spectroscopy employing divalent europium-doped alkaline earth halides and digital readout for accurate histogramming

    Science.gov (United States)

    Cherepy, Nerine Jane; Payne, Stephen Anthony; Drury, Owen B.; Sturm, Benjamin W.

    2016-02-09

    According to one embodiment, a scintillator radiation detector system includes a scintillator, and a processing device for processing pulse traces corresponding to light pulses from the scintillator, where the processing device is configured to: process each pulse trace over at least two temporal windows and to use pulse digitization to improve energy resolution of the system. According to another embodiment, a scintillator radiation detector system includes a processing device configured to: fit digitized scintillation waveforms to an algorithm, perform a direct integration of fit parameters, process multiple integration windows for each digitized scintillation waveform to determine a correction factor, and apply the correction factor to each digitized scintillation waveform.

  1. Elaboration, structural and spectroscopic properties of rare earth-doped yttrium-hafnium sol-gel oxide powders for scintillation applications

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva-Ibanez, M.; Le Luyer, C.; Dujardin, C.; Mugnier, J

    2003-12-15

    Hafnium dioxide (HfO{sub 2}) presents a high crystalline density ({approx}10 g/cm{sup 3}) which makes it attractive for host lattice activated by rare earths (RE) for applications as scintillating materials. The potentiality to prepare Eu{sup 3+} and Tb{sup 3+} activated HfO{sub 2} sol-gel powders, with high scintillation yield, is explored. The powders are heat-treated at 1000 deg. C before analyses. The incorporation of yttrium (Y{sup 3+}) in various concentrations is conducted to vary the lattice phase and to stabilize the trivalent terbium ions. The influence of Y{sup 3+} on the microstructure and then on the scintillation properties of the material is presented. A high concentration of Y{sup 3+} (20 mol%) stabilizes pure HfO{sub 2} tetragonal phase whatever RE (1 mol%) doping. The powders with the highest relative scintillation yield are Eu{sup 3+}:HfO2 without Y{sup 3+} incorporation and crystallized into the monoclinic phase and Y{sup 3+} (20 mol%): Tb{sup 3+}:HfO2 crystallized into the tetragonal phase. Sequential energy transfer process is assumed to explain these results.

  2. Effect of surface related organic vibrational modes in luminescent upconversion dynamics of rare earth ions doped nanoparticles.

    Science.gov (United States)

    Wang, Yu; Smolarek, Szymon; Kong, Xianggui; Buma, Wybren Jan; Brouwer, Albert Manfred; Zhang, Hong

    2010-11-01

    Physical and chemical properties of nanoparticles are known to be subject to the surface factors. For their biological/biomedical applications, typically, surface of the nanoparticles has to be modified which inevitably affects their performance. In this work we have studied the interaction between the surface related organic vibrational modes and the luminescent centers--rare earth ions--in one of the most efficient luminescence upconversion nanosystems--NaYF4. Specifically, the surface quenching centers, the surface related luminescent centers, as well as the role of shell properties, are investigated spectroscopically. Our results demonstrate that the surface related high-frequency vibrational modes can be critical to the spectral properties of the nanosystems once the surface is not well separated from the discrete luminescent centers.

  3. High contrast in vivo bioimaging using multiphoton upconversion in novel rare-earth-doped fluoride upconversion nanoparticles

    Science.gov (United States)

    Chen, Guanying; Yang, Chunhui; Prasad, Paras N.

    2013-02-01

    Upconversion in rare-earth ions is a sequential multiphoton process that efficiently converts two or more low-energy photons, which are generally near infrared (NIR) light, to produce anti-Stokes emission of a higher energy photon (e.g., NIR, visible, ultraviolet) using continuous-wave (cw) diode laser excitation. Here, we show the engineering of novel, efficient, and biocompatible NIRin-to-NIRout upconversion nanoparticles for biomedical imaging with both excitation and emission being within the "optical transparency window" of tissues. The small animal whole-body imaging with exceptional contrast (signal-to-noise ratio of 310) was shown using BALB/c mice intravenously injected with aqueously dispersed nanoparticles. An imaging depth as deep as 3.2-cm was successfully demonstrated using thick animal tissue (pork) under cw laser excitation at 980 nm.

  4. Integrated solution for the complete remote sensing process - Earth Observation Mission Control Centre (EOMC2)

    Science.gov (United States)

    Czapski, Paweł

    2016-07-01

    We are going to show the latest achievements of the Remote Sensing Division of the Institute of Aviation in the area of remote sensing, i.e. the project of the integrated solution for the whole remote sensing process ranging from acquiring to providing the end user with required information. Currently, these tasks are partially performed by several centers in Poland, however there is no leader providing an integrated solution. Motivated by this fact, the Earth Observation Mission Control Centre (EOMC2) was established in the Remote Sensing Division of the Institute of Aviation that will provide such a comprehensive approach. Establishing of EOMC2 can be compared with creating Data Center Aerial and Satellite Data Centre (OPOLIS) in the Institute of Geodesy and Cartography in the mid-70s in Poland. OPOLIS was responsible for broadly defined data processing, it was a breakthrough innovation that initiated the use of aerial image analysis in Poland. Operation center is a part of the project that will be created, which in comparison with the competitors will provide better solutions, i.e.: • Centralization of the acquiring, processing, publishing and archiving of data, • Implementing elements of the INSPIRE directive recommendations on spatial data management, • Providing the end-user with information in the near real-time, • Ability of supplying the system with images of various origin (aerial, satellite, e.g. EUMETCast, Sentinel, Landsat) and diversity of telemetry data, data aggregation and using the same algorithms to images obtained from different sources, • System reconfiguration and batch processing of large data sets at any time, • A wide range of potential applications: precision agriculture, environmental protection, crisis management and national security, aerial, small satellite and sounding rocket missions monitoring.

  5. Ternary rare-earth based alternative gate-dielectrics for future integration in MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Juergen; Lopes, Joao Marcelo; Durgun Oezben, Eylem; Luptak, Roman; Lenk, Steffi; Zander, Willi; Roeckerath, Martin [IBN 1-IT, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2009-07-01

    The dielectric SiO{sub 2} has been the key to the tremendous improvements in Si-based metal-oxide-semiconductor (MOS) device performance over the past four decades. It has, however, reached its limit in terms of scaling since it exhibits a leakage current density higher than 1 A/cm{sup 2} and does not retain its intrinsic physical properties at thicknesses below 1.5 nm. In order to overcome these problems and keep Moore's law ongoing, the use of higher dielectric constant (k) gate oxides has been suggested. These high-k materials must satisfy numerous requirements such as the high k, low leakage currents, suitable band gap und offsets to silicon. Rare-earth based dielectrics are promising materials which fulfill these needs. We will review the properties of REScO{sub 3} (RE = La, Dy, Gd, Sm, Tb) and LaLuO{sub 3} thin films, grown with pulsed laser deposition, e-gun evaporation or molecular beam deposition, integrated in capacitors and transistors. A k > 20 for the REScO{sub 3} (RE = Dy, Gd) and around 30 for (RE = La, Sm, Tb) and LaLuO{sub 3} are obtained. Transistors prepared on SOI and sSOI show mobility values up to 380 cm{sup 2}/Vs on sSOI, which are comparable to such prepared with HfO{sub 2}.

  6. Microfabrication of magnetostrictive beams based on NiFe film doped with B and Mo for integrated sensor systems

    KAUST Repository

    Alfadhel, Ahmed

    2012-03-09

    This paper reports the development of integrated micro-sensors consisting of 1 -µm-thick magnetostrictive cantilevers or bridges with 500 µm in length and conducting interrogation elements. The thin films are fabricated by sputter deposition of NiFe doped with B and Mo, and the magnetic properties are enhanced by field annealing, resulting in a coercivity of 2.4 Oe. In operation, an alternating current applied to the interrogation elements magnetizes the magnetostrictive structures. The longitudinal resonant frequency is detected as an impedance change of the interrogation elements. The magnetostrictive micro-beams provide high resonant frequencies—2.95 MHz for the cantilever and 5.46 MHz for the bridge—which can be exploited to develop sensors of high sensitivity.

  7. MEOS Microsatellite Earth Observation using Miniature Integrated-Optic IR Spectrometers

    Science.gov (United States)

    Kruzelecky, Roman

    Our planetary atmosphere helps to regulate the Earth's thermal budget and the resulting global climate by controlling the energy balance between the incident solar radiation and the thermal emission to space from the Earth's atmosphere and surface. Certain atmospheric gases, most importantly H2 O vapour and CO2 , can absorb some of the Earth's emitted IR radiation and trap it in the atmosphere to provide an atmospheric greenhouse effect that currently adds about 38 K to the Earth's mean surface temperature. The associated greenhouse gas (GHG) and water cycles are a complex balance of interactions among surface ecosystems and atmospheric processes. The natural water and carbon cycles are being measurably disrupted by anthropogenic activities. Since the industrial revolution, significant anthropogenic sources of greenhouse gases and aerosols have evolved, while natural sinks, such as forests and wetlands, are being destroyed. Changes in the land cover affect the balance of GHG sources and sinks, as well as the Albedo and resultant surface temperature. Water vapour, the most abundant GHG, is affected indirectly though the influence of aerosols on cloud formation and precipitation patterns, and directly through the influence of surface temperatures on the water evaporation rates. There is also positive feedback between the water and carbon cycles. For example, drought can result in desertification with subsequent release of stored carbon. It is clear that the common thread in all of these climate-related effects is the interaction between the surface ecosystems and the carbonand nitrogen-containing gases in the lower troposphere. Uptake of CO2 by growing vegetation, release of CH4 and N2 O by soil processes, and the effects of carbon and water cycle chemistry all interact strongly in a system that is both ex-tremely complex and poorly understood at the present time. In order to quantify these processes and provide a clearer prediction of their likely effects in the

  8. An Integrated Approach to Modeling Solar Electric Propulsion Vehicles During Long Duration, Near-Earth Orbit Transfers

    Science.gov (United States)

    Smith, David A.; Hojnicki, Jeffrey S.; Sjauw, Waldy K.

    2014-01-01

    Recent NASA interest in utilizing solar electronic propulsion (SEP) technology to transfer payloads, e.g. from low-Earth orbit (LEO) to higher energy geostationary-Earth orbit (GEO) or to Earth escape, has necessitated the development of high fidelity SEP vehicle models and simulations. These models and simulations need to be capable of capturing vehicle dynamics and sub-system interactions experienced during the transfer trajectories which are typically accomplished with continuous-burn (potentially interrupted by solar eclipse), long duration "spiral out" maneuvers taking several months or more to complete. This paper presents details of an integrated simulation approach achieved by combining a high fidelity vehicle simulation code with a detailed solar array model. The combined simulation tool gives researchers the functionality to study the integrated effects of various vehicle sub-systems (e.g. vehicle guidance, navigation and control (GN&C), electric propulsion system (EP)) with time varying power production. Results from a simulation model of a vehicle with a 50 kW class SEP system using the integrated tool are presented and compared to the results from another simulation model employing a 50 kW end-of-life (EOL) fixed power level assumption. These models simulate a vehicle under three degree of freedom dynamics (i.e. translational dynamics only) and include the effects of a targeting guidance algorithm (providing a "near optimal" transfer) during a LEO to near Earth escape (C (sub 3) = -2.0 km (sup 2) / sec (sup -2) spiral trajectory. The presented results include the impact of the fully integrated, time-varying solar array model (e.g. cumulative array degradation from traversing the Van Allen belts, impact of solar eclipses on the vehicle and the related temperature responses in the solar arrays due to operating in the Earth's thermal environment, high fidelity array power module, etc.); these are used to assess the impact on vehicle performance (i

  9. Enhancement of Cerenkov luminescence imaging by dual excitation of Er(3+),Yb(3+)-doped rare-earth microparticles.

    Science.gov (United States)

    Ma, Xiaowei; Kang, Fei; Xu, Feng; Feng, Ailing; Zhao, Ying; Lu, Tianjian; Yang, Weidong; Wang, Zhe; Lin, Min; Wang, Jing

    2013-01-01

    Cerenkov luminescence imaging (CLI) has been successfully utilized in various fields of preclinical studies; however, CLI is challenging due to its weak luminescent intensity and insufficient penetration capability. Here, we report the design and synthesis of a type of rare-earth microparticles (REMPs), which can be dually excited by Cerenkov luminescence (CL) resulting from the decay of radionuclides to enhance CLI in terms of intensity and penetration. Yb(3+)- and Er(3+)- codoped hexagonal NaYF4 hollow microtubes were synthesized via a hydrothermal route. The phase, morphology, and emission spectrum were confirmed for these REMPs by power X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectrophotometry, respectively. A commercial CCD camera equipped with a series of optical filters was employed to quantify the intensity and spectrum of CLI from radionuclides. The enhancement of penetration was investigated by imaging studies of nylon phantoms and nude mouse pseudotumor models. the REMPs could be dually excited by CL at the wavelengths of 520 and 980 nm, and the emission peaks overlaid at 660 nm. This strategy approximately doubled the overall detectable intensity of CLI and extended its maximum penetration in nylon phantoms from 5 to 15 mm. The penetration study in living animals yielded similar results. this study demonstrated that CL can dually excite REMPs and that the overlaid emissions in the range of 660 nm could significantly enhance the penetration and intensity of CL. The proposed enhanced CLI strategy may have promising applications in the future.

  10. Enhancement of Cerenkov luminescence imaging by dual excitation of Er(3+,Yb(3+-doped rare-earth microparticles.

    Directory of Open Access Journals (Sweden)

    Xiaowei Ma

    Full Text Available Cerenkov luminescence imaging (CLI has been successfully utilized in various fields of preclinical studies; however, CLI is challenging due to its weak luminescent intensity and insufficient penetration capability. Here, we report the design and synthesis of a type of rare-earth microparticles (REMPs, which can be dually excited by Cerenkov luminescence (CL resulting from the decay of radionuclides to enhance CLI in terms of intensity and penetration.Yb(3+- and Er(3+- codoped hexagonal NaYF4 hollow microtubes were synthesized via a hydrothermal route. The phase, morphology, and emission spectrum were confirmed for these REMPs by power X-ray diffraction (XRD, scanning electron microscopy (SEM, and spectrophotometry, respectively. A commercial CCD camera equipped with a series of optical filters was employed to quantify the intensity and spectrum of CLI from radionuclides. The enhancement of penetration was investigated by imaging studies of nylon phantoms and nude mouse pseudotumor models.the REMPs could be dually excited by CL at the wavelengths of 520 and 980 nm, and the emission peaks overlaid at 660 nm. This strategy approximately doubled the overall detectable intensity of CLI and extended its maximum penetration in nylon phantoms from 5 to 15 mm. The penetration study in living animals yielded similar results.this study demonstrated that CL can dually excite REMPs and that the overlaid emissions in the range of 660 nm could significantly enhance the penetration and intensity of CL. The proposed enhanced CLI strategy may have promising applications in the future.

  11. Extreme relativistic electron fluxes in the Earth's outer radiation belt: Analysis of INTEGRAL IREM data

    Science.gov (United States)

    Meredith, Nigel P.; Horne, Richard B.; Sandberg, Ingmar; Papadimitriou, Constantinos; Evans, Hugh D. R.

    2017-07-01

    Relativistic electrons (E > 500 keV) cause internal charging and are an important space weather hazard. To assess the vulnerability of the satellite fleet to these so-called "killer" electrons, it is essential to estimate reasonable worst cases, and, in particular, to estimate the flux levels that may be reached once in 10 and once in 100 years. In this study we perform an extreme value analysis of the relativistic electron fluxes in the Earth's outer radiation belt as a function of energy and L∗. We use data from the Radiation Environment Monitor (IREM) on board the International Gamma Ray Astrophysical Laboratory (INTEGRAL) spacecraft from 17 October 2002 to 31 December 2016. The 1 in 10 year flux at L∗=4.5, representative of equatorial medium Earth orbit, decreases with increasing energy ranging from 1.36 × 107 cm-2 s-1 sr-1 MeV-1 at E = 0.69 MeV to 5.34 × 105 cm-2 s-1 sr-1 MeV-1 at E = 2.05 MeV. The 1 in 100 year flux at L∗=4.5 is generally a factor of 1.1 to 1.2 larger than the corresponding 1 in 10 year flux. The 1 in 10 year flux at L∗=6.0, representative of geosynchronous orbit, decreases with increasing energy ranging from 4.35 × 106 cm-2 s-1 sr-1 MeV-1 at E = 0.69 MeV to 1.16 × 105 cm-2 s-1 sr-1 MeV-1 at E = 2.05 MeV. The 1 in 100 year flux at L∗=6.0 is generally a factor of 1.1 to 1.4 larger than the corresponding 1 in 10 year flux. The ratio of the 1 in 10 year flux at L∗=4.5 to that at L∗=6.0 increases with increasing energy ranging from 3.1 at E = 0.69 MeV to 4.6 at E = 2.05 MeV.

  12. Integration of an Earth-Based Science Team During Human Exploration of Mars

    Science.gov (United States)

    Chappell, Steven P.; Beaton, Kara H.; Newton, Carolyn; Graff, Trevor G.; Young, Kelsey E.; Coan, David; Abercromby, Andrew F. J.; Gernhardt, Michael L.

    2017-01-01

    NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. A mission was undertaken in 2016, NEEMO 21, at the Aquarius undersea research habitat. During the mission, the effects of varied oper-ations concepts with representative communication latencies as-sociated with Mars missions were studied. Six subjects were weighed out to simulate partial gravity and evaluated different operations concepts for integration and management of a simulated Earth-based science team (ST) who provided input and direction during exploration activities. Exploration traverses were planned in advance based on precursor data collected. Subjects completed science-related tasks including presampling surveys and marine-science-based sampling during saturation dives up to 4 hours in duration that simulated extravehicular activity (EVA) on Mars. A communication latency of 15 minutes in each direction between space and ground was simulated throughout the EVAs. Objective data included task completion times, total EVA time, crew idle time, translation time, ST assimilation time (defined as time available for the science team to discuss, to review and act upon data/imagery after they have been collected and transmitted to the ground). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. In addition, comments from both the crew and the ST were captured during the post-mission debrief. Here, we focus on the acceptability of the operations concepts studied and the capabilities most enhancing or enabling in the operations concept. The importance and challenges of designing EVA time-lines to account for the length of the task, level of interaction with the ground that is required/desired, and communication latency, are discussed.

  13. Carbon Observations from Geostationary Earth Orbit as Part of an Integrated Observing System for Atmospheric Composition

    Science.gov (United States)

    Edwards, D. P.

    2015-12-01

    This presentation describes proposed satellite carbon measurements from the CHRONOS mission. The primary goal of this experiment is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. CHRONOS observations would provide measurements not currently available or planned as part of a surface, suborbital and satellite integrated observing system for atmospheric composition over North America. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution, and CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth

  14. Thermochemistry of rare earth doped uranium oxides Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} (Ln = La, Y, Nd)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Navrotsky, Alexandra, E-mail: anavrotsky@ucdavis.edu

    2015-10-15

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10–50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO{sub 1.5}, UO{sub 2} and UO{sub 3} in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} is similar to that of UO{sub 2} to UO{sub 3} for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U{sup 5+}, U{sup 6+}, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements. - Highlights: • We synthesize, characterize Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} solid solutions (Ln = La, Y, Nd). • Formation enthalpies become more exothermic with increasing rare earth content. • Oxidation enthalpy of Ln{sub x}U{sub 1−x}O{sub 2−0.5x+y} is similar to that of UO{sub 2} to UO{sub 3}. • Direct calorimetric measurements are in good agreement with free energy data.

  15. A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface.

    Science.gov (United States)

    Toledano, Manuel; Sauro, Salvatore; Cabello, Inmaculada; Watson, Timothy; Osorio, Raquel

    2013-08-01

    The objective of the study was to determine if zinc-doped etch-and-rinse dentin adhesive may induce therapeutic effects within the resin-dentin interface. Human acid-etched dentin was infiltrated with Adper™ Single Bond Plus (SB, 3M ESPE, St. Paul, MN, USA), SB doped with 10wt.% ZnO nanoparticles (ZnO-SB) or SB doped with 2wt.% ZnCl2 (ZnCl2-SB). AFM/nanoindentation analysis was performed on fully hydrated specimens to evaluate the nanomechanical properties (Hi: hardness; Ei: modulus of elasticity) across the resin-dentin interface after different SBF storage periods (24h, 1m, 3m). Confocal laser microscopy (CLSM) was used to evaluate the ultramorphology and micropermeability at 24h and 3m of SBF storage. SB control specimens exhibited a decrease in Hi in the hybrid layer (HL) and bottom of the hybrid layer (BHL) and a decrease in Ei in the HL after 3m of SBF storage, indicating that severe degradation occurred in the control interface. ZnO-SB bonded specimens preserved the initial Hi and Ei at the HL and BHL subsequent SBF storage; ZnCl2-SB bonded specimens showed a decrease in Ei, in the HL over time. CLSM analysis confirmed that both Zn-doped adhesives were able to preserve the integrity of the HL. Specific formulation of Zn-doped etch-and-rinse adhesives may offer the possibility to maintain the nano-mechanical properties along the dentin-bonded interface by inhibiting dentin MMPs and by protective mineral crystals formation within the resin-dentin interface. Clinical advantages may be expected by preserving and improving the integrity of the hybrid layer when Zn-doped adhesives are employed. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Luminescence properties of B{sub 2}O{sub 3}–GeO{sub 2}–Gd{sub 2}O{sub 3} scintillating glass doped with rare-earth and transition-metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xin-Yuan, E-mail: sxy5306@126.com [Department of Physics, Jinggangshan University, Ji’an 343009 (China); Jiang, Da-Guo; Wang, Wen-Feng; Cao, Chun-Yan; Li, Yu-Nong; Zhen, Guo-Tai [Department of Physics, Jinggangshan University, Ji’an 343009 (China); Wang, Hong; Yang, Xin-Xin; Chen, Hao-Hong; Zhang, Zhi-Jun [Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhao, Jing-Tai, E-mail: jtzhao@mail.sic.ac.cn [Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-07-11

    Novel B{sub 2}O{sub 3}–GeO{sub 2}–Gd{sub 2}O{sub 3} ternary scintillating glasses doped with 1 mol% rare-earth and transition-metal activators were synthesized by melt-quenching method. Their transmittance, photoluminescence (PL) and X-ray excited luminescence (XEL) spectra were investigated. The results suggest that a high content of Gd{sub 2}O{sub 3} is of significance for designing dense glass with density of 6.0 g/cm{sup 3}. And energy transfer from Gd{sup 3+} to the incorporated activators can be realized in the borogermanate glasses. The emission position and decay time can be efficiently tuned by incorporating various kinds of activators. All results imply the developed borogermanate scintillating glass is potential for scintillating fields. -- Highlights: • Glass-forming region of B{sub 2}O{sub 3}–GeO{sub 2}–Gd{sub 2}O{sub 3} ternary system are determined. • Radioluminescence response from transition-metal doped B{sub 2}O{sub 3}–GeO{sub 2}–Gd{sub 2}O{sub 3} glasses. • Radioluminescence response from rare-earth doped B{sub 2}O{sub 3}–GeO{sub 2}–Gd{sub 2}O{sub 3} glasses. • Emission peak position and decay time can be tuneable by incorporating various activators.

  17. An integrated study of earth resources in the state of California using remote sensing techniques. [water and forest management

    Science.gov (United States)

    Colwell, R. N.

    1974-01-01

    Progress and results of an integrated study of California's water resources are discussed. The investigation concerns itself primarily with the usefulness of remote sensing of relation to two categories of problems: (1) water supply; and (2) water demand. Also considered are its applicability to forest management and timber inventory. The cost effectiveness and utility of remote sensors such as the Earth Resources Technology Satellite for water and timber management are presented.

  18. Multidisciplinary integrated field campaign to an acidic Martian Earth analogue with astrobiological interest: Rio Tinto

    Czech Academy of Sciences Publication Activity Database

    Gómez, F.; Walter, N.; Amils, R.; Rull, F.; Klingelhöfer, G.; Kvíderová, Jana; Sarrazin, P.; Foing, B.; Behar, A.; Fleischer, I.; Parro, V.; Garcia-Villadangos, M.; Blake, D.; Martin-Ramos, J. D.; Direito, S.; Mahapatra, P.; Stam, C.; Venkateswaran, K.; Voytek, M.

    2011-01-01

    Roč. 10, č. 3 (2011), 291-305 ISSN 1473-5504 Institutional research plan: CEZ:AV0Z60050516 Keywords : astrobiology * extreme environments * Earth analogue Subject RIV: EF - Botanics Impact factor: 1.723, year: 2011

  19. 2.0 μm emission of Ho3+ doped germanosilicate glass sensitized by non-rare-earth ion Bi: A new choice for 2.0 μm laser

    Science.gov (United States)

    Cao, Wenqian; Huang, Feifei; Wang, Tao; Ye, Renguang; Lei, Ruoshan; Tian, Ying; Zhang, Junjie; Xu, Shiqing

    2018-01-01

    Non-rare-earth Bi was firstly used as sensitizer on Ho3+: 2.0 μm emission for its mid-infrared applications in successfully prepared germanosilicate glass under 808 nm excitation. Sensitization mechanism has been analyzed theoretically through matched energy transfer processes based on the measured absorption, fluorescence spectra and calculated luminous parameters. Meanwhile, typical broadband near-infrared (NIR) emission band of Bi ions has also been obtained in present germanosilicate glass, which shifts to a longer wavelength with Ho3+ co-doped owing to the different of Bi-related active centers. X-ray Photoelectron Spectroscopy demonstrated that the addition of Ho3+ lead to the part valence conversion among the mixed-valence state of Bi. All results reveal that Bi/Ho co-doped germanosilicate glass might provide a new choice for 2.0 μm laser applications.

  20. Space-Based Sensor Web for Earth Science Applications: An Integrated Architecture for Providing Societal Benefits

    Science.gov (United States)

    Habib, Shahid; Talabac, Stephen J.

    2004-01-01

    There is a significant interest in the Earth Science research and user remote sensing community to substantially increase the number of useful observations relative to the current frequency of collection. The obvious reason for such a push is to improve the temporal, spectral, and spatial coverage of the area(s) under investigation. However, there is little analysis available in terms of the benefits, costs and the optimal set of sensors needed to make the necessary observations. Classic observing system solutions may no longer be applicable because of their point design philosophy. Instead, a new intelligent data collection system paradigm employing both reactive and proactive measurement strategies with adaptability to the dynamics of the phenomena should be developed. This is a complex problem that should be carefully studied and balanced across various boundaries including: science, modeling, applications, and technology. Modeling plays a crucial role in making useful predictions about naturally occurring or human-induced phenomena In particular, modeling can serve to mitigate the potentially deleterious impacts a phenomenon may have on human life, property, and the economy. This is especially significant when one is interested in learning about the dynamics of, for example, the spread of forest fires, regional to large-scale air quality issues, the spread of the harmful invasive species, or the atmospheric transport of volcanic plumes and ash. This paper identifies and examines these challenging issues and presents architectural alternatives for an integrated sensor web to provide observing scenarios driving the requisite dynamic spatial, spectral, and temporal characteristics to address these key application areas. A special emphasis is placed on the observing systems and its operational aspects in serving the multiple users and stakeholders in providing societal benefits. We also address how such systems will take advantage of technological advancement in

  1. Empowering Rural Appalachian Youth Through Integrated Inquiry-based Earth Science

    Science.gov (United States)

    Cartwright, T. J.; Hogsett, M.

    2009-05-01

    Science education must be relevant and inspiring to keep students engaged and receptive to learning. Reports suggest that science education reform can be advanced by involving students in active research (NSF 1996). Through a 2-year Geoscience Education award from the National Science Foundation, a program called IDGE (Integrated Design for Geoscience Education) has targeted low-income, under-represented, and minority high school students in rural Appalachia in inquiry-based projects, international collaboration, and an international environmental expedition incorporating the GLOBE program protocols. This program targeted Upward Bound students at Marshall University in Huntington, West Virginia. The Upward Bound is a federally-supported program targeting low-income, under-represented, and minority students for inclusion in a summer academic- enrichment program. IDGE builds on the mission of Upward Bound by encouraging underprivileged students to investigate science and scientific careers. This outreach has proven to be successful in enhancing positive attitudes and understanding about science and increasing the number of students considering science careers. IDGE has found that students must be challenged to observe the world around them and to consider how their decisions affect the future of our planet, thus making geoscience relevant and interesting to the students. By making the geoscience course inquiry-based and incorporating field research that is relevant to local environmental issues, it becomes possible for students to bridge the gap between science in theory and science in practice while remaining engaged. Participants were able to broaden environmental connections through an ecological expedition experience to Costa Rica, serving as an opportunity to broaden the vision of students as members of an international community of learners and scientists through their experiences with a diverse natural environment. This trip, in coordination with the inclusion

  2. Current Development Status of an Integrated Tool for Modeling Quasi-static Deformation in the Solid Earth

    Science.gov (United States)

    Williams, C. A.; Dicaprio, C.; Simons, M.

    2003-12-01

    With the advent of projects such as the Plate Boundary Observatory and future InSAR missions, spatially dense geodetic data of high quality will provide an increasingly detailed picture of the movement of the earth's surface. To interpret such information, powerful and easily accessible modeling tools are required. We are presently developing such a tool that we feel will meet many of the needs for evaluating quasi-static earth deformation. As a starting point, we begin with a modified version of the finite element code TECTON, which has been specifically designed to solve tectonic problems involving faulting and viscoelastic/plastic earth behavior. As our first priority, we are integrating the code into the GeoFramework, which is an extension of the Python-based Pyre modeling framework. The goal of this framework is to provide simplified user interfaces for powerful modeling codes, to provide easy access to utilities such as meshers and visualization tools, and to provide a tight integration between different modeling tools so they can interact with each other. The initial integration of the code into this framework is essentially complete, and a more thorough integration, where Python-based drivers control the entire solution, will be completed in the near future. We have an evolving set of priorities that we expect to solidify as we receive more input from the modeling community. Current priorities include the development of linear and quadratic tetrahedral elements, the development of a parallelized version of the code using the PETSc libraries, the addition of more complex rheologies, realistic fault friction models, adaptive time stepping, and spherical geometries. In this presentation we describe current progress toward our various priorities, briefly describe the structure of the code within the GeoFramework, and demonstrate some sample applications.

