WorldWideScience

Sample records for earth chalcogenides thulium

  1. Electron states in thulium and other rare-earth metals

    International Nuclear Information System (INIS)

    Strange, P.; Fairbairn, W.M.; Lee, P.M.

    1983-01-01

    The LMTO method has been applied to calculate band structures for the heavier rare-earth metals. The calculations are relativistic. Thulium in particular has been considered, where a frozen core approximation is used, and the outer electrons are treated selfconsistently. Problems associated with the localisation and interactions of the 4f electrons are discussed. Teh comparisons between experimental data and calculated quantities are encouraging, but more data on high-purity single crystals would be helpful. (author)

  2. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.

    Science.gov (United States)

    Ganem, Joseph; Bowman, Steven R

    2013-11-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

  3. Thulium oxide fuel characterization study: Part 3, Procedures

    International Nuclear Information System (INIS)

    Nelson, C.A.; Anderson, R.W.; Talbot, M.; Bierds, W.

    1970-06-01

    Procedures are presented for the following: Tm 2 O 3 -Yb 2 O 3 pseudo - binary phase diagram tests; compatibility tests; thulium-170 oxide dose rate measurements; preparation of Tm 2 O 3 wafers; SRL thulium and/or ytterbium oxide powder reprocessing for sintering; cold pressing and sintering thulium oxide wafers; preparation of thulium and/or ytterbium oxide powder via precipitation with oxalic acid, ammonium oxalate, urea and methyl oxalate; determination of the total surface area of rare earth oxide powders; determining oxygen in thulia - thulia/ytterbia for the purpose of determining metal-to-oxygen ratios; and determination of the impact resistance to fines generation of sintered rare earth oxide

  4. Optical emission spectrographic analysis of thulium oxide for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.; Dixit, V.C.

    1988-01-01

    An optical emission spectrographic method has been developed for the analysis of high purity thulium oxide to determine rare earth elements Er, Yb, Lu and Y. A 1200 groove/mm grating blazed at 3300 A is used to record the spectrum on Kodak SA-1 photographic plates after the excitation of the graphite-sample (1:1) mixture in DC arc. The determination range is 0.008 per cent to 0.1 per cent and the relative standard deviation is 17.6 per cent. (author). 15 refs., 5 tables, 5 figs

  5. Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions

    Czech Academy of Sciences Publication Activity Database

    Kostka, Petr; Zavadil, Jiří; Iovu, M.S.; Ivanova, Z. G.; Furniss, D.; Seddon, A.B.

    2015-01-01

    Roč. 648, NOV 5 (2015), s. 237-243 ISSN 0925-8388 R&D Projects: GA ČR GAP106/12/2384 Institutional support: RVO:67985891 ; RVO:67985882 Keywords : chalcogenide glasses * rare earth ions * low-temperature photoluminescence * optical transmission Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 3.014, year: 2015

  6. Thulium-based bulk metallic glass

    International Nuclear Information System (INIS)

    Yu, H. B.; Yu, P.; Wang, W. H.; Bai, H. Y.

    2008-01-01

    We report the formation and properties of a thulium-based bulk metallic glass (BMG). Compared with other known rare-earth (RE) based BMGs, Tm-based BMGs show features of excellent glass formation ability, considerable higher elastic modulus, smaller Poisson's ratio, high mechanical strength, and intrinsic brittleness. The reasons for the different properties between the Tm-based and other RE-based BMGs are discussed. It is expected that the Tm-based glasses with the unique properties are appropriate candidates for studying some important issues in BMGs

  7. Fe-Cluster Compounds of Chalcogenides: Candidates for Rare-Earth-Free Permanent Magnet and Magnetic Nodal-Line Topological Material.

    Science.gov (United States)

    Zhao, Xin; Wang, Cai-Zhuang; Kim, Minsung; Ho, Kai-Ming

    2017-12-04

    Fe-cluster-based crystal structures are predicted for chalcogenides Fe 3 X 4 (X = S, Se, Te) using an adaptive genetic algorithm. Topologically different from the well-studied layered structures of iron chalcogenides, the newly predicted structures consist of Fe clusters that are either separated by the chalcogen atoms or connected via sharing of the vertex Fe atoms. Using first-principles calculations, we demonstrate that these structures have competitive or even lower formation energies than the experimentally synthesized Fe 3 X 4 compounds and exhibit interesting magnetic and electronic properties. In particular, we show that Fe 3 Te 4 can be a good candidate as a rare-earth-free permanent magnet and Fe 3 S 4 can be a magnetic nodal-line topological material.

  8. New Trends in Amplifiers and Sources via Chalcogenide Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    L. Mescia

    2012-01-01

    Full Text Available Rare-earth-doped chalcogenide glass fiber lasers and amplifiers have great applicative potential in many fields since they are key elements in the near and medium-infrared (mid-IR wavelength range. In this paper, a review, even if not exhaustive, on amplification and lasing obtained by employing rare-earth-doped chalcogenide photonic crystal fibers is reported. Materials, devices, and feasible applications in the mid-IR are briefly mentioned.

  9. Thulium heat sources for space power applications

    International Nuclear Information System (INIS)

    Alderman, C.J.

    1992-05-01

    Reliable power supplies for use in transportation and remote systems will be an important part of space exploration terrestrial activities. A potential power source is available in the rare earth metal, thulium. Fuel sources can be produced by activating Tm-169 targets in the space station reactor. The resulting Tm-170 heat sources can be used in thermoelectric generators to power instrumentation and telecommunications located at remote sites such as weather stations. As the heat source in a dynamic Sterling or Brayton cycle system, the heat source can provide a lightweight power source for rovers or other terrestrial transportation systems

  10. Thermoluminescence dosimetric characteristics of thulium doped ZnB2O4 phosphor

    International Nuclear Information System (INIS)

    Annalakshmi, O.; Jose, M.T.; Madhusoodanan, U.; Subramanian, J.; Venkatraman, B.; Amarendra, G.; Mandal, A.B.

    2014-01-01

    Polycrystalline powder samples of rare earth doped Zinc borates were synthesized by high temperature solid state diffusion technique. Dosimetric characteristics of the phosphor like thermoluminescence glow curve, TL emission spectra, dose–response, fading studies, reproducibility and reusability studies were carried out on the synthesized phosphors. Among the different rare earth doped phosphors, thulium doped zinc borate was found to have a higher sensitivity. Hence detailed dosimetric characteristics of this phosphor were carried out. It is observed that the dose–response is linear from 10 mGy to 10 3 Gy in this phosphor. EPR measurements were carried out on unirradiated, gamma irradiated and annealed phosphors to identify the defect centers responsible for thermoluminescence. A TL model is proposed based on the EPR studies in these materials. Kinetic parameters were evaluated for the dosimetric peaks using various methods. The experimental results show that this phosphor can have potential applications in radiation dosimetry applications. -- Highlights: • Polycrystalline powder samples of rare earth doped zinc borates were synthesized. • Thulium was observed to be the most efficient dopant in ZnB 2 O 4 lattice. • TL intensity of the dosimetric peak is around 20 times that of TLD-100. • Based on EPR studies a TL mechanism is proposed in zinc borate. • Deconvolution of the glow curve carried out

  11. Self-powered detectors with thulium emitter

    International Nuclear Information System (INIS)

    Haller, P.; Klar, E.

    1978-01-01

    In addition to fission chambers, prompt-indicating self-powered (SPN) detectors are used for measuring the neutron flux density in the core of power reactors. Although current SPN detectors with a cobalt emitter give satisfactora results, detectors with other emitter materials have been analyzed and tested. The author describes the properties and decay pattern of the nuclide thulium and presents the results of measurements made while testing thulium detectors. (orig.) [de

  12. Enhanced performance of an S-band fiber laser using a thulium-doped photonic crystal fiber

    Science.gov (United States)

    Muhammad, A. R.; Emami, S. D.; Hmood, J. K.; Sayar, K.; Penny, R.; Abdul-Rashid, H. A.; Ahmad, H.; Harun, S. W.

    2014-11-01

    This work proposes a new method to enhance the performance of an S-band fiber laser by using a thulium-doped photonic crystal fiber (PCF). The proposed method is based on amplified spontaneous emission (ASE) suppression provided by the thulium-doped PCF unique geometric structure. The enhanced performance of this filter based PCF is dependent on the short and long cut-off wavelength characteristics that define the fiber transmission window. Realizing the short wavelength cut-off location requires the PCF cladding to be doped with a high index material, which provides a refractive index difference between the core and cladding region. Achieving the long cut-off wavelength necessitates enlarging the size of the air holes surrounding the rare-earth doped core region. The PCF structure is optimized so as to achieve the desired ASE suppression regions of below 0.8 μm and above 1.8 μm. The laser performance is simulated for different host media, namely pure silica, alumino-silicate, and fluoride-based fiber ZBLAN based on this thulium-doped PCF design. The host media spectroscopic details, including lifetime variations and quantum efficiency effect on the lasing emission are also discussed. Information on the filter based PCF design is gathered via a full-vectorial finite element method analysis and specifically a numerical modelling solution for the energy level rate equation using the Runge-Kutta method. Results are analyzed for gain improvement, lasing cavity, laser efficiency and effect of core size diameter variation. Results are compared with conventional thulium-doped fiber and thulium-doped PCF for every single host media. We observe that the ZBLAN host media is the most promising candidate due to its greater quantum efficiency.

  13. Enhanced performance of an S-band fiber laser using a thulium-doped photonic crystal fiber

    International Nuclear Information System (INIS)

    Muhammad, A R; Emami, S D; Penny, R; Ahmad, H; Harun, S W; Hmood, J K; Sayar, K; Abdul-Rashid, H A

    2014-01-01

    This work proposes a new method to enhance the performance of an S-band fiber laser by using a thulium-doped photonic crystal fiber (PCF). The proposed method is based on amplified spontaneous emission (ASE) suppression provided by the thulium-doped PCF unique geometric structure. The enhanced performance of this filter based PCF is dependent on the short and long cut-off wavelength characteristics that define the fiber transmission window. Realizing the short wavelength cut-off location requires the PCF cladding to be doped with a high index material, which provides a refractive index difference between the core and cladding region. Achieving the long cut-off wavelength necessitates enlarging the size of the air holes surrounding the rare-earth doped core region. The PCF structure is optimized so as to achieve the desired ASE suppression regions of below 0.8 μm and above 1.8 μm. The laser performance is simulated for different host media, namely pure silica, alumino-silicate, and fluoride-based fiber ZBLAN based on this thulium-doped PCF design. The host media spectroscopic details, including lifetime variations and quantum efficiency effect on the lasing emission are also discussed. Information on the filter based PCF design is gathered via a full-vectorial finite element method analysis and specifically a numerical modelling solution for the energy level rate equation using the Runge–Kutta method. Results are analyzed for gain improvement, lasing cavity, laser efficiency and effect of core size diameter variation. Results are compared with conventional thulium-doped fiber and thulium-doped PCF for every single host media. We observe that the ZBLAN host media is the most promising candidate due to its greater quantum efficiency. (paper)

  14. Transurethral vaporesection of prostate: diode laser or thulium laser?

    Science.gov (United States)

    Tan, Xinji; Zhang, Xiaobo; Li, Dongjie; Chen, Xiong; Dai, Yuanqing; Gu, Jie; Chen, Mingquan; Hu, Sheng; Bai, Yao; Ning, Yu

    2018-05-01

    This study compared the safety and effectiveness of the diode laser and thulium laser during prostate transurethral vaporesection for treating benign prostate hyperplasia (BPH). We retrospectively analyzed 205 patients with BPH who underwent a diode laser or thulium laser technique for prostate transurethral vaporesection from June 2016 to June 2017 and who were followed up for 3 months. Baseline characteristics of the patients, perioperative data, postoperative outcomes, and complications were compared. We also assessed the International Prostate Symptom Score (IPSS), quality of life (QoL), maximum flow rate (Q max ), average flow rate (AFR), and postvoid residual volume (PVR) at 1 and 3 months postoperatively to evaluate the functional improvement of each group. There were no significant differences between the diode laser and thulium laser groups related to age, prostate volume, operative time, postoperative hospital stays, hospitalization costs, or perioperative data. The catheterization time was 3.5 ± 0.8 days for the diode laser group and 4.7 ± 1.8 days for the thulium laser group (p diode laser and thulium laser contributes to safe, effective transurethral vaporesection in patients with symptomatic BPH. Diode laser, however, is better than thulium laser for prostate transurethral vaporesection because of its shorter catheterization time. The choice of surgical approach is more important than the choice of laser types during clinical decision making for transurethral laser prostatectomy.

  15. Thulium distributed-feedback fiber lasers

    DEFF Research Database (Denmark)

    Agger, Søren Dyøe

    2006-01-01

    in silica and the fabri- cation, design and characterization of coherent Distributed Feed-Back (DFB) ber lasers incorporating thulium as the active laser medium. Our recent results have proved that single-frequency, single-polarization, narrow-linewidth (tens of kHz) operation of thulium doped DFB ber...... lasers is possible. Demonstrations of single-frequency lasers have, until now, been achieved at 1740 nm, 1984 nm and at a record-breaking 2090 nm. The 1740 nm laser has been boosted to 60 mW of output power with a linewidth of only 3 kHz and implemented in a plug-and-play turnkey system with SMF28-APC...

  16. Thermoluminescence dosimetric characteristics of thulium doped ZnB{sub 2}O{sub 4} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Annalakshmi, O. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Jose, M.T., E-mail: mtj@igcar.gov.in [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Madhusoodanan, U. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Subramanian, J. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India); Venkatraman, B. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mandal, A.B. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India)

    2014-02-15

    Polycrystalline powder samples of rare earth doped Zinc borates were synthesized by high temperature solid state diffusion technique. Dosimetric characteristics of the phosphor like thermoluminescence glow curve, TL emission spectra, dose–response, fading studies, reproducibility and reusability studies were carried out on the synthesized phosphors. Among the different rare earth doped phosphors, thulium doped zinc borate was found to have a higher sensitivity. Hence detailed dosimetric characteristics of this phosphor were carried out. It is observed that the dose–response is linear from 10 mGy to 10{sup 3} Gy in this phosphor. EPR measurements were carried out on unirradiated, gamma irradiated and annealed phosphors to identify the defect centers responsible for thermoluminescence. A TL model is proposed based on the EPR studies in these materials. Kinetic parameters were evaluated for the dosimetric peaks using various methods. The experimental results show that this phosphor can have potential applications in radiation dosimetry applications. -- Highlights: • Polycrystalline powder samples of rare earth doped zinc borates were synthesized. • Thulium was observed to be the most efficient dopant in ZnB{sub 2}O{sub 4} lattice. • TL intensity of the dosimetric peak is around 20 times that of TLD-100. • Based on EPR studies a TL mechanism is proposed in zinc borate. • Deconvolution of the glow curve carried out.

  17. Capture cross section and resonance parameters of thulium-169

    International Nuclear Information System (INIS)

    Arbo, J.C.; Felvinci, J.P.; Melkonian, E.; Havens, W.W. Jr.

    1975-01-01

    The previously analyzed energy range for thulium capture resonance parameters is extended from 1 keV to 2 keV. In addition, point and group averaged thulium cross section curves are extended to above 2 keV and 181 Ta impurity levels are discussed. (SDF)

  18. Low-phonon-frequency chalcogenide crystalline hosts for rare earth lasers operating beyond three microns

    Science.gov (United States)

    Payne, Stephen A.; Page, Ralph H.; Schaffers, Kathleen I.; Nostrand, Michael C.; Krupke, William F.; Schunemann, Peter G.

    2000-01-01

    The invention comprises a RE-doped MA.sub.2 X.sub.4 crystalline gain medium, where M includes a divalent ion such as Mg, Ca, Sr, Ba, Pb, Eu, or Yb; A is selected from trivalent ions including Al, Ga, and In; X is one of the chalcogenide ions S, Se, and Te; and RE represents the trivalent rare earth ions. The MA.sub.2 X.sub.4 gain medium can be employed in a laser oscillator or a laser amplifier. Possible pump sources include diode lasers, as well as other laser pump sources. The laser wavelengths generated are greater than 3 microns, as becomes possible because of the low phonon frequency of this host medium. The invention may be used to seed optical devices such as optical parametric oscillators and other lasers.

  19. X-ray fluorescence analysis of thulium oxide/oxalate for rare earth impurities

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.

    1986-01-01

    An X-ray fluorescence spectrometric method for the analysis of thulium oxide is described. For the analysis, the sample in oxalate form is mixed with boric acid binding material and pressed into a pellet over a supporting pellet of boric acid. A wavelength dispersive Philips PW 1220 X-ray fluorescence spectrometer is used for the experiments; the minimum determination limits are 0.002per cent for Ho, Lu and Y, 0.005per cent for Dy and Er and 0.01per cent for Yb. Calculations for theoretical minimum detection limits and percent standard deviation at each concentration of the standard are carried out. (author)

  20. [Transurethral thulium laser urethrotomy for urethral stricture].

    Science.gov (United States)

    Liu, Chun-Lai; Zhang, Xi-Ling; Liu, Yi-Li; Wang, Ping

    2011-09-01

    To evaluate the effect of endourethrotomy with thulium laser as a minimally invasive treatment for urethral stricture. We treated 36 cases of urethral stricture or atresia by endourethrotomy with thulium laser, restored the urethral continuity by vaporization excision of the scar tissue, and observed the clinical effects and complications. The mean operation time was 35 min, ranging from 10 to 90 min. Smooth urination was achieved after 2-6 weeks of catheter indwelling, with no urinary incontinence. The patients were followed up for 4-24 (mean 12) months, during which 27 did not need any reintervention, 5 developed urinary thinning but cured by urethral dilation, 3 received another laser urethrotomy for previous negligence of timely urethral dilation, and the other 1 underwent open urethroplasty. Thulium laser urethrotomy is a safe and effective minimally invasive option for short urethral stricture, which is also suitable for severe urethral stricture and urethral atresia. Its short-term outcome is satisfactory, but its long-term effect remains to be further observed.

  1. Single-frequency thulium-doped distributed-feedback fibre laser

    DEFF Research Database (Denmark)

    Agger, Søren; Povlsen, Jørn Hedegaard; Varming, Poul

    2004-01-01

    We have successfully demonstrated a single-frequency distributed-feedback (DFB) thulium-doped silica fiber laser emitting at a wavelength of 1735 nm. The laser cavity is less than 5 cm long and is formed by intracore UV-written Bragg gratings with a phase shift. The laser is pumped at 790 nm from...... a Ti:sapphire laser and has a threshold pump power of 59 mW. The laser has a maximum output power of 1 mW in a singlefrequency, single-polarization radiation mode and is tunable over a few nanometers. To the best of the authors’ knowledge, this is the first report of a single-frequency DFB fiber laser...... that uses thulium as the amplifying medium. The lasing wavelength is the longest demonstrated with DFB fiber lasers and yet is among the shortest obtained for thulium-doped silica fiber lasers....

  2. Thulium laser urethrotomy for urethral stricture: a preliminary report.

    Science.gov (United States)

    Wang, Linhui; Wang, Zhixiang; Yang, Bo; Yang, Qing; Sun, Yinghao

    2010-09-01

    The outcome of thulium laser urethrotomy for patients with urethral stricture had not been reported. The purpose of this study was to evaluate outcome of endourethrotomy with the thulium laser as a minimally invasive treatment for urethral stricture. Twenty-one consecutive patients with urethral stricture were evaluated by retrograde uroflowmetry, International Prostate Symptom Score (IPSS), and quality of life preoperatively at a single academic center. All patients were treated with thulium laser urethrotomy. All patients were followed up for 12-24 months postoperatively by uroflowmetry and by retrograde with voiding cystourethrogram every 3 months. And all patients were followed up by mailed questionnaire, including IPSS and quality of life. Retrograde endoscopic thulium laser urethrotomy was performed in all 21 patients. Most patients (N = 16; 76.2%) did not need any reintervention. Five patients developed recurrent strictures, of them two patients were treated by another laser urethrotomy, one patient was treated by open urethroplasty with buccal mucosa and the other two patients' reintervention were treated by urethral dilation. No intraoperative complications were encountered, although in 9.5% (N = 2) of patients, a urinary tract infection was diagnosed postoperatively. No gross hematuria occurred. Including two patients treated with repeat laser urethrotomy, 17(81.0%) showed good flow of urine (Q(ave)>16.0 ml/second) and adequate caliber urethra in retrograde urethrogram (RGU) 12 months after operation. Three (14.3%) patients showed narrow stream of urine (Q(ave)urethrotomy. The thulium laser urethrotomy was a safe and effective minimally invasive therapeutic modality for urethral stricture. 2010 Wiley-Liss, Inc.

  3. Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers

    DEFF Research Database (Denmark)

    Kubat, Irnis; Petersen, Christian Rosenberg; Møller, Uffe Visbech

    2014-01-01

    of ZBLAN spanning the 0.9–4.1μm SC at the −30dB level. The ZBLAN fiber SC is then coupled into 10cm of As2Se3 chalcogenide Microstructured Optical Fiber (MOF) designed to have a zero-dispersion wavelength (λZDW) significantly below the 4.1μm InfraRed (IR) edge of the ZBLAN fiber SC, here 3.55μm...

  4. The lattice dynamical studies of rare earth compounds: electron-phonon interactions

    International Nuclear Information System (INIS)

    Jha, Prafulla K.; Sanyal, Sankar P.; Singh, R.K.

    2002-01-01

    During the last two decades chalcogenides and pnictides of rare earth (RE) atoms have drawn considerable attention of the solid state physicists because of their peculiar electronic, magnetic, optical and phonon properties. Some of these compounds e.g. sulphides and selenides of cerium (Ce), samarium (Sm), yttrium (Y), ytterbium (Yb), europium (Eu) and thulium (Tm) and their alloys show nonintegral valence (between 2 and 3), arising due to f-d electron hybridization at ambient temperature and pressure. The rare earth mixed valence compounds (MVC) reviewed in this article crystallize in simple cubic structure. Most of these compounds show the existence of strong electron-phonon coupling at half way to the zone boundary. This fact manifests itself through softening of the longitudinal acoustic mode, negative value of elastic constant C 12 etc. The purpose of this contribution is to review some of the recent activities in the fields of lattice dynamics and allied properties of rare earth compounds. The present article is primarily devoted to review the effect of electron-phonon interactions on the dynamical properties of rare earth compounds by using the lattice dynamical model theories based on charged density deformations and long-range many body forces. While the long range charge transfer effect arises due to f-d hybridization of nearly degenerate 4f-5d bands of rare earth ions, the density deformation comes into the picture of breathing motion of electron shells. These effects of charge transfer and charge density deformation when considered in the lattice dynamical models namely the three body force rigid ion model (TRM) and breathing shell model (BSM) are quite successful in explaining the phonon anomalies in these compounds and undoubtedly unraveled many important physical process governing the phonon anomalies in rare earth compounds

  5. Prospects of Colloidal Copper Chalcogenide Nanocrystals

    NARCIS (Netherlands)

    van der Stam, W.; Berends, A.C.; de Mello-Donega, Celso

    2016-01-01

    Over the past few years, colloidal copper chalcogenide nanocrystals (NCs) have emerged as promising alternatives to conventional Cd and Pb chalcogenide NCs. Owing to their wide size, shape, and composition tunability, Cu chalcogenide NCs hold great promise for several applications, such as

  6. Chalcogenide glass hollow core microstructured optical fibers

    Directory of Open Access Journals (Sweden)

    Vladimir S. eShiryaev

    2015-03-01

    Full Text Available The recent developments on chalcogenide glass hollow core microstructured optical fibers (HC-MOFs are presented. The comparative analysis of simulated optical properties for chalcogenide HC-MOFs of negative-curvature with different size and number of capillaries is given. The technique for the manufacture of microstructured chalcogenide preforms, which includes the assembly of the substrate glass tube and 8-10 capillaries, is described. Further trends to improve the optical transmission in chalcogenide NCHCFs are considered.

  7. Magnetic and Structural Phase Transitions in Thulium under High Pressures and Low Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vohra, Yogesh K.; Tsoi, Georgiy M.; Samudrala, Gopi K. [UAB

    2017-10-01

    The nature of 4f electrons in many rare earth metals and compounds may be broadly characterized as being either "localized" or "itinerant", and is held responsible for a wide range of physical and chemical properties. The pressure variable has a very dramatic effect on the electronic structure of rare earth metals which in turn drives a sequence of structural and magnetic transitions. We have carried out four-probe electrical resistance measurements on rare earth metal Thulium (Tm) under high pressures to 33 GPa and low temperatures to 10 K to monitor the magnetic ordering transition. These studies are complemented by angle dispersive x-ray diffraction studies to monitor crystallographic phase transitions at high pressures and low temperatures. We observe an abrupt increase in magnetic ordering temperature in Tm at a pressure of 17 GPa on phase transition from ambient pressure hcp-phase to α-Sm phase transition. In addition, measured equation of state (EOS) at low temperatures show anomalously low thermal expansion coefficients likely linked to magnetic transitions.

  8. Thulium heat source for high-endurance and high-energy density power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW th coupled with a power conversion efficiency of ∼30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs

  9. Zero ischemia laparoscopic partial thulium laser nephrectomy.

    LENUS (Irish Health Repository)

    Thomas, Arun Z

    2013-11-01

    Laser technology presents a promising alternative to achieve tumor excision and renal hemostasis with or without hilar occlusion, yet its use in partial nephrectomy has not been significantly evaluated. We prospectively evaluated the thulium:yttrium-aluminum-garnet laser in laparoscopic partial nephrectomy (LPN) in our institution over a 1-year period.

  10. Magnetic chalcogenides in 3 and lower dimensions

    Science.gov (United States)

    Furdyna, J. K.; Dong, S.-N.; Lee, S.; Liu, X.; Dobrowolska, M.

    2018-06-01

    In this article we review magnetic phenomena that occur in the chalcogenide family involving transition metals. Magnetic properties displayed by bulk 3D chalcogenides compounds and alloys produced by equilibrium growth methods are discussed. 2D magnetic chalcogenide systems such as epitaxial films and more complex multilayers, whose formation is made possible by epitaxial methods and/or by van der Waals epitaxy, are presented in detail. We present a brief overview of magnetic effects emerging as the dimensionality of chalcogenide materialss is reduced to 1D (nanowires and related structures) and to zero-D (quantum dots formed by both top-down and bottom-up methods).

  11. The intercalation chemistry of layered iron chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vivanco, Hector K.; Rodriguez, Efrain E., E-mail: efrain@umd.edu

    2016-10-15

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the role of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials—mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.

  12. High-Purity Glasses Based on Arsenic Chalcogenides

    Science.gov (United States)

    2001-06-01

    Chemical interaction of chalcogenides and some impurities (CS 2, TeO2 ) with the quartz glass at high temperature leads to the thin layers formation...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1523 TITLE: High-Purity Glasses Based on Arsenic Chalcogenides...Materials Vol. 3, No. 2, June 2001, p. 341 - 349 HIGH-PURITY GLASSES BASED ON ARSENIC CHALCOGENIDES M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S

  13. The chemistry of copper chalcogenides in waste glasses

    International Nuclear Information System (INIS)

    Schreiber, H.D.; Lambert, H.W.

    1994-01-01

    The solubilities of copper chalcogenides (CuS, CuSe, CuTe) were measured in a glass melt which is representative of those proposed for nuclear waste immobilization and circuit board vitrification. CuTe is more soluble than CuS and CuSe in the glass melt under relatively oxidizing conditions. However, the solubilities of all the copper chalcogenides in the glass melt are virtually identical at reducing conditions, probably a result of the redox-controlled solubility of copper metal in all cases. The redox chemistry of a glass melt coexisting with an immiscible copper chalcogenide depends primarily on the prevailing oxygen fugacity, not on the identity of the chalcogenide. The target concentration of less than 0.3 to 0.5 wt% copper in the waste glass should eliminate the precipitation of copper chalcogenides during processing

  14. Effect of pressure on the crystal field splitting in rare earth pnictides and chalcogenides

    International Nuclear Information System (INIS)

    Schirber, J.E.; Weaver, H.T.

    1978-01-01

    The experimental situation for the pressure dependence of the crystal field of praseodymium pnictides and chalcogenides is reviewed and compared with the predictions of the point charge model. The problem of separating exchange and crystal field contributions from the measured NMR frequency shift or susceptibility measurements is discussed as well as problems explaining these effects with conduction electron related models

  15. A chemical definition of the effective reducing power of thulium(II) diiodide by its reactions with cyclic unsaturated hydrocarbons.

    Science.gov (United States)

    Fedushkin, I L; Bochkarev, M N; Dechert, S; Schumann, H

    2001-08-17

    Thulium diiodide reduces cyclic aromatic hydrocarbons that have reduction potentials more positive than - 2.0 V versus SCE. Thus, TmI2 reacts with cyclooctatetraene or acenaphthylene in THF, or with lithium anthracenide in 1,2-dimethoxyethane (DME) to give thulium triiodide and the thulium(III) complexes [(eta8-C8H8)TmI(thf)2] (1), rac-ansa-[(eta5-C12H8)2TmI(thf)] (2), or [(eta2-C14H10)TmI-(dme)2] (3), respectively. The molecular structures of 1-3 were determined by single-crystal X-ray diffraction.

  16. Noble-Metal Chalcogenide Nanotubes

    Directory of Open Access Journals (Sweden)

    Nourdine Zibouche

    2014-10-01

    Full Text Available We explore the stability and the electronic properties of hypothetical noble-metal chalcogenide nanotubes PtS2, PtSe2, PdS2 and PdSe2 by means of density functional theory calculations. Our findings show that the strain energy decreases inverse quadratically with the tube diameter, as is typical for other nanotubes. Moreover, the strain energy is independent of the tube chirality and converges towards the same value for large diameters. The band-structure calculations show that all noble-metal chalcogenide nanotubes are indirect band gap semiconductors. The corresponding band gaps increase with the nanotube diameter rapidly approaching the respective pristine 2D monolayer limit.

  17. Pressure dependence of crystal field splitting in Pr pnictides and chalcogenides

    International Nuclear Information System (INIS)

    Schirber, J.E.; Weaver, H.T.; Ginley, D.S.

    1978-01-01

    We have measured the pressure dependence of the Pr nuclear magnetic resonance shift in PrN, PrP, PrSb, PrAs, PrS and PrSe. The shifts in all the pnictides increase while in the chalcogenides the shifts decrease with pressure. The rare earth frequency shift is inversely proportional to the crystal field splitting in the context of the point charge model (PCM) so a decrease would be expected for all of these materials at a rate of 5/3 the volume compressibility. Our values for the pnictides tend to be considerably larger than the PCM value as well as the wrong sign. The chalcogenide values are much nearer in magnitude and are of the right sign for the PCM. Contrary to the report of Guertin et al. we see no anomaly in the pressure dependence of the susceptibility of PrS. The fact that PrN which is reported to be non-metallic also shows the wrong sign for the PCM presents difficulties for various conduction electron explanations for this unexpected behavior of the pnictides

  18. High surface area graphene-supported metal chalcogenide assembly

    Science.gov (United States)

    Worsley, Marcus A.; Kuntz, Joshua D.; Orme, Christine A.

    2017-04-25

    Disclosed here is a method for hydrocarbon conversion, comprising contacting at least one graphene-supported assembly with at least one hydrocarbon feedstock, wherein the graphene-supported assembly comprises (i) a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds and (ii) at least one metal chalcogenide compound disposed on the graphene sheets, wherein the chalcogen of the metal chalcogenide compound is selected from S, Se and Te, and wherein the metal chalcogenide compound accounts for at least 20 wt. % of the graphene-supported assembly.

  19. Thulium-170 heat source

    Science.gov (United States)

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  20. Neutron activation analysis of the rare earth elements in Nasu hot springs

    International Nuclear Information System (INIS)

    Ikeda, Nagao; Takahashi, Naruto.

    1978-01-01

    Eleven rare earth elements (lanthanum, cerium, neodymium, samarium, europium, gadolinium, terbium, holmium, thulium, ytterbium and lutetium) in hot spring waters and sinter deposits in the Nasu area were determined by the neutron activation method. The rare earth elements in hot spring water were preconcentrated in ferric hydroxide precipitate and neutron-irradiated. The rare earth elements were chemically separated into lighter and heavier groups and the activity of each group was measured with a Ge(Li) detector. Distribution of the rare earth elements between the hot spring water and the sinter deposit was also discussed. (auth.)

  1. Histologic analyses on the response of the skin to 1,927-nm fractional thulium fiber laser treatment.

    Science.gov (United States)

    Kwon, In Ho; Bae, Youin; Yeo, Un-Cheol; Lee, Jin Yong; Kwon, Hyuck Hoon; Choi, Young Hee; Park, Gyeong-Hun

    2018-02-01

    The histologic responses to varied parameters of 1,927-nm fractional thulium fiber laser treatment have not yet been sufficiently elucidated. This study sought to evaluate histologic changes immediately after 1,927-nm fractional thulium fiber laser session at various parameters. The dorsal skin of Yucatan mini-pig was treated with 1,927-nm fractional thulium fiber laser at varied parameters, with or without skin drying. The immediate histologic changes were evaluated to determine the effects of varying laser parameters on the width and the depth of treated zones. The increase in the level of pulse energy widened the area of epidermal changes in the low power level, but increased the dermal penetration depth in the high power level. As the pulse energy level increased, the increase in the power level under the given pulse energy level more evidently made dermal penetration deeper and the treatment area smaller. Skin drying did not show significant effects on epidermal changes, but evidently increased the depth of dermal denaturation under both high and low levels of pulse energy. These results may provide important information to establish treatment parameters of the 1,927-nm fractional thulium fiber laser for various skin conditions.

  2. Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films

    Science.gov (United States)

    Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    2000-01-01

    A colloidal suspension comprising metal chalcogenide nanoparticles and a volatile capping agent. The colloidal suspension is made by reacting a metal salt with a chalcogenide salt in an organic solvent to precipitate a metal chalcogenide, recovering the metal chalcogenide, and admixing the metal chalcogenide with a volatile capping agent. The colloidal suspension is spray deposited onto a substrate to produce a semiconductor precursor film which is substantially free of impurities.

  3. Electrochemistry of thulium on inert electrodes and electrochemical formation of a Tm-Al alloy from molten chlorides

    International Nuclear Information System (INIS)

    Castrillejo, Y.; Fernandez, P.; Bermejo, M.R.; Barrado, E.; Martinez, A.M.

    2009-01-01

    The electrochemical behaviour of TmCl 3 solutions was studied in the eutectic LiCl-KCl in the temperature range 673-823 K using inert and reactive electrodes, i.e. W and Al, respectively. On an inert electrode, Tm(III) ions are reduced to metallic thulium through two consecutive steps: Tm(III) + 1e ↔ Tm(II) and Tm(II) + 2e ↔ Tm(0) The electroreduction of Tm(III) to Tm(II) was found to be quasi-reversible. The intrinsic rate constant of charge transfer, k 0 , as well as of the charge transfer coefficient, α, have been calculated by simulation of the cyclic voltammograms and logarithmic analysis of the convoluted curves. Electrocrystallization of thulium plays an important role in the electrodeposition process, being the nucleation mode affected by temperature. The diffusion coefficients of Tm(III) and Tm(II) ions have been found to be equal. The validity of the Arrhenius law was verified by plotting the variation of the logarithm of the diffusion coefficients vs. 1/T. The electrode reactions of Tm(III) solutions at an Al electrode were also investigated. The results showed that for the extraction of thulium from molten chlorides, the use of a reactive electrode made of aluminium leading to Al-Tm alloys seems to be a pertinent route. Potentiometric titrations of Tm(III) solutions with oxide donors, using a ytria stabilized zirconia electrode 'YSZE' as a pO 2- indicator electrode, have shown the formation of thulium oxychloride and thulium oxide and their corresponding solubility products have been determined at 723 K (pk s (TmOCl) = 8.0 ± 0.3 pk s (Tm 2 O 3 ) = 18.8 ± 0.7).

  4. Reversed-phase thin-layer chromatography of the rare earth elements

    International Nuclear Information System (INIS)

    Kuroda, R.; Adachi, M.; Oguma, K.

    1988-01-01

    Partition chromatographic behaviour of the rare earth elements on C 18 bonded silica reversed-phase material has been investigated by thin-layer chromatography in methanol - lactate media. The rare earth lactato complexes are distributed and fractionated on bonded silica layers without ion-interaction reagents. The concentration and pH of lactate solution, methanol concentration and temperature have effects on the migration and resolution of the rare earth elements. The partition system is particularly suited to separate adjacent rare earths of middle atomic weight groups, allowing the separation of gadolinium, terbium, dysprosium, holmium, erbium and thulium to be achieved by development to 18 cm distance. (orig.)

  5. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.

    Science.gov (United States)

    Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S

    2015-11-01

    We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers.

  6. Metastable states in amorphous chalcogenide semiconductors

    CERN Document Server

    Mikla, Victor I

    2009-01-01

    This book addresses an interesting and technologically important class of materials, the amorphous chalcogenide semiconductors. Experimental results on the structural and electronic metastable states in Se-rich chalcogenides are presented. Special attention is paid to the states in the mobility gap and their sensitivity to various factors such as irradiation, annealing and composition. Photoinduced changes of structure and physical properties are also considered and structural transformation at photocrystallization is studied in detail. Finally, the authors discuss potential applications of th

  7. Terahertz-induced Kerr effect in amorphous chalcogenide glasses

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Strikwerda, Andrew; Iwaszczuk, Krzysztof

    2013-01-01

    We have investigated the terahertz-induced third-order (Kerr) nonlinear optical properties of the amorphous chalcogenide glasses As2S3 and As2Se3. Chalcogenide glasses are known for their high optical Kerr nonlinearities which can be several hundred times greater than those of fused silica. We use...

  8. The beta strength function structure in β+ decay of lutetium, thulium and cesium isotopes

    International Nuclear Information System (INIS)

    Alkhazov, G.D.; Bykov, A.A.; Vitman, V.D.; Naumov, Yu.V.; Orlov, S.Yu.

    1981-01-01

    The spectra of total γ-absorption in the decays of some Lutecium, Thulium and Cesium isotopes have been measured. The probabilities for level population in the decay of the isotopes have been determined. The deduced beta strength functions reveal pronounced structure. Calculations of the strength functions using the Saxon-Woods potential and the residual Gamow-Teller interaction are presented. It is shown that in β + decay of light Thulium and Cesium isotopes the strength function comprises more than 70% of the Gamow-Teller excitations with μsub(tau) = +1. This result is the first direct observation of the Gamow-Teller resonance in β + decay of nuclei with Tsub(z) > O. (orig.)

  9. Recent Advances in Layered Metal Chalcogenides as Superconductors and Thermoelectric Materials: Fe-Based and Bi-Based Chalcogenides.

    Science.gov (United States)

    Mizuguchi, Yoshikazu

    2016-04-01

    Recent advances in layered (Fe-based and Bi-based) chalcogenides as superconductors or functional materials are reviewed. The Fe-chalcogenide (FeCh) family are the simplest Fe-based high-Tc superconductors. The superconductivity in the FeCh family is sensitive to external or chemical pressure, and high Tc is attained when the local structure (anion height) is optimized. The Bi-chalcogenide (BiCh2) family are a new group of layered superconductors with a wide variety of stacking structures. Their physical properties are also sensitive to external or chemical pressure. Recently, we revealed that the emergence of superconductivity and the Tc in this family correlate with the in-plane chemical pressure. Since the flexibility of crystal structure and electronic states are an advantage of the BiCh2 family for designing functionalities, I briefly review recent developments in this family as not only superconductors but also other functional materials. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chalcogenides Metastability and Phase Change Phenomena

    CERN Document Server

    Kolobov, Alexander V

    2012-01-01

    A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices¿optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.

  11. Thulium-doped fibre broadband source for spectral region near 2 micrometers

    Czech Academy of Sciences Publication Activity Database

    Písařík, Michael; Peterka, P.; Aubrecht, J.; Cajzl, J.; Benda, A.; Mareš, D.; Todorov, F.; Podrazký, O.; Honzatko, P.; Kašík, I.

    2016-01-01

    Roč. 24, č. 4 (2016), s. 223-231 ISSN 1230-3402 Institutional support: RVO:68378271 Keywords : fibre lasers * amplified spontaneous emission * thulium-doped fibres Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.449, year: 2016

  12. Chalcogenide phase-change thin films used as grayscale photolithography materials.

    Science.gov (United States)

    Wang, Rui; Wei, Jingsong; Fan, Yongtao

    2014-03-10

    Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb(2)Te(3) chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks.

  13. Uptake of hazardous radionuclides within layered chalcogenide for environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Pranesh, E-mail: praneshsengupta@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Dudwadkar, N.L. [Fuel Reprocessing Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Vishwanadh, B. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Pulhani, V. [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Rao, Rekha [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Tripathi, S.C. [Fuel Reprocessing Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-02-15

    Highlights: • Layered chalcogenide with CdI{sub 2} crystal structure prepared by hydrothermal route. • Exploration of the possibilities for radionuclides’ uptake using layered chalcogenide. • Proposing ‘topotactic ionic substitution’ as major uptake mechanism. -- Abstract: Ensuring environmental protection in and around nuclear facilities is a matter of deep concern. Toward this, layered chalcogenide with CdI{sub 2} crystal structure has been prepared. Structural characterizations of layered chalcogenide suggest ‘topotactic ionic substitution’ as the dominant mechanism behind uptake of different cations within its lattice structure. An equilibration time of 45 min and volume to mass ratio of 30:1 are found to absorb {sup 233}U, {sup 239}Pu, {sup 106}Ru, {sup 85+89}Sr, {sup 137}Cs and {sup 241}Am radionuclides to the maximum extents.

  14. Rejuvenation of the male scalp using 1,927 nm non-ablative fractional thulium fiber laser.

    Science.gov (United States)

    Boen, Monica; Wilson, Monique J Vanaman; Goldman, Mitchel P; Wu, Douglas C

    2017-07-01

    The male scalp undergoes extensive photodamage due to a high prevalence of androgenic alopecia and exposure to ultraviolet radiation. This photodamage presents as solar lentigines, fine rhytides, and keratosis, and can prematurely age a patient. In this study, we demonstrate the safety and efficacy of the fractionated 1,927 nm thulium fiber laser using high density and high energy settings to achieve rejuvenation of the male scalp after a single treatment session. Four male patients with Fitzpatrick skin types II-III and extensive photodamage on the scalp underwent one treatment with the fractional non-ablative 1,927 nm thulium fiber laser. The patients had a 60-90% improvement in dyspigmentation, lentigines, and keratosis. No adverse events were observed and the patients tolerated the procedure well. This case series is the first report in the literature demonstrating the successful rejuvenation of the scalp using the 1,927 nm thulium fiber laser. Lasers Surg. Med. 49:475-479, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithography

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Sundaram, S. K.; Johnson, Bradley R.; Saraf, Laxmikant V.

    2006-12-01

    This report describes a study designed to explore the different properties of two different chalcogenide materials, As2S3 and As24S38Se38, when subjected to photolithographic wet-etching techniques. Chalcogenide glasses are made by combining chalcogen elements S, Se, and Te with Group IV and/or V elements. The etchant was selected from the literature and was composed of sodium hydroxide, isopropyl alcohol, and deionized water and the types of chalcogenide glass for study were As2S3 and As24S38Se38. The main goals here were to obtain a single variable etch rate curve of etch depth per time versus NaOH overall solution concentration in M and to see the difference in etch rate between a given etchant when used on the different chalcogenide stoichiometries. Upon completion of these two goals, future studies will begin to explore creating complex, integrated photonic devices via these methods.

  16. Metal chalcogenide nanostructures for renewable energy applications

    CERN Document Server

    Qurashi, Ahsanulhaq

    2014-01-01

    This first ever reference book that focuses on metal chalcogenide semiconductor nanostructures for renewable energy applications encapsulates the state-of-the-art in multidisciplinary research on the metal chalcogenide semiconductor nanostructures (nanocrystals, nanoparticles, nanorods, nanowires,  nanobelts, nanoflowers, nanoribbons and more).  The properties and synthesis of a class of nanomaterials is essential to renewable energy manufacturing and this book focuses on the synthesis of metal chalcogendie nanostructures, their growth mechanism, optical, electrical, and other important prop

  17. Comparative study between thulium laser (Tm: YAG) 150W and greenlight laser (LBO:ND-YAG) 120W for the treatment of benign prostatic hyperpplasia: Short-term efficacy and security.

    Science.gov (United States)

    Palmero-Martí, J L; Panach-Navarrete, J; Valls-González, L; Ganau-Ituren, A; Miralles-Aguado, J; Benedicto-Redón, A

    2017-04-01

    To compare the results of efficacy and safety of Thulium laser 150W against Greenlight laser 120W in the treatment of short term benign prostatic hyperplasia (12 months after surgery). This is a retrospective observational study where men who underwent the surgical technique of prostate vaporization over a period of four years in our center are included. The homogeneity of the sample was checked, and postoperative complications (acute urinary retention, reentry, need for transfusion), failures per year of surgery (reoperation, peak flow .05). No differences in complications were observed: in urine acute retention, 4.3% with thulium and 6.8% with green laser (P=.41); in readmissions, 2.6% with thulium and 1.7% with green laser (P=.68); in need for transfusion, 2.6% with thulium and 0% with green laser (P=.12). No differences were observed in the percentage of patients reoperation (1.7% in the group of thulium, 5.1% in the green laser, P=.28); or in individuals with Qmáx less than 15ml/sec (6.9% with thulium, 6.77% with green laser, P=.75), or in the absence of improvement in the IPSS (5, 2% with thulium, 3.4% with green laser, P=.65). There was also no difference in the levels of PSA in ng/mL a year after surgery: with thulium 2.78±2.09 and with green laser 1.83±1.48 (P=.75). Prostate vaporization with thulium laser 150W is comparable to that made with green laser 120W for the treatment of lower urinary tract symptoms caused by BPH, being both effective and safe techniques to 12 months after surgery. Future prospective randomized studies are needed to confirm this conclusion on both techniques. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Iron chalcogenide superconductors at high magnetic fields

    Science.gov (United States)

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  19. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

    DEFF Research Database (Denmark)

    Markos, Christos; Kubat, Irnis; Bang, Ole

    2014-01-01

    The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass...... nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The integrated high refractive index glass films introduce distinct antiresonant transmission bands in the 480-900 nm wavelength region. We demonstrate that the ultra-high Kerr nonlinearity of the chalcogenide glass...

  20. Nonlinear optical localization in embedded chalcogenide waveguide arrays

    International Nuclear Information System (INIS)

    Li, Mingshan; Huang, Sheng; Wang, Qingqing; Chen, Kevin P.; Petek, Hrvoje

    2014-01-01

    We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm 2 , using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass

  1. Thulium-170-labeled microparticles for local radiotherapy: preliminary studies.

    Science.gov (United States)

    Polyak, Andras; Das, Tapas; Chakraborty, Sudipta; Kiraly, Reka; Dabasi, Gabriella; Joba, Robert Peter; Jakab, Csaba; Thuroczy, Julianna; Postenyi, Zita; Haasz, Veronika; Janoki, Gergely; Janoki, Gyozo A; Pillai, Maroor R A; Balogh, Lajos

    2014-10-01

    The present article describes the preparation, characterization, and biological evaluation of Thulium-170 ((170)Tm) [T1/2 = 128.4 days; Eβmax = 968 keV; Eγ = 84 keV (3.26%)] labeled tin oxide microparticles for its possible use in radiation synovectomy (RSV) of medium-sized joints. (170)Tm was produced by irradiation of natural thulium oxide target. 170Tm-labeled microparticles were synthesized with high yield and radionuclidic purity (> 99%) along with excellent in vitro stability by following a simple process. Particle sizes and morphology of the radiolabeled particles were examined by light microscope, dynamic light scattering, and transmission electron microscope and found to be of stable spherical morphology within the range of 1.4-3.2 μm. The preparation was injected into the knee joints of healthy Beagle dogs intraarticularly for biological studies. Serial whole-body and regional images were taken by single-photon-emission computed tomography (SPECT) and SPECT-CT cameras up to 9 months postadministration, which showed very low leakage (compound did not show any possible radiotoxicological effect. These preliminary studies showed that 170Tm-labeled microparticles could be a promising nontoxic and effective radiopharmaceutical for RSV applications or later local antitumor therapy.

  2. Q-switched oscillation in thulium-doped fiber lasers using preloaded dynamic microbending technique

    Science.gov (United States)

    Sakata, H.; Takahashi, N.; Ushiro, Y.

    2018-01-01

    We demonstrate Q-switched pulse generation in thulium-doped fiber lasers by introducing piezoelectric-driven microbend with preloaded stress. We employed a pair of corrugated chips each attached on piezoelectric actuators (PAs) to clamp the fiber in a ring laser resonator. The thulium-doped fiber is pumped by a laser diode emitting at 1.63 μm and generates the Q-switched laser pulses at around 1.9 μm by switching off the PAs. The laser pulse performance is improved by optimizing the preload and switch-off period for the PAs. The Q-switched pulses with a peak power of 2.8 W and a pulsewidth of 900 ns are observed for a launched pump power of 161 mW. We expect that the in-fiber Q-switching technique will provide efficient laser systems for environmental sensing and medical applications.

  3. Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films.

    Science.gov (United States)

    Yuan, Min; Mitzi, David B

    2009-08-21

    A combination of unique solvent properties of hydrazine enables the direct dissolution of a range of metal chalcogenides at ambient temperature, rendering this an extraordinarily simple and soft synthetic approach to prepare new metal chalcogenide-based materials. The extended metal chalcogenide parent framework is broken up during this process, and the resulting metal chalcogenide building units are re-organized into network structures (from 0D to 3D) based upon their interactions with the hydrazine/hydrazinium moieties. This Perspective will review recent crystal and materials chemistry developments within this family of compounds and will briefly discuss the utility of this approach in metal chalcogenide thin-film deposition.

  4. Carbon nanotube-chalcogenide composite

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Orava, J.; Kohoutek, T.; Wágner, T.; Frumar, M.; Zima, Vítězslav; Hara, T.; Matsui, Y.; Ueda, K.; Pumera, M.

    2010-01-01

    Roč. 183, č. 1 (2010), s. 144-149 ISSN 0022-4596 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * chalcogenide glasses * composites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.261, year: 2010

  5. Thulium-doped fibre broadband source for spectral region near 2 micrometers

    Czech Academy of Sciences Publication Activity Database

    Písařík, M.; Peterka, Pavel; Aubrecht, Jan; Cajzl, Jakub; Benda, Adam; Mareš, D.; Todorov, Filip; Podrazký, Ondřej; Honzátko, Pavel; Kašík, Ivan

    2016-01-01

    Roč. 24, č. 4 (2016), s. 223-231 ISSN 1230-3402 R&D Projects: GA MZd(CZ) NV15-33459A Institutional support: RVO:67985882 ; RVO:68378271 Keywords : fibre lasers * amplified spontaneous emission * thulium-doped fibres Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 1.449, year: 2016

  6. Separation of thulium, ytterbium and lutetium from uranium

    International Nuclear Information System (INIS)

    Lopez, G.H.

    1987-01-01

    The behaviour at different temperatures, shaking times and hydrochloric acid concentrations on the solvent extraction system UO 2 2+ - (Tm 3+ , Yb 3+ , Lu 3+ ) - H 2 O - HCl - TBP was studied. Quantitative determinations of the elements were performed by visible spectrophotometry and X-ray fluorescence. The uranyl ion was efficiently extracted by TBP from an aqueous hydrochloric acid solution (4-7M) shaken during 10 minutes at room temperature. On these conditions the separation factors for uranium from thulium and ytterbium were found to be 3000 and from lutetium 140. (author)

  7. Dry etching of thin chalcogenide films

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, Kiril [Acad. J. Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 109, 1113 Sofia (Bulgaria); Vassilev, Gergo; Vassilev, Venceslav, E-mail: kpetkov@clf.bas.b [Department of Semiconductors, University of Chemical Technology and Metallurgy, 8 Kl. Ohridsky Blvd., 1756 Sofia (Bulgaria)

    2010-04-01

    Fluorocarbon plasmas (pure and mixtures with Ar) were used to investigate the changes in the etching rate depending on the chalcogenide glasses composition and light exposure. The experiments were performed on modified commercial HZM-4 vacuum equipment in a diode electrode configuration. The surface microstructure of thin chalcogenide layers and its change after etching in CCl{sub 2}F{sub 2} and CF{sub 4} plasmas were studied by SEM. The dependence of the composition of As-S-Ge, As-Se and multicomponent Ge-Se-Sb-Ag-I layers on the etching rate was discussed. The selective etching of some glasses observed after light exposure opens opportunities for deep structure processing applications.

  8. Visible-active photocatalytic behaviors observed in nanostructured lead chalcogenides PbX (X = S, Se, Te)

    International Nuclear Information System (INIS)

    Qiao, Li-Na; Wang, H.C.; Shen, Y.; Lin, Yuan-Hua; Nan, Ce-Wen

    2016-01-01

    Nanostructured lead chalcogenides (PbX, X = Te, Se, S) were prepared via a simple hydrothermal method. The powder samples were characterized by XRD, SEM, SAED and DRS. Phase composition and microstructure analysis indicate that these samples are pure lead chalcogenides phases and have similar morphologies. These lead chalcogenides display efficient absorption in the UV-visible light range. The photocatalytic properties of lead chalcogenides nanoparticles were evaluated by the photodegradation of Congo red under UV-visible light irradiation in air atmosphere. The Congo red solution can be efficiently degraded under visible light in the presence of lead chalcogenides nanoparticles. The photocatalytic activities of lead chalcogenides generally increase with increasing their band gaps and shows no appreciable loss after repeated cycles. Our results may be useful for developing new photocatalyst systems responsive to visible light among narrow band gap semiconductors

  9. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh [CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Novak, Spencer; Richardson, Kathleen [CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Department of Materials Science and Engineering, COMSET, Clemson University, Clemson, South Carolina 29634 (United States); Fathpour, Sasan, E-mail: fathpour@creol.ucf.edu [CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida 32816 (United States)

    2015-03-16

    A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes.

  10. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching

    International Nuclear Information System (INIS)

    Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh; Novak, Spencer; Richardson, Kathleen; Fathpour, Sasan

    2015-01-01

    A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes

  11. Two-micron (Thulium) Laser Prostatectomy: An Effective Method for BPH Treatment.

    Science.gov (United States)

    Jiang, Qi; Xia, Shujie

    2014-01-01

    The two-micron (thulium) laser is the newest laser technique for treatment of bladder outlet obstruction resulting from benign prostatic hyperplasia (BPH). It takes less operative time than standard techniques, provides clear vision and lower blood loss as well as shorter catheterization times and hospitalization times. It has been identified to be a safe and efficient method for BPH treatment regardless of the prostate size.

  12. Index change of chalcogenide materials from precision glass molding processes

    Science.gov (United States)

    Deegan, J.; Walsh, K.; Lindberg, G.; Benson, R.; Gibson, D.; Bayya, S.; Sanghera, J.; Stover, E.

    2015-05-01

    With the increase in demand for infrared optics for thermal applications and the use of glass molding of chalcogenide materials to support these higher volume optical designs, an investigation of changes to the optical properties of these materials is required. Typical precision glass molding requires specific thermal conditions for proper lens molding of any type of optical glass. With these conditions a change (reduction) of optical index occurs after molding of all oxide glass types and it is presumed that a similar behavior will happen with chalcogenide based materials. We will discuss the effects of a typical molding thermal cycle for use with commercially and newly developed chalcogenide materials and show results of index variation from nominally established material data.

  13. Similarity in the superconducting properties of chalcogenides, cuprate oxides and fullerides

    International Nuclear Information System (INIS)

    Tsendin, K.D.; Popov, B.P.; Denisov, D.V.

    2004-01-01

    The idea of Anderson pairs has been put forward for explanation of many extraordinary properties of chalcogenides glassy semiconductors. Recent decades made obvious that these pairs localized on the centers with negative effective correlation energy (negative-U centers) really exist in chalcogenides. If the concentration of negative-U centers is enough to create the pair band states, this can lead to superconductivity because Anderson pairs are Bose particles. In the present paper we show that several puzzling superconductivity properties of chalcogenides, high-temperature cuprate superconductors and fullerides are similar for these three groups of materials and can be naturally explained in the frame of negative-U centers model of superconductivity

  14. Chalcogenide Glass Optical Waveguides for Infrared Biosensing

    Directory of Open Access Journals (Sweden)

    Bruno Bureau

    2009-09-01

    Full Text Available Due to the remarkable properties of chalcogenide (Chg glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (biosensors.

  15. Enhanced pump absorption efficiency in coiled and twisted double-clad thulium-doped fibers

    Czech Academy of Sciences Publication Activity Database

    Koška, Pavel; Peterka, Pavel; Aubrecht, Jan; Podrazký, Ondřej; Todorov, Filip; Becker, M.; Baravets, Yauhen; Honzátko, Pavel; Kašík, Ivan

    2016-01-01

    Roč. 24, č. 1 (2016), s. 102-107 ISSN 1094-4087 R&D Projects: GA TA ČR(CZ) TH01010997; GA MŠk(CZ) LD15122 Institutional support: RVO:67985882 Keywords : Thulium-doped fiber s * Fiber lasers * Double clad fiber s Subject RIV: BH - Optics , Masers, Lasers Impact factor: 3.307, year: 2016

  16. Synthesis of 2D Metal Chalcogenide Thin Films through the Process Involving Solution-Phase Deposition.

    Science.gov (United States)

    Giri, Anupam; Park, Gyeongbae; Yang, Heeseung; Pal, Monalisa; Kwak, Junghyeok; Jeong, Unyong

    2018-04-24

    2D metal chalcogenide thin films have recently attracted considerable attention owing to their unique physicochemical properties and great potential in a variety of applications. Synthesis of large-area 2D metal chalcogenide thin films in controllable ways remains a key challenge in this research field. Recently, the solution-based synthesis of 2D metal chalcogenide thin films has emerged as an alternative approach to vacuum-based synthesis because it is relatively simple and easy to scale up for high-throughput production. In addition, solution-based thin films open new opportunities that cannot be achieved from vacuum-based thin films. Here, a comprehensive summary regarding the basic structures and properties of different types of 2D metal chalcogenides, the mechanistic details of the chemical reactions in the synthesis of the metal chalcogenide thin films, recent successes in the synthesis by different reaction approaches, and the applications and potential uses is provided. In the last perspective section, the technical challenges to be overcome and the future research directions in the solution-based synthesis of 2D metal chalcogenides are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing

    DEFF Research Database (Denmark)

    Galili, Michael; Xu, Jing; Mulvad, Hans Christian Hansen

    2009-01-01

    We report the first demonstration of error-free 640 Gbit/s demultiplexing using the Kerr non-linearity of an only 5 cm long chalcogenide glass waveguide chip. Our approach exploits four-wave mixing by the instantaneous nonlinear response of chalcogenide. Excellent performance is achieved with onl...... 2 dB average power penalty and no indication of error-floor. Characterisation of the FWM efficiency for the chalcogenide waveguide is given and confirms the good performance of the device....

  18. Hydrothermal synthesis of layered iron-chalcogenide superconductors and related compounds

    International Nuclear Information System (INIS)

    Pachmayr, Ursula Elisabeth

    2017-01-01

    This thesis provides a new preparative approach to iron-chalcogenide based superconductors. The hydrothermal synthesis of anti-PbO type FeSe, which can be seen as basis structure of the compounds of interest was successfully developed. Along with this, some insights regarding the influence of synthesis parameters were gained featuring a basis for further hydrothermal syntheses of new iron-chalcogenide compounds. The potential of this method, primarily the extension of the so far limited accessibility of iron-chalcogenide based superconductors by solid-state sythesis, was revealed within the present work. The solid-solution FeSe_1_-_xS_x was prepared for the whole substitution range, whereas solid-state synthesis exhibits a solubility limit at x = 0.3. Furthermore, the new compounds [(Li_0_._8Fe_0_._2)OH]FeX (X = Se, S) were synthesized which are exclusively accessible via hydrothermal method. The compounds, where layers of (Li_0_._8Fe_0_._2)OH alternate with FeX layers, feature exceptional physical properties, notably a coexistence of superconductivity and ferromagnetism. They were intensively studied within this work. By combination of solid-state and hydrothermal ion-exchange synthesis even large crystals necessary for subsequent physical measurements are accessible. Apart from these layered iron-chalcogenide superconductors, further compounds which likewise exhibit building blocks of edge-sharing FeSe_4 tetrahedra were found via this synthesis method. The iron selenides A_2Fe_4Se_6 (A = K, Rb, Cs) consist of double chains of [Fe_2Se_3]"1"-, whereas a new compound Na_6(H_2O)_1_8Fe_4Se_8 exhibits [Fe_4Se_8]"6"- 'stella quadrangula' clusters. This structural diversity as well as the associated physical properties of the compounds demonstrates the numerous capabilities of hydrothermal synthesis in the field of iron-chalcogenide compounds. In particular with regard to iron-chalcogenide based superconductors this synthesis strategy is encouraging. It seems probable

  19. Hydrothermal synthesis of layered iron-chalcogenide superconductors and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pachmayr, Ursula Elisabeth

    2017-04-06

    This thesis provides a new preparative approach to iron-chalcogenide based superconductors. The hydrothermal synthesis of anti-PbO type FeSe, which can be seen as basis structure of the compounds of interest was successfully developed. Along with this, some insights regarding the influence of synthesis parameters were gained featuring a basis for further hydrothermal syntheses of new iron-chalcogenide compounds. The potential of this method, primarily the extension of the so far limited accessibility of iron-chalcogenide based superconductors by solid-state sythesis, was revealed within the present work. The solid-solution FeSe{sub 1-x}S{sub x} was prepared for the whole substitution range, whereas solid-state synthesis exhibits a solubility limit at x = 0.3. Furthermore, the new compounds [(Li{sub 0.8}Fe{sub 0.2})OH]FeX (X = Se, S) were synthesized which are exclusively accessible via hydrothermal method. The compounds, where layers of (Li{sub 0.8}Fe{sub 0.2})OH alternate with FeX layers, feature exceptional physical properties, notably a coexistence of superconductivity and ferromagnetism. They were intensively studied within this work. By combination of solid-state and hydrothermal ion-exchange synthesis even large crystals necessary for subsequent physical measurements are accessible. Apart from these layered iron-chalcogenide superconductors, further compounds which likewise exhibit building blocks of edge-sharing FeSe{sub 4} tetrahedra were found via this synthesis method. The iron selenides A{sub 2}Fe{sub 4}Se{sub 6} (A = K, Rb, Cs) consist of double chains of [Fe{sub 2}Se{sub 3}]{sup 1-}, whereas a new compound Na{sub 6}(H{sub 2}O){sub 18}Fe{sub 4}Se{sub 8} exhibits [Fe{sub 4}Se{sub 8}]{sup 6-} 'stella quadrangula' clusters. This structural diversity as well as the associated physical properties of the compounds demonstrates the numerous capabilities of hydrothermal synthesis in the field of iron-chalcogenide compounds. In particular with regard

  20. Superconducting properties of iron chalcogenide thin films

    Directory of Open Access Journals (Sweden)

    Paolo Mele

    2012-01-01

    Full Text Available Iron chalcogenides, binary FeSe, FeTe and ternary FeTexSe1−x, FeTexS1−x and FeTe:Ox, are the simplest compounds amongst the recently discovered iron-based superconductors. Thin films of iron chalcogenides present many attractive features that are covered in this review, such as: (i easy fabrication and epitaxial growth on common single-crystal substrates; (ii strong enhancement of superconducting transition temperature with respect to the bulk parent compounds (in FeTe0.5Se0.5, zero-resistance transition temperature Tc0bulk = 13.5 K, but Tc0film = 19 K on LaAlO3 substrate; (iii high critical current density (Jc ~ 0.5 ×106 A cm2 at 4.2 K and 0 T for FeTe0.5Se0.5 film deposited on CaF2, and similar values on flexible metallic substrates (Hastelloy tapes buffered by ion-beam assisted deposition with a weak dependence on magnetic field; (iv high upper critical field (~50 T for FeTe0.5Se0.5, Bc2(0, with a low anisotropy, γ ~ 2. These highlights explain why thin films of iron chalcogenides have been widely studied in recent years and are considered as promising materials for applications requiring high magnetic fields (20–50 T and low temperatures (2–10 K.

  1. Transuranium element chalcogenides. Crystallochemistry and Moessbauer spectrometry of neptunium 237 chalcogenides

    International Nuclear Information System (INIS)

    Thevenin, T.; Pages, M.; Damien, D.

    1981-09-01

    To study actinide compounds , neptunium 237 has been studied by Moessbauer resonance. The different oxidation degrees of neptunium (7, 6, 5, 4 and 3) have a very important effect on isomeric displacements. In the study of chalcogenides, the isomeric displacement value of NpS 3 confirms the valency 4+ of neptunium in this compound. Results obtained with Np 3 S 5 show two valency state +3 and +4 in this compound. There is a good agreement with the two crystalline sites determined by crystallography [fr

  2. Method to synthesize metal chalcogenide monolayer nanomaterials

    Science.gov (United States)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  3. Chalcogenide glasses as optical and ion-conducting materials. Kogaku oyobi ion dendo zairyo toshite no chalcogenide glass

    Energy Technology Data Exchange (ETDEWEB)

    Toge, N.; Minami, T. (Univ. of Osaka Prefecture, Osaka (Japan))

    1991-12-01

    Nonoxide glasses whose main constituent are chalcogen elements like S, Se, or Te etc. show a lot of various properties, for instance, high infrared transmittancy and semi-conductivity which are already well known. Additionally, the optical properties change a lot along with the phase transition's happening between crystal and noncrystal under comparative low temperature. Further, it is also observed that the glasses containing proper cation appear high ion-conductivity. This paper supplies a brief reviews of chalcogenide glasses used as materials for infrared fiber, phase transition optical memory and superionic conductor, wherein the former two have already on the stage of utilization, particularly the realization of a rewritable optical memory is possible by using chalcogenide glasses film, and ion-conductor is in the phase to have shown the possibility of high conductivity while the development thereof is being expected. 22 refs., 8 figs.

  4. Forced Ion Migration for Chalcogenide Phase Change Memory Device

    Science.gov (United States)

    Campbell, Kristy A (Inventor)

    2013-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  5. A dual enzyme functionalized nanostructured thulium oxide based interface for biomedical application

    Science.gov (United States)

    Singh, Jay; Roychoudhury, Appan; Srivastava, Manish; Solanki, Pratima R.; Lee, Dong Won; Lee, Seung Hee; Malhotra, B. D.

    2013-12-01

    In this paper, we present results of the studies related to fabrication of a rare earth metal oxide based efficient biosensor using an interface based on hydrothermally prepared nanostructured thulium oxide (n-Tm2O3). A colloidal solution of prepared nanorods has been electrophoretically deposited (EPD) onto an indium-tin-oxide (ITO) glass substrate. The n-Tm2O3 nanorods are found to provide improved sensing characteristics to the electrode interface in terms of electroactive surface area, diffusion coefficient, charge transfer rate constant and electron transfer kinetics. The structural and morphological studies of n-Tm2O3 nanorods have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopic techniques. This interfacial platform has been used for fabrication of a total cholesterol biosensor by immobilizing cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) onto a Tm2O3 nanostructured surface. The results of response studies of the fabricated ChEt-ChOx/n-Tm2O3/ITO bioelectrode show a broad linear range of 8-400 mg dL-1, detection limit of 19.78 mg (dL cm-2)-1, and high sensitivity of 0.9245 μA (mg per dL cm-2)-1 with a response time of 40 s. Further, this bioelectrode has been utilized for estimation of total cholesterol with negligible interference (3%) from analytes present in human serum samples. The utilization of this n-Tm2O3 modified electrode for enzyme-based biosensor analysis offers an efficient strategy and a novel interface for application of the rare earth metal oxide materials in the field of electrochemical sensors and bioelectronic devices.In this paper, we present results of the studies related to fabrication of a rare earth metal oxide based efficient biosensor using an interface based on hydrothermally prepared nanostructured thulium oxide (n-Tm2O3). A colloidal solution of prepared

  6. Mechanism for resistive switching in chalcogenide-based electrochemical metallization memory cells

    Directory of Open Access Journals (Sweden)

    Fei Zhuge

    2015-05-01

    Full Text Available It has been reported that in chalcogenide-based electrochemical metallization (ECM memory cells (e.g., As2S3:Ag, GeS:Cu, and Ag2S, the metal filament grows from the cathode (e.g., Pt and W towards the anode (e.g., Cu and Ag, whereas filament growth along the opposite direction has been observed in oxide-based ECM cells (e.g., ZnO, ZrO2, and SiO2. The growth direction difference has been ascribed to a high ion diffusion coefficient in chalcogenides in comparison with oxides. In this paper, upon analysis of OFF state I–V characteristics of ZnS-based ECM cells, we find that the metal filament grows from the anode towards the cathode and the filament rupture and rejuvenation occur at the cathodic interface, similar to the case of oxide-based ECM cells. It is inferred that in ECM cells based on the chalcogenides such as As2S3:Ag, GeS:Cu, and Ag2S, the filament growth from the cathode towards the anode is due to the existence of an abundance of ready-made mobile metal ions in the chalcogenides rather than to the high ion diffusion coefficient.

  7. Separation of carrier-free 181Re produced in 16O-irradiated thulium target

    International Nuclear Information System (INIS)

    Lahiri, Susanta; Mukhopadhyay, Krishnendu; Banerjee, Kakoli; Ramaswami, A.; Manohar, S.B.

    2001-01-01

    Heavy ion activation of natural Tm 2 O 3 with 90 MeV 16 O beam results in the formation of carrier-free short-lived 181 Ir and 181 Os which ultimately decay out to 181 Re in the matrix. The liquid cation exchanger, HDEHP, has effectively been utilized as an extractant for quantitative separation of bulk thulium target matrix from carrier-free rhenium radionuclide

  8. Interfacial scanning tunneling spectroscopy (STS) of chalcogenide/metal hybrid nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Mahmoud M.; Abdallah, Tamer [Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt); Easawi, Khalid; Negm, Sohair [Department of Physics and Mathematics, Faculty of Engineering (Shoubra), Benha University (Egypt); Talaat, Hassan, E-mail: hassantalaat@hotmail.com [Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt)

    2015-05-15

    Graphical abstract: - Highlights: • Comparing band gaps values obtained optically with STS. • Comparing direct imaging with calculated dimensions. • STS determination of the interfacial band bending of metal/chalcogenide. - Abstract: The electronic structure at the interface of chalcogenide/metal hybrid nanostructure (CdSe–Au tipped) had been studied by UHV scanning tunneling spectroscopy (STS) technique at room temperature. This nanostructure was synthesized by a phase transfer chemical method. The optical absorption of this hybrid nanostructure was recorded, and the application of the effective mass approximation (EMA) model gave dimensions that were confirmed by the direct measurements using the scanning tunneling microscopy (STM) as well as the high-resolution transmission electron microscope (HRTEM). The energy band gap obtained by STS agrees with the values obtained from the optical absorption. Moreover, the STS at the interface of CdSe–Au tipped hybrid nanostructure between CdSe of size about 4.1 ± 0.19 nm and Au tip of size about 3.5 ± 0.29 nm shows a band bending about 0.18 ± 0.03 eV in CdSe down in the direction of the interface. Such a result gives a direct observation of the electron accumulation at the interface of CdSe–Au tipped hybrid nanostructure, consistent with its energy band diagram. The presence of the electron accumulation at the interface of chalcogenides with metals has an important implication for hybrid nanoelectronic devices and the newly developed plasmon/chalcogenide photovoltaic solar energy conversion.

  9. Debye temperatures of uranium chalcogenides from their lattice ...

    Indian Academy of Sciences (India)

    Unknown

    From the phonon frequencies, their Debye temperatures are evaluated. Further, ... Keywords. Uranium chalcogenides; p-wave electronic superconductor; phonon frequency; Debye tempera- ture; spin ... to the ionic crystals of similar structure.

  10. Synthesis of cadmium chalcogenide nanotubes at room temperature

    KAUST Repository

    Pan, Jun; Qian, Yitai

    2012-01-01

    Cadmium chalcogenide (CdE, E=S, Se, Te) polycrystalline nanotubes have been synthesized from precursor of CdS/cadmium thiolate complex at room temperature. The precursor was hydrothermally synthesized at 180 °C using thioglycolic acid (TGA) and cadmium acetate as starting materials. The transformation from the rod-like precursor of CdS/cadmium thiolate complex to CdS, CdSe and CdTe nanotubes were performed under constant stirring at room temperature in aqueous solution containing S 2-, Se 2- and Te 2-, respectively. The nanotube diameter can be controlled from 150 to 400 nm related to the dimension of templates. The XRD patterns show the cadmium chalcogenide nanotubes all corresponding to face-centered cubic structure. © 2012 Elsevier B.V. All rights reserved.

  11. Synthesis of cadmium chalcogenide nanotubes at room temperature

    KAUST Repository

    Pan, Jun

    2012-10-01

    Cadmium chalcogenide (CdE, E=S, Se, Te) polycrystalline nanotubes have been synthesized from precursor of CdS/cadmium thiolate complex at room temperature. The precursor was hydrothermally synthesized at 180 °C using thioglycolic acid (TGA) and cadmium acetate as starting materials. The transformation from the rod-like precursor of CdS/cadmium thiolate complex to CdS, CdSe and CdTe nanotubes were performed under constant stirring at room temperature in aqueous solution containing S 2-, Se 2- and Te 2-, respectively. The nanotube diameter can be controlled from 150 to 400 nm related to the dimension of templates. The XRD patterns show the cadmium chalcogenide nanotubes all corresponding to face-centered cubic structure. © 2012 Elsevier B.V. All rights reserved.

  12. Modulation-instability biosensing using an As2S3 chalcogenide tapered fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Bang, Ole

    2016-01-01

    We demonstrate an experimentally feasible biosensor design based on As2S3 chalcogenide tapered fiber. Pumping the fiber close to 1064 nm, a record sensitivity up to ~18 nm/nm was predicted.......We demonstrate an experimentally feasible biosensor design based on As2S3 chalcogenide tapered fiber. Pumping the fiber close to 1064 nm, a record sensitivity up to ~18 nm/nm was predicted....

  13. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  14. Diode-Pumped Thulium (Tm)/Holmium (Ho) Composite Fiber 2.1-Micrometers Laser

    Science.gov (United States)

    2015-09-01

    Schematic of the 800-nm diode pumped Tm/Ho composite fiber laser 8 Under quasi-continuous wave (Q- CW ) pumping conditions of 1-ms duration and a...Fig. 9 (Top) Schematic of the 800-nm diode -pumped Tm/Ho composite fiber laser with outcoupler. (Left) Q- CW laser performance of the Tm/Ho composite...ARL-TR-7452 ● SEP 2015 US Army Research Laboratory Diode -Pumped Thulium (Tm)/Holmium (Ho) Composite Fiber 2.1-μm Laser by G

  15. Multimode supercontinuum generation in chalcogenide glass fibres

    DEFF Research Database (Denmark)

    Kubat, Irnis; Bang, Ole

    2016-01-01

    Mid-infrared supercontinuum generation is considered in chalcogenide fibres when taking into account both polarisations and the necessary higher order modes. In particular we focus on high pulse energy supercontinuum generation with long pump pulses. The modeling indicates that when only a single...

  16. Infrastructure for thulium-170 isotope power systems for autonomous underwater vehicle fleets

    International Nuclear Information System (INIS)

    Walter, C.E.

    1991-07-01

    The radioisotope thulium-170 is a safe and environmentally benign heat source for providing the high endurance and energy densities needed by advanced power systems for autonomous underwater vehicles (AUV). Thulium Isotope Power (TIP) systems have an endurance of ∼3000 h, and gravimetric and volumetric energy densities of 3 x 10 4 Wh/kg and 3 x 10 8 Wh/m 3 , respectively. These energy densities are more than 200 times higher than those currently provided by Ag-Zn battery technology. In order to capitalize on these performance levels with about one hundred AUVs in continuous use, it will be necessary to establish an infrastructure for isotope production and heat-source refurbishment. The infrastructure cost is not trivial, and studies are needed to determine its optimum configuration. The major component of the projected infrastructure is the nuclear reactor used to produce Tm- 170 by neutron absorption in Tm-169. The reactor design should ideally be optimized for TM-170 production. Using the byproduct ''waste'' heat beneficially would help defray the cost of isotope production. However, generating electric power with the reactor would compromise both the cost of electricity and the isotope production capacity. A coastal location for the reactor would be most convenient from end-use considerations, and the ''waste'' heat could be used to desalinate seawater in water-thirsty states. 13 refs., 6 figs., 2 tabs

  17. ZnO and copper indium chalcogenide heterojunctions prepared by inexpensive methods

    International Nuclear Information System (INIS)

    Berruet, M.; Di Iorio, Y.; Troviano, M.; Vázquez, M.

    2014-01-01

    Solution-based techniques were used to prepare ZnO/CuIn(Se, S) 2 heterojunctions that serve as solar cell prototypes. A duplex layer of ZnO (compact + porous) was electrodeposited. Chalcogenide thin films were deposited using successive ionic layer adsorption and reaction method (SILAR). By subsequent thermal treatments in two different atmospheres, CuInSe 2 (CISe) and CuInSe 2−x S x (CISeS) were obtained. The composition and morphology of the annealed films were characterized by GXRD, micro-Raman spectroscopy and SEM. Devices prepared with CISe and CISeS show a clear photo-response. The introduction of a buffer layer of TiO 2 into the ZnO/chalcogenide interface was necessary to detect photocurrent. The presence of CISeS improves the response of the cell, with higher values of short circuit current density, open circuit potential and fill factor. These promising results show that it is possible to prepare photovoltaic heterojunctions by depositing chalcogenides onto porous ZnO substrates using low-cost solution-based techniques. - Highlights: • Heterojunctions that serve as solar cell prototypes were prepared using solution-based techniques. • The devices comprised a double layer of ZnO and CuInSe 2 or CuInSe 0.4 S 1.6 . • A TiO 2 buffer layer in the ZnO/chalcogenide interface is necessary to detect photocurrent. • The incorporation of S improved the response of the photovoltaic heterojunction

  18. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis.

    Science.gov (United States)

    Yarema, Maksym; Pichler, Stefan; Sytnyk, Mykhailo; Seyrkammer, Robert; Lechner, Rainer T; Fritz-Popovski, Gerhard; Jarzab, Dorota; Szendrei, Krisztina; Resel, Roland; Korovyanko, Oleksandra; Loi, Maria Antonietta; Paris, Oskar; Hesser, Günter; Heiss, Wolfgang

    2011-05-24

    Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region, making these materials promising as environmentally benign alternatives to established infrared active nanocrystals containing toxic metals such as Hg, Cd, and Pb. We present Ag(2)Se nanocrystals in detail, giving size-tunable luminescence with quantum yields above 1.7%. The luminescence, with a decay time on the order of 130 ns, was shown to improve due to the growth of a monolayer thick ZnSe shell. Photoconductivity with a quantum efficiency of 27% was achieved by blending the Ag(2)Se nanocrystals with a soluble fullerene derivative. The co-injection of lithium silylamide was found to be crucial to the synthesis of Ag chalcogenide nanocrystals, which drastically increased their nucleation rate even at relatively low growth temperatures. Because the same observation was made for the nucleation of Cd chalcogenide nanocrystals, we conclude that the addition of lithium silylamide might generally promote wet-chemical synthesis of metal chalcogenide nanocrystals, including in as-yet unexplored materials.

  19. Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices.

    Science.gov (United States)

    Zhang, Qiming; Li, Ming; Hao, Qiang; Deng, Dinghuan; Zhou, Hui; Zeng, Heping; Zhan, Li; Wu, Xiang; Liu, Liying; Xu, Lei

    2010-11-15

    Chalcogenide (As(2)S(3)) nanofibers as narrow as 200 nm in diameter are drawn by the fiber pulling method, are successfully embedded in SU8 polymer, and form on-chip waveguides and high-Q microknot resonators (Q = 3.9 × 10(4)) with smooth cleaved end faces. Resonance tuning of resonators is realized by localized laser irradiation. Strong supercontinuum generation with a bandwidth of 500 nm is achieved in a 7-cm-long on-chip chalcogenide waveguide. Our result provides a method for the development of compact, high-optical-quality, and robust photonic devices.

  20. UV emission properties of thulium-doped fluorozirconate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Piramidowicz, R., E-mail: r.piramidowicz@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Telekomunikacja Polska Research and Development Centre, Obrzezna 7, 02-691 Warsaw (Poland); Bok, A.; Klimczak, M.; Malinowski, M. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland)

    2009-12-15

    In this work, we present our latest results on UV emission in bulk ZBLAN glasses doped with thulium ions, broadening knowledge of the short-wavelength optical properties of this system. We examined a set of samples with different activator concentrations (2500, 10,000, 25,000 and 50,000 ppm) in respect of absorption and short-wavelength emission properties. The concentration-dependant spectra of UV emission from the {sup 1}I{sub 6}+{sup 3}P{sub 0} and {sup 1}D{sub 2} levels and fluorescence dynamics profiles have been recorded and carefully examined under direct (one-photon) excitation, enabling discussion of fluorescence quenching mechanisms and determination of appropriate cross-relaxation rates. According to authors' best knowledge, the three-photon red-to-UV up-conversion has been reported for the first time under excitation of a laser diode.

  1. General Top-Down Ion Exchange Process for the Growth of Epitaxial Chalcogenide Thin Films and Devices

    KAUST Repository

    Xia, Chuan; Li, Peng; Li, Jun; Jiang, Qiu; Zhang, Xixiang; Alshareef, Husam N.

    2016-01-01

    ) epitaxial chalcogenide metallic and semiconducting films and (2) free-standing chalcogenide films and (3) completed in situ formation of atomically sharp heterojunctions by selective ion exchange. Epitaxial NiCo2S4 thin films prepared by our process show 115

  2. Limiting of photo induced changes in amorphous chalcogenide/alumino-silicate nanomultilayers

    International Nuclear Information System (INIS)

    Charnovych, S.; Nemec, P.; Nazabal, V.; Csik, A.; Allix, M.; Matzen, G.; Kokenyesi, S.

    2011-01-01

    Highlights: → Amorphous chalcogenides were investigated in this work. → Photo-induced effects were investigated in the created thin films. → Limiting of photo induced changes in amorphous chalcogenide/alumino-silicate nanomultilayers have been studied. - Abstract: Photo induced changes in amorphous As 20 Se 80 /alumino-silicate nanomultilayers (NML) produced by pulsed laser deposition (PLD) method have been studied in this work. The aim was to investigate the photo induced optical and surface relief changes due to the band gap illumination under the size- and hard cover limited conditions. It was observed that the hard cover layer on the surface of the uniform film or alumino-silicate sub-layers in the NML structure influences the photo darkening and restricts surface relief formations in As 20 Se 80 film or in the related NML compared with this effect in a pure chalcogenide layer. The influence of hard layers is supposed to be connected with limiting the free volume formation at the initial stage of the transformation process, which in turn limits the atomic movement and so the surface relief formation.

  3. Infrared Emitting and Photoconducting Colloidal Silver Chalcogenide Nanocrystal Quantum Dots from a Silylamide-Promoted Synthesis

    NARCIS (Netherlands)

    Yarema, Maksym; Pichler, Stefan; Sytnyk, Mykhailo; Seyrkammer, Robert; Lechner, Rainer T.; Fritz-Popovski, Gerhard; Jarzab, Dorota; Szendrei, Krisztina; Resel, Roland; Korovyanko, Oleksandra; Loi, Maria Antonietta; Paris, Oskar; Hesser, Guenter; Heiss, Wolfgang; Hesser, Günter

    Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region,

  4. Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films and their multilayered structures for photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Němec, P. [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Charrier, J. [FOTON, UMR CNRS 6082, Enssat, 6 rue de Kerampont, BP 80518, 22305 Lannion (France); Cathelinaud, M. [Missions des Ressources et Compétences Technologiques, UPS CNRS 2274, 92195 Meudon (France); Allix, M. [CEMHTI-CNRS, Site Haute Température, Orléans (France); Adam, J.-L.; Zhang, S. [Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France); Nazabal, V., E-mail: virginie.nazabal@univ-rennes1.fr [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France)

    2013-07-31

    Amorphous chalcogenide and alumino-silicate thin films were fabricated by the pulsed laser deposition technique. Prepared films were characterized in terms of their morphology, chemical composition, and optical properties. Multilayered thin film stacks for reflectors and vertical microcavities were designed for telecommunication wavelength and the window of atmosphere transparency (band II) at 1.54 μm and 4.65 μm, respectively. Bearing in mind the benefit coming from the opportunity of an efficient wavelength tuning or, conversely, to stabilize the photoinduced effects in chalcogenide films as well as to improve their mechanical properties and/or their chemical durability, several pairs of materials from pure chalcogenide layers to chalcogenide/oxide layers were investigated. Different layer stacks were fabricated in order to check the compatibility between dissimilar materials which can have a strong influence on the interface roughness, adhesion, density, and homogeneity, for instance. Three different reflector designs were formulated and tested including all-chalcogenide layers (As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70}) and mixed chalcogenide-oxide layers (As{sub 40}Se{sub 60}/alumino-silicate and Ga{sub 10}Ge{sub 15}Te{sub 75}/alumino-silicate). Prepared multilayers showed good compatibility between different material pairs deposited by laser ablation despite the diversity of chemical compositions. As{sub 40}Se{sub 60}/alumino-silicate reflector showed the best parameters; its stop band (R > 97% at 8° off-normal incidence) has a bandwidth of ∼ 100 nm and it is centered at 1490 nm. The quality of the different mirrors developed was good enough to try to obtain a microcavity structure for the 1.5 μm telecommunication wavelength made of chalcogenide layers. The microcavity structure consists of Ga{sub 5}Ge{sub 20}Sb{sub 10}S{sub 65} (doped with 5000 ppm of Er{sup 3+}) spacer surrounded by two 10-layer As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70

  5. ZnO and copper indium chalcogenide heterojunctions prepared by inexpensive methods

    Energy Technology Data Exchange (ETDEWEB)

    Berruet, M., E-mail: berruetm@gmail.com [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Di Iorio, Y. [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Troviano, M. [Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, CONICET-UNCo), Buenos Aires 1400, Q8300IBX Neuquén (Argentina); Vázquez, M. [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina)

    2014-12-15

    Solution-based techniques were used to prepare ZnO/CuIn(Se, S){sub 2} heterojunctions that serve as solar cell prototypes. A duplex layer of ZnO (compact + porous) was electrodeposited. Chalcogenide thin films were deposited using successive ionic layer adsorption and reaction method (SILAR). By subsequent thermal treatments in two different atmospheres, CuInSe{sub 2} (CISe) and CuInSe{sub 2−x}S{sub x} (CISeS) were obtained. The composition and morphology of the annealed films were characterized by GXRD, micro-Raman spectroscopy and SEM. Devices prepared with CISe and CISeS show a clear photo-response. The introduction of a buffer layer of TiO{sub 2} into the ZnO/chalcogenide interface was necessary to detect photocurrent. The presence of CISeS improves the response of the cell, with higher values of short circuit current density, open circuit potential and fill factor. These promising results show that it is possible to prepare photovoltaic heterojunctions by depositing chalcogenides onto porous ZnO substrates using low-cost solution-based techniques. - Highlights: • Heterojunctions that serve as solar cell prototypes were prepared using solution-based techniques. • The devices comprised a double layer of ZnO and CuInSe{sub 2} or CuInSe{sub 0.4}S{sub 1.6}. • A TiO{sub 2} buffer layer in the ZnO/chalcogenide interface is necessary to detect photocurrent. • The incorporation of S improved the response of the photovoltaic heterojunction.

  6. The role of rare earths in narrow energy gap semiconductors

    International Nuclear Information System (INIS)

    Partin, D.L.; Heremans, J.; Morelli, D.T.; Thrush, C.M.

    1991-01-01

    Narrow energy band gap semiconductors are potentially useful for various devices, including infrared detectors and diode lasers. Rare earth elements have been introduced into lead chalcogenide semiconductors using the molecular beam epitaxy growth process. Europium and ytterbium increase the energy band gap, and nearly lattice-matched heterojunctions have been grown. In some cases, valence changes in the rare earth element cause doping of the alloy. In this paper some initial investigations of the addition of europium to indium antimonide are reported, including the variation of lattice parameter and optical transmission with composition and a negative magnetoresistance effect

  7. Surfactant free metal chalcogenides microparticles consisting of ...

    Indian Academy of Sciences (India)

    SANYASINAIDU GOTTAPU

    2017-11-11

    Nov 11, 2017 ... Metal chalcogenides; copper sulphide; copper selenide; micro flowers. 1. Introduction .... adding calculated quantity (2.7 mmol) of each acid separately. .... salts (LiCl, LiNO3, and LiOAc), and then hydride ions from (BH. − ... Concentration of metal .... hait A and Lim J Y 2016 Cation exchange synthesis of.

  8. Modeling of Mid-IR Amplifier Based on an Erbium-Doped Chalcogenide Microsphere

    Directory of Open Access Journals (Sweden)

    P. Bia

    2012-01-01

    Full Text Available An optical amplifier based on a tapered fiber and an Er3+-doped chalcogenide microsphere is designed and optimized. A dedicated 3D numerical model, which exploits the coupled mode theory and the rate equations, is used. The main transitions among the erbium energy levels, the amplified spontaneous emission, and the most important secondary transitions pertaining to the ion-ion interactions have been considered. Both the pump and signal beams are efficiently injected and obtained by a suitable design of the taper angle and the fiber-microsphere gap. Moreover, a good overlapping between the optical signals and the rare-earth-doped region is also obtained. In order to evaluate the amplifier performance in reduced computational time, the doped area is partitioned in sectors. The obtained simulation results highlight that a high-efficiency midinfrared amplification can be obtained by using a quite small microsphere.

  9. Synthesis and crystal chemistry of transuranium element chalcogenides. Contribution to the study of the 5f electron localization

    International Nuclear Information System (INIS)

    Damien, Daniel.

    1976-09-01

    The synthesis and crystal chemistry of Np, Pu, Am and Cm transuranium element chalcogenides are described. From plutonium, transuranium element chalcogenides exhibit the same crystal structure as their rare-earth homologues. The variations of the lattice constants of these compounds in terms of the atomic number are characterized by the lack of the 5f contraction and are interpreted by a localization of the 5f electrons depending upon the considered transuranium element, the nature of the ligand and the crystal structure. To compare the degree of magnitude of the 5f electron delocalization in various compounds, a delocalization scale is proposed based on a comparison between the molar volumes of actinide and isostructural lanthanide compounds. This scale provides a delocalization coefficient for each compound under study. Examination of these coefficients shows that the 5f electrons, in series of actinide compounds, become localized when going from neptunium to curium and that the delocalization process does not only depend upon overlaps between 5f-6d orbitals of neighbouring actinide atoms; the delocalization coefficients show the existence of a secondary delocalization effect due to overlaps between the p anion and f actinide orbitals which are more important for the Vb anion group (N, P, As, Sb) than for the Vib one (S,Se,Te) [fr

  10. Inverse opal photonic crystal of chalcogenide glass by solution processing.

    Science.gov (United States)

    Kohoutek, Tomas; Orava, Jiri; Sawada, Tsutomu; Fudouzi, Hiroshi

    2011-01-15

    Chalcogenide opal and inverse opal photonic crystals were successfully fabricated by low-cost and low-temperature solution-based process, which is well developed in polymer films processing. Highly ordered silica colloidal crystal films were successfully infilled with nano-colloidal solution of the high refractive index As(30)S(70) chalcogenide glass by using spin-coating method. The silica/As-S opal film was etched in HF acid to dissolve the silica opal template and fabricate the inverse opal As-S photonic crystal. Both, the infilled silica/As-S opal film (Δn ~ 0.84 near λ=770 nm) and the inverse opal As-S photonic structure (Δn ~ 1.26 near λ=660 nm) had significantly enhanced reflectivity values and wider photonic bandgaps in comparison with the silica opal film template (Δn ~ 0.434 near λ=600 nm). The key aspects of opal film preparation by spin-coating of nano-colloidal chalcogenide glass solution are discussed. The solution fabricated "inorganic polymer" opal and the inverse opal structures exceed photonic properties of silica or any organic polymer opal film. The fabricated photonic structures are proposed for designing novel flexible colloidal crystal laser devices, photonic waveguides and chemical sensors. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Investigation of diode-laser pumped thulium-doped fluoride lasers

    International Nuclear Information System (INIS)

    Matos, Paulo Sergio Fabris de

    2006-01-01

    Tunable lasers emitting around 2.3 mum region are important in many areas, like gas detection, remote sensing and medical applications. Thulium has a large emission spectra around 2.3 mum with demonstrated tuning range of 2.2-2.45 mum using the YLF host. For efficient pump absorption, a high concentration sensitizer like ytterbium can be used. We demonstrate quasi-cw operation of the Yb:Tm:YLF laser, pumped at 960 nm with a 20 W diode bar achieving the highest output power reported so far of 620 mW. Simultaneous pumping of the 2.3 mm Yb:Tm:YLF laser at 685 nm and 960 nm is demonstrated, showing higher slope efficiency than 960 nm alone. Numerical simulations and analytical models show the best ratio of pump power between both wavelengths. (author)

  12. Collimation of a thulium atomic beam by two-dimensional optical molasses

    Energy Technology Data Exchange (ETDEWEB)

    Sukachev, D D; Kalganova, E S; Sokolov, A V; Savchenkov, A V; Vishnyakova, G A; Golovizin, A A; Akimov, A V; Kolachevsky, Nikolai N; Sorokin, Vadim N

    2013-04-30

    The number of laser cooled and trapped thulium atoms in a magneto-optical trap is increased by a factor of 3 using a two-dimensional optical molasses which collimated the atomic beam before entering a Zeeman slower. A diode laser operating at 410.6 nm was employed to form optical molasses: The laser was heated to 70 Degree-Sign C by a two-step temperature stabilisation system. The laser system consisting of a master oscillator and an injection-locked amplifier emitted more than 100 mW at 410 nm and had a spectral linewidth of 0.6 MHz. (extreme light fields and their applications)

  13. Homogeneity and internal defects detect of infrared Se-based chalcogenide glass

    Science.gov (United States)

    Li, Zupana; Wu, Ligang; Lin, Changgui; Song, Bao'an; Wang, Xunsi; Shen, Xiang; Dai, Shixunb

    2011-10-01

    Ge-Sb-Se chalcogenide glasses is a kind of excellent infrared optical material, which has been enviromental friendly and widely used in infrared thermal imaging systems. However, due to the opaque feature of Se-based glasses in visible spectral region, it's difficult to measure their homogeneity and internal defect as the common oxide ones. In this study, a measurement was proposed to observe the homogeneity and internal defect of these glasses based on near-IR imaging technique and an effective measurement system was also constructed. The testing result indicated the method can gives the information of homogeneity and internal defect of infrared Se-based chalcogenide glass clearly and intuitionally.

  14. Conductivity in Ag-As-S(Se,Te) chalcogenide glasses

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Kolář, J.; Bartoš, M.; Vlček, Milan; Frumar, M.; Zima, Vítězslav; Wágner, T.

    2010-01-01

    Roč. 181, 37/38 (2010), s. 1625-1630 ISSN 0167-2738 Institutional research plan: CEZ:AV0Z40500505 Keywords : chalcogenide glasses * ionics conductivity * phase separation Subject RIV: CA - Inorganic Chemistry Impact factor: 2.496, year: 2010

  15. Efficient, space-based, PM 100W thulium fiber laser for pumping Q-switched 2μm Ho:YLF for global winds and carbon dioxide lidar

    Science.gov (United States)

    Engin, Doruk; Mathason, Brian; Storm, Mark

    2017-08-01

    Global wind measurements are critically needed to improve and extend NOAA weather forecasting that impacts U.S. economic activity such as agriculture crop production, as well as hurricane forecasting, flooding, and FEMA disaster planning.1 NASA and the 2007 National Research Council (NRC) Earth Science Decadal Study have also identified global wind measurements as critical for global change research. NASA has conducted aircraft-based wind lidar measurements using 2 um Ho:YLF lasers, which has shown that robust wind measurements can be made. Fibertek designed and demonstrated a high-efficiency, 100 W average power continuous wave (CW) 1940 nm thulium (Tm)- doped fiber laser bread-board system meeting all requirements for a NASA Earth Science spaceflight 2 μm Ho:YLF pump laser. Our preliminary design shows that it is possible to package the laser for high-reliability spaceflight operation in an ultra-compact 2″x8″x14″ size and weight <8.5 lbs. A spaceflight 100 W polarization maintaining (PM) Tm laser provides a path to space for a pulsed, Q-switched 2 μm Ho:YLF laser with 30-80 mJ/pulse range at 100-200 Hz repletion rates.