  3. Luminescence and photo-thermally stimulated defects creation processes in PbWO{sub 4} crystals doped with trivalent rare-earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Fabeni, P. [Institute of Applied Physics “N.Carrara” (IFAC) of CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Krasnikov, A.; Kärner, T. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Laguta, V.V.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Pazzi, G.P. [Institute of Applied Physics “N.Carrara” (IFAC) of CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Firenze) (Italy); Zazubovich, S., E-mail: svet@fi.tartu.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2013-04-15

    In PbWO{sub 4} crystals, doped with various trivalent rare-earth A{sup 3+} ions (A{sup 3+}: La{sup 3+}, Lu{sup 3+}, Y{sup 3+}, Ce{sup 3+}, Gd{sup 3+}), electron (WO{sub 4}){sup 3−} and {(WO_4)"3"−–A"3"+} centers can be created under UV irradiation not only in the host absorption region but also in the energy range around 3.85 eV (Böhm et al., 1999; Krasnikov et al., 2010). Under excitation in the same energy range, the UV emission peak at 3.05–3.20 eV is observed. In the present work, the origin of this emission is investigated in detail by low-temperature time-resolved luminescence methods. Photo-thermally stimulated creation of (WO{sub 4}){sup 3−} and {(WO_4)"3"−–A"3"+} centers is studied also in PbWO{sub 4}:Mo,A{sup 3+} crystals. Various processes, which could explain both the appearance of the UV emission and the creation of the {(WO_4)"3"−–A"3"+}-type centers under irradiation of PbWO{sub 4}: A{sup 3+} crystals in the 3.85±0.35 eV energy range, are discussed. The radiative and non-radiative decay of the excitons localized near A{sup 3+} ions is considered as the most probable mechanism to explain the observed features. -- Highlights: ► UV emission of PbWO{sub 4}: A{sup 3+} (A{sup 3+}: La{sup 3+}, Lu{sup 3+}, Y{sup 3+}, Ce{sup 3+}, and Gd{sup 3+}) crystals is studied. ► The emission is ascribed to the radiative decay of excitons localized near A{sup 3+} ions. ► The excitons are created at 3.85 eV excitation by a two-step process. ► Non-radiative decay of the excitons leads to the creation of (WO{sub 4}){sup 3−}–A{sup 3+} centers.

  4. Mechanism of luminescent emission in BaY{sub 2}F{sub 8} scintillators doped with rare earths; Mecanismos de emissao luminescente nos cintiladores de BaY{sub 2}F{sub 8} dopado com terras raras

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Ana Carolina de Mello

    2013-07-01

    weak. The combined results obtained with these techniques together with an analysis of X-ray absorption spectroscopy (XAS) and X-rays Excited Optical Luminescence (XEOL) allowed the development of a model for the scintillation mechanism for the rare earth doped BaYF systems. (author)

  5. Path Integral Monte Carlo Study Confirms a Highly Ordered Snowball in 4He Nanodroplets Doped with an Ar+ Ion

    Science.gov (United States)

    Tramonto, F.; Salvestrini, P.; Nava, M.; Galli, D. E.

    2015-07-01

    By means of the Path Integral Monte Carlo method, we have performed a detailed microscopic study of 4He nanodroplets doped with an argon ion, Ar, at K. We have computed density profiles, energies, dissociation energies, and characterized the local order around the ion for nanodroplets with a number of 4He atoms ranging from 10 to 64 and also 128. We have found the formation of a stable solid structure around the ion, a "snowball", consisting of three concentric shells in which the 4He atoms are placed at the vertices of platonic solids: the first inner shell is an icosahedron (12 atoms); the second one is a dodecahedron with 20 atoms placed on the faces of the icosahedron of the first shell; the third shell is again an icosahedron composed of 12 atoms placed on the faces of the dodecahedron of the second shell. The "magic numbers" implied by this structure, 12, 32, and 44 helium atoms, have been observed in a recent experimental study (Bartl et al., J Phys Chem A 118:8050, 2014) of these complexes; the dissociation energy curve computed in the present work shows jumps in correspondence with those found in the nanodroplets abundance distribution measured in that experiment, strengthening the agreement between theory and experiment. The same structures were predicted in Galli et al. (J Phys Chem A 115:7300, 2011) in a study regarding Na+@4He when ; a comparison between Ar+@4He and Na+@4He complexes is also presented.

  6. Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide

    Science.gov (United States)

    Ekström, Mattias; Khartsev, Sergiy; Östling, Mikael; Zetterling, Carl-Mikael

    2017-07-01

    4H-SiC electronics can operate at high temperature (HT), e.g., 300°C to 500°C, for extended times. Systems using sensors and amplifiers that operate at HT would benefit from microcontrollers which can also operate at HT. Microcontrollers require nonvolatile memory (NVM) for computer programs. In this work, we demonstrate the possibility of integrating ferroelectric vanadium-doped bismuth titanate (BiTV) thin films on 4H-SiC for HT memory applications, with BiTV ferroelectric capacitors providing memory functionality. Film deposition was achieved by laser ablation on Pt (111)/TiO2/4H-SiC substrates, with magnetron-sputtered Pt used as bottom electrode and thermally evaporated Au as upper contacts. Film characterization by x-ray diffraction analysis revealed predominately (117) orientation. P- E hysteresis loops measured at room temperature showed maximum 2 P r of 48 μC/cm2, large enough for wide read margins. P- E loops were measurable up to 450°C, with losses limiting measurements above 450°C. The phase-transition temperature was determined to be about 660°C from the discontinuity in dielectric permittivity, close to what is achieved for ceramics. These BiTV ferroelectric capacitors demonstrate potential for use in HT NVM applications for SiC digital electronics.

  7. Learning about the Earth through Societally-relevant Interdisciplinary Research Projects: the Honours Integrated Science Program at McMaster

    Science.gov (United States)

    Eyles, C.; Symons, S. L.; Harvey, C. T.

    2016-12-01

    Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.

  8. Use of Persistent Identifiers to link Heterogeneous Data Systems in the Integrated Earth Data Applications (IEDA) Facility

    Science.gov (United States)

    Hsu, L.; Lehnert, K. A.; Carbotte, S. M.; Arko, R. A.; Ferrini, V.; O'hara, S. H.; Walker, J. D.

    2012-12-01

    The Integrated Earth Data Applications (IEDA) facility maintains multiple data systems with a wide range of solid earth data types from the marine, terrestrial, and polar environments. Examples of the different data types include syntheses of ultra-high resolution seafloor bathymetry collected on large collaborative cruises and analytical geochemistry measurements collected by single investigators in small, unique projects. These different data types have historically been channeled into separate, discipline-specific databases with search and retrieval tailored for the specific data type. However, a current major goal is to integrate data from different systems to allow interdisciplinary data discovery and scientific analysis. To increase discovery and access across these heterogeneous systems, IEDA employs several unique IDs, including sample IDs (International Geo Sample Number, IGSN), person IDs (GeoPass ID), funding award IDs (NSF Award Number), cruise IDs (from the Marine Geoscience Data System Expedition Metadata Catalog), dataset IDs (DOIs), and publication IDs (DOIs). These IDs allow linking of a sample registry (System for Earth SAmple Registration), data libraries and repositories (e.g. Geochemical Research Library, Marine Geoscience Data System), integrated synthesis databases (e.g. EarthChem Portal, PetDB), and investigator services (IEDA Data Compliance Tool). The linked systems allow efficient discovery of related data across different levels of granularity. In addition, IEDA data systems maintain links with several external data systems, including digital journal publishers. Links have been established between the EarthChem Portal and ScienceDirect through publication DOIs, returning sample-level objects and geochemical analyses for a particular publication. Linking IEDA-hosted data to digital publications with IGSNs at the sample level and with IEDA-allocated dataset DOIs are under development. As an example, an individual investigator could sign up

  9. Coupled Data Assimilation for Integrated Earth System Analysis and Prediction: Goals, Challenges, and Recommendations

    Science.gov (United States)

    Penny, Stephen G.; Akella, Santha; Buehner, Mark; Chevallier, Matthieu; Counillon, Francois; Draper, Clara; Frolov, Sergey; Fujii, Yosuke; Karspeck, Alicia; Kumar, Arun

    2017-01-01

    The purpose of this report is to identify fundamental issues for coupled data assimilation (CDA), such as gaps in science and limitations in forecasting systems, in order to provide guidance to the World Meteorological Organization (WMO) on how to facilitate more rapid progress internationally. Coupled Earth system modeling provides the opportunity to extend skillful atmospheric forecasts beyond the traditional two-week barrier by extracting skill from low-frequency state components such as the land, ocean, and sea ice. More generally, coupled models are needed to support seamless prediction systems that span timescales from weather, subseasonal to seasonal (S2S), multiyear, and decadal. Therefore, initialization methods are needed for coupled Earth system models, either applied to each individual component (called Weakly Coupled Data Assimilation - WCDA) or applied the coupled Earth system model as a whole (called Strongly Coupled Data Assimilation - SCDA). Using CDA, in which model forecasts and potentially the state estimation are performed jointly, each model domain benefits from observations in other domains either directly using error covariance information known at the time of the analysis (SCDA), or indirectly through flux interactions at the model boundaries (WCDA). Because the non-atmospheric domains are generally under-observed compared to the atmosphere, CDA provides a significant advantage over single-domain analyses. Next, we provide a synopsis of goals, challenges, and recommendations to advance CDA: Goals: (a) Extend predictive skill beyond the current capability of NWP (e.g. as demonstrated by improving forecast skill scores), (b) produce physically consistent initial conditions for coupled numerical prediction systems and reanalyses (including consistent fluxes at the domain interfaces), (c) make best use of existing observations by allowing observations from each domain to influence and improve the full earth system analysis, (d) develop a robust

  10. Global Sediment Modeling from an Integrated Earth-Human System Perspective

    Science.gov (United States)

    Li, H. Y.; Tan, Z.; Leung, L. R.

    2016-12-01

    Sediment transportation in river network plays a pivotal role in linking land use and land cover, topography, and geology in headwater catchments to biogeochemistry in large rivers and reservoirs, and cascading to the ocean. However, most existing earth system models lack representations of sediment transportation in rivers. To fill this gap, a physically-based large-scale sediment transportation module is being developed within the framework of Model for Scale Adaptive River Transport (MOSART) used in earth system models. This new module consists of three major components: 1) a soil erosion process representation; 2) a riverine transport and transform process representation; and 3) a simple parameterization of reservoir trapping effect on sediment. The simulated sediment will be evaluated against sediment observations at the global scale. The model will be used to explore the effects of reservoir regulation on the global sediment budget and the inter- and intra-annual variations of sediment fluxes.

  11. Formation of an integrated holding company to produce rare-earth metal articles

    Science.gov (United States)

    Bogdanov, S. V.; Grishaev, S. I.

    2013-12-01

    The possibility of formation of a Russian holding company for the production of rare-earth metal articles under conditions of its increasing demand on the world market is considered. It is reasonable to ensure stable business operation on the market under conditions of state-private partnership after the fraction of soled products is determined and supported by the competitive advantages of Russian products.

  12. Integrated silicon nanowire diodes and the effects of gold doping from the growth catalyst

    Science.gov (United States)

    Jackson, Justin B.; Kapoor, Divesh; Jun, Sun-Gon; Miller, Mark S.

    2007-09-01

    We report on integrated, silicon single-nanowire diodes. Gold catalyst templates, defined by lithography, controlled the location of nanowires grown with a vapor-liquid-solid mechanism. The nanowire growth, by atmospheric-pressure chemical vapor deposition, used SiCl4 diluted in H2 on (100) n-type silicon substrates. Postgrowth oxidation and wet etching reduced the nanowire diameters and removed unintentional small diameter nanowires. Spin-on glass isolated the nanowire tips from the substrate, which were then contacted with aluminum. Current-voltage measurements show rectification and ideality factors consistent with pn junction diodes. However, the gold catalyzed nanowires have much higher than expected hole concentrations that cannot be explained by behaviors reported for gold diffused into silicon.

  13. Vacuum ultraviolet spectroscopic properties of rare earth (RE=Ce,Tb,Eu,Tm,Sm)-doped hexagonal KCaGd(PO4)2 phosphate

    Science.gov (United States)

    Zhang, Z. J.; Yuan, J. L.; Duan, C. J.; Xiong, D. B.; Chen, H. H.; Zhao, J. T.; Zhang, G. B.; Shi, C. S.

    2007-11-01

    Hexagonal KCaGd(PO4)2:RE3+ (RE =Ce,Tb,Eu,Tm,Sm) were synthesized by coprecipitation method and their vacuum ultraviolet-ultraviolet (VUV-UV) spectroscopic properties were investigated. The bands at about 165nm in the VUV excitation spectra are attributed to the host lattice absorptions. For Ce3+-doped samples, the bands at 207, 256, 275, and 320nm are assigned to the 4f-5d transitions of Ce3+ in KCaGd(PO4)2. For Tb3+-doped sample, the bands at 203 and 222nm are related to the 4f-5d spin-allowed transitions. For Eu3+-doped sample, the O2--Eu3+ charge-transfer band (CTB) at 229nm is observed, and the fine emission spectrum of Eu3+ indicates that Eu3+ ions prefer to occupy Gd3+ or Ca2+ sites in the host lattice. For Tm3+- and Sm3+-doped samples, the O2--Tm3+ and O2--Sm3+ CTBs are observed to be at 176 and 186nm, respectively. From the standpoints of the absorption band, color purity, and luminescent intensity, Tb3+-doped KCaGd(PO4)2 is a potential candidate for 172nm excited green plasma display phosphors.

  14. Integrated Earth Science Research in Deep Underground Science and Engineering Laboratories

    Science.gov (United States)

    Wang, J. S.; Hazen, T. C.; Conrad, M. E.; Johnson, L. R.; Salve, R.

    2004-12-01

    There are three types of sites being considered for deep-underground earth science and physics experiments: (1) abandoned mines (e.g., the Homestake Gold Mine, South Dakota; the Soudan Iron Mine, Minnesota), (2) active mines/facilities (e.g., the Henderson Molybdenum Mine, Colorado; the Kimballton Limestone Mine, Virginia; the Waste Isolation Pilot Plant [in salt], New Mexico), and (3) new tunnels (e.g., Icicle Creek in the Cascades, Washington; Mt. San Jacinto, California). Additional sites have been considered in the geologically unique region of southeastern California and southwestern Nevada, which has both very high mountain peaks and the lowest point in the United States (Death Valley). Telescope Peak (along the western border of Death Valley), Boundary Peak (along the California-Nevada border), Mt. Charleston (outside Las Vegas), and Mt. Tom (along the Pine Creek Valley) all have favorable characteristics for consideration. Telescope Peak can site the deepest laboratory in the United States. The Mt. Charleston tunnel can be a highway extension connecting Las Vegas to Pahrump. The Pine Creek Mine next to Mt. Tom is an abandoned tungsten mine. The lowest levels of the mine are accessible by nearly horizontal tunnels from portals in the mining base camp. Drainage (most noticeable in the springs resulting from snow melt) flows (from the mountain top through upper tunnel complex) out of the access tunnel without the need for pumping. While the underground drifts at Yucca Mountain, Nevada, have not yet been considered (since they are relatively shallow for physics experiments), they have undergone extensive earth science research for nearly 10 years, as the site for future storage of nation's spent nuclear fuels. All these underground sites could accommodate different earth science and physics experiments. Most underground physics experiments require depth to reduce the cosmic-ray-induced muon flux from atmospheric sources. Earth science experiments can be

  15. Synthesis and thermoelectric properties of rare earth Yb-doped Ba{sub 8−x}Yb{sub x}Si{sub 30}Ga{sub 16} clathrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lihua, E-mail: lhliu@ustb.edu.cn [University of Science and Technology Beijing, School of Mathematics and Physics, Department of Physics, Beijing 100083 (China); Li, Feng [University of Science and Technology Beijing, School of Mathematics and Physics, Department of Physics, Beijing 100083 (China); Wei, Yuping; Chen, Ning; Bi, Shanli [University of Science and Technology Beijing, School of Materials Science and Engineering, Beijing 100083 (China); Qiu, Hongmei [University of Science and Technology Beijing, School of Mathematics and Physics, Department of Physics, Beijing 100083 (China); Cao, Guohui [University of Science and Technology Beijing, School of Materials Science and Engineering, Beijing 100083 (China); Li, Yang [University of Science and Technology Beijing, School of Mathematics and Physics, Department of Physics, Beijing 100083 (China); University of Puerto Rico at Mayaguez, Department of Engineering Science and Materials, Mayaguez, PR 00681-9044 (United States)

    2014-03-05

    Highlights: • Samples with the chemical formula Ba8−{sub x}Yb{sub x}Si{sub 30}Ga{sub 16} (x = 0, 0.5, 0.7, 1 and 1.5) were prepared. • Some Yb atoms enter the clathrate lattice to replace Ba, while other Yb atoms are oxidized as Yb{sub 2}O{sub 3}. • The thermal conductivity decreases with Yb-doping. • Thermoelectric figure of merit ZT significantly increased. -- Abstract: The potential thermoelectric and magnetic application of clathrate materials with rare-earth doping is the focus of much of the recent research activity in the synthetic material physics and chemistry. A series of clathrate samples with the chemical formula Ba{sub 8−x}Yb{sub x}Si{sub 30}Ga{sub 16} (x = 0, 0.5, 0.7, 1 and 1.5) were prepared by combining arc melting, ball milling and spark plasma sintering (SPS) techniques. X-ray diffraction and scanning electronic microscopy combined with energy-dispersive X-ray spectroscopy (EDS) analysis showed the dominant phase to be the type-I clathrate. Whereas, X-ray structural refinement and EDS analysis indicated that some Yb atoms enter the clathrate lattice to replace Ba at 2a sites, while other Yb atoms are oxidized as Yb{sub 2}O{sub 3} precipitated around grain boundaries. The solid solubility of Yb into clathrate lattice yielded x ∼ 0.3. Comparative analysis between Yb-doped and Yb-free clathrates showed that the thermal conductivity decreases with Yb-doping. Consequently, thermoelectric figure of merit ZT significantly increased.

  16. Integrating Real-time, Real-world Geoscience Experiences into Classroom Instruction with EarthLabs and the JOIDES Resolution

    Science.gov (United States)

    Mote, A. S.; Lockwood, J.; Ellins, K. K.; Haddad, N.; Cooper, S. K.; Ledley, T. S.

    2013-12-01

    Inspiring the next generation of geoscientists and preparing students for the 21st century workforce requires lifting science outside of the classroom and giving learners the opportunity to think critically about real-world geoscience problems. The EarthLabs suite of climate science modules challenges students with a variety of learning experiences including current scientific data analysis, computer visualizations, satellite imagery, and engaging videos. Each module includes a series of hands-on activities to allow students to explore Earth's complex and dynamic climate history, leading to a deeper understanding of present and future changes to our planet. A new EarthLabs module in development 'Climate Detectives: An Expedition on board the JOIDES Resolution," focuses on Integrated Ocean Drilling Program (IODP) Expedition 341 to Southern Alaska. The module is structured to allow students to work collaboratively, mimicking scientific research groups on the JOIDES Resolution. As students assume the role of a scientist, learn about data collection methods, and analyze authentic data, they learn about the climate history and tectonic processes of the Southern Alaska continental margin, as well as explore the relationship between climate, sedimentation, and tectonics. The Project Based Learning (PBL) approach used in the module teaches students how to analyze data and solve problems like scientists, strengthening the development of higher order thinking skills and preparing them for college coursework. The 'Climate Detectives' Module also provides students with opportunities to interact with scientists through live video conferencing and pre-recorded video presentations by scientists. In this presentation, Expedition 341 Education Officer, Alison Mote, describes the new module, which takes students on an educational journey as they learn about the scientific objectives, methods, and data collection tools scientists use to conduct research on sediment cores retrieved

  17. Thermal response of integral abutment bridges with mechanically stabilized earth walls.

    Science.gov (United States)

    2013-03-01

    The advantages of integral abutment bridges (IABs) include reduced maintenance costs and increased useful life spans. : However, improved procedures are necessary to account for the impacts of cyclic thermal displacements on IAB components, : includi...

  18. Becoming Earth Independent: Human-Automation-Robotics Integration Challenges for Future Space Exploration

    Science.gov (United States)

    Marquez, Jessica J.

    2016-01-01

    Future exploration missions will require NASA to integrate more automation and robotics in order to accomplish mission objectives. This presentation will describe on the future challenges facing the human operator (astronaut, ground controllers) as we increase the amount of automation and robotics in spaceflight operations. It will describe how future exploration missions will have to adapt and evolve in order to deal with more complex missions and communication latencies. This presentation will outline future human-automation-robotic integration challenges.

  19. Integrating Plant Evolution into the Study of Fire in the Earth System

    Science.gov (United States)

    Lehmann, C.; Archibald, S.

    2014-12-01

    20% of the Earth's land surface burns annually representing a critical exchange of energy between the land and atmosphere via combustion. Fires range from small spreading surface fires to intense dramatic crown fire events, depending on the fuels and climate where they burn. Fire is a powerful selective force on plants: over the last 420 million years the plant traits required to tolerate fire, and in some cases to promote particular types of fire regimes have evolved. However, most Earth System studies focus on the links between climate and fire, ignoring the fact that these relationships are mediated by the fuels - by plant structure and function. We argue via multiple lines of evidence that the flammability of an ecosystem is influenced by the vegetation present, and that this vegetation is not a passive outcome of certain climate and fire properties, but is also the result of evolutionary forces, biological and biophysical feedbacks and biogeographic contingencies. Hence, understanding current patterns of fire and vegetation, as well as longer-term patterns of fire over deep time, requires a framework that can incorporate evolution and biogeography, and in particular, plant traits.

  20. On an improved sub-regional water resources management representation for integration into earth system models

    Science.gov (United States)

    Voisin, N.; Li, H.; Ward, D.; Huang, M.; Wigmosta, M.; Leung, L. R.

    2013-09-01

    Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities and predictors (withdrawals vs. consumptive demands, as well as natural vs. regulated mean flow) for configuring operating rules. Overall the best performing implementation is with combined priorities rules (flood control storage targets and irrigation release targets) set up with mean annual natural flow and mean monthly withdrawals. The options of not accounting for groundwater withdrawals, or on the contrary, of assuming that all remaining demand is met through groundwater extractions, are discussed.

  1. Integrated Solid Earth Science: the right place and time to discover the unexpected? (Arthur Holmes Medal Lecture)

    Science.gov (United States)

    Cloetingh, Sierd

    2013-04-01

    -level. Those cycles were detected as a result of the pioneering work on the stratigraphic record of sedimentary basins and continental margins from all over the world by Peter Vail, Bilal Haq and others from Exxon. It was at this time, that sedimentary basins became a frontier in the integration of quantitative geology and geophysics. Sedimentary basins do not only provide a powerful source of information on the evolution of the underlying lithosphere and climate fluctuations, but also contain mankind's main reservoirs of geo-energy and geo-resources. It was Peter Ziegler, head of global geology at Shell International, who was the prime mentor in my somewhat unexpected scientific journey in sedimentary basins. These became the main research target of the Tectonics research group I established in 1988 in Amsterdam. In these years it became increasingly evident that the rheology of the lithosphere exerts a crucial control on the evolution of basins, but also on continental topography. It is on this topic that the cooperation over more than two decades with Evgenii Burov, addressing issues like the rheological structure of Europe's lithosphere, rift shoulder uplift and the interplay of lithospheric folding and mantle-lithosphere interactions, has, been very fruitful. Another unexpected milestone has been the opportunity to build up, parallel to the research efforts in field studies and numerical modeling, an analogue tectonic laboratory in our group. This brings me to another issue, also completely unforeseen: the integration of earth science in Europe, particularly taking off after the disappearance of the Iron Curtain. For my group, the latter marked the beginning of a very fruitful cooperation in particular with the groups of Frank Horvath in Budapest and Cornel Dinu in Bucharest, addressing the fascinating solid Earth dynamics of the Carpathians and Pannonian basin. Over the last few years, it has been become evident that integration in the solid earth science is the way to

  2. TIGER-NET – enabling an Earth Observation capacity for Integrated Water Resource Management in Africa

    DEFF Research Database (Denmark)

    Walli, A.; Tøttrup, C.; Naeimi, V.

    As part of the TIGER initiative [1] the TIGER-NET project aims to support the assessment and monitoring of water resources from watershed to transboundary basin level delivering indispensable information for Integrated Water Resource Management in Africa through: 1. Development of an open-source ...

  3. Integrating iPad Technology in Earth Science K-12 Outreach Courses: Field and Classroom Applications

    Science.gov (United States)

    Wallace, Davin J.; Witus, Alexandra E.

    2013-01-01

    Incorporating technology into courses is becoming a common practice in universities. However, in the geosciences, it is difficult to find technology that can easily be transferred between classroom- and field-based settings. The iPad is ideally suited to bridge this gap. Here, we fully integrate the iPad as an educational tool into two…

  4. Monolithic erbium- and ytterbium-doped microring lasers on silicon chips.

    Science.gov (United States)

    Bradley, Jonathan D B; Hosseini, Ehsan Shah; Purnawirman; Su, Zhan; Adam, Thomas N; Leake, Gerald; Coolbaugh, Douglas; Watts, Michael R

    2014-05-19

    We demonstrate monolithic 160-µm-diameter rare-earth-doped microring lasers using silicon-compatible methods. Pump light injection and laser output coupling are achieved via an integrated silicon nitride waveguide. We measure internal quality factors of up to 3.8 × 105 at 980 nm and 5.7 × 105 at 1550 nm in undoped microrings. In erbium- and ytterbium-doped microrings we observe single-mode 1.5-µm and 1.0-µm laser emission with slope efficiencies of 0.3 and 8.4%, respectively. Their small footprints, tens of microwatts output powers and sub-milliwatt thresholds introduce such rare-earth-doped microlasers as scalable light sources for silicon-based microphotonic devices and systems.

  5. Challenges of agricultural monitoring: integration of the Open Farm Management Information System into GEOSS and Digital Earth

    Science.gov (United States)

    Řezník, T.; Kepka, M.; Charvát, K.; Charvát, K., Jr.; Horáková, S.; Lukas, V.

    2016-04-01

    From a global perspective, agriculture is the single largest user of freshwater resources, each country using an average of 70% of all its surface water supplies. An essential proportion of agricultural water is recycled back to surface water and/or groundwater. Agriculture and water pollution is therefore the subject of (inter)national legislation, such as the Clean Water Act in the United States of America, the European Water Framework Directive, and the Law of the People's Republic of China on the Prevention and Control of Water Pollution. Regular monitoring by means of sensor networks is needed in order to provide evidence of water pollution in agriculture. This paper describes the benefits of, and open issues stemming from, regular sensor monitoring provided by an Open Farm Management Information System. Emphasis is placed on descriptions of the processes and functionalities available to users, the underlying open data model, and definitions of open and lightweight application programming interfaces for the efficient management of collected (spatial) data. The presented Open Farm Management Information System has already been successfully registered under Phase 8 of the Global Earth Observation System of Systems (GEOSS) Architecture Implementation Pilot in order to support the wide variety of demands that are primarily aimed at agriculture pollution monitoring. The final part of the paper deals with the integration of the Open Farm Management Information System into the Digital Earth framework.

  6. Combining sky and earth: desert ants (Melophorus bagoti) show weighted integration of celestial and terrestrial cues.

    Science.gov (United States)

    Legge, Eric L G; Wystrach, Antoine; Spetch, Marcia L; Cheng, Ken

    2014-12-01

    Insects typically use celestial sources of directional information for path integration, and terrestrial panoramic information for view-based navigation. Here we set celestial and terrestrial sources of directional information in conflict for homing desert ants (Melophorus bagoti). In the first experiment, ants learned to navigate out of a round experimental arena with a distinctive artificial panorama. On crucial tests, we rotated the arena to create a conflict between the artificial panorama and celestial information. In a second experiment, ants at a feeder in their natural visually-cluttered habitat were displaced prior to their homing journey so that the dictates of path integration (feeder to nest direction) based on a celestial compass conflicted with the dictates of view-based navigation (release point to nest direction) based on the natural terrestrial panorama. In both experiments, ants generally headed in a direction intermediate to the dictates of celestial and terrestrial information. In the second experiment, the ants put more weight on the terrestrial cues when they provided better directional information. We conclude that desert ants weight and integrate the dictates of celestial and terrestrial information in determining their initial heading, even when the two directional cues are highly discrepant. © 2014. Published by The Company of Biologists Ltd.

  7. Inversion of magnetotelluric data using integral equation approach with variable sensitivity domain: Application to EarthScope MT data

    Science.gov (United States)

    Čuma, Martin; Gribenko, Alexander; Zhdanov, Michael S.

    2017-09-01

    We have developed a multi-level parallel magnetotelluric (MT) integral equation based inversion program which uses variable sensitivity domain. The limited sensitivity of the data, which decreases with increasing frequency, is exploited by a receiver sensitivity domain, which also varies with frequency. We assess the effect of inverting principal impedances, full impedance tensor, and full tensor jointly with magnetovariational data (tipper). We first apply this method to several models and then invert the EarthScope MT data. We recover well the prominent features in the area including resistive structure associated with the Juan de Fuca slab subducting beneath the northwestern United States, the conductive zone of partially melted material above the subducting slab at the Cascade volcanic arc, conductive features in the Great Basin and in the area of Yellowstone associated with the hot spot, and resistive areas to the east corresponding to the older and more stable cratons.

  8. Towards Designing an Integrated Earth Observation System for the Provision of Solar Energy Resource and Assessment

    Science.gov (United States)

    Stackouse, Paul W., Jr.; Renne, D.; Beyer, H.-G.; Wald, L.; Meyers, R.; Perez, R.; Suri, M.

    2006-01-01

    The GEOSS strategic plan specifically targets the area of improved energy resource management due to the importance of these to the economic and social viability of every nation of the world. With the world s increasing demand for energy resources, the need for new alternative energy resources grows. This paper overviews a new initiative within the International Energy Agency that addresses needs to better manage and develop solar energy resources worldwide. The goal is to provide the solar energy industry, the electricity sector, governments, and renewable energy organizations and institutions with the most suitable and accurate information of the solar radiation resources at the Earth's surface in easily-accessible formats and understandable quality metrics. The scope of solar resource assessment information includes historic data sets and currently derived data products using satellite imagery and other means. Thus, this new task will address the needs of the solar energy sector while at the same time will serve as a model that satisfies GEOSS objectives and goals.

  9. Towards an Integrated Model of Earth's Thermo-Chemical Evolution and Plate Tectonics

    Science.gov (United States)

    Tackley, P. J.; Xie, S.

    2001-05-01

    It has long been a challenge for geodynamicists, who have typically modeled homogeneous mantles, to explain the geochemical evidence for the existence of several distinct chemical reservoirs, in terms of a dynamically and chemically self-consistent model. While the mixing behavior of generalized tracers has received much attention in the modeling community, a recent trend has been towards mantle convection models that track the evolution of specific chemical species, both major and minor, and can thus be related to geochemical observations. However, obtaining realistic chemical evolution in such models is dependent on their having a reasonable representation of plate tectonic behavior since the recycling of oceanic crust and complementary depleted residuum is a key process in Earth that other terrestrial planets may lack. In general, this has required inserting plate motions by hand in models. In recent years, however, we have learned how to perform numerical simulations of mantle convection in which plate tectonic behavior is introduced self-consistently through plastic yielding of the lithosphere. In this presentation, models of mantle convection that combine a treatment of geochemical evolution with self-consistently generated plate tectonics, will be presented. Preliminary results indicate that the system can self-consistently evolve regions which have a HIMU-like signature as well as regions with a high He3/He4 ratio.