  16. Debye temperatures of uranium chalcogenides from their lattice ...

    Indian Academy of Sciences (India)

    Phonon dispersion relations in uranium chalcogenides have been investigated using a modified three-body force shell model. From the phonon frequencies, their Debye temperatures are evaluated. Further, on the basis of the spin fluctuation in the heavy fermion uranium compounds, UPt3 and UBe13, the possible ...

  17. Chalcogenide Sensitized Carbon Based TiO2 Nanomaterial For Solar Driven Applications

    Science.gov (United States)

    Pathak, Pawan

    The demand for renewable energy is growing because fossils fuels are depleting at a rapid pace. Solar energy an abundant green energy resource. Utilizing this resource in a smart manner can resolve energy-crisis related issues. Sun light can be efficiently harvested using semiconductor based materials by utilizing photo-generated charges for numerous beneficial applications. The main goal of this thesis is to synthesize different nanostructures of TiO2, develop a novel method of coupling and synthesizing chalcogenide nanocrystals with TiO2 and to study the charge transportation effects of the various carbon allotropes in the chalcogenide nanocrystal sensitized TiO2 nanostructure. We have fabricated different nanostructures of TiO2 as solar energy harvesting materials. Effects of the different phases of TiO2 have also been studied. The anatase phase of TiO2 is more photoactive than the rutile phase of TiO2, and the higher dimension of the TiO2 can increase the surface area of the material which can produce higher photocurrent. Since TiO2 only absorbs in the UV range; to increase the absorbance TiO2 should be coupled to visible light absorbing materials. This dissertation presents a simple approach to synthesize and couple chalcogenide nanocrystals with TiO2 nanostructure to form a heterostructured composite. An atmospheric pressure based, single precursor, one-pot approach has been developed and tested to assemble chalcogenide nanocrystal on the TiO2 surface. Surface characterization using microscopy, X-ray diffraction, and elemental analysis indicates the formation of nanocrystals along the nanotube walls and inter-tubular spacing. Optical measurements indicate that the chalcogenide nanocrystals absorb in the visible region and demonstrate an increase in photocurrent in comparison to bare TiO2 nanostructure. The CdS synthesized TiO2 nanostructure produced the highest photocurrent as measured in the three electrode system. We have also assembled the PbS nanocrystal

  18. Theoretical study of phonon dispersion, elastic, mechanical and thermodynamic properties of barium chalcogenides

    Science.gov (United States)

    Musari, A. A.; Orukombo, S. A.

    2018-03-01

    Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.

  19. Nanoscale structure and atomic disorder in the iron-based chalcogenides

    Directory of Open Access Journals (Sweden)

    Naurang Lal Saini

    2013-01-01

    Full Text Available The multiband iron-based superconductors have layered structure with a phase diagram characterized by a complex interplay of charge, spin and lattice excitations, with nanoscale atomic structure playing a key role in their fundamental electronic properties. In this paper, we briefly review nanoscale structure and atomic disorder in iron-based chalcogenide superconductors. We focus on the Fe(Se,S1−xTex (11-type and K0.8Fe1.6Se2 (122-type systems, discussing their local structure obtained by extended x-ray absorption fine structure. Local structure studies on the Fe(Se,S1−xTex system reveal clear nanoscale phase separation characterized by coexisting components of different atomic configurations, similar to the case of random alloys. In fact, the Fe–Se/S and Fe–Te distances in the ternary Fe(Se,S1−xTex are found to be closer to the respective distances in the binary FeSe/FeS and FeTe systems, showing significant divergence of the local structure from the average one. The observed features are characteristic of ternary random alloys, indicating breaking of the local symmetry in these materials. On the other hand, K0.8Fe1.6Se2 is known for phase separation in an iron-vacancy ordered phase and an in-plane compressed lattice phase. The local structure of these 122-type chalcogenides shows that this system is characterized by a large local disorder. Indeed, the experiments suggest a nanoscale glassy phase in K0.8Fe1.6Se2, with the superconductivity being similar to the granular materials. While the 11-type structure has no spacer layer, the 122-type structure contains intercalated atoms unlike the 1111-type REFeAsO (RE = rare earth oxypnictides, having well-defined REO spacer layers. It is clear that the interlayer atomic correlations in these iron-based superconducting structures play an important role in structural stability as well as superconductivity and magnetism.

  20. High-efficiency solar cell with earth-abundant liquid-processed absorber

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Teodor K; Reuter, Kathleen B; Mitzi, David B [IBM T. J. Watson Research Center, Yorktown Heights, NY (United States)

    2010-05-25

    A composite liquid deposition approach merging the concepts of solution and particle-based coating for multinary chalcogenide materials is demonstrated. Photovoltaic absorbers based on earth-abundant Cu-Zn-Sn-S-Se kesterites show exceptional phase purity and are incorporated into solar cells with power conversion efficiency above 9.6%, bringing the state of the art of kesterite photovoltaic materials to a level suitable for possible commercialization. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Amorphous chalcogenides advances and applications

    CERN Document Server

    Wang, Rong Ping

    2014-01-01

    This book provides a comprehensive overview of the chalcogenide glass science and various applications based on the glasses. It starts with a review on the glass-forming ability of various systems, followed by a discussion on the structural and physical properties of various chalcolgenide glasses and their application in integrated optics. The chapters have been contributed by prominent experts from all over the world, and therefore, the book presents the recent research advances in the area. This book will appeal to anyone who is involved in glass science and technology and glass application.

  2. Pre-equilibrium decay process in alpha particle induced reactions on thulium and tantalum

    International Nuclear Information System (INIS)

    Mohan, Rao, A.V.; Chintalapudi, S.N.

    1994-01-01

    Alpha particle induced reactions on the target elements Thulium and Tantalum were investigated upto 60 MeV using stacked foil activation technique and Ge(Li) gamma ray spectroscopy method. Excitation functions for six reactions of 169 Tm(α,xn); x=1-4 and 181 Ta(α,xn); x=2,4 were studied. The experimental results were compared with the updated version of Hybrid model (ALICE/90) using initial exciton configuration n 0 =4(4pOh). A general agreement was found for all the reactions with this option. (author)

  3. Pre-equilibrium decay process in alpha particle induced reactions on thulium and tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, Rao, A.V.; Chintalapudi, S.N. (Inter Univ. Consortium for Dept. of atomic Energy Facilities, Calcutta (India))

    1994-01-01

    Alpha particle induced reactions on the target elements Thulium and Tantalum were investigated upto 60 MeV using stacked foil activation technique and Ge(Li) gamma ray spectroscopy method. Excitation functions for six reactions of [sup 169]Tm([alpha],xn); x=1-4 and [sup 181]Ta([alpha],xn); x=2,4 were studied. The experimental results were compared with the updated version of Hybrid model (ALICE/90) using initial exciton configuration n[sub 0]=4(4pOh). A general agreement was found for all the reactions with this option. (author).

  4. Divalent thulium triflate. A structural and spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Xemard, Mathieu; Jaoul, Arnaud; Cordier, Marie; Nocton, Gregory [Univ. Paris-Saclay, Palaiseau (France). LCM, Ecole polytechnique, CNRS; Molton, Florian; Duboc, Carole [Grenoble Univ., Saint Martin d' Heres (France). Dept. de Chimie Moleculaire; Cador, Olivier; Le Guennic, Boris [Univ. de Rennes 1 (France). Inst. des Sciences Chimique de Rennes, UMR 6226 CNRS; Maury, Olivier [Univ. Claude Bernard Lyon 1 (France). Lab. de Chimie; Clavaguera, Carine [Univ. Paris-Saclay, Palaiseau (France). LCM, Ecole polytechnique, CNRS; Univ. Paris Sud, Univ. Paris-Saclay, Orsay (France). Lab. de Chimie Physique, CNRS

    2017-04-03

    The first molecular Tm{sup II} luminescence measurements are reported along with rare magnetic, X and Q bands EPR studies. Access to simple and soluble molecular divalent lanthanide complexes is highly sought for small-molecule activation studies and organic transformations using single-electron transfer processes. However, owing to their low stability and propensity to disproportionate, these complexes are hard to synthetize and their electronic properties are therefore almost unexplored. Herein we present the synthesis of [Tm(μ-OTf){sub 2}(dme){sub 2}]{sub n}, a rare and simple coordination compound of divalent thulium that can be seen as a promising starting material for the synthesis of more elaborated complexes. This reactive complex was structurally characterized by X-ray diffraction analysis and its electronic structure has been compared with that of its halide cousin TmI{sub 2}(dme){sub 3}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. New functionality of chalcogenide glasses for radiation sensing of nuclear wastes

    International Nuclear Information System (INIS)

    Ailavajhala, M.S.; Gonzalez-Velo, Y.; Poweleit, C.D.; Barnaby, H.J.; Kozicki, M.N.; Butt, D.P.; Mitkova, M.

    2014-01-01

    Highlights: • Study of thin film chalcogenide glasses under gamma radiation and a proposed radiation sensor design. • Structural changes were observed at various radiation doses. • Formation of Ag 2 Se in Se depleted glasses with sufficient radiation dose. • In conventional semiconductor chip environment, the proposed sensor has a linear current vs. dose behavior up to 600 J/cm 2 . - Abstract: Data about gamma radiation induced effects in Ge 40 Se 60 chalcogenide thin films and radiation induced silver diffusion within these are presented. Blanket films and devices were created to study the structural changes, diffusion products, and device performance. Raman spectroscopy, X-ray diffraction, current vs. voltage (I–V) and impedance measurements expound the behavior of Ge 40 Se 60 glass and silver diffusion within this glass under radiation. Raman study shows that there is a decrease in the area ratio between edge shared and corner shared structural units revealing structural reorganization occurring in the glasses as a result of gamma radiation. X-ray diffraction studies revealed that with sufficiently radiation dose it is also possible to create Ag 2 Se in selenium-depleted systems. Oxidation of the Ge enriched chalcogenide backbone is confirmed through the electrical performance of the sensing elements based on these films. Combination of these structural and diffusion products influences the device performance. The I–V behavior is characterized by increase in current and then stabilization as a function of radiation dose. Additionally, device modeling is also presented using Silvaco software and analytical methods to shed light on the device behavior. This type of sensor design and material characterizations facilitate in improving the radiation sensing capabilities of silver containing chalcogenide glass thin films

  6. New functionality of chalcogenide glasses for radiation sensing of nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ailavajhala, M.S., E-mail: m.ailavajhala@gmail.com [Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725 (United States); Gonzalez-Velo, Y. [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287-5706 (United States); Poweleit, C.D. [Department of Physics, Arizona State University, Tempe, AZ 85287-5706 (United States); Barnaby, H.J.; Kozicki, M.N. [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287-5706 (United States); Butt, D.P. [Department of Materials Science and Engineering, Boise State University, Boise, ID 83725 (United States); Mitkova, M., E-mail: maheshailavajhala@u.boisestate.edu [Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725 (United States)

    2014-03-01

    Highlights: • Study of thin film chalcogenide glasses under gamma radiation and a proposed radiation sensor design. • Structural changes were observed at various radiation doses. • Formation of Ag{sub 2}Se in Se depleted glasses with sufficient radiation dose. • In conventional semiconductor chip environment, the proposed sensor has a linear current vs. dose behavior up to 600 J/cm{sup 2}. - Abstract: Data about gamma radiation induced effects in Ge{sub 40}Se{sub 60} chalcogenide thin films and radiation induced silver diffusion within these are presented. Blanket films and devices were created to study the structural changes, diffusion products, and device performance. Raman spectroscopy, X-ray diffraction, current vs. voltage (I–V) and impedance measurements expound the behavior of Ge{sub 40}Se{sub 60} glass and silver diffusion within this glass under radiation. Raman study shows that there is a decrease in the area ratio between edge shared and corner shared structural units revealing structural reorganization occurring in the glasses as a result of gamma radiation. X-ray diffraction studies revealed that with sufficiently radiation dose it is also possible to create Ag{sub 2}Se in selenium-depleted systems. Oxidation of the Ge enriched chalcogenide backbone is confirmed through the electrical performance of the sensing elements based on these films. Combination of these structural and diffusion products influences the device performance. The I–V behavior is characterized by increase in current and then stabilization as a function of radiation dose. Additionally, device modeling is also presented using Silvaco software and analytical methods to shed light on the device behavior. This type of sensor design and material characterizations facilitate in improving the radiation sensing capabilities of silver containing chalcogenide glass thin films.

  7. Photoinduced Operation by Absorption of the Chalcogenide Nanocrystallite Containing Solar Cells

    Directory of Open Access Journals (Sweden)

    Elnaggar A.M.

    2016-12-01

    Full Text Available It is shown that for the solar cells containing chalcogenide nanocrystallites using external laser light, one can achieve some enhancement of the photovoltaic efficiency. Photoinduced treatment was carried out using two beams of splitted Er: glass laser operating at 1.54 μm. The light of the laser was incident at different angles and the angles between the beams also were varied. Also, the studies of nanocomposite effective structures have shown enhancement of effective nanocrystalline sizes during the laser treatment. Nanocrystallites of CuInS2 and CuZnSnS4 (CZTS were used as chalcogenide materials. The optimization of the laser beam intensities and nanoparticle sizes were explored.

  8. TL process in europium doped alkaline earth sulphate phosphors- a review

    International Nuclear Information System (INIS)

    Bhatt, B.C.

    2003-01-01

    CaSO 4 doped with the rare earth (RE) ion dysprosium or thulium is used routinely as a thermoluminescent dosimeter (TLD) to monitor personal exposure to x- and γ-radiation. The CaSO 4 :Eu phosphor is potentially important for radio photoluminescence (RPL) and ultraviolet (UV) dosimetry. Eu 3+ → Eu 2+ conversion is suggested to play a pivotal role in UV and γ-ray induced thermoluminescence. However, there is disagreement among different workers on the mechanism of gamma and UV induced TL in this phosphor system. This paper will review the work reported on CaSO 4 :Eu and make effects to project overall picture on this phosphor system. (author)

  9. The structural heterogeneity and optical properties in chalcogenide glass films

    International Nuclear Information System (INIS)

    Shurgalin, Max; Fuflyigin, Vladimir N; Anderson, Emilia G

    2005-01-01

    The microscopic structure and optical properties of glassy films prepared by vapour phase deposition process from the germanium-arsenic-selenium family of chalcogenide glasses have been studied. A number of different molecular clusters or domains that can exist in the glass structure are found to play a significant role in determining the absorption characteristics and refractive index of the glass films. Modifications of the glass structure can be described by a variation of relative concentrations of the clusters and can be effected by modifications of film chemical composition and deposition conditions. Changes in absorption spectra are directly correlated with variation in relative concentrations of the structural fragments with different electronic bandgap properties. Experimental results suggest structural heterogeneity and support validity of the cluster structural model for the chalcogenide glasses

  10. Spectral determination of individual rare earths in different classes of inorganic compounds

    International Nuclear Information System (INIS)

    Karpenko, L.I.; Fadeeva, L.A.; Shevchenko, L.D.

    1979-01-01

    The conditions are found allowing to analyze various inorganic compounds for rare-earth elements without separation from non-rare-earth components. The influence of the plasma composition on the intensity of spectral lines of rare-earth elements is studied. The relative intensity of homologous spectral lines of various rare-earth elements remains constant regardless of the plasma composition. The conditions are found for the determination of individual rare-earth elements acting as both alloying additives (Csub(n) -- n x 10 -1 -n x 10 -3 %), and basic components (up to tens of per cent) in different classes of inorganic compounds of 1-7 elements. The general method is developed for the determination of individual rare-earth elements in mixtures of oxides of rare-earth elements, complex fluorides of rare-earth elements and elements of group 2, gallates, borates, germanates, vanadates of rare-earth elements and aluminium; zirconates-titanates of lead and barium, containing modifying additives of rare-earth elements, complex chalcogenides of rare-earth elements and elements of group 5

  11. Efficient Mid-Infrared Supercontinuum Generation in Tapered Large Mode Area Chalcogenide Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Engelsholm, Rasmus Dybbro; Markos, Christos

    2017-01-01

    Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source.......Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source....

  12. Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes

    Directory of Open Access Journals (Sweden)

    Chen Yubin

    2016-09-01

    Full Text Available Photoelectrochemical (PEC water splitting for hydrogen generation has been considered as a promising route to convert and store solar energy into chemical fuels. In terms of its large-scale application, seeking semiconductor photoelectrodes with high efficiency and good stability should be essential. Although an enormous number of materials have been explored for solar water splitting in the last several decades, challenges still remain for the practical application. P-type copper-based chalcogenides, such as Cu(In, GaSe2 and Cu2ZnSnS4, have shown impressive performance in photovoltaics due to narrow bandgaps, high absorption coefficients, and good carrier transport properties. The obtained high efficiencies in photovoltaics have promoted the utilization of these materials into the field of PEC water splitting. A comprehensive review on copper-based chalcogenides for solar-to-hydrogen conversion would help advance the research in this expanding area. This review will cover the physicochemical properties of copper-based chalco-genides, developments of various photocathodes, strategies to enhance the PEC activity and stability, introductions of tandem PEC cells, and finally, prospects on their potential for the practical solar-to-hydrogen conversion. We believe this review article can provide some insights of fundamentals and applications of copper-based chalco-genide thin films for PEC water splitting.

  13. Theoretical prediction of the structural properties of uranium chalcogenides under high pressure

    Science.gov (United States)

    Kapoor, Shilpa; Yaduvanshi, Namrata; Singh, Sadhna

    2018-05-01

    Uranium chalcogenides crystallize in rock salt structure at normal condition and transform to Cesium Chloride structure at high pressure. We have investigated the transition pressure and volume drop of USe and UTe using three body potential model (TBIP). Present model includes long range Columbic, three body interaction forces and short range overlap forces operative up to next nearest neighbors. We have reported the phase transition pressure, relative volume collapses, the thermo physical properties such as molecular force constant (f), infrared absorption frequency (v0), Debye temperature (θD) and Gruneisen parameter (γ) of present chalcogenides and found that our results in general good agreement with experimental and other theoretical data.

  14. Radioluminescence of rare-earth doped aluminum oxide

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, M.; Molina, P. [Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto de Fisica Arroyo Seco, Pinto 399, 7000 Tandil (Argentina); Barros, V. S.; Khoury, H. J.; Elihimas, D. R., E-mail: msantiag@exa.unicen.edu.ar [Universidade Federal de Pernambuco, Departamento de Energia Nuclear, Av. Prof. Luiz Freire 1000, Recife, PE 50740-540 (Brazil)

    2011-10-15

    Carbon-doped aluminum oxide (Al{sub 2}O{sub 3}:C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al{sub 2}O{sub 3} samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  15. Radioluminescence of rare-earth doped aluminum oxide

    International Nuclear Information System (INIS)

    Santiago, M.; Molina, P.; Barros, V. S.; Khoury, H. J.; Elihimas, D. R.

    2011-10-01

    Carbon-doped aluminum oxide (Al 2 O 3 :C) is one of the most used radioluminescence (Rl) materials for fiberoptic dosimetry due to its high efficiency and commercial availability. However, this compound presents the drawback of emitting in the spectral region, where the spurious radioluminescence of fibers is also important. In this work, the radioluminescence response of rare-earth doped Al 2 O 3 samples has been evaluated. The samples were prepared by mixing stoichiometric amounts of aluminum nitrate, urea and dopants with different amounts of terbium, samarium, cerium and thulium nitrates varying from 0 to 0.15 mo 1%. The influence of the different activators on the Rl spectra has been investigated in order to determine the feasibility of using these compounds for Rl fiberoptic dosimetry. (Author)

  16. Electrical conduction mechanism in GeSeSb chalcogenide glasses

    Indian Academy of Sciences (India)

    by melt quenching has been determined at different temperatures in bulk through the I–V characteristic curves ... DC conductivity; chalcogenide glass; Sb–Se bonding; Poole–Frenkel mechanism .... measurements were taken at room temperature as well as ele- .... age across the sample was continuued, the induced thermal.

  17. 2D Metal Chalcogenides Incorporated into Carbon and their Assembly for Energy Storage Applications.

    Science.gov (United States)

    Deng, Zongnan; Jiang, Hao; Li, Chunzhong

    2018-05-01

    2D metal chalcogenides have become a popular focus in the energy storage field because of their unique properties caused by their single-atom thicknesses. However, their high surface energy and van der Waals attraction easily cause serious stacking and restacking, leading to the generation of more inaccessible active sites with rapid capacity fading. The hybridization of 2D metal chalcogenides with highly conductive materials, particularly, incorporating ultrasmall and few-layered metal chalcogenides into carbon frameworks, can not only maximize the exposure of active sites but also effectively avoid their stacking and aggregation during the electrochemical reaction process. Therefore, a satisfactory specific capacity will be achieved with a long cycle life. In this Concept, the representative progress on such intriguing nanohybrids and their applications in energy storage devices are mainly summarized. Finally, an outlook of the future development and challenges of such nanohybrids for achieving an excellent energy storage capability is also provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. General Top-Down Ion Exchange Process for the Growth of Epitaxial Chalcogenide Thin Films and Devices

    KAUST Repository

    Xia, Chuan

    2016-12-30

    We demonstrate a versatile top-down ion exchange process, done at ambient temperature, to form epitaxial chalcogenide films and devices, with nanometer scale thickness control. To demonstrate the versatility of our process we have synthesized (1) epitaxial chalcogenide metallic and semiconducting films and (2) free-standing chalcogenide films and (3) completed in situ formation of atomically sharp heterojunctions by selective ion exchange. Epitaxial NiCo2S4 thin films prepared by our process show 115 times higher mobility than NiCo2S4 pellets (23 vs 0.2 cm(2) V-1 s(-1)) prepared by previous reports. By controlling the ion exchange process time, we made free-standing epitaxial films of NiCo2S4 and transferred them onto different substrates. We also demonstrate in situ formation of atomically sharp, lateral Schottky diodes based on NiCo2O4/NiCo2S4 heterojunction, using a single ion exchange step. Additionally, we show that our approach can be easily extended to other chalcogenide semiconductors. Specifically, we used our process to prepare Cu1.8S thin films with mobility that matches single crystal Cu1.8S (25 cm(2) V-1 s(-1)), which is ca. 28 times higher than the previously reported Cu1.8S thin film mobility (0.58 cm(2) V-1 s(-1)), thus demonstrating the universal nature of our process. This is the first report in which chalcogenide thin films retain the epitaxial nature of the precursor oxide films, an approach that will be useful in many applications.

  19. A study of new rare-earth metal group-13 chalcohalides. Structures, chemistry, and optical properties

    International Nuclear Information System (INIS)

    Dorhout, P.K.; Van Calcar, P.M.

    1998-01-01

    Full text: Several new quaternary compounds from the rare-earth metal group-13 chalcohalide family have been prepared from alkaline earth halide flux reactions of binary and elemental starting materials. One compound, for example, Ca 2 La 6G a 2 S 1 4 , crystallizes as needles in an hexagonal cell while another, more disordered structure, La 11 Ga 19 Cl 6 S 42 , crystallizes as monoclinic plates. The former is a condensed structure with channels that contain the alkaline earth element while the latter forms a layered structure containing rare-earth halide clusters within interlayer galleries. These compounds are new members of a family of rare-earth metal main-group chalcogenides which show promise as electroluminescent materials. Structural and spectroscopic studies of these and related compounds will be discussed

  20. New functionality of chalcogenide glasses for radiation sensing of nuclear wastes.

    Science.gov (United States)

    Ailavajhala, M S; Gonzalez-Velo, Y; Poweleit, C D; Barnaby, H J; Kozicki, M N; Butt, D P; Mitkova, M

    2014-03-30

    Data about gamma radiation induced effects in Ge40Se60 chalcogenide thin films and radiation induced silver diffusion within these are presented. Blanket films and devices were created to study the structural changes, diffusion products, and device performance. Raman spectroscopy, X-ray diffraction, current vs. voltage (I-V) and impedance measurements expound the behavior of Ge40Se60 glass and silver diffusion within this glass under radiation. Raman study shows that there is a decrease in the area ratio between edge shared and corner shared structural units revealing structural reorganization occurring in the glasses as a result of gamma radiation. X-ray diffraction studies revealed that with sufficiently radiation dose it is also possible to create Ag2Se in selenium-depleted systems. Oxidation of the Ge enriched chalcogenide backbone is confirmed through the electrical performance of the sensing elements based on these films. Combination of these structural and diffusion products influences the device performance. The I-V behavior is characterized by increase in current and then stabilization as a function of radiation dose. Additionally, device modeling is also presented using Silvaco software and analytical methods to shed light on the device behavior. This type of sensor design and material characterizations facilitate in improving the radiation sensing capabilities of silver containing chalcogenide glass thin films. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Magnetic hysteresis scaling in thulium: Implication of irreversibility-related scaling for soliton wall motion in an Ising system

    International Nuclear Information System (INIS)

    Kobayashi, Satoru

    2013-01-01

    We report low-field magnetic hysteresis scaling in thulium with strong uniaxial anisotropy. A power-law hysteresis scaling with an exponent of 1.13±0.02 is found between hysteresis loss and remanent flux density of minor loops in the low-temperature ferrimagnetic phase. This exponent value is slightly lower than 1.25–1.4 observed previously for ferromagnets and helimagnets. Unlike spiral and/or Bloch walls with a finite transition width, typical for Dy, Tb, and Ho with planar anisotropy, a soliton wall with a sudden phase shift between neighboring domains may dominate in Tm due to its Ising-like character. The observations imply the presence of universality class of hysteresis scaling that depends on the type of magnetic anisotropy. - Highlights: ► We observe magnetic hysteresis scaling in thulium with a power law exponent of 1.13. ► Irreversibility of soliton walls dominates owing to its strong uniaxial anisotropy. ► The exponent is lower than those for Bloch wall and spiral wall. ► The results imply the presence of universality class that depends on the wall type.

  2. Preparation and physical properties of rare earth, alkaline earth, and transition metal ternary chalcogenides

    International Nuclear Information System (INIS)

    Georgobiani, A.N.

    1997-01-01

    A study was made on current-voltage characteristics, temperature dependences of electric conductivity and currents of thermoinduced depolarization of monocrystals, including EuGa 2 S 4 and (Ga 2 S 3 ) 1-x (Eu 2 O 3 ) x solid solutions. It is shown that these compounds, activated by europium, cerium, neodymium and other rare earths, manifest effective luminescence under the effect of ultraviolet and X-radiation, as well as under the effect of electron beams and electric field

  3. Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes

    Directory of Open Access Journals (Sweden)

    Yongfeng Tong

    2016-02-01

    Full Text Available This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon–chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon–chalcogen atom-bond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the π-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.

  4. Study of third order nonlinearity of chalcogenide thin films using third harmonic generation measurements

    Science.gov (United States)

    Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay

    2018-05-01

    Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.

  5. THz waveguides, devices and hybrid polymer-chalcogenide photonic crystal fibers

    DEFF Research Database (Denmark)

    Bao, Hualong; Markos, Christos; Nielsen, Kristian

    2014-01-01

    In this contribution, we review our recent activities in the design, fabrication and characterization of polymer THz waveguides. Besides the THz waveguides, we finally will also briefly show some of our initial results on a novel hybrid polymer photonic crystal fiber with integrated chalcogenide...

  6. Effect of crystalline electric fields and long-range magnetic order on superconductivity in rare earth alloys and compounds

    International Nuclear Information System (INIS)

    McCallum, R.W.

    1977-01-01

    The behavior of rare earth ions in a superconducting matrix has been studied in two distinct regimes. First, the effects of crystal field splitting of the 4f levels of a magnetic rare earth ion in the alloy system (LaPr)Sn 3 were investigated in the limit of low Pr 3+ concentration. In this system the rare earth impurity ions occupy random La sites in the crystal lattice. Second, the interaction of long-range magnetic order and superconductivity was explored in the ternary rare earth molybdenum chalcogenide systems. In these compounds the rare earth ions occupy periodic lattice sites in contrast to the random distribution of magnetic ions in dilute impurity alloy systems such as (LaPr)Sn 3

  7. On the instability effects in radiation-sensitive chalcogenide glasses

    International Nuclear Information System (INIS)

    Balitska, V.; Kovalskiy, A.; Shpotyuk, O.; Vakiv, M.

    2007-01-01

    The features of application of radiation-sensitive media based on chalcogenide glasses of As-Ge-S system for registration of high-energy γ-radiation are analysed. It is shown that compositional features of the observed time-instability effect should be taken into account in order to ensure a higher accuracy of the developed dosimeters

  8. On the instability effects in radiation-sensitive chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Balitska, V. [Lviv State University for Vital Activity Safety, 35 Kleparivska str., Lviv, UA-79007 (Ukraine); Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); Kovalskiy, A. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); International Materials Institute for New Functionality in Glass, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Shpotyuk, O. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); International Materials Institute for New Functionality in Glass, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)], E-mail: shpotyuk@novas.lviv.ua; Vakiv, M. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine)

    2007-04-15

    The features of application of radiation-sensitive media based on chalcogenide glasses of As-Ge-S system for registration of high-energy {gamma}-radiation are analysed. It is shown that compositional features of the observed time-instability effect should be taken into account in order to ensure a higher accuracy of the developed dosimeters.

  9. Intense upconversion luminescence in ytterbium-sensitized thulium-doped oxychloride germanate glass

    International Nuclear Information System (INIS)

    Sun Hongtao; Zhanga Liyan; Zhang Junjie; Wen Lei; Yu Chunlei; Duan Zhongchao; Dai Shixun; Hu Lili; Jiang Zhonghong

    2005-01-01

    Structural and upconversion fluorescence properties in ytterbium-sensitized thulium-doped oxychloride germanate glass have been studied. The structure of oxychloride germanate glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wavenumbers. The Raman spectrum investigation indicates that PbCl 2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions 1 G 4 → 3 H 6 and 1 G 4 → 3 H 4 , respectively, were observed at room temperature. The possible upconversion mechanisms are discussed and estimated. Intense upconversion luminescence indicates that oxychloride germanate glass can be used as potential host material for upconversion lasers

  10. Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.

    Science.gov (United States)

    Novak, Spencer; Lin, Pao Tai; Li, Cheng; Lumdee, Chatdanai; Hu, Juejun; Agarwal, Anuradha; Kik, Pieter G; Deng, Weiwei; Richardson, Kathleen

    2017-08-16

    A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge 23 Sb 7 S 70 and As 40 S 60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.

  11. Thermal, electronic and ductile properties of lead-chalcogenides under pressure.

    Science.gov (United States)

    Gupta, Dinesh C; Bhat, Idris Hamid

    2013-09-01

    Fully relativistic pseudo-potential ab-initio calculations have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. PbS, PbSe, PbTe and PbPo undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa, respectively. The elastic properties have also been calculated. The calculations successfully predicted the location of the band gap at L-point of Brillouin zone and the band gap for each material at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalize under pressure. The electronic structures of these materials have been computed in parent as well as in high pressure B2 phase.

  12. Reversibility windows in selenide-based chalcogenide glasses

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Hyla, M.; Boyko, V.; Golovchak, R.

    2008-01-01

    A simple route for the estimation of the reversibility windows in the sense of non-ageing ability is developed for chalcogenide glasses obeying '8-N' rule at the example of As-Se, Ge-Se and Ge-As-Se glass systems. The low limit of their reversibility windows is determined at the average coordination number Z=2.4 in full agreement with rigidity percolation theory, while the upper limit is shown to be related to the glass preparation conditions and samples prehistory

  13. Reversibility windows in selenide-based chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa, PL 42200 (Poland); Hyla, M. [Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa, PL 42200 (Poland); Boyko, V. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine); Lviv National Polytechnic University, 12, Bandera Street, Lviv, UA 79013 (Ukraine); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine)], E-mail: golovchak@novas.lviv.ua

    2008-10-01

    A simple route for the estimation of the reversibility windows in the sense of non-ageing ability is developed for chalcogenide glasses obeying '8-N' rule at the example of As-Se, Ge-Se and Ge-As-Se glass systems. The low limit of their reversibility windows is determined at the average coordination number Z=2.4 in full agreement with rigidity percolation theory, while the upper limit is shown to be related to the glass preparation conditions and samples prehistory.

  14. The electronic structure of the antimony chalcogenide series: Prospects for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Carey, John J.; Allen, Jeremy P. [School of Chemistry and CRANN, Trinity College Dublin, Dublin 2 (Ireland); Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Watson, Graeme W., E-mail: watsong@tcd.ie [School of Chemistry and CRANN, Trinity College Dublin, Dublin 2 (Ireland)

    2014-05-01

    In this study, density functional theory is used to evaluate the electronic structure of the antimony chalcogenide series. Analysis of the electronic density of states and charge density shows that asymmetric density, or ‘lone pairs’, forms on the Sb{sup III} cations in the distorted oxide, sulphide and selenide materials. The asymmetric density progressively weakens down the series, due to the increase in energy of valence p states from O to Te, and is absent for Sb{sub 2}Te{sub 3}. The fundamental and optical band gaps were calculated and Sb{sub 2}O{sub 3}, Sb{sub 2}S{sub 3} and Sb{sub 2}Se{sub 3} have indirect band gaps, while Sb{sub 2}Te{sub 3} was calculated to have a direct band gap at Γ. The band gaps are also seen to reduce from Sb{sub 2}O{sub 3} to Sb{sub 2}Te{sub 3}. The optical band gap for Sb{sub 2}O{sub 3} makes it a candidate as a transparent conducting oxide, while Sb{sub 2}S{sub 3} and Sb{sub 2}Se{sub 3} have suitable band gaps for thin film solar cell absorbers. - Graphical abstract: A schematic illustrating the interaction between the Sb{sup III} cations and the chalcogenide anions and the change in their respective energy levels down the series. - Highlights: • The electronic structure of the antimony chalcogenide series is modelled using DFT. • Asymmetric density is present on distorted systems and absent on the symmetric telluride system. • Asymmetric density is formed from the mixing of Sb 5s and anion p states, where the anti-bonding combination is stabilised by the Sb 5p states. • The asymmetric density weakens down the series due to the increase in energy of chalcogenide p states. • The increase in energy of the anion p states reduces the fundamental and optical band gaps.

  15. Deposition of Ge{sub 23}Sb{sub 7}S{sub 70} chalcogenide glass films by electrospray

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Spencer, E-mail: spencen@g.clemson.edu [Department of Materials Science and Engineering, COMSET, Clemson University, Clemson, SC (United States); College of Optics and Photonics, CREOL, University of Central FL (United States); Johnston, Danvers E.; Li, Cheng; Deng, Weiwei [Department of Mechanical and Aerospace Engineering, University of Central FL (United States); Richardson, Kathleen [Department of Materials Science and Engineering, COMSET, Clemson University, Clemson, SC (United States); College of Optics and Photonics, CREOL, University of Central FL (United States)

    2015-08-03

    Solution-based chalcogenide glass films, traditionally deposited by spin-coating, are attractive for their potential use in chip-based devices operating in the mid-infrared and for ease of nanostructure incorporation. To overcome limitations of spin-coating such as excessive material waste and difficulty for scale-up, this paper introduces electrospray as a film deposition technique for solution-based chalcogenide glasses. Electrospray is shown to produce Ge{sub 23}Sb{sub 7}S{sub 70} films with similar surface quality and optical properties as films deposited by spin-coating. The advantages of electrospray deposition for nanoparticle dispersion, scalable and continuous manufacturing with little material waste, and comparable film quality to spin-coating make electrospray a promising deposition method for practical applications of chalcogenide glass films. - Highlights: • Electrospray film deposition processing of Ge{sub 23}Sb{sub 7}S{sub 70} films was developed. • Traditional spin-coated films were also fabricated in parallel. • Optical properties and surface quality found to be similar between two approaches.

  16. 1D - photonic crystals prepared from the amorphous chalcogenide films

    Czech Academy of Sciences Publication Activity Database

    Kohoutek, T.; Orava, J.; Wágner, T.; Hrdlička, M.; Vlček, Milan; Frumar, M.

    2009-01-01

    Roč. 20, - (2009), S346-S350 ISSN 0957-4522. [International Conference of Optical and Optoelectronic Materials and Applications. London, 29.07.2007-03.08.2007] Institutional research plan: CEZ:AV0Z40500505 Keywords : chalcogenide thin films Subject RIV: CA - Inorganic Chemistry Impact factor: 1.020, year: 2009

  17. A feasibility study of unconventional planar ligand spacers in chalcogenide nanocrystals.

    Science.gov (United States)

    Lukose, Binit; Clancy, Paulette

    2016-05-18

    The solar cell efficiency of chalcogenide nanocrystals (quantum dots) has been limited in the past by the insulation between neighboring quantum dots caused by intervening, often long-chain, aliphatic ligands. We have conducted a computationally based feasibility study to investigate the use of ultra-thin, planar, charge-conducting ligands as an alternative to traditional long passive ligands. Not only might these radically unconventional ligands decrease the mean distance between adjacent quantum dots, but, since they are charge-conducting, they have the potential to actively enhance charge migration. Our ab initio studies compare the binding energies, electronic energy gaps, and absorption characteristics for both conventional and unconventional ligands, such as phthalocyanines, porphyrins and coronene. This comparison identified these unconventional ligands with the exception of titanyl phthalocyanine, that bind to themselves more strongly than to the surface of the quantum dot, which is likely to be less desirable for enhancing charge transport. The distribution of finite energy levels of the bound system is sensitive to the ligand's binding site and the levels correspond to delocalized states. We also observed a trap state localized on a single Pb atom when a sulfur-containing phenyldithiocarbamate (PTC) ligand is attached to a slightly off-stoichiometric dot in a manner that the sulfur of the ligand completes stoichiometry of the bound system. Hence, this is indicative of the source of trap state when thio-based ligands are bound to chalcogenide nanocrystals. We also predict that titanyl phthalocyanine in a mix with chalcogenide dots of diameter ∼1.5 Å can form a donor-acceptor system.

  18. Measurements of neutron capture cross sections of wolfram and thulium

    International Nuclear Information System (INIS)

    Xia Yijun; Wang Chunhao; Yang Jingfu; Yang Zhihua; Luo Xiaobing

    1992-01-01

    The neutron capture cross sections of wolfram and thulium were measured in the energy range from 10 to 100 KeV using gold as the standard. Kinematically collimated neutrons were produced via the 7 Li(p, n) 7 Be reaction with a 2.5 MV pulsed Van de Graaff accelerator at Sichuan University. The capture events were detected by a pair of Moxon-Rae detectors. Time-of-flight technique was used to improve the signal-background ratio. The present results are compared with data by other authors. The capture cross section were calculated from 10 to 100 KeV for two nuclides by the Hauser-Feshbach statistical theory with width fluctuation correction. The nonstatistical effects such as potential capture and radiative capture in elastic and inelastic channels of a compound nucleus were included in the calculations. The calculated results show that the nonstatistical contribution to the capture cross sections is negligible compared with that of the statistical effects

  19. Treatment of burn scars in Fitzpatrick phototype III patients with a combination of pulsed dye laser and non-ablative fractional resurfacing 1550 nm erbium:glass/1927 nm thulium laser devices.

    Science.gov (United States)

    Tao, Joy; Champlain, Amanda; Weddington, Charles; Moy, Lauren; Tung, Rebecca

    2018-01-01

    Burn scars cause cosmetic disfigurement and psychosocial distress. We present two Fitzpatrick phototype (FP) III patients with burn scars successfully treated with combination pulsed dye laser (PDL) and non-ablative fractional lasers (NAFL). A 30-year-old, FP III woman with a history of a second-degree burn injury to the bilateral arms and legs affecting 30% body surface area (BSA) presented for cosmetic treatment. The patient received three treatments with 595 nm PDL (7 mm, 8 J, 6 ms), six with the 1550 nm erbium:glass laser (30 mJ, 14% density, 4-8 passes) and five with the 1927 nm thulium laser (10 mJ, 30% density, 4-8 passes). Treated burn scars improved significantly in thickness, texture and colour. A 33-year-old, FP III man with a history of a second-degree burn injury of the left neck and arm affecting 7% BSA presented for cosmetic treatment. The patient received two treatments with 595 nm PDL (5 mm, 7.5 J, 6 ms), four with the 1550 nm erbium:glass laser (30 mJ, 14% density, 4-8 passes) and two with the 1927 nm thulium laser (10 mJ, 30% density, 4-8 passes). The burn scars became thinner, smoother and more normal in pigmentation and appearance. Our patients' burn scars were treated with a combination of PDL and NAFL (two wavelengths). The PDL targets scar hypervascularity, the 1550 nm erbium:glass stimulates collagen remodelling and the 1927 nm thulium targets epidermal processes, particularly hyperpigmentation. This combination addresses scar thickness, texture and colour with a low side effect profile and is particularly advantageous in patients at higher risk of post-procedure hyperpigmentation. Our cases suggest the combination of 595nm PDL plus NAFL 1550 nm erbium:glass/1927 nm thulium device is effective and well-tolerated for burn scar treatment in skin of colour.

  20. Antiferromagnetic Spin Coupling between Rare Earth Adatoms and Iron Islands Probed by Spin-Polarized Tunneling.

    Science.gov (United States)

    Coffey, David; Diez-Ferrer, José Luis; Serrate, David; Ciria, Miguel; de la Fuente, César; Arnaudas, José Ignacio

    2015-09-03

    High-density magnetic storage or quantum computing could be achieved using small magnets with large magnetic anisotropy, a requirement that rare-earth iron alloys fulfill in bulk. This compelling property demands a thorough investigation of the magnetism in low dimensional rare-earth iron structures. Here, we report on the magnetic coupling between 4f single atoms and a 3d magnetic nanoisland. Thulium and lutetium adatoms deposited on iron monolayer islands pseudomorphically grown on W(110) have been investigated at low temperature with scanning tunneling microscopy and spectroscopy. The spin-polarized current indicates that both kind of adatoms have in-plane magnetic moments, which couple antiferromagnetically with their underlying iron islands. Our first-principles calculations explain the observed behavior, predicting an antiparallel coupling of the induced 5d electrons magnetic moment of the lanthanides with the 3d magnetic moment of iron, as well as their in-plane orientation, and pointing to a non-contribution of 4f electrons to the spin-polarized tunneling processes in rare earths.

  1. Chalcogenides formed by trivalent rare earth elements with d-elements

    International Nuclear Information System (INIS)

    Flao, Zh.; Laruehl', P.; Olitro, R.

    1981-01-01

    Data on ternary compounds formed by trivalent rare earth elements with 3d-, 4d- and 5d-elements of the Periodic system is presented. Compounds of 3d-elements both in bivalent and trivalent states are considered. The main attention is paid to the structure of the compounds. Description of a great number of new structural types of compounds is given. In certain cases the structure has not been deciphered and, besides, structural investigations with monocrystals are not numerous. Attention is drawn to the existence of nonstoichiometric compounds. References to the works on investigation of thermal (melting temperature), magnetic, optical and electric properties as well as Moessbauer effect are presented

  2. Mid-infrared supercontinuum generation spanning more than 11 μm in a chalcogenide step-index fiber

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Møller, Uffe Visbech; Kubat, Irnis

    2015-01-01

    Supercontinuum generation covering an ultra-broad spectrum from 1.5-11.7μm and 1.4-13.3μm is experimentally demonstrated by pumping an 85mm chalcogenide step-index fiber with 100fs pulses at a wavelength of 4.5μm and 6.3μm, respectively.......Supercontinuum generation covering an ultra-broad spectrum from 1.5-11.7μm and 1.4-13.3μm is experimentally demonstrated by pumping an 85mm chalcogenide step-index fiber with 100fs pulses at a wavelength of 4.5μm and 6.3μm, respectively....

  3. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  4. Prediction of free-volume-type correlations in glassy chalcogenides from positron annihilation lifetime measurements

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Ingram, A.; Shpotyuk, M.; Filipecki, J.

    2014-01-01

    Highlights: • Decisive role of specific chemical environment in free-volume correlations in glass. • Realistic free volumes in As–S/Se glass are defined by newly modified τ 2 -R formula. • Overestimated void sizes in chalcogenide glass as compared with molecular polymers. - Abstract: A newly modified correlation equation between defect-related positron lifetime determined within two-state trapping model and radius of corresponding free-volume-type defects was proposed to describe compositional variations in atomic-deficient structure of covalent-bonded chalcogenides like binary As–S/Se glasses. Specific chemical environment of free-volume voids around neighboring network-forming polyhedrons was shown to play a decisive role in this correlation, leading to systematically enhanced volumes in comparison with typical molecular substrates, such as polymers

  5. Prediction of free-volume-type correlations in glassy chalcogenides from positron annihilation lifetime measurements

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O., E-mail: shpotyuk@novas.lviv.ua [Institute of Materials of SRC “Carat”, 212 Stryjska Str., Lviv 79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestcochowa 42200 (Poland); Ingram, A. [Opole University of Technology, 75 Ozimska Str., Opole 45370 (Poland); Shpotyuk, M. [Institute of Materials of SRC “Carat”, 212 Stryjska Str., Lviv 79031 (Ukraine); Lviv Polytechnic National University, 12 Bandery Str., Lviv 79013 (Ukraine); Filipecki, J. [Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestcochowa 42200 (Poland)

    2014-11-01

    Highlights: • Decisive role of specific chemical environment in free-volume correlations in glass. • Realistic free volumes in As–S/Se glass are defined by newly modified τ{sub 2}-R formula. • Overestimated void sizes in chalcogenide glass as compared with molecular polymers. - Abstract: A newly modified correlation equation between defect-related positron lifetime determined within two-state trapping model and radius of corresponding free-volume-type defects was proposed to describe compositional variations in atomic-deficient structure of covalent-bonded chalcogenides like binary As–S/Se glasses. Specific chemical environment of free-volume voids around neighboring network-forming polyhedrons was shown to play a decisive role in this correlation, leading to systematically enhanced volumes in comparison with typical molecular substrates, such as polymers.

  6. Thulium-170 oxide heat source experimental and analytical radiation and shielding study

    International Nuclear Information System (INIS)

    Tse, A.; Nelson, C.A.

    1970-05-01

    Radiation dose rates from three thulium-170 oxide sources (20.7, 10.0 and 5.0 thermal watts) were measured through three thicknesses (1/4, 1/2 and 1 inch) of absorber by thermoluminescent dosimetry techniques. Absorber materials used were aluminium, stainless steel, lead, tungsten and depleted uranium. Resultant radiation doses were measured at 19 and 100 cm. Comparison of theoretical dose rates calculated by computer with measured dose rates validated the calculation technique for lead, tungsten and uranium absorbers but not for aluminum and stainless steel. Use of infinite medium build-up factors (B/sub ∞/) was thus validated in computation of dose rates for lead, tungsten and uranium absorbers; use of B/sub ∞/ in computation of dose rates for aluminum and stainless steel absorbers overestimated dose rates vis-a-vis experimentally determined dose rates by an approximate factor of 2

  7. Iron based pnictide and chalcogenide superconductors studied by muon spin spectroscopy

    International Nuclear Information System (INIS)

    Shermadini, Zurab

    2014-01-01

    In the present thesis the superconducting properties of the Iron-based Ba 1-x Rb x Fe 2 As 2 arsenides, and A x Fe 2-y Se 2 (A=Cs,Rb,K) chalcogenides are investigated by means of Muon Spin Rotation Spectroscopy. The temperature and pressure dependence of the magnetic penetration depth is obtained form μSR experiments and analyzed to probe the superconducting gap-symmetries for each samples. The Ba 1-x Rb x Fe 2 As 2 system is described within the multi-gap s+s-wave scenario and results are discussed in the light of the suppression of inter-band processes upon hole doping. Due to the lowered upper critical field B c2 and reduced T c , a large section of B-T-p phase diagram is studied for the hole-overdoped x=1 case. By applying hydrostatic pressure, the RbFe 2 As 2 system exhibits a classical BCS superconducting characteristics. The A x Fe 2-y Se 2 chalcogenide represents a system containing magnetically ordered and superconducting phases simultaneously. In all investigated chalcogenide samples, about 90% of the total volume show the strong antiferromagnetic phase and 10% exhibit a paramagnetic behavior. Magnetization measurements reveal a 100% Meissner effect, while μSR clearly indicates that the paramagnetic phase is a perfect superconductor. Up to now, there is no clear evidence whether the antiferromagnetic phase is also superconducting. The microscopic coexistence and/or phase separation of superconductivity and magnetism is discussed. Moreover, a new hydrostatic double-wall pressure cell is developed and produced, satisfying the demands of μSR experiments. The designs and characteristics of the new pressure cell are reviewed in the present thesis.

  8. Silicon-based thin films as bottom electrodes in chalcogenide nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yun [IT Convergence and Components Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 (Korea, Republic of)], E-mail: seungyun@etri.re.kr; Yoon, Sung-Min; Choi, Kyu-Jeong; Lee, Nam-Yeal; Park, Young-Sam; Ryu, Sang-Ouk; Yu, Byoung-Gon; Kim, Sang-Hoon; Lee, Sang-Heung [IT Convergence and Components Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2007-10-31

    The effect of the electrical resistivity of a silicon-germanium (SiGe) thin film on the phase transition in a GeSbTe (GST) chalcogenide alloy and the manufacturing aspect of the fabrication process of a chalcogenide memory device employing the SiGe film as bottom electrodes were investigated. While p-type SiGe bottom electrodes were formed using in situ doping techniques, n-type ones could be made in a different manner where phosphorus atoms diffused from highly doped silicon underlayers to undoped SiGe films. The p-n heterojunction did not form between the p-type GST and n-type SiGe layers, and the semiconduction type of the SiGe alloys did not influence the memory device switching. It was confirmed that an optimum resistivity value existed for memory operation in spite of proportionality of Joule heating to electrical resistivity. The very high resistivity of the SiGe film had no effect on the reduction of reset current, which might result from the resistance decrease of the SiGe alloy at high temperatures.

  9. Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides

    Science.gov (United States)

    Liu, Bang-Gui

    It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.

  10. Formation of surface nanolayers in chalcogenide crystals using coherent laser beams

    Science.gov (United States)

    Ozga, K.; Fedorchuk, A. O.; El-Naggar, A. M.; Albassam, A. A.; Kityk, V.

    2018-03-01

    We have shown a possibility to form laser modified surface nanolayers with thickness up to 60 nm in some ternary chalcogenide crystals (Ag3AsS3, Ag3SbS3, Tl3SbS3) The laser treatment was performed by two coherent laser beams split in a space. As the inducing lasers we have applied continuous wave (cw) Hesbnd Cd laser at wavelength 441 nm and doubled frequency cw Nd: YAG laser at 532 nm. The spectral energies of these lasers were higher with respect to the energy gaps of the studied crystals. The optical anisotropy was appeared and defected by monitoring of birefringence at probing wavelength of cw Hesbnd Ne laser at λ = 3390 nm. The changes of the laser stimulated near the surface layer morphology was monitored by TEM and AFM methods as well as by the reflected optical second harmonic generation at fundamental wavelength of microsecond CO2 laser generating at wavelength 10600 nm. This technique may open a new approach for the formation of the near the surface nanolayers in chalcogenides using external cw laser illumination.

  11. The Moessbauer effect in binary tin chalcogenides of tin 119

    International Nuclear Information System (INIS)

    Ortalli, I.; Fano, V.

    1975-01-01

    The values of the isomer shift, quadrupole splitting, Moessbauer coefficient, Debye temperature for the tin chalcogenides SnS. SnSe, SnTe are tabulated for the temperatures 80 and 300 K. Temperature dependences of the Moessbauer coefficient and of the effective Debye temperature for SnS, SnSe and SnTe in a temperature range of 78 to 300 K are presented. (Z.S.)

  12. Neutron capture cross sections of rhodium, thulium, iridium, and gold between 0.5 and 3.0 MeV

    International Nuclear Information System (INIS)

    Joly, S.; Voignier, J.; Grenier, G.; Drake, D.M.; Nilsson, L.

    1979-01-01

    Measurements of the neutron capture cross sections of rhodium, thulium, gold, and iridium were carried out in the 0.5- to 3.0-MeV energy range. The cross sections are deduced from the capture gamma-ray spectra recorded by a NaI spectrometer consisting of central and annulus detectors. Time-of-flight techniques are used to improve the signal-to-background ratio. When comparison is possible, the present results are found to be in general agreement with the previous data. 5 figures, 3 tables

  13. Generation and Applications of High Average Power Mid-IR Supercontinuum in Chalcogenide Fibers

    OpenAIRE

    Petersen, Christian Rosenberg

    2016-01-01

    Mid-infrared supercontinuum with up to 54.8 mW average power, and maximum bandwidth of 1.77-8.66 μm is demonstrated as a result of pumping tapered chalcogenide photonic crystal fibers with a MHz parametric source at 4 μm

  14. Synthesis and Characterization of Quaternary Metal Chalcogenide Aerogels for Gas Separation and Volatile Hydrocarbon Adsorption

    KAUST Repository

    Edhaim, Fatimah A.

    2017-11-01

    In this dissertation, the metathesis route of metal chalcogenide aerogel synthesis was expanded by conducting systematic studies between polysulfide building blocks and the 1st-row transition metal linkers. Resulting materials were screened as sorbents for selective gas separation and volatile organic compounds adsorption. They showed preferential adsorption of polarizable gases (CO2) and organic compounds (toluene). Ion exchange and heavy metal remediation properties have also been demonstrated. The effect of the presence of different counter-ion within chalcogel frameworks on the adsorption capacity of the chalcogels was studied on AFe3Zn3S17 (A= K, Na, and Rb) chalcogels. The highest adsorption capacity toward hydrocarbons and gases was observed on Rb based chalcogels. Adopting a new building block [BiTe3]3- with the 1st-row transition metal ions results in the formation of three high BET surface area chalcogels, KCrBiTe3, KZnBiTe3, and KFeBiTe3. The resulting chalcogels showed preferential adsorption of toluene vapor, and remarkable selectivity of CO2, indicating the potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes. The synthesis and characterization of the rare earth chalcogels NaYSnS4, NaGdSnS4, and NaTbSnS4 are also reported. Rare earth metal ions react with the thiostannate clusters in formamide solution forming extended polymeric networks by gelation. Obtained chalcogels have high BET surface areas, and showed notable adsorption capacity toward CO2 and toluene vapor. These chalcogels have also been engaged in the absorption of different organic molecules. The results reveal the ability of the chalcogels to distinguish among organic molecules on their electronic structures; hence, they could be used as sensors. Furthermore, the synthesis of metal chalcogenide aerogels Co0.5Sb0.33MoS4 and Co0.5Y0.33MoS4 by the sol-gel method is reported. In this system, the building blocks [MoS4]2- chelated with Co2+ and (Sb3

  15. Synthesis, crystal structure and electrical properties of the tetrahedral quaternary chalcogenides CuM{sub 2}InTe{sub 4} (M=Zn, Cd)

    Energy Technology Data Exchange (ETDEWEB)

    Nolas, George S., E-mail: gnolas@usf.edu [Department of Physics, University of South Florida, Tampa, FL 33620 (United States); Hassan, M. Shafiq; Dong, Yongkwan [Department of Physics, University of South Florida, Tampa, FL 33620 (United States); Martin, Joshua [Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States)

    2016-10-15

    Quaternary chalcogenides form a large class of materials that continue to be of interest for energy-related applications. Certain compositions have recently been identified as possessing good thermoelectric properties however these materials typically have the kesterite structure type with limited variation in composition. In this study we report on the structural, optical and electrical properties of the quaternary chalcogenides CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} which crystallize in the modified zinc-blende crystal structure, and compare their properties with that of CuZn{sub 2}InSe{sub 4}. These p-type semiconductors have direct band gaps of about 1 eV resulting in relatively high Seebeck coefficient and resistivity values. This work expands on the research into quaternary chalcogenides with new compositions and structure types in order to further the fundamental investigation of multinary chalcogenides for potential thermoelectrics applications. - Graphical abstract: The structural, optical and electrical properties of the quaternary chalcogenides CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} are reported for the first time. The unique crystal structure allows for relatively good electrical transports and therefore potential for thermoelectric applications. - Highlights: • The physical properties of CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} are reported for the first time. • These materials have potential for thermoelectric applications. • Their direct band gaps also suggest potential for photovoltaics applications.

  16. Short and medium range structures of 80GeSe2–20Ga2Se3 chalcogenide glasses

    Science.gov (United States)

    Petracovschi, Elena; Calvez, Laurent; Cormier, Laurent; Le Coq, David; Du, Jincheng

    2018-05-01

    The short and medium range structures of 80GeSe2–20Ga2Se3 (or Ge23.5Ga11.8Se64.7) chalcogenide glasses have been studied by combining ab initio molecular dynamics (AIMD) simulations and experimental neutron diffraction studies. The structure factor and total correlation function were calculated from glass structures generated from AIMD simulations and compared with neutron diffraction experiments showing reasonable agreement. The atomic structures of ternary chalcogenide glasses were analyzed in detail, and it was found that gallium atoms are four-fold coordinated by selenium (Se) and form [GaSe4] tetrahedra. Germanium atoms on average also have four-fold coordination, among which Se is 3.5 with the remaining being Ge–Ge homo-nuclear bonds. Ga and Ge tetrahedra link together mainly through corner-sharing and some edge-sharing of Se. No homo-nuclear bonds were observed among Ga atoms or between Ge and Ga. In addition, Se–Se homo-nuclear bonds and Se chains with various lengths were observed. A small fraction of Se atom triclusters that bond to three cations of Ge and Ga were also observed, confirming earlier proposals from 77Se solid state nuclear magnetic resonance studies. Furthermore, the electronic structures of ternary chalcogenide glasses were studied in terms of atomic charge and electronic density of states in order to gain insights into the chemical bonding and electronic properties, as well as to provide an explanation of the observed atomic structures in these ternary chalcogenide glasses.

  17. Structural and electronic properties of high pressure phases of lead chalcogenides

    Science.gov (United States)

    Petersen, John; Scolfaro, Luisa; Myers, Thomas

    2012-10-01

    Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity. Variation in synthesis conditions gives rise to a need for analysis of structural and thermoelectric properties of these materials at different pressures. In addition to the NaCl structure at ambient conditions, lead chalcogenides have a dynamic orthorhombic (Pnma) intermediate phase and a higher pressure yet stable CsCl phase. By altering the lattice constant, we simulate the application of external pressure; this has notable effects on ground state total energy, band gap, and structural phase. Using the General Gradient Approximation (GGA) in Density Functional Theory (DFT), we calculate the phase transition pressures by finding the differences in enthalpy from total energy calculations. For each phase, elastic constants, bulk modulus, shear modulus, Young's modulus, and hardness are calculated, using two different approaches. In addition to structural properties, we analyze the band structure and density of states at varying pressures, paying special note to thermoelectric implications.

  18. Efficiency simulations of thin film chalcogenide photovoltaic cells for different indoor lighting conditions

    International Nuclear Information System (INIS)

    Minnaert, B.; Veelaert, P.

    2011-01-01

    Photovoltaic (PV) energy is an efficient natural energy source for outdoor applications. However, for indoor applications, the efficiency of PV cells is much lower. Typically, the light intensity under artificial lighting conditions is less than 10 W/m 2 as compared to 100-1000 W/m 2 under outdoor conditions. Moreover, the spectrum is different from the outdoor solar spectrum. In this context, the question arises whether thin film chalcogenide photovoltaic cells are suitable for indoor use. This paper contributes to answering that question by comparing the power output of different thin film chalcogenide solar cells with the classical crystalline silicon cell as reference. The comparisons are done by efficiency simulation based on the quantum efficiencies of the solar cells and the light spectra of typical artificial light sources i.e. an LED lamp, a 'warm' and a 'cool' fluorescent tube and a common incandescent and halogen lamp, which are compared to the outdoor AM 1.5 spectrum as reference.

  19. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A.

    1997-01-01

    Processes of formation and annihilation of coordination defects in As 2 Se 3 Bi y and (As 2 Se 3 )(Bi 2 Se 3 ) y amorphous chalcogenide semiconductors induced by influence of Co 60 gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As 2 Se 3 Bi y glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs

  20. Investigations on the parent compounds of Fe-chalcogenide superconductors

    International Nuclear Information System (INIS)

    Koz, Cevriye

    2015-01-01

    This work is focused on the parent compounds of the Fe-chalcogenide superconductors. For this purpose poly- and single-crystalline forms of tetragonal β-Fe x Se, Fe 1+y Te, Fe 1+y Te 1-x Se x and Fe (1+y)-x M x Te (M = Ni, Co) have been prepared. Second focal points of this study are the low-temperature structural phase transitions and physical property changes in tetragonal Fe 1+y Te which are induced by composition, external pressure, and cationic substitution.

  1. Neutron diffraction study on the medium and short-range order of ternary chalcogenide glasses

    Czech Academy of Sciences Publication Activity Database

    Neov, S.; Gerasimova, I.; Skordeva, E.; Arsova, D.; Pamukchieva, V.; Mikula, Pavol; Lukáš, Petr; Sonntag, R.

    1999-01-01

    Roč. 34, - (1999), s. 3669-3676 ISSN 0022-2461 R&D Projects: GA ČR GV202/97/K038 Keywords : neutron diffraction * short-range order * chalcogenide glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.786, year: 1999

  2. Multi-layered Chalcogenides with potential for magnetism and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: lil2@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Parker, David S. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Cruz, Clarina R. dela [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Sefat, Athena S., E-mail: sefata@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-12-15

    Highlights: • A comprehensive study on multi-layered thallium copper chalcogenides TlCu{sub 2n}Ch{sub n+1}. • All the TlCu{sub 2n}Ch{sub n+1} exhibit metallic behaviors with no long-range magnetism. • Calculations suggest a lack of Fermi-level spectral weight for magnetic instability. • Our results suggest a likelihood of magnetism for multiple structural layers with Fe. - Abstract: Layered thallium copper chalcogenides can form single, double, or triple layers of Cu–Ch separated by Tl sheets. Here we report on the preparation and properties of Tl-based materials of TlCu{sub 2}Se{sub 2}, TlCu{sub 4}S{sub 3}, TlCu{sub 4}Se{sub 3} and TlCu{sub 6}S{sub 4}. Having no long-range magnetism for these materials is quite surprising considering the possibilities of inter- and intra-layer exchange interactions through Cu 3d, and we measure by magnetic susceptibility and confirm by neutron diffraction. First principles density-functional theory calculations for both the single-layer TlCu{sub 2}Se{sub 2} (isostructural to the ‘122’ iron-based superconductors) and the double-layer TlCu{sub 4}Se{sub 3} suggest a lack of Fermi-level spectral weight that is needed to drive a magnetic or superconducting instability. However, for multiple structural layers with Fe, there is much greater likelihood for magnetism and superconductivity.

  3. Pinning down high-performance Cu-chalcogenides as thin-film solar cell absorbers: A successive screening approach

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yubo; Zhang, Wenqing, E-mail: wqzhang@mail.sic.ac.cn, E-mail: pzhang3@buffalo.edu [Materials Genome Institute and Department of Physics, Shanghai University, Shanghai 200444 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Youwei; Zhang, Jiawei; Xi, Lili [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Peihong, E-mail: wqzhang@mail.sic.ac.cn, E-mail: pzhang3@buffalo.edu [Materials Genome Institute and Department of Physics, Shanghai University, Shanghai 200444 (China); Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260 (United States)

    2016-05-21

    Photovoltaic performances of Cu-chalcogenides solar cells are strongly correlated with the absorber fundamental properties such as optimal bandgap, desired band alignment with window material, and high photon absorption ability. According to these criteria, we carry out a successive screening for 90 Cu-chalcogenides using efficient theoretical approaches. Besides the well-recognized CuInSe{sub 2} and Cu{sub 2}ZnSnSe{sub 4} materials, several novel candidates are identified to have optimal bandgaps of around 1.0–1.5 eV, spike-like band alignments with CdS window layer, sharp photon absorption edges, and high absorption coefficients. These new systems have great potential to be superior absorbers for photovolatic applications if their carrrier transport and defect properties are properly optimized.

  4. Multi-layer x-ray screens

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1984-01-01

    Rare earth oxyhalide phosphors activated with thulium ion are employed in X-ray intensifying screens having modified ultraviolet emission characteristics which reduce crossover effects without significant reduction in film speed and further increases screen brightness. Relatively low concentration levels of the thulium activator ion have been found to shift the ultraviolet emission of said phosphor when excited by X-rays to lower wavelengths in both the ultraviolet and near-ultraviolet spectral regions

  5. Diffusion of Ag ions under random potential barriers in silver-containing chalcogenide glasses

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Štěpán; Shimakawa, K.; Wágner, T.; Frumar, M.

    2012-01-01

    Roč. 45, č. 20 (2012), s. 1-5 ISSN 0022-3727 Institutional research plan: CEZ:AV0Z10100521 Keywords : Ag ion diffusion * chalcogenide glass * Nyquist plots Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.528, year: 2012 http://iopscience.iop.org/0022-3727/45/20/205304/

  6. Magnetic and electronic properties of Neptunium chalcogenides from GGA + U + SOC and DFT investigations

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Wilayat [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Goumri-Said, Souraya, E-mail: sosaid@alfaisal.edu [College of Science, Physics Department, Alfaisal University, Riyadh 11533 (Saudi Arabia)

    2017-06-15

    Highlights: • Electronic and magnetic properties of Neptunium chalcogenides were explored theoretically using DFT approach. • Spin orbit coupling and GGA + U approach described successfully the f–f coupling. • Np{sub 2}X{sub 5} ate metallic with high magnetic character due to the Neptunium. • Fermi surfaces of Np{sub 2}Te{sub 5} have shown a greater electrical conductivity compared to Np{sub 2}Se{sub 5} and Np{sub 2}S{sub 5}. - Abstract: First-principles calculations techniques were employed to explore the structural, electronic and magnetic properties of Neptunium chalcogenides (Np{sub 2}X{sub 5}, X = S, Se and Te). No experimental or theoretical studies of their physical properties have been previously reported in the literature. The presence of highly localized f states has requested the employment of the spin orbit coupling and GGA + U approach in order to describe correctly the f–f coupling. Np{sub 2}X{sub 5} was found metallic with high magnetic character due to the Neptunium presence. Fermi surfaces of Np{sub 2}Te{sub 5} have shown a greater electrical conductivity compared to Np{sub 2}Se{sub 5} and Np{sub 2}S{sub 5}. The magnetic moment was found to be between 13.24 and 13.92μ{sub B}, principally induced by Np f and d-orbitals as well as the spin-polarization of the chalcogenes (Te, Se, S) induced by Np. Neptunium chalcogenides have shown interesting magnetic properties and should be manipulated with precaution due to their radioactive properties.

  7. Radiative Decay Rates for Electric Dipole, Magnetic Dipole and Electric Quadrupole Transitions in Triply Ionized Thulium (Tm IV

    Directory of Open Access Journals (Sweden)

    Saturnin Enzonga Yoca

    2017-09-01

    Full Text Available A new set of radiative decay parameters (oscillator strengths, transition probabilities for spectral lines in triply ionized thulium (Tm IV has been obtained within the framework of the pseudo-relativistic Hartree-Fock (HFR approach. The effects of configuration interaction and core-polarization have been investigated in detail and the quality of the results has been assessed through a comparison between different HFR physical models. The spectroscopic data listed in the present paper cover electric dipole as well as magnetic dipole and electric quadrupole transitions in a wide range of wavelengths from extreme ultraviolet to near infrared.

  8. Positronics of radiation-induced effects in chalcogenide glassy semiconductors

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Kozyukhin, S. A.; Shpotyuk, M.; Ingram, A.; Szatanik, R.

    2015-01-01

    Using As 2 S 3 and AsS 2 glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models

  9. Positronics of radiation-induced effects in chalcogenide glassy semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Scientific Research Company “Carat” (Ukraine); Kozyukhin, S. A., E-mail: sergkoz@igic.ras.ru [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); Shpotyuk, M. [Scientific Research Company “Carat” (Ukraine); Ingram, A. [Opole Technical University (Poland); Szatanik, R. [Opole University (Poland)

    2015-03-15

    Using As{sub 2}S{sub 3} and AsS{sub 2} glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models.

  10. Solar Photoelectrochemical Energy Conversion using Earth-Abundant Nanomaterials

    Science.gov (United States)

    Lukowski, Mark A.

    Although the vast majority of energy consumed worldwide is derived from fossil fuels, the growing interest in making cleaner alternative energies more economically viable has motivated recent research efforts aimed to improve photovoltaic, wind, and biomass power generation. Clean power generation also requires clean burning fuels, such as H2 and O2, so that energy can still be provided on demand at all times, despite the intermittent nature inherent to solar or wind power. My research has focused on the rational approach to synthesizing earth-abundant nanomaterials with applications in the generation of clean alternative fuels and understanding the structure-property relationships which directly influence their performance. Herein, we describe the development of low-cost, earth-abundant layered metal chalcogenides as high-performance electrocatalysts for hydrogen evolution, and hematite photoanodes for photoelectrochemical oxygen evolution. This work has revealed a particularly interesting concept where catalytic performance can be enhanced by controlling the phase behavior of the material and taking advantage of previously unexploited properties to overcome the challenges traditionally limiting the performance of these layered materials for hydrogen evolution catalysis.

  11. A Self-Templating Scheme for the Synthesis of Nanostructured Transition Metal Chalcogenide Electrodes for Capacitive Energy Storage

    KAUST Repository

    Xia, Chuan

    2015-06-11

    Due to their unique structural features including well-defined interior voids, low density, low coefficients of thermal expansion, large surface area and surface permeability, hollow micro/nanostructured transition metal sulfides with high conductivity have been investigated as new class of electrode materials for pseudocapacitor applications. Herein, we report a novel self-templating strategy to fabricate well-defined single and double-shell NiCo2S4 hollow spheres, as a promising electrode material for pseudocapacitors. The surfaces of the NiCo2S4 hollow spheres consist of self-assembled 2D mesoporous nanosheets. This unique morphology results in a high specific capacitance (1257 F g-1 at 2 A g-1), remarkable rate performance (76.4% retention of initial capacitance from 2 A g-1 to 60 A g-1) and exceptional reversibility with a cycling efficiency of 93.8% and 87% after 10,000 and 20,000 cycles, respectively, at a high current density of 10 A g-1. The cycling stability of our ternary chalcogenides is comparable to carbonaceous electrode materials, but with much higher specific capacitance (higher than any previously reported ternary chalcogenide), suggesting that these unique chalcogenide structures have potential application in next-generation commercial pseudocapacitors.

  12. The effect of oxygen impurity on the electronic and optical properties of calcium, strontium and barium chalcogenide compounds

    International Nuclear Information System (INIS)

    Dadsetani, M.; Beiranvand, R.

    2010-01-01

    Electronic and optical properties of calcium, strontium and barium chalcogenide compounds in NaCl structure are studied using the band structure results obtained through the full potential linearized augmented palne wave method. Different linear relationships are observed between theoretical band gap and 1/a 2 (where a is lattice constant) for calcium, strontium and barium chalcogenide compounds with and without oxygen, respectively. An abnormal behavior of electronic and optical properties are found for compounds containing oxygen. These effects are ascribed to the special properties of Ca-O, Sr-O and Ba-O bonds, which are different from chemical bonds between Ca, Sr and Ba and other chalcogen atoms.

  13. Thermal effects on light emission in Yb3+ -sensitized rare-earth doped optical glasses

    International Nuclear Information System (INIS)

    Gouveia, E.A.; Araujo, M.T. de; Gouveia-Neto, A.S.

    2001-01-01

    The temperature effect upon infrared-to-visible frequency upconversion fluorescence emission in off-resonance infrared excited Yb 3+ -sensitized rare-earth doped optical glasses is theoretically and experimentally investigated. We have examined samples of Er3+/Yb 3+ -codoped Ga 2 S 3 :La 2 O 3 chalcogenide glasses and germanosilicate optical fibers, and Ga2O3:La 2 O 3 chalcogenide and fluoroindate glasses codoped with Pr 3+ /Yb 3+ , excited off-resonance at 1.064μm. The experimental results revealed thermal induced enhancement in the visible upconversion emission intensity as the samples temperatures were increased within the range of 20 deg C to 260 deg C. The fluorescence emission enhancement is attributed to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium-sensitizer. A theoretical approach that takes into account a sensitizer temperature dependent effective absorption cross section, which depends upon the phonon occupation number in the host matrices, has proven to agree very well with the experimental data. As beneficial applications of the thermal enhancement, a temperature tunable amplifier and a fiber laser with improved power performance are presented. (author)

  14. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting.

    Science.gov (United States)

    Li, Kexue; Liu, Lei; Yu, Peter Y; Chen, Xiaobo; Shen, D Z

    2016-05-11

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.

  15. Distribution of rare-earths in solid solution crandalita- goyazita of Sapucaia (Bonito-Para)

    International Nuclear Information System (INIS)

    Costa, M.L. da; Melo Costa, W.A. de

    1987-01-01

    The Crandallite are predominant in the lateritic phosphates of Sapucaia, in the form of the solid solution Crandallite (Cn)- Goyazite (Gz)-Florencite (Fl). The Crandallite-Goyazite is predominant, where the maximum proportion of Florencite is Cn 60 Cz 34.8 Fl 5.2 - This proportion of Florencite is relatively high for laterites, and for this case having up to 1,374% weight of TR 2 O 3 in the total sample. The light rare elements are predominant over the heavy ores, and are illustrated in the distribution curve normalized for the chondrites. This curve is partially comparable with the curve for Apatite presents slight negative anomaly for the element Europium, and slight positive anomaly for The elements Thulium. The geochemical caracteristics for the rare earths in this group allow the prediction for the original rock for the laterites. (author) [pt

  16. Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion.

    Science.gov (United States)

    Xing, Sida; Grassani, Davide; Kharitonov, Svyatoslav; Billat, Adrien; Brès, Camille-Sophie

    2016-05-02

    We experimentally demonstrate wavelength conversion in the 2 µm region by four-wave mixing in an AsSe and a GeAsSe chalcogenide photonic crystal fibers. A maximum conversion efficiency of -25.4 dB is measured for 112 mW of coupled continuous wave pump in a 27 cm long fiber. We estimate the dispersion parameters and the nonlinear refractive indexes of the chalcogenide PCFs, establishing a good agreement with the values expected from simulations. The different fiber geometries and glass compositions are compared in terms of performance, showing that GeAsSe is a more suited candidate for nonlinear optics at 2 µm. Building from the fitted parameters we then propose a new tapered GeAsSe PCF geometry to tailor the waveguide dispersion and lower the zero dispersion wavelength (ZDW) closer to the 2 µm pump wavelength. Numerical simulations shows that the new design allows both an increased conversion efficiency and bandwidth, and the generation of idler waves further in the mid-IR regions, by tuning the pump wavelength in the vicinity of the fiber ZDW.

  17. Electrical properties and figures of merit for new chalcogenide-based thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, J L; Hogan, T P; Brazis, P W; Kannewurf, C R; Chung, D Y; Kanatzidis, M G

    1997-07-01

    New Bi-based chalcogenide compounds have been prepared using the polychalcogenide flux technique for crystal growth. These materials exhibit characteristics of good thermoelectric materials. Single crystals of the compound CsBi{sub 4}Te{sub 6} have shown conductivity as high as 2440 S/cm with a p-type thermoelectric power of {approx}+110 {micro}V/K at room temperature. A second compound, {beta}-K{sub 2}Bi{sub 8}Se{sub 13} shows lower conductivity {approx}240 S/cm, but a larger n-type thermopower {approx}{minus}200 {micro}V/K. Thermal transport measurements have been performed on hot-pressed pellets of these materials and the results show comparable or lower thermal conductivities than Bi{sub 2}Te{sub 3}. This improvement may reflect the reduced lattice symmetry of the new chalcogenide thermoelectrics. The thermoelectric figure of merit for CsBi{sub 4}Te{sub 6} reaches ZT {approx} 0.32 at 260 K and for {beta}-K{sub 2}Bi{sub 8}Se{sub 13} ZT {approx} 0.32 at room temperature, indicating that these compounds are viable candidates for thermoelectric refrigeration applications.

  18. Structural phase transition and elastic properties of mercury chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Shriya, S. [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria)

    2012-08-15

    Pressure induced structural transition and elastic properties of ZnS-type (B3) to NaCl-type (B1) structure in mercury chalcogenides (HgX; X = S, Se and Te) are presented. An effective interionic interaction potential (EIOP) with long-range Coulomb, as well charge transfer interactions, Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbor ions and van der Waals interactions are considered. Emphasis is on the evaluation of the pressure dependent Poisson's ratio {nu}, the ratio R{sub BT/G} of B (bulk modulus) over G (shear modulus), anisotropy parameter, Shear and Young's modulus, Lame constant, Kleinman parameter, elastic wave velocity and thermodynamical property as Debye temperature. The Poisson's ratio behavior infers that Mercury chalcogenides are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations. Highlights: Black-Right-Pointing-Pointer Vast volume discontinuity in phase diagram infers transition from ZnS to NaCl structure. Black-Right-Pointing-Pointer The shear elastic constant C{sub 44} is nonzero confirms the mechanical stability. Black-Right-Pointing-Pointer Pressure dependence of {theta}{sub D} infers the softening of lattice with increasing pressure. Black-Right-Pointing-Pointer Estimated bulk, shear and tetragonal moduli satisfied elastic stability criteria. Black-Right-Pointing-Pointer In both B3 and B1 phases, C{sub 11} and C{sub 12} increase linearly with pressure.

  19. Structural, optical and electrical properties of cadmium-doped lead chalcogenide (PbSe) thin films

    International Nuclear Information System (INIS)

    Khan, Shamshad A.; Khan, Zishan H.; El-Sebaii, A.A.; Al-Marzouki, F.M.; Al-Ghamdi, A.A.

    2010-01-01

    (PbSe) 100-x Cd x thin films of thickness 3000 A with variable concentrations of Cd (x=5, 10, 15 and 20) were prepared by thermal evaporation on glass substrates at room temperature at a base pressure of 10 -6 Torr. The structural, optical and electrical properties of these films were studied. X-ray diffraction patterns were used to determine the crystal structure of the films. Films were of polycrystalline texture over the whole range of study. Optical constants of all films were determined by absorbance and reflection measurements in a wavelength range 400-1200 nm. Analysis of the optical absorption data showed that the rule of direct transitions predominates. The values of the absorption coefficient (α), extinction coefficient (k) and imaginary part of the dielectric constant were found to increase with increasing Cd content in lead chalcogenides while the refractive index (n) and real part of dielectric constant were increased with increasing Cd concentration up to 15% and then they decreased with 20% of Cd content in PbSe. These results were interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. The dc conductivities and activation energies of the films were measured in the temperature range 298-398 K. It was observed that the dc conductivity increases at all temperatures with the increase of Cd content in lead chalcogenide system. The experimental data suggests that the conduction is due to the thermally assisted tunneling of the carriers in the localized states near the band edges. The activation energy and optical band gap were found to decrease with increasing Cd concentration in lead chalcogenide.

  20. Amorphous chalcogenide semiconductors for solid state dosimetric systems of high-energetic ionizing radiation

    International Nuclear Information System (INIS)

    Shpotyuk, O.

    1997-01-01

    The application possibilities of amorphous chalcogenide semiconductors use as radiation-sensitive elements of high-energetic (E > 1 MeV) dosimetric systems are analysed. It is shown that investigated materials are characterized by more wide region of registered absorbed doses and low temperature threshold of radiation information bleaching in comparison with well-known analogies based on coloring oxide glasses. (author)

  1. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A. [Institute of Materials, Lvov (Ukraine)

    1997-12-01

    Processes of formation and annihilation of coordination defects in As{sub 2}Se{sub 3}Bi{sub y} and (As{sub 2}Se{sub 3})(Bi{sub 2}Se{sub 3}){sub y} amorphous chalcogenide semiconductors induced by influence of Co{sup 60} gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As{sub 2}Se{sub 3}Bi{sub y} glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs.

  2. Structural and optical study on antimony-silicate glasses doped with thulium ions.

    Science.gov (United States)

    Dorosz, D; Zmojda, J; Kochanowicz, M; Miluski, P; Jelen, P; Sitarz, M

    2015-01-05

    Structural, spectroscopic and thermal properties of SiO₂-Al₂O₃-Sb₂O₃-Na₂O glass system doped with 0.2 mol% Tm₂O₃ have been presented. Synthesis of antimony-silicate glasses with relatively low phonon energy (600 cm(-1), which implicates a small non-radiative decay rate) was performed by conventional high-temperature melt-quenching methods. The effect of SiO₂/Sb₂O₃ ratio in fabricated Tm(3+) doped glass on thermal, structural and luminescence properties was investigated. On the basis of structural investigations decomposition of absorption bands in the infrared FTIR region was performed, thus determining that antimony ions are the only glass-forming ions, setting up the lattice of fabricated glasses. Luminescence band at the wavelength of 1.8 μm corresponding to (3)F₄→(3)H₆ transition in thulium ions was obtained under 795 nm laser pumping. It was observed that combination of relatively low phonon energy and greater separation of optically active centers in the fabricated glasses influenced in decreasing the luminescence intensity at 1800 nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Electrochemical kinetics and X-ray absorption spectroscopy investigations of select chalcogenide electrocatalysts for oxygen reduction reaction applications

    International Nuclear Information System (INIS)

    Ziegelbauer, Joseph M.; Murthi, Vivek S.; O'Laoire, Cormac; Gulla, Andrea F.; Mukerjee, Sanjeev

    2008-01-01

    Transition metal-based chalcogenide electrocatalysts exhibit a promising level of performance for oxygen reduction reaction applications while offering significant economic benefits over the state of the art Pt/C systems. The most active materials are based on Ru x Se y clusters, but the toxicity of selenium will most likely limit their embrace by the marketplace. Sulfur-based analogues do not suffer from toxicity issues, but suffer from substantially less activity and stability than their selenium brethren. The structure/property relationships that result in these properties are not understood due to ambiguities regarding the specific morphologies of Ru x S y -based chalcogenides. To clarify these properties, an electrochemical kinetics study was interpreted in light of extensive X-ray diffraction, scanning electron microscopy, and in situ X-ray absorption spectroscopy evaluations. The performance characteristics of ternary M x Ru y S z /C (M = Mo, Rh, or Re) chalcogenide electrocatalysts synthesized by the now-standard low-temperature nonaqueous (NA) route are compared to commercially available (De Nora) Rh- and Ru-based systems. Interpretation of performance differences is made in regards to bulk and surface properties of these systems. In particular, the overall trends of the measured activation energies in respect to increasing overpotential and the gross energy values can be explained in regards to these differences

  4. Effect of the Copper on Thermo - Mechanical and Optical Properties of S-Se-Cu Chalcogenide Glasses

    Science.gov (United States)

    Samudrala, Kavitha; Babu Devarasetty, Suresh

    2018-03-01

    The S15Se85-xCux (x = 0, 2, 4, 6, 8) chalcogenide glasses are synthesized using melt quenching technique and the effect of Copper on thermal, mechanical and optical properties of chalcogenide glasses are investigated. The glassy natures of the prepared samples were verified by X-ray diffraction and DSC studies. The optical band gap of the samples is estimated and it is observed that optical band gap is decreased with increasing of the copper content and is discussed in terms of cohesive energy and coordination number. The basic thermo-mechanical parameters such as micro-hardness, Volume (Vh) and formation energy (Eh) of micro voids in the glassy network and the modulus of Elasticity (E) are calculated in present glasses. The composition dependence of micro hardness is discussed in terms of heat of atomization energy.

  5. Chalcogenide glass-on-graphene photonics

    Science.gov (United States)

    Lin, Hongtao; Song, Yi; Huang, Yizhong; Kita, Derek; Deckoff-Jones, Skylar; Wang, Kaiqi; Li, Lan; Li, Junying; Zheng, Hanyu; Luo, Zhengqian; Wang, Haozhe; Novak, Spencer; Yadav, Anupama; Huang, Chung-Che; Shiue, Ren-Jye; Englund, Dirk; Gu, Tian; Hewak, Daniel; Richardson, Kathleen; Kong, Jing; Hu, Juejun

    2017-12-01

    Two-dimensional (2D) materials are of tremendous interest to integrated photonics, given their singular optical characteristics spanning light emission, modulation, saturable absorption and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. Here, we present a new route for 2D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material that can be directly deposited and patterned on a wide variety of 2D materials and can simultaneously function as the light-guiding medium, a gate dielectric and a passivation layer for 2D materials. Besides achieving improved fabrication yield and throughput compared with the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared waveguide-integrated photodetectors and modulators.

  6. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    DEFF Research Database (Denmark)

    Tritsaris, Georgios; Nørskov, Jens Kehlet; Rossmeisl, Jan

    2011-01-01

    We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability...... of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated....

  7. Angle-resolved photoemission spectroscopy on iron-chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Maletz, Janek; Zabolotnyy, Volodymyr; Evtushinsky, Daniil; Thirupathaiah, Setti; Wolter-Giraud, Anja; Harnagea, Luminita; Kordyuk, Alexander; Borisenko, Sergey [IFW Dresden (Germany); Yaresko, Alexander [MPI-FKF, Stuttgart (Germany); Vasiliev, Alexander [Moscow State University (Russian Federation); Chareev, Dimitri [RAS, Chernogolovka (Russian Federation); Rienks, Emile [Helmholtz-Zentrum Berlin (Germany); Buechner, Bernd [IFW Dresden (Germany); TU Dresden (Germany); Shermadini, Zurab; Luetkens, Hubertus; Sedlak, Kamil; Khasanov, Rustem; Amato, Alex; Krzton-Maziopa, Anna; Conder, Kazimierz; Pomjakushina, Ekaterina [Paul Scherrer Institute (Switzerland); Klauss, Hans-Henning [TU Dresden (Germany)

    2014-07-01

    The electronic structure of the iron chalcogenide superconductors FeSe{sub 1-x} and Rb{sub 0.77}Fe{sub 1.61}Se{sub 2} was investigated by high-resolution angle-resolved photoemission spectroscopy (ARPES). The results were compared to DFT calculations and μSR measurements. Both compounds share ''cigar-shaped'' Fermi surface sheets in their electronic structure, that can be found in almost all iron-pnictide superconductors. These features originate from a strong interplay of two hole- and electron-like bands in the Brillouin zone center, leading to a pronounced singularity in the density of states just below the Fermi level. This facilitates the coupling to a bosonic mode responsible for superconductivity.

  8. Wavelength-tunable thulium-doped fiber laser by employing a self-made Fabry-Perot filter

    Science.gov (United States)

    Wang, Y. P.; Ju, Y. L.; Wu, C. T.; Liu, W.; Yang, C.

    2017-06-01

    In this demonstration, we proposed a novel wavelength-tunable thulium-doped fiber laser (TDFL) with a self-made Fabry-Perot (F-P) filter. When the F-P filter was not inserted, the maximum output power of 11.1 W was achieved when the pump power was 70.2 W. The corresponding optical-to-optical conversion efficiency was 15.8% and the slope efficiency was 22.1%. When the F-P filter was inserted, the output wavelength could be tuned from 1952.9 to 1934.9 nm with the change of cavity length of F-P filter which was fixed on a piezoelectric ceramic transducer (PZT) controlled by the voltage applied to it. The full width at half maximum (FWHM) was no more than 0.19 nm. Furthermore, the wavelength fluctuations of the tunable fiber laser were kept within  ±0.2 nm.

  9. Amorphous chalcogenide semiconductors for solid state dosimetric systems of high-energetic ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Pedagogical University, Czestochowa (Poland)]|[Institute of Materials, Lvov (Ukraine)

    1997-12-31

    The application possibilities of amorphous chalcogenide semiconductors use as radiation-sensitive elements of high-energetic (E > 1 MeV) dosimetric systems are analysed. It is shown that investigated materials are characterized by more wide region of registered absorbed doses and low temperature threshold of radiation information bleaching in comparison with well-known analogies based on coloring oxide glasses. (author). 16 refs, 1 tab.

  10. Destruction-polymerization transformations as a source of radiation-induced extended defects in chalcogenide glassy semiconductors

    International Nuclear Information System (INIS)

    Shpotyuk, Oleh; Filipecki, Jacek; Shpotyuk, Mykhaylo

    2013-01-01

    Long-wave shift of the optical transmission spectrum in the region of fundamental optical absorption edge is registered for As 2 S 3 chalcogenide glassy semiconductors after γ-irradiation. This effect is explained in the frameworks of the destruction-polymerization transformations concept by accepting the switching of the heteropolar As-S covalent bonds into homopolar As-As ones. It is assumed that (As 4 + ; S 1 - ) defect pairs are created under such switching. Formula to calculate content of the induced defects in chalcogenide glassy semiconductors is proposed. It is assumed that defects concentration depends on energy of broken covalent bond, bond-switching energy balance, correlation energy, optical band-gap and energy of excitation light. It is shown that theoretically calculated maximally possible content of radiation-induced defects in As 2 S 3 is about 1.6% while concentration of native defects is negligible. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waal's forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have

  12. Surface morphology of spin-coated As-S-Se chalcogenide thin films

    Czech Academy of Sciences Publication Activity Database

    Kohoutek, T.; Wágner, T.; Orava, J.; Krbal, M.; Fejfar, Antonín; Mates, Tomáš; Kasap, S. O.; Frumar, M.

    2007-01-01

    Roč. 353, - (2007), s. 1437-1440 ISSN 0022-3093 R&D Projects: GA AV ČR IAA1010316; GA AV ČR IAA1010413 Grant - others:GA ČR(CZ) GA203/05/0524; GAMŠk(CZ) LC523 Program:LC Institutional research plan: CEZ:AV0Z10100521 Keywords : chemical properties * spin coating * infrared glasses * chalcogenides * atomic force and scanning tunneling microscopy * scanning electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.319, year: 2007

  13. Hydrogen treatment as a detergent of electronic trap states in lead chalcogenide nanoparticles

    Science.gov (United States)

    Voros, Marton; Brawand, Nicholas; Galli, Giulia

    Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations, irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial for charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Our findings suggest that post-synthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films. Work supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (NB) and U.S. DOE under Contract No. DE-AC02-06CH11357 (MV).

  14. Locally formation of Ag nanoparticles in chalcogenide phase change thin films induced by nanosecond laser pulses

    International Nuclear Information System (INIS)

    Huang, Huan; Zhang, Lei; Wang, Yang; Han, Xiaodong; Wu, Yiqun; Zhang, Ze; Gan, Fuxi

    2012-01-01

    A simple method to optically synthesize Ag nanoparticles in Ge 2 Sb 2 Te 5 phase change matrix is described. The fine structures of the locally formed phase change chalcogenide nanocomposite are characterized by high-resolution transmission electron microscopy. The formation mechanism of the nanocomposite is discussed with temperature evolution and distribution simulations. This easy-prepared metal nano-particle-embedded phase change microstructure will have great potential in nanophotonics applications, such as for plasmonic functional structures. This also provides a generalized approach to the preparation of well-dispersed nanoparticle-embedded composite thin films in principle. -- Highlights: ► We describe a method to prepare chalcogenide microstructures with Ag nanoparticles. ► We give the fine structural images of phase change nanocomposites. ► We discuss the laser-induced fusion mechanism by temperature simulation. ► This microstructure will have great potential in nanophotonics applications.

  15. Copper Antimony Chalcogenide Thin Film PV Device Development

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Adam W.; Baranowski, Lauryn L.; de Souza Lucas, Francisco Willian; Toberer, Eric S.; Wolden, Colin A.; Zakutayev, Andriy

    2015-06-14

    Emerging ternary chalcogenide thin film solar cell technologies, such as CuSbS2 and CuSbSe2, have recently attracted attention as simpler alternatives to quaternary Cu2ZnSnS4 (CZTS). Despite suitable photovoltaic properties, the initial energy conversion efficiency of CuSbS2 is rather low (0.3%). Here, we report on our progress towards improving the efficiency of CuSbS2 solar cells using a high throughput approach. The combinatorial methodology quickly results in baseline solar cell prototypes with 0.6% efficiency, and then modification of the back contact architecture leads to 1% PV devices. We then translate the optimal CuSbS2 synthesis parameters to CuSbSe2 devices, which show 3% efficiencies.

  16. Energy Transfer between Post-Transition Elements & Rare Earths in Oxide & Chalcogenide Glasses.

    Science.gov (United States)

    1979-08-27

    Caird [13]. A calculation of reduced matrix elements of Pr3 in 20 Na O • 80 TeO2 glass [14] showed that they differ slightly from data of ref. [121... glasses Transition (lass 35 ZnO 65 TeO2 20 Na2 O 80 TeO 2 fX 106 fX 106 l.,eas 3a, a) Ia’l. faI f.me.s f al f+ I fal 3 H4 - 3 H6 1.56 1.65 1.12...Rare-Earth Doped Glasses 20. jIST HAEV CCnFn~m ,i cn,on ra e sideit If c."*Ar’ -- ~ 14-r by t?-h.c .: r Intensity parameters, radiative transition

  17. A high-Q low threshold thulium-doped silica microsphere laser in the 2 μm wavelength region designed for gas sensing applications

    International Nuclear Information System (INIS)

    Pal, Atasi; Chen, Shu Ying; Sun, Tong; Grattan, K T V; Sen, Ranjan

    2013-01-01

    A high-Q and low threshold laser resonator, operating in the 2 μm wavelength region, has been demonstrated by coupling a thulium-doped silica microsphere to a tapered fibre. Microspheres with diameters ranging from fifty to a few hundred micrometres were carefully fabricated for this purpose by melting an etched-clad thulium-doped silica fibre tip using a focused beam from a CO 2 laser, while the tapered fibre with waist diameter in the desired range of 2 μm was fabricated by using heating and stretching of standard single-mode telecommunication fibre. The tapered fibre served the dual purpose of transporting pump power into the sphere and allowing the extraction of the resulting laser emission. Under excitation at a wavelength of ∼1.6 μm, lasing occurred at wavelengths over the range from 1.9 to 2.0 μm. Single-mode laser operation was obtained by exciting the fundamental whispering gallery mode resonance of the microsphere, while multi-mode lasing occurred for non-fundamental mode excitation. The threshold power of the laser was measured to be about 50 μW delivered pump power, and a maximum laser power of 0.8 mW at around 1.94 μm was observed for a 6 mW pump power, operating at wavelengths around 1.6 μm. The laser was designed as a low threshold and compact source for miniaturized gas sensing devices operating over this important wavelength region. (letter)

  18. Origin of the frequency shift of Raman scattering in chalcogenide glasses

    DEFF Research Database (Denmark)

    Han, X.C.; Tao, H.Z.; Gong, L.J.

    2014-01-01

    of the shift is associated with the topological connectivity of global network and/or the local environment of structural units, (e.g., tetrahedral GeSe4). Here we show the compositional evolution of the main Raman scattering frequency in Ge(SxSe1−x)2 glasses, and then clarify its structural origin. We keep...... units such as GeS4 tetrahedra. The ab-initio calculations of normal Raman mode combined with group theory analysis provide insight into the structural evolution of chalcogenide glasses with varying composition....

  19. Extraction and recovery of mercury and lead from aqueous waste streams using redox-active layered metal chalcogenides. Annual progress report, September 15, 1996 - September 14, 1997

    International Nuclear Information System (INIS)

    Dorhout, P.K.; Strauss, S.H.