  10. Photoluminescence properties of rare-earth-doped (Er³⁺,Yb³⁺) Y₂O₃ nanophosphors by a combustion synthesis method.

    Science.gov (United States)

    Kaur, Manmeet; Bisen, D P; Brahme, N; Singh, Prabhjot; Sahu, I P

    2016-05-01

    In this work, we report the synthesis of Y2O3:Er(3+), Y2O3:Yb(3+) and Y2O3:Er(3+),Yb(3+) nanophosphors by the combustion synthesis method using urea as fuel. The doping agents were incorporated in the form of erbium nitrate and ytterbium nitrate. X-Ray diffraction (XRD) patterns revealed that the synthesized particles have a body-centered cubic structure with space group Ia-3. The photoluminescence (PL) properties were investigated after UV and infrared irradiation at room temperature. A strong characteristic emission of Er(3+) and Yb(3+) ions was identified, and the influence of doping concentration on the PL properties was systematically studied. Energy transfer from Yb(3+) to Er(3+) ions was observed in Y2O3 nanophosphors. The obtained result may be useful in potential applications such as bioimaging. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Effects of some rare earth and carbonate-based co-dopants on structural and electrical properties of samarium doped ceria (SDC) electrolytes for solid oxide fuel cells

    Science.gov (United States)

    Anwar, Mustafa; Khan, Zuhair S.; Mustafa, Kamal; Rana, Akmal

    2015-09-01

    In the present study, samarium doped ceria (SDC) and SDC-based composite with the addition of K2CO3 were prepared by co-precipitation route and effects of pH of the solution and calcination temperature on microstructure of SDC and SDC-K2CO3, respectively, were investigated. Furthermore, experimentation was performed to investigate into the ionic conductivity of pure SDC by co-doping with yttrium i.e., YSDC, XRD and SEM studies show that the crystallite size and particle size of SDC increases with the increase in pH. The SEM images of all the samples of SDC synthesized at different pH values showed the irregular shaped and dispersed particles. SDC-K2CO3 was calcined at 600∘C, 700∘C and 800∘C for 4 h and XRD results showed that crystallite size increases while lattice strain, decreases with the increase in calcination temperature and no peaks were detected for K2CO3 as it is present in an amorphous form. The ionic conductivity of the electrolytes increases with the increase in temperature and SDC-K2CO3 shows the highest value of ionic conductivity as compared to SDC and YSDC. Chemical compatibility tests were performed between the co-doped electrolyte and lithiated NiO cathode at high temperature. It revealed that the couple could be used up to the temperature of 700∘C.

  12. Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory

    Science.gov (United States)

    Iverson, Richard M.; Chaojun Ouyang,

    2015-01-01

    Earth-surface mass flows such as debris flows, rock avalanches, and dam-break floods can grow greatly in size and destructive potential by entraining bed material they encounter. Increasing use of depth-integrated mass- and momentum-conservation equations to model these erosive flows motivates a review of the underlying theory. Our review indicates that many existing models apply depth-integrated conservation principles incorrectly, leading to spurious inferences about the role of mass and momentum exchanges at flow-bed boundaries. Model discrepancies can be rectified by analyzing conservation of mass and momentum in a two-layer system consisting of a moving upper layer and static lower layer. Our analysis shows that erosion or deposition rates at the interface between layers must in general satisfy three jump conditions. These conditions impose constraints on valid erosion formulas, and they help determine the correct forms of depth-integrated conservation equations. Two of the three jump conditions are closely analogous to Rankine-Hugoniot conditions that describe the behavior of shocks in compressible gasses, and the third jump condition describes shear traction discontinuities that necessarily exist across eroding boundaries. Grain-fluid mixtures commonly behave as compressible materials as they undergo entrainment, because changes in bulk density occur as the mixtures mobilize and merge with an overriding flow. If no bulk density change occurs, then only the shear-traction jump condition applies. Even for this special case, however, accurate formulation of depth-integrated momentum equations requires a clear distinction between boundary shear tractions that exist in the presence or absence of bed erosion.

  13. TIGER-NET- Enabling An Earth Observation Capacity For Integrated Water Resource Management In Africa

    Science.gov (United States)

    Walli, A.; Tøttrup, C.; Naeimi, V.; Bauer-Gottwein, P.; Bila, M.; Mufeti, P.; Tumbulto, J. W.; Rajah, C.; Moloele, LS.; Koetz, B.

    2013-12-01

    As part of the TIGER initiative [1] the TIGER-NET project aims to support the assessment and monitoring of water resources from watershed to transboundary basin level delivering indispensable information for Integrated Water Resource Management in Africa through: 1. Development of an open-source Water Observation and Information Systems (WOIS) for monitoring, assessing and inventorying water resources in a cost- effective manner; 2. Capacity building and training of African water authorities and technical centers to fully exploit the increasing observation capacity offered by current and upcoming generations of satellites, including the Sentinel missions. Dedicated application case studies have been developed and demonstrated covering all EO products required by and developed with the participating African water authorities for their water resource management tasks, such as water reservoir inventory, water quality monitoring, water demand planning as well as flood forecasting and monitoring.

  14. Using Integrated Earth and Social Science Data for Disaster Risk Assessment

    Science.gov (United States)

    Downs, R. R.; Chen, R. S.; Yetman, G.

    2016-12-01

    Society faces many different risks from both natural and technological hazards. In some cases, disaster risk managers focus on only a few risks, e.g., in regions where a single hazard such as earthquakes dominate. More often, however, disaster risk managers deal with multiple hazards that pose diverse threats to life, infrastructure, and livelihoods. From the viewpoint of scientists, hazards are often studied based on traditional disciplines such as seismology, hydrology, climatology, and epidemiology. But from the viewpoint of disaster risk managers, data are needed on all hazards in a specific region and on the exposure and vulnerability of population, infrastructure, and economic resources and activity. Such managers also need to understand how hazards, exposures, and vulnerabilities may interact, and human and environmental systems respond, to hazard events, as in the case of the Fukushima nuclear disaster that followed from the Sendai earthquake and tsunami. In this regard, geospatial tools that enable visualization and analysis of both Earth and social science data can support the use case of disaster risk managers who need to quickly assess where specific hazard events occur relative to population and critical infrastructure. Such information can help them assess the potential severity of actual or predicted hazard events, identify population centers or key infrastructure at risk, and visualize hazard dynamics, e.g., earthquakes and their aftershocks or the paths of severe storms. This can then inform efforts to mitigate risks across multiple hazards, including reducing exposure and vulnerability, strengthening system resiliency, improving disaster response mechanisms, and targeting mitigation resources to the highest or most critical risks. We report here on initial efforts to develop hazard mapping tools that draw on open web services and support simple spatial queries about population exposure. The NASA Socioeconomic Data and Applications Center (SEDAC

  15. Crystal surface integrity and diffusion measurements on Earth and planetary materials

    Science.gov (United States)

    Watson, E. B.; Cherniak, D. J.; Thomas, J. B.; Hanchar, J. M.; Wirth, R.

    2016-09-01

    Characterization of diffusion behavior in minerals is key to providing quantitative constraints on the ages and thermal histories of Earth and planetary materials. Laboratory experiments are a vital source of the needed diffusion measurements, but these can pose challenges because the length scales of diffusion achievable in a laboratory time are commonly less than 1 μm. An effective strategy for dealing with this challenge is to conduct experiments involving inward diffusion of the element of interest from a surface source, followed by quantification of the resulting diffusive-uptake profile using a high-resolution depth-profiling technique such as Rutherford backscattering spectroscopy (RBS), nuclear reaction analysis (NRA), or ion microprobe (SIMS). The value of data from such experiments is crucially dependent on the assumption that diffusion in the near-surface of the sample is representative of diffusion in the bulk material. Historical arguments suggest that the very process of preparing a polished surface for diffusion studies introduces defects-in the form of dislocations and cracks-in the outermost micrometer of the sample that make this region fundamentally different from the bulk crystal in terms of its diffusion properties. Extensive indirect evidence suggests that, in fact, the near-surface region of carefully prepared samples is no different from the bulk crystal in terms of its diffusion properties. A direct confirmation of this conclusion is nevertheless clearly important. Here we use transmission electron microscopy to confirm that the near-surface regions of olivine, quartz and feldspar crystals prepared using careful polishing protocols contain no features that could plausibly affect diffusion. This finding does not preclude damage to the mineral structure from other techniques used in diffusion studies (e.g., ion implantation), but even in this case the role of possible structural damage can be objectively assessed and controlled. While all

  16. Rare-earth Doped GaN - An Innovative Path Toward Area-scalable Solid-state High Energy Lasers Without Thermal Distortion (2nd year)

    Science.gov (United States)

    2010-06-01

    temperature for two Ga fluxes: Ga = 1.5×10–7 torr BEP (blue) and Ga= 3.5×10–7 torr BEP (red). ...........................................4  Figure 4...850–1025 °C, and the Ga flux, measured as beam equivalent pressure ( BEP ), was varied from 9.8×10–6 to 5.6×10–7 torr. The secondary ion mass...temperature for two Ga fluxes: Ga = 1.5×10–7 torr beam equivalent pressure (blue) and Ga= 3.5×10–7 torr BEP (red). 3.2 Optical Studies of Nd Doped

  17. Geo-Semantic Framework for Integrating Long-Tail Data and Model Resources for Advancing Earth System Science

    Science.gov (United States)

    Elag, M.; Kumar, P.

    2014-12-01

    Often, scientists and small research groups collect data, which target to address issues and have limited geographic or temporal range. A large number of such collections together constitute a large database that is of immense value to Earth Science studies. Complexity of integrating these data include heterogeneity in dimensions, coordinate systems, scales, variables, providers, users and contexts. They have been defined as long-tail data. Similarly, we use "long-tail models" to characterize a heterogeneous collection of models and/or modules developed for targeted problems by individuals and small groups, which together provide a large valuable collection. Complexity of integrating across these models include differing variable names and units for the same concept, model runs at different time steps and spatial resolution, use of differing naming and reference conventions, etc. Ability to "integrate long-tail models and data" will provide an opportunity for the interoperability and reusability of communities' resources, where not only models can be combined in a workflow, but each model will be able to discover and (re)use data in application specific context of space, time and questions. This capability is essential to represent, understand, predict, and manage heterogeneous and interconnected processes and activities by harnessing the complex, heterogeneous, and extensive set of distributed resources. Because of the staggering production rate of long-tail models and data resulting from the advances in computational, sensing, and information technologies, an important challenge arises: how can geoinformatics bring together these resources seamlessly, given the inherent complexity among model and data resources that span across various domains. We will present a semantic-based framework to support integration of "long-tail" models and data. This builds on existing technologies including: (i) SEAD (Sustainable Environmental Actionable Data) which supports curation

  18. Dual doped graphene oxide for electrochemical sensing of europium ion

    Science.gov (United States)

    Kumar, Sunil; Patra, Santanu; Madhuri, Rashmi; Sharma, Prashant K.

    2017-05-01

    This present work represents a single step hydrothermal method for the preparation of N, and N, S dual doped graphene oxide (GO). First time, a comparative electrochemical study between single dope and dual doped GO was carried out using potassium ferrocyanide as an electro-active probe molecule and found that the dual doped GO has the highest electrocatalytic activity than single doped, due to the presence of two heteroatoms as a doping material. Afterwards, the dual doped GO was successfully applied for the electrochemical detection of a rare earth element i.e. europium, with LOD value of 5.92 μg L-1.

  19. A Critical Path for Data Integration in the U.S. Earth Sciences

    Science.gov (United States)

    Gallagher, K. T.; Allison, M. L.

    2011-12-01

    Development efforts for the U.S. Geoscience Information Network (US GIN) have crystallized around the Community for Data Integration (CDI) at the USGS, and the 50-state AASG State Geothermal Data project. The next step in developing a USGS-AASG community is to bring these two efforts into closer alignment through greater participation in CDI activities by geoinformatics practitioners from state geological surveys, and implementation of test bed activities by the USGIN partners. Test bed activities in the geological survey community will define a scope and provide a foundation to promote the use of specifications developed by the larger geoinformatics community. Adoption of some of these specifications as 'standards' by USGS and AASG for use by those organizations will lend authority and motivate wider adoption. The arc from use case to test bed to production deployments to agreement on 'standard' specifications for data discovery and access must be propelled by active interest from the user communities who have a stake in the outcome. The specifications developed will benefit the organizations involved in development, testing and deployment, which motivates participation -- a model that has worked successfully for standards organizations such as OGC, ISO and OASIS. The governance structure to support such a community process should promote grass root nucleation of interest groups that are the core of development efforts. Some mechanism for community agreement on priorities is desirable because geological survey agencies will need to allocate resources to support development. Loosely knit organizations such as ESIP and the current CDI provide models for this kind of structure. Because many geological surveys have data archive and dissemination functions as part of their portfolio, some support for the system can be built into the operating expenses and overhead. Sharing of resources and reuse of components can reduce the cost. Wide adoption of similar software

  20. Expedition Earth and Beyond: Using NASA Data Resources and Integrated Educational Strategies to Promote Authentic Research in the Classroom

    Science.gov (United States)

    Graffi, Paige Valderrama; Stefanov, William; Willis, Kim; Runco, Sue

    2009-01-01

    Teachers in today s classrooms are bound by state required skills, education standards, and high stakes testing. How can they gain skills and confidence to replace units or individual activities with curriculum that incorporates project and inquiry-based learning and promotes authentic research in the classroom? The key to promoting classroom authentic research experiences lies in educator professional development that is structured around teacher needs. The Expedition Earth and Beyond Program is a new geosciences program based at the NASA Johnson Space Center designed to engage, inspire and educate teachers and students in grades 5-14. The program promotes authentic research experiences for classrooms and uses strategies that will help NASA reach its education goals while still allowing educators to teach required standards. Teachers will have access to experts in terrestrial and planetary remote sensing and geoscience; this will enhance their use of content, structure, and relevant experiences to gain the confidence and skills they need to actively engage students in authentic research experiences. Integrated and powerful educational strategies are used to build skills and confidence in teachers. The strategies are as follows: 1) creating Standards-aligned, inquiry-based curricular resources as ready-to-use materials that can be modified by teachers to fit their unique classroom situation; 2) providing ongoing professional development opportunities that focus on active experiences using curricular materials, inquiry-based techniques and expanding content knowledge; 3) connecting science experts to classrooms to deepen content knowledge and provide relevance to classroom activities and real world applications; 4) facilitating students sharing research with their peers and scientists reinforcing their active participation and contributions to research. These components of the Expedition Earth and Beyond Education Program will be enhanced by providing exciting and

  1. Evaluating and improving hydrologic processes in the community land model for integrated earth system modeling

    Science.gov (United States)

    Hannah, D. M.; Khamis, K.; Blaen, P. J.; Hainie, S.; Mellor, C.; Brown, L. E.; Milner, A. M.

    2011-12-01

    extinction of cold stenothermic specialists. Similar integrated, long-term research into hydroecological connections in other glacierized river basins is vital: (1) to enable robust projections of stream hydrology (water source contributions and physico-chemical habitat) and ecological response under scenarios of future climate/ variability, and (2) to develop conservation strategies for these fragile Alpine and Arctic freshwater ecosystems.

  2. An integrated, open-source set of tools for urban vulnerability monitoring from Earth observation data

    Science.gov (United States)

    De Vecchi, Daniele; Harb, Mostapha; Dell'Acqua, Fabio; Aurelio Galeazzo, Daniel

    2015-04-01

    Aim: The paper introduces an integrated set of open-source tools designed to process medium and high-resolution imagery with the aim to extract vulnerability indicators [1]. Problem: In the context of risk monitoring [2], a series of vulnerability proxies can be defined, such as the extension of a built-up area or buildings regularity [3]. Different open-source C and Python libraries are already available for image processing and geospatial information (e.g. OrfeoToolbox, OpenCV and GDAL). They include basic processing tools but not vulnerability-oriented workflows. Therefore, it is of significant importance to provide end-users with a set of tools capable to return information at a higher level. Solution: The proposed set of python algorithms is a combination of low-level image processing and geospatial information handling tools along with high-level workflows. In particular, two main products are released under the GPL license: source code, developers-oriented, and a QGIS plugin. These tools were produced within the SENSUM project framework (ended December 2014) where the main focus was on earthquake and landslide risk. Further development and maintenance is guaranteed by the decision to include them in the platform designed within the FP 7 RASOR project . Conclusion: With the lack of a unified software suite for vulnerability indicators extraction, the proposed solution can provide inputs for already available models like the Global Earthquake Model. The inclusion of the proposed set of algorithms within the RASOR platforms can guarantee support and enlarge the community of end-users. Keywords: Vulnerability monitoring, remote sensing, optical imagery, open-source software tools References [1] M. Harb, D. De Vecchi, F. Dell'Acqua, "Remote sensing-based vulnerability proxies in the EU FP7 project SENSUM", Symposium on earthquake and landslide risk in Central Asia and Caucasus: exploiting remote sensing and geo-spatial information management, 29-30th January 2014

  3. Earth materials and earth dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K; Shankland, T. [and others

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  4. Google Earth as a Vehicle to Integrating Multiple Layers of Environmental Satellite Data for Weather and Science Applications

    Science.gov (United States)

    Turk, F. J.; Miller, S. D.

    2007-12-01

    One of the main challenges facing current and future environmental satellite systems (e.g, the future National Polar Orbiting Environmental Satellite System (NPOESS)) is reaching and entraining the diverse user community via communication of how these systems address their particular needs. A necessary element to meeting this challenge is effective data visualization: facilitating the display, animation and layering of multiple satellite imaging and sounding sensors (providing complementary information) in a user-friendly and intuitive fashion. In light of the fact that these data are rapidly making their way into the classroom owing to efficient and timely data archival systems and dissemination over the Internet, there is a golden opportunity to leverage existing technology to introduce environmental science to wide spectrum of users. Google Earth's simplified interface and underlying markup language enables access to detailed global geographic information, and contains features which are both desirable and advantageous for geo-referencing and combining a wide range of environmental satellite data types. Since these satellite data are available with a variety of horizontal spatial resolutions (tens of km down to hundreds of meters), the imagery can be sub-setted (tiled) at a very small size. This allows low-bandwidth users to efficiently view and animate a sequence of imagery while zoomed out from the surface, whereas high-bandwidth users can efficiently zoom into the finest image resolution when viewing fine-scale phenomena such as fires, volcanic activity, as well as the details of meteorological phenomena such as hurricanes, rainfall, lightning, winds, etc. Dynamically updated network links allow for near real-time updates such that these data can be integrated with other Earth-hosted applications and exploited not only in the teaching environment, but also for operational users in the government and private industry sectors. To conceptualize how environmental

  5. Fermi integral and density-of-states functions in a parabolic band semiconductor degenerately doped with impurities forming a band tail

    Science.gov (United States)

    Chaudhuri, B. K.; Mondal, B. N.; Chakraborty, P. K.

    2018-02-01

    We provide the energy spectrum of an electron in a degenerately doped semiconductor of parabolic band. Knowing the energy spectrum, the density-of-states (DOS) functions are obtained, considering the Gaussian distribution of the potential energy of the impurity states, showing a band tail in them e.g., energy spectrum and density-of-states. Therefore, Fermi integrals (FIs) of DOS functions, having band tail, are developed by the exact theoretical calculations of the same. It is noticed that with heavy dopings in semiconductors, the total FI demonstrates complex functions, containing both real and imaginary terms of different FI functions. Their moduli possess an oscillatory function of η (reduced Fermi energy = Ef/kBT, kB is the Boltzmann constant and T is the absolute temperature) and η e (impurity screening potential), having a series solutions of confluent hypergeometric functions, Φ (a, b; z), superimposed with natural cosine functions of angle θ . The variation of θ with respect to η indicated a resonance at η =1.5. The oscillatory behaviour of FIs show the existence of `band-gaps', both in the real as well as in the forbidden bands as new band gaps in the semiconductor.

  6. The Computation of Global Viscoelastic Co- and Post-seismic Displacement in a Realistic Earth Model by Straightforward Numerical Inverse Laplace Integration

    Science.gov (United States)

    Tang, H.; Sun, W.

    2016-12-01

    The theoretical computation of dislocation theory in a given earth model is necessary in the explanation of observations of the co- and post-seismic deformation of earthquakes. For this purpose, computation theories based on layered or pure half space [Okada, 1985; Okubo, 1992; Wang et al., 2006] and on spherically symmetric earth [Piersanti et al., 1995; Pollitz, 1997; Sabadini & Vermeersen, 1997; Wang, 1999] have been proposed. It is indicated that the compressibility, curvature and the continuous variation of the radial structure of Earth should be simultaneously taken into account for modern high precision displacement-based observations like GPS. Therefore, Tanaka et al. [2006; 2007] computed global displacement and gravity variation by combining the reciprocity theorem (RPT) [Okubo, 1993] and numerical inverse Laplace integration (NIL) instead of the normal mode method [Peltier, 1974]. Without using RPT, we follow the straightforward numerical integration of co-seismic deformation given by Sun et al. [1996] to present a straightforward numerical inverse Laplace integration method (SNIL). This method is used to compute the co- and post-seismic displacement of point dislocations buried in a spherically symmetric, self-gravitating viscoelastic and multilayered earth model and is easy to extended to the application of geoid and gravity. Comparing with pre-existing method, this method is relatively more straightforward and time-saving, mainly because we sum associated Legendre polynomials and dislocation love numbers before using Riemann-Merlin formula to implement SNIL.

  7. ACTIVE MEDIA: BaY2F8 single crystals doped with rare-earth ions as promising up-conversion media for UV and VUV lasers

    Science.gov (United States)

    Pushkar', A. A.; Uvarova, T. V.; Molchanov, V. N.

    2008-04-01

    BaY2F8 crystals are studied as promising active media for UV and VUV lasers. The up-conversion pumping of rare-earth activators is proposed to solve problems related to the solarisation of the medium and the selection of pump sources. The technology of growing oriented BaY2F8 single crystals is developed and the influence of the crystal orientation on the growth rate and quality of single crystals is determined.

  8. Constructing one-dimensional silver nanowire-doped reduced graphene oxide integrated with CdS nanowire network hybrid structures toward artificial photosynthesis

    Science.gov (United States)

    Liu, Siqi; Weng, Bo; Tang, Zi-Rong; Xu, Yi-Jun

    2014-12-01

    A ternary hybrid structure of one-dimensional (1D) silver nanowire-doped reduced graphene oxide (RGO) integrated with a CdS nanowire (NW) network has been fabricated via a simple electrostatic self-assembly method followed by a hydrothermal reduction process. The electrical conductivity of RGO can be significantly enhanced by opening up new conduction channels by bridging the high resistance grain-boundaries (HGBs) with 1D Ag nanowires, which results in a prolonged lifetime of photo-generated charge carriers excited from the CdS NW network, thus making Ag NW-RGO an efficient co-catalyst with the CdS NW network toward artificial photosynthesis.A ternary hybrid structure of one-dimensional (1D) silver nanowire-doped reduced graphene oxide (RGO) integrated with a CdS nanowire (NW) network has been fabricated via a simple electrostatic self-assembly method followed by a hydrothermal reduction process. The electrical conductivity of RGO can be significantly enhanced by opening up new conduction channels by bridging the high resistance grain-boundaries (HGBs) with 1D Ag nanowires, which results in a prolonged lifetime of photo-generated charge carriers excited from the CdS NW network, thus making Ag NW-RGO an efficient co-catalyst with the CdS NW network toward artificial photosynthesis. Electronic supplementary information (ESI) available: Experimental details, photographs of the experimental setups for photocatalytic activity testing, SEM images of Ag NWs and CdS NWs, Zeta potential, Raman spectra, DRS spectra, PL spectra and PL decay time evolution, and photocatalytic performances of samples for reduction of 4-NA and recycling test. See DOI: 10.1039/c4nr04229h

  9. Mid-temperature deep removal of hydrogen sulfide on rare earth (RE = Ce, La, Sm, Gd) doped ZnO supported on KIT-6: Effect of RE dopants and interaction between active phase and support matrix

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu; Zhou, Pin; Zhang, Hongbo; Meng, Xianglong; Li, Juexiu; Sun, Tonghua, E-mail: sunth@sjtu.edu.cn

    2017-06-15

    Highlights: • Various rare earth (RE)-doped ZnO/KIT-6 sorbents were prepared via sol-gel method. • La showed the highest efficiency on promoting ZnO/KIT-6 desulfurization activity. • The morphology of ZnO on KIT-6 played a crucial role for the reactivity. • The most initial factor of improving reactivity by RE was surface chemical property. • Crystallinity, host-guest interaction were also important to ZnO state on support. - Abstract: Rare earth oxides (RE = Ce, La, Sm and Gd) doped ZnO supported on KIT-6 sorbents (RE-ZnO/KIT-6) were synthesized by sol-gel method and their performance for deep removal of H{sub 2}S (bellow 0.1 ppmv) from gas stream at medium temperature was tested. The RE dopants (except Ce) significantly enhance the deep desulfurization capacity of ZnO/KIT-6 sorbent and maintained higher sulfur uptake capacities upon multiple cycles of regeneration by a simple thermal oxidation in 10 v% of O{sub 2} in N{sub 2} atmosphere. The results of SAXS, XRD, N{sub 2} physisorption, TEM, FIIR, and XPS implied that the KIT-6 structure of loading metal oxides remained intact. It was found that RE could hinder the ZnO crystal ripening during calcination resulted in smaller ZnO particles, enhance the interaction of ZnO and silica matrix to improve the dispersion of active phase on KIT-6. Furthermore, by increasing the outlayer electron density of Zn atom and oxygen transfer ability, the synergistic effect considered to be favorable for RE-ZnO/KIT-6 sulfidation. Even though the performance of improving ZnO dispersion was weaker than that of Sm and Gd, La-ZnO/KIT-6 performs the best deep desulfurizers by changing the surface chemical atmosphere for ZnO. Steam in the gas stream inhibited the capture of H{sub 2}S by ZnO in the sorbents, in the case of La-ZnO/KIT-6, the steam content should control as lower as 5 v% to ensure the desulfurization efficiency and precision.

  10. Airplane dopes and doping

    Science.gov (United States)

    Smith, W H

    1919-01-01

    Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.

  11. Information Technology Infusion Case Study: Integrating Google Earth(Trademark) into the A-Train Data Depot

    Science.gov (United States)

    Smith, Peter; Kempler, Steven; Leptoukh, Gregory; Chen, Aijun

    2010-01-01

    This poster paper represents the NASA funded project that was to employ the latest three dimensional visualization technology to explore and provide direct data access to heterogeneous A-Train datasets. Google Earth (tm) provides foundation for organizing, visualizing, publishing and synergizing Earth science data .

  12. Preparation and Characterization of Yttrium Hydroxide and Oxide Doped with Rare Earth Ions (Eu3+, Tb3+) Nano One-dimensional

    Science.gov (United States)

    Giang, Lam Thi Kieu; Anh, Tran Kim; Marciniak, Lukasz; Hreniak, Dariusz; Strek, Wieslaw; Lojkowski, Witold; Minh, Le Quoc

    The one-dimensional (1D) crystalline nanostructures of Y(OH)3:Eu/Tb have been synthesized using softemplate method at temperature range of 180 - 200 °C for 24 h. The studies by Field Emission Scanning Electron Microscopy (FESEM) have been determined that the outer and interior hollow diameter of Y(OH)3:Eu/Tb nanotubes was obtained range from 150 to 500 nm and 100 to 300 nm, respectively and of the length up to several micrometers, respectively. The Y2O3:Eu/Tb nanorod/tubes have been obtained from Y(OH)3:Eu/Tb counterparts by crucial annealing. The Xray diffraction (XRD) patterns indicated that the Y(OH)3:Eu/Tb and Y2O3:Eu/Tb nanorods and nanotubes obtained has hexagonal and cubic phase with high crystaline. The luminescence and excitation properties of Y(OH)3:Eu/Tb and Y2O3:Eu/Tb nanorods and nanotubes were investigated in details. It found that crystal form and nanomorphology of Y(OH)3 and Y2O3 have played a great role on the emission properties of the doped Eu3+ ions.

  13. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films.

    Science.gov (United States)

    Zhang, Huairuo; Reaney, Ian M; Marincel, Daniel M; Trolier-McKinstry, Susan; Ramasse, Quentin M; MacLaren, Ian; Findlay, Scott D; Fraleigh, Robert D; Ross, Ian M; Hu, Shunbo; Ren, Wei; Rainforth, W Mark

    2015-08-14

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)(3+) Fe(3+)O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community.

  14. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films

    Science.gov (United States)

    Zhang, Huairuo; Reaney, Ian M.; Marincel, Daniel M.; Trolier-McKinstry, Susan; Ramasse, Quentin M.; MacLaren, Ian; Findlay, Scott D.; Fraleigh, Robert D.; Ross, Ian M.; Hu, Shunbo; Ren, Wei; Mark Rainforth, W.

    2015-08-01

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)3+ Fe3+O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community.

  15. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND ...

    African Journals Online (AJOL)

    2012-06-30

    Jun 30, 2012 ... Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used ... life time for various emission levels of these doped glasses have been determined and reported. ... Among the trivalent RE ions, Er3+ plays an important role in the development of broadband ...

  16. Brillouin Instability in Fiber Lasers Doped By Power | Bouras ...

    African Journals Online (AJOL)

    With the emergence of rare-earth doped fibers, and especially double-clad fibers, there is a renewed interest in Brillouin effect. First of all, the amplification of a continuous signal in a rare-earth doped fiber amplifier can generate high enough intensities to excite Brillouin effect and then to create a backscattered stokes wave.

  17. Earliest life on earth

    CERN Document Server

    Golding, Suzanne D

    2010-01-01

    This volume integrates the latest findings on earliest life forms, identified and characterized in some of the oldest rocks on Earth. It places emphasis on the integration of analytical methods with observational techniques and experimental simulations.

  18. Doped Nanocrystals

    National Research Council Canada - National Science Library

    David J. Norris; Alexander L. Efros; Steven C. Erwin

    2008-01-01

    The critical role that dopants play in semiconductor devices has stimulated research on the properties and the potential applications of semiconductor nanocrystals, or colloidal quantum dots, doped...

  19. Chemical environment of rare earth ions in Ge{sub 28.125}Ga{sub 6.25}S{sub 65.625} glass-ceramics doped with Dy{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rongping, E-mail: rongping.wang@anu.edu.au; Yan, Kunlun; Luther-Davies, Barry [Centre for Ultrahigh bandwidth Devices for Optical Systems, Laser Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 2600 (Australia); Zhang, Mingjie; Yang, Anping; Zhang, Bin [Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116 (China); Shen, Xiang; Dai, Shixun [Laboratory of Infrared Material and Devices, The Advanced Technology Research Institute, Ningbo University, Ningbo 315211 (China); Yang, Xinyu [Faculty of Chemistry and Material Engineering, Wenzhou University, Wenzhou 325027 (China); Yang, Zhiyong [Centre for Ultrahigh bandwidth Devices for Optical Systems, Laser Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 2600 (Australia); Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116 (China)

    2015-10-19

    We have annealed Ge{sub 28.125}Ga{sub 6.25}S{sub 65.625} glasses doped with 0.5% Dy to create glass-ceramics in order to examine the local chemical environment of the rare earth ions (REI). More than 12 times enhancement of the emission at 2.9 and 3.5 μm was achieved in glass-ceramics produced using prolonged annealing time. Elemental mapping showed clear evidence that Ga{sub 2}S{sub 3} crystalline grains with a size of 50 nm were dispersed in a Ge-S glass matrix in the glass-ceramics, and the REI could only be found near the Ga{sub 2}S{sub 3} crystalline grains. From the unchanged lineshape of the emissions at 2.9 and 3.5 μm and lack of splitting of the absorption peaks, we concluded that the REI were bonded to Ga on the surface of the Ga{sub 2}S{sub 3} crystals.