    1997-01-01

    'The authors have begun to examine the extraction and recovery of heavy elements from aqueous waste streams using redox-active metal chalcogenides. They have been able to prepare extractants from known chalcogenide starting materials, studied the efficacy of the extractants for selective removal of soft metal ions from aqueous phases, studied the deactivation of extractants and the concomitant recovery of soft metal ions from the extractants, and characterized all of the solids and solutions thus far in the study. The study was proposed as two parallel tasks: Part 1 and Part 2 emphasize the study and development of known metal chalcogenide extractants and the synthesis and development of new metal chalcogenide extractants, respectively. The two tasks were divided into sub-sections that study the extractants and their chemistry as detailed below: Preparation and reactivity of metal chalcogenide host solids Extraction of target waste (guest) ions from simulated waste streams Examination of the guest-host solids recovery of the guest metal and reuse of extractant Each section of the two tasks was divided into focused subsections that detail the specific problems and solutions to those problems that were proposed. The extent to which those tasks have been accomplished and the continued efforts of the team are described in detail below. (b) Progress and Results. The DOE-supported research has proceeded largely as proposed and has been productive in its first 12 months. Two full-paper manuscripts were submitted and are currently under peer review. A third paper is in preparation and will be submitted shortly. In addition, 5 submitted or invited presentations have been made.'

  20. Thermoelectric performance of tellurium-reduced quaternary p-type lead–chalcogenide composites

    International Nuclear Information System (INIS)

    Aminorroaya Yamini, Sima; Wang, Heng; Gibbs, Zachary M.; Pei, Yanzhong; Mitchell, David R.G.; Dou, Shi Xue; Snyder, G. Jeffrey

    2014-01-01

    Graphical abstract: - Abstract: A long-standing technological challenge to the widespread application of thermoelectric generators is obtaining high-performance thermoelectric materials from abundant elements. Intensive study on PbTe alloys has resulted in a high figure of merit for the single-phase ternary PbTe–PbSe system through band structure engineering, and the low thermal conductivity achieved due to nanostructuring leads to high thermoelectric performance for ternary PbTe–PbS compounds. Recently, the single-phase p-type quaternary PbTe–PbSe–PbS alloys have been shown to provide thermoelectric performance superior to the binary and ternary lead chalcogenides. This occurs via tuning of the band structure and from an extraordinary low thermal conductivity resulting from high-contrast atomic mass solute atoms. Here, we present the thermoelectric efficiency of nanostructured p-type quaternary PbTe–PbSe–PbS composites and compare the results with corresponding single-phase quaternary lead chalcogenide alloys. We demonstrate that the very low lattice thermal conductivity achieved is attributed to phonon scattering at high-contrast atomic mass solute atoms rather than from the contribution of secondary phases. This results in a thermoelectric efficiency of ∼1.4 over a wide temperature range (650–850 K) in a p-type quaternary (PbTe) 0.65 (PbSe) 0.1 (PbS) 0.25 composite that is lower than that of single-phase (PbTe) 0.85 (PbSe) 0.1 (PbS) 0.05 alloy without secondary phases

  1. Large magnetoresistance in non-magnetic silver chalcogenides and new class of magnetoresistive compounds

    Science.gov (United States)

    Saboungi, Marie-Louis; Price, David C. L.; Rosenbaum, Thomas F.; Xu, Rong; Husmann, Anke

    2001-01-01

    The heavily-doped silver chalcogenides, Ag.sub.2+.delta. Se and Ag.sub.2+.delta. Te, show magnetoresistance effects on a scale comparable to the "colossal" magnetoresistance (CMR) compounds. Hall coefficient, magnetoconductivity, and hydrostatic pressure experiments establish that elements of narrow-gap semiconductor physics apply, but both the size of the effects at room temperature and the linear field dependence down to fields of a few Oersteds are surprising new features.

  2. Microbial synthesis of chalcogenide semiconductor nanoparticles: a review.

    Science.gov (United States)

    Jacob, Jaya Mary; Lens, Piet N L; Balakrishnan, Raj Mohan

    2016-01-01

    Chalcogenide semiconductor quantum dots are emerging as promising nanomaterials due to their size tunable optoelectronic properties. The commercial synthesis and their subsequent integration for practical uses have, however, been contorted largely due to the toxicity and cost issues associated with the present chemical synthesis protocols. Accordingly, there is an immediate need to develop alternative environment-friendly synthesis procedures. Microbial factories hold immense potential to achieve this objective. Over the past few years, bacteria, fungi and yeasts have been experimented with as eco-friendly and cost-effective tools for the biosynthesis of semiconductor quantum dots. This review provides a detailed overview about the production of chalcogen-based semiconductor quantum particles using the inherent microbial machinery. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Achievements in the field of thermophysics of pniktides and chalcogenides of transition elements

    International Nuclear Information System (INIS)

    Westrum, E.F.

    1979-01-01

    Thermophysical aspects of thermodynamics of chalcogenides of transition metals are analyzed briefly with the aim of development of concepts on connection of these compounds entropy with their structure, expressed by Grenvold and Westrum in 1962. In a more detail way discussed are the achievement in the field of low-temperature thermophysics of pniktides of transition metals permitting to consider the similarity and the differences in properties of the two compound classes mentioned above. The characteristics of chalcogenides and pniktides, obtained by the method of low-temperature calorimetry and by the method of high-temperature adiabatic calorimetry as well, are considered. A more detail estimate is made of the heat capacity component caused by expansion (that is of the most importance while considering the high-temperature data on heat capacity). The effect of energy levels of ions and atoms on heat capacity and a number of other problems are also considered. The approach to solution of these problems is illustrated on experimental data for a number of compounds, such as marcasite (FeS 2 ), low-temperature digenite (Csub(1.80)S), CoFe 2 , arsenides and antimonides of a number of metals (FeSb 2 , CrSb 2 , CrAs 2 , U 2 As 4 , U 3 Sb 4 , USb 2 , UAs 2 )

  4. Structural, optical and electrical characterization of Ag doped lead chalcogenide (PbSe) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, A.A., E-mail: aghamdi90@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al-Heniti, S. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Khan, Shamshad A. [Department of Physics, St. Andrew' s College, Gorakhpur, UP (India)

    2013-03-15

    Research and development efforts are currently underway to fabricate a variety of solid state devices. A good deal of information regarding the synthesis, structural, optical and electrical properties of Ag doped lead chalcogenides have been revealed. The bulk polycrystalline (PbSe){sub 100-x}Ag{sub x} ternary chalcogenides are prepared by diffusion technique. The XRD patterns recorded for the (PbSe){sub 100-x}Ag{sub x} thin films prepared by vacuum deposition technique, show that these films are polycrystalline in nature. The optical measurements reveal that the (PbSe){sub 100-x}Ag{sub x} thin films possess direct band gap and the band gap energy decreases with an increase of Ag concentration. The extinction coefficient (k) and refractive index (n) are found to be changing by increasing Ag concentration in PbSe. These results are interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. The dc conductivities of (PbSe){sub 100-x}Ag{sub x} thin films are measured in temperature range 303-403 K. It is observed that the dc conductivity increases at all the temperatures with an increase of Ag content in PbSe system. The experimental data suggests that the conduction is due to thermally assisted tunneling of the charge carriers in the localized states near the band edges. The activation energy and optical band gap are found to decrease with increasing Ag concentration in lead chalcogenide and there are good agreements between these two values. - Highlights: Black-Right-Pointing-Pointer (PbSe){sub 100-x}Ag{sub x} thin films has been investigated. Black-Right-Pointing-Pointer Polycrystalline nature has been verified by X-ray diffraction. Black-Right-Pointing-Pointer Optical absorption data showed the rules of direct transitions predominate. Black-Right-Pointing-Pointer Dc conductivity increases with an increase of Ag content in PbSe system. Black-Right-Pointing-Pointer Increase of Ag concentration causes a decrease in E{sub g

  5. Chalcogenide metal centers for oxygen reduction reaction: Activity and tolerance

    International Nuclear Information System (INIS)

    Feng Yongjun; Gago, Aldo; Timperman, Laure; Alonso-Vante, Nicolas

    2011-01-01

    This mini-review summarizes materials design methods, oxygen reduction kinetics, tolerance to small organic molecules and fuel cell performance of chalcogenide metal catalysts, particularly, ruthenium (Ru x Se y ) and non-precious transition metals (M x X y : M = Co, Fe and Ni; X = Se and S). These non-platinum catalysts are potential alternatives to Pt-based catalysts because of their comparable catalytic activity (Ru x Se y ), low cost, high abundance and, in particular, a high tolerance to small organic molecules. Developing trends of synthesis methods, mechanism of oxygen reduction reaction and applications in direct alcohol fuel cells as well as the substrate effect are highlighted.

  6. Advances in Mid-IR Fiber Lasers: Tellurite, Fluoride and Chalcogenide

    Directory of Open Access Journals (Sweden)

    Mario Christian Falconi

    2017-06-01

    Full Text Available A review on the recent progress in modeling and fabrication of medium infrared (Mid-IR fiber lasers is reported. The main objective is to illustrate some recent examples of continuous wave optical sources at wavelengths longer than those commonly employed in telecom applications and allowing high beam quality. A small number of Mid-IR lasers, among the large variety of schemes, glasses, dopants and pumping schemes reported in literature, is selected on the basis of their slope efficiency and threshold pump power. In particular, tellurite, fluoride and chalcogenide fiber lasers are considered. More details are given with reference to the novel pumping schemes.

  7. Pr4N2S3 and Pr4N2Se3: two non-isostructural praseodymium(iii) nitride chalcogenides

    International Nuclear Information System (INIS)

    Lissner, Falk; Schleid, Thomas

    2005-01-01

    The non-isostructural nitride chalcogenides of praseodymium, Pr 4 N 2 S 3 and Pr 4 N 2 Se 3 , are formed by the reaction of the praseodymium metal with sodium azide (NaN 3 ), praseodymium trihalide (PrX 3 ; X = Cl, Br, I) and the respective chalcogen (sulfur or selenium) at 900 C in evacuated silica ampoules after seven days. Both crystallize monoclinically in space group C2/c (Pr 4 N 2 S 3 : a = 1788.57(9), b = 986.04(5), c = 1266.49(6) pm, β = 134.546(7) , Z = 8; Pr 4 N 2 Se 3 : a = 1311.76(7), b = 1017.03(5), c = 650.42(3) pm, β = 90.114(6) , Z = 4). The crystal structures of both compounds show a layered construction, dominated by N 3- -centred (Pr 3+ ) 4 tetrahedra which share a common edge first. Continuing linkage of the so resulting bitetrahedral [N 2 Pr 6 ] 12+ units via the non-connected vertices to layers according to [stack ∞ 2 ]{[N(Pr) 2/2 e (Pr') 2/2 v ] 3+ } forms different kinds of tetrahedral nets which can be described as layers consisting of ''four- and eight-rings'' for Pr 4 N 2 S 3 and as layers of ''six-rings'' for Pr 4 N 2 Se 3 . Whereas the crystal structure of Pr 4 N 2 S 3 exhibits four different Pr 3+ cations with coordination numbers of six (2 x) and seven (2 x) against N 3- and S 2- , the number of cations in the nitride selenide (Pr 4 N 2 Se 3 ) is reduced to half (Pr1 and Pr2) also having six- and sevenfold anionic coordination spheres. Further motifs for the connection of [NM 4 ] 9+ tetrahedra in crystal structures of nitride chalcogenides and halides of the rare-earth elements with ratios of N: M = 1: 2 are presented and discussed. (Abstract Copyright [2005], Wiley Periodicals, Inc.) [de

  8. Recent Advances in Metal Chalcogenides (MX; X = S, Se) Nanostructures for Electrochemical Supercapacitor Applications: A Brief Review

    Science.gov (United States)

    Theerthagiri, Jayaraman; Durai, Govindarajan; Rana, Abu ul Hassan Sarwar; Sangeetha, Kirubanandam; Kuppusami, Parasuraman; Kim, Hyun-Seok

    2018-01-01

    Supercapacitors (SCs) have received a great deal of attention and play an important role for future self-powered devices, mainly owing to their higher power density. Among all types of electrical energy storage devices, electrochemical supercapacitors are considered to be the most promising because of their superior performance characteristics, including short charging time, high power density, safety, easy fabrication procedures, and long operational life. An SC consists of two foremost components, namely electrode materials, and electrolyte. The selection of appropriate electrode materials with rational nanostructured designs has resulted in improved electrochemical properties for high performance and has reduced the cost of SCs. In this review, we mainly spotlight the non-metallic oxide, especially metal chalcogenides (MX; X = S, Se) based nanostructured electrode materials for electrochemical SCs. Different non-metallic oxide materials are highlighted in various categories, such as transition metal sulfides and selenides materials. Finally, the designing strategy and future improvements on metal chalcogenide materials for the application of electrochemical SCs are also discussed. PMID:29671823

  9. Mid-infrared supercontinuum generation in chalcogenide step-index fibers pumped at 2.9 and 4.5µm

    DEFF Research Database (Denmark)

    Kubat, Irnis; Agger, Christian; Møller, Uffe Visbech

    The Mid-InfraRed (MIR) spectral range (2-12µm) contains the spectral fingerprint of many organic molecules, which can be probed nondestructively for e.g. detection of skin cancer. For this SuperContinuum (SC) laser sources are good candidates since they can have broadband bandwidths together...... with high spectral densities. Here we consider a MIR SC laser sources based on chalcogenide step-index fibers with exceptionally high numerical aperture of ~1 pumped either with Er:ZBLAN and Pr:CHALC fiber laser operating at 2.9 and 4.5µm, respectively, having P0=1kW, T0=50ps, ν_R=4MHz and Pavg=200m......W. The optical properties of fibers (dispersion, nonlinearity and confinement loss) are modeled using the finite element tools based on measured refractive indices of the core and the cladding chalcogenide compositions. Generation of MIR SC is investigated using the Generalized Nonlinear Schrödinger Equation...

  10. Solution processing of chalcogenide materials using thiol-amine "alkahest" solvent systems.

    Science.gov (United States)

    McCarthy, Carrie L; Brutchey, Richard L

    2017-05-02

    Macroelectronics is a major focus in electronics research and is driven by large area applications such as flat panel displays and thin film solar cells. Innovations for these technologies, such as flexible substrates and mass production, will require efficient and affordable semiconductor processing. Low-temperature solution processing offers mild deposition methods, inexpensive processing equipment, and the possibility of high-throughput processing. In recent years, the discovery that binary "alkahest" mixtures of ethylenediamine and short chain thiols possess the ability to dissolve bulk inorganic materials to yield molecular inks has lead to the wide study of such systems and the straightforward recovery of phase pure crystalline chalcogenide thin films upon solution processing and mild annealing of the inks. In this review, we recount the work that has been done toward elucidating the scope of this method for the solution processing of inorganic materials for use in applications such as photovoltaic devices, electrocatalysts, photodetectors, thermoelectrics, and nanocrystal ligand exchange. We also take stock of the wide range of bulk materials that can be used as soluble precursors, and discuss the work that has been done to reveal the nature of the dissolved species. This method has provided a vast toolbox of over 65 bulk precursors, which can be utilized to develop new routes to functional chalcogenide materials. Future studies in this area should work toward a better understanding of the mechanisms involved in the dissolution and recovery of bulk materials, as well as broadening the scope of soluble precursors and recoverable functional materials for innovative applications.

  11. Zinc Antimonides and Copper Chalcogenides as Thermoelectric Materials

    DEFF Research Database (Denmark)

    Blichfeld, Anders Bank

    2017-01-01

    , and linked with the physical properties. The materials crystallography approach, relating physical properties with a structural understating, has been applied in this thesis for two highly interesting materials systems, zinc antimonides and copper chalcogenides. Both of these systems are high profiled....... The preparation parameters used, have a large influence on the homogeneity of the products, and new electric phases were identified and studied for ZnSb. For the samples prepared by physical vapor deposition, the growth takes place under non-thermodynamic conditions, making it possible to access kinetically...... intensity X-ray radiation at large international facilities, making it possible to measure pair distribution function data directly on thin-film samples in a normal incident setup, termed tfPDF. The tfPDF method was demonstrated on the iron antimony system. tfPDF was developed even further to include...

  12. Rare Earth Chalcogels NaLnSnS4 (Ln = Y, Gd, Tb) for Selective Adsorption of Volatile Hydrocarbons and Gases

    KAUST Repository

    Edhaim, Fatimah

    2017-06-28

    The synthesis and characterization of the rare earth chalcogenide aerogels NaYSnS4, NaGdSnS4, and NaTbSnS4 is reported. Rare earth metal ions like Y3+, Gd3+, and Tb3+ react with the chalcogenide clusters [SnS4]4– in aqueous formamide solution forming extended polymeric networks by gelation. Aerogels obtained after supercritical drying have BET surface areas of 649 m2·g–1 (NaYSnS4), 479 m2·g–1 (NaGdSnS4), and 354 m2·g–1 (NaTbSnS4). Electron microscopy and physisorption studies reveal that the new materials have pores in the macro (above 50 nm) and meso (2–50 nm) regions. These aerogels show higher adsorption of toluene vapor over cyclohexane vapor and CO2 over CH4 or H2. The notable adsorption capacity for toluene (NaYSnS4: 1108 mg·g–1; NaGdSnS4: 921 mg·g–1; and NaTbSnS4: 645 mg·g–1) and high selectivity for gases (CO2/H2: 172 and CO2/CH4: 50 for NaYSnS4, CO2/H2: 155 and CO2/CH4: 37 for NaGdSnS4, and CO2/H2: 75 and CO2/CH4: 28 for NaTbSnS4) indicate potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes.

  13. Hydrazine-hydrothermal method to synthesize three-dimensional chalcogenide framework for photocatalytic hydrogen generation

    International Nuclear Information System (INIS)

    Liu Yi; Kanhere, Pushkar D.; Wong, Chui Ling; Tian Yuefeng; Feng Yuhua; Boey, Freddy; Wu, Tom; Chen Hongyu; White, Tim J.; Chen Zhong; Zhang Qichun

    2010-01-01

    A novel chalcogenide, [Mn 2 Sb 2 S 5 (N 2 H 4 ) 3 ] (1), has been synthesized by the hydrazine-hydrothermal method. X-ray crystallography study reveals that the new compound 1 crystallizes in space group P1-bar (no. 2) of the triclinic system. The structure features an open neutral three-dimensional framework, where two-dimensional mesh-like inorganic layers are bridged by intra- and inter-layer hydrazine ligands. Both two Mn1 and Mn2 sites adopt distorted octahedral coordination. While two Sb1 and Sb2 sites exhibit two different coordination geometries, the Sb1 site is coordinated with three S atoms to generate a SbS 3 trigonal-pyramidal geometry, and the Sb2 site adopts a SbS 4 trigonal bipyramidal coordination geometry. It has an optical band gap of about ∼2.09 eV, which was deduced from the diffuse reflectance spectrum, and displays photocatalytic behaviors under visible light irradiation. Magnetic susceptibility measurements show compound 1 obeys the Curie-Weiss law in the range of 50-300 K. -- Graphical abstract: A novel chalcogenide, [Mn 2 Sb 2 S 5 (N 2 H 4 ) 3 ] (1), synthesized by hydrazine-hydrothermal method, has a band gap of about ∼2.09 eV and displays photocatalytic behaviors under visible light irradiation. Display Omitted

  14. A Structural Study of the Pseudo-Binary Mercury Chalcogenide Alloy HgSe_{0.7}S_{0.3} at High Pressure

    CERN Document Server

    Kozlenko, D P; Ehm, L; Knorr, K; Hull, S; Shchennikov, V V; Voronin, V I

    2002-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe_{0.7}S_{0.3} has been studied by means of X-ray and neutron powder diffraction at pressure up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P{\\sim}1 GPa. The obtained structural parameters were used for the analysis of the geometrical relationship between the zinc blende and the cinnabar phases. The zinc blende-cinnabar phase transition is discussed in the framework of Landau theory of the phase transitions. It was found that the possible order parameter for the structural transformation is the spontaneous strain e_{4}. This assignment agrees with previously observed high pressure behaviour of the elastic constants of other mercury chalcogenides.

  15. A structural study of the pseudo-binary mercury chalcogenide alloy HgSe0.7S0.3 at high pressure

    International Nuclear Information System (INIS)

    Kozlenko, D.P.; Savenko, B.N.; Ehm, L.; Knorr, K.; Hull, S.; Shchennikov, V.V.; Voronin, V.I.

    2002-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe 0.7 S 0.3 has been studied by means of X-ray and neutron powder diffraction at pressure up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P∼1 GPa. The obtained structural parameters were used for the analysis of the geometrical relationship between the zinc blende and the cinnabar phases. The zinc blende-cinnabar phase transition is discussed in the framework of the Landau theory of phase transitions. It was found that the possible order parameter for the structural transformation is the spontaneous strain e 4 . This assignment agrees with previously observed high pressure behaviour of the elastic constants of other mercury chalcogenides

  16. Temperature and frequency response of conductivity in Ag2S doped chalcogenide glassy semiconductor

    Science.gov (United States)

    Ojha, Swarupa; Das, Anindya Sundar; Roy, Madhab; Bhattacharya, Sanjib

    2018-06-01

    The electric conductivity of chalcogenide glassy semiconductor xAg2S-(1-x)(0.5S-0.5Te) has been presented here as a function of temperature and frequency. Formation of different nanocrystallites has been confirmed from X-ray diffraction study. It is also noteworthy that average size of nanocrystallites decreases with the increase of dislocation density. Dc conductivity data have been interpreted using Mott's model and Greaves's model in low and high temperature regions respectively. Ac conductivity above the room temperature has been analyzed using Meyer-Neldel (MN) conduction rule. It is interestingly noted that Correlated Barrier Hopping (CBH) model is the most appropriate conduction mechanism for x = 0.35, where pairs of charge carrier are considered to hop over the potential barrier between the sites via thermal activation. To interpret experimental data for x = 0.45, modified non-overlapping small polaron tunnelling (NSPT) model is supposed to be appropriate model due to tunnelling through grain boundary. The conductivity spectra at various temperatures have been analyzed using Almond-West Formalism (power law model). Scaling of conductivity spectra reveals that electrical relaxation process of charge carriers (polaron) is temperature independent but depends upon the composition of the present chalcogenide glassy system.

  17. Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm

    DEFF Research Database (Denmark)

    Kubat, Irnis; Agger, Christian; Møller, Uffe Visbech

    2014-01-01

    We present numerical modeling of mid-infrared (MIR) supercontinuum generation (SCG) in dispersion-optimized chalcogenide (CHALC) step-index fibres (SIFs) with exceptionally high numerical aperture (NA) around one, pumped with mode-locked praseodymium-doped (Pr3+) chalcogenide fibre lasers. The 4...... for the highest NA considered but required pumping at 4.7kW as well as up to 3m of fibre to compensate for the lower nonlinearities. The amount of power converted into the 8-10 μm band was 7.5 and 8.8mW for the 8 and 10μm fibres, respectively. For the 20μm core fibres up to 46mW was converted....

  18. Structural and optical investigation of Te-based chalcogenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rita, E-mail: reetasharma2012@gmail.com; Sharma, Shaveta; Thangaraj, R.; Mian, M. [Semiconductors Laboratory, Department of Physics, GND University, Amritsar (India); Chander, Ravi [Applied Science Deptt. Govt. Polytechnic College Amritsar (India); Kumar, Praveen [Department of Physics, DAV University, Sarmastipur, Jalandhar-144012 (India)

    2015-05-15

    We report the structural and optical properties of thermally evaporated Bi{sub 2}Te{sub 3}, In{sub 2}Te{sub 3} and InBiTe{sub 3} films by using X-ray diffraction, optical and Raman Spectroscopy techniques. The as-prepared thin films were found to be Semi-crystalline by X-ray diffraction. Particle Size and Strain has been calculated from XRD data. The optical constants, film thickness, refractive index and optical band gap (E{sub g}) has been reported for In{sub 2}Te{sub 3}, InBiTe{sub 3} films. Raman Spectroscopy was performed to investigate the effect of Bi, In, on lattice vibration and chemical bonding in Te based chalcogenide glassy alloys.

  19. Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Petr, E-mail: petr.kostka@irsm.cas.cz [Institute of Rock Structure and Mechanics AS CR, V Holešovičkách 41, 182 09 Praha 8 (Czech Republic); Zavadil, Jiří [Institute of Photonics and Electronics AS CR, Chaberská 57, 182 51 Praha 8, Kobylisy (Czech Republic); Iovu, Mihail S. [Institute of Applied Physics, Academy of Sciences of Moldova, Str. Academiei 5, MD-28 Chisinau, Republic of Moldova (Moldova, Republic of); Ivanova, Zoya G. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Furniss, David; Seddon, Angela B. [Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2015-11-05

    Sulfide and oxysulfide bulk glasses Ga-La-S-O, Ge-Ga-S and Ge-Ga-As-S doped, or co-doped, with various rare-earth (RE{sup 3+}) ions are investigated for their room temperature transmission and low-temperature photoluminescence. Photoluminescence spectra are collected by using external excitation into the Urbach tail of the fundamental absorption edge of the host-glass. The low-temperature photoluminescence spectra are dominated by the broad-band luminescence of the host glass, with superimposed relatively sharp emission bands due to radiative transitions within 4f shells of RE{sup 3+} ions. In addition, the dips in the host-glass luminescence due to 4f-4f up-transitions of RE{sup 3+} ions are observed in the Ge-Ga-S and Ge-Ga-As-S systems. These superimposed narrow effects provide a direct experimental evidence of energy transfer between the host glass and respective RE{sup 3+} dopants. - Highlights: • An evidence of energy transfer from host-glass to doped-in RE ions is presented. • Energy transfer is manifested by dips in host-glass broad-band luminescence. • This channel of energy transfer is documented on selected RE doped sulfide glasses. • Photoluminescence spectra are dominated by broad band host-glass luminescence. • Presence of RE ions is manifested by superimposed narrow 4f-4f transitions.

  20. Two-Dimensional Transition Metal Oxide and Chalcogenide-Based Photocatalysts

    Science.gov (United States)

    Haque, Farjana; Daeneke, Torben; Kalantar-zadeh, Kourosh; Ou, Jian Zhen

    2018-06-01

    Two-dimensional (2D) transition metal oxide and chalcogenide (TMO&C)-based photocatalysts have recently attracted significant attention for addressing the current worldwide challenges of energy shortage and environmental pollution. The ultrahigh surface area and unconventional physiochemical, electronic and optical properties of 2D TMO&Cs have been demonstrated to facilitate photocatalytic applications. This review provides a concise overview of properties, synthesis methods and applications of 2D TMO&C-based photocatalysts. Particular attention is paid on the emerging strategies to improve the abilities of light harvesting and photoinduced charge separation for enhancing photocatalytic performances, which include elemental doping, surface functionalization as well as heterojunctions with semiconducting and conductive materials. The future opportunities regarding the research pathways of 2D TMO&C-based photocatalysts are also presented. [Figure not available: see fulltext.

  1. Diffusion of 64Cu in copper-containing chalcogenide glasses

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Bychkov, E.A.; Bolotov, A.M.; Tsegel'nik, V.S.; Gavrilov, Yu.A.

    1996-01-01

    Diffusion experiments with 64 Cu radioactive tracer for a number of copper-containing chalcogenide glasses CuI-As 2 Se 3 , Cu-SbI 3 -As 2 Se 3 , CuI-PbI 2 -As 2 Se 3 , CuI-PbI 2 -SbI 3 -As 2 Se 3 and Cu 2 Se-As 2 Se 3 are carried out for the first time. The results of diffusion and electrodiffusion measurements are in correspondence with information on electroconductivity and diffusion in a limited space (cage diffusion) from the Moessbauer spectroscopy on 124 I. It is shown for the first time that the Cheivin factor index for copper-conducting glasses in by 2-3 times higher as compared to silver-conducting glasses with approximate diffusion coefficients indices. 27 refs., 3 figs., 1 tab

  2. Enhanced complete photonic bandgap in a moderate refractive index contrast chalcogenide-air system with connected-annular-rods photonic crystals

    KAUST Repository

    Hou, Jin; Yang, Chunyong; Li, Xiaohang; Cao, Zhenzhou; Chen, Shaoping

    2018-01-01

    . For the typical chalcogenide-glass–air system with an index contrast of 2.8:1, the optimized square lattice CARPC exhibits a significantly larger normalized CPBG of about 13.50%, though the use of triangular lattice CARPC is unable to enhance the CPBG

  3. Thermally controlled mid-IR band-gap engineering in all-glass chalcogenide microstructured fibers: a numerical study

    DEFF Research Database (Denmark)

    Barh, Ajanta; Varshney, Ravi K.; Pal, Bishnu P.

    2017-01-01

    Presence of photonic band-gap (PBG) in an all-glass low refractive index (RI) contrast chalcogenide (Ch) microstructured optical fibers (MOFs) is investigated numerically. The effect of external temperature on the position of band-gap is explored to realize potential fiber-based wavelength filters....... Then the temperature sensitivity of band-gaps is investigated to design fiber-based mid-IR wavelength filters/sensors....

  4. Theory of Two-Magnon Raman Scattering in Iron Pnictides and Chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. C.

    2011-08-15

    Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of local moment picture to understand their magnetic properties is still widespread. We study magnetic Raman scattering from a local moment perspective for various quantum spin models proposed for this new class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust and independent measure of the underlying spin interactions. In accord with other recent experiments, our results indicate that the amount of magnetic frustration in these systems may be small.

  5. Ageing effects in As10Se90 chalcogenide glasses induced by gamma-irradiation

    International Nuclear Information System (INIS)

    Golovchak, R.; Shpotyuk, O.; Shpotyuk, M.; Gorecki, Cz.; Kozdras, A.

    2005-01-01

    The peculiarities of gamma-induced (Co 60 source, 1.85 MGy absorbed dose) ageing phenomena in As 10 Se 90 chalcogenide glasses are investigated for the first time. The analogy between the observed radiation-induced ageing and the thermally induced one in vitreous selenium is emphasized. Like to thermal treatment, gamma-irradiation leads to an increase in the glass transition temperature and the relaxation rate towards a thermodynamic equilibrium of supercooled liquid, the value of this increase being greater in the case of radiation influence

  6. Radiation-induced defects in chalcogenide glasses characterized by combined optical spectroscopy, XPS and PALS methods

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Kovalskiy, A.; Jain, H.; Golovchak, R.; Zurawska, A.

    2007-01-01

    Temperature-dependent optical absorption spectroscopy, high-resolution X-ray photoelectron spectroscopy and positron annihilation lifetimes spectroscopy are utilized to understand radiation-induced changes in Ge-Sb-S chalcogenide glasses. Theoretically predicted topological scheme of γ-induced coordination defect formation in stoichiometric Ge 23.5 Sb 11.8 S 64.7 glass composition is supported by these measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. How metallic is the binding state of indium hosted by excess-metal chalcogenides in ore deposits?

    Science.gov (United States)

    Ondina Figueiredo, Maria; Pena Silva, Teresa; Oliveira, Daniel; Rosa, Diogo

    2010-05-01

    Discovered in 1863, indium is nowadays a strategic scarce metal used both in classical technologic fields (like low melting-temperature alloys and solders) and in innovative nano-technologies to produce "high-tech devices" by means of new materials, namely liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and the recently introduced transparent flexible thin-films manufactured with ionic amorphous oxide semiconductors (IAOS). Indium is a typical chalcophile element, seldom forming specific minerals and occurring mainly dispersed within polymetallic sulphides, particularly with excess metal ions [1]. The average content of indium in the Earth's crust is very low but a further increase in its demand is still expected in the next years, thus focusing a special interest in uncovering new exploitation sites through promising polymetallic sulphide ores - e.g., the Iberian Pyrite Belt (IPB) [2] - and in improving recycling technologies. Indium recovery stands mostly on zinc extraction from sphalerite, the natural cubic sulphide which is the prototype of so-called "tetrahedral sulphides" where metal ions fill half of the available tetrahedral sites within the cubic closest packing of sulphur anions where the double of unfilled interstices are available for further in-filling. It is worth remarking that such packing array is particularly suitable for accommodating polymetallic cations by filling closely located interstitial sites [3] as happens in excess-metal tetrahedral sulphides - e.g. bornite, ideally Cu5FeS4, recognized as an In-carrying mineral [4]. Studying the tendency towards In-In interactions able of leading to the formation of polycations would efficiently contribute to understand indium crystal chemistry and the metal binding state in natural chalcogenides. Accordingly, an X-ray absorption near-edge spectroscopy (XANES) study at In L3-edge was undertaken using the instrumental set-up of ID21 beamline at the ESRF (European Synchrotron

  8. Recent Progress In Infrared Chalcogenide Glass Fibers

    Science.gov (United States)

    Bornstein, A.; Croitoru, N.; Marom, E.

    1984-10-01

    Chalcogenide glasses containing elements like As, Ge, Sb and Se have been prepared. A new technique of preparing the raw material and subsequently drawing fibers has been devel-oped in order to avoid the forming of oxygen compounds. The fibers have been drawn by cru-cible and rod method from oxygen free raw material inside an Ar atmosphere glove box. The fibers drawn to date with air and glass cladding have a diameter of 50-500 pm and length of several meterd. Preliminary attenuation measurements indicate that the attentuation is better than 0.1 dB/cm and it is not affected even when the fiber is bent to 2 cm circular radius. The fibes were testes a CO laser beam and were not damaged at power densities below 10 kW/2cm2 CW &100 kw/cm using short pulses 75 n sec. The transmitted power density was 0.8 kW/cm2 which is an appropriate value to the needed for cutting and ablation of human tissues.

  9. Bismuth chalcogenide compounds Bi 2 × 3 (X=O, S, Se): Applications in electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jiangfeng; Bi, Xuanxuan; Jiang, Yu; Li, Liang; Lu, Jun

    2017-04-01

    Bismuth chalcogenides Bi2×3 (X=O, S, Se) represent a unique type of materials in diverse polymorphs and configurations. Multiple intrinsic features of Bi2×3 such as narrow bandgap, ion conductivity, and environmental friendliness, have render them attractive materials for a wide array of energy applications. In particular, their rich structural voids and the alloying capability of Bi enable the chalcogenides to be alternative electrodes for energy storage such as hydrogen (H), lithium (Li), sodium (Na) storage and supercapacitors. However, the low conductivity and poor electrochemical cycling are two key challenges for the practical utilization of Bi2×3 electrodes. Great efforts have been devoted to mitigate these challenges and remarkable progresses have been achieved, mainly taking profit of nanotechnology and material compositing engineering. In this short review, we summarize state-of-the-art research advances in the rational design of diverse Bi2×3 electrodes and their electrochemical energy storage performance for H, Li, and Na and supercapacitors. We also highlight the key technical issues at present and provide insights for the future development of bismuth based materials in electrochemical energy storage devices.

  10. Phosphorene for energy and catalytic application—filling the gap between graphene and 2D metal chalcogenides

    Science.gov (United States)

    Jain, Rishabh; Narayan, Rekha; Padmajan Sasikala, Suchithra; Lee, Kyung Eun; Jung, Hong Ju; Ouk Kim, Sang

    2017-12-01

    Phosphorene, a newly emerging graphene analogous 2D elemental material of phosphorous atoms, is unique on the grounds of its natural direct band gap opening, highly anisotropic and extraordinary physical properties. This review highlights the current status of phosphorene research in energy and catalytic applications. The initial part illustrates the typical physical properties of phosphorene, which successfully bridge the prolonged gap between graphene and 2D metal chalcogenides. Various synthetic methods available for black phosphorus (BP) and the exfoliation/growth techniques for single to few-layer phosphorene are also overviewed. The latter part of this review details the working mechanisms and performances of phosphorene/BP in batteries, supercapacitors, photocatalysis, and electrocatalysis. Special attention has been paid to the research efforts to overcome the inherent shortcomings faced by phosphorene based devices. The relevant device performances are compared with graphene and 2D metal chalcogenides based counterparts. Furthermore, the underlying mechanism behind the unstable nature of phosphorene under ambient condition is discussed along with the various approaches to avoid ambient degradation. Finally, comments are offered for the future prospective explorations and outlook as well as challenges lying in the road ahead for phosphorene research.

  11. Interconnection between the geometry and the structure of unit cells of substances in inorganic chemistry

    International Nuclear Information System (INIS)

    Eliseev, A.A.; Kuz'micheva, G.M.

    1979-01-01

    Regularity of interconnection between the geometry and the structure of elementary cells of inorganic compounds is investigated. Structural motives on the basis of NaCl structure for all phases of rare earth chalcogenides are built. It is shown that compounds (phases of variable content), detected on 23 (out of 48 possible) state diagrams of rare earths chalcogen binary systems are closely bound both from the viewpoint of geometric dimensions of elementary cells and structural motives. It is shown that using ion representations the number of formula units in the cell of a new rare earth chalcogenide can be calculated and its structural motif can be built

  12. Functions of chalcogenide electrodes in solutions of complexing reagents and interfering ions

    International Nuclear Information System (INIS)

    Kiyanskij, V.V.

    1990-01-01

    The possibility to modify chalcogenide electrodes and their behaviour in solutions of complexing reagents for the development of new methods of potentiometric titration has been studied. It is shown that complexing reagents (EDTA, cupferron, 8-hydroxyquinoline, sodium dithiocarbaminate) and Cu(2), Hg(2) produce a strong effect on the functions of Ag, Cu, Cd, Pb - selective electrodes, which is used for titration of potential-determining and non-potential-determining ions ions (Sr 2+ , La 3+ etc.) and also for modification of sulfide-selecting electrode. A method of potentiometric titration of sulfates and chlorides with modified Cd- and Ag-selective electrodes is suggested

  13. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides)

    International Nuclear Information System (INIS)

    Espiau de Lamaestre, R.

    2005-04-01

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  14. Radionuclides in diffusion probing of inorganic materials based on chalcogenides

    International Nuclear Information System (INIS)

    Firsova, L.P.

    1994-01-01

    Migration of tellurium-125m, selenium-75, sulfur-35 radionuclides in solid solutions Pb 1-y (Se 0.08 Te 0.92 ) y and (Pb 1-x Sn x ) y Te 1-y , where x=0.1 and 0.2, has been studied, the results are presented. Data on dependence of selenium and tellurium self-diffusion coefficients on temperature in the range of 600-750 deg C are given. The results of the study of self-diffusion coefficient isothermal dependences on lead and tellurium vapour pressure in equilibrium with solid phases have been considered. It is ascertained that a change in the temperature and p-n transitions initiate the change in self-diffusion mechanisms of chalcogenide atoms. 8 refs., 3 tabs

  15. Enhanced complete photonic bandgap in a moderate refractive index contrast chalcogenide-air system with connected-annular-rods photonic crystals

    KAUST Repository

    Hou, Jin

    2018-03-27

    Connected-annular-rods photonic crystals (CARPCs) in both triangular and square lattices are proposed to enhance the two-dimensional complete photonic bandgap (CPBG) for chalcogenide material systems with moderate refractive index contrast. For the typical chalcogenide-glass–air system with an index contrast of 2.8:1, the optimized square lattice CARPC exhibits a significantly larger normalized CPBG of about 13.50%, though the use of triangular lattice CARPC is unable to enhance the CPBG. It is almost twice as large as our previously reported result [IEEE J. Sel. Top. Quantum Electron. 22, 4900108 (2016) [CrossRef] ]. Moreover, the CPBG of the square-lattice CARPC could remain until an index contrast as low as 2.24:1. The result not only favors wideband CPBG applications for index contrast systems near 2.8:1, but also makes various optical applications that are dependent on CPBG possible for more widely refractive index contrast systems.

  16. Radiation-induced defects in chalcogenide glasses characterized by combined optical spectroscopy, XPS and PALS methods

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestochowa 42201 (Poland); Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Lviv Institute of Materials of SRC ' ' Carat' ' , 202, Stryjska str., 79031 Lviv (Ukraine); Kovalskiy, A.; Jain, H. [Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Golovchak, R. [Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Lviv Institute of Materials of SRC ' ' Carat' ' , 202, Stryjska str., 79031 Lviv (Ukraine); Zurawska, A. [Opole University of Technology, 75, Ozimska str., Opole 45370 (Poland)

    2007-03-15

    Temperature-dependent optical absorption spectroscopy, high-resolution X-ray photoelectron spectroscopy and positron annihilation lifetimes spectroscopy are utilized to understand radiation-induced changes in Ge-Sb-S chalcogenide glasses. Theoretically predicted topological scheme of {gamma}-induced coordination defect formation in stoichiometric Ge{sub 23.5}Sb{sub 11.8}S{sub 64.7} glass composition is supported by these measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Structural modification of covalent-bonded networks: on some methodological resolutions for binary chalcogenide glasses

    International Nuclear Information System (INIS)

    Shpotyuk, M; Shpotyuk, Ya; Shpotyuk, O

    2011-01-01

    New methodology to estimate efficiency of externally-induced structural modification in chalcogenide glasses is developed. This approach is grounded on the assumption that externally-induced structural modification is fully associated with destruction-polymerization transformations, which reveal themselves as local misbalances in covalent bond distribution, normal atomic coordination and intrinsic electrical fields. The input of each of these components into the total value of structural modification efficiency was probed for quasibinary (As 2 S 3 ) 100-x (Sb 2 S 3 ) x ChG.

  18. Thulium fiber laser lithotripsy using a muzzle brake fiber tip

    Science.gov (United States)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-02-01

    The Thulium fiber laser (TFL) is being explored as an alternative to Holmium:YAG laser for lithotripsy. TFL beam profile allows coupling of higher power into smaller fibers than multimode Holmium laser beam, without proximal fiber tip degradation. A smaller fiber provides more space in ureteroscope working channel for increased saline irrigation and allows maximum ureteroscope flexion. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback, but increased retropulsion. In this study, a "fiber muzzle brake" was tested for reducing fiber burnback and stone retropulsion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-OD, 360-μm-ID tube with 275-μm thru hole located 250-μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed, ex vivo. Small stones with a mass of 40 +/- 4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25 +/- 4 s (n=10), without distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers. The muzzle brake fiber tip provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  19. A first principles study of phase stability, bonding, electronic and lattice dynamical properties of beryllium chalcogenides at high pressure

    International Nuclear Information System (INIS)

    Dabhi, Shweta; Mankad, Venu; Jha, Prafulla K.

    2014-01-01

    Highlights: • First principles calculations are performed for BeS, BeSe and BeTe in B3, B8 and B1 phases. • They are indirect wide band gap semiconductors stable in B3 phase at ambient condition. • Phonon calculations at ambient and high pressure are reported. • The NiAs phase is dynamically stable at high pressure. - Abstract: The present paper reports a detailed and systematic theoretical study of structural, mechanical, electronic, vibrational and thermodynamical properties of three beryllium chalcogenides BeS, BeSe and BeTe in zinc blende, NiAs and rock salt phases by performing ab initio calculations based on density-functional theory. The calculated value of lattice constants and bulk modulus are compared with the available experimental and other theoretical data and found to agree reasonably well. These compounds are indirect wide band gap semiconductors with a partially ionic contribution in all considered three phases. The zinc blende phase of these chalcogenides is found stable at ambient condition and phase transition from zinc blende to NiAs structure is found to occur. The bulk modulus, its pressure derivative, anisotropic factor, Poission’s ratio, Young’s modulus for these are also calculated and discussed. The phonon dispersion curves of these beryllium chalcogenides in zinc blende phase depict their dynamical stability in this phase at ambient condition. We have also estimated the temperature variation of specific heat at constant volume, entropy and Debye temperature for these compounds in zinc blende phase. The variation of lattice-specific heat with temperature obeys the classical Dulong–Petit’s law at high temperature, while at low-temperature it obeys the Debye’s T 3 law

  20. Improvements in x-ray image converters and phosphors

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1981-01-01

    Improvements to an X-ray image converter comprising crystals of rare earth phosphor admixtures are described. The phosphor admixtures utilize thulium-activated lanthanum and/or gadolinium oxyhalide phosphor material to increase the relative speed and resolution of an X-ray image compared with conventional rare earth phosphors. Examples of various radiographic screens containing one or more of the phosphor materials are given. (U.K.)

  1. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    International Nuclear Information System (INIS)

    Tritsaris, Georgios A.; Norskov, Jens K.; Rossmeisl, Jan

    2011-01-01

    Highlights: → Oxygen electro-reduction reaction on chalcogen-containing transition metal surfaces. → Evaluation of catalytic performance with density functional theory. → Ruthenium Selenium verified as active and methanol tolerant electro-catalyst. → Water boils at -10000 K. - Abstract: We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated.

  2. Mechanical and thermal properties of praseodymium monochalcogenides and monopnictides under pressure

    International Nuclear Information System (INIS)

    Bhajanker, Sanjay; Srivastava, V.; Pagare, G.; Sanyal, S.P.

    2011-01-01

    In recent years, a great deal of interest has been focused on rare-earth chalcogenides and pnictides because they have numerous applications in technologies. The praseodymium chalcogenides have attracted great attention due to their potential application in spintronics, spin filtering devices, hyperfine enhanced nuclear cooling, study of combined electron and nuclear order phenomenon at very low temperature

  3. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  4. Structural features of spin-coated thin films of binary AsxS100−x chalcogenide glass system

    International Nuclear Information System (INIS)

    Cook, J.; Slang, S.; Golovchak, R.; Jain, H.; Vlcek, M.; Kovalskiy, A.

    2015-01-01

    Spin-coating technology offers a convenient method for fabricating photostable chalcogenide glass thin films that are especially attractive for applications in IR optics. In this paper we report the structure of spin-coated As x S 100−x (x = 30, 35, 40) thin films as determined using high resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, especially in relation to composition (i.e. As/S ratio) and preparation process variables. It was observed that As atoms during preparation have a tendency to precipitate out in close to stoichiometric compositions. The mechanism of bonding between the inorganic matrix and organic residuals is discussed based on the experimental data. A weak interaction between S ions and amine-based clusters is proposed as the basis of structural organization of the organic–inorganic interface. - Highlights: • As–S spin-coated chalcogenide thin films with different As/S were fabricated. • XPS measurements support the cluster-like structure of spin-coated films. • As 2 O 3 was confirmed as the composition of precipitate formed during dissolution. • Lack of As–As bonds explains the observed photostability of the thin films

  5. CW all optical self switching in nonlinear chalcogenide nano plasmonic directional coupler

    Science.gov (United States)

    Motamed-Jahromi, Leila; Hatami, Mohsen

    2018-04-01

    In this paper we obtain the coupling coefficient of plasmonic directional coupler (PDC) made up of two parallel monolayer waveguides filled with high nonlinear chalcogenide material for TM mode in continues wave (CW) regime. In addition, we assume each waveguides acts as a perturbation to other waveguide. Four nonlinear-coupled equations are derived. Transfer distances are numerically calculated and used for deriving length of all optical switch. The length of designed switch is in the range of 10-1000 μm, and the switching power is in the range of 1-100 W/m. Obtained values are suitable for designing all optical elements in the integrated optical circuits.

  6. High pressure and temperature induced structural and elastic properties of lutetium chalcogenides

    Science.gov (United States)

    Shriya, S.; Kinge, R.; Khenata, R.; Varshney, Dinesh

    2018-04-01

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rock salt to CsCl structures in semiconducting LuX (X = S, Se, and Te) chalcogenides compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), and young modulus (E) the LuX lattice infers mechanical stiffening, and thermal softening.

  7. Nonlinear optical response of chalcogenide glassy semiconductors in the IR and THz ranges studied with the femtosecond resolution in time

    DEFF Research Database (Denmark)

    Romanova, E.; Guizard, S.; Wang, Tianwu

    2017-01-01

    Two time-resolved experimental methods have been used for characterization of the non-linear optical response of chalcogenide glasses of the system As-S-Se-Te in IR and THz ranges upon excitation by femtosecond laser pulses at 800 nm wavelength. Photoinduced conductivity and refractivity were stu...

  8. Etching of enamel for direct bonding with a thulium fiber laser

    Science.gov (United States)

    Kabaş Sarp, Ayşe S.; Gülsoy, Murat

    2011-03-01

    Background: Laser etching of enamel for direct bonding can decrease the risk of surface enamel loss and demineralization which are the adverse effects of acid etching technique. However, in excess of +5.5°C can cause irreversible pulpal responses. In this study, a 1940- nm Thulium Fiber Laser in CW mode was used for laser etching. Aim: Determination of the suitable Laser parameters of enamel surface etching for direct bonding of ceramic brackets and keeping that intrapulpal temperature changes below the threshold value. Material and Method: Polycrystalline ceramic orthodontic brackets were bonded on bovine teeth by using 2 different kinds of etching techniques: Acid and Laser Etching. In addition to these 3 etched groups, there was also a group which was bonded without etching. Brackets were debonded with a material testing machine. Breaking time and the load at the breaking point were measured. Intrapulpal temperature changes were recorded by a K-type Thermocouple. For all laser groups, intrapulpal temperature rise was below the threshold value of 5.5°C. Results and Conclusion: Acid-etched group ( 11.73 MPa) significantly required more debonding force than 3- second- irradiated ( 5.03 MPa) and non-etched groups ( 3.4 MPa) but the results of acid etched group and 4- second- irradiated group (7.5 MPa) showed no significant difference. Moreover, 4- second irradiated group was over the minimum acceptable value for clinical use. Also, 3- second lasing caused a significant reduction in time according to acid-etch group. As a result, 1940- nm laser irradiation is a promising method for laser etching.