  20. Analysis of electrical and microstructural characteristics of a ZnO-based varistor doped with rare earth oxide; Analise das caracteristicas microestruturais e eletricas de um varistor a base de ZnO dopado com oxidos de terras raras

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, J.M. de; Dias, R.; Furtado, J.G. de M. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil); Assuncao, F.C.R. [Pontificia Univ. Catolica do Rio de Janeiro (PUC/Rio), RJ (Brazil)

    2010-07-01

    Varistor is a semiconductor device, used in the protection of electrical systems, characterized to have a high no-linear electric resistance. Its properties are directly dependents of its chemical composition and microstructural characteristics. In this work were analyzed microstructural and electrical characteristics of a ZnO-based varistor doped with rare earth oxide, with chemical composition (mol%) 98,5.ZnO - 0,3.Pr{sub 6}O{sub 11} - 0,2.Dy{sub 2}O{sub 3} - 0,9.Co{sub 2}O{sub 3} - 0,1.Cr{sub 2}O{sub 3}. X-ray diffraction for phase characterization, scanning electron microscopy and energy dispersive X-ray spectroscopy were used for microstructural analysis. Measurement of average grain size and electrical and dielectric characteristics complete the characterization. The results show the formation of biphasic microstructure and with high densification, presenting relevant varistors characteristics but that would need improvements.(author)

  1. Study of amorphous semiconductors doped with rare earths (Gd and Er) and conducting polymers by EPR techniques and magnetic susceptibility; Estudo de semicondutores amorfos dopados com terras raras (Gd e Er) e de polimeros condutores atraves das tecnicas de RPE e susceptibilidade magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Sercheli, Mauricio da Silva

    1999-07-01

    This thesis involves the study of amorphous semiconductors and conducting polymers, which have been characterized by EPR and magnetic susceptibility measurements, and to a lesser extent by Raman spectroscopy and RBS. The semiconductors were studied using thin films of silicon doped with rare earth metals, e.g. erbium and gadolinium, which had their magnetic properties studied. Using these studies we could determine the state of valence of the rare earths as well as their concentrations in the silicon matrix. According to our results, the valence of the rare earth metal ions is 3+, and we were able to conclude that 4f electronic shells could not be used for the calculation of the conducting band in this system. Furthermore, the analysis of the data on the magnetic susceptibility of the Er{sup 3+} ion with cubic crystalline acting field, gave us the opportunity to estimate the overall splitting of their electronic states for the first time. The conducting polymers were studied using samples of poly(3-methylthiophene) doped with ClO{sub 4}{sup -}, which show a phase transition in the range of 230 K to 130 K. The electron paramagnetic resonance also gives important information on the crystallization, doping level and the presence of polarons or bipolarons in conducting polymers. (author)

  2. Large research infrastructure for Earth-Ocean Science: Challenges of multidisciplinary integration across hardware, software, and people networks

    Science.gov (United States)

    Best, M.; Barnes, C. R.; Johnson, F.; Pautet, L.; Pirenne, B.; Founding Scientists Of Neptune Canada

    2010-12-01

    NEPTUNE Canada is operating a regional cabled ocean observatory across the northern Juan de Fuca Plate in the northeastern Pacific. Installation of the first suite of instruments and connectivity equipment was completed in 2009, so this system now provides the continuous power and bandwidth to collect integrated data on physical, chemical, geological, and biological gradients at temporal resolutions relevant to the dynamics of the earth-ocean system. The building of this facility integrates hardware, software, and people networks. Hardware progress to date includes: installation of the 800km powered fiber-optic backbone in the Fall of 2007; development of Nodes and Junction Boxes; acquisition/development and testing of Instruments; development of mobile instrument platforms such as a) a Vertical Profiler and b) a Crawler (University of Bremmen); and integration of over a thousand components into an operating subsea sensor system. Nodes, extension cables, junction boxes, and instruments were installed at 4 out of 5 locations in 2009; the fifth Node is instrumented in September 2010. In parallel, software and hardware systems are acquiring, archiving, and delivering the continuous real-time data through the internet to the world - already many terabytes of data. A web environment (Oceans 2.0) to combine this data access with analysis and visualization, collaborative tools, interoperability, and instrument control is being released. Finally, a network of scientists and technicians are contributing to the process in every phase, and data users already number in the thousands. Initial experiments were planned through a series of workshops and international proposal competitions. At inshore Folger Passage, Barkley Sound, understanding controls on biological productivity help evaluate the effects that marine processes have on fish and marine mammals. Experiments around Barkley Canyon allow quantification of changes in biological and chemical activity associated with

  3. Magnetic and microwave absorption properties of rare earth ions (Sm{sup 3+}, Er{sup 3+}) doped strontium ferrite and its nanocomposites with polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Juhua, E-mail: luojuhua@163.com [School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051 (China); Xu, Yang; Mao, Hongkai [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-05-01

    M-type strontium ferrite substituted by RE (RE=Sm{sup 3+}, Er{sup 3+}) were prepared via a sol–gel method. Polypyrrole (PPy)/ferrite nanocomposites (with 20 wt% ferrite) were prepared by in situ polymerization method in the presence of ammonium persulfate. Effect of the substituted RE ions on structure, magnetic properties and microwave absorption properties were investigated by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and vector network analyzer. All XRD patterns show the single phase of strontium hexaferrite without other intermediate phases. The crystallite size of synthesized particle is within the range of 22.2–38.1 nm. The structural in character of the composites were investigated with FT-IR analysis. It shows that the ferrite successfully packed by PPy. TEM photographs show that the particle size had grown up to 50–100 nm after coating with PPy. In the magnetization for the PPy/SrSm{sub 0.3}Fe{sub 11.7}O{sub 19} (SrEr{sub 0.3}Fe{sub 11.7}O{sub 19}) composites, the coercivity (H{sub c}) of the composites both increased compared with the undoped composite while the saturation magnetization (M{sub s}) appeared opposite change with different RE ions. Considering the electromagnetic loss and impedance matching comprehensively, the Er-doped ferrite/PPy composite got the better microwave absorption performance with the maximum RL value of −24.01 dB in 13.8 GHz at 3.0 mm. And its width (<−10 dB) has reached 7.2 GHz which has covered the whole Ku band. - Highlights: • The influence of RE ions on the structure of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • The influence of RE ions on the magnetic properties of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • The influence of RE ions on electromagnetic losses of PPy/SrRE{sub 0.3}Fe{sub 11.7}O{sub 19} is discussed. • PPy/SrEr{sub 0.3}Fe{sub 11.7}O{sub 19} possessed the excellent absorption property.

  4. Integrating land management into Earth system models: the importance of land use transitions at sub-grid-scale

    Science.gov (United States)

    Pongratz, Julia; Wilkenskjeld, Stiig; Kloster, Silvia; Reick, Christian

    2014-05-01

    Recent studies indicate that changes in surface climate and carbon fluxes caused by land management (i.e., modifications of vegetation structure without changing the type of land cover) can be as large as those caused by land cover change. Further, such effects may occur on substantial areas: while about one quarter of the land surface has undergone land cover change, another fifty percent are managed. This calls for integration of management processes in Earth system models (ESMs). This integration increases the importance of awareness and agreement on how to diagnose effects of land use in ESMs to avoid additional model spread and thus unnecessary uncertainties in carbon budget estimates. Process understanding of management effects, their model implementation, as well as data availability on management type and extent pose challenges. In this respect, a significant step forward has been done in the framework of the current IPCC's CMIP5 simulations (Coupled Model Intercomparison Project Phase 5): The climate simulations were driven with the same harmonized land use dataset that, different from most datasets commonly used before, included information on two important types of management: wood harvest and shifting cultivation. However, these new aspects were employed by only part of the CMIP5 models, while most models continued to use the associated land cover maps. Here, we explore the consequences for the carbon cycle of including subgrid-scale land transformations ("gross transitions"), such as shifting cultivation, as example of the current state of implementation of land management in ESMs. Accounting for gross transitions is expected to increase land use emissions because it represents simultaneous clearing and regrowth of natural vegetation in different parts of the grid cell, reducing standing carbon stocks. This process cannot be captured by prescribing land cover maps ("net transitions"). Using the MPI-ESM we find that ignoring gross transitions

  5. Fullerene-C60 and crown ether doped on C60 sensors for high sensitive detection of alkali and alkaline earth cations

    Science.gov (United States)

    Zaghmarzi, Fatemeh Alipour; Zahedi, Mansour; Mola, Adeleh; Abedini, Saboora; Arshadi, Sattar; Ahmadzadeh, Saeed; Etminan, Nazanin; Younesi, Omran; Rahmanifar, Elham; Yoosefian, Mehdi

    2017-03-01

    Fullerenes are effective acceptor components with high electron affinity for charge transfer. The significant influences of chemical adsorption of the cations on the electrical sensitivity of pristine C60 and 15-(C2H4O)5/C60 nanocages could be the basis of new generation of electronic sensor design. The density functional theory calculation for alkali and alkaline earth cations detection by pristine C60 and 15-(C2H4O)5/C60 nanocages are considered at B3LYP level of theory with 6-31 G(d) basis set. The quantum theory of atoms in molecules analysis have been performed to understand the nature of intermolecular interactions between the cations and nanocages. Also, the natural bond orbital analysis have been performed to assess the intermolecular interactions in detail. Furthermore, the frontier molecular orbital, energy gap, work function, electronegativity, number of transferred electron (∆N), dipole moment as well as the related chemical hardness and softness are investigated and calculated in this study. The results show that the adsorption of cations (M=Na+, K+, Mg2+ and Ca2+) are exothermic and the binding energy in pristine C60 nanocage and 15-(C2H4O)5/C60 increases with respect to the cations charge. The results also denote a decrease in the energy gap and an increase in the electrical conductivity upon the adsorption process. In order to validate the obtained results, the density of state calculations are employed and presented in the end as well.

  6. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    Science.gov (United States)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  7. Variational and Path Integral Monte Carlo calculations on Helium Clusters Doped with Metastable Anions He^*- and He_2^*-

    OpenAIRE

    Villarreal, Pablo; Rodríguez-Cantano, Rocío; González-Lezana, Tomás; Prosmiti, Rita; Delgado Barrio, Gerardo; Gianturco, Franco A.

    2015-01-01

    Variational calculations (T = 0 K) on small He_N...He^*- and He_N...He^2*- metastable clusters (N¿4), as well as Path Integral Monte Carlo (PIMC) simulations (T = 0.4 K) on larger species are presented and discussed.

  8. Mid-temperature deep removal of hydrogen sulfide on rare earth (RE = Ce, La, Sm, Gd) doped ZnO supported on KIT-6: Effect of RE dopants and interaction between active phase and support matrix

    Science.gov (United States)

    Li, Lu; Zhou, Pin; Zhang, Hongbo; Meng, Xianglong; Li, Juexiu; Sun, Tonghua

    2017-06-01

    Rare earth oxides (RE = Ce, La, Sm and Gd) doped ZnO supported on KIT-6 sorbents (RE-ZnO/KIT-6) were synthesized by sol-gel method and their performance for deep removal of H2S (bellow 0.1 ppmv) from gas stream at medium temperature was tested. The RE dopants (except Ce) significantly enhance the deep desulfurization capacity of ZnO/KIT-6 sorbent and maintained higher sulfur uptake capacities upon multiple cycles of regeneration by a simple thermal oxidation in 10 v% of O2 in N2 atmosphere. The results of SAXS, XRD, N2 physisorption, TEM, FIIR, and XPS implied that the KIT-6 structure of loading metal oxides remained intact. It was found that RE could hinder the ZnO crystal ripening during calcination resulted in smaller ZnO particles, enhance the interaction of ZnO and silica matrix to improve the dispersion of active phase on KIT-6. Furthermore, by increasing the outlayer electron density of Zn atom and oxygen transfer ability, the synergistic effect considered to be favorable for RE-ZnO/KIT-6 sulfidation. Even though the performance of improving ZnO dispersion was weaker than that of Sm and Gd, La-ZnO/KIT-6 performs the best deep desulfurizers by changing the surface chemical atmosphere for ZnO. Steam in the gas stream inhibited the capture of H2S by ZnO in the sorbents, in the case of La-ZnO/KIT-6, the steam content should control as lower as 5 v% to ensure the desulfurization efficiency and precision.

  9. Doping droops.

    Science.gov (United States)

    Chaturvedi, Aditi; Chaturvedi, Harish; Kalra, Juhi; Kalra, Sudhanshu

    2007-01-01

    Drug abuse is a major concern in the athletic world. The misconception among athletes and their coaches is that when an athlete breaks a record it is due to some "magic ingredient" and not because of training, hard work, mental attitude and championship performance. The personal motivation to win in competitive sports has been intensified by national, political, professional and economic incentives. Under this increased pressure athletes have turned to finding this "magic ingredient". Athlete turns to mechanical (exercise, massage), nutritional (vitamins, minerals), pharmacological (medicines) or gene therapies to have an edge over other players. The World Anti-Doping Agency (WADA) has already asked scientists to help find ways to prevent gene therapy from becoming the newest form of doping. The safety of the life of athletes is compromised with all forms of doping techniques, be it a side effect of a drug or a new technique of gene doping.

  10. Smart Self-Assembled Nanosystem Based on Water-Soluble Pillararene and Rare-Earth-Doped Upconversion Nanoparticles for pH-Responsive Drug Delivery.

    Science.gov (United States)

    Li, Haihong; Wei, Ruoyan; Yan, Gui-Hua; Sun, Ji; Li, Chunju; Wang, Haifang; Shi, Liyi; Capobianco, John A; Sun, Lining

    2018-01-24

    Exploring novel drug delivery systems with good stability and new structure to integrate pillararene and upconversion nanoparticles (UCNPs) into one system continues to be an important challenge. Herein, we report a novel preparation of a supramolecular upconversion nanosystem via the host-guest complexation based on carboxylate-based pillar[5]arene (WP5) and 15-carboxy-N,N,N-trialkylpentadecan-1-ammonium bromide (1)-functionalized UCNPs to produce WP5⊃1-UCNPs that can be loaded with the chemotherapeutic drug doxorubicin (DOX). Importantly, the WP5 on the surface of the drug-loaded nanosystem can be efficiently protonated under acidic conditions, resulting in the collapse of the nanosystem and drug release. Moreover, cellular uptake confirms that the nanosystem can enter human cervical cancer (HeLa) cells, resulting in drug accumulation in the cells. More importantly, cytotoxicity experiments demonstrated the excellent biocompatibility of WP5⊃1-UCNPs without loading DOX and that the nanosystem DOX-WP5⊃1-UCNPs exhibited an ability of killing HeLa cells effectively. We also investigated magnetic resonance imaging and upconversion luminescence imaging, which may be employed as visual imaging agents in cancer diagnosis and treatment. Thus, in the present work, we show a simple yet powerful strategy to combine UCNPs and pillar[5]arene to produce a unified nanosystem for dual-mode bioimaging-guided therapeutic applications.

  11. Investigation of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors for logic application

    Science.gov (United States)

    Tsai, Jung-Hui

    2014-01-01

    DC performance of InP/InGaAs metamorphic co-integrated complementary doping-channel field-effect transistors (DCFETs) grown on a low-cost GaAs substrate is first demonstrated. In the complementary DCFETs, the n-channel device was fabricated on the InxGa1-xP metamorphic linearly graded buffer layer and the p-channel field-effect transistor was stacked on the top of the n-channel device. Particularly, the saturation voltage of the n-channel device is substantially reduced to decrease the VOL and VIH values attributed that two-dimensional electron gas is formed and could be modulated in the n-InGaAs channel. Experimentally, a maximum extrinsic transconductance of 215 (17) mS/mm and a maximum saturation current density of 43 (-27) mA/mm are obtained in the n-channel (p-channel) device. Furthermore, the noise margins NMH and NML are up to 0.842 and 0.330 V at a supply voltage of 1.5 V in the complementary logic inverter application.

  12. Optimization of Low-Loss AL2O3 Waveguide Fabrication for Application in Active Integrated Optical Devices

    NARCIS (Netherlands)

    Ay, F.; Pollnau, Markus; Masscher, P.; Worhoff, Kerstin; Misra, D

    2006-01-01

    In this paper we will present the fabrication and properties of reactively co-sputtered $AL_{2}O_{3}$ layers, being a very promising host material for active integrated optics applications such as rare-earth ion doped laser devices. The process optimization towards a reactive co-sputtering process,

  13. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    Science.gov (United States)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  14. Luminescence and Gain in Co-Sputtered Al2O3 Erbium-Doped Waveguides

    National Research Council Canada - National Science Library

    Johnson, Klein

    1996-01-01

    Rare earth doping of planar waveguides may potentially yield very compact optical amplifiers, lasers, and amplified spontaneous emission light sources, as well as zero insertion loss waveguide routers...

  15. EarthScope's Plate Boundary Observatory in Alaska: Building on Existing Infrastructure to Provide a Platform for Integrated Research and Hazard-monitoring Efforts

    Science.gov (United States)

    Boyce, E. S.; Bierma, R. M.; Willoughby, H.; Feaux, K.; Mattioli, G. S.; Enders, M.; Busby, R. W.

    2014-12-01

    EarthScope's geodetic component in Alaska, the UNAVCO-operated Plate Boundary Observatory (PBO) network, includes 139 continuous GPS sites and 41 supporting telemetry relays. These are spread across a vast area, from northern AK to the Aleutians. Forty-five of these stations were installed or have been upgraded in cooperation with various partner agencies and currently provide data collection and transmission for more than one group. Leveraging existing infrastructure normally has multiple benefits, such as easier permitting requirements and costs savings through reduced overall construction and maintenance expenses. At some sites, PBO-AK power and communications systems have additional capacity beyond that which is needed for reliable acquisition of GPS data. Where permits allow, such stations could serve as platforms for additional instrumentation or real-time observing needs. With the expansion of the Transportable Array (TA) into Alaska, there is increased interest to leverage existing EarthScope resources for station co-location and telemetry integration. Because of the complexity and difficulty of long-term O&M at PBO sites, however, actual integration of GPS and seismic equipment must be considered on a case-by-case basis. UNAVCO currently operates two integrated GPS/seismic stations in collaboration with the Alaska Earthquake Center, and three with the Alaska Volcano Observatory. By the end of 2014, PBO and TA plan to install another four integrated and/or co-located geodetic and seismic systems. While three of these are designed around existing PBO stations, one will be a completely new TA installation, providing PBO with an opportunity to expand geodetic data collection in Alaska within the limited operations and maintenance phase of the project. We will present some of the design considerations, outcomes, and lessons learned from past and ongoing projects to integrate seismometers and other instrumentation at PBO-Alaska stations. Developing the PBO

  16. New Erbium Doped Antimony Glasses for Laser and Glass ...

    African Journals Online (AJOL)

    Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses.

  17. Local Observability Analysis of Star Sensor Installation Errors in a SINS/CNS Integration System for Near-Earth Flight Vehicles.

    Science.gov (United States)

    Yang, Yanqiang; Zhang, Chunxi; Lu, Jiazhen

    2017-01-16

    Strapdown inertial navigation system/celestial navigation system (SINS/CNS) integrated navigation is a fully autonomous and high precision method, which has been widely used to improve the hitting accuracy and quick reaction capability of near-Earth flight vehicles. The installation errors between SINS and star sensors have been one of the main factors that restrict the actual accuracy of SINS/CNS. In this paper, an integration algorithm based on the star vector observations is derived considering the star sensor installation error. Then, the star sensor installation error is accurately estimated based on Kalman Filtering (KF). Meanwhile, a local observability analysis is performed on the rank of observability matrix obtained via linearization observation equation, and the observable conditions are presented and validated. The number of star vectors should be greater than or equal to 2, and the times of posture adjustment also should be greater than or equal to 2. Simulations indicate that the star sensor installation error could be readily observable based on the maneuvering condition; moreover, the attitude errors of SINS are less than 7 arc-seconds. This analysis method and conclusion are useful in the ballistic trajectory design of near-Earth flight vehicles.

  18. Local Observability Analysis of Star Sensor Installation Errors in a SINS/CNS Integration System for Near-Earth Flight Vehicles

    Directory of Open Access Journals (Sweden)

    Yanqiang Yang

    2017-01-01

    Full Text Available Strapdown inertial navigation system/celestial navigation system (SINS/CNS integrated navigation is a fully autonomous and high precision method, which has been widely used to improve the hitting accuracy and quick reaction capability of near-Earth flight vehicles. The installation errors between SINS and star sensors have been one of the main factors that restrict the actual accuracy of SINS/CNS. In this paper, an integration algorithm based on the star vector observations is derived considering the star sensor installation error. Then, the star sensor installation error is accurately estimated based on Kalman Filtering (KF. Meanwhile, a local observability analysis is performed on the rank of observability matrix obtained via linearization observation equation, and the observable conditions are presented and validated. The number of star vectors should be greater than or equal to 2, and the times of posture adjustment also should be greater than or equal to 2. Simulations indicate that the star sensor installation error could be readily observable based on the maneuvering condition; moreover, the attitude errors of SINS are less than 7 arc-seconds. This analysis method and conclusion are useful in the ballistic trajectory design of near-Earth flight vehicles.

  19. Optical and structural characterization of the pure and doped BaY{sub 2}F{sub 8} with rare earths for application in radiation detectors and scintillators; Caracterizacao optica e estrutural do BaY{sub 2}F{sub 8} puro e dopado com terras raras visando aplicacao em detectores de radiacao e cintiladores

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Ana Carolina Santana de

    2008-07-01

    In this work Barium Yttrium Fluoride (BaY{sub 2}F{sub 8} -BaYF) doped with different concentrations of ions Tb{sup 3+}, Er{sup 3+}, Tm{sup 3+} e Nd{sup 3+} were characterized, aiming the application in radiation detection devices that use the scintillating properties. Two types of samples were produced in the CLA-IPEN-SP, polycrystalline samples, obtained via solid state reaction of BaF{sub 2} and YF{sub 3} under HF atmosphere, and single crystals, obtained via the zone melting method also in a HF atmosphere. The samples were characterized using the following experimental techniques: X-ray powder diffraction, Radioluminescence (RL), Optical Absorption and Dispersive X-ray Absorption Spectroscopy (DXAS). The X-ray diffraction pattern showed the presence of the phase BaY{sub 2}F{sub 8} and a small amount of the phase Ba{sub 4}Y{sub 3}F{sub 17} in the polycrystalline pure and Tb{sup 3+}doped samples. The other samples showed only the desired BaY{sub 2}F{sub 8} phase. The radioluminescence measurements of the doped BaYF, when irradiated with X-rays, showed emission peaks in energies that are characteristics of the 4f-4f transitions of rare earths. The RL of the samples with 2 mol por cent and 3 mold of Tb{sup 3+}showed quite intense peaks with a maximum emission peak at 545 nm. The Tm{sup 3+}doped BYF showed that the scintillation efficiency is not directly proportional to the doping level, and the highest RL emission were obtained for the polycrystalline samples doped with 1 mol por cent, showing a maximum peak intensity at 456 nm (the blue region of the visible spectrum). All samples showed a phosphorescent decay time of the order of seconds. Single crystals of BaYF doped with 2 mol por cent of Er{sup 3+}, in addition to one of the highest phosphorescence time, presents a quite strong Rl in the green region of the spectra. The radiation damage was evaluated by the optical absorption techniques and the results showed that the formation of the absorption bands can be

  20. Photo darkening of rare earth doped silica

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    2011-01-01

    The photo darkening (PD) absorption spectra from unseeded amplifier operation (by 915 nm pumping) of ytterbium/aluminum and codoped silica fibers is after prolonged operation observed to develop a characteristic line at 2.6 eV (477 nm). This line is proposed to be due to inter center excitation t...

  1. An integrated approach for estimating global glacio isostatic adjustment, land ice, hydrology and ocean mass trends within a complete coupled Earth system framework

    Science.gov (United States)

    Schumacher, M.; Bamber, J. L.; Martin, A.

    2016-12-01

    Future sea level rise (SLR) is one of the most serious consequences of climate change. Therefore, understanding the drivers of past sea level change is crucial for improving predictions. SLR integrates many Earth system components including oceans, land ice, terrestrial water storage, as well as solid Earth effects. Traditionally, each component have been tackled separately, which has often lead to inconsistencies between discipline-specific estimates of each part of the sea level budget. To address these issues, the European Research Council has funded a five year project aimed at producing a physically-based, data-driven solution for the complete coupled land-ocean-solid Earth system that is consistent with the full suite of observations, prior knowledge and fundamental geophysical constraints. The project is called "GlobalMass" and based at University of Bristol. Observed mass movement from the GRACE mission plus vertical land motion from a global network of permanent GPS stations will be utilized in a data-driven approach to estimate glacial isostatic adjustment (GIA) without introducing any assumptions about the Earth structure or ice loading history. A Bayesian Hierarchical Model (BHM) will be used as the framework to combine the satellite and in-situ observations alongside prior information that incorporates the physics of the coupled system such as conservation of mass and characteristic length scales of different processes in both space and time. The BHM is used to implement a simultaneous solution at a global scale. It will produce a consistent partitioning of the integrated SLR signal into its steric (thermal) and barystatic (mass) component for the satellite era. The latter component is induced by hydrological mass trends and melting of land ice. The BHM was developed and tested on Antarctica, where it has been used to separate surface, ice dynamic and GIA signals simultaneously. We illustrate the approach and concepts with examples from this test case

  2. Observation of frequency doubling in tantalum doped silica fibres

    Science.gov (United States)

    Driscoll, T. J.; Lawandy, N. M.; Killian, A.; Rienhart, L.; Morse, T. F.

    1991-01-01

    Second harmonic conversion efficients of 3 x 0,0001 in tantalum-doped silica fibers prepared by the seeding technique are reported. A series of experiments were conducted to characterize the frequency doubling in this fiber and to compare the results to the behavior observed in germanosilicate and rare earth-doped aluminosilicate fibers.

  3. The fractionation and geochemical characteristics of rare earth elements measured in ambient size-resolved PM in an integrated iron and steelmaking industry zone.

    Science.gov (United States)

    Dai, Qili; Li, Liwei; Yang, Jiamei; Liu, Baoshuang; Bi, Xiaohui; Wu, Jianhui; Zhang, YuFen; Yao, Lin; Feng, Yinchang

    2016-09-01

    Improved understanding of the fractionation and geochemical characteristic of rare earth elements (REEs) from steel plant emissions is important due to the unclear atmospheric signature of these elements and their adverse impact on human health and the environment. In this study, ambient particulate matter of different sizes was collected from one site in an integrated iron and steelmaking industrial zone (HG) and one urban background site with no direct industrial emissions (ZWY) during a 1-year sampling campaign in China. The total concentrations of REEs for TSP, PM10, and PM2.5 were 27.248, 14.989, 3.542 ng/m(3) in HG and 6.326, 5.274, 1.731 ng/m(3), respectively, in ZWY, which revealed the local influence of the steelmaking activities to the air quality. With respect to ZWY, the REEs in HG site are obviously fractionated in the coarser fraction, and LREEs account for more than 80 % of the total REE burden in all of the samples. Additionally, the REEs in HG and ZWY show a homogeneous trend with successively increased LREE/HREE ratios from the coarse particles to the fine particles. In our samples, La, Ce, Nd, and Sm are the most enriched rare earth elements, especially in the HG site. Moreover, ternary diagrams of LaCeSm indicate that the REEs in HG are potentially contributed by steelworks, carrier vehicles, coal combustion, and road dust re-suspension.

  4. Expedition Earth and Beyond: Engaging Classrooms in Student-Led Research Using NASA Data, Access to Scientists, and Integrated Educational Strategies

    Science.gov (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.; McCollum, T.; Baker, M.; Lindgren, C.; Mailhot, M.

    2011-01-01

    Classroom teachers are challenged with engaging and preparing today s students for the future. Activities are driven by state required skills, education standards, and high-stakes testing. Providing educators with standards-aligned, inquiry-based activities that will help them engage their students in student-led research in the classroom will help them teach required standards, essential skills, and help inspire their students to become motivated learners. The Astromaterials Research and Exploration Science (ARES) Education Program, classroom educators, and ARES scientists at the NASA Johnson Space Center created the Expedition Earth and Beyond education program to help teachers promote student-led research in their classrooms (grades 5-14) by using NASA data, providing access to scientists, and using integrated educational strategies.

  5. INTEGRAL observations of the cosmic X-ray background in the 5-100 keV range via occultation by the Earth

    DEFF Research Database (Denmark)

    Churazov, E.; Sunyaev, R.; Revnivtsev, M.

    2007-01-01

    Aims. We study the spectrum of the cosmic X-ray background (CXB) in energy range similar to 5-100 keV. Methods. Early in 2006 the INTEGRAL observatory performed a series of four 30 ks observations with the Earth disk crossing the field of view of the instruments. The modulation of the aperture fl...... release of supermassive black holes in the Universe and their growth at the epoch of the CXB origin........ This difference in normalization can ( at least partly) be traced to the different assumptions on the absolute flux from the Crab Nebulae. The increase relative to the earlier adopted value of the absolute flux of the CXB near the energy of maximum luminosity (20-50 keV) has direct implications for the energy...

  6. Peru Water Resources: Integrating NASA Earth Observations into Water Resource Planning and Management in Perus La Libertad Region

    Science.gov (United States)

    Padgett-Vasquez, Steve; Steentofte, Catherine; Holbrook, Abigail

    2014-01-01

    Developing countries often struggle with providing water security and sanitation services to their populations. An important aspect of improving security and sanitation is developing a comprehensive understanding of the country's water budget. Water For People, a non-profit organization dedicated to providing clean drinking water, is working with the Peruvian government to develop a water budget for the La Libertad region of Peru which includes the creation of an extensive watershed management plan. Currently, the data archive of the necessary variables to create the water management plan is extremely limited. Implementing NASA Earth observations has bolstered the dataset being used by Water For People, and the METRIC (Mapping EvapoTranspiration at High Resolution and Internalized Calibration) model has allowed for the estimation of the evapotranspiration values for the region. Landsat 8 imagery and the DEM (Digital Elevation Model) from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor onboard Terra were used to derive the land cover information, and were used in conjunction with local weather data of Cascas from Peru's National Meteorological and Hydrological Service (SENAMHI). Python was used to combine input variables and METRIC model calculations to approximate the evapotranspiration values for the Ochape sub-basin of the Chicama River watershed. Once calculated, the evapotranspiration values and methodology were shared Water For People to help supplement their decision support tools in the La Libertad region of Peru and potentially apply the methodology in other areas of need.

  7. An Integrated Modeling System for Estimating Glacier and Snow Melt Driven Streamflow from Remote Sensing and Earth System Data Products in the Himalayas

    Science.gov (United States)

    Brown, M. E.; Racoviteanu, A. E.; Tarboton, D. G.; Sen Gupta, A.; Nigro, J.; Policelli, F.; Habib, S.; Tokay, M.; Shrestha, M. S.; Bajracharya, S.

    2014-01-01

    Quantification of the contribution of the hydrologic components (snow, ice and rain) to river discharge in the Hindu Kush Himalayan (HKH) region is important for decision-making in water sensitive sectors, and for water resources management and flood risk reduction. In this area, access to and monitoring of the glaciers and their melt outflow is challenging due to difficult access, thus modeling based on remote sensing offers the potential for providing information to improve water resources management and decision making. This paper describes an integrated modeling system developed using downscaled NASA satellite based and earth system data products coupled with in-situ hydrologic data to assess the contribution of snow and glaciers to the flows of the rivers in the HKH region. Snow and glacier melt was estimated using the Utah Energy Balance (UEB) model, further enhanced to accommodate glacier ice melt over clean and debris-covered tongues, then meltwater was input into the USGS Geospatial Stream Flow Model (Geo- SFM). The two model components were integrated into Better Assessment Science Integrating point and Nonpoint Sources modeling framework (BASINS) as a user-friendly open source system and was made available to countries in high Asia. Here we present a case study from the Langtang Khola watershed in the monsoon-influenced Nepal Himalaya, used to validate our energy balance approach and to test the applicability of our modeling system. The snow and glacier melt model predicts that for the eight years used for model evaluation (October 2003-September 2010), the total surface water input over the basin was 9.43 m, originating as 62% from glacier melt, 30% from snowmelt and 8% from rainfall. Measured streamflow for those years were 5.02 m, reflecting a runoff coefficient of 0.53. GeoSFM simulated streamflow was 5.31 m indicating reasonable correspondence between measured and model confirming the capability of the integrated system to provide a quantification

  8. Lessons Learned in the Integration of Earth Remote Sensing Data within the NOAA/NWS Damage Assessment Toolkit

    Science.gov (United States)

    Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Meyer, P. J.; Burks, J.; Camp, P.; Angle, K.

    2016-12-01

    Following the occurrence of a suspected or known tornado, meteorologists with NOAA's National Weather Service are tasked with performing a detailed ground survey to map the impacts of the tornado, identify specific damage indicators, and link those damage indicators to the Enhanced Fujita scale as an estimate of the intensity of the tornado at various points along the damage path. Over the past few years, NOAA/NWS meteorologists have developed the NOAA/NWS Damage Assessment Toolkit (DAT), a smartphone and web based application to support the collection of damage information, editing of the damage survey, and final publication. This allows meteorologists in the field to sample the damage track, collect geotagged photos with notations of damage areas, and aggregation of the information to provide a more detailed survey whereas previous efforts may have been limited to start and end locations, maximum width, and maximum intensity. To support these damage assessment efforts, various Earth remote sensing data sets were incorporated into the DAT to support survey efforts, following preliminary activities using remote sensing to support select NOAA/NWS field offices following the widespread outbreak of tornadoes that occurred in the southeastern United States on April 27, 2011. These efforts included the collection of various products in collaboration with multiple federal agencies and commercial providers, with particular emphasis upon the USGS Hazards Data Distribution System, hosting and sharing of these products through geospatial platforms, partnerships with forecasters to better understand their needs, and the development and delivery of training materials. This presentation will provide an overview of the project along with strengths and weaknesses, opportunities for future work and improvements, and best practices learned during the "research to applications" process supported by the NASA Applied Sciences: Disasters program.

  9. Integrating Electromagnetic Data with Other Geophysical Observations for Enhanced Imaging of the Earth: A Tutorial and Review

    Science.gov (United States)

    Moorkamp, Max

    2017-09-01

    In this review, I discuss the basic principles of joint inversion and constrained inversion approaches and show a few instructive examples of applications of these approaches in the literature. Starting with some basic definitions of the terms joint inversion and constrained inversion, I use a simple three-layered model as a tutorial example that demonstrates the general properties of joint inversion with different coupling methods. In particular, I investigate to which extent combining different geophysical methods can restrict the set of acceptable models and under which circumstances the results can be biased. Some ideas on how to identify such biased results and how negative results can be interpreted conclude the tutorial part. The case studies in the second part have been selected to highlight specific issues such as choosing an appropriate parameter relationship to couple seismic and electromagnetic data and demonstrate the most commonly used approaches, e.g., the cross-gradient constraint and direct parameter coupling. Throughout the discussion, I try to identify topics for future work. Overall, it appears that integrating electromagnetic data with other observations has reached a level of maturity and is starting to move away from fundamental proof-of-concept studies to answering questions about the structure of the subsurface. With a wide selection of coupling methods suited to different geological scenarios, integrated approaches can be applied on all scales and have the potential to deliver new answers to important geological questions.

  10. Rare earth mineral potential in the southeastern U.S. Coastal Plain from integrated geophysical, geochemical, and geological approaches

    Science.gov (United States)

    Shah, Anjana K.; Bern, Carleton R.; Van Gosen, Bradley S.; Daniels, David L.; Benzel, William M.; Budahn, James R.; Ellefsen, Karl J.; Karst, Adam; Davis, Richard

    2017-01-01

    We combined geophysical, geochemical, mineralogical, and geological data to evaluate the regional presence of rare earth element (REE)−bearing minerals in heavy mineral sand deposits of the southeastern U.S. Coastal Plain. We also analyzed regional differences in these data to determine probable sedimentary provenance. Analyses of heavy mineral separates covering the region show strong correlations between thorium, monazite, and xenotime, suggesting that radiometric equivalent thorium (eTh) can be used as a geophysical proxy for those REE-bearing minerals. Airborne radiometric data collected during the National Uranium Resource Evaluation (NURE) program cover the southeastern United States with line spacing varying from ∼2 to 10 km. These data show eTh highs over Cretaceous and Tertiary Coastal Plain sediments from the Cape Fear arch in North Carolina to eastern Alabama; these highs decrease with distance from the Piedmont. Quaternary sediments along the modern coasts show weaker eTh anomalies, except near coast-parallel ridges from South Carolina to northern Florida. Prominent eTh anomalies are also observed over large riverbeds and their floodplains, even north of the Cape Fear arch where surrounding areas are relatively low. These variations were verified using ground geophysical measurements and sample analyses, indicating that radiometric methods are a useful exploration tool at varying scales. Further analyses of heavy mineral separates showed regional differences, not only in concentrations of monazite, but also of rutile and staurolite, and in magnetic susceptibility. The combined properties suggest the presence of subregions where heavy mineral sediments are primarily sourced from high-grade metamorphic, low-grade metamorphic, or igneous terrains, or where they represent a mixing of these sources. Comparisons between interpreted sources of heavy mineral sands near the Fall Line and igneous and metamorphic Piedmont and Blue Ridge units showed a strong

  11. Stand-alone photovoltaic (PV) integrated with earth to air heat exchanger (EAHE) for space heating/cooling of adobe house in New Delhi (India)

    Energy Technology Data Exchange (ETDEWEB)

    Chel, Arvind; Tiwari, G.N. [Center for Energy Studies (CES), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 (India)

    2010-03-15

    This paper deals with an experimental outdoor annual performance evaluation of 2.32 kW{sub P} photovoltaic (PV) power system located at solar energy park in New Delhi composite climatic conditions. This PV system operates the daily electrical load nearly 10 kW h/day which comprises of various applications such as electric air blower of an earth to air heat exchanger (EAHE) used for heating/cooling of adobe house, ceiling fan, fluorescent tube-light, computer, submersible water pump, etc. The outdoor efficiencies, power generated and lost in PV system components were determined using hourly experimental measured data for 1 year on typical clear day in each month. These realistic data are useful for design engineers for outdoor assessment of PV system components. The energy conservation, mitigation of CO{sub 2} emission and carbon credit potential of the existing PV integrated EAHE system is presented in this paper. Also, the energy payback time (EPBT) and unit cost of electricity were determined for both stand-alone PV (SAPV) and building roof integrated PV (BIPV) systems. (author)

  12. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers; Etat de l`art des lasers a fibre, etude d`un laser a fibre dopee ytterbium et spectroscopie laser de fibres dopees

    Energy Technology Data Exchange (ETDEWEB)

    Magne, S.

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs.

  13. Copper doped borate dosimeters revisited

    Energy Technology Data Exchange (ETDEWEB)

    Alajerami, Y.S.M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Department of Medical Radiography, Al-Azhar University, Gaza Strip, Palestine (Country Unknown); Hashim, S., E-mail: suhairul@utm.my [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Oncology Treatment Centre, Sultan Ismail Hospital, 81100 Johor Bahru (Malaysia); Ghoshal, S.K. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Bradley, D.A. [Centre for Nuclear and Radiation Physics, Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mhareb, M. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Saleh, M.A. [Department of Physics, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); National Atomic Energy Commission (NATEC), Sana' a (Yemen)

    2014-11-15

    We render a panoramic overview on copper (Cu) doped borate dosimeters. Preparing a dosimeter by mixing specific materials with precise weights and methods is a never-ending quest. The recommended composition is highly decisive for accurate estimation of the absorbed dose, prediction of the biological outcome, determination of the treatment dose for radiation therapy and facilitation of personal monitoring. Based on these principles, the proposed dosimeter must cover a series of dosimetric properties to realize the exact results and assessment. The doped borate dosimeters indeed demonstrate attractive thermoluminescence (TL) features. Several dedicated efforts are attempted to improve the luminescence properties by doping various transition metals or rare-earth elements. The Cu ion being one of the preferred activators shows excellent TL properties as revealed via detail comparison with other dosimeters. Two oxide states of Cu (Cu{sup +} and Cu{sup ++}) with reasonable atomic number allow easy interaction with boron network. Interestingly, the intrinsic luminescent centers of borate lattice are in cross linked with that of Cu{sup +} ions. Thus, the activation of borate dosimeter with Cu ions for the enhancement of the TL sensitivity is recognized. These dosimeters reveal similar glow curves as the standard TLD-100 (LiF:Mg,Ti) one irrespective of the use of modifiers and synthesis techniques. They display high sensitivity, low fading, dose response linearity over wide range and practical minimum detectable dose. Furthermore, the effective atomic number being the most beneficial aspect (equivalent to that of human tissue) of borate dosimeters do not show any change due to Cu ion activations. The past development, major challenges, excitement, applications, recent progress and the future promises of Cu doped borate TL dosimeters are highlighted. - Highlights: • The manuscript gives a panoramic overview on copper doped borate dosimeters. • Cu ions activated

  14. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  15. A new theory of doped manganites exhibiting colossal ...

    Indian Academy of Sciences (India)

    Rare earth manganites doped with alkaline earths, namely Re1-AMnO3, exhibit colossal magnetoresistance, metal insulator transitions, competing magnetic, orbital and charge ordering, and many other interesting but poorly understood phenomena. In this article I outline our recent theory based on the idea that in the ...

  16. Heteroatom doped graphene in photocatalysis: A review

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Lutfi Kurnianditia; Ong, Wee-Jun [Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor (Malaysia); Chang, Wei Sea [Mechanical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor (Malaysia); Chai, Siang-Piao, E-mail: chai.siang.piao@monash.edu [Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor (Malaysia)

    2015-12-15

    Graphical abstract: - Highlights: • Doping graphene with foreign atoms extends its function in the photocatalyst system. • Chemically doped graphene improved the electrical conductivity. • Chemically doped graphene outperform conventional rGO as a semiconductor support. • Chemically doped graphene cause bandgap opening and formation of catalytic sites. • Chemically doped graphene can behave as functional standalone photocatalyst. - Abstract: Photocatalysis has been a focus of great attention due to its useful environmental applications such as eliminating hazardous pollutants and generating sustainable energy. Coincidentally, graphene, a 2D allotrope of carbon, has also infiltrated many research fields due to its outstanding properties – photocatalysis being no exception. As of recent, there has been growing research focus on heteroatom (O, N, B, P and S) doping of graphene and its emergent application opportunities. In this study, rather than the familiar graphene as the electron transfer medium that is normally integrated in a photocatalyst system, we contrarily explore the implication of heteroatom doped graphene and the underlying mechanism behind their advantageous uses in photocatalysis. This review surveys the literature and highlights recent progress and challenges in the development of chemically doped graphene in the photocatalysis scene. It is desired that this review will promote awareness and encourage further investigations for the development in this budding research area.

  17. The Concept Mastery in the Perspective of Gender of Junior High School Students on Eclipse Theme in Multiple Intelligences-based of Integrated Earth and Space Science Learning

    Science.gov (United States)

    Liliawati, W.; Utama, J. A.; Mursydah, L. S.

    2017-03-01

    The purpose of this study is to identify gender-based concept mastery differences of junior high school students after the implementation of multiple intelligences-based integrated earth and space science learning. Pretest-posttest group design was employed to two different classes at one of junior high school on eclipse theme in Tasikmalaya West Java: one class for boys (14 students) and one class of girls (18 students). The two-class received same treatment. The instrument of concepts mastery used in this study was open-ended eight essay questions. Reliability test result of this instrument was 0.9 (category: high) while for validity test results were high and very high category. We used instruments of multiple intelligences identification and learning activity observation sheet for our analysis. The results showed that normalized N-gain of concept mastery for boys and girls were improved, respectively 0.39 and 0.65. Concept mastery for both classes differs significantly. The dominant multiple intelligences for boys were in kinesthetic while girls dominated in the rest of multiple intelligences. Therefor we concluded that the concept mastery was influenced by gender and student’s multiple intelligences. Based on this finding we suggested to considering the factor of gender and students’ multiple intelligences given in the learning activity.

  18. First steps of integrated spatial modeling of titanium, zirconium, and rare earth element resources within the Coastal Plain sediments of the southeastern United States

    Science.gov (United States)

    Ellefsen, Karl J.; Van Gosen, Bradley S.; Fey, David L.; Budahn, James R.; Smith, Steven M.; Shah, Anjana K.

    2015-01-01

    The Coastal Plain of the southeastern United States has extensive, unconsolidated sedimentary deposits that are enriched in heavy minerals containing titanium, zirconium, and rare earth element resources. Areas favorable for exploration and development of these resources are being identified by geochemical data, which are supplemented with geological, geophysical, hydrological, and geographical data. The first steps of this analysis have been completed. The concentrations of lanthanum, yttrium, and titanium tend to decrease as distance from the Piedmont (which is the likely source of these resources) increases and are moderately correlated with airborne measurements of equivalent thorium concentration. The concentrations of lanthanum, yttrium, and titanium are relatively high in those watersheds that adjoin the Piedmont, south of the Cape Fear Arch. Although this relation suggests that the concentrations are related to the watersheds, it may be simply an independent regional trend. The concentration of zirconium is unrelated to the distance from the Piedmont, the equivalent thorium concentration, and the watershed. These findings establish a foundation for more sophisticated analyses using integrated spatial modeling.

  19. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  20. A first principles study of Nd doped cubic LaAlO{sub 3} perovskite: mBJ+U study

    Energy Technology Data Exchange (ETDEWEB)

    Sandeep, E-mail: sndp.chettri@gmail.com [Dept. of Physics, Mizoram University, Aizawl 796004 (India); Rai, D.P. [Dept. of Physics, Pachhunga University College, Aizawl, Mizoram 796001 (India); Shankar, A. [Department of Physics, University of North Bengal, Darjeeling 734013 (India); Ghimire, M.P. [Condensed Matter Physics Research Center, Butwal-13, Rupandehi, Lumbini (Nepal); Khenata, R. [Laboratoire de Physique Quantique et de Modlisation Mathmatique (LPQ3M), Dpartement de Technologie, Universit de Mascara, 29000 Mascara (Algeria); Thapa, R.K. [Dept. of Physics, Mizoram University, Aizawl 796004 (India)

    2016-11-01

    The structural, electronic and magnetic properties of Nd-doped Rare earth aluminate, La{sub 1−x}Nd{sub x}AlO{sub 3} (x=0–100%) are studied using the full potential linearized augmented plane-wave (FP-LAPW) method within the density functional theory. The effects of Nd substitution in LaAlO{sub 3} are studied using super-cell calculations. The electronic structures were computed using modified Beck Johnson (mBJ) potential based approximation with the inclusion of Coulomb energy (U) for Nd-4f state electrons. The La{sub 1−x}Nd{sub x}AlO{sub 3} may possess half metallic behavior on Nd doping with finite density of states at E{sub F}. The direct and indirect band gaps were studied as a function of Nd concentration in LaAlO{sub 3}. The calculated magnetic moments in La{sub 1−x}Nd{sub x}AlO{sub 3} were found to arise mainly from the Nd-4f state electrons. A probable half-metallic nature is suggested for these systems with supportive integral magnetic moments and high spin polarized electronic structures in these doped cases at E{sub F}. The controlled decrease in band gap with increase in concentration of Nd doping is a suitable technique for harnessing useful spintronic and magnetic devices. - Highlights: • Electronic and magnetic properties of La{sub 1−x}Nd{sub x}AlO{sub 3} to study the effect of doping (x=0%, 25%, 50%, 75% and 100%) is carried out using DFT. • Theoretically calculated U was used in the mBJ+U approximation in order to stress accuracy in band-gap determination along with electron correlation effects in rare earth ions. • A high DOS at E{sub F} for certain doping concentrations in one spin channel with insulting DOS in the other channel supported their probable use as spintronic devices. • The change in doping concentration was found suitable for rare earth aluminates for desirable properties through band-gap tuning.

  1. Earth\\'s Mass Variability

    CERN Document Server

    Mawad, Ramy

    2014-01-01

    The perturbation of the Earth caused by variability of mass of Earth as additional reason with gravity of celestial bodies and shape of the Earth. The Earth eating and collecting matters from space and loss or eject matters to space through its flying in the space around the Sun. The source of the rising in the global sea level is not closed in global warming and icebergs, but the outer space is the additional important source for this rising. The Earth eats waters from space in unknown mechanism. The mass of the Earth become greater in November i.e. before transit apoapsis two months, and become latter in February i.e. after transit apoapsis to two months.

  2. Analysis of broadband near-infrared emission in ABCO4 and ABC3O7 crystals (A=Sr, Ba; B=La, Gd; C=Al, Ga) doped with rare earth and transition metals

    Science.gov (United States)

    Ryba-Romanowski, Witold

    1997-11-01

    Overview of basic spectroscopic properties of several crystals belonging to two wide families of compounds is presented. Both the families form tetragonal crystals with layered structure and show certain structural disorder resulting from random distribution of divalent A atoms and trivalent B atoms. After presenting some details concerning the crystal growth and structural investigation, the nature of activator sites in the matrices is discussed. Then, the emission spectra as well as relaxation dynamics of Nd3+, Yb3+, and Tm3+ are analyzed. After that, the basic spectroscopic features of chromium doped crystals are given. In conclusion, suitability of the crystals for the design of tunable lasers is discussed.

  3. An integrated study of earth resources in the state of California using remote sensing techniques. [planning and management of water resources

    Science.gov (United States)

    Colwell, R. N.; Churchman, C. W.; Burgy, R. H.; Schubert, G.; Estes, J. E.; Bowden, L. W.; Algazi, R.; Coulson, K. L. (Principal Investigator)

    1973-01-01

    The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources.

  4. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  5. Polar Misunderstandings: Earth's Dynamic Dynamo

    Science.gov (United States)

    DiSpezio, Michael A.

    2011-01-01

    This article discusses the movement of Earth's north and south poles. The Earth's poles may be a bit more complex and dynamic than what many students and teachers believe. With better understanding, offer them up as a rich landscape for higher-level critical analysis and subject integration. Possible curriculum tie-ins include magnets, Earth…

  6. Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System

    National Research Council Canada - National Science Library

    Radoslaw Guzinski; Steve Kass; Silvia Huber; Peter Bauer-Gottwein; Iris Hedegaard Jensen; Vahid Naeimi; Marcela Doubkova; Andreas Walli; Christian Tottrup

    2014-01-01

      The Water Observation and Information System (WOIS) is an open source software tool for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth Observation (EO) data...

  7. Yb-doped polarizing fiber

    Science.gov (United States)

    Gillooly, A.; Webb, A. S.; Favero, F. C.; Bouchan, T.; Cooper, L. J.; Read, D.; Hill, M.

    2017-02-01

    An ytterbium (Yb) doped polarizing fiber is demonstrated. The fiber offers the opportunity to build all-fiber lasers with single polarization output and without the need for free-space polarizing components. Traditional single polarization fiber lasers utilize polarization-maintaining (PM) gain fiber with a single polarization stimulation signal. Whilst this results in an approximation to a single polarization laser, the spontaneous emission from the unstimulated polarization state limits the polarization extinction ratio (PER). The PER is further limited as the stimulated signal is prone to crosstalk. Furthermore, controlling amplitude modulation of the stimulated signal is critical for maximizing the peak power of an optical pulse, particularly for high energy lasers. If light is allowed to leak in to the unstimulated axis it will travel at a different velocity to the stimulated axis and can cross-couple back into the signal axis, creating an interference effect which leads to amplitude modulation on the signal pulse. Single-polarization Yb-doped fiber ensures that light on the fast axis is constantly attenuated; ensuring that light on the unstimulated axis cannot propagate and thus cannot degrade the PER or create amplitude modulation. In this paper we report on, to the best of our knowledge, the first demonstration of a single polarization Yb-doped bowtie optical fiber manufactured using a combination of Modified Chemical Vapor Deposition (MCVD) and rare-earth solution doping technology. The fiber has a single-polarization window of 80nm at the operating wavelength of 1060nm and a PER of >18dB. The fabrication and characterization of the fiber is reported.

  8. Faraday rotation and photoluminescence in heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics.

    Science.gov (United States)

    Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A; Wondraczek, Lothar

    2015-03-10

    We report on the magneto-optical (MO) properties of heavily Tb(3+)-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb(3+) ion concentration of up to 9.7 × 10(21) cm(-3), the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400-1500 nm is found for a Tb(3+) concentration of ~6.5 × 10(21) cm(-3). For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb(3+) photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10(-21) cm(2) for ~ 5.0 × 10(21) cm(-3) Tb(3+). This results in an optical gain parameter σem*τ of ~2.5 × 10(-24) cm(2)s, what could be of interest for implementation of a Tb(3+) fiber laser.

  9. Faraday rotation and photoluminescence in heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses for fiber-integrated magneto-optics

    Science.gov (United States)

    Gao, Guojun; Winterstein-Beckmann, Anja; Surzhenko, Oleksii; Dubs, Carsten; Dellith, Jan; Schmidt, Markus A.; Wondraczek, Lothar

    2015-03-01

    We report on the magneto-optical (MO) properties of heavily Tb3+-doped GeO2-B2O3-Al2O3-Ga2O3 glasses towards fiber-integrated paramagnetic MO devices. For a Tb3+ ion concentration of up to 9.7 × 1021 cm-3, the reported glass exhibits an absolute negative Faraday rotation of ~120 rad/T/m at 632.8 nm. The optimum spectral ratio between Verdet constant and light transmittance over the spectral window of 400-1500 nm is found for a Tb3+ concentration of ~6.5 × 1021 cm-3. For this glass, the crystallization stability, expressed as the difference between glass transition temperature and onset temperature of melt crystallization exceeds 100 K, which is a prerequisite for fiber drawing. In addition, a high activation energy of crystallization is achieved at this composition. Optical absorption occurs in the NUV and blue spectral region, accompanied by Tb3+ photoluminescence. In the heavily doped materials, a UV/blue-to-green photo-conversion gain of ~43% is achieved. The lifetime of photoluminescence is ~2.2 ms at a stimulated emission cross-section σem of ~1.1 × 10-21 cm2 for ~ 5.0 × 1021 cm-3 Tb3+. This results in an optical gain parameter σem*τ of ~2.5 × 10-24 cm2s, what could be of interest for implementation of a Tb3+ fiber laser.

  10. Influence of high magnetic field on the luminescence of Eu3+-doped glass ceramics

    Science.gov (United States)

    Jiang, Wei; Zhang, Junpei; Chen, Weibo; Chen, Ping; Han, Junbo; Xu, Beibei; Zheng, Shuhong; Guo, Qiangbing; Liu, Xiaofeng; Qiu, Jianrong

    2014-09-01

    Rare earth (RE) doped materials have been widely exploited as the intriguing electronic configuration of RE ions offers diverse functionalities from optics to magnetism. However, the coupling of magnetism with photoluminescence (PL) in such materials has been rarely reported in spite of its fundamental significance. In the present paper, the effect of high pulsed magnetic field on the photoluminescence intensity of Eu3+-doped nano-glass-ceramics has been investigated. In our experiment, Eu-doped oxyfluoride glass and glass ceramic were prepared by the conventional melt-quenching process and controlled heat treatment. The results demonstrate that the integrated PL intensity of Eu3+ decreases with the enhancement of magnetic field, which can be interpreted in terms of cooperation effect of Zeeman splitting and magnetic field induced change in site symmetry. Furthermore, as a result of Zeeman splitting, both blue and red shift in the emission peaks of Eu3+ can be observed, and this effect becomes more prominent with the increase of magnetic field. Possible mechanisms associated with the observed magneto-optical behaviors are suggested. The results of the present paper may open a new gate for modulation of luminescence by magnetic field and remote optical detection of magnetic field.

  11. Decomposition kinetics of alkaline earth carbonates by integral approximation method Cinética de decomposição de carbonatos de terra alcalina pelo método de aproximação integral

    Directory of Open Access Journals (Sweden)

    S. Maitra

    2008-09-01

    Full Text Available The decomposition kinetics of four synthetic alkaline earth metal carbonates (MgCO3, CaCO3, SrCO3 and BaCO3 was studied under non-isothermal conditions from thermo-gravimetric measurements as compared to. The integral approximation method of Coats and Redfern was used to determine the kinetic parameters for the decomposition processes. The decomposition reactions followed mostly first order kinetics and the activation energy of the decomposition reactions increased with the increase in the molecular mass of the carbonates. The change in enthalpy for the decomposition processes was also calculated and compared with the activation energies for the decomposition processes. The activation energy of the decomposition process for all the carbonates was higher than the enthalpy of the reaction excepting SrCO3.A cinética de decomposição de quatro carbonatos sintéticos de metais de terra alcalina (MgCO3, CaCO3, SrCO3 e BaCO3 foi estudada sob condições não isotérmicas por meio de medidas de termogravimétricas e feita sua comparação. O método de aproximação integral de Coats e Redfern foi usado para determinar os parâmetros cinéticos dos processos de decomposição. As reações de decomposição seguiram principalmente cinética de primeira ordem e a energia de ativação para as reações de decomposição aumentou com o aumento da massa molecular dos carbonatos. A variação na entalpia para os processos de decomposição foi também calculada e comparada com as energias de ativação. A energia de ativação dos processos de decomposição de todos os carbonatos foi maior que a entalpia da reação excepto para SrCO3.

  12. Doping in competition or doping in sport?

    Science.gov (United States)

    Lippi, Giuseppe; Franchini, Massimo; Guidi, Gian Cesare

    2008-01-01

    Since ancient times, competitive athletes have been familiar with the use of ergogenic aids and they will probably continue to use unfair and harmful substances in future, because their inclination to victory, along with the mirage of glory and money, will probably overcome health and legal risks. We searched PubMed using the term doping over the period 1990 to the present day. We also included non-English journals. By literature searching, it emerges that the phenomenon of doping is complex and multifaceted. It involves a number of causes and factors that do not originate solely in the athletic field, making universality its main feature. It is in fact observed in all ages and levels of competition, and it concerns all sports, even the most unpredictable. The high number of athletes testing positive for anti-doping controls attests that the current strategy might be analytically adequate to unmask most (but not all) doping practices, but it is probably ineffective to prevent athletes to dope and modify this upsetting trend. Growing points As doping parallels the use of medications, food supplements, alcohol and social drugs, a reinforced preventive policy is advisable. The current anti-doping policy should be replaced with a more efficient and practical strategy to identify and monitor abnormal and harmful deviations of the biochemical and haematological profiles.

  13. Nanocrystalline Mg-doped Zinc Oxide Scintillator for UV detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA uses detectors for a broad range of wavelengths from UV to gamma for applications in astrophysics, earth science, heliophysics, and planetary science. Mg-doped...

  14. Performance Profiling—Perspectives for Anti-doping and beyond

    Directory of Open Access Journals (Sweden)

    Sergei Iljukov

    2017-12-01

    Full Text Available Performance profiling is a new area of research that could potentially open new frontiers in the fight against doping. Even beyond exposing unnatural and pharmacology aided performances, there are other potential applications and benefits of performance modeling for the protection of the integrity of sports. The backbone of performance modeling in anti-doping is the individual tracking of performance through competition results or other metrics of sporting achievements. Since performance improvement is the primary goal of doping, it is expected that doping will affect competition results. Thus, individual tracking of performance could potentially expose suspicious cases that deserve more scrutiny from anti-doping officials and help to adjust targeted testing. On the other hand changes in performance levels could also be used to assess the efficiency of new anti-doping strategies. Another application of performance analysis is to develop unified classifications of athletes according to their level of performance. This classification has numerous practical meanings, but from anti-doping perspective it provides an opportunity to set exact criteria for athletes belonging to national and international testing pools and thus estimate the number of tests needed in different countries based on the number of athletes at ascertain performance level. At the moment, in the absence of unified and comprehensive criteria for national and international testing pools, there are no definitive regulations regarding exact doping test numbers needed. Thus, it creates inequality between nations and affects the credibility of the anti-doping system worldwide. Such classification would allow a more efficient use of anti-doping resources. Since doping is not the only threat to the integrity of sports, performance modeling can also help to reveal cases of other misbehavior in sports, like match fixing or result manipulation. In summary, performance modeling and its

  15. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  16. Photosynthesis and early Earth.

    Science.gov (United States)

    Shih, Patrick M

    2015-10-05

    Life has been built on the evolution and innovation of microbial metabolisms. Even with our scant understanding of the full diversity of microbial life, it is clear that microbes have become integral components of the biogeochemical cycles that drive our planet. The antiquity of life further suggests that various microbial metabolisms have been core and essential to global elemental cycling for a majority of Earth's history. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw; Kass, Steve; Huber, Silvia

    2014-01-01

    The Water Observation and Information System (WOIS) is an open source software tool for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth Observation (EO) data. The WOIS has been developed by, among others, the authors of this paper under the TIGER-NET ...

  18. Active and passive silica waveguide integration

    DEFF Research Database (Denmark)

    Hübner, Jörg; Guldberg-Kjær, Søren Andreas

    2001-01-01

    Integrated optical amplifiers are currently regaining interest. Stand-alone single integrated amplifiers offer only limited advantage over current erbium doped fiber amplifiers, whereas arrays of integrated amplifiers are very attractive due to miniaturization and the possibility of mass production...

  19. Doping control in sport

    DEFF Research Database (Denmark)

    Overbye, Marie Birch

    2016-01-01

    Doping testing is a key component enforced by anti-doping authorities to detect and deter doping in sport. Policy is developed to protect athletes' right to participate in doping-free sport; and testing is a key tool to secure this right. Accordingly, athletes' responses to anti-doping efforts.......e., the efforts of stakeholders involved in testing) in their own sport both nationally and worldwide. Moreover, it seeks to identify whether specific factors such as previous experience of testing and perceived proximity of doping have an impact on athletes' perceptions of the testing system. The study comprises...... a web-based questionnaire (N = 645; response rate 43%) and uses qualitative findings to elaborate on and explain quantitative results. Results showed that two-thirds of the athletes reported the national testing programme in their sport to be appropriate. A majority of the athletes who had an opinion...