  9. Interfacial exciplex electroluminescence between diamine derivatives with starburst molecular structure and tris(acetylacetonato)-(mono-phenothroline) thulium

    International Nuclear Information System (INIS)

    He Hong; Li Wenlian; Su Zisheng; Chu Bei; Bi Defeng; Chen Yiren; Wang Dan; Su Wenming; Li Bin

    2009-01-01

    The authors demonstrate the interfacial exciplex electroluminescence (EL) between tris(acetylacetonato)-(mono-phenothroline) thulium [Tm(AcA) 3 phen] and two diamine derivatives with starburst molecular structure- 4,4',4''-tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA) and 4,4',4''-tris[3-methyl-pheny(phenyl)-amino]triphenyl-amine (m-MTDATA), both of which have the same ionization potential (IP) (approximately 5.1 eV). When the Tm-complex and the two diamine derivatives are respectively used as the electron accepter and donors, the two EL devices exhibit different exciplex emissions, which verifies our previously reported opinion regarding the effect of the different substitutes on exciplex emission [W.M. Su, W.L. Li, Q. Xin, Z.S. Su, B. Chu, D.F. Bi, H. He, J.H. Niu, Appl. Phys. Lett. 91 (2007) 043508]. When the mixture of the two diamine derivatives is used as a donor, a white EL device with the Commission International de l'Eclairage (CIE) coordinates of (0.277, 0.323) is achieved. The exciplex formation mechanisms of the devices with the two different donors are discussed

  10. Synthesis and properties of new CdSe-AgI-As2Se3 chalcogenide glasses

    International Nuclear Information System (INIS)

    Kassem, M.; Le Coq, D.; Fourmentin, M.; Hindle, F.; Bokova, M.; Cuisset, A.; Masselin, P.; Bychkov, E.

    2011-01-01

    Research highlights: → Determination of the glass-forming region in the pseudo-ternary CdSe-AgI-As 2 Se 3 system. → Characterization of macroscopic properties of the new CdSe-AgI-As 2 Se 3 glasses. → Far infrared transmission of chalcogenide glasses. → Characterization of the total conductivity of CdSe-AgI-As 2 Se 3 glasses. -- Abstract: The glass-forming region in the pseudo-ternary CdSe-AgI-As 2 Se 3 system was determined. Measurements including differential scanning calorimetry (DSC), density, and X-ray diffraction were performed. The effect resulting from the addition of CdSe or AgI has been highlighted by examining three series of different base glasses. The characteristic temperatures of the glass samples, including glass transition (T g ), crystallisation (T x ), and melting (T m ) temperatures are reported and used to calculate their ΔT = T x - T g and their Hruby, H r = (T x - T g )/(T m - T x ), criteria. Evolution of the total electrical conductivity σ and the room temperature conductivity σ 298 was also studied. The terahertz transparency domain in the 50-600 cm -1 region was pointed for different chalcogenide glasses (ChGs) and the potential of the THz spectroscopy was suggested to obtain structural information on ChGs.

  11. Effect of temperature and pressure on non-linear conduction in GeTeSe chalcogenide glass

    International Nuclear Information System (INIS)

    El-Mansy, M.K.

    1998-01-01

    The I-V characteristic curves were studied in the temperature range 301-359 K and pressure range up to 7.15 x 10 9 Pa which illustrate a non-linear behaviour below (high-resistance region) and beyond (negative-resistance region) a breakdown point characterising Ge 27 Te 62 Se 11 chalcogenide glasses. The general behaviour is shifted towards lower voltage and higher current when the ambient temperature and/or the applied pressure were increased. The non-linear behaviour in the pre breakdown region is discussed according to the Poole-Frenkel field emission of electrons from deep traps located at a depth equal to 0.372eV. The analysis of the effect of field on the non-linear conduction in Ge 27 Te 62 Se 11 chalcogenide glass suggests a modification of the energy difference between filled and empty sites, where the effect of pressure suggests a reduction of the energy gap width. The analysis based on simple thermal effects in the region closer to the breakdown point implies the electrothermal process initiating the negative resistance region. The results of post breakdown region (negative-resistance region) imply the electron hopping between filled and empty localised states at Fermi level. The density of localised states is estimated which lies in the range 5.7 x 10 16 -1.84 x 10 18 cm -3 /eV

  12. Structural modification of covalent-bonded networks: on some methodological resolutions for binary chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, M; Shpotyuk, Ya; Shpotyuk, O, E-mail: shpotyukmy@yahoo.com [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 212, Stryjska str., Lviv, 79031 (Ukraine)

    2011-04-01

    New methodology to estimate efficiency of externally-induced structural modification in chalcogenide glasses is developed. This approach is grounded on the assumption that externally-induced structural modification is fully associated with destruction-polymerization transformations, which reveal themselves as local misbalances in covalent bond distribution, normal atomic coordination and intrinsic electrical fields. The input of each of these components into the total value of structural modification efficiency was probed for quasibinary (As{sub 2}S{sub 3}){sub 100-x}(Sb{sub 2}S{sub 3}){sub x} ChG.

  13. Power-efficient production of photon pairs in a tapered chalcogenide microwire

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Scott, Evan, E-mail: emeyersc@uwaterloo.ca; Dot, Audrey [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Ahmad, Raja; Li, Lizhu; Rochette, Martin [Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montréal, Québec H3A 2A7 (Canada); Jennewein, Thomas [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Quantum Information Science Program, Canadian Institute for Advanced Research, 180 Dundas Street West, Suite 1400, Toronto, Ontario M5G 1Z8 (Canada)

    2015-02-23

    Using tapered fibers of As{sub 2}Se{sub 3} chalcogenide glass, we produce photon pairs at telecommunication wavelengths with low pump powers. We found maximum coincidences-to-accidentals ratios of 2.13 ± 0.07 for degenerate pumping with 3.2 μW average power, and 1.33 ± 0.03 for non-degenerate pumping with 1.0 μW and 1.5 μW average power of the two pumps. Our results show that the ultrahigh nonlinearity in these microwires could allow single-photon pumping to produce photon pairs, enabling the production of large entangled states, heralding of single photons after lossy transmission, and photonic quantum information processing with nonlinear optics.

  14. External temperature and pressure effects on thermodynamic properties and mechanical stability of yttrium chalcogenides YX (X=S, Se and Te)

    Energy Technology Data Exchange (ETDEWEB)

    Seddik, T. [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 Mascara (Algeria); Khenata, R., E-mail: khenata_rabah@yahoo.fr [Laboratoire de Physique Quantique et de Modélisation Mathématique, Université de Mascara, 29000 Mascara (Algeria); Bouhemadou, A.; Guechi, N. [Laboratory for Developing New Materials and their Characterization, Department of Physics, Faculty of Science, University of Setif, 19000 Setif (Algeria); Sayede, A. [Université Lille Nord de France, F-59000 Lille (France); Université-Artois, UCCS, F-62300 Lens (France); CNRS, UMR 8181, F-59650 Villeneuve d’Ascq (France); Varshney, D. [Materials Science Laboratory, School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001, Madhya Pradesh (India); Al-Douri, Y. [Institute of Nono Electronic Engineering, University Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Reshak, A.H. [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Bin-Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, PO Box 2455, Riyadh 11451 (Saudi Arabia)

    2013-11-01

    The full potential linearized augmented plane wave method within the framework of density functional theory is employed to investigate the structural, thermodynamic and elastic properties of the yttrium chalcogenides (YX: X=S, Se, and Te) in their low-pressure phase (Fm3{sup ¯}m) and high-pressure phase (Pm3{sup ¯}m). The exchange-correlation potential is treated with the generalized gradient approximation of Perdew–Burke–Ernzerhof (GGA-PBE). Temperature dependence of the volume and both adiabatic and isothermal bulk moduli is predicted for a temperature range from 0to1200K for the both phases of the herein considered materials. Furthermore, we have analyzed the thermodynamic properties such as the heat capacities, C{sub V} and C{sub P}, thermal expansion, α, and Debye temperature, Θ{sub D,} under variable pressure and temperature. We have calculated the isothermal elastic constants C{sub ij}{sup T} of the YX monochalcogenides in both NaCl-B1 and CsCl-B2 phases at zero pressure and a temperature range 0−1200K. The results show that rare earth yttrium monochalcogenides are mechanically stable at high temperature. The elastic anisotropy of all studied materials in the two phases has been studied using three different methods.

  15. Finasteride accelerates prostate wound healing after thulium laser resection through DHT and AR signalling.

    Science.gov (United States)

    Zhao, Ruizhe; Wang, Xingjie; Jiang, Chenyi; Shi, Fei; Zhu, Yiping; Yang, Boyu; Zhuo, Jian; Jing, Yifeng; Luo, Guangheng; Xia, Shujie; Han, Bangmin

    2018-06-01

    Urinary tract infection, urinary frequency, urgency, urodynia and haemorrhage are common post-operative complications of thulium laser resection of the prostate (TmLRP). Our study mainly focuses on the role of finasteride in prostate wound healing through AR signalling. TmLRP beagles were randomly distributed into different treatment groups. Serum and intra-prostatic testosterone and DHT level were determined. Histological analysis was conducted to study the re-epithelialization and inflammatory response of the prostatic urethra in each group. We investigated the role of androgen in proliferation and inflammatory response in prostate. In addition, the effects of TNF-α on prostate epithelium and stromal cells were also investigated. Testosterone and DHT level increased in testosterone group and DHT decreased in finasteride group. Accelerated wound healing of prostatic urethra was observed in the finasteride group. DHT suppressed proliferation of prostate epithelium and enhanced inflammatory response in prostate. We confirmed that DHT enhanced macrophages TNF-α secretion through AR signalling. TNF-α suppressed proliferation of prostate epithelial cells and retarded cell migration. TNF-α also played a pivotal role in suppressing fibroblasts activation and contraction. Testosterone treatment repressed re-epithelialization and wound healing of prostatic urethra. Finasteride treatment may be an effective way to promote prostate re-epithelialization. © 2017 John Wiley & Sons Ltd.

  16. II-I2-IV-VI4 (II = Sr,Ba; I = Cu,Ag; IV = Ge,Sn; VI = S,Se): Earth-Abundant Chalcogenides for Thin Film Photovoltaics

    Science.gov (United States)

    Zhu, Tong; Huhn, William P.; Shin, Donghyeop; Mitzi, David B.; Blum, Volker; Saparov, Bayrammurad

    Chalcogenides such as CdTe, CIGSSe, and CZTSSe are successful for thin film photovoltaics (PV) but contain elements that are rare, toxic, or prone to the formation of detrimental antisite disorder. Recently, the BaCu2SnS4-xSex system has been shown to offer a prospective path to circumvent these problems. While early prototypes show efficiencies of a few percent, many avenues remain to optimize the materials, including the underlying chemical composition. In this work, we explore 16 compounds II-I2-IV-VI4 to help identify new candidate materials for PV, with predictions based on both known experimental and computationally derived structures that belong to five different space groups. We employ hybrid density functional theory (HSE06) to explore the band gap tunability by substituting different elements, and other characteristics such as the effective mass and the absorption coefficient. Compounds containing Cu (rather than Ag) are found to have direct or nearly direct band gaps. Depending on the compound, replacing S with Se leads to a decrease of the predicted band gaps by 0.2-0.8 eV and to somewhat decreasing hole effective masses.

  17. Chemical sensors in natural water: peculiarities of behaviour of chalcogenide glass electrodes for determination of copper, lead and cadmium ions

    International Nuclear Information System (INIS)

    Seleznev, B.L.; Legin, A.V.; Vlasov, Yu.G.

    1996-01-01

    Specific features of chemical sensors (chalcogenide glass and crystal ion-selective electrodes) behaviour have been studied to determine copper (2), lead, cadmium and fluorine in the course of in situ measurements, including long-term uninterrupted testing, for solving the problem of inspection over natural water contamination. 16 refs., 3 figs., 2 tabs

  18. Thermoluminescent analysis of CaSO{sub 4} composites activated with rare earths; Analise termoluminescente de compositos de CaSO{sub 4} ativado com terras raras

    Energy Technology Data Exchange (ETDEWEB)

    Junot, D.O.; Chagas, M.A.P.; Souza, D.N., E-mail: danilo.junot@hotmail.com, E-mail: mchagasfisica@gmail.com, E-mail: divanizi@ufs.br [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Fisica

    2013-07-01

    Since the thermoluminescence started to be applied to the dosimetry of ionizing radiation in 1940 different materials detectors have been proposed, and one of the most common is CaSO{sub 4}. The motivation of this work was to produce crystals of CaSO{sub 4} doped with rare earth elements such as europium (Eu), neodymium (Nd) and thulium (Tm). It was also produced crystals of CaSO{sub 4}:Ag. The interest in the production of these materials was to investigate other methods of production of thermoluminescent materials. The results show that the CaSO{sub 4}:Tm is more suitable for use in the thermoluminescent dosimetry. Although not the most intense peak, the peak at 170 °C could be a dosimetric peak. Analyses showed that all samples have a TL response proportional to the dose absorbed. (author)

  19. Quaternary chalcogenides La{sub 3}Sn{sub 0.5}InS{sub 7} and La{sub 3}Sn{sub 0.5}InSe{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Abishek K.; Lee, Emma J.; Bernard, Guy M.; Michaelis, Vladimir K.; Mar, Arthur [Department of Chemistry, University of Alberta, Edmonton, AB (Canada); Yin, Wenlong [Department of Chemistry, University of Alberta, Edmonton, AB (Canada); Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang (China)

    2017-12-13

    The quaternary chalcogenides La{sub 3}Sn{sub 0.5}InS{sub 7} and La{sub 3}Sn{sub 0.5}InSe{sub 7} were prepared by reactions of the elements at 1050 C and 950 C, respectively. They adopt noncentrosymmetric structures [hexagonal, space group P6{sub 3}, Z = 2; a = 10.2993(11) Aa, c = 6.0921(6) Aa for La{sub 3}Sn{sub 0.5}InS{sub 7}; a = 10.6533(7) Aa, c = 6.4245(4) Aa for La{sub 3}Sn{sub 0.5}InSe{sub 7}] in which the half-occupancy of Sn atoms within octahedral sites classifies them as belonging to the La{sub 3}Mn{sub 0.5}SiS{sub 7}-type branch of the large family of quaternary rare-earth chalcogenides RE{sub 3}M{sub 1-x}M{sup '}Ch{sub 7}. The site distribution in La{sub 3}Sn{sub 0.5}InCh{sub 7}, with higher-valent Sn atoms occupying octahedral instead of tetrahedral sites, is reversed from the typical situation observed in other RE{sub 3}M{sub 1-x}M{sup '}Ch{sub 7} compounds. The ordered distribution of Sn atoms in octahedral sites and In atoms in tetrahedral sites was evaluated by bond valence sum analyses. Moreover, {sup 119}Sn solid-state nuclear magnetic resonance (NMR) spectroscopy confirms the occupation of Sn{sup 4+} species exclusively within octahedral sites. An optical bandgap of 1.45 eV was found for La{sub 3}Sn{sub 0.5}InS{sub 7}. Band structure calculations on an ordered superstructure model of La{sub 3}Sn{sub 0.5}InS{sub 7} reveal that avoidance of strongly Sn-S antibonding levels is an important driving force for the Sn deficiency. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Rare earth chalcogels NaLnSnS{sub 4} (Ln = Y, Gd, Tb) for selective adsorption of volatile hydrocarbons and gases

    Energy Technology Data Exchange (ETDEWEB)

    Edhaim, Fatimah; Rothenberger, Alexander [Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2017-08-16

    The synthesis and characterization of the rare earth chalcogenide aerogels NaYSnS{sub 4}, NaGdSnS{sub 4}, and NaTbSnS{sub 4} is reported. Rare earth metal ions like Y{sup 3+}, Gd{sup 3+}, and Tb{sup 3+} react with the chalcogenide clusters [SnS{sub 4}]{sup 4-} in aqueous formamide solution forming extended polymeric networks by gelation. Aerogels obtained after supercritical drying have BET surface areas of 649 m{sup 2}.g{sup -1} (NaYSnS{sub 4}), 479 m{sup 2}.g{sup -1} (NaGdSnS{sub 4}), and 354 m{sup 2}.g{sup -1} (NaTbSnS{sub 4}). Electron microscopy and physisorption studies reveal that the new materials have pores in the macro (above 50 nm) and meso (2-50 nm) regions. These aerogels show higher adsorption of toluene vapor over cyclohexane vapor and CO{sub 2} over CH{sub 4} or H{sub 2}. The notable adsorption capacity for toluene (NaYSnS{sub 4}: 1108 mg.g{sup -1}; NaGdSnS{sub 4}: 921 mg.g{sup -1}; and NaTbSnS4: 645 mg.g{sup -1}) and high selectivity for gases (CO{sub 2}/H{sub 2}: 172 and CO{sub 2}/CH{sub 4}: 50 for NaYSnS{sub 4}, CO{sub 2}/H{sub 2}: 155 and CO{sub 2}/CH{sub 4}: 37 for NaGdSnS{sub 4}, and CO{sub 2}/H{sub 2}: 75 and CO{sub 2}/CH{sub 4}: 28 for NaTbSnS{sub 4}) indicate potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime

    Science.gov (United States)

    Ahmad, H.; Karim, M. R.; Rahman, B. M. A.

    2018-03-01

    A rigorous numerical investigation has been carried out through dispersion engineering of chalcogenide rib waveguide for near-infrared to mid-infrared ultraflat broadband supercontinuum generation in all-normal group-velocity dispersion regime. We propose a novel design of a 1-cm-long air-clad rib waveguide which is made from {Ge}_{11.5} {As}_{24} {Se}_{64.5} chalcogenide glass as the core with either silica or {Ge}_{11.5} {As}_{24} {S}_{64.5} chalcogenide glass as a lower cladding separately. A broadband ultraflat supercontinuum spanning from 1300 to 1900 nm could be generated when pumped at 1.55 μ {m} with a low input peak power of 100 W. Shifting the pump to 2 μ {m}, the supercontinuum spectra extended in the mid-infrared region up to 3400 nm with a moderate-input peak power of 500 W. To achieve further extension in mid-infrared, we excite our optimized rib waveguide in both the anomalous and all-normal dispersion pumping regions at 3.1 μ {m} with a largest input peak power of 3 kW. In the case of anomalous dispersion region pumping, numerical analysis shows that supercontinuum spectrum can be extended in the mid-infrared up to 10 μ {m}, although this contains high spectral amplitude fluctuations over the entire bandwidth which limits the supercontinuum sources in the field of high precision measurement applications. On the other hand, by optimizing a rib waveguide geometry for pumping in all-normal dispersion region, we are able to generate a smooth and flat-top coherent supercontinuum spectrum with a moderate bandwidth spanning the wavelength range 2-5.5 μ {m} with less than 5 dB spectral fluctuation over the entire output bandwidth. Our proposed design is highly suitable for making on-chip SC light sources for a variety of applications such as biomedical imaging, and environmental and industrial sensing in the mid-infrared region.

  2. Reactive ion etching of tellurite and chalcogenide waveguides using hydrogen, methane, and argon

    International Nuclear Information System (INIS)

    Vu, K. T.; Madden, S. J.

    2011-01-01

    The authors report in detail on the reactive plasma etching properties of tellurium and demonstrate a high quality etching process using hydrogen, methane, and argon. Very low loss planar ridge waveguides are demonstrated. Optical losses in tellurium dioxide waveguides below 0.1 dB/cm in most of the near infrared region of the electromagnetic spectrum and at 1550 nm have been achieved--the lowest ever reported by more than an order of magnitude and clearly suitable for planar integrated devices. The etch process is also shown to be suitable for chalcogenide glasses which may be of importance in applications such as phase change memory devices and nonlinear integrated optics.

  3. Complexes of rare earths with hydrazide of salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Abashmadze, M Sh; Pirtskhalava, N I; Kharitonov, Yu Ya; Machkhoshvili, R I [Tbilisskij Gosudarstvennyj Univ. (USSR); AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii; Moskovskij Khimiko-Tekhnologicheskij Inst. (USSR))

    1978-10-01

    Complex compounds M(HOC/sub 6/H/sub 4/CONNH/sub 2/)/sub 3/ xnH/sub 2/O, where M is one of the following metals and n=0 or 1, have been obtained in the reactions of salts (chlorides or nitrates) of praseodymium, neodymium, europium, gadolinium, erbium, thulium or lutecium with salicylic acid hydrazide in a weakly alkaline medium. Some properties and infrared absorption spectra of the compounds obtained have been studied.

  4. Nonlinear Label-Free Biosensing With High Sensitivity Using As2S3 Chalcogenide Tapered Fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Bang, Ole

    2015-01-01

    We demonstrate an experimentally feasible fiber design, which can act as a highly sensitive, label-free, and selective biosensor using the inherent high nonlinearity of an As2S3 chalcogenide tapered fiber. The surface immobilization of the fiber with an antigen layer can provide the possibility t......, this high sensitivity can be obtained using a low-power 1064-nm microchip laser....

  5. Charged defects in chalcogenide vitreous semiconductors studied with combined Raman scattering and PALS methods

    International Nuclear Information System (INIS)

    Kavetskyy, T.; Vakiv, M.; Shpotyuk, O.

    2007-01-01

    A combination of Raman scattering and positron annihilation lifetime spectroscopy (PALS) techniques to study charged defects in chalcogenide vitreous semiconductors (ChVSs) was applied for the first time in this study. In the case of Ge 15.8 As 21 S 63.2 glass, it is found that the main radiation-induced switching of heteropolar Ge-S bonds into heteropolar As-S ones, previously detected by IR fast Fourier transform spectroscopy, can also be identified by Raman spectroscopy in the depolarized configuration. Results obtained by Raman scattering are in good agreement with PALS data for the investigated glass composition

  6. Charged defects in chalcogenide vitreous semiconductors studied with combined Raman scattering and PALS methods

    Energy Technology Data Exchange (ETDEWEB)

    Kavetskyy, T.; Vakiv, M. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); Shpotyuk, O. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine)], E-mail: shpotyuk@novas.lviv.ua

    2007-04-15

    A combination of Raman scattering and positron annihilation lifetime spectroscopy (PALS) techniques to study charged defects in chalcogenide vitreous semiconductors (ChVSs) was applied for the first time in this study. In the case of Ge{sub 15.8}As{sub 21}S{sub 63.2} glass, it is found that the main radiation-induced switching of heteropolar Ge-S bonds into heteropolar As-S ones, previously detected by IR fast Fourier transform spectroscopy, can also be identified by Raman spectroscopy in the depolarized configuration. Results obtained by Raman scattering are in good agreement with PALS data for the investigated glass composition.

  7. Analysis of thermal treatment effects upon optico-luminescent and scintillation characteristics of oxide and chalcogenide crystals

    International Nuclear Information System (INIS)

    Ryzhikov, Vladimir D.; Grinyov, Boris V.; Pirogov, Evgeniy N.; Galkin, Sergey N.; Nagornaya, Lyudmila L.; Bondar, Vladimir G.; Babiychuk, Inna P.; Krivoshein, Vadim I.; Silin, Vitaliy I.; Lalayants, Alexandr I.; Voronkin, Evgeniy F.; Katrunov, Konstantin A.; Onishchenko, Gennadiy M.; Vostretsov, Yuriy Ya.; Malyi, Pavel Yu.; Lisetskaya, Elena K.; Lisetskii, Longin N.

    2005-01-01

    This work has been aimed at analyzing the effects of various thermal treatment factors upon optical-luminescent, scintillation and other functional characteristics of complex oxide and chalcogenide crystals. The crystals considered in this work are scintillators with intrinsic (PWO, CWO, BGO), activator (GSO:Ce) or complex-defect ZnSe(Te) type of luminescence. Important factors of thermal treatment are not only the temperature and its variation with time, but also the chemical composition of the annealing medium, its oxidation-reduction properties

  8. Interfacial exciplex electroluminescence between diamine derivatives with starburst molecular structure and tris(acetylacetonato)-(mono-phenothroline) thulium

    Energy Technology Data Exchange (ETDEWEB)

    He Hong [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Li Wenlian [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)], E-mail: wllioel@yahoo.com.cn; Su Zisheng; Chu Bei; Bi Defeng; Chen Yiren; Wang Dan; Su Wenming; Li Bin [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2009-02-20

    The authors demonstrate the interfacial exciplex electroluminescence (EL) between tris(acetylacetonato)-(mono-phenothroline) thulium [Tm(AcA){sub 3}phen] and two diamine derivatives with starburst molecular structure- 4,4',4''-tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA) and 4,4',4''-tris[3-methyl-pheny(phenyl)-amino]triphenyl-amine (m-MTDATA), both of which have the same ionization potential (IP) (approximately 5.1 eV). When the Tm-complex and the two diamine derivatives are respectively used as the electron accepter and donors, the two EL devices exhibit different exciplex emissions, which verifies our previously reported opinion regarding the effect of the different substitutes on exciplex emission [W.M. Su, W.L. Li, Q. Xin, Z.S. Su, B. Chu, D.F. Bi, H. He, J.H. Niu, Appl. Phys. Lett. 91 (2007) 043508]. When the mixture of the two diamine derivatives is used as a donor, a white EL device with the Commission International de l'Eclairage (CIE) coordinates of (0.277, 0.323) is achieved. The exciplex formation mechanisms of the devices with the two different donors are discussed.

  9. Investigation of diode-laser pumped thulium-doped fluoride lasers; Investigacao de lasers de floureto dopados com tulio e bombeados por diodo-laser

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Paulo Sergio Fabris de

    2006-07-01

    Tunable lasers emitting around 2.3 mum region are important in many areas, like gas detection, remote sensing and medical applications. Thulium has a large emission spectra around 2.3 mum with demonstrated tuning range of 2.2-2.45 mum using the YLF host. For efficient pump absorption, a high concentration sensitizer like ytterbium can be used. We demonstrate quasi-cw operation of the Yb:Tm:YLF laser, pumped at 960 nm with a 20 W diode bar achieving the highest output power reported so far of 620 mW. Simultaneous pumping of the 2.3 mm Yb:Tm:YLF laser at 685 nm and 960 nm is demonstrated, showing higher slope efficiency than 960 nm alone. Numerical simulations and analytical models show the best ratio of pump power between both wavelengths. (author)

  10. Thermal Stability and Optical Activity of Erbium Doped Chalcogenide Glasses for Photonics

    Science.gov (United States)

    Tonchev, D.; Koughia, K.; Kasap, S. O.; Maeda, K.; Sakai, T.; Ikuta, J.; Ivanova, Z. G.

    The glass transition and crystallization temperatures (T g , T c ), heat capacity, thermal stability and glass uniformity of GeSGa, GeSeGa, Ge(SeTe)Ga chalcogenide glasses doped with Er3+ by the addition of Er2S3 have been investigated by conventional differential scanning calorimetry (DSC) and Temperature-Modulated DSC (TMDSC). While some of the glasses have two crystallization peaks, these glasses were nonetheless optically actively and uniform. Essential optical properties have been evaluated, such as the photoluminescence (PL) intensity and lifetime as a function of the glass composition. We present typical results to emphasize some of the important characteristics of these systems and discuss trends within a glass system; and also highlight differences between glass systems.

  11. Spectroscopic properties of 1.8 μm emission of thulium ions in germanate glass

    Science.gov (United States)

    Xu, R. R.; Tian, Y.; Wang, M.; Hu, L. L.; Zhang, J. J.

    2011-01-01

    A new type host of germanate glass (GeO2- BaO-BaF2-Ga2O3-La2O3) codoped with Tm2O3 has been investigated for application as laser material. It possesses a large emission cross section with the value of 9.3×10-21 cm2 at 1.8 μm. Judd-Ofelt intensity parameters and radiative transition probability are calculated and analyzed by Judd-Ofelt theory and absorption spectra. The infrared emission spectra at 1.8 μm have been obtained by using a 794 nm laser diode as excitation resource. The emission intensity ratio of 1.8 (3F4→3H6) to 1.47 μm (3H4→3F4) increases, while the experimental lifetime of the Tm3+:3H4 level decreases by increasing Tm2O3 concentration, which is attributed to the presence of a cross relaxation process. The most intensive emission at 1.8 μm is achieved from the germanate glass with the concentration of Tm2O3 reaches 1.0 wt%. The extended overlap integral method is used to calculate the microparameter of the energy transfer and the critical distance, which are derived to better understand the energy transfer process of thulium ions in the germanate glass responsible for emission at 1.8 μm.

  12. Open-framework micro- and meso-structured chalcogenides and their ion exchange properties

    Science.gov (United States)

    Ding, Nan

    2007-12-01

    are aligned through each layer, adding a pseudo-3D feature to the compounds. This leads to excellent ion-exchange properties. More remarkably, these compounds showed exceptional selectivity for Cs+ ions than any other alkali metal and alkaline earth metal cations due to the soft acid (Cs +)/soft base (S2-) attraction and the size discrimination imposed by the open windows within the frameworks. These properties point to a new direction of designing compounds for possible radioactive 137Cs+ remediation. With the even larger surfactant molecules in water, metal cations In 3+, Zn2+ and Cd2+ can connect [SbSe 4]3- clusters via coordination chemistry to form cubic and hexagonal mesophases. In addition to the linking effect, these metal cations also played the role of Lewis acids and partially reduced [SbSe4] 3- to [SbSe3]3-, both of which are present in the long-range ordered mesostructures. Short range order in a mesostuctured chalcogenide was approached, when structurally rigid Chevrel clusters [Re 6Se6Br8]2- were linked by triselenide anions via metathesis. Higher angle Bragg reflections of this compound provided an opportunity to build a structural model for the first time for a chalcogen-based mesophase.

  13. Determination of thermoluminescence kinetic parameters of thulium doped lithium calcium borate

    International Nuclear Information System (INIS)

    Jose, M.T.; Anishia, S.R.; Annalakshmi, O.; Ramasamy, V.

    2011-01-01

    For the first time kinetic parameters of thulium doped Lithium calcium borate (LCB) Thermoluminescence (TL) material are reported here. Irradiated LCB:Tm 3+ powder has revealed two intense TL glow peaks one at 510 (peak 1) and the other at 660 K (peak 2). Activation energy (E), frequency factor (s) and order of kinetics (b) of these peaks were determined by various heating rate (VHR), initial rise (IR), and peak shape (PS) methods. The trap depth and frequency factor determined for peaks 1 and 2 of LCB:Tm phosphor using VHR and IR methods are in good agreement. The average activation energy of peaks 1 and 2 obtained by these methods is 1.62 and 1.91 eV respectively. The frequency factors of peaks 1 and 2 are in the range of 10 13-16 and 10 12-14 sec -1 respectively. The E and s values estimated using the glow peak shape dependent parameters are relatively less compared to the values obtained from other methods. The large difference in these values is due to the complex nature of the glow curves. The order of the kinetics process for complex glow curve peaks could not be assigned on the basis of shape parameters alone but T m response on absorbed dose is to be considered for final confirmation. Glow peaks 1 and 2 of LCB:Tm 3+ obey first and general order kinetics respectively. - Highlights: → Trap depth and frequency factor are determined for the peaks at 510 and 660 K of LCB:Tm. → Parameters obtained by various heating rate and initial rise methods are in good agreement. → Trap depth of peak 1 and peak 2 is 1.61 eV and 1.91 eV respectively. → T m response to absorbed dose is used to distinguish a first order or non-first order kinetics.

  14. Mid-infrared volume diffraction gratings in IG2 chalcogenide glass: fabrication, characterization, and theoretical verification

    Science.gov (United States)

    Butcher, Helen L.; MacLachlan, David G.; Lee, David; Brownsword, Richard A.; Thomson, Robert R.; Weidmann, Damien

    2018-02-01

    Ultrafast laser inscription (ULI) has previously been employed to fabricate volume diffraction gratings in chalcogenide glasses, which operate in transmission mode in the mid-infrared spectral region. Prior gratings were manufactured for applications in astrophotonics, at wavelengths around 2.5 μm. Rugged volume gratings also have potential use in remote atmospheric sensing and molecular spectroscopy; for these applications, longer wavelength operation is required to coincide with atmospheric transparency windows (3-5 μm) and intense ro-vibrational molecular absorption bands. We report on ULI gratings inscribed in IG2 chalcogenide glass, enabling access to the full 3-5 μm window. High-resolution broadband spectral characterization of fabricated gratings was performed using a Fourier transform spectrometer. The zeroth order transmission was characterized to derive the diffraction efficiency into higher orders, up to the fourth orders in the case of gratings optimized for first order diffraction at 3 μm. The outcomes imply that ULI in IG2 is well suited for the fabrication of volume gratings in the mid infrared, providing the impact of the ULI fabrication parameters on the grating properties are well understood. To develop this understanding, grating modeling was conducted. Parameters studied include grating thickness, refractive index modification, and aspect ratio of the modulation achieved by ULI. Knowledge of the contribution and sensitivity of these parameters was used to inform the design of a 4.3 μm grating expected to achieve > 95% first order efficiency. We will also present the characterization of these latest mid-infrared diffraction gratings in IG2.

  15. Thermal analysis of chalcogenide glasses of the system (As/sub/2Se/sub/3)/sub/(1-x):(Tl/sub/2Se)/sub/x

    International Nuclear Information System (INIS)

    Majid, C.A.

    1987-01-01

    In this paper differential thermal analysis (DTA) measurements of chalcogenide glasses of the system (As/sub/2Se/sub/3)/sub/(1-x): (Tl/sub/2Se)/sub/x, with x=0, 0.125, 0.25 and 0.50 are reported. The glass-forming tendencies of these materials have been calculated. The glass-forming tendency of As/sub/2Se/sub/3 has been found to be the highest among the member glasses of this family of chalcogenides. It was found that the glass-forming tendency of As/sub/2Se/sub/3 decreasing gradually at the Tl/sub/2/Se concentration increases. Tl/sub/2Se additions lower the glass transition temperature T/sub/q and the area under the endothermic peak for glass transition temperature, suggesting a tendency for relatively weaker bonding and hence less stability of Tl-rich glass compositions. These studies show that Tl/sub/2Se concentrations result in glasses with progressively higher crystallization tendencies. (author)

  16. Optical absorption and spectroscopic properties of thulium doped (TeO{sub 2})(Nb{sub 2}O{sub 5})(TiO{sub 2}) glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kabalci, Idris [Department of Physics Education, Education Faculty, Harran University, Sanliurfa (Turkey); Tay, Turgay [Department of Chemistry, Science Faculty, Anadolu University, Eskisehir (Turkey); Oezen, Goenuel [Department of Physics, Science and Arts Faculty, Istanbul Technical University, Istanbul (Turkey)

    2011-09-15

    A type of thulium doped tellurite based optical glasses was prepared through conventional melt quenching technique. In the experiments, the effect of different Tm{sup 3+} ion concentration and glass composition on optical properties of (TeO{sub 2}){sub (1-x-y)}(Nb{sub 2}O{sub 5}){sub (x)}(TiO{sub 2}){sub (y)} (x=0.05, 0.10, 0.15, and 0.20 mol) glasses have been investigated by using UV-VIS-NIR optical spectrophotometry measurements in a wavelength range 400-2000 nm. Considering absorption measurements for the 1.0mol% Tm{sup 3+} doped of (TeO{sub 2}){sub 0.9}(Nb{sub 2}O{sub 5}){sub 0.05}(TiO{sub 2}){sub 0.05} glass, {sup 1}G{sub 4}, {sup 3}F{sub 2}, {sup 3}F{sub 3}, {sup 3}F{sub 4}, {sup 3}H{sub 5}, and {sup 3}H{sub 4} absorption bands were observed from the {sup 3}H{sub 6} ground level, at 463, 660, 687, 793, 1211 and 1700 nm wavelengths, respectively. Furthermore, spontaneous emission probabilities, and the radiative lifetimes for the 4f-4f transitions of the Tm{sup 3+} ions were calculated. The spectral intensities were determined in terms of Judd-Ofelt parameters ({omega}{sub 2}, {omega}{sub 4}, {omega}{sub 6}). Luminescence analysis was realized for the different Tm{sup 3+} ion concentration (0.002, 0.005 and 0.01mol) at room temperature. The luminescence band intensity of the {sup 3}F{sub 4}{yields}{sup 3}H{sub 4} transition was measured as a function of Tm{sup 3+} ion concentration (0.002, 0.005 and 0.01mol). Furthermore, luminescence data of the thulium doped glass samples were used to determine the compositional dependence of the emission cross sections at 1470 nm (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Structural features of spin-coated thin films of binary As{sub x}S{sub 100−x} chalcogenide glass system

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J. [Austin Peay State University, Clarksville, TN 37075 (United States); Slang, S. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Golovchak, R. [Austin Peay State University, Clarksville, TN 37075 (United States); Jain, H. [International Materials Institute for New Functionality in Glass, Lehigh University, Bethlehem, PA 18015 (United States); Vlcek, M. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Kovalskiy, A., E-mail: kovalskyya@apsu.edu [Austin Peay State University, Clarksville, TN 37075 (United States)

    2015-08-31

    Spin-coating technology offers a convenient method for fabricating photostable chalcogenide glass thin films that are especially attractive for applications in IR optics. In this paper we report the structure of spin-coated As{sub x}S{sub 100−x} (x = 30, 35, 40) thin films as determined using high resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, especially in relation to composition (i.e. As/S ratio) and preparation process variables. It was observed that As atoms during preparation have a tendency to precipitate out in close to stoichiometric compositions. The mechanism of bonding between the inorganic matrix and organic residuals is discussed based on the experimental data. A weak interaction between S ions and amine-based clusters is proposed as the basis of structural organization of the organic–inorganic interface. - Highlights: • As–S spin-coated chalcogenide thin films with different As/S were fabricated. • XPS measurements support the cluster-like structure of spin-coated films. • As{sub 2}O{sub 3} was confirmed as the composition of precipitate formed during dissolution. • Lack of As–As bonds explains the observed photostability of the thin films.

  18. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    International Nuclear Information System (INIS)

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-01-01

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As x Se 100−x , As x S 100−x , Ge x Se 100−x and Ge x S 100−x chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  19. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  20. X-ray absorption experiments on rare earth and uranium compounds under high pressure

    International Nuclear Information System (INIS)

    Schmiester, G.

    1987-01-01

    After an introduction into the phenomenon of the mixed valency and the method of measuring the microstructures by X-ray absorption spectroscopy in the area of the L edges under pressure, the results of investigations at selected substitutes of the chalcogenides and puictides of the rare earths and the uranium were given. Thus, pressure-induced valency transitions in YbS and YbTe, instabilities in valency and structural phase transitions in EUS and SmTe as well as the change in the electron structure in USb under pressure were investigated in order to answer questions of solid state physics (e.g. semiconductor-metal transitions, correlation between valency and structural phase transitions). Hybridization effects in L III spectra of formally tetravalent Ca are analyzed at CeF 4 and CeO 2 (insulators) and the role of final state effects in the L III spectra are analyzed at EuP 2 P 2 and TmSe-TmTe (semiconductor systems). (RB) [de

  1. A structural study of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 at high pressure

    CERN Document Server

    Kozlenko, D P; Hull, S; Knorr, K; Savenko, B N; Shchennikov, V V; Voronin, V I

    2002-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 has been studied by means of X-ray and neutron powder diffraction at pressure up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P approx 1 GPa. The obtained structural parameters were used for the analysis of the geometrical relationship between the zinc blende and the cinnabar phases. The zinc blende-cinnabar phase transition is discussed in the framework of the Landau theory of phase transitions. It was found that the possible order parameter for the structural transformation is the spontaneous strain e sub 4. This assignment agrees with previously observed high pressure behaviour of the elastic constants of other mercury chalcogenides

  2. Mid-infrared optical properties of chalcogenide glasses within tin-antimony-selenium ternary system.

    Science.gov (United States)

    Lin, Ruiqiang; Chen, Feifei; Zhang, Xiaoyu; Huang, Yicong; Song, Baoan; Dai, Shixun; Zhang, Xianghua; Ji, Wei

    2017-10-16

    In this work, we investigated the mid-infrared (MIR) optical properties of selenide (Se-based) chalcogenide glasses (ChGs) within an As- and Ge-free system, namely the environment-friendly and low-cost tin-antimony-selenium (Sn-Sb-Se, SSS) ternary system, which has not been systematically studied to the best of our knowledge. As compared to ChGs within those conventional Se-based systems, SSS ChGs were found to exhibit extended infrared transmittance range as well as larger linear refractive index (n 0 ). Femtosecond Z-scan measurements show the presence of evident three-photon absorption from Urbach absorption of the SSS ChGs at MIR wavelength, which resonantly enhanced the nonlinear refractive behavior and resulted in large nonlinear refractive index (n 2 ).

  3. Estimating optical feedback from a chalcogenide fiber in mid-infrared quantum cascade lasers

    Directory of Open Access Journals (Sweden)

    L. Jumpertz

    2016-10-01

    Full Text Available The amount of optical feedback originating from a chalcogenide fiber used to couple light from a mid-infrared quantum cascade laser is evaluated experimentally. Threshold reduction measurements on the fibered laser, combined with an analytical study of a rate equations model of the laser under optical feedback, allow estimating the feedback strength between 11% and 15% depending on the fiber cleavage quality. While this remains below the frontier of the chaotic regime, it is sufficient to deeply modify the optical spectrum of a quantum cascade laser. Hence for applications such as gas spectroscopy, where the shape of the optical spectrum is of prime importance, the use of mid-infrared optical isolators may be necessary for fibered quantum cascade lasers to be fully exploited.

  4. Synthesis and properties of new CdSe-AgI-As{sub 2}Se{sub 3} chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M. [Univ Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EAC CNRS 4493 F-59140 Dunkerque (France); Le Coq, D., E-mail: david.lecoq@univ-littoral.fr [Univ Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EAC CNRS 4493 F-59140 Dunkerque (France); Fourmentin, M.; Hindle, F.; Bokova, M.; Cuisset, A.; Masselin, P.; Bychkov, E. [Univ Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EAC CNRS 4493 F-59140 Dunkerque (France)

    2011-02-15

    Research highlights: {yields} Determination of the glass-forming region in the pseudo-ternary CdSe-AgI-As{sub 2}Se{sub 3} system. {yields} Characterization of macroscopic properties of the new CdSe-AgI-As{sub 2}Se{sub 3} glasses. {yields} Far infrared transmission of chalcogenide glasses. {yields} Characterization of the total conductivity of CdSe-AgI-As{sub 2}Se{sub 3} glasses. -- Abstract: The glass-forming region in the pseudo-ternary CdSe-AgI-As{sub 2}Se{sub 3} system was determined. Measurements including differential scanning calorimetry (DSC), density, and X-ray diffraction were performed. The effect resulting from the addition of CdSe or AgI has been highlighted by examining three series of different base glasses. The characteristic temperatures of the glass samples, including glass transition (T{sub g}), crystallisation (T{sub x}), and melting (T{sub m}) temperatures are reported and used to calculate their {Delta}T = T{sub x} - T{sub g} and their Hruby, H{sub r} = (T{sub x} - T{sub g})/(T{sub m} - T{sub x}), criteria. Evolution of the total electrical conductivity {sigma} and the room temperature conductivity {sigma}{sub 298} was also studied. The terahertz transparency domain in the 50-600 cm{sup -1} region was pointed for different chalcogenide glasses (ChGs) and the potential of the THz spectroscopy was suggested to obtain structural information on ChGs.

  5. Application of positron annihilation lifetime technique for {gamma}-irradiation stresses study in chalcogenide vitreous semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O.; Golovchak, R.; Kovalskiy, A. [Scientific Research Company ' ' Carat' ' , Stryjska str. 20279031 Lviv (Ukraine); Filipecki, J.; Hyla, M. [Physics Institute, Pedagogical University, Al. Armii Krajowej 13/1542201 Czestochowa (Poland)

    2002-08-01

    The influence of {gamma}-irradiation on the positron annihilation lifetime spectra in chalcogenide vitreous semiconductors of As-Ge-S system has been analysed. The correlations between lifetime data, structural features and chemical compositions of glasses have been discussed. The observed lifetime components are connected with bulk positron annihilation and positron annihilation on various native and {gamma}-induced open volume defects. It is concluded that after {gamma}-irradiation of investigated materials the {gamma}-induced microvoids based on S{sub 1}{sup -}, As{sub 2}{sup -}, and Ge{sub 3}{sup -} coordination defects play the major role in positron annihilation processes. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  6. Characterization of phase change Ga{sub 15}Se{sub 77}Ag{sub 8} chalcogenide thin films by laser-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Alvi, M.A., E-mail: alveema@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Zulfequar, M. [Department of Physics, Jamia Millia Islamia, New Delhi 110025 (India); Al-Ghamdi, A.A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer Effect of laser-irradiation on structure and optical band gap has been investigated. Black-Right-Pointing-Pointer The amorphous nature has been verified by X-ray diffraction and DSC measurements. Black-Right-Pointing-Pointer Laser-irradiation causes a decrease in optical band gap in Ga{sub 15}Se{sub 77}Ag{sub 8} thin films. Black-Right-Pointing-Pointer The decrease in optical band gap can be interpreted on the basis of amorphous-crystalline phase transformation. Black-Right-Pointing-Pointer Optical absorption data showed that the rules of the non-direct transitions predominate. - Abstract: Phase change Ga{sub 15}Se{sub 77}Ag{sub 8} chalcogenide thin films were prepared by thermal evaporation technique. Thin films were then irradiated by Transverse Electrical Excitation at Atmospheric Pressure (TEA) nitrogen laser for different time intervals. The X-ray structural characterization revealed the amorphous nature of as-prepared films while the laser irradiated films show the polycrystalline nature. Field Emission Scanning Electron Microscope (FESEM) has been used to study the structural changes. The results are discussed in terms of the structural aspects and amorphous to crystalline phase change in Ga{sub 15}Se{sub 77}Ag{sub 8} chalcogenide thin films. The observed changes are associated with the interaction of the incident photon and the lone-pairs electrons which affects the band gap of the Ga{sub 15}Se{sub 77}Ag{sub 8} chalcogenide thin films. The optical constants of these thin films are measured by using the absorption spectra measurements as a function of photon energy in the wavelength region 400-1100 nm. It is found that the optical band gap decreases while the absorption coefficient and extinction coefficient increases with increasing the laser-irradiation time. The decrease in the optical band gap has been explained on the basis of change in nature of films, from amorphous to polycrystalline state. The dc

  7. Preparation and intercalation study of ternary transition elements chalcogenides AxMXn

    International Nuclear Information System (INIS)

    Kassem, M.

    1999-01-01

    The crystalline powders of transition elements chalcogenides have been prepared by solid-solid reaction method starting from elemental powders in evacuated and sealed quartz tubes heated at various temperatures depending on the compound to be prepared. The structures and composition of the obtained compounds have been studied by X-ray diffraction and X-ray fluorescence techniques. Intercalation compounds Co x MX 2 have been obtained by heating the powder with elemental cobalt at 500 Centigrade. The results of the structural studies show that the intercalation of cobalt is a regular phenomena and the cobalt atoms play the role of staples for the layers constructing the crystalline structure of starting materials. This stapling phenomena is accompanied by changes in distance between the layers and therefore changes in the length of bonds between the elements of compound. The changes in the length of bonds have been confirmed by the results of FTIR studies.(author)

  8. Infrared waveguide fabrications with an E-beam evaporated chalcogenide glass film

    KAUST Repository

    Yang, Xiaoming

    2014-12-12

    Chalcogenide glasses have a variety of unique optical properties due to the intrinsic structural flexibility and bonds metastability. They are desirable materials for many applications, such as infrared communication sensors, holographic grating, optical imaging, and ultrafast nonlinear optic devices. Here, we introduce a novel electron-beam evaporation process to deposit the good quality arsenic trisulfide (As2S3) films and then the As2S3 films were used to fabricate the As2S3 waveguides with three approaches. The first method is photoresist lift-off. Because of the restriction of thermal budget of photoresist, the As2S3 film must be deposited at the room temperature. The second one is the silicon dioxide lift-off process on sapphire substrates, in which the As2S3 film could be evaporated at a high temperature (>180 °C) for better film quality. The third one is the plasma etching process with a metal protective thin layer in the pattern development process.