  20. The astysphere and urban geochemistry-a new approach to integrate urban systems into the geoscientific concept of spheres and a challenging concept of modern geochemistry supporting the sustainable development of planet earth.

    Science.gov (United States)

    Norra, Stefan

    2009-07-01

    In 1875, the geoscientist Walter Suess introduced several spheres, such as the lithosphere and the atmosphere to promote a comprehensive understanding of the system earth. Since then, this idea became the dominating concept for the understanding of the distribution of chemical elements in the system earth. Meanwhile, due to the importance of human beings on global element fluxes, the term anthroposphere was introduced. Nevertheless, in face of the ongoing urbanization of the earth, this concept is not any more adequate enough to develop a comprehensive understanding of global element fluxes in and between solid, liquid, and gaseous phases. This article discusses a new concept integrating urbanization into the geoscientific concept of spheres. No geological exogenic force has altered the earth's surface during the last centuries in such an extent as human activity. Humans have altered the morphology and element balances of the earth by establishing agrosystems first and urban systems later. Currently, urban systems happen to become the main regulators for fluxes of many elements on a global scale due to ongoing industrial and economic development and a growing number of inhabitants. Additionally, urban systems are constantly expanding and cover more and more former natural and agricultural areas. For nature, urban systems are new phenomena, which never existed in previous geological eras. The process of the globe's urbanization concurrently is active with the global climate change. In fact, urban systems are a major emitter for climate active gases. Thus, beside the global changes in economy and society, urbanization is an important factor within the global change of nature as is already accepted for climate, ecosystems, and biodiversity. Due to the fact that urbanization has become a global process shaping the earth and that the urban systems are globally cross-linked among each other, a new geoscientific sphere has to be introduced: the astysphere. This sphere

  1. Oxidation and adduct formation of xenobiotics in a microfluidic electrochemical cell with boron doped diamond electrodes and an integrated passive gradient rotation mixer

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus; Wigger, Tina; Ma, Liwei; Odijk, Mathieu; Olthuis, Wouter; Karst, U.; van den Berg, Albert

    2016-01-01

    Reactive xenobiotic metabolites and their adduct formation with biomolecules such as proteins are important to study as they can be detrimental to human health. Here, we present a microfluidic electrochemical cell with integrated micromixer to study phase I and phase II metabolism as well as protein

  2. Polarization induced doped transistor

    Science.gov (United States)

    Xing, Huili; Jena, Debdeep; Nomoto, Kazuki; Song, Bo; Zhu, Mingda; Hu, Zongyang

    2016-06-07

    A nitride-based field effect transistor (FET) comprises a compositionally graded and polarization induced doped p-layer underlying at least one gate contact and a compositionally graded and doped n-channel underlying a source contact. The n-channel is converted from the p-layer to the n-channel by ion implantation, a buffer underlies the doped p-layer and the n-channel, and a drain underlies the buffer.

  3. Lead-free epitaxial ferroelectric material integration on semiconducting (100) Nb-doped SrTiO3 for low-power non-volatile memory and efficient ultraviolet ray detection

    Science.gov (United States)

    Kundu, Souvik; Clavel, Michael; Biswas, Pranab; Chen, Bo; Song, Hyun-Cheol; Kumar, Prashant; Halder, Nripendra N.; Hudait, Mantu K.; Banerji, Pallab; Sanghadasa, Mohan; Priya, Shashank

    2015-07-01

    We report lead-free ferroelectric based resistive switching non-volatile memory (NVM) devices with epitaxial (1-x)BaTiO3-xBiFeO3 (x = 0.725) (BT-BFO) film integrated on semiconducting (100) Nb (0.7%) doped SrTiO3 (Nb:STO) substrates. The piezoelectric force microscopy (PFM) measurement at room temperature demonstrated ferroelectricity in the BT-BFO thin film. PFM results also reveal the repeatable polarization inversion by poling, manifesting its potential for read-write operation in NVM devices. The electroforming-free and ferroelectric polarization coupled electrical behaviour demonstrated excellent resistive switching with high retention time, cyclic endurance, and low set/reset voltages. X-ray photoelectron spectroscopy was utilized to determine the band alignment at the BT-BFO and Nb:STO heterojunction, and it exhibited staggered band alignment. This heterojunction is found to behave as an efficient ultraviolet photo-detector with low rise and fall time. The architecture also demonstrates half-wave rectification under low and high input signal frequencies, where the output distortion is minimal. The results provide avenue for an electrical switch that can regulate the pixels in low or high frequency images. Combined this work paves the pathway towards designing future generation low-power ferroelectric based microelectronic devices by merging both electrical and photovoltaic properties of BT-BFO materials.

  4. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  5. Evaluation of experimental field data from the modified earth resistance method used in trees and stands as integrated with selected classically estimated soil properties

    OpenAIRE

    Jagoš, Pavel

    2016-01-01

    This experiment tested the possibility of adding other information about the soil physical properties to existing modified earth impedance method, published by Čermák, Staněk, Aubrecht in 2006. For this experiment, this method for resistivity measurement of tree (trunk/soil), was employed. The measurements were conducted on four different study plots with different soil textural classes located in the Czech Republic. The choice of localities was guided the most typical soil textural classes; ...

  6. Electrochemical dissolution of U{sub 1-y}Gd{sub y}O{sub 2±x}: Effect of Gd doping on various oxidation state of UO{sub 2±x} matrix

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jandee; Lee, Jeongmook; Youn, Young-Sang; Kim, Jong-Goo; Ha, Yeong-Keong; Bae, Sang-Eun; Shoesmith, David W.; Kim, Jong-Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Liu, Nazhen [Western University, London (Canada)

    2016-10-15

    SNF (Spent nuclear fuel) is consisted with mainly UO{sub 2}, radioactive fission products and actinides species. Because the major radio nuclides are located within the oxide matrix, their release rates to the groundwater will be depended on the fuel corrosion/dissolution rate. The oxidation of UO{sub 2} doped with RE (Rare earth) element has been investigated expensively for decades, in order to determine the effect of fission product impurities present in solid solution in used fuel. RE doped UO{sub 2} shows enhanced stability of the cubic fluorite structures of U{sub 4}O{sub 9}-type with respect to U{sub 3}O{sub 8}-type depending on the sintering atmosphere as compared to un-doped UO{sub 2}. Such substantial efforts have been done, integrated research of stoichiometry and Gd-doping effects have received little interest. And also, there are difficulties to handle the nuclear fuel carefully not to spoil the intrinsic properties of itself. Especially, in determining dissolution behaviors of fuel, electrochemical techniques are very powerful and reliable tool to establish the thermodynamic values presented dissolution kinetics. Stoichiometric and non-stoichiometric Gd-doped U{sub 1-y}Gd{sub y}O{sub 2±x} pellets are prepared by mechanical blending method adjusting the oxygen potential. Stoichiometry of all pellets was confirmed by nondestructive X-ray analysis.

  7. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  8. To dope or not to dope

    DEFF Research Database (Denmark)

    Overbye, Marie Birch; Knudsen, Mette Lykke; Pfister, Gertrud Ursula

    2013-01-01

    tAim: This study aims to examine the circumstances which athletes say affect their (hypothetical) consid-erations of whether to dope or not and explore the differences between athletes of different gender, ageand sport type.Methods: 645 elite athletes (mean age: 22.12; response rate: 43%) represe......tAim: This study aims to examine the circumstances which athletes say affect their (hypothetical) consid-erations of whether to dope or not and explore the differences between athletes of different gender, ageand sport type.Methods: 645 elite athletes (mean age: 22.12; response rate: 43......%) representing 40 sports completed aweb-based questionnaire. Participants were asked to imagine themselves in a situation in which theyhad to decide whether to dope or not to dope and then evaluate how different circumstances would affecttheir decisions.Results: Multiple circumstances had an effect on athletes......’ hypothetical decisions. The most effective deter-rents were related to legal and social sanctions, side-effects and moral considerations. Female athletesand younger athletes evaluated more reasons as deterrents than older, male athletes. When confrontedwith incentives to dope, the type of sport was often...

  9. BRILLOUIN INSTABILITY IN FIBER LASERS DOPED BY POWER ...

    African Journals Online (AJOL)

    30 juin 2012 ... continuous signal in a rare-earth doped fiber amplifier can generate high enough intensities to excite Brillouin ... Such back-reflection is detrimental for amplifier applications and consequently it has been studied .... le paramètre de dichroïsme du pompage. β est le paramètre de saturation croisée.Γ est le.

  10. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND ...

    African Journals Online (AJOL)

    2012-06-30

    Jun 30, 2012 ... glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the ..... Chemistry of Rare Earth. 1998, 25. [2] Chen Y. J., Huang Y. D., Huang M. L., Chen R. P., Luo Z. D. Opt. Mater. 2004, 25,. 271. Transition λmax. Ar (s-1).

  11. Structured doping of upconversion nanosystems for biological applications

    NARCIS (Netherlands)

    Wang, Y.

    2011-01-01

    Nanodeeltjes met daarin zeldzame aardmetaal-ionen (in het Engels aangeduid als rare earth ions doped upconversion nanoparticles (UCNPs)) hebben de unieke eigenschap dat ze laag-energetisch licht, in het nabij-infrarode deel van het spectrum, kunnen omzetten in hoger-energetisch licht in het

  12. [Doping and sports].

    Science.gov (United States)

    Lippi, G; Guidi, G

    1999-09-01

    Doping is widely known as the use of banned substances and practices by athletes in an attempt to improve sporting performances. The term doping likely derives from "dope", an ancient expression referred to a primitive alcoholic drink that was used as a stimulant in South African ceremonial dances; gradually, the term was extended and finally adopted his current significance. There are at least two essential reasons to support the fight against doping: the potential harmful effects on athletes and the depth corruption of the fair competition. An exhaustive list of banned substances and methods has been drawn by the International Olympic Committee and further accepted by other International Sport Authorities and Federations. This list, regularly updated, is basically divided into doping substances (stimulants, narcotic analgesics, anabolic agents, diuretics, peptide and glycoprotein hormones and analogues), doping methods (blood doping, pharmacological, chemical and physical manipulation) and drugs subjected to certain restrictions (alcohol, marijuana, local anesthetics, corticosteroids and beta-blockers). Although there might be some medical conditions, which could legitimate the need of these substances or methods, there is no place for their use in sport. Thus, an athlete's consume of any of these substances or methods will result in disqualification. Aim of the present review is to provide a synthetic description of both the desirable effects and the potentially harmful consequences of the use of some of the major doping substances and methods.

  13. Heteroatom doped graphene in photocatalysis: A review

    Science.gov (United States)

    Putri, Lutfi Kurnianditia; Ong, Wee-Jun; Chang, Wei Sea; Chai, Siang-Piao

    2015-12-01

    Photocatalysis has been a focus of great attention due to its useful environmental applications such as eliminating hazardous pollutants and generating sustainable energy. Coincidentally, graphene, a 2D allotrope of carbon, has also infiltrated many research fields due to its outstanding properties - photocatalysis being no exception. As of recent, there has been growing research focus on heteroatom (O, N, B, P and S) doping of graphene and its emergent application opportunities. In this study, rather than the familiar graphene as the electron transfer medium that is normally integrated in a photocatalyst system, we contrarily explore the implication of heteroatom doped graphene and the underlying mechanism behind their advantageous uses in photocatalysis. This review surveys the literature and highlights recent progress and challenges in the development of chemically doped graphene in the photocatalysis scene. It is desired that this review will promote awareness and encourage further investigations for the development in this budding research area.

  14. Committing to creating time for integrating contemporary environmental issues into a traditional introduction to Earth Science course, one topic at a time

    Science.gov (United States)

    Cook, H. M.

    2014-12-01

    I teach an Earth Science course, designed as an introductory science class that also fulfills the Earth Science requirement for pre-service teachers preparing to take their state content exam. This course provides an introduction to astronomy, geology, oceanography, and meteorology. By design, the class is content-heavy. Despite this, with so many current environmental and societal issues directly tied to the Earth Sciences, it is essential to address contemporary problems and to educate students about the changes and challenges in the world around them. I have made a commitment to doing this by incorporating relevant societal and environmental issues into every topic and every class session. While this may sound basic, doing so requires diligence and research. For example, when teaching about weathering and erosion, I discuss soils, soil quality and erosion, and the impact this has on our global food supply. A hands-on mineral activity lends itself to looking at the energy and waste involved in ore extraction. A lecture on ocean circulation results in an opportunity to analyze the consequences of the interruption of this pattern due to global warming. Through this approach, students are provided with necessary content; furthermore, by linking traditional content to modern issues on a regular basis, students see the relevance of what they are learning and become more aware of the environmental issues facing society today. Student evaluations indicate that this approach has been successful: 100% of students reported that they learned a great deal from the course, and 100% of students agreed that the quality of the course was high. In addition, prior to the class 55.8% of the students indicated interested in the content; whereas, after the course 88.6% indicated interest, with strong interest in the content increasing from 16.3% to 41%.

  15. An Integrative Approach to Improving an Introductory Weather & Climate Course and Developing an Allied NASA Earth & Space Science Certificate Program for Pre-service Secondary Teachers (Invited)

    Science.gov (United States)

    Morrow, C. A.; Martin-Hansen, L.; Diem, J.; Elliott, W.

    2009-12-01

    An Atlanta-based partnership made up of leaders in science, education, and Georgia’s state-wide STEM Education Initiative are creating an enduring legacy of climate science education for pre-service and in-service teachers in Georgia as well as for underrepresented high school students who participate in an "Early College" program with Georgia State University (GSU). The core elements of our NASA-funded program are to infuse NASA global climate change resources and best pedagogical practice into a popular 4-credit lecture/lab course called “Introduction to Weather & Climate” (GEOG 1112) at GSU, and to establish a sustainable academic program for pre-service teachers in the College of Education called the NASA Earth & Space Science (ESS) Teacher Certificate. The NASA ESS Certificate will require candidates to accomplish the following as part of (or in addition to) standard degree and licensure requirements: 1. successfully complete a graduate section of “Introduction to Weather and Climate” (GEOG 7112), which requires lesson planning related to course content and engagement with GSU's new CO2 monitoring station whose research-quality data will provide unique hands-on opportunities for Metro Atlanta students and teachers; 2) complete an additional advanced course in climate change (GEOG 6784) plus elective hours in physical science disciplines (e.g. astronomy and physics); 3) serve as a lab teaching assistant for GEOG 1112 and a coach for a cadre of Carver Early College students who are taking the course; 4) make at least one of two teaching practica at a Georgia-based NASA Explorer School; and 5) participate or co-present in a week-long, residential, field-based, Summer Institute in Earth & Space Science intended to increase the interest, knowledge, and ability of in-service secondary science educators to fulfill climate-related standards in Earth Science and Earth Systems Science. We will evaluate, document, and disseminate (to the University System of

  16. Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System

    Directory of Open Access Journals (Sweden)

    Radoslaw Guzinski

    2014-08-01

    Full Text Available The Water Observation and Information System (WOIS is an open source software tool for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth Observation (EO data. The WOIS has been developed by, among others, the authors of this paper under the TIGER-NET project, which is a major component of the TIGER initiative of the European Space Agency (ESA and whose main goal is to support the African Earth Observation Capacity for Water Resource Monitoring. TIGER-NET aims to support the satellite-based assessment and monitoring of water resources from watershed to cross-border basin levels through the provision of a free and powerful software package, with associated capacity building, to African authorities. More than 28 EO data processing solutions for water resource management tasks have been developed, in correspondence with the requirements of the participating key African water authorities, and demonstrated with dedicated case studies utilizing the software in operational scenarios. They cover a wide range of themes and information products, including basin-wide characterization of land and water resources, lake water quality monitoring, hydrological modeling and flood forecasting and mapping. For each monitoring task, step-by-step workflows were developed, which can either be adjusted by the user or largely automatized to feed into existing data streams and reporting schemes. The WOIS enables African water authorities to fully exploit the increasing EO capacity offered by current and upcoming generations of satellites, including the Sentinel missions.

  17. Integration of geotechnical and geophysical techniques for the characterization of a small earth-filled canal dyke and the localization of water leakage

    Science.gov (United States)

    Bièvre, Grégory; Lacroix, Pascal; Oxarango, Laurent; Goutaland, David; Monnot, Guy; Fargier, Yannick

    2017-04-01

    This paper investigates the combined use of extensive geotechnical, hydrogeological and geophysical techniques to assess a small earth dyke with a permanent hydraulic head, namely a canal embankment. The experimental site was chosen because of known issues regarding internal erosion and piping phenomena. Two leakages were visually located following the emptying of the canal prior to remediation works. The results showed a good agreement between the geophysical imaging techniques (Electrical Resistivity Tomography, P- and SH-waves Tomography) and the geotechnical data to detect the depth to the bedrock and its lateral variations. It appeared that surface waves might not be fully adapted for dyke investigation because of the particular geometry of the studied dyke, non-respectful of the 1D assumption, and which induced depth and velocity discrepancies retrieved from Rayleigh and Love waves inversion. The use of these classical prospecting techniques however did not allow to directly locate the two leakages within the studied earth dyke. The analysis of ambient vibration time series with a modified beam-forming algorithm allowed to localize the most energetic water flow prior to remediation works. It was not possible to detect the leakage after remediation works, suggesting that they efficiently contributed to significantly reduce the water flow. The second leakage was not detected probably because of a non-turbulent water flow, generating few energetic vibrations.

  18. Ab-initio calculation of magnetic properties of Gd-doped ZnGeN2

    Science.gov (United States)

    Rufinus, J.

    2011-04-01

    The current interest in the field of semiconductor spintronics is mostly focused on transition metal-doped and rare-earth metal-doped binary materials. Recently, however, the explorations of metal-doped ternary semiconductors have gained attention due to experimental confirmations of possible high transition temperature in chalcopyrite compounds. Since the chalcopyrites are ternary materials, there are possibilities of having ferromagnetic or antiferromagnetic configurations, depending on which metal site was substituted by the dopant. Mn-doped ZnGeN2, for example, was found to be antiferromagmetic for MnZn and ferromagnetic for MnGe. A density functional theory study is performed on Gd-doped ternary material ZnGeN2. Our results show Gd-doped ZnGeN2 to be ferromagnetic, independent of the substitution sites. The formation of half-metallic ferromagnetism is possible in this type of material.

  19. Analysis on insulator–metal transition in yttrium doped LSMO from ...

    Indian Academy of Sciences (India)

    and a versatile tool called maximum entropy method (MEM) were used for structural and profile refinement. The charge density in the unit ... was found to occur when 20% of La/Sr atoms were replaced by yttrium. The changes in the charge ... Rare-earth manganites doped with alkaline-earth metals are important materials of ...

  20. Demonstration of a visible laser on silicon using Eu-doped GaN thin films

    Science.gov (United States)

    Park, J. H.; Steckl, A. J.

    2005-09-01

    We report the demonstration of visible laser action on silicon. We have utilized Eu-doped GaN for the active medium within a structure consisting of multiple AlGaN layers grown by molecular-beam epitaxy on a Si substrate. Stimulated emission was obtained at room temperature from Eu3+ at 620 nm, with a threshold of ~117 kW/cm2. Values of modal gain and loss of ~100 and 46 cm-1 were measured. This demonstration indicates that utilizing rare earths a range of lasers on Si can be obtained, covering the UV, visible, and IR regions, thus enabling a significant expansion of optoelectronic and microelectronic integrations.

  1. Estudo da sinterização da zircônia dopada com óxidos de terras raras a 5 GPa de pressão Sintering of rare earth-doped zirconia under 5 GPa pressure

    Directory of Open Access Journals (Sweden)

    C. Kuranaga

    2005-06-01

    Full Text Available A zircônia (ZrO2 tem mostrado grande destaque entre as cerâmicas avançadas, atraindo muito o interesse de pesquisadores em seus vários campos de atuação. A zircônia apresenta elevada resistência quando na fase tetragonal, mas a fase estável a temperatura ambiente é a monoclínica, sendo necessário o uso de estabilizantes para a fase tetragonal. Neste trabalho propomos a sinterização rápida da zircônia parcialmente estabilizada com óxidos de terras raras (ZrO2-OTR, mediante o emprego da alta pressão de 5 GPa. As condições de sinterização realizadas neste trabalho são inovadoras, haja visto que utilizou-se de tecnologia alternativa para processar a ZrO2-OTR, chamada de altas temperaturas e altas pressões (HPHT. Foi utilizada uma pressão de 5 GPa, temperaturas de 1100, 1200 e 1300 ºC nos tempos de 2 e 5 min. O melhor resultado foi obtido nas amostras sinterizadas a 5 GPa/1300 ºC/5 min, onde apresentaram microdureza média de 488,73 kgf/mm², para uma tenacidade à fratura de 5,33 MPa.m½, as quais apresentaram densidade da ordem de 97,88% da teórica, e 88% em volume de fase tetragonal retida à temperatura ambiente.Zirconia (ZrO2 has shown great projection among the advanced ceramics, attracting the interest of researchers in its various fields of application. Tetragonal zirconia presents high mechanical strength, but the room temperature stable phase is the monoclinic, being necessary the use of stabilizers for obtaining the tetragonal phase. In this work the rapid sintering of zirconia partially stabilized with rare earth oxides (ZrO2-OTR, via 5 GPa high pressure is proposed. The sintering conditions employed in this work are innovative, due to the use of an alternative technology to process ZrO2-OTR, so called high temperature - high pressure (HPHT. A pressure of 5 GPa and temperatures of 1100, 1200 and 1300 ºC for times of 2 and 5 min were used. The best results were obtained for samples sintered at 5 GPa at 1300 º

  2. The Effects of Student Multiple Intelligence Preference on Integration of Earth Science Concepts and Knowledge within a Middle Grades Science Classroom.

    Science.gov (United States)

    Cutshall, Lisa Christine

    This research was conducted in an eastern Tennessee 8th grade science classroom with 99 students participating. The action research project attempted to examine an adolescent science student's integration of science concepts within a project-based setting using the multiple intelligence theory. In an effort to address the national science…

  3. The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications

    Science.gov (United States)

    Wu, Ming-Chung; Chen, Wei-Cheng; Chan, Shun-Hsiang; Su, Wei-Fang

    2018-01-01

    Perovskite solar cell is a novel photovoltaic technology with the superior progress in efficiency and the simple solution processes. Develop lead-free or lead-reduced perovskite materials is a significant concern for high-performance perovskite solar cell. Among the alkaline earth metals, the Sr2+ and Ba2+ are suitable for Pb2+ replacement in perovskite film due to fitting Goldschmidt's tolerance factor. In this study, we adopted Ba-doped and Sr-doped perovskite structured materials with different doping levels, including 1.0, 5.0, and 10.0 mol%, to prepare perovskite solar cells. Both Ba-doped and Sr-doped perovskite structured materials have a related tendency in absorption behavior and surface morphology. At 10.0 mol% doping level, the power conversion efficiency (PCE) of Sr-doped perovskite solar cells is only ∼0.5%, but the PCE of Ba-doped perovskite solar cells can be achieved to ∼9.7%. Ba-doped perovskite solar cells showed the acceptable photovoltaic characteristics than Sr-doped perovskite solar cells. Ba dopant can partially replace the amount of lead in the perovskite solar cells, and it could be a potential candidate in the field of lead-free or lead-reduced perovskite energy materials.

  4. Path integral Monte Carlo simulations of H{sub 2} adsorbed to lithium-doped benzene: A model for hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Lindoy, Lachlan P.; Kolmann, Stephen J.; D’Arcy, Jordan H.; Jordan, Meredith J. T., E-mail: m.jordan@chem.usyd.edu.au [School of Chemistry, The University of Sydney, Sydney (Australia); Crittenden, Deborah L. [Department of Chemistry, University of Canterbury, Christchurch (New Zealand)

    2015-11-21

    Finite temperature quantum and anharmonic effects are studied in H{sub 2}–Li{sup +}-benzene, a model hydrogen storage material, using path integral Monte Carlo (PIMC) simulations on an interpolated potential energy surface refined over the eight intermolecular degrees of freedom based upon M05-2X/6-311+G(2df,p) density functional theory calculations. Rigid-body PIMC simulations are performed at temperatures ranging from 77 K to 150 K, producing both quantum and classical probability density histograms describing the adsorbed H{sub 2}. Quantum effects broaden the histograms with respect to their classical analogues and increase the expectation values of the radial and angular polar coordinates describing the location of the center-of-mass of the H{sub 2} molecule. The rigid-body PIMC simulations also provide estimates of the change in internal energy, ΔU{sub ads}, and enthalpy, ΔH{sub ads}, for H{sub 2} adsorption onto Li{sup +}-benzene, as a function of temperature. These estimates indicate that quantum effects are important even at room temperature and classical results should be interpreted with caution. Our results also show that anharmonicity is more important in the calculation of U and H than coupling—coupling between the intermolecular degrees of freedom becomes less important as temperature increases whereas anharmonicity becomes more important. The most anharmonic motions in H{sub 2}–Li{sup +}-benzene are the “helicopter” and “ferris wheel” H{sub 2} rotations. Treating these motions as one-dimensional free and hindered rotors, respectively, provides simple corrections to standard harmonic oscillator, rigid rotor thermochemical expressions for internal energy and enthalpy that encapsulate the majority of the anharmonicity. At 150 K, our best rigid-body PIMC estimates for ΔU{sub ads} and ΔH{sub ads} are −13.3 ± 0.1 and −14.5 ± 0.1 kJ mol{sup −1}, respectively.

  5. Aluminum Doped Parahydrogen Solids

    National Research Council Canada - National Science Library

    Fajardo, Mario

    2001-01-01

    ...) solids doped with large (- 1 %) concentrations of Al atoms. We incorporated into our apparatus a commercially available effusive Al atom source capable of delivering Al atom fluxes in excess of 10(exp 17...

  6. Spectroscopic identification of rare earth elements in phosphate glass

    Science.gov (United States)

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.

    2018-01-01

    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV–VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  7. 2014 Future Earth Young Scientists Conference on Integrated Science and Knowledge Co-Production for Ecosystems and Human Well-Being

    OpenAIRE

    Ivy Shiue; Leah Samberg; Benard Kulohoma; Diana Dogaru; Carina Wyborn; Perrine Hamel; Peter Søgaard Jørgensen; Paul Lussier; Bharath Sundaram; Michelle Lim; Antonio Tironi

    2014-01-01

    Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25–31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-...

  8. Systematic hardness measurements on some rare earth garnet ...

    Indian Academy of Sciences (India)

    Unknown

    microwave and magnetic bubble devices. When doped with Nd, some of the rare earth garnets act as excellent laser hosts. Their photoemission spectra are ..... Grants Commission, New Delhi, for financial support by way of an emeritus fellowship. References. Chin G Y 1975a Deformation of ceramic materials (New York:.

  9. Inverted opal luminescent Ce-doped silica glasses

    Directory of Open Access Journals (Sweden)

    R. Scotti

    2006-01-01

    Full Text Available Inverted opal Ce-doped silica glasses (Ce : Si molar ratio 1 ⋅ 10−3 were prepared by a sol-gel method using opals of latex microspheres as templates. The rare earth is homogeneously dispersed in silica host matrix, as evidenced by the absence of segregated CeO2, instead present in monolithic Ce-doped SG with the same cerium content. This suggests that the nanometric dimensions of bridges and junctions of the host matrix in the inverted opal structures favor the RE distribution avoiding the possible segregation of CeO2.

  10. Synthesis and different optical properties of Gd2O3 doped sodium zinc tellurite glasses

    Science.gov (United States)

    Samanta, Buddhadev; Dutta, Dibakar; Ghosh, Subhankar

    2017-06-01

    A series of Gd2O3 doped sodium zinc tellurite [xGd2O3-(0.8-x) TeO2-0.1Na2O-0.1ZnO] glasses are prepared by the conventional melt quenching method and their optical properties have been studied. UV-vis spectrophotometric studies within the wavelength range from 230 nm-800 nm are carried out in the integrating sphere mode to study the effect of Gd2O3 doping on the optical band gap (Eg), refractive index (n), dielectric constant (εr) and susceptibility (χ). Other physical properties like molar volume, molar refraction, polarizability, metallization criterion, number density of rare-earth ions (N), polaron radius (rp), inter ionic distance (ri), molar cation polarizability (∑αi), number of oxide ions in chemical composition (NO2-), optical band gap based electronic oxide ion polarizability (αO2-) and optical basicity (Λ) of glass samples have been studied on the basis of UV-vis spectra and density profile of the different glasses.

  11. Learning to Improve Earth Observation Flight Planning

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper describes a method and system for integrating machine learning with planning and data visualization for the management of mobile sensors for Earth science...

  12. Perspectives for Forensic Intelligence in anti-doping: thinking outside of the box.

    Science.gov (United States)

    Marclay, François; Mangin, Patrice; Margot, Pierre; Saugy, Martial

    2013-06-10

    Today's approach to anti-doping is mostly centered on the judicial process, despite pursuing a further goal in the detection, reduction, solving and/or prevention of doping. Similarly to decision-making in the area of law enforcement feeding on Forensic Intelligence, anti-doping might significantly benefit from a more extensive gathering of knowledge. Forensic Intelligence might bring a broader logical dimension to the interpretation of data on doping activities for a more future-oriented and comprehensive approach instead of the traditional case-based and reactive process. Information coming from a variety of sources related to doping, whether directly or potentially, would feed an organized memory to provide real time intelligence on the size, seriousness and evolution of the phenomenon. Due to the complexity of doping, integrating analytical chemical results and longitudinal monitoring of biomarkers with physiological, epidemiological, sociological or circumstantial information might provide a logical framework enabling fit for purpose decision-making. Therefore, Anti-Doping Intelligence might prove efficient at providing a more proactive response to any potential or emerging doping phenomenon or to address existing problems with innovative actions or/and policies. This approach might prove useful to detect, neutralize, disrupt and/or prevent organized doping or the trafficking of doping agents, as well as helping to refine the targeting of athletes or teams. In addition, such an intelligence-led methodology would serve to address doping offenses in the absence of adverse analytical chemical evidence. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Sanctions for doping in sport

    Directory of Open Access Journals (Sweden)

    Mandarić Sanja

    2014-01-01

    Full Text Available Top-level sport imposes new and more demanding physical and psychological pressures, and the desire for competing, winning and selfassertion leads athletes into temptation to use prohibited substances in order to achieve the best possible results. Regardless of the fact that the adverse consequences of prohibited substances are well-known, prestige and the need to dominate sports arenas have led to their use in sports. Doping is one of the biggest issues in sport today, and the fight against it is a strategic objective on both global and national levels. World Anti-Doping Agency, the International Olympic Committee, international sports federations, national anti-doping agencies, national sports federations, as well as governments and their repressive apparatuses are all involved in the fight against doping in sport. This paper points to a different etymology and phenomenology of doping, the beginnings of doping in sport, sports doping scandals as well as the most important international instruments regulating this issue. Also, there is a special reference in this paper to the criminal and misdemeanor sanctions for doping in sport. In Serbia doping in sport is prohibited by the Law on Prevention of Doping in Sports which came into force in 2005 and which prescribes the measures and activities aimed at prevention of doping in sport. In this context, the law provides for the following three criminal offenses: use of doping substances, facilitating the use of doping substances, and unauthorized production and putting on traffic of doping substances. In addition, aiming at curbing the abuse of doping this law also provides for two violations. More frequent and repetitive doping scandals indicate that doping despite long-standing sanctions is still present in sports, which suggests that sanctions alone have not given satisfactory results so far.

  14. Spectroscopic properties of highly Nd-doped lead phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Novais, A.L.F. [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil); Dantas, N.O. [Laboratório de Novos Materiais Isolantes e Semicondutores (LNMIS), Instituto de Física, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Guedes, I. [Departamento de Física, Universidade Federal do Ceará, Campus do PICI, Caixa Postal 6030, 60455-760 Fortaleza, CE (Brazil); Vermelho, M.V.D., E-mail: vermelho@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, Grupo de Fotônica e Fluidos Complexos, 57072-970 Maceió, AL (Brazil)

    2015-11-05

    The spectroscopic characteristics of highly Nd{sup 3+}-doped lead phosphate glasses (xNd:Pb{sub 3}(PO{sub 4}){sub 2}) have been investigated. The X-ray spectra show that the matrices are glassy up to 25 wt% of Nd{sup 3+} doping. From the Judd–Ofelt analysis we observe that while the Ω{sub (2)} parameter remains constant indicating that the 4f{sup N} and 4f{sup N−1}5 d{sup 1} configurations are not affected by the Nd{sup 3+} doping, the behavior of both Ω{sub (4)} and Ω{sub (6)} changes for 15 wt% of Nd{sup 3+} doping. The reduction of the Ω{sub (6)} parameter is related to the increase of the covalence bonding between the ligands and the Nd{sup 3+} ions. At this particular concentration, the radiative lifetime has a four-fold enhancement. Such behaviors are likely to be related to a modification in the glass structure for high Nd{sup 3+} concentrations. - Graphical abstract: Highly doped lead-phosphate glass matrix, with nominal concentration of up to 25 wt%, maintain the spectroscopic properties without deterioration. The analysis concerning the point of view of Nd{sup 3+} ions showed that high concentrations only affects the rare earth electronic charge density distribution. - Highlights: • Spectroscopic characterization of Nd{sub 2}O{sub 3} highly doped lead phosphate glasses. • Phosphate glass doped with Nd{sup 3+} for applications in photonic devices. • Judd–Ofelt analysis in phosphate glasses doped with Neodymium.

  15. Sport, Society, and Anti-Doping Policy: An Ethical Overview.

    Science.gov (United States)

    Bloodworth, Andrew J; McNamee, Mike

    2017-01-01

    The purpose of this chapter is to provide an overview of the philosophical and ethical underpinnings of anti-doping policy. The nature of sport and its gratuitous logic is explored. The doping rules in sport, such as the Prohibited List, are ways of drawing a line to facilitate a certain sort of competition. Sports can be understood as a means of testing the natural physical abilities of the athlete, combined with the hard work they put into improving their performance. A test promoted by the anti-doping laws. Permitting certain forms of performance enhancement would threaten the special nature of such a test. Doping can be seen as a threat to the integrity of sport, not just because of the rule breaking doping currently entails. The chapter explores the ethical issues that arise with such forms of enhancement, such as fairness, harms to health, and indeed a refusal to accept human limitations. Finally, the criteria upon which a substance or method may be prohibited by the World Anti-Doping Agency (WADA) is addressed. The 3-part criteria, concerning (1) enhancement, (2) health, and (3) the spirit of sport are described, and literature that takes a critical line is addressed. Particular reference is made to the public health agenda explicit within anti-doping policy. © 2017 S. Karger AG, Basel.

  16. Efficacy of radiosensitizing doped titania nanoparticles under hypoxia and preparation of an embolic microparticle.

    Science.gov (United States)

    Morrison, Rachel A; Rybak-Smith, Malgorzata J; Thompson, James M; Thiebaut, Bénédicte; Hill, Mark A; Townley, Helen E

    2017-01-01

    The aim of this study was to develop a manufacturing protocol for large-scale production of doped titania radiosensitizing nanoparticles (NPs) to establish their activity under hypoxia and to produce a multimodal radiosensitizing embolic particle for cancer treatment. We have previously shown that radiosensitizing NPs can be synthesized from titania doped with rare earth elements, especially gadolinium. To translate this technology to the clinic, a crucial step is to find a suitable, scalable, high-throughput method. Herein, we have described the use of flame spray pyrolysis (FSP) to generate NPs from titanium and gadolinium precursors to produce titania NPs doped with 5 at% gadolinium. The NPs were fully characterized, and their capacity to act as radiosensitizers was confirmed by clonogenic assays. The integrity of the NPs in vitro was also ascertained due to the potentially adverse effects of free gadolinium in the body. The activity of the NPs was then studied under hypoxia since this is often a barrier to effective radiotherapy. In vitro radiosensitization experiments were performed with both the hypoxia mimetics deferoxamine and cobalt chloride and also under true hypoxia (oxygen concentration of 0.2%). It was shown that the radiosensitizing NPs were able to cause a significant increase in cell death even after irradiation under hypoxic conditions such as those found in tumors. Subsequently, the synthesized NPs were used to modify polystyrene embolization microparticles. The NPs were sintered to the surface of the microparticles by heating at 230°C for 15 minutes. This resulted in a good coverage of the surface and to generate embolization particles that were shown to be radiosensitizing. Such multimodal particles could therefore result in occlusion of the tumor blood vessels in conjunction with localized reactive oxygen species generation, even under hypoxic conditions such as those found in the center of tumors.

  17. Active mode-locking via pump modulation in a Tm-doped fiber laser

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2016-10-01

    Full Text Available We propose and experimentally realize a new class of actively mode-locking technique using pump modulation for rare-earth doped fiber lasers. A Tm-doped fiber laser at 2 μm is mode-locked using the proposed active mode-locking via pump modulation technique. Low-threshold continuous-wave mode-locking is achieved with a transform-limited pulse width of 4.4 ps, a spectral bandwidth of 0.9 nm, and a repetition rate of 12.9 MHz. Second-harmonic mode-locking is also demonstrated by simply driving the pump current at an appropriate frequency. More importantly, we believe that this technique can be applied to mode-lock other rare-earth doped fiber laser systems such as erbium- and ytterbium-doped fiber lasers.

  18. Active mode-locking via pump modulation in a Tm-doped fiber laser

    Science.gov (United States)

    Wang, Yu; Set, Sze Y.; Yamashita, Shinji

    2016-10-01

    We propose and experimentally realize a new class of actively mode-locking technique using pump modulation for rare-earth doped fiber lasers. A Tm-doped fiber laser at 2 μm is mode-locked using the proposed active mode-locking via pump modulation technique. Low-threshold continuous-wave mode-locking is achieved with a transform-limited pulse width of 4.4 ps, a spectral bandwidth of 0.9 nm, and a repetition rate of 12.9 MHz. Second-harmonic mode-locking is also demonstrated by simply driving the pump current at an appropriate frequency. More importantly, we believe that this technique can be applied to mode-lock other rare-earth doped fiber laser systems such as erbium- and ytterbium-doped fiber lasers.

  19. Characterizing Thawing Permafrost Carbon Emissions: An Integrated Pilot Study in Support of Satellite Evaluation/Design and Earth System Modeling Capabilities

    Science.gov (United States)

    Wilson, E. L.; Ott, L. E.; DiGregorio, A.; Duncan, B. N.; Euskirchen, E. S.; Carter, L. M.; Tucker, C. J.; Miller, J. H. H.; Liang, Q.; Elshorbany, Y. F.; Edgar, C.; Melocik, K. A.; Ramanathan, A. K.; Mao, J.; Bailey, D. M.; Adkins, E. M.; Melroy, H.

    2015-12-01

    We present a multi-disciplinary, multi-scaled study to measure methane (CH4) and carbon dioxide (CO2) above thawing permafrost at three sites, each representing a different ecosystem, near Fairbanks, AK. We have designed a unique and comprehensive array of ground experiments at these sites that will record permafrost depth and subsurface structure, meteorological data, and concentrations of key GHGs during seasonal ground thaw of the active layer in the summer. This is the first time that these types of measurements have been combined to provide a holistic view of the evolution of, and the atmospheric response to permafrost thaw. These data will allow us to estimate emission fluxes of carbon from the thawing permafrosts. To estimate a global source of GHG emissions from thawing permafrosts, we will use MODIS and Landsat-8 Operational Land Imager and Thermal Infrared Sensor data to "scale up" the data collected at the three sites on the basis of land surface type information. We refer to this effort as a pilot study as we will collect observations near Fairbanks, AK with the intent to expand our observational network in the future to other sites in North America, which will aid in the monitoring of changes in GHG emissions in the Arctic as well as complement and help interpret data collected by space-borne instruments, such as GOSAT, IASI, and AIRS. Based on the data collected at the three sites and a variety of existing satellite data sets, we will develop a computationally-efficient parameterization of emissions from thawing permafrosts for use in the NASA GEOS-5 Atmospheric General Circulation Model (AGCM), thus benefiting ongoing efforts in the NASA Global Modeling and Assimilation Office (GMAO) to build an Earth System Model which is used for both retrospective and predictive simulations of important GHGs. We will use the AGCM to interpret the data collected by tracking methane and CO2 plumes from various sources that impact the three sites. In addition, we

  20. Synthesis of Mn-doped CeO2 nanorods and their application as ...

    Indian Academy of Sciences (India)

    1·22, the resistance changes from 375·3 to 2·7M as the relative humidity (RH) increases from 25 to 90%, indicating promising applications of the Mn-doped CeO2 nanorods in environmental monitoring. Keywords. Mn-doped CeO2; nanorods; humidity sensitivity. 1. Introduction. It is well known that rare earth oxides have ...

  1. Highly electrically conductive Ag-doped graphene fibers as stretchable conductors.

    Science.gov (United States)

    Xu, Zhen; Liu, Zheng; Sun, Haiyan; Gao, Chao

    2013-06-18

    Ag-doped graphene fibers show remarkable electrical conductivity, high current capacity, good mechanical strength and fine flexibility. The integration of these merits promises Ag-doped graphene fibers expanding applications as stretchable conductors, wearable electronics, and actual microcables. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optimization of PECVD boron-phosphoros doped silicon oxynitride for low-loss optical waveguides

    NARCIS (Netherlands)

    Hussein, M.G.

    2007-01-01

    Boron phosphorus-doped silicon oxynitride layers for integrated optics applications have been deposited from 2% SiH4/N2 + N2O + 5% PH3/Ar and 5% B2H6/Ar. The influence of boron and phosphorus-doping to the PECVD SiON layer properties has been investigated. The boron concentration was found to

  3. Luminescence of devitrificated non-doped and Eu,Dy and Tm doped wollastonite crystal in glass; Luminescence de cristaux de devitrivication de wollastonite dans des verres non dopes et dopes en Eu,Dy et Tm

    Energy Technology Data Exchange (ETDEWEB)

    El Marraki, A.; Schvoerer, M.; Bechtel, F. [Univ. Michel de Montaigne-Bordeaux 3, Pessac (France). Centre de Recherche en Phys. Appliquee a l' Archeologie

    2000-10-16

    Wollastonite crystals (CaSiO{sub 3}), ''pure'' or doped with rare earth ions, were grown by a devitrification process of a ternary SiO{sub 2}-Na{sub 2}O-CaO glass. The nature of point defects in these crystals was studied. Concerning the non-doped crystals, two trap centers were revealed by thermoluminescence (TL) and identified by electron spin resonance (ESR) using preheating experiments: one is a hole center HC{sub 1} and the other one an electron center whose main characteristic feature is g = 2.0020. Cathodoluminescence (CL) studies showed an important emission band considered as intrinsic. As for the doped crystals (Eu, Dy, Tm), most CL emission bands were identified. With TL, it is shown that Eu acts in wollastonite crystals as an electron trap and also as an emission centre. (orig.)

  4. Luminescent properties of Mn{sup 2+} doped apatite nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranadh, K.; Rao, M. C., E-mail: raomc72@gmail.com [Department of Physics, Andhra Loyola College, Vijayawada-520 008 (India); Ravikumar, R. V. S. S. N. [Department of Physics, Acharya Nagarjuna University, Guntur-522 510 (India)

    2016-05-06

    Nanophosphors have been extensively investigated during the last decade due to their various high-performance application potential such as lamp industry, radiation dosimetry, X-ray imaging and colour display. The synthesis of inorganic nanophosphors using both ionizing radiation (IR) or UV light represents very promising technological field. Alkaline earth nanophosphors gathered a lot of attention in past decades because they are considered to be excellent host materials. Transition-metal oxides are well known luminescent emitters in the visible spectral region. Mn{sup 2+} doped calcium-lithium hydroxyapatite (CLHA) nanophosphors were prepared by mechanochemical synthesis. The prepared samples were characterized by photoluminescence studies. Photoluminescence spectra of Mn{sup 2+} doped CLHA nanophosphors exhibited green and strong orange emission bands at 534, 577 nm respectively under the excitation wavelength of 365 nm. The CIE chromaticity coordinates were also calculated from emission spectra for Mn{sup 2+} doped CLHA nanophosphors.

  5. Luminescent properties of Mn2+ doped apatite nanophosphors

    Science.gov (United States)

    Ravindranadh, K.; Ravikumar, R. V. S. S. N.; Rao, M. C.

    2016-05-01

    Nanophosphors have been extensively investigated during the last decade due to their various high-performance application potential such as lamp industry, radiation dosimetry, X-ray imaging and colour display. The synthesis of inorganic nanophosphors using both ionizing radiation (IR) or UV light represents very promising technological field. Alkaline earth nanophosphors gathered a lot of attention in past decades because they are considered to be excellent host materials. Transition-metal oxides are well known luminescent emitters in the visible spectral region. Mn2+ doped calcium-lithium hydroxyapatite (CLHA) nanophosphors were prepared by mechanochemical synthesis. The prepared samples were characterized by photoluminescence studies. Photoluminescence spectra of Mn2+ doped CLHA nanophosphors exhibited green and strong orange emission bands at 534, 577 nm respectively under the excitation wavelength of 365 nm. The CIE chromaticity coordinates were also calculated from emission spectra for Mn2+ doped CLHA nanophosphors.

  6. Superconductivity above 30 K in alkali-metal-doped hydrocarbon.

    Science.gov (United States)

    Xue, Mianqi; Cao, Tingbing; Wang, Duming; Wu, Yue; Yang, Huaixin; Dong, Xiaoli; He, Junbao; Li, Fengwang; Chen, G F

    2012-01-01

    The recent discovery of superconductivity with a transition temperature (T(c)) at 18 K in K(x)picene has extended the possibility of high-T(c) superconductors in organic materials. Previous experience based on similar hydrocarbons, like alkali-metal doped phenanthrene, suggested that even higher transition temperatures might be achieved in alkali-metals or alkali-earth-metals doped such polycyclic-aromatic-hydrocarbons (PAHs), a large family of molecules composed of fused benzene rings. Here we report the discovery of high-T(c) superconductivity at 33 K in K-doped 1,2:8,9-dibenzopentacene (C(30)H(18)). To our best knowledge, it is higher than any T(c) reported previously for an organic superconductor under ambient pressure. This finding provides an indication that superconductivity at much higher temperature may be possible in such PAHs system and is worthy of further exploration.

  7. Optical Properties of Nd Doped Rare Earth Vanadates (Preprint)

    Science.gov (United States)

    2010-07-01

    1997) 31. M. F. Reid and F. S. Richardson, “Electric dipole intensity parameters for lanthanide 4f- 4f transitions”, J. Chem. Phys., 79, 5735-42 (1983...32. M. F. Reid, J. J. Dallara, and F. S. Richardson, “Comparison of calculated an dexperimental 4f-4f intensity parameters for lanthanide ...GdVO4 vs. Temperature, Visible spectrum Figure 3d . Extraordinary Refractive Index of GdVO4 vs. Temperature, NIR spectrum Figure 4a. Ordinary

  8. Upconversion studies in rare earth ions-doped lanthanide materials

    Indian Academy of Sciences (India)

    2014-02-08

    Feb 8, 2014 ... Home; Journals; Pramana – Journal of Physics; Volume 82; Issue 2 ... Department of Ceramic Engineering, IIT-BHU, Varanasi 221 005, India; Department of Applied Physics, Indian School of Mines, Dhanbad 826 004, India; Lasers and Spectroscopy Laboratory, Department of Physics, Banaras Hindu ...

  9. Photo darkening in Rare earth doped silica: Model and Experiment

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    2011-01-01

    A model for photo darkening based on chemical bond formation is presented. The formation process, color center spectral response and bleaching is discussed and model predictions is found to follow high power fiber laser operation......A model for photo darkening based on chemical bond formation is presented. The formation process, color center spectral response and bleaching is discussed and model predictions is found to follow high power fiber laser operation...

  10. Radiation defects in oxide crystals doped with rare earth ions

    NARCIS (Netherlands)

    Matkovskii, A; Durygin, A; Suchocki, A; Sugak, D; Wallrafen, F; Vakiv, M

    1999-01-01

    The nature of stable and transient color centers in Y3Al5O12, Gd3Ca5O12, YAlO3 and LiNbO3 crystals is studied. The color centers are created by various types of irradiation. The effect of irradiation on crystal optical properties in visible and ultraviolet range is presented.

  11. Rare-Earth Doped Photonic Crystal Fibre Lasers and Amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.

    2005-01-01

    In this thesis, a theoretical and numerical study of the use of rare-earthdoped photonic crystal fibres as optical amplifiers and lasers, has been performed. Photonic crystal fibres or microstructured optical fibres is a new kind of optical fibre in which the cladding region typically consist....... Their novel properties allow for design of optical fibre amplifiers and fibre lasers with superior performance, compared to solutions based on conventional fibres. The primary applications considered are high efficiency fibre amplifiers based on index guiding photonic crystal fibres, and cladding pumped...

  12. Monolithic Rare Earth Doped PTR Glass Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of airborne and spaceborne laser systems dictates a number of extremely challenging requirements for such fine optical devices. These requirements...

  13. Laser ceramics with rare-earth-doped anisotropic materials.

    Science.gov (United States)

    Akiyama, Jun; Sato, Yoichi; Taira, Takunori

    2010-11-01

    The fabrication of laser-grade anisotropic ceramics by a conventional sintering process is not possible owing to optical scattering at randomly oriented grain boundaries. In this Letter, we report the first (to our knowledge) realization of transparent anisotropic ceramics by using a new crystal orientation process based on large magnetic anisotropy induced by 4f electrons. By slip casting in a 1.4 T magnetic field and subsequent heat treatments, we could successfully fabricate laser-grade calcium fluorapatite ceramics with a loss coefficient of 1.5 cm(-1).

  14. Photo darkening in Rare earth doped silica: Model and Experiment

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    2011-01-01

    A model for photo darkening based on chemical bond formation is presented. The formation process, color center spectral response and bleaching is discussed and model predictions is found to follow high power fiber laser operation...

  15. 2014 Future Earth Young Scientists Conference on Integrated Science and Knowledge Co-Production for Ecosystems and Human Well-Being

    Directory of Open Access Journals (Sweden)

    Ivy Shiue

    2014-11-01

    Full Text Available Effective integration in science and knowledge co-production is a challenge that crosses research boundaries, climate regions, languages and cultures. Early career scientists are crucial in the identification of, and engagement with, obstacles and opportunities in the development of innovative solutions to complex and interconnected problems. On 25–31 May 2014, International Council for Science and International Social Science Council, in collaboration with the International Network of Next-Generation Ecologists and Institute for New Economic Thinking: Young Scholars Initiative, assembled a group of early career researchers with diverse backgrounds and research perspectives to reflect on and debate relevant issues around ecosystems and human wellbeing in the transition towards green economy, funded by the German Research Foundation, at Villa Vigoni, Italy. As a group of young scientists, we have come to a consensus that collaboration and communication among a diverse group of peers from different geographic regions could break down the barriers to multi-disciplinary research designed to solve complex global-scale problems. We also propose to establish a global systematic thinking to monitor global socio-ecological systems and to develop criteria for a “good” anthropocene. Finally, we aim to bridge gaps among research, the media, and education from a governance perspective linking with “sustainable development goals”.

  16. [Asthma drugs and doping].

    Science.gov (United States)

    Pillard, F; Rolland, Y; Rivière, D

    1999-11-01

    Some drugs regularly used in the treatment of asthma (beta-agonists and corticosteroids) are registered on the list of drugs forbidden in sport, because they have a doping action. To avoid penalizing asthmatic sportsmen, some beta-agonists (Salbutamol, Salmeterol, Terbutaline) and corticosteroids are allowed only in inhaled form, with written notification from the prescribing physician, a pneumologist or the team doctor. Considering the increase of doping with increasing involvement of physicians, good and up to date notions about the current rules of prescription in asthmatic sportsmen are needed.

  17. Spectroscopic signature of phosphate crystallization in Erbium-doped optical fibre preforms

    CERN Document Server

    Peretti, Romain; Jacquier, Bernard; Blanc, Wilfried; Dussardier, Bernard; 10.1016/j.optmat.2011.01.005

    2011-01-01

    In rare-earth-doped silica optical fibres, the homogeneous distribution of amplifying ions and part of their spectroscopic properties are usually improved by adding selected elements, such as phosphorus or aluminum, as structural modifier. In erbium ion (Er3+) doped fibres, phosphorus preferentially coordinates to Er3+ ions to form regular cages around it. However, the crystalline structures described in literature never gave particular spectroscopic signature. In this article, we report emission and excitation spectra of Er3+ in a transparent phosphorus-doped silica fibre preform. The observed line features observed at room and low temperature are attributed to ErPO4 crystallites.

  18. An Earth Penetrating Modeling Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, E; Yarrington, P; Glenn, L

    2005-06-21

    Documentation of a study to assess the capability of computer codes to predict lateral loads on earth penetrating projectiles under conditions of non-normal impact. Calculations simulated a set of small scale penetration tests into concrete targets with oblique faces at angles of 15 and 30 degrees to the line-of-flight. Predictive codes used by the various calculational teams cover a wide range of modeling approaches from approximate techniques, such as cavity expansion, to numerical methods, such as finite element codes. The modeling assessment was performed under the auspices of the Phenomenology Integrated Product Team (PIPT) for the Robust Nuclear Earth Penetrator Program (RNEP). Funding for the penetration experiments and modeling was provided by multiple earth penetrator programs.

  19. Diatomaceous Earths - Natural Insecticides

    Directory of Open Access Journals (Sweden)

    Zlatko Korunić

    2013-01-01

    Full Text Available The regulatory issues for diatomaceous earth (DE cover three fields: consumer safety,worker safety, and proof of efficacy against pests. For consumer safety, regulatory issuesare similar to those for other additives, and a principal benefit of DEs is their removal bynormal processing methods. For worker safety, regulatory issues are similar to those forother dusts, such as lime. The proof of potential insecticide values of DE may be assessedby using the analysis of physical and chemical properties of DE and its effect on grainproperties and the proof of efficacy may be regulated by bioassay of standard design.Integrated pest management (IPM, a knowledge-based system, is rapidly providing aframework to reduce dependence on synthetic chemical pesticides. The main principleof post-harvest IPM is to prevent problems rather than to react to them. The specificcurative measures using synthetic pesticides should be applied only when infestationoccurs. DE and enhanced diatomaceous earth (EDE formulations hold significant promiseto increase the effectiveness and broaden the adoption of IPM strategies, thereby reducingthe need for synthetic pesticides. By incorporating DE in an effective IPM program,grain is protected against infestation, loss caused by insects is prevented and grain qualityis maintained until the grain is processed. Cases study data on the use of DE for commodityand structural treatment show that DE is already a practical alternative to syntheticpesticides in some applications.

  20. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  1. Earth System Environmental Literacy

    Science.gov (United States)

    Lowman, Margaret

    If every citizen could read the above quote and understand its underlying ecological concepts, economic challenges, social services, and spiritual heritage, then it is likely that sustainability education would be achieved. The notion of a tree and its ecosystem services illustrate sustainability in the simplest yet most robust sense. To plant and grow a tree, economists struggle with volatile currencies; ecologists juggle development and conservation; religious leaders advocate stewardship; and social scientists examine equity in a world of declining resources. Sustainability education requires an integrated approach between ecology, risk analyses, economics, social sciences, biological sciences, political sciences, languages, biotechnology, physical sciences, health sciences, and religion. All these practitioners (and many others) contribute to sustainability education, an emerging discipline that requires an interdisciplinary synthesis of knowledge, translated into practice, to insure the future of life on Earth.

  2. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...

  3. High-resolution structural characterization and magnetic properties of epitaxial Ce-doped yttrium iron garnet thin films

    Science.gov (United States)

    Li, Zhong; Vikram Singh, Amit; Rastogi, Ankur; Gazquez, Jaume; Borisevich, Albina Y.; Mishra, Rohan; Gupta, Arunava

    2017-07-01

    Thin films of magnetic garnet materials, e.g. yttrium iron garnet (Y3Fe5O12, YIG), are useful for a variety of applications including microwave integrated circuits and spintronics. Substitution of rare earth ions, such as cerium, is known to enhance the magneto-optic Kerr effect (MOKE) as compared to pure YIG. Thin films of Ce0.75Y2.25Fe5O12 (Ce:YIG) have been grown using the pulsed laser deposition (PLD) technique and their crystal structure examined using high resolution scanning transmission electron microscopy. Homogeneous substitution of Ce in YIG, without oxidation to form a separate CeO2 phase, can be realized in a narrow process window with resulting enhancement of the MOKE signal. The thermally generated signal due to spin Seebeck effect for the optimally doped Ce:YIG films has also been investigated.

  4. Education in Anti-Doping: The Art of Self-Imposed Constraints.

    Science.gov (United States)

    Loland, Sigmund

    2017-01-01

    The pillars of anti-doping are detection, deterrence, and prevention. Detection takes the form of testing for banned substances. Deterrence builds on testing and gathering evidence. Athletes who test positive are exposed to penalties. The main tool of prevention is education. Education takes many forms and can be implemented in many ways. This chapter addresses the nature and challenges of current anti-doping education. Firstly, general goals of education and their connection to sport are discussed. Secondly, three normative interpretations of sport are presented, and their implications for anti-doping education are examined. Instrumentalist interpretations and interpretations with emphasis on performance and enhancement challenge the anti-doping campaign. A human excellence interpretation is advocated in which anti-doping is considered a consistent and integral part of sport. Thirdly, future challenges for anti-doping education are reflected upon. © 2017 S. Karger AG, Basel.

  5. doped stable clusters a

    Indian Academy of Sciences (India)

    ABHIJIT DUTTA

    2018-01-30

    ., showed that Ru-doped. Rh6 cluster is a better catalyst for the activation of methanol compared to pure Rh6. It may be noted that methanol activation occurs via O–H bond dissociation rather than C–H bond.25 Rhodium nano ...

  6. Doped barium titanate nanoparticles

    Indian Academy of Sciences (India)

    We have synthesized nickel (Ni) and iron (Fe) ion doped BaTiO3 nanoparticles through a chemical route using polyvinyl alcohol (PVA). The concentration of dopant varies from 0 to 2 mole% in the specimens. The results from X-ray diffractograms and transmission electron micrographs show that the particle diameters in the ...

  7. Doped zinc oxide microspheres

    Science.gov (United States)

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  8. BLOOD DOPING AND RISKS

    Directory of Open Access Journals (Sweden)

    Goran Vasić

    2015-05-01

    Full Text Available Doping is the way in which athletes misuse of chemicals and other types of medical interventions (eg, blood replacement, try to get ahead in the results of other athletes or their performance at the expense of their own health. The aim of this work is the analysis of blood doping and the display of negative consequences that this way of increasing capabilities brings. Method: The methodological work is done descriptively. Results: Even in 1972 at the Stockholm Institute for gymnastics and sport, first Dr. Bjorn Ekblom started having blood doping. Taken from the blood, athletes through centifuge separating red blood cells from blood plasma, which is after a month of storage in the fridge, every athlete back into the bloodstream. Tests aerobic capacity thereafter showed that the concerned athletes can run longer on average for 25% of the treadmill than before. Discussion: Blood doping carries with it serious risks, excessive amount of red cells “thickens the blood,” increased hematocrit, which reduces the heart’s ability to pump blood to the periphery. All this makes it difficult for blood to flow through blood vessels, and there is a great danger that comes to a halt in the circulation, which can cause cardiac arrest, stroke, pulmonary edema, and other complications that can be fatal.

  9. Temperature sensing characteristics of tapered Tm3+-doped fiber amplifiers

    Science.gov (United States)

    Sanchez-Lara, R.; E Ceballos-Herrera, D.; Vazquez-Avila, J. L.; de la Cruz-May, L.; Martinez-Pinon, F.; Alvarez-Chavez, J. A.

    2017-08-01

    We numerically analyze the temperature response of a tapered Tm3+-doped fiber amplifier. The analysis includes a redefinition of the coupled pump and signal propagation equations in order to introduce different longitudinal shapes of the tapered doped fiber and the temperature dependence of the absorption and emission cross sections of the Tm3+ ions under different pump schemes. It was found that the temperature sensitivity of the normalized amplified signal was 2  ×  10-3/°C for 1 W of pump power and 3 m of doped fiber length, using a parabolic taper in a co-propagating pump scheme. This sensitivity can be increased by at least 5 times if we adjust the design parameters of the fiber amplifier using fiber lengths shorter than 1 m and pump powers lower than 300 mW. Our results contribute with new information for the development and optimization of tapered fiber amplifiers doped with other rare earths, and novel designs for doped-fiber temperature sensors.

  10. Planar waveguide amplifiers and laser in erbium doped silica

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Kristensen, Martin

    1999-01-01

    The objective of this work was to develop optically amplifying planar waveguides, using erbium-doped germano-silicate glass films deposited by PECVD (Plasma Enhanced Chemical Vapour Deposition). The waveguides should exhibit enough gain to be useful as optical amplifiers in integrated planar...... lightwave circuits, as well as provide the gain medium for integrated planar waveguide lasers. The work and the obtained results are presented in this thesis: The manufacturing of silica thin films is described and it is shown that the refractive index o fthe films can be controlled by germanium co......-doping. the method used for co-doping thin films with erbium and aluminium is described and it is shown that the erbium concentration as well as the relative erbium/aluminium content can be controlled with good precision. The incorporated erbium ions are excited using light of 980 nm wavelength and the optical...

  11. A high energy x-ray diffraction investigation of sodium phosphate glasses doped with less than 5 mol% praseodymium oxides

    Science.gov (United States)

    Zhang, Kailing

    Rare earth phosphate glasses (REPGs) are excellent materials for high energy (103 - 106 J) / high peak power ( 1012 - 1015 W) lasers. Previous work of the rare earth doped sodium phosphate glasses with compositions (R 2O3)x(Na2O)y(P2O 5)1-x-y where R= Nd, Eu and Dy, 0.04 doped sodium phosphate glasses with even lower praseodymium oxide concentrations, (Pr2O 3)x(Na2O)yP2O5) 1-x-y , where 0.005 atomic-scale structure of the rare-earth doped sodium phosphate glass samples. Structural features such as inter-atomic distances, coordination numbers and their dependence on the concentration of the rare earth oxides were gained from analyzing pair distribution functions extracted from diffraction data.