  9. A new method for synthesis of As-Te chalcogenide films

    Science.gov (United States)

    Mochalov, Leonid; Nezhdanov, Aleksey; Usanov, Dmitry; Markelov, Aleksey; Trushin, Vladimir; Chidichimo, Giuseppe; De Filpo, Giovanni; Gogova, Daniela; Mashin, Aleksandr

    2017-11-01

    A novel Plasma Enhanced Chemical Vapor Deposition method for synthesis of amorphous AsxTe100-x (31 ≤ x ≤ 49) films is demonstrated. The innovative process has been developed in a non-equilibrium low-temperature argon plasma under reduced pressure, employing for the first time volatile As and Te as precursors. Utilization of inorganic precursors, in contrast to the typically used in CVD metal-organic precursors, has given us the chance to achieve ≿halcogenide As-Te films of very high quality and purity. Phase and structural evolution of the As-Te system, based on equilibrium coexistence of two phases (AsTe and As2Te3) has been studied. The dependence of structure and optical bandgap of the chalcogenide materials on their composition was established. The newly developed process is cost-effective and enables deposition of As-Te films with a thickness ranging from 10 nm to 10 μm, the latter is highly desireable for one-mode planar waveguides applications and in other components of integral optics.

  10. Photo-Darkening Kinetics and Structural Anisotropic Modifications in the Chalcogenide Glass Arsenic Trisulfide: a Study of Kinetic X-Ray Absorption Spectroscopy

    Science.gov (United States)

    Lee, Jay Min

    1990-08-01

    The purpose of the study is to investigate the mechanisms involved with photo-induced atomic structural modifications in the chalcogenide glass As_2 S_3. This glass exhibits the reversible effects of photo-darkening followed by thermal bleaching. We observed the time behavior of photo-induced properties under the influence of linearly polarized band -gap light. In a macroscopic optical investigation, we monitor optical changes in the photo-darkening process, and in a local structural probe we study kinetic (or time -resolved dispersive) x-ray absorption spectroscopy. Our observations center on kinetic phenomena and structural modifications induced by polarized excitation of lone-pair orbitals in the chalcogenide glass. Experimental results include the following observations: (i) The polarity of the optically induced anisotropy is critically dependent on the intensity and the polarization of the band-gap irradiation beam. (ii) The near edge peak height in x-ray absorption spectra shows subtle but sensitive change during the photo-darkening process. (iii) Photon intensity dependent dichroic kinetics reflect a connection between the optically probed macroscopic property and the x-ray probed local anisotropic structure. Analysis of the x-ray absorption results includes a computer simulation of the polarized absorption spectra. These results suggest that specific structural units tend to orient themselves with respect to the photon polarization. A substantial part of the analysis involves a major effort in dealing with the x-ray kinetic data manipulation and the experimental difficulties caused by a synchrotron instability problem. Based on our observations, we propose a possible mechanism for the observed photo-structural modifications. Through a model of computer relaxed photo-darkening kinetics, we support the notion that a twisting of a specific intermediate range order structure is responsible for local directional variations and global network distortions. In the

  11. Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials

    International Nuclear Information System (INIS)

    Thiel, C W; Macfarlane, R M; Cone, R L; Sun, Y; Böttger, T; Sinclair, N; Tittel, W

    2014-01-01

    A method is introduced for quantitatively analyzing photon echo decay measurements to characterize excitation-induced decoherence resulting from the phenomenon of instantaneous spectral diffusion. Detailed analysis is presented that allows fundamental material properties to be extracted that predict and describe excitation-induced decoherence for a broad range of measurements, applications and experimental conditions. Motivated by the need for a method that enables systematic studies of ultra-low decoherence systems and direct comparison of properties between optical materials, this approach employs simple techniques and analytical expressions that avoid the need for difficult to measure and often unknown material parameters or numerical simulations. This measurement and analysis approach is demonstrated for the 3 H 6 to 3 H 4 optical transition of three thulium-doped crystals, Tm 3+ :YAG, Tm 3+ :LiNbO 3 and Tm 3+ :YGG, that are currently employed in quantum information and classical signal processing demonstrations where minimizing decoherence is essential to achieve high efficiencies and large signal bandwidths. These new results reveal more than two orders of magnitude variation in sensitivity to excitation-induced decoherence among the materials studied and establish that the Tm 3+ :YGG system offers the longest optical coherence lifetimes and the lowest levels of excitation-induced decoherence yet observed for any known thulium-doped material. (paper)

  12. Mid-infrared fiber-coupled supercontinuum spectroscopic imaging using a tapered chalcogenide photonic crystal fiber

    Science.gov (United States)

    Rosenberg Petersen, Christian; Prtljaga, Nikola; Farries, Mark; Ward, Jon; Napier, Bruce; Lloyd, Gavin Rhys; Nallala, Jayakrupakar; Stone, Nick; Bang, Ole

    2018-02-01

    We present the first demonstration of mid-infrared spectroscopic imaging of human tissue using a fiber-coupled supercontinuum source spanning from 2-7.5 μm. The supercontinuum was generated in a tapered large mode area chalcogenide photonic crystal fiber in order to obtain broad bandwidth, high average power, and single-mode output for good imaging properties. Tissue imaging was demonstrated in transmission by raster scanning over a sub-mm region of paraffinized colon tissue on CaF2 substrate, and the signal was measured using a fiber-coupled grating spectrometer. This demonstration has shown that we can distinguish between epithelial and surrounding connective tissues within a paraffinized section of colon tissue by imaging at discrete wavelengths related to distinct chemical absorption features.

  13. Chalcogenide glass-ceramic with self-organized heterojunctions: application to photovoltaic solar cells

    Science.gov (United States)

    Zhang, Xianghua; Korolkov, Ilia; Fan, Bo; Cathelinaud, Michel; Ma, Hongli; Adam, Jean-Luc; Merdrignac, Odile; Calvez, Laurent; Lhermite, Hervé; Brizoual, Laurent Le; Pasquinelli, Marcel; Simon, Jean-Jacques

    2018-03-01

    In this work, we present for the first time the concept of chalcogenide glass-ceramic for photovoltaic applications with the GeSe2-Sb2Se3-CuI system. It has been demonstrated that thin films, deposited with the sputtering technique, are amorphous and can be crystallized with appropriate heat treatment. The thin film glass-ceramic behaves as a p-type semiconductor, even if it contains p-type Cu2GeSe3 and n-type Sb2Se3. The conductivity of Sb2Se3 has been greatly improved by appropriate iodine doping. The first photovoltaic solar cells based on the association of iodine-doped Sb2Se3 and the glass-ceramic thin films give a short-circuit current density JSC of 10 mA/cm2 and an open-circuit voltage VOC of 255 mV, with a power conversion efficiency of about 0.9%.

  14. Precursor directed synthesis - ``molecular'' mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures

    Science.gov (United States)

    Seisenbaeva, Gulaim A.; Kessler, Vadim G.

    2014-05-01

    This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials. To Professor David Avnir on his 65th birthday.

  15. Mid-IR supercontinuum generation beyond 7 μm using a silica-fluoride-chalcogenide fiber cascade

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Moselund, Peter M.; Petersen, Christian

    2016-01-01

    and fluoride fibers by an amplified 1.55 μm nanosecond diode laser. By pumping a commercial Ge10As22Se68 single-material photonic crystal fiber with 135.7 mW of the pump continuum from 3.5- 4.4 μm, we obtained a continuum up to 7.2 μm with a total output power after the collimating lens of 54.5 mW, and 3.7 m......We report on an experimental demonstration of mid-infrared cascaded supercontinuum generation in commercial silica, fluoride, and chalcogenide fibers as a potentially cheap and practical alternative to direct pumping schemes. A pump continuum up to 4.4 μm was generated in cascaded silica...

  16. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    Science.gov (United States)

    Fill, Matthias; Debernardi, Pierluigi; Felder, Ferdinand; Zogg, Hans

    2013-11-01

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  17. Lead-chalcogenide mid-infrared vertical external cavity surface emitting lasers with improved threshold: Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Fill, Matthias [ETH Zurich, Laser Spectroscopy and Sensing Lab, 8093 Zurich (Switzerland); Phocone AG, 8005 Zurich (Switzerland); Debernardi, Pierluigi [IEIIT-CNR, Torino 10129 (Italy); Felder, Ferdinand [Phocone AG, 8005 Zurich (Switzerland); Zogg, Hans [ETH Zurich (Switzerland)

    2013-11-11

    Mid-infrared Vertical External Cavity Surface Emitting Lasers (VECSEL) based on narrow gap lead-chalcogenide (IV-VI) semiconductors exhibit strongly reduced threshold powers if the active layers are structured laterally for improved optical confinement. This is predicted by 3-d optical calculations; they show that lateral optical confinement is needed to counteract the anti-guiding features of IV-VIs due to their negative temperature dependence of the refractive index. An experimental proof is performed with PbSe quantum well based VECSEL grown on a Si-substrate by molecular beam epitaxy and emitting around 3.3 μm. With proper mesa-etching, the threshold intensity is about 8-times reduced.

  18. An overview of the Fe-chalcogenide superconductors

    International Nuclear Information System (INIS)

    Wu, M K; Wen, Y C; Chen, T K; Chang, C C; Wu, P M; Wang, M J; Lin, P H; Lee, W C

    2015-01-01

    This review intends to summarize recent advancements in FeSe and related systems. The FeSe and related superconductors are currently receiving considerable attention for the high critical temperature (T C ) observed and for many similar features to the high T C cuprate superconductors. These similarities suggest that understanding the FeSe-based compounds could potentially help our understanding of the cuprates. We begin the review by presenting common features observed in the FeSe- and FeAs-based systems. Then we discuss the importance of careful control of the material preparation allowing for a systematic structure characterization. With this control, numerous rich phases have been observed. Importantly, we suggest that the Fe-vacancy ordered phases found in the FeSe-based compounds, which are non-superconducting magnetic Mott insulators, are the parent compounds of the superconductors. Superconductivity can emerge from the parent phases by disordering the Fe vacancy order, often by a simple annealing treatment. Then we review physical properties of the Fe chalcogenides, specifically the optical properties and angle-resolved photoemission spectroscopy (ARPES) results. From the literature, strong evidence points to the existence of orbital modification accompanied by a gap-opening, prior to the structural phase transition, which is closely related to the occurrence of superconductivity. Furthermore, strong lattice to spin coupling are important for the occurrence of superconductivity in FeSe. Therefore, it is believed that the iron selenides and related compounds will provide essential information to understand the origin of superconductivity in the iron-based superconductors, and possibly the superconducting cuprates. (topical review)

  19. Modelling of curium and americium behaviour during separation with displacing complexing chromatography

    International Nuclear Information System (INIS)

    Chuveleva, Eh.A.; Kharitonov, O.V.; Firsova, L.A.

    1994-01-01

    Certain heavy rare earths, curium and americium were separated by the method of displacement complexing chromatography using DTPA solutions and solutions containing DTPA and citric acid as eluents. Separation factors of rare earths and curium (americium) were calculated. Imitators for curium and americium separation were suggested: thulium for curium elution using 0.025 mol/l DTPA, holmium-for curium elution using 0.025 mol/l DTPA in the presence of 0.025 mol/l citric acid; terbium can serve as the imitator in both cases. 5 refs., 5 figs

  20. Synthesis and Characterization of an Earth-Abundant Cu2BaSn(S,Se)4 Chalcogenide for Photoelectrochemical Cell Application.

    Science.gov (United States)

    Shin, Donghyeop; Ngaboyamahina, Edgard; Zhou, Yihao; Glass, Jeffrey T; Mitzi, David B

    2016-11-17

    Cu 2 BaSnS 4-x Se x films consisting of earth-abundant metals have been examined for photocathode application. Films with different Se contents (i.e., Cu 2 BaSnS 4-x Se x with x ≤ 2.4) were synthesized using a cosputter system with post-deposition sulfurization/selenization annealing treatments. Each film adopts a trigonal P3 1 crystal structure, with progressively larger lattice constants and with band gaps shifting from 2.0 to 1.6 eV, as more Se substitutes for S in the parent compound Cu 2 BaSnS 4 . Given the suitable bandgap and earth-abundant elements, the Cu 2 BaSnS 4-x Se x films were studied as prospective photocathodes for water splitting. Greater than 6 mA/cm 2 was obtained under illumination at -0.4 V versus reversible hydrogen electrode for Pt/Cu 2 BaSnS 4-x Se x films with ∼60% Se content (i.e., x = 2.4), whereas a bare Cu 2 BaSnS 4-x Se x (x = 2.4) film yielded ∼3 mA/cm 2 at -0.4 V/RHE.

  1. Physico-chemical study of erbium, thulium ytterbium and lutetium butyrates

    International Nuclear Information System (INIS)

    Loginova, V.E.; Dvornikova, L.M.; Khazov, L.A.; Rubinshtejn, A.S.

    1975-01-01

    Er-Lu butyrates have been obtained. The crystals of the obtained salts had an identical shape of combinations of hexagonal prisms and pyramids. The values of the refraction index, measured by the method of circular screening and use of immersion liquids, were found to be close to each other in all the salts considered. The densities of the crystallohydrates of rare earth element butyrates, measured by the pycnometric method in isooctane, increases in the order of Er, Tm, Lu: 1.73; 1.74; 1.79 g/cm 3 , respectively. Infrared spectra of rare earth element butyrates were studied, and the main ware frequencies of maximum absorption were determined with a view of finding the character of the bond between the metal and the anion. A thermo-differential and a thermo-gravimetric investigation of rare earth element butyrates was carried out

  2. Ge and As x-ray absorption fine structure spectroscopic study of homopolar bonding, chemical order, and topology in Ge-As-S chalcogenide glasses

    International Nuclear Information System (INIS)

    Sen, S.; Ponader, C.W.; Aitken, B.G.

    2001-01-01

    The coordination environments of Ge and As atoms in Ge x As y S 1-x-y glasses with x:y=1:2, 1:1, and 2.5:1 and with wide-ranging S contents have been studied with Ge and As K-edge x-ray absorption fine structure spectroscopy. The coordination numbers of Ge and As atoms are found to be 4 and 3, respectively, in all glasses. The first coordination shells of Ge and As atoms in the stoichiometric and S-excess glasses consist of S atoms only, implying the preservation of chemical order at least over the length scale of the first coordination shell. As-As homopolar bonds are found to appear at low and intermediate levels of S deficiency, whereas Ge-Ge bonds are formed only in strongly S-deficient glasses indicating clustering of metal atoms and violation of chemical order in S-deficient glasses. The composition-dependent variation in chemical order in chalcogenide glasses has been hypothesized to result in topological changes in the intermediate-range structural units. The role of such topological transitions in controlling the structure-property relationships in chalcogenide glasses is discussed

  3. Chalcogenide glass-ceramic with self-organized heterojunctions: application to photovoltaic solar cells

    Directory of Open Access Journals (Sweden)

    Zhang Xianghua

    2018-01-01

    Full Text Available In this work, we present for the first time the concept of chalcogenide glass-ceramic for photovoltaic applications with the GeSe2–Sb2Se3–CuI system. It has been demonstrated that thin films, deposited with the sputtering technique, are amorphous and can be crystallized with appropriate heat treatment. The thin film glass-ceramic behaves as a p-type semiconductor, even if it contains p-type Cu2GeSe3 and n-type Sb2Se3. The conductivity of Sb2Se3 has been greatly improved by appropriate iodine doping. The first photovoltaic solar cells based on the association of iodine-doped Sb2Se3 and the glass-ceramic thin films give a short-circuit current density JSC of 10 mA/cm2 and an open-circuit voltage VOC of 255 mV, with a power conversion efficiency of about 0.9%.

  4. High-pressure syntheses of lanthanide polysulfides and polyselenides LnX_1_._9 (Ln = Gd-Tm, X = S, Se)

    International Nuclear Information System (INIS)

    Mueller, Carola J.; Schwarz, Ulrich; Doert, Thomas

    2012-01-01

    The polysulfides LnS_1_._9 and polyselenides LnSe_1_._9 of the lanthanide metals from gadolinium to thulium were prepared by high-pressure high-temperature synthesis. The compounds adopt the tetragonal CeSe_1_._9 structure type in space group P4_2/n (No. 86) with lattice parameters of 8.531 Aa ≤ a ≤ 8.654 Aa and 15.563 Aa ≤ c ≤ 15.763 Aa for the sulfides and 8.869 Aa ≤ a ≤ 9.076 Aa and 16.367 Aa ≤ c ≤ 16.611 Aa for the selenides. The atomic pattern consists of puckered double slabs [LnX]"+ and planar chalcogenide layers with ten possible chalcogen positions, of which eight are occupied by chalcogen atoms forming dinuclear X_2"2"- dianions, one by a single X"2"- ion and one remaining vacant. This resembles a √5 x √5 x 2 superstructure of the ZrSSi aristotype. Structural relationships to the aristotype and the related lanthanide polychalcogenides LnX_2_-_δ (Ln = La-Tm, X = S-Te, δ = 0 - 0.3) are discussed. The samples synthesized under high-pressure conditions (p > 1 GPa) decompose slowly under release of sulfur or selenium at ambient conditions. The crystal structure of a partially degraded thulium-polysulfide sample can be described as an incommensurate variant of the original TmS_1_._9 motif. Additionally, the isostructural ternary compound Gd(S_1_-_xSe_x)_1_._9 was synthesized and characterized by powder X-ray diffraction. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Synthesis and Characterization of Novel Transition Metal Chalcogenide Phases for Energy Storage, Energy Conversion and Optoelectronics

    Science.gov (United States)

    Chen, Erica Maxine

    Today's energy needs are primarily provided by fossil fuels, which are harvested from the earth. Consuming fossil fuels to provide energy for civilization releases products into the atmosphere that contribute to climate change. Ongoing efforts to combat the existential crisis which climate change presents many of the emerging and commercialized technologies for solar, thermoelectric and battery applications involve transition metal chalcogenides. Some of the materials used for these applications are expensive and rare, such as gallium, vanadium and indium, or have no merits towards environmental stewardship, such as cadmium and lead. Thus, the purpose of this work is to further the ongoing effort to discover and develop new materials which are able to meet or exceed benchmarks for their application. This work focuses on the development of various metal chalcogenide material systems featuring d-block transition metals selected for their contribution to alter structure and properties. Various thermal, electronic and optical properties can be changed through substitution or doping with additional elements to affect to the base composition or as part of a gradient composition series. After an extensive description of experimental methods which describe the associated materials synthesis, processing and characterization techniques in chapter 2, chapter 3 explores the Cu4-xLixS 2 phases for their contribution as further evidence in the formation of lithiated copper sulfide phases as part of the intercalation reaction before being converted to the binaries copper and lithium sulfide. Chapter 4 documents the development of Cu4TiSe4, a novel material with potential for thin-film photovoltaic technologies with its band gap in the range where the solar spectrum is the most bountiful (Eg,indirect = 1.16 eV, Eg,direct = 1.34 eV), an outstanding optical absorbance ( > 10-4 cm-1) outperforming commercially successful materials in the solar spectrum, and suitable for thin

  6. The pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 at high pressure: a mechanism for the zinc blende to cinnabar reconstructive phase transition

    CERN Document Server

    Kozlenko, D P; Ehm, L; Hull, S; Savenko, B N; Shchennikov, V V; Voronin, V I

    2003-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 has been studied by x-ray and neutron powder diffraction at pressures up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P approx 1 GPa. A phenomenological model of this reconstructive phase transition based on a displacement mechanism is proposed. Analysis of the geometrical relationship between the zinc blende and the cinnabar phases has shown that the possible order parameter for the zinc blende-cinnabar structural transformation is the spontaneous strain e sub 4. This assignment agrees with the previously observed high pressure behaviour of the elastic constants of some mercury chalcogenides.

  7. Mid-infrared performance of single mode chalcogenide fibers

    Science.gov (United States)

    Cook, Justin; Sincore, Alex; Tan, Felix; El Halawany, Ahmed; Riggins, Anthony; Shah, Lawrence; Abouraddy, Ayman F.; Richardson, Martin C.; Schepler, Kenneth L.

    2018-02-01

    Due to the intrinsic absorption edge in silica near 2.4 μm, more exotic materials are required to transmit laser power in the IR such as fluoride or chalcogenide glasses (ChGs). In particular, ChG fibers offer broad IR transmission with low losses fibers at four different infrared wavelengths: 2053 nm, 2520 nm and 4550 nm. Polymer clad ChG fibers were drawn with 12.3 μm and 25 μm core diameters. Testing at 2053 nm was accomplished using a > 15 W, CW Tm:fiber laser. Power handling up to 10.2 W with single mode beam quality has been demonstrated, limited only by the available Tm:fiber output power. Anti-reflective coatings were successfully deposited on the ChG fiber facets, allowing up to 90.6% transmission with 12.2 MW/cm2 intensity on the facet. Single mode guidance at 4550 nm was also demonstrated using a quantum cascade laser (QCL). A custom optical system was constructed to efficiently couple the 0.8 NA QCL radiation into the 0.2 NA ChG fiber, allowing for a maximum of 78% overlap between the QCL radiation and fundamental mode of the fiber. With an AR-coated, 25 μm core diameter fiber, >50 mW transmission was demonstrated with > 87% transmission. Finally, we present results on fiber coupling from a free space Cr:ZnSe resonator at 2520 nm.

  8. An integrated fiber and stone basket device for use in Thulium fiber laser lithotripsy

    Science.gov (United States)

    Wilson, Christopher R.; Hutchens, Thomas C.; Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-03-01

    The Thulium fiber laser (TFL) is being explored as an alternative laser lithotripter to the Holmium:YAG laser. The TFL's superior near-single mode beam profile enables higher power transmission through smaller fibers with reduced proximal fiber tip damage. Recent studies have also reported that attaching hollow steel tubing to the distal fiber tip decreases fiber degradation and burn-back without compromising stone ablation rates. However, significant stone retropulsion was observed, which increased with pulse rate. In this study, the hollow steel tip fiber design was integrated with a stone basket to minimize stone retropulsion during ablation. A device was constructed consisting of a 100-μm-core, 140-μm-OD silica fiber outfitted with 5-mm-long stainless steel tubing at the distal tip, and integrated with a 1.3-Fr (0.433-mm-OD) disposable nitinol wire basket, to form an overall 1.9-Fr (0.633-mm- OD) integrated device. This compact design may provide several potential advantages including increased flexibility, higher saline irrigation rates through the ureteroscope working channel, and reduced fiber tip degradation compared to separate fiber and stone basket manipulation. TFL pulse energy of 31.5 mJ with 500 μs pulse duration and pulse rate of 500 Hz was delivered through the integrated fiber/basket device in contact with human uric acid stones, ex vivo. TFL stone ablation rates measured 1.5 +/- 0.2 mg/s, comparable to 1.7 +/- 0.3 mg/s (P > 0.05) using standard bare fiber tips separately with a stone basket. With further development, this device may be useful for minimizing stone retropulsion, thus enabling more efficient TFL lithotripsy at higher pulse rates.

  9. Ultrabroadband, Midinfrared Supercontinuum Generation in Dispersion Engineered As2Se3-Based Chalcogenide Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    Rim Cherif

    2013-01-01

    Full Text Available Small core As2Se3-based photonic crystal fibers (PCFs are accurately characterized for compact, high power, ultrabroadband, and coherent supercontinuum generation within few millimeters fiber length. Bandwidths of ~5.3 μm, 5 μm, and 3.2 μm were calculated for hole-to-hole spacings Λ= 3.5 μm, 4.5 μm, and 5.5 μm, respectively. The spectral broadening in the chalcogenide PCF is mainly caused by self-phase modulation and Raman-induced soliton self-frequency shift. The results show that small core As2Se3 PCFs are a promising candidate for mid-IR SCG up to ~8 μm.

  10. Correlated structural and electronic phase transformations in transition metal chalcogenide under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunyu, E-mail: licy@hpstar.ac.cn, E-mail: yanhao@hpstar.ac.cn; Ke, Feng; Yu, Zhenhai; Chen, Zhiqiang; Yan, Hao, E-mail: licy@hpstar.ac.cn, E-mail: yanhao@hpstar.ac.cn [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Hu, Qingyang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015 (United States); Zhao, Jinggeng [Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China)

    2016-04-07

    Here, we report comprehensive studies on the high-pressure structural and electrical transport properties of the layered transition metal chalcogenide (Cr{sub 2}S{sub 3}) up to 36.3 GPa. A structural phase transition was observed in the rhombohedral Cr{sub 2}S{sub 3} near 16.5 GPa by the synchrotron angle dispersive X-ray diffraction measurement using a diamond anvil cell. Through in situ resistance measurement, the electric resistance value was detected to decrease by an order of three over the pressure range of 7–15 GPa coincided with the structural phase transition. Measurements on the temperature dependence of resistivity indicate that it is a semiconductor-to-metal transition in nature. The results were also confirmed by the electronic energy band calculations. Above results may shed a light on optimizing the performance of Cr{sub 2}S{sub 3} based applications under extreme conditions.

  11. Compounds of divalent thulium, neodymium, and dysprosium

    International Nuclear Information System (INIS)

    Bochkarev, M.N.; Fedushkin, I.L.; Trifonov, A.A.; Fagin, A.A.; Kirillov, E.N.

    1998-01-01

    Full text: Judging on the Ln(II)/Ln(III) potentials Tm, Nd, and Dy are the first candidates after Sm, Eu, and Yb for the preparation of Ln(II) compounds. The first molecular Tm(II) derivatives, TmI 2 (DME) 3 (I), has been obtained recently by the reduction of TmI 3 with thulium metal in DME (1,2-dimethoxyethane). The tetrahydrofuran (THF) analogue, TmI 2 (THF) 5 , was synthesized similarly. In the case of TmBI 3 and TmCl 3 the same reaction does not occur. The compound I is inert toward naphthalene, anthracene, phenylacetylene, CpH, (Me 3 Si) 2 NH, 2,4,6-t-Bu 3 C 6 H 2 OH, Cp 2 V, Cp 2 Fe, or Cp 3 Er. The reactions of I with PhOH, Ph 3 COH, 3,6-t-Bu 2 C 6 H 2 (OH) 2 -1,2 (Cat), and calixarene (Cal) produce, Ph 3 COTmI 2 (DME) 2 , (Cat)TmI(DME) 2 , and (Cal)TmI, correspondingly. The attempts to use I for preparation of the other Tm(II) complexes failed. In all cases (reactions with C 10 H 8 Li, CpK, [1,3-(Me 3 Si) 2 C 5 H 3 ]MgCl, and [Cp'-SiMe 2 -Ind']K 2 ) the Tm(III) derivatives (respectively, (C 10 H 8 Tm) 2 C 10 H 8 , Cp 3 Tm, [1,3-(Me 3 Si) 2 C 5 H 3 ] 2 TmCl, and Cp'-SiMe 2 -Ind')TmI) were obtained. The new stable Tm(II) complex, PhOTmI(DME) 2 (II), has been synthesized by the reduction of I with potassium metal in DME. The product was isolated as the green crystals with μ eff 4.6 BM. Unlike TmI 3 , NdI 3 and DyI 3 can not be reduced by metallic neodymium, dysprosium or sodium in DME or THF. Re-investigation of the product formed in the reaction of NdCl 3 with a lack of Li and naphthalene which was claimed before as NdCl 2 (THF) 2 has shown that this is a mixture of Nd(III) naphthalene complexes of the type [(NdCl 2 (THF) 2 ]nC 10 H 8 (n = 4- 7) (III). Nevertheless the product may be used instead of NdCl 2 for the preparation of RNdCl 2 type complexes. The reactions of III with t-BuNCH=CHNBu-t (DAD), PhCH=CHCH=CHPh (DBD), and PhCH=CHPh afford (DAD)NdCl 2 (THF) 2 , (DBD)[NdCl 2 (THF) 2 ] 2 , and (PhCHCHPh)[NdCl 2 ] 2 (THF) 3 , respectively. The iodides of Nd

  12. Measurements of the total neutron cross-section of cerium and thulium in the energy range from 1.8 MeV to 1.8 eV

    International Nuclear Information System (INIS)

    Adib, M.; Maayouf, R.M.A.; Abdel-Kawy, A.; Abu-Elnour, F.; Hamouda, I.

    1979-01-01

    Total neutron cross-section measurements have been carried out for cerium and thulium in the energy range from 1.8 meV to 1.8 eV. The measurements were performed using the time-of-flight spectrometer installed in front of one of the horizontal channels of the ET-RR-1 reactor. The obtained total neutron cross-sections were analyzed using the single level Breit-Wigner formula and the magnetic form factor. The potential scattering cross-section of Ce was found to be (3.14 +- 0.3) barns. Its coherent scattering amplitude was determined from the Bragg reflections observed in the total neutron cross-section of CeO 2 and found to be (4,8 +- 0.2) fm. The potential scattering and absorption cross-sections of Tm, at E = 0.025 eV, were found to be (7.5 +- 0.7) barns and (89.1 +- 4.1) barns respectively. (orig.) [de

  13. Magnetic excitations in iron chalcogenide superconductors.

    Science.gov (United States)

    Kotegawa, Hisashi; Fujita, Masaki

    2012-10-01

    Nuclear magnetic resonance and neutron scattering experiments in iron chalcogenide superconductors are reviewed to make a survey of the magnetic excitations in FeSe, FeSe 1- x Te x and alkali-metal-doped A x Fe 2- y Se 2 ( A = K, Rb, Cs, etc). In FeSe, the intimate relationship between the spin fluctuations and superconductivity can be seen universally for the variations in the off-stoichiometry, the Co-substitution and applied pressure. The isovalent compound FeTe has a magnetic ordering with different wave vector from that of other Fe-based magnetic materials. The transition temperature T c of FeSe increases with Te substitution in FeSe 1- x Te x with small x , and decreases in the vicinity of the end member FeTe. The spin fluctuations are drastically modified by the Te substitution. In the vicinity of the end member FeTe, the low-energy part of the spin fluctuation is dominated by the wave vector of the ordered phase of FeTe; however, the reduction of T c shows that it does not support superconductivity. The presence of same wave vector as that of other Fe-based superconductors in FeSe 1- x Te x and the observation of the resonance mode demonstrate that FeSe 1- x Te x belongs to the same group as most of other Fe-based superconductors in the entire range of x , where superconductivity is mediated by the spin fluctuations whose wave vector is the same as the nesting vector between the hole pockets and the electron pockets. On the other hand, the spin fluctuations differ for alkali-metal-doped A x Fe 2- y Se 2 and FeSe or other Fe-based superconductors in their wave vector and strength in the low-energy part, most likely because of the different Fermi surfaces. The resonance mode with different wave vector suggests that A x Fe 2- y Se 2 has an exceptional superconducting symmetry among Fe-based superconductors.

  14. Pressure induced structural transitions in Lead Chalcogenides and its influence on thermoelectric properties

    Science.gov (United States)

    Petersen, John; Spinks, Michael; Borges, Pablo; Scolfaro, Luisa

    2012-03-01

    Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric (TE) properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity, with a possible application being in engine exhaust. Here, we examine the effects of altering the lattice parameter on total ground state energy and the band gap using first principles calculations performed within Density Functional Theory and the Projector Augmented Wave approach and the Vienna Ab-initio Simulation Package (VASP-PAW) code. Both PbTe and PbSe, in NaCl, orthorhombic, and CsCl structures are considered. It is found that altering the lattice parameter, which is analogous to applying external pressure on the material experimentally, has notable effects on both ground state energy and the band gap. The implications of this behavior in the TE properties of these materials are analyzed.

  15. The use of castor oil and ricinoleic acid in lead chalcogenide nanocrystal synthesis

    Science.gov (United States)

    Kyobe, Joseph W. M.; Mubofu, Egid B.; Makame, Yahya M. M.; Mlowe, Sixberth; Revaprasadu, Neerish

    2016-08-01

    A green solution-based thermolysis method for the synthesis of lead chalcogenide (PbE, E = S, Se, Te) nanocrystals in castor oil (CSTO) and its isolate ricinoleic acid (RA) is described. The blue shift observed from the optical spectra of CSTO and RA-capped PbE nanocrystals (NCs) confirmed the evidence of quantum confinement. The dimensions of PbE NCs obtained from NIR absorption spectra, transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were in good agreement. The particle sizes estimated were in the range of 20, 25, and 130 nm for castor oil-capped PbS, PbSe, and PbTe, respectively. Well-defined close to cubic-shaped particles were observed in the scanning electron microscopy (SEM) images of PbSe and PbTe nanocrystals. The high-resolution TEM and selective area electron diffraction (SAED) micrographs of the as-synthesized crystalline PbE NCs showed distinct lattice fringes with d-spacing distances corroborating with the standard values reported in literature.

  16. Valence band electronic structure of Pd based ternary chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mishra, P. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Goyal, R.; Awana, V.P.S. [National Physical Laboratory(CSIR), Dr. K. S. Krishnan Road, New Delhi 110012 (India); Sekhar, B.R., E-mail: sekhar@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2016-12-15

    Highlights: • VB Photoemission study and DFT calculations on Pd based ternary superconductors are presented. • Nb{sub 2}Pd{sub 0.95}S{sub 5} shows a temperature dependent pseudogap. • VB spectral features of ternary superconductors are correlated to their structural geometry. - Abstract: We present a comparative study of the valence band electronic structure of Pd based ternary chalcogenide superconductors Nb{sub 2}Pd{sub 0.95}S{sub 5}, Ta{sub 2}Pd{sub 0.97}S{sub 6} and Ta{sub 2}Pd{sub 0.97}Te{sub 6} using experimental photoemission spectroscopy and density functional based theoretical calculations. We observe a qualitatively similarity between valence band (VB) spectra of Nb{sub 2}Pd{sub 0.95}S{sub 5} and Ta{sub 2}Pd{sub 0.97}S{sub 6}. Further, we find a pseudogap feature in Nb{sub 2}Pd{sub 0.95}S{sub 5} at low temperature, unlike other two compounds. We have correlated the structural geometry with the differences in VB spectra of these compounds. The different atomic packing in these compounds could vary the strength of inter-orbital hybridization among various atoms which leads to difference in their electronic structure as clearly observed in our DOS calculations.

  17. Fragility of chalcogenide glass in relation to characteristic temperature T0/Tg

    Science.gov (United States)

    Shaker, A. M.; Shanker Rao, T.; Lilly Shanker Rao, T.; Venkataraman, K.

    2018-03-01

    The present study reports the mutual relationship between the fragility index m and the characteristic temperature T0/Tg. The fragility of the chalcogenide amorphous glass of Ge10Se50Te40 is calculated by utilizing glass transition temperature (Tg) measured by DSC (Differential Scanning Calorimetry) at different heating rates (β) in the range 5 to 20 K/min. Vogel-Fulcher-Tammann (VFT) equation is fitted to the data of Tg. In addition to the VFT method, three other methods are also used to evaluate m. The fragility index m of the Ge10Se50Te40 system showed the trend of decrease with increasing heating rate but remained stable around 22 for the heating rate 10 K/min. The value of m for the glass is near the lower limit (m ≈ 16) this indicates the alloy is a strong glass forming material in accordance of Angell’s interpretation of fragility. The calculated values of characteristic temperature T0/Tg is very close to 1 which also indicates that clearly the system is most fragile.

  18. Scanning tunneling microscopy on iron-chalcogenide superconductor Fe(Se, Te) single crystal

    International Nuclear Information System (INIS)

    Ukita, R.; Sugimoto, A.; Ekino, T.

    2011-01-01

    We show scanning tunneling microscopy/spectroscopy (STM/STS) results of Fe(Se, Te). STM topography shows square arrangements of spots with the lattice spacing 0.37 nm. Te and Se atoms are randomly distributed in the STM topography. The STM topography of FeTe exhibits clusters of separated iron atoms. We have investigated the iron-chalcogenide superconductor Fe(Se, Te) using a low-temperature scanning tunneling microscopy/spectroscopy (STM/STS) technique. STM topography at 4.9 K shows clear regular square arrangements of spots with the lattice spacing ∼0.37 nm, from which what we observe are attributed to Se or Te atomic plane. In the topography, brighter and darker atomic spots are randomly distributed, which are most probably due to Te and Se atoms, respectively. For the FeTe compound, the topography exhibits clusters of the bright spots probably arising from separated iron atoms distributing over several Te lattice sites. The STS measurements clarify the existence of the large-size gap with 2Δ = 0.4-0.6 eV.

  19. Alkali-templated surface nanopatterning of chalcogenide thin films: a novel approach toward solar cells with enhanced efficiency.

    Science.gov (United States)

    Reinhard, Patrick; Bissig, Benjamin; Pianezzi, Fabian; Hagendorfer, Harald; Sozzi, Giovanna; Menozzi, Roberto; Gretener, Christina; Nishiwaki, Shiro; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-05-13

    Concepts of localized contacts and junctions through surface passivation layers are already advantageously applied in Si wafer-based photovoltaic technologies. For Cu(In,Ga)Se2 thin film solar cells, such concepts are generally not applied, especially at the heterojunction, because of the lack of a simple method yielding features with the required size and distribution. Here, we show a novel, innovative surface nanopatterning approach to form homogeneously distributed nanostructures (<30 nm) on the faceted, rough surface of polycrystalline chalcogenide thin films. The method, based on selective dissolution of self-assembled and well-defined alkali condensates in water, opens up new research opportunities toward development of thin film solar cells with enhanced efficiency.

  20. Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography.

    Science.gov (United States)

    Cazac, V; Meshalkin, A; Achimova, E; Abashkin, V; Katkovnik, V; Shevkunov, I; Claus, D; Pedrini, G

    2018-01-20

    Surface relief gratings and refractive index gratings are formed by direct holographic recording in amorphous chalcogenide nanomultilayer structures As 2 S 3 -Se and thin films As 2 S 3 . The evolution of the grating parameters, such as the modulation of refractive index and relief depth in dependence of the holographic exposure, is investigated. Off-axis digital holographic microscopy is applied for the measurement of the photoinduced phase gratings. For the high-accuracy reconstruction of the wavefront (amplitude and phase) transmitted by the fabricated gratings, we used a computational technique based on the sparse modeling of phase and amplitude. Both topography and refractive index maps of recorded gratings are revealed. Their separated contribution in diffraction efficiency is estimated.

  1. Propagation of evanescent waves in multimode chalcogenide fiber immersed in an aqueous acetone solution: theory and experiment

    Science.gov (United States)

    Korsakova, S. V.; Romanova, E. A.; Velmuzhov, A. P.; Kotereva, T. V.; Sukhanov, M. V.; Shiryaev, V. S.

    2017-04-01

    Chalcogenide fibers are considered as a base for creation of a fiber-optical platform for the mid-IR evanescent wave spectroscopy. In this work, transmittance of a multimode fiber made of Ge26As17Se25Te32 glass, immersed into an aqueous acetone solution was measured in the range of wavelengths 5 - 9 microns at various concentrations of the solution. A theoretical approach based on electromagnetic theory of optical fibers has been applied for analysis of evanescent modes propagation in the fiber. Attenuation coefficients calculated for each HE1m evanescent mode increase with the mode radial order m. This effect can be used for optimisation of the fiber-optic sensing elements for the mid-IR spectroscopy.

  2. Investigation of the dynamics of a nonlinear optical response in glassy chalcogenide semiconductors by the pump–probe method

    Science.gov (United States)

    Romanova, E. A.; Kuzyutkina, Yu S.; Shiryaev, V. S.; Guizard, S.

    2018-03-01

    An analysis of the results of measurements by using the pump–probe method with a femtosecond resolution in time and computer simulation of the charge carrier kinetics have revealed two types of a nonlinear optical response in samples of chalcogenide glasses belonging to the As – S – Se system, irradiated by 50-fs laser pulses with a wavelength of 0.79 μm. The difference in the nonlinear dynamics is due to the difference in the photoexcitation character, because laser radiation can be absorbed either through bound states in the band gap or without their participation, depending on the ratio of the pump photon energy to the bandgap energy.

  3. A library of atomically thin metal chalcogenides.

    Science.gov (United States)

    Zhou, Jiadong; Lin, Junhao; Huang, Xiangwei; Zhou, Yao; Chen, Yu; Xia, Juan; Wang, Hong; Xie, Yu; Yu, Huimei; Lei, Jincheng; Wu, Di; Liu, Fucai; Fu, Qundong; Zeng, Qingsheng; Hsu, Chuang-Han; Yang, Changli; Lu, Li; Yu, Ting; Shen, Zexiang; Lin, Hsin; Yakobson, Boris I; Liu, Qian; Suenaga, Kazu; Liu, Guangtong; Liu, Zheng

    2018-04-01

    Investigations of two-dimensional transition-metal chalcogenides (TMCs) have recently revealed interesting physical phenomena, including the quantum spin Hall effect 1,2 , valley polarization 3,4 and two-dimensional superconductivity 5 , suggesting potential applications for functional devices 6-10 . However, of the numerous compounds available, only a handful, such as Mo- and W-based TMCs, have been synthesized, typically via sulfurization 11-15 , selenization 16,17 and tellurization 18 of metals and metal compounds. Many TMCs are difficult to produce because of the high melting points of their metal and metal oxide precursors. Molten-salt-assisted methods have been used to produce ceramic powders at relatively low temperature 19 and this approach 20 was recently employed to facilitate the growth of monolayer WS 2 and WSe 2 . Here we demonstrate that molten-salt-assisted chemical vapour deposition can be broadly applied for the synthesis of a wide variety of two-dimensional (atomically thin) TMCs. We synthesized 47 compounds, including 32 binary compounds (based on the transition metals Ti, Zr, Hf, V, Nb, Ta, Mo, W, Re, Pt, Pd and Fe), 13 alloys (including 11 ternary, one quaternary and one quinary), and two heterostructured compounds. We elaborate how the salt decreases the melting point of the reactants and facilitates the formation of intermediate products, increasing the overall reaction rate. Most of the synthesized materials in our library are useful, as supported by evidence of superconductivity in our monolayer NbSe 2 and MoTe 2 samples 21,22 and of high mobilities in MoS 2 and ReS 2 . Although the quality of some of the materials still requires development, our work opens up opportunities for studying the properties and potential application of a wide variety of two-dimensional TMCs.

  4. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    Science.gov (United States)

    Parker, David; Singh, David J

    2013-01-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature. PMID:27877610

  5. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials

    Directory of Open Access Journals (Sweden)

    David Parker and David J Singh

    2013-01-01

    Full Text Available We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli—roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  6. Graphene-PVA saturable absorber for generation of a wavelength-tunable passively Q-switched thulium-doped fiber laser in 2.0 µm

    Science.gov (United States)

    Ahmad, H.; Samion, M. Z.; Sharbirin, A. S.; Norizan, S. F.; Aidit, S. N.; Ismail, M. F.

    2018-05-01

    Graphene, a 2D material, has been used for generation of pulse lasers due to the presence of its various fascinating optical properties compared to other materials. Hence in this paper, we report the first demonstration of a thulium doped fiber laser with a wavelength-tunable, passive Q-switched output using a graphene-polyvinyl-alcohol composite film for operation in the 2.0 µm region. The proposed laser has a wavelength-tunable output spanning from 1932.0 nm to 1946.0 nm, giving a total tuning range of 14.0 nm. The generated pulse has a maximum repetition rate and average output power of 36.29 kHz and 0.394 mW at the maximum pump power of 130.87 mW, as well as a pulse width of 6.8 µs at this pump power. The generated pulses have a stable output, having a signal-to-noise ratio of 31.75 dB, and the laser output is stable when tested over a period of 60 min. The proposed laser would have multiple applications for operation near the 2.0 micron region, especially for bio-medical applications and range-finding.

  7. Chalcogenide oxygen reduction reaction catalysis: X-ray photoelectron spectroscopy with Ru, Ru/Se and Ru/S samples emersed from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Lewera, A. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Department of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw (Poland); Inukai, J. [Clean Energy Research Center, University of Yamanashi, 7-32 Miyamae-cho, Kofu 400-0006 (Japan); Zhou, W.P. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Cao, D. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Duong, H.T. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Alonso-Vante, N. [Laboratory of Electrocatalysis, UMR-CNRS 6503, University of Poitiers, F-86022 Poitiers (France)]. E-mail: Nicolas.Alonso.Vante@univ-poitiers.fr; Wieckowski, A. [Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)]. E-mail: andrzej@scs.uiuc.edu

    2007-05-10

    Oxygen reduction Ru/Se and Ru/S fuel cell surface chalcogenide catalysts were prepared via chemical reaction of reduced Ru nanoparticles with selenium and sulfur in xylenes [D. Cao, A. Wieckowski, J. Inukai, N. Alonso-Vante, J. Electrochem. Soc. 153 (2006) A869]. The chalcogenide samples - as well as the starting chalcogens-free Ru nanoparticle material - were immobilized on a gold disk for X-ray Photoelectron Spectroscopy (XPS) characterization. While we found oxygen in most of the samples, predominantly from Ru oxides, we conclude that the oxygen on Ru/S may be located in subsurface sites: the subsurface oxygen. We also found that the transformation of the oxidized Ru black to metallic Ru required intensive electrochemical treatment, including hydrogen evolution. In contrast, five cyclic voltammetric scans in the potential range from 0.00 and 0.75 V versus RHE were sufficient to remove the oxygen forms from Ru/Se and, to a large extent, from Ru/S. We therefore conclude that Ru metal is protected against oxidation to Ru oxides by the chalcogens additives. The voltammetric treatment in the 0.00 and 0.75 V range also removed the SeO{sub 2} or SO {sub x} forms leaving anionic/elemental Se or S on the surface. Upon larger amplitude voltammetric cycling, from 0.00 to 1.20 V versus RHE, both Se and S were dissolved and the dissolution process was coincidental with the oxygen growth in/on the Ru samples.

  8. Chalcogenide oxygen reduction reaction catalysis: X-ray photoelectron spectroscopy with Ru, Ru/Se and Ru/S samples emersed from aqueous media

    International Nuclear Information System (INIS)

    Lewera, A.; Inukai, J.; Zhou, W.P.; Cao, D.; Duong, H.T.; Alonso-Vante, N.; Wieckowski, A.