  12. Vibronic transitions in the alkali-metal (Li, Na, K, Rb) - alkaline-earth-metal (Ca, Sr) series: A systematic analysis of de-excitation mechanisms based on the graphical mapping of Frank-Condon integrals

    Science.gov (United States)

    Pototschnig, Johann V.; Meyer, Ralf; Hauser, Andreas W.; Ernst, Wolfgang E.

    2017-02-01

    Research on ultracold molecules has seen a growing interest recently in the context of high-resolution spectroscopy and quantum computation. After forming weakly bound molecules from atoms in cold collisions, the preparation of molecules in low vibrational levels of the ground state is experimentally challenging, and typically achieved by population transfer using excited electronic states. Accurate potential energy surfaces are needed for a correct description of processes such as the coherent de-excitation from the highest and therefore weakly bound vibrational levels in the electronic ground state via couplings to electronically excited states. This paper is dedicated to the vibrational analysis of potentially relevant electronically excited states in the alkali-metal (Li, Na, K, Rb)- alkaline-earth metal (Ca,Sr) diatomic series. Graphical maps of Frank-Condon overlap integrals are presented for all molecules of the group. By comparison to overlap graphics produced for idealized potential surfaces, we judge the usability of the selected states for future experiments on laser-enhanced molecular formation from mixtures of quantum degenerate gases.

  13. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  14. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  15. Doping Induced Solubility Control

    Science.gov (United States)

    Jacobs, Ian Edward

    Polymeric semiconductors are promising class of materials, which combine many of the electrical properties of inorganic semiconductors with the mechanical flexibility and chemical processability of organic materials. Semiconducting polymers can be deposited from solution over large areas at low cost, and may find applications in displays, photovoltaics, and sensor arrays. Unfortunately, these materials are generally mutually soluble with other organics, preventing solution-based deposition of complex patterned structures using standard photolithographic techniques. Here, we present an entirely new method for patterning conductive polymers utilizing a change in polymer solubility upon p-type doping. Many polymer : molecular dopant systems, including the extensively studied system poly-(3-hexylthiophene) : 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (P3HT : F4TCNQ), are rendered insoluble in a wide range solvents by p-type doping at only a few mol%. By sequentially doping and dedoping films, polymer solubility can be switched on an off at will. We find that doped films can be easily prepared in a two-step process, by first coating the polymer (P3HT), then exposing the film to an orthogonal solvent containing the dopant (F4TCNQ). Dedoping is achieved by means of a chemical reaction that deactivates F4TCNQ, allowing it to be removed by an orthogonal solvent in a single step. This process allows for fully quantitative dedoping, in some cases leaving films with an even lower free carrier density than as cast films by removing intrinsic p-type defects. In addition, we have also identified a photochemical reaction between F4TCNQ and solvents such as tetrahydrofuran (THF), which similarly yields a non-doping product. By immersing films in THF and exposing them to light, this reaction allows for direct, optical patterning of P3HT films. Using laser scanning confocal microscopy (LSCM), we demonstrate direct write topographic patterning of arbitrary structures with in

  16. Structural and emission properties of Tb3+-doped nitrogen-rich silicon oxynitride films

    Science.gov (United States)

    Labbé, C.; An, Y.-T.; Zatryb, G.; Portier, X.; Podhorodecki, A.; Marie, P.; Frilay, C.; Cardin, J.; Gourbilleau, F.

    2017-03-01

    Terbium doped silicon oxynitride host matrix is suitable for various applications such as light emitters compatible with CMOS technology or frequency converter systems for photovoltaic cells. In this study, amorphous Tb3+ ion doped nitrogen-rich silicon oxynitride (NRSON) thin films were fabricated using a reactive magnetron co-sputtering method, with various N2 flows and annealing conditions, in order to study their structural and emission properties. Rutherford backscattering (RBS) measurements and refractive index values confirmed the silicon oxynitride nature of the films. An electron microscopy analysis conducted for different annealing temperatures (T A) was also performed up to 1200 °C. Transmission electron microscopy (TEM) images revealed two different sublayers. The top layer showed porosities coming from a degassing of oxygen during deposition and annealing, while in the region close to the substrate, a multilayer-like structure of SiO2 and Si3N4 phases appeared, involving a spinodal decomposition. Upon a 1200 °C annealing treatment, a significant density of Tb clusters was detected, indicating a higher thermal threshold of rare earth (RE) clusterization in comparison to the silicon oxide matrix. With an opposite variation of the N2 flow during the deposition, the nitrogen excess parameter (Nex) estimated by RBS measurements was introduced to investigate the Fourier transform infrared (FTIR) spectrum behavior and emission properties. Different vibration modes of the Si-N and Si-O bonds have been carefully identified from the FTIR spectra characterizing such host matrices, especially the ‘out-of-phase’ stretching vibration mode of the Si-O bond. The highest Tb3+ photoluminescence (PL) intensity was obtained by optimizing the N incorporation and the annealing conditions. In addition, according to these conditions, the integrated PL intensity variation confirmed that the silicon nitride-based host matrix had a higher thermal threshold of rare earth

  17. Structural and optical characteristics of Ce, Nd, Gd, and Dy-doped Al2O3 thin films

    Science.gov (United States)

    Varpe, Ashwini S.; Deshpande, Mrinalini D.

    2017-07-01

    We present the optical properties of rare earth (RE)-doped Al_2O_3 thin films and discuss their possible use in applications like gate dielectric material and in coating industry. Aluminum oxide films doped with RE elements such as Ce, Nd, Gd, and Dy are synthesized on glass substrate using ultrasonic spray pyrolysis technique at 400°C. The concentration of rare earth element is varied from 0.5 to 5 mol% in 0.1 M solution of Al2O3. The X-ray diffraction analysis indicates that the thin films deposited with and without rare earth doping have an amorphous structure. Further, the optical properties of RE-doped Al2O3 thin films are studied by using UV-visible spectroscopy and photoluminescence measurement. The band gap is found to be 4.06 eV for Al2O3 thin film. A small blue shift is seen in the optical spectra of RE-doped samples as compared to undoped Al2O3 film. Dielectric constant of alumina thin film increases with doping of Gd and Dy while it decreases with Ce and Nd doping. Concentration quenching effects are observed in the photoluminescence spectra of Ce, Nd, Gd, and Dy-doped Al_2O_3 films. Among all these RE-doped Al2O3 thin films, Gd and Dy-doped Al2O3 films exhibit a potential for the construction of dielectric gate in transistors or as a coating material in the semiconductor industry.

  18. Energy transfer in erbium doped optical waveguides based on silicon

    NARCIS (Netherlands)

    Kik, Pieter Geert

    2000-01-01

    Energy transfer in erbium doped optical waveguides based on silicon This thesis describes the energy transfer processes occurring in materials that can be used for the fabrication of silicon compatible optical integrated circuits, operating at 1.54 mm.The thesis consists of three parts: Part I

  19. Light emission in quantum dots and dyes doped polymer nanofibers

    Science.gov (United States)

    Li, Baojun; Cheng, Chang; Yang, Xianguang

    2018-01-01

    Polymer nanofibers are cheap and flexible building blocks for nanophotonic components. For high density nanophotonic integration, both passive and active polymer nanofibers are desirable. In contrast to passive polymer nanofibers, active polymer nanofibers are more desirable because they can act as a light source and waveguide simultaneously. In this talk, light emission in quantum dots and dyes doped polymer nanofibers will be introduced.

  20. ERYTHROPOIETIN AS DOPING AGENT

    Directory of Open Access Journals (Sweden)

    Nina Đukanović

    2012-09-01

    Full Text Available Doping is the use of prohibited substances and/or methods that improve the abilities of athletes. Erythropoietin (EPO, the kidney hormone, belongs to a group of substances that are classified as blood doping, and it can be found on the list of banned substances from 1990. year. Its application leads to an increase in the number of red blood cells, which enables better supply of oxygen, and thus improve the aerobic performance of athletes. Because of that, EPO is very popular in sports where the endurance is predominantly required like a marathon, cycling, triathlon, nordic skiing. Erythropoietin can cause some adverse events, primarily to increase blood viscosity, which is associated with a higher risk of various thromboembolic complications. In detection of EPO use two groups of tests are available, through a urine sample (direct method and blood sample (indirect method.

  1. High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip

    NARCIS (Netherlands)

    Sefünç, Mustafa; Segerink, Franciscus B.; García Blanco, Sonia Maria

    2015-01-01

    Rare-earth ion doped KY(WO4)2 amplifiers are proposed to be a good candidate for many future applications by benefiting from the excellent gain characteristics of rare-earth ions, namely high bit rate amplification (

  2. Doping and Public Health

    DEFF Research Database (Denmark)

    Christiansen, Ask Vest

    rad av världens främsta idrottsvetare och dopningsexperter hade mött upp för att presentera papers till en intresserad och engagerad publik. Temat för konferensen var "Doping and Public Health", och den aspekten behandlades också; dock tolkade flera presentatörer temat på sina egna vis, och hela...

  3. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  4. EarthKAM

    Data.gov (United States)

    National Aeronautics and Space Administration — Sponsored by NASA, EarthKAM (Earth Knowledge Acquired by Middle School Students) is an educational outreach program allowing middle school students to take pictures...

  5. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  6. A call for policy guidance on psychometric testing in doping control in sport.

    Science.gov (United States)

    Petróczi, Andrea; Backhouse, Susan H; Barkoukis, Vassilis; Brand, Ralf; Elbe, Anne-Marie; Lazuras, Lambros; Lucidi, Fabio

    2015-11-01

    One of the fundamental challenges in anti-doping is identifying athletes who use, or are at risk of using, prohibited performance enhancing substances. The growing trend to employ a forensic approach to doping control aims to integrate information from social sciences (e.g., psychology of doping) into organised intelligence to protect clean sport. Beyond the foreseeable consequences of a positive identification as a doping user, this task is further complicated by the discrepancy between what constitutes a doping offence in the World Anti-Doping Code and operationalized in doping research. Whilst psychology plays an important role in developing our understanding of doping behaviour in order to inform intervention and prevention, its contribution to the array of doping diagnostic tools is still in its infancy. In both research and forensic settings, we must acknowledge that (1) socially desirable responding confounds self-reported psychometric test results and (2) that the cognitive complexity surrounding test performance means that the response-time based measures and the lie detector tests for revealing concealed life-events (e.g., doping use) are prone to produce false or non-interpretable outcomes in field settings. Differences in social-cognitive characteristics of doping behaviour that are tested at group level (doping users vs. non-users) cannot be extrapolated to individuals; nor these psychometric measures used for individual diagnostics. In this paper, we present a position statement calling for policy guidance on appropriate use of psychometric assessments in the pursuit of clean sport. We argue that, to date, both self-reported and response-time based psychometric tests for doping have been designed, tested and validated to explore how athletes feel and think about doping in order to develop a better understanding of doping behaviour, not to establish evidence for doping. A false 'positive' psychological profile for doping affects not only the individual

  7. Evolution of the Earth-Moon system

    Science.gov (United States)

    Touma, Jihad; Wisdom, Jack

    1994-01-01

    The tidal evolution of the Earth-Moon system is reexamined. Several models of tidal friction are first compared in an averaged Hamiltonian formulation of the dynamics. With one of these models, full integrations of the tidally evolving Earth-Moon system are carried out in the complete, fully interacting, and chaotically evolving planetary system. Classic results on the history of the lunar orbit are confirmed by our more general model. A detailed history of the obliquity of the Earth which takes into account the evolving lunar orbit is presented.

  8. Future Earth - Research for Global Sustainability

    Science.gov (United States)

    Greenslade, Diana; Berkhout, Frans

    2014-05-01

    Future Earth is a 10-year international research programme that aims to provide the critical knowledge required for societies to understand and address challenges posed by global environmental change (GEC) and to seize opportunities for transitions to global sustainability. Future Earth research is organised around three broad and integrated research themes: Dynamic Planet; Global Development; and Transformations towards Sustainability. It builds upon and integrates the existing GEC Programmes: World Climate Research Programme (WCRP), the International Geosphere-Biosphere Programme (IGBP), DIVERSITAS (international programme of biodiversity science), the International Human Dimensions Programme (IHDP) and the Earth Systems Science Partnership (ESSP). This presentation will outline the key principles of Future Earth, such as the integration of natural and social science, and will describe how the programme intends to address the challenges of global environmental change. Some of the major research questions addressed by Future Earth could include: further understanding of the dynamics of the Earth system (including socio-ecology); risks relating to tipping points; how to ensure sustainable access to food, water and energy; and whether the present economic system provides the necessary framework for low carbon transition.

  9. Alkali metal and alkali earth metal gadolinium halide scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  10. Spectral properties of thulium doped optical fibers for fiber lasers around 2 micrometers

    Science.gov (United States)

    Kamrádek, M.; Aubrecht, J.; Peterka, P.; Podrazký, O.; Honzátko, P.; Cajzl, J.; Mrázek, J.; Kubeček, V.; Kašik, I.

    2017-05-01

    Silica optical fibers doped with rare-earth elements are key components of high-power fiber lasers operating in near-infrared region up to 2.1 μm. In this contribution we deal with preparation and optical characterization of silica-based optical preforms and fibers doped with thulium for fiber lasers operating around 2 μm. A set of fibers with thulium concentration ranges 1000-5000 ppm was prepared by the MCVD solution doping method and characterized. A decrease of fluorescence lifetime of thulium from 487 μs to 378 μs was observed with increasing rare-earth concentration in fiber core. This phenomenon can be explained by energy transfer between ions and ion clustering. Fabricated fibers were suitable for use in fiber lasers.

  11. Charge carrier trapping processes in lanthanide doped La-, Gd-, Y-, and LuPO4

    NARCIS (Netherlands)

    Lyu, T.; Dorenbos, P.

    2017-01-01

    Various methods for deliberate design electron and hole trapping materials are explored with a study on double lanthanide doped rare earth ortho phosphates. Cerium acts as recombination center while lanthanide codopants as electron trapping centers in LaPO4:0.005Ce3+,0.005Ln3+. The electron trap

  12. Effect of Doping and Pressure on Magnetism and Lattice Structure of Fe-Based Superconductors

    Science.gov (United States)

    2010-04-14

    effect as hole doping (sub- stituting Ba by K). However, later it was found that pressure and/or strain can lead to essentially the same effect12,13...even better, Sr) by a rare earth like La or Yb seems to be chemically natural (cf. superconducting cuprates or colossal magnetoresistance manganites

  13. Properties of poly(vinyl alcohol)–borax gel doped with neodymium ...

    Indian Academy of Sciences (India)

    Abstract. Neodymium and praseodymium ions, singly and in combination, have been doped into a poly(vinyl alcohol)–borax matrix. X-ray diffraction shows structural correlations from 2 to 6 Е and 15 Е, while small angle neutron scattering indicates that the rare-earth ions do not affect the nanoscale structures of the gels.

  14. Effect of Er doping on the superconducting properties of porous MgB 2

    Indian Academy of Sciences (India)

    Mg1−Er)B2, where = 0.00, 0.03 and 0.05, in order to investigate the effect of rare-earth (RE) element Er on the structural and electromagnetic properties of porous MgB2. The Er-doped samples result in small grain size structure compared ...

  15. co-doped zinc oxide

    Indian Academy of Sciences (India)

    and TEM analyses indicated the presence of nanocrystal- lites aggregated in different shape particles. The band gap decreases in the case of the doped ZnO samples. Regarding the doped samples, the highest average visible transmittance of 89% and the lowest resistivity of 6.7 × 10−3 cm. PL spectra of the nanopowder ...

  16. Fitness Doping and Body Management

    DEFF Research Database (Denmark)

    Thualagant, Nicole

    This PhD thesis examines in a first paper the conceptualization of fitness doping and its current limitations. Based on a review of studies on bodywork and fitness doping it is emphasised that the definition of doping does not provide insights into bodywork of both men and women. Moreover......, it is argued that the social and a cultural context are missing in the many epidemiological studies on the prevalence of doping. The second paper explores the difficulties of implementing an anti-doping policy, which was originally formulated in an elite sport context, in a fitness context and more......-based fitness centres. Based on a survey in ten Danish club-based fitness centres and on narratives from semi-structured interviews, it is highlighted that the objectives of bodywork differ according to the users’ age and gender. Two different ways of investing in the body are explored in the paper, namely...

  17. Chaotic dynamics in erbium-doped fiber ring lasers

    Science.gov (United States)

    Abarbanel, Henry D. I.; Kennel, Matthew B.; Buhl, Michael; Tureman Lewis, Clifford

    1999-09-01

    Chaotically oscillating rare-earth-doped fiber ring lasers (DFRLs) may provide an attractive way to exploit the broad bandwidth available in an optical communications system. Recent theoretical and experimental investigations have successfully shown techniques to modulate information onto the wide-band chaotic oscillations, transmit that signal along an optical fiber, and demodulate the information at the receiver. We develop a theoretical model of a DFRL and discuss an efficient numerical simulation which includes intrinsic linear and nonlinear induced birefringence, both transverse polarizations, group velocity dispersion, and a finite gain bandwidth. We analyze first a configuration with a single loop of optical fiber containing the doped fiber amplifier, and then, as suggested by Roy and VanWiggeren, we investigate a system with two rings of optical fiber-one made of passive fiber alone. The typical round-trip time for the passive optical ring connecting the erbium-doped amplifier to itself is 200 ns, so ~105 round-trips are required to see the slow effects of the population inversion dynamics in this laser system. Over this large number of round-trips, physical effects like GVD and the Kerr nonlinearity, which may appear small at our frequencies and laser powers via conventional estimates, may accumulate and dominate the dynamics. We demonstrate from our model that chaotic oscillations of the ring laser with parameters relevant to erbium-doped fibers arises from the nonlinear Kerr effect and not from interplay between the atomic population inversion and radiation dynamics.

  18. Role Models on Dope

    DEFF Research Database (Denmark)

    Christiansen, Ask Vest; Gleaves, John

    2014-01-01

    Compared to football-players cyclists are virtuous role models. Yes, Lance Armstrong, Michael Rasmussen and other riders have doped, and because of this they have received the predicate as the most immoral athletes in the sporting world. But if morality is not only a question of whether a person...... has enhanced his or hers performances by the use of various drugs (and lied about it), but also is about human beings’ relations and interactions, then cycling isn’t as depraved as we like to tell each other. Football is much worse....

  19. Doped semiconductor nanocrystal junctions

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Ł.; Mélin, T., E-mail: thierry.melin@isen.iemn.univ-lille1.fr [Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS-UMR8520, Avenue Poincaré, F-59652 Villeneuve d’Ascq (France); Nguyen-Tran, T.; Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS-UMR7647, Ecole Polytechnique, F-91128 Palaiseau (France)

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  20. Superconducting doped topological materials

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi, E-mail: sasaki@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: mizushima@mp.es.osaka-u.ac.jp [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)

    2015-07-15

    Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.

  1. Modification of Co/Cu nanoferrites properties via Gd3+/Er3+doping

    Science.gov (United States)

    Ateia, Ebtesam E.; Soliman, Fatma S.

    2017-05-01

    Pure nanoparticles of the rare earth-substituted cobalt and copper ferrites with general formula Me Gd0.025 Er0.05 Fe1.925 O4 (Me = Co, Cu) were prepared by the chemical citrate method. X-ray diffraction, field emission scanning electron microscopy, BET analysis are utilized to study the effect of rare earth substitution and its impact on the physical properties of the investigated samples. Rare earth-doped cobalt shows type IV isotherm suggesting mesopore structure with its hysteresis loop. The estimated crystallite sizes are found in the range of 21.49 and 36.11 nm for the doped Co and Cu samples, respectively. The magnetic properties of rare earth-substituted cobalt and copper ferrites showed a definite hysteresis loop at room temperature. An increase in coercivity and a decrease in saturation magnetization were detected. This can be explained in view of weaker nature of the Re3+-Fe3+ interaction compared to Fe3+-Fe3+ interaction. Greater than 1.13-fold increase in coercivity (Hc = 2184 Oe) was observed in doped cobalt nanoferrite samples compared to copper (Hc = 1936 Oe). It was found that the decreasing in temperature leads to great improvement in the magnetic properties of the investigated samples. As the magnetic recording performance of the magnetic samples is improved for well-crystallized samples with nano-structural, the effect of rare earth substitution seems to be particularly valuable in this regard.

  2. Earth Rotation Dynamics: Review and Prospects

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Modem space geodetic measurement of Earth rotation variations, particularly by means of the VLBI technique, has over the years allowed studies of Earth rotation dynamics to advance in ever-increasing precision, accuracy, and temporal resolution. A review will be presented on our understanding of the geophysical and climatic causes, or "excitations", for length-of-day change, polar motion, and nutations. These excitations sources come from mass transports that constantly take place in the Earth system comprised of the atmosphere, hydrosphere, cryosphere, lithosphere, mantle, and the cores. In this sense, together with other space geodetic measurements of time-variable gravity and geocenter motion, Earth rotation variations become a remote-sensing tool for the integral of all mass transports, providing valuable information about the latter on a wide range of spatial and temporal scales. Future prospects with respect to geophysical studies with even higher accuracy and resolution will be discussed.

  3. Moving KML geometry elements within Google Earth

    Science.gov (United States)

    Zhu, Liang-feng; Wang, Xi-feng; Pan, Xin

    2014-11-01

    During the process of modeling and visualizing geospatial information on the Google Earth virtual globe, there is an increasing demand to carry out such operations as moving geospatial objects defined by KML geometry elements horizontally or vertically. Due to the absence of the functionality and user interface for performing the moving transformation, it is either hard or impossible to interactively move multiple geospatial objects only using the existing Google Earth desktop application, especially when the data sets are in large volume. In this paper, we present a general framework and associated implementation methods for moving multiple KML geometry elements within Google Earth. In our proposed framework, we first load KML objects into the Google Earth plug-in, and then extract KML geometry elements from the imported KML objects. Subsequently, we interactively control the movement distance along a specified orientation by employing a custom user interface, calculate the transformed geographic location for each KML geometry element, and adjust geographic coordinates of the points in each KML objects. And finally, transformed KML geometry elements can be displayed in Google Earth for 3D visualization and spatial analysis. A key advantage of the proposed framework is that it provides a simple, uniform and efficient user interface for moving multiple KML geometry elements within Google Earth. More importantly, the proposed framework and associated implementations can be conveniently integrated into other customizable Google Earth applications to support interactively visualizing and analyzing geospatial objects defined by KML geometry elements.

  4. Rare earth point defects in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, S.

    2007-12-14

    In this work we investigate rare earth doped GaN, by means of theoretical simulations. The huge unit cells necessary to model the experimental system, where dilute amount of rare earth ions are used, are handled with the charge self consistent density-functional based-tight binding (SCC-DFTB) calculational scheme. The method has been extended to include LDA+U and simplified self interaction corrected (SIC)-like potentials for the simulation of systems with localised and strongly correlated electrons. A set of tight-binding parameters has been created to model the interaction of GaN with some dopants, including a selection of lanthanide ions interesting due to their optical or magnetic properties (Pr, Eu, Gd, Er and Tm). The f-electrons were treated as valence electrons. A qualitatively correct description of the band gap is crucial for the simulation of rare earth doped GaN, because the luminescence intensity of the implanted samples depends on the size of the host band gap and because the rare earths could introduce charge transition levels near the conduction band. In this work these levels are calculated with the Slater-Janak (SJ) transition state model, which allows an approximate calculation of the charge transition levels by analysing the Kohn-Sham eigenvalues of the DFT. (orig.)

  5. Earth and ocean modeling

    Science.gov (United States)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  6. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  7. Thinking the earth

    NARCIS (Netherlands)

    Blok, Vincent

    2016-01-01

    Quentin Meillassoux's call for realism is a call for a new interest in the Earth as un-correlated being in philosophy. Unlike Meillassoux, Martin Heidegger has not been criticized for being a correlationist. To the contrary, his concept of the Earth has to be understood as un-correlated being, as it

  8. Nanocrystal doped matrixes

    Science.gov (United States)

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  9. Combination of emission channeling, photoluminescence and Mossbauer spectroscopy to identify rare earth defect complexes in semiconductors

    CERN Document Server

    Dalmer, M; Restle, M; Stötzler, A; Hofsäss, H C; Ronning, C R; Moodley, M K; Bharuth-Ram, K

    1999-01-01

    Implanted radioactive /sup 167/Tm//sup 167/Er and /sup 169/Yb//sup 169/Tm impurities in Si and GaN were studied with emission channeling and photoluminescence spectroscopy. The effect of co-doping with oxygen on the rare earth (RE) lattice sites and their luminescence behavior was investigated. Tm and Yb occupy near-tetrahedral sites in Si and substitutional sites in GaN after room temperature implantation and annealing. O-RE complexes are formed upon co-doping with O resulting in modified luminescence signals. RE impurities remain substitutional in O-doped GaN, but are displaced from tetrahedral sites in O-doped Si. We discuss the feasibility of Mossbauer studies using /sup 151/Eu, /sup 169/Tm and /sup 161/Dy to determine the RE valence state and to identify RE defect complexes. (25 refs).

  10. Solid Earth: Introduction

    Science.gov (United States)

    Rummel, R.

    1991-10-01

    The principles of the solid Earth program are introduced. When considering the study of solid Earth from space, satellites are used as beacons, inertial references, free fall probes and carrying platforms. The phenomenon measured by these satellites and the processes which can be studied as a result of these measurements are tabulated. The NASA solid Earth program focusses on research into surface kinematics, Earth rotation, land, ice, and ocean monitoring. The ESA solid Earth program identifies as its priority the Aristoteles mission for determining the gravity and magnetic field globally, with high spatial resolution and high accuracy. The Aristoteles mission characteristics and goals are listed. The benefits of the improved gravity information that will be provided by this mission are highlighted. This information will help in the following research: geodesy, orbit mechanics, geodynamics, oceanography, climate sea level, and the atmosphere.

  11. Thermoluminescence dosimetric characteristics of thulium doped ZnB{sub 2}O{sub 4} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Annalakshmi, O. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Jose, M.T., E-mail: mtj@igcar.gov.in [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Madhusoodanan, U. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Subramanian, J. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India); Venkatraman, B. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mandal, A.B. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India)

    2014-02-15

    Polycrystalline powder samples of rare earth doped Zinc borates were synthesized by high temperature solid state diffusion technique. Dosimetric characteristics of the phosphor like thermoluminescence glow curve, TL emission spectra, dose–response, fading studies, reproducibility and reusability studies were carried out on the synthesized phosphors. Among the different rare earth doped phosphors, thulium doped zinc borate was found to have a higher sensitivity. Hence detailed dosimetric characteristics of this phosphor were carried out. It is observed that the dose–response is linear from 10 mGy to 10{sup 3} Gy in this phosphor. EPR measurements were carried out on unirradiated, gamma irradiated and annealed phosphors to identify the defect centers responsible for thermoluminescence. A TL model is proposed based on the EPR studies in these materials. Kinetic parameters were evaluated for the dosimetric peaks using various methods. The experimental results show that this phosphor can have potential applications in radiation dosimetry applications. -- Highlights: • Polycrystalline powder samples of rare earth doped zinc borates were synthesized. • Thulium was observed to be the most efficient dopant in ZnB{sub 2}O{sub 4} lattice. • TL intensity of the dosimetric peak is around 20 times that of TLD-100. • Based on EPR studies a TL mechanism is proposed in zinc borate. • Deconvolution of the glow curve carried out.

  12. Epitaxial Silicon Doped With Antimony

    Science.gov (United States)

    Huffman, James E.; Halleck, Bradley L.

    1996-01-01

    High-purity epitaxial silicon doped with antimony made by chemical vapor deposition, using antimony pentachloride (SbCI5) as source of dopant and SiH4, SiCI2H2, or another conventional source of silicon. High purity achieved in layers of arbitrary thickness. Epitaxial silicon doped with antimony needed to fabricate impurity-band-conduction photodetectors operating at wavelengths from 2.5 to 40 micrometers.

  13. TOXICOLOGICAL ENDPOINTS OF DOPING SUBSTANCES

    OpenAIRE

    BASARAN, A. Ahmet

    2017-01-01

    Athletes and non athletes weighlifters have tried to gain an unfairadvantage through the use doping substances since ancient times. Dopingsubstances although enhance sports performance, represent a risk to the healthof individuals and violate the sprit of competition. The use of prohibitedperformance enhancing drugs (PED’s) or methods to improve results incompetitive sports is referred as doping. Among the PED’s used areandrogenic-anabolic steroids (AASs), diuretics and masking agents, narkot...

  14. Doped graphene as a superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, Hamze, E-mail: hamze.mousavi@gmail.co [Department of Physics, Razi University, Kermanshah (Iran, Islamic Republic of)

    2010-06-28

    We study s-wave superconductivity state in doped graphene within the extended attractive Hubbard model and BCS theory. We use the Green's function approach and coherent potential approximation. We obtain critical temperature of graphene, T{sub c}, as a function of the impurity concentration, c, as well as impurity strength, {delta}. The results show that when c and {delta}, are increased, T{sub c} remains finite and doped graphene can be a superconductor.

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. N C Mondal. Articles written in Journal of Earth System Science. Volume 117 Issue 2 April 2008 pp 133-144. Integrated approach for identification of potential groundwater zones in Seethanagaram Mandal of Vizianagaram District, Andhra Pradesh, India · N C Mondal S N ...

  16. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. S K Satheesh. Articles written in Journal of Earth System Science. Volume 117 Issue S1 July 2008 pp 243-262. Integrated Campaign for Aerosols, gases and Radiation Budget (ICARB): An overview · K Krishna Moorthy S K Satheesh S Suresh Babu C B S Dutt · More Details ...

  17. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J Senthilnath. Articles written in Journal of Earth System Science. Volume 122 Issue 3 June 2013 pp 559-572. Integration of speckle de-noising and image segmentation using Synthetic Aperture Radar image for flood extent extraction · J Senthilnath H Vikram Shenoy Ritwik ...

  18. Antimony-doped Tin(II) Sulfide Thin Films

    OpenAIRE

    Chakraborty, Rupak; Kim, Sang Bok; Heald, Steven; Buonassisi, Tonio; Gordon, Roy Gerald; Sinsermsuksakul, Prasert

    2012-01-01

    Thin-film solar cells made from earth-abundant, inexpensive, and nontoxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin monosulfide (SnS) is a promising candidate for making absorber layers in scalable, inexpensive, and nontoxic solar cells. SnS has always been observed to be a p-type semiconductor. Doping SnS to form an n-type semiconductor would permit the construction of solar cells with p-n ...

  19. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    Science.gov (United States)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  20. Laser action in Eu-doped GaN thin-film cavity at room temperature

    Science.gov (United States)

    Park, J. H.; Steckl, A. J.

    2004-11-01

    Rare-earth-based lasing action in GaN is demonstrated. Room-temperature stimulated emission (SE) was obtained at 620 nm from an optical cavity formed by growing in situ Eu-doped GaN thin films on sapphire substrates. The SE threshold for optical pumping of a ˜1 at. % Eu-doped GaN sample was ˜10kW/cm2. The SE threshold was accompanied by reductions in the emission linewidth and lifetime. A modal gain of ˜43cm-1 and a modal loss of ˜20cm-1 were obtained.