    2007-01-01

    Oxygen reduction Ru/Se and Ru/S fuel cell surface chalcogenide catalysts were prepared via chemical reaction of reduced Ru nanoparticles with selenium and sulfur in xylenes [D. Cao, A. Wieckowski, J. Inukai, N. Alonso-Vante, J. Electrochem. Soc. 153 (2006) A869]. The chalcogenide samples - as well as the starting chalcogens-free Ru nanoparticle material - were immobilized on a gold disk for X-ray Photoelectron Spectroscopy (XPS) characterization. While we found oxygen in most of the samples, predominantly from Ru oxides, we conclude that the oxygen on Ru/S may be located in subsurface sites: the subsurface oxygen. We also found that the transformation of the oxidized Ru black to metallic Ru required intensive electrochemical treatment, including hydrogen evolution. In contrast, five cyclic voltammetric scans in the potential range from 0.00 and 0.75 V versus RHE were sufficient to remove the oxygen forms from Ru/Se and, to a large extent, from Ru/S. We therefore conclude that Ru metal is protected against oxidation to Ru oxides by the chalcogens additives. The voltammetric treatment in the 0.00 and 0.75 V range also removed the SeO 2 or SO x forms leaving anionic/elemental Se or S on the surface. Upon larger amplitude voltammetric cycling, from 0.00 to 1.20 V versus RHE, both Se and S were dissolved and the dissolution process was coincidental with the oxygen growth in/on the Ru samples

  9. Inner-sphere and outer-sphere complexes of yttrium(III), lanthanum (III), neodymium(III), terbium(III) and thulium(III) with halide ions in N,N-dimethylformamide

    International Nuclear Information System (INIS)

    Takahashi, Ryouta; Ishiguro, Shin-ichi

    1991-01-01

    The formation of chloro, bromo and iodo complexes of yttrium(III), and bromo and iodo complexes of lanthanum(III), neodymium(III), terbium(III) and thulium(III) has been studied by precise titration calorimetry in N,N-dimethylformamide (DMF) at 25 o C. The formation of [YCl] 2+ , [YCl 2 ] + , [YCl 3 ] and [YCl 4 ] - , and [MBr] 2+ and [MBr 2 ] + (M = Y, La, Nd, Tb, Tm) was revealed, and their formation constants, enthalpies and entropies were determined. It is found that the formation enthalpies change in the sequence ΔH o (Cl) > ΔH o (l), which is unusual for hard metal (III) ions. This implies that, unlike the chloride ion, the bromide ion forms outer-sphere complexes with the lanthanide(III) and yttrium(III) ions in DMF. Evidence for either an inner- or outer-sphere complex was obtained from 89 Y NMR spectra for Y(ClO 4 ) 3 , YCl 3 and YBr 3 DMF solutions at room temperature. (author)

  10. Preparation and physical properties of rare earth, alkaline earth, and transition metal ternary chalcogenides; Poluchenie i fizicheskie svojtsva trojnykh khal`kogenidov redkozemel`nykh, shchelochnykh i perekhodnykh ehlementov

    Energy Technology Data Exchange (ETDEWEB)

    Georgobiani, A N [RAN, Moskva (Russian Federation). Fizicheskij Inst. im. P.N.Lebedeva; Dzhabbarov, R B; Izzatov, B M; Musaeva, N N; Sultanov, F N; Tagiev, B G; Tagiev, O B [Inst. Fiziki im. G.M.Abdullaeva Akademii nauk Azerbajdzhana, Baku (Azerbaijan)

    1997-02-01

    A study was made on current-voltage characteristics, temperature dependences of electric conductivity and currents of thermoinduced depolarization of monocrystals, including EuGa{sub 2}S{sub 4} and (Ga{sub 2}S{sub 3}){sub 1-x}(Eu{sub 2}O{sub 3}){sub x} solid solutions. It is shown that these compounds, activated by europium, cerium, neodymium and other rare earths, manifest effective luminescence under the effect of ultraviolet and X-radiation, as well as under the effect of electron beams and electric field. 13 refs., 7 figs.

  11. Construction of Tm3+-PVC membrane sensor based on 1-(2-thiazolylazo)-2-naphthol as sensing material

    International Nuclear Information System (INIS)

    Zamani, Hassan Ali; Nekoei, Mehdi; Mohammadhosseini, Majid; Ganjali, Mohammad Reza

    2010-01-01

    In this study, a new thulium(III) membrane sensor was constructed. The proposed membrane sensor was fabricated based on a membrane containing 2% sodium tetraphenyl borate (NaTPB) as an anionic additive, 65% benzyl acetate (BA) as solvent mediator, 3% 1-(2-thiazolylazo)-2-naphthol (TN) as ionophore, and 30% poly(vinyl chloride) (PVC). The proposed Tm 3+ electrode exhibits a Nernstian response of 19.5 ± 0.2 mV per decade of thulium concentration, and has a lower detection limit of 8.7 x 10 -7 mol L -1 . The linear range of the sensors was 1.0 x 10 -6 to 1.0 x 10 -2 mol L -1 . It works well in the pH range of 3.2-9.5. Moreover, the recommended selective sensor revealed a comparatively satisfactory selectivity regarding most of the alkali, alkaline earth, some transition and heavy metal ions. The membrane sensor was applied to the determination of fluoride ions in mouth wash samples.

  12. Progress towards marketable earth-abundant chalcogenide solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Teodor; Gunawan, Oki; Chey, S Jay; Goislard de Monsabert, Thomas; Prabhakar, Aparna; Mitzi, David B., E-mail: dmitzi@us.ibm.com

    2011-08-31

    Kesterite-related photovoltaic materials are considered a promising alternative to CdTe and Cu(In,Ga)(S,Se){sub 2} absorbers, primarily because they are not reliant on scarce elements such as indium and tellurium or the heavy metal cadmium. Recently, we reported a performance breakthrough for this materials class, reaching by a simple hydrazine-based deposition technique 9.6% power conversion efficiency for Cu{sub 2}ZnSn(S,Se){sub 4} devices (40% improvement over vacuum-based methods). Here, more detailed characterization for a hydrazine-prepared device shows the potential of this technology for further efficiency improvement. We also present initial device results for Cu{sub 2}ZnSn(S,Se){sub 4} films deposited using a mixed water-hydrazine-based solvent, yielding devices with 8.1% efficiency.

  13. Glass transition behavior and crystallization kinetics of Cu0.3(SSe20)0.7 chalcogenide glass

    International Nuclear Information System (INIS)

    Soliman, A.A.

    2005-01-01

    The glass transition behavior and crystallization kinetics of Cu 0.3 (SSe 20 ) 0.7 chalcogenide glass were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD). Two crystalline phases (SSe 20 and Cu 2 Se) were identified after annealing the glass at 773 K for 24 h. The activation energy of the glass transition (E g ), the activation energy of crystallization (E c ), the Avrami exponent (n) and the dimensionality of growth (m) were determined. Results indicate that this glass crystallizes by a two-stage bulk crystallization process upon heating. The first transformation, in which SSe 20 precipitates from the amorphous matrix with a three-dimensional crystal growth. The second transformation, in which the residual amorphous phase transforms into Cu 2 Se compound with a two-dimensional crystal growth

  14. KFeSbTe3: A quaternary chalcogenide aerogel for preferential adsorption of polarizable hydrocarbons and gases

    KAUST Repository

    Ahmed, Ejaz

    2015-01-01

    The first telluride-based quaternary aerogel KFeSbTe3 is synthesized by a sol-gel metathesis reaction between Fe(OAc)2 and K3SbTe3 in dimethyl formamide. The aerogel has an exceptionally large surface area 652 m2 g-1 which is amongst the highest reported for chalcogenide-based aerogels. This predominantly mesoporous material shows preferential adsorption for toluene vapors over cyclohexane or cyclopentane and CO2 over CH4 or H2. The remarkably high adsorption capacity for toluene (9.31 mmol g-1) and high selectivity for gases (CO2/H2: 121 and CO2/CH4: 75) suggest a potential use of such materials in adsorption-based separation processes for the effective purification of hydrocarbons and gases. © The Royal Society of Chemistry 2015.

  15. Glass forming tendencies of chalcogenides of the system (As2Se3)sub(1-x):(T12Se)sub(x)

    International Nuclear Information System (INIS)

    Majid, C.A.

    1982-07-01

    In this paper glass forming capabilities of chalcogenide glasses based on As 2 Se 3 with T1 2 Se concentrations are discussed. The studies were made using the differential thermal analysis (DTA) technique. These studies show that the glass forming tendency of As 2 Se 3 decreases as the concentrations of T1 2 Se molecules are increased. Also these studies show that with addition of T1 2 Se, the glass transition temperature Tsub(g) of As 2 Se 3 decreases, suggesting a tendency for weaker bonding and hence less stability of T1-rich compositions. (author)

  16. Infrared and Raman spectroscopy study of AsS chalcogenide films prepared by plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Mochalov, Leonid; Dorosz, Dominik; Kudryashov, Mikhail; Nezhdanov, Aleksey; Usanov, Dmitry; Gogova, Daniela; Zelentsov, Sergey; Boryakov, Aleksey; Mashin, Alexandr

    2018-03-15

    AsS chalcogenide films, where As content is 60-40at.%, have been prepared via a RF non-equilibrium low-temperature argon plasma discharge, using volatile As and S as the precursors. Optical properties of the films were studied in UV-visible-NIR region in the range from 0.2 to 2.5μm. Infrared and Raman spectroscopy have been employed for the elucidation of the molecular structure of the newly developed material. It was established that PECVD films possess a higher degree of transparency (up to 80%) and a wider transparency window (>20μm) in comparison with the "usual" AsS thin films, prepared by different thermal methods, which is highly advantageous for certain applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Wild Band Edges: The Role of Bandgap Grading and Band-Edge Fluctuations in High-Efficiency Chalcogenide Devices: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana; Jensen, Soren A.; Kuciauskas, Darius; Glynn, Stephen; Barnes, Teresa; Metzger, Wyatt; Burst, James; Jiang, Chun-Sheng; Dippo, Patricia; Harvey, Steve; Teeter, Glenn; Perkins, Craig; Egaas, Brian; Zakutayev, Andriy; Alsmeier, J.-H.; Lussky, T.; Korte, L.; Wilks, R. G.; Bar, M.; Yan, Y.; Lany, Stephan; Zawadzki, Pawel; Park, Ji-Sang; Wei, Suhuai

    2016-06-16

    Band-edge effects -- including grading, electrostatic fluctuations, bandgap fluctuations, and band tails -- affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In,Ga)Se2 devices, recent increases in diffusion length imply changes to optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties and defect formation energies, is examined.

  18. Chalcogenide glasses for device application modified by high-energy irradiation

    International Nuclear Information System (INIS)

    Kavetskyy, T.; Shpotyuk, O.

    2006-01-01

    Full text: Chalcogenide glasses (ChG) or chemical compounds of chalcogen atoms (S, Se or Te, but not O) with some elements from IV-th and V-th groups of the Periodic Table (typically As, Ge, Sb, Bi, etc. ) obtained by melt quenching, are a perspective for application in modern optoelectronics, photonics, telecommunications, acoustic-optics, xerography, lithography, etc. This uniqueness is due to extremely high sensitivity of ChG to external influences, associated, presumably, with high steric flexibility proper to glassy-like network with low average atomic coordination (chalcogen atoms are typically two-fold coordinated in a glassy-like network), relatively large internal free volume and specific lp-character of electronic states localized at a valence-band top. However, at present, the further possibilities for conventional chemical/technological methods to prepare ChG are fully exhausted. One of the steps to resolve this problem is post-technological modification of ChG using possibilities of high-energy irradiation. This work is focused on new advanced radiation-modified ChG for device application in optoelectronics. The attractive practical use of these non-crystalline materials is tightly connected with radiation-induced defect formation processes. For the first time, we consider the possibilities of Raman scattering along with X-ray diffraction and positron annihilation lifetime spectroscopy to characterize microstructural mechanisms of radiation-induced effects in ChG. (authors)

  19. Strong correlations and the search for high-Tc superconductivity in chromium pnictides and chalcogenides

    Science.gov (United States)

    Pizarro, J. M.; Calderón, M. J.; Liu, J.; Muñoz, M. C.; Bascones, E.

    2017-02-01

    Undoped iron superconductors accommodate n =6 electrons in five d orbitals. Experimental and theoretical evidence shows that the strength of correlations increases with hole doping, as the electronic filling approaches half filling with n =5 electrons. This evidence delineates a scenario in which the parent compound of iron superconductors is the half-filled system, in analogy to cuprate superconductors. In cuprates the superconductivity can be induced upon electron or hole doping. In this work we propose to search for high-Tc superconductivity and strong correlations in chromium pnictides and chalcogenides with n slave-spin and multiorbital random-phase-approximation calculations we analyze the strength of the correlations and the superconducting and magnetic instabilities in these systems with the main focus on LaCrAsO. We find that electron-doped LaCrAsO is a strongly correlated system with competing magnetic interactions, with (π ,π ) antiferromagnetism and nodal d -wave pairing being the most plausible magnetic and superconducting instabilities, respectively.

  20. Line defects on As2Se3-Chalcogenide photonic crystals for the design of all-optical power splitters and digital logic gates

    Science.gov (United States)

    Saghaei, Hamed; Zahedi, Abdulhamid; Karimzadeh, Rouhollah; Parandin, Fariborz

    2017-10-01

    In this paper, a triangular two-dimensional photonic crystal (PhC) of As2Se3-chalcogenide rods in air is presented and its photonic band diagram is calculated by plane wave method. In this structure, an optical waveguide is obtained by creating a line defect (eliminating rods) in diagonal direction of PhC. Numerical simulations based on finite difference time domain method show that when self-collimated beams undergo total internal reflection at the PhC-air interface, a total reflection of 90° occurs for the output beams. We also demonstrate that by decreasing the radius of As2Se3-chalcogenide instead of eliminating a diagonal line, a two-channel optical splitter will be designed. In this case, incoming self-collimated beams can be divided into the reflected and transmitted beams with arbitrary power ratio by adjusting the value of their radii. Based on these results, we propose a four-channel optical splitter using four line defects. The power ratio among output channels can be controlled systematically by varying the radius of rods in the line defects. We also demonstrate that by launching two optical sources with the same intensity and 90° phase difference from both perpendicular faces of the PhC, two logic OR and XOR gates will be achieved at the output channels. These optical devices have some applications in photonic integrated circuits for controlling and steering (managing) the light as desired.

  1. Direct femtosecond laser writing of buried infrared waveguides in chalcogenide glasses

    Science.gov (United States)

    Le Coq, D.; Bychkov, E.; Masselin, P.

    2016-02-01

    Direct laser writing technique is now widely used in particular in glass, to produce both passive and active photonic devices. This technique offers a real scientific opportunity to generate three-dimensional optical components and since chalcogenide glasses possess transparency properties from the visible up to mid-infrared range, they are of great interest. Moreover, they also have high optical non-linearity and high photo-sensitivity that make easy the inscription of refractive index modification. The understanding of the fundamental and physical processes induced by the laser pulses is the key to well-control the laser writing and consequently to realize integrated photonic devices. In this paper, we will focus on two different ways allowing infrared buried waveguide to be obtained. The first part will be devoted to a very original writing process based on a helical translation of the sample through the laser beam. In the second part, we will report on another original method based on both a filamentation phenomenon and a point by point technique. Finally, we will demonstrate that these two writing techniques are suitable for the design of single mode waveguide for wavelength ranging from the visible up to the infrared but also to fabricate optical components.

  2. Nanoscale Device Properties of Tellurium-based Chalcogenide Compounds

    Science.gov (United States)

    Dahal, Bishnu R.

    The great progress achieved in miniaturization of microelectronic devices has now reached a distinct bottleneck, as devices are starting to approach the fundamental fabrication and performance limit. Even if a major breakthrough is made in the fabrication process, these scaled down electronic devices will not function properly since the quantum effects can no longer be neglected in the nanoscale regime. Advances in nanotechnology and new materials are driving novel technologies for future device applications. Current microelectronic devices have the smallest feature size, around 10 nm, and the industry is planning to switch away from silicon technology in the near future. The new technology will be fundamentally different. There are several leading technologies based on spintronics, tunneling transistors, and the newly discovered 2-dimensional material systems. All of these technologies are at the research level, and are far from ready for use in making devices in large volumes. This dissertation will focus on a very promising material system, Te-based chalcogenides, which have potential applications in spintronics, thermoelectricity and topological insulators that can lead to low-power-consumption electronics. Very recently it was predicted and experimentally observed that the spin-orbit interaction in certain materials can lead to a new electronic state called topological insulating phase. The topological insulator, like an ordinary insulator, has a bulk energy gap separating the highest occupied electronic band from the lowest empty band. However, the surface states in the case of a three-dimensional or edge states in a two-dimensional topological insulator allow electrons to conduct at the surface, due to the topological character of the bulk wavefunctions. These conducting states are protected by time-reversal symmetry, and cannot be eliminated by defects or chemical passivation. The edge/surface states satisfy Dirac dispersion relations, and hence the physics

  3. Interaction between titanium and sulfuric acid in the electrodeposition of chalcogenide semiconductors

    International Nuclear Information System (INIS)

    Ortega, J.

    1992-01-01

    Some chalcogenide electrodeposition problems in the cathodic potential range from -0.30 V to-0.65 V vs SCE may be related to the Titanium corrosion-passivation process in aqueous solutions of sulfuric acid. This feature was discovered accidentally when it was attempted to electrodeposit Cd-Hg-Te compounds from a ternary plating bath; an anodic current of about 10 m/cm 2 was produced in the Titanium cathode at -0.50 V vs SCE, while at -0.40 and -0.60 V vs SCE the current was cathodic. In order to explain this feature, a first study has been carried out to determine the influence of the temperature and sulfuric acid concentration on the passivation current density, passivation potential and Flade potential for passivation. From Arrhenius plots of the passivation currents an apparent activation energy of 63.8 kJ/mole for Titanium passivation in sulfuric acid at -0.50 V vs SCE was obtained. The electrochemical stability of passivated Titanium was explained by assuming that the oxide film formed exhibits n-type semiconducting character, since passivation data was in good agreement with interfacial energetics for n-TiO 2 in aqueous solutions of sulfuric acid.(Author)

  4. The influence of Ge on optical and thermo- mechanical properties of S-Se chalcogenide glasses

    Science.gov (United States)

    Samudrala, Kavitha; Babu Devarasetty, Suresh

    2018-05-01

    S-Se-Ge glasses were prepared by melt quenching method to investigate the effect of Germanium on thermo-mechanical and optical properties of chalcogenide glasses. The glassy nature of the samples has been verified by x-ray diffraction and DSC studies that the samples are glassy in nature. The optical band gap of the samples was estimated by the absorption spectrum fitting method. The optical band gap increased from 1.61 ev for x = 0 sample to 1.90 ev for x = 40 sample and is explained in terms of cohesive energies. The basic thermo-mechanical parameters such as micro-hardness, Volume (Vh) and formation energy (Eh) of micro voids in the glassy network, as well as the modulus of Elasticity (E) have been calculated for prepared glasses.in present glasses. The variation in these parameters with Ge content correlated with heat of atomization of alloys.

  5. Method of forming an oxide superconducting thin film having an R1A2C3 crystalline phase over an R2A1C1 crystalline phase

    International Nuclear Information System (INIS)

    Lelental, M.; Romanofsky, H.J.

    1992-01-01

    This patent describes a process which comprises forming a mixed rare earth alkaline earth copper oxide layer on a substrate and converting the mixed rare earth alkaline earth copper oxide layer to an electrically conductive layer. It comprises crystalline R 1 A 2 C 3 oxide phase by heating in the presence of oxygen, wherein rare earth and R is in each instance chosen from among yttrium, lanthanum, samarium, europium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium and alkaline earth and A is in each instance chosen from among calcium, strontium and barium, characterized in that a crystalline R 2 A 1 C 1 oxide phase is first formed as a layer on the substrate and the crystalline R 1 A 2 C 3 oxide phase is formed over the crystalline R 2 A 1 C 1 oxide phase by coating a mixed rare earth alkaline earth copper oxide on the crystalline R 2 A 1 C 1 oxide phase and heating the mixed rare earth alkaline earth copper oxide to a temperature of at least 1000 degrees C

  6. High-precision measurements of the compressibility of chalcogenide glasses at a hydrostatic pressure up to 9 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Brazhkin, V. V., E-mail: brazhkin@hppi.troitsk.ru [Vereshchagin Institute of High-Pressure Physics (Russian Federation); Bychkov, E. [Universite du Littoral, LPCA, UMR 8101 CNRS (France); Tsiok, O. B. [Vereshchagin Institute of High-Pressure Physics (Russian Federation)

    2016-08-15

    The volumes of glassy germanium chalcogenides GeSe{sub 2}, GeS{sub 2}, Ge{sub 17}Se{sub 83}, and Ge{sub 8}Se{sub 92} are precisely measured at a hydrostatic pressure up to 8.5 GPa. The stoichiometric GeSe{sub 2} and GeS{sub 2} glasses exhibit elastic behavior in the pressure range up to 3 GPa, and their bulk modulus decreases at pressures higher than 2–2.5 GPa. At higher pressures, inelastic relaxation processes begin and their intensity is proportional to the logarithm of time. The relaxation rate for the GeSe{sub 2} glasses has a pronounced maximum at 3.5–4.5 GPa, which indicates the existence of several parallel structural transformation mechanisms. The nonstoichiometric glasses exhibit a diffuse transformation and inelastic behavior at pressures above 1–2 GPa. The maximum relaxation rate in these glasses is significantly lower than that in the stoichiometric GeSe{sub 2} glasses. All glasses are characterized by the “loss of memory” of history: after relaxation at a fixed pressure, the further increase in the pressure returns the volume to the compression curve obtained without a stop for relaxation. After pressure release, the residual densification in the stoichiometric glasses is about 7% and that in the Ge{sub 17}Se{sub 83} glasses is 1.5%. The volume of the Ge{sub 8}Se{sub 92} glass returns to its initial value within the limits of experimental error. As the pressure decreases, the effective bulk moduli of the Ge{sub 17}Se{sub 83} and Ge{sub 8}Se{sub 92} glasses coincide with the moduli after isobaric relaxation at the stage of increasing pressure, and the bulk modulus of the stoichiometric GeSe{sub 2} glass upon decreasing pressure noticeably exceeds the bulk modulus after isobaric relaxation at the stage of increasing pressure. Along with the reported data, our results can be used to draw conclusions regarding the diffuse transformations in glassy germanium chalcogenides during compression.

  7. Structural characterization of two new quaternary chalcogenides: CuCo{sub 2}InTe{sub 4} and CuNi{sub 2}InTe{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Gerzon E.; Grima-Gallardo, Pedro; Nieves, Luis, E-mail: gerzon@ula.ve [Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Cabrera, Humberto [Centro Multidisciplinario de Ciencias, Instituto Venezolano de Investigaciones Cientificas (IVIC), Merida (Venezuela, Bolivarian Republic of); Glenn, Jennifer R.; Aitken, Jennifer A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA (United States)

    2016-11-15

    The crystal structure of the chalcogenide compounds CuCo{sub 2}InTe{sub 4} and CuNi{sub 2}InTe{sub 4} , two new members of the I-II{sub 2}-III-VI{sub 4} family, were characterized by Rietveld refinement using X-ray powder diffraction data. Both materials crystallize in the tetragonal space group I4-bar 2m (No. 121), Z = 2, with a stannite-type structure, with the binaries CoTe and NiTe as secondary phases. (author)

  8. Precursor directed synthesis--"molecular" mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures.

    Science.gov (United States)

    Seisenbaeva, Gulaim A; Kessler, Vadim G

    2014-06-21

    This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.

  9. Application of 1-ethyl-3-(2,5-dihydro-4-(3,5-dimethyl-1H-pyrazol-4-yl) -5-oxo-1H-pyrazol-3-yl)thiourea as sensing material for construction of Tm3+-PVC membrane sensor

    International Nuclear Information System (INIS)

    Zamani, Hassan Ali; Feizyzadeh, Babak; Faridbod, Farnoush; Ganjali, Mohammad Reza

    2011-01-01

    A thulium(III) membrane sensor was made using 2% sodium tetraphenyl borate (NaTPB), 65% dibutylphthalate (DBP), 30% poly(vinyl chloride) (PVC) and 3% 1-ethyl-3-(2,5-dihydro-4-(3,5-dimethyl-1H-pyrazol-4-yl) -5-oxo-1H-pyrazol-3-yl)thiourea (ET) as an ionophore. Conductometric study shows selectivity of the Et toward Tm 3+ ions. Nernstian response of 19.6 ± 0.4 mV per decade of thulium concentration was observed, and the electrode worked well in concentration range of 1.0 x 10 -6 to 1.0 x 10 -2 mol L -1 with a lower detection limit (LDL) of 7.2 x 10 -7 mol L -1 , in a pH range of 4.3-10.4. The selectivity of the sensor over alkaline, alkaline earth, transition and heavy metal ions was also found to be in a satisfactory range. To check the analytical applicability of the proposed Tm 3+ sensor, it was successfully used as an indicator electrode in analysis of thulium in certified reference materials. - Research highlights: → This work reports development of polymeric membrane sensor for Tm3+ determination in certified reference materials. → The novelty of this work is based on the high affinity of the ionophore toward the Tm3+ ions which causes the high selectivity of the sensor. → The newly developed sensor is superior to the formerly reported Tm3+ sensors in terms of selectivity and detection limit.

  10. Synthesis of metals chalcogenides nano-particles from H{sub 2}X (X=S, Se, Te) produced electrochemically; Synthese de nanoparticules de chalcogenures de metaux a partir de H{sub 2}X (X=S, Se, Te) produit electrochimiquement

    Energy Technology Data Exchange (ETDEWEB)

    Bastide, S.; Tena-Zaera, R.; Alleno, E.; Godart, C.; Levy-Clement, C. [Centre National de la Recherche Scientifique (CNRS), Lab. de Chimie Metallurgique des Terres Rares, 94 - Thiais (France); Hodes, G. [Weizmann Institute of Science, Rehovot (Israel)

    2006-07-01

    In this work, an electrochemical method to produce H{sub 2}X (X=S, Se, Te) hydrides in a controlled way (without being able to store them) and to transfer them directly in the synthesis reactor has been perfected. By this method, the use of H{sub 2}Te has been possible. The method uses the reduction of the elementary chalcogenide in acid medium. The Te being conductor, it can be directly used as electrode, on the other hand S and Se are insulators. Nevertheless, graphite-S or Se conducing composite electrodes can also be used. When the electrolyte composition (pH, salts presence) is well adjusted, the essential of the cathodic current is consumed by the chalcogenide reduction (low evolution of H{sub 2}) with faradic yields of about 100% for H{sub 2}S and H{sub 2}Se and 40% for HeTe. The use of H{sub 2}X allows the synthesis of nano-particles of metals chalcogenides directly by reaction with dissolved metallic salts in aqueous or organic medium and precipitation. Thus it has been possible to prepare all the CdX compounds under the form of nano-particles of diameter between 3 and 5 nm by bubbling of the gaseous hydrides in aqueous acetate solutions of Cd. In producing concomitantly H{sub 2}S and H{sub 2}Se, nano-particles of solid solutions CdS{sub x}Se{sub 1-x} have been synthesized too. (O.M.)

  11. Conduction mechanism and the dielectric relaxation process of a-Se75Te25-xGax (x=0, 5, 10 and 15 at wt%) chalcogenide glasses

    International Nuclear Information System (INIS)

    Yahia, I.S.; Hegab, N.A.; Shakra, A.M.; Al-Ribaty, A.M.

    2012-01-01

    Se 75 Te 25-x Ga x (x=0, 5, 10 and 15 at wt%) chalcogenide compositions were prepared by the well known melt quenching technique. Thin films with different thicknesses in the range (185-630 nm) of the obtained compositions were deposited by thermal evaporation technique. X-ray diffraction patterns indicate that the amorphous nature of the obtained films. The ac conductivity and the dielectric properties of the studied films have been investigated in the frequency range (10 2 -10 5 Hz) and in the temperature range (293-333 K). The ac conductivity was found to obey the power low ω s where s≤1 independent of film thickness. The temperature dependence of both ac conductivity and the exponent s can be well interpreted by the correlated barrier hopping (CBH) model. The experimental results of the dielectric constant ε 1 and dielectric loss ε 2 are frequency and temperature dependent. The maximum barrier height W m calculated from the results of the dielectric loss according to the Guintini equation, and agrees with that proposed by the theory of hopping of charge carriers over a potential barrier as suggested by Elliott for chalcogenide glasses. The density of localized state was estimated for the studied film compositions. The variation of the studied properties with Ga content was also investigated. The correlation between the ac conduction and the dielectric properties were verified.

  12. Physico-chemical and optical properties of Er3+-doped and Er3+/Yb3+-co-doped Ge25Ga9.5Sb0.5S65 chalcogenide glass.

    Czech Academy of Sciences Publication Activity Database

    Himics, D.; Střižík, L.; Holubová, J.; Beneš, L.; Pálka, K.; Frumarová, Božena; Oswald, Jiří; Tverjanovich, A. S.; Wágner, T.

    2017-01-01

    Roč. 89, č. 4 (2017), s. 429-436 ISSN 0033-4545. [International Conference Solid State Chemistry 2016 /12./. Prague, 18.09.2016-23.09.2016] Institutional support: RVO:61389013 ; RVO:68378271 Keywords : chalcogenide glasses * erbium * Ga-Ge-Sb-S Subject RIV: CA - Inorganic Chemistry; CA - Inorganic Chemistry (FZU-D) OBOR OECD: Inorganic and nuclear chemistry; Inorganic and nuclear chemistry (FZU-D) Impact factor: 2.626, year: 2016

  13. Thulium Laser Treatment of Upper Urinary Tract Carcinoma: A Multi-Institutional Analysis of Surgical and Oncological Outcomes.

    Science.gov (United States)

    Musi, Gennaro; Mistretta, Francesco A; Marenghi, Carlo; Russo, Andrea; Catellani, Michele; Nazzani, Sebastiano; Conti, Andrea; Luzzago, Stefano; Ferro, Matteo; Matei, Deliu V; Carmignani, Luca; de Cobelli, Ottavio

    2018-03-01

    To evaluate the efficacy and safety of ureteroscopic thulium laser (TL) treatment of upper urinary tract carcinoma (UTUC). Forty-two consecutive patients underwent conservative TL treatment for UTUC at two referral institutions. All patients underwent preliminary biopsy and then laser vaporization. A 272 μm and 365 μm laser fibers were used with a flexible and semirigid scope, respectively. Ablation was carried out with a 10 to 20 W power. Mean age at surgery was 68 years (SD 10.7). Mean tumor size was 14.3 mm (range 2-30 mm). Preliminary biopsy revealed the presence of low-grade disease in 29 (69.1%) patients, high-grade disease in 4 (9.5%) and 1 carcinoma in situ 1 (2.4%), whereas it was not conclusive in 8 (19%) cases. Final stage was pTa and pTis in 41 (97.6%) and 1 (2.4%) patients, respectively. Thirty eight percent (16) experienced Clavien-Dindo grade I complication, 47.6% (20) grade II, and 2.4% (1) grade III. Five (12%) patients underwent a second-look procedure due to residual disease. Eight (19%) patients experienced clinical recurrence. The median estimated recurrence-free survival was 44 months (SE 3.68). Four patients (9.5%) underwent a nephroureterectomy. Final pathological stage was pTis, pT3 high grade, pTa low grade, and pT0. Median follow-up was 26.3 months (range 2-54 months), and no progression or upstaging of disease occurred. TL management of UTUC is a safe and efficacious conservative treatment. Our experience shows optimal vaporization and hemostatic control in the absence of major complications.

  14. Construction of Tm{sup 3+}-PVC membrane sensor based on 1-(2-thiazolylazo)-2-naphthol as sensing material

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Quchan Branch, Islamic Azad University, Quchan (Iran, Islamic Republic of); Nekoei, Mehdi; Mohammadhosseini, Majid [Department of Chemistry, Faculty of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of); Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Medical Nanotechnology Research Centre, Tehran University of Medical Sciences, Tehran, P.O. Box, 14155-6451 (Iran, Islamic Republic of)

    2010-04-06

    In this study, a new thulium(III) membrane sensor was constructed. The proposed membrane sensor was fabricated based on a membrane containing 2% sodium tetraphenyl borate (NaTPB) as an anionic additive, 65% benzyl acetate (BA) as solvent mediator, 3% 1-(2-thiazolylazo)-2-naphthol (TN) as ionophore, and 30% poly(vinyl chloride) (PVC). The proposed Tm{sup 3+} electrode exhibits a Nernstian response of 19.5 {+-} 0.2 mV per decade of thulium concentration, and has a lower detection limit of 8.7 x 10{sup -7} mol L{sup -1}. The linear range of the sensors was 1.0 x 10{sup -6} to 1.0 x 10{sup -2} mol L{sup -1}. It works well in the pH range of 3.2-9.5. Moreover, the recommended selective sensor revealed a comparatively satisfactory selectivity regarding most of the alkali, alkaline earth, some transition and heavy metal ions. The membrane sensor was applied to the determination of fluoride ions in mouth wash samples.

  15. Fluorescence of Er3+ doped La2S3.3Ga2S3 glasses

    International Nuclear Information System (INIS)

    Reisfeld, R.; Bornstein, A.

    1978-01-01

    In this paper the authors report the preparation and fluorescence of Er 3+ in chalcogenide glasses. In the oxide glasses it has been shown that the multiphonon transition rates of the RE are independent of the coupling between a given oxide glass and rare earth ion, but dependent exponentially on the number of phonons of highest energy bridging the emitting and next-lower level. It is of interest to establish whether changing the glass matrix will affect the amount of electron phonon coupling. In addition, because of their low phonon energy and high refractive index, the RE doped chalcogenide glasses will form a new type of fluorescent material. This may be of interest in new RE lasers. (Auth.)

  16. Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film

    KAUST Repository

    San Roman Alerigi, Damian; Anjum, Dalaver H.; Zhang, Yaping; Yang, Xiaoming; Ben Slimane, Ahmed; Ng, Tien Khee; Hedhili, Mohamed N.; Alsunaidi, Mohammad; Ooi, Boon S.

    2013-01-01

    In this paper, we investigate the effect of electron beam irradiation on the dielectric properties of As 2 S 3 chalcogenide glass. By means of low-loss electron energy loss spectroscopy, we derive the permittivity function, its dispersive relation, and calculate the refractive index and absorption coefficients under the constant permeability approximation. The measured and calculated results show a heretofore unseen phenomenon: a reduction in the permittivity of ? 40 %. Consequently a reduction of the refractive index of 20%, hence, suggests a conspicuous change in the optical properties of the material under irradiation with a 300 keV electron beam. The plausible physical phenomena leading to these observations are discussed in terms of the homopolar and heteropolar bond dynamics under high energy absorption. The reported phenomena, exhibited by As 2 S 3-thin film, can be crucial for the development of photonics integrated circuits using electron beam irradiation method. © 2013 American Institute of Physics.

  17. Development of a 170Tm source for mercury monitoring studies in humans using XRF

    International Nuclear Information System (INIS)

    Timmaraju, K. Phanisree; Fajurally, Bibi Najah; Armstrong, Andrea F.; Chettle, David R.

    2016-01-01

    The goals of the present study were to develop a 170 Tm radioisotope and generate a K XRF spectrum of mercury. Thulium foil and thulium oxide powder were both tested for impurities and the latter was found to be a better prospect for further studies. The 170 Tm radioisotope was developed from thulium oxide powder following the method of disolution and absorption. A suitable source holder and collimator were also designed based on Monte Carlo simulations. Using the radioisotope thus developed, a mercury XRF spectrum was successfully generated. - Highlights: • We tested the purity of thulium samples by XRF and NAA techniques. • Developed a procedure to generate Tm-170 isotope out of thulium oxide powder. • Designed a collimator and source holder • Generated XRF spectrum of mercury using the Tm-170 isotope. • Compared the highlights in mercury spectra from Tm-170 and Cd-109 isotopes.

  18. Ternary rare earth sulfide CaCe2S4: Synthesis and characterization of stability, structure, and photoelectrochemical properties in aqueous media

    Science.gov (United States)

    Sotelo, Paola; Orr, Melissa; Galante, Miguel Tayar; Hossain, Mohammad Kabir; Firouzan, Farinaz; Vali, Abbas; Li, Jun; Subramanian, Mas; Longo, Claudia; Rajeshwar, Krishnan; Macaluso, Robin T.

    2018-06-01

    A red-orange rare earth ternary chalcogenide, CaCe2S4, was prepared in powder form by solid-state synthesis. The structural details of this compound were determined by powder X-ray diffraction. The optical band gap of CaCe2S4 was determined by diffuse reflectance spectroscopy (DRS) to be 2.1 eV, consistent with the observed red-orange color. Quantitative colorimetry measurements also support the observed color and band gap of CaCe2S4. Both direct and indirect optical transitions were gleaned from Tauc analyses of the DRS data. Photoelectrochemistry experiments on CaCe2S4 films showed n-type semiconductor behavior. Analyses of these data via the Butler-Gärtner model afforded a flat-band potential of - 0.33 V (vs. Ag/AgCl/KCl 4 M) in pH 9 aqueous sulfite electrolyte. The potential and limitations of this material for solar water splitting and photocatalytic environmental remediation (e.g., dye photodegradation) are finally presented against the backdrop of its photoelectrochemical stability and surface hole transfer kinetics in aqueous electrolytes.

  19. Molecular Control of the Nanoscale: Effect of Phosphine–Chalcogenide Reactivity on CdS–CdSe Nanocrystal Composition and Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Ruberu, T. Purnima A.; Albright, Haley R.; Callis, Brandon; Ward, Brittney; Cisneros, Joana; Fan, Hua-Jun; Vela, Javier

    2012-04-22

    We demonstrate molecular control of nanoscale composition, alloying, and morphology (aspect ratio) in CdS–CdSe nanocrystal dots and rods by modulating the chemical reactivity of phosphine–chalcogenide precursors. Specific molecular precursors studied were sulfides and selenides of triphenylphosphite (TPP), diphenylpropylphosphine (DPP), tributylphosphine (TBP), trioctylphosphine (TOP), and hexaethylphosphorustriamide (HPT). Computational (DFT), NMR (31P and 77Se), and high-temperature crossover studies unambiguously confirm a chemical bonding interaction between phosphorus and chalcogen atoms in all precursors. Phosphine–chalcogenide precursor reactivity increases in the order: TPPE < DPPE < TBPE < TOPE < HPTE (E = S, Se). For a given phosphine, the selenide is always more reactive than the sulfide. CdS1–xSex quantum dots were synthesized via single injection of a R3PS–R3PSe mixture to cadmium oleate at 250 °C. X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/Vis and PL optical spectroscopy reveal that relative R3PS and R3PSe reactivity dictates CdS1–xSex dot chalcogen content and the extent of radial alloying (alloys vs core/shells). CdS, CdSe, and CdS1–xSex quantum rods were synthesized by injection of a single R3PE (E = S or Se) precursor or a R3PS–R3PSe mixture to cadmium–phosphonate at 320 or 250 °C. XRD and TEM reveal that the length-to-diameter aspect ratio of CdS and CdSe nanorods is inversely proportional to R3PE precursor reactivity. Purposely matching or mismatching R3PS–R3PSe precursor reactivity leads to CdS1–xSex nanorods without or with axial composition gradients, respectively. We expect these observations will lead to scalable and highly predictable “bottom-up” programmed syntheses of finely heterostructured nanomaterials with well-defined architectures and properties that are tailored for precise applications.

  20. Influence of annealing conditions on the optical and structural properties of spin-coated As(2)S(3) chalcogenide glass thin films.

    Science.gov (United States)

    Song, Shanshan; Dua, Janesha; Arnold, Craig B

    2010-03-15

    Spin-coating of chalcogenide glass is a low-cost, scalable method to create optical grade thin films, which are ideal for visible and infrared applications. In this paper, we study the influence of annealing on optical parameters of As(2)S(3) films by examining UV-visible and infrared spectroscopy and correlating the results to changes in the physical properties associated with solvent removal. Evaporation of excess solvent results in a more highly coordinated, denser glass network with higher index and lower absorption. Depending on the annealing temperature and time, index values ranging from n = 2.1 to the bulk value (n = 2.4) can be obtained, enabling a pathway to materials optimization.

  1. Application of 1-ethyl-3-(2,5-dihydro-4-(3,5-dimethyl-1H-pyrazol-4-yl) -5-oxo-1H-pyrazol-3-yl)thiourea as sensing material for construction of Tm{sup 3+}-PVC membrane sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zamani, Hassan Ali, E-mail: haszamani@yahoo.com [Department of Applied Chemistry, Quchan branch, Islamic Azad University, Quchan (Iran, Islamic Republic of); Feizyzadeh, Babak [Department of Applied Chemistry, Quchan branch, Islamic Azad University, Quchan (Iran, Islamic Republic of); Faridbod, Farnoush; Ganjali, Mohammad Reza [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-10-10

    A thulium(III) membrane sensor was made using 2% sodium tetraphenyl borate (NaTPB), 65% dibutylphthalate (DBP), 30% poly(vinyl chloride) (PVC) and 3% 1-ethyl-3-(2,5-dihydro-4-(3,5-dimethyl-1H-pyrazol-4-yl) -5-oxo-1H-pyrazol-3-yl)thiourea (ET) as an ionophore. Conductometric study shows selectivity of the Et toward Tm{sup 3+} ions. Nernstian response of 19.6 {+-} 0.4 mV per decade of thulium concentration was observed, and the electrode worked well in concentration range of 1.0 x 10{sup -6} to 1.0 x 10{sup -2} mol L{sup -1} with a lower detection limit (LDL) of 7.2 x 10{sup -7} mol L{sup -1}, in a pH range of 4.3-10.4. The selectivity of the sensor over alkaline, alkaline earth, transition and heavy metal ions was also found to be in a satisfactory range. To check the analytical applicability of the proposed Tm{sup 3+} sensor, it was successfully used as an indicator electrode in analysis of thulium in certified reference materials. - Research highlights: {yields} This work reports development of polymeric membrane sensor for Tm3+ determination in certified reference materials. {yields} The novelty of this work is based on the high affinity of the ionophore toward the Tm3+ ions which causes the high selectivity of the sensor. {yields} The newly developed sensor is superior to the formerly reported Tm3+ sensors in terms of selectivity and detection limit.

  2. Fragmentation and dusting of large kidney stones using compact, air-cooled, high peak power, 1940-nm, Thulium fiber laser

    Science.gov (United States)

    Hardy, Luke A.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    Previous Thulium fiber laser lithotripsy (TFL) studies were limited to a peak power of 70 W (35 mJ / 500 μs), requiring operation in dusting mode with low pulse energy (35 mJ) and high pulse rate (300 Hz). In this study, a novel, compact, air-cooled, TFL capable of operating at up to 500 W peak power, 50 W average power, and 2000 Hz, was tested. The 1940-nm TFL was used with pulse duration (500 μs), average power (10 W), and fiber (270- μm-core) fixed, while pulse energy and pulse rate were changed. A total of 23 large uric acid (UA) stones and 16 large calcium oxalate monohydrate (COM) stones were each separated into 3 modes (Group 1-"Dusting"- 33mJ/300Hz; Group 2-"Fragmentation"-200mJ/50Hz; Group 3-"Dual mode"-Fragmentation then Dusting). The fiber was held manually in contact with stone on a 2-mm-mesh sieve submerged in a flowing saline bath. UA ablation rates were 2.3+/-0.8, 2.3+/-0.2, and 4.4+/-0.8 mg/s and COM ablation rates were 0.4+/-0.1, 1.0+/-0.1, and 0.9+/-0.4 mg/s, for Groups 1, 2, and 3. Dual mode provided 2x higher UA ablation rates than other modes. COM ablation threshold is 3x higher than UA, so dusting provided lower COM ablation rates than other modes. Future studies will explore higher average laser power than 10 W for rapid TFL ablation of large stones.

  3. Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy

    Science.gov (United States)

    Hutchens, Thomas C.; Gonzalez, David A.; Irby, Pierce B.; Fried, Nathaniel M.

    2017-01-01

    The experimental thulium fiber laser (TFL) is being explored as an alternative to the current clinical gold standard Holmium:YAG laser for lithotripsy. The near single-mode TFL beam allows coupling of higher power into smaller optical fibers than the multimode Holmium laser beam profile, without proximal fiber tip degradation. A smaller fiber is desirable because it provides more space in the ureteroscope working channel for increased saline irrigation rates and allows maximum ureteroscope deflection. However, distal fiber tip burnback increases as fiber diameter decreases. Previous studies utilizing hollow steel sheaths around recessed distal fiber tips reduced fiber burnback but increased stone retropulsion. A "fiber muzzle brake" was tested for reducing both fiber burnback and stone retropulsion by manipulating vapor bubble expansion. TFL lithotripsy studies were performed at 1908 nm, 35 mJ, 500 μs, and 300 Hz using a 100-μm-core fiber. The optimal stainless steel muzzle brake tip tested consisted of a 1-cm-long, 560-μm-outer-diameter, 360-μm-inner-diameter tube with a 275-μm-diameter through hole located 250 μm from the distal end. The fiber tip was recessed a distance of 500 μm. Stone phantom retropulsion, fiber tip burnback, and calcium oxalate stone ablation studies were performed ex vivo. Small stones with a mass of 40±4 mg and 4-mm-diameter were ablated over a 1.5-mm sieve in 25±4 s (n=10) without visible distal fiber tip burnback. Reduction in stone phantom retropulsion distance by 50% and 85% was observed when using muzzle brake tips versus 100-μm-core bare fibers and hollow steel tip fibers, respectively. The muzzle brake fiber tip simultaneously provided efficient stone ablation, reduced stone retropulsion, and minimal fiber degradation during TFL lithotripsy.

  4. Electrical switching phenomenon and memory effect in the semiconductor chalcogenide glass Ge0.10 As0.20 Te0.70

    International Nuclear Information System (INIS)

    Haro, M.; Marquez, E.; Villares, P.; Jimenez-Garay, R.

    1987-01-01

    Electrical switching phenomenon, as well as the memory effect in the semiconductor chalcogenide glass Ge 0.10 As 0.20 Te 0.70 has been studied. A device with a plano-punctual interelectrode configuration has been designed and built, so that the electrical stimuli may be applied correctly. This device permits adequate positioning of the upper electrode, as well as contact pressure regulation. The I-V characteristics in the OFF-state have been obtained, showing a marked non-linear character. Equally, a relation has been found between the threshold voltage and electrical resistance parameters, indicating that the electrical power giving rise to the phenomenon is constant. Finally, memory effects showing a sudden reduction in electrical resistance, as well as interelectrode filaments, have been observed. (author)

  5. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry

    Science.gov (United States)

    Lei, Sidong; Wang, Xifan; Li, Bo; Kang, Jiahao; He, Yongmin; George, Antony; Ge, Liehui; Gong, Yongji; Dong, Pei; Jin, Zehua; Brunetto, Gustavo; Chen, Weibing; Lin, Zuan-Tao; Baines, Robert; Galvão, Douglas S.; Lou, Jun; Barrera, Enrique; Banerjee, Kaustav; Vajtai, Robert; Ajayan, Pulickel

    2016-05-01

    Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid-base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti4+ to form planar p-type [Ti4+n(InSe)] coordination complexes. Using this strategy, we fabricate planar p-n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B3+, Al3+ and Sn4+) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid-base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device.

  6. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  7. Pulsed laser deposition of chalcogenide sulfides from multi- and single-component targets: the non-stoichiometric material transfer

    DEFF Research Database (Denmark)

    Schou, Jørgen; Ganskukh, Mungunshagai; Ettlinger, Rebecca Bolt

    2018-01-01

    The mass transfer from target to films is incongruent for chalcogenide sulfides in contrast to the expectations of pulsed laser deposition (PLD) as a stoichiometric film growth process. Films produced from a CZTS (Cu2ZnSnS4) multi-component target have no Cu below a fluence threshold of 0.2 J/cm2......, and the Cu content is also very low at low fluence from a single-component target. Above this threshold, the Cu content in the films increases almost linearly up to a value above the stoichiometric value, while the ratio of the concentration of the other metals Zn to Sn (Zn/Sn) remains constant. Films...... of a similar material CTS (Cu2SnS3) have been produced by PLD from a CTS target and exhibits a similar trend in the same fluence region. The results are discussed on the basis of solid-state data and the existing data from the literature....

  8. Thallous chalcogenide (Tl 6I 4Se) for radiation detection at X-ray and γ-ray energies

    Science.gov (United States)

    Liu, Zhifu; Peters, John A.; Wessels, Bruce W.; Johnsen, Simon; Kanatzidis, Mercouri G.

    2011-12-01

    The optical and charge transport properties of the thallous chalcogenide compound Tl6I4Se were characterized. The semiconductor crystals are grown by the modified Bridgman method. We have measured the refractive index, and absorption coefficient of the compound ranging from 300 to 1500 nm by analysis of the UV-vis-near IR transmission and reflection spectra. The band gap is 1.8 eV. For the evaluation of detector performance, the mobility-lifetime products for both the electron and hole carriers were measured. Tl6I4Se has mobility-lifetime products of 7.1×10-3 and 5.9×10-4 cm2/V for electron and hole carriers, respectively, which are comparable to those of Cd0.9Zn0.1Te. The γ-ray spectrum for a Tl6I4Se detector was measured. Its response to the 122 keV of 57Co source is comparable to that of Cd0.9Zn0.1Te.

  9. Wireless Chalcogenide Nanoionic-Based Radio-Frequency Switch

    Science.gov (United States)

    Nessel, James; Miranda, Felix

    2013-01-01

    A new nonvolatile nanoionic switch is powered and controlled through wireless radio-frequency (RF) transmission. A thin layer of chalcogenide glass doped with a metal ion, such as silver, comprises the operational portion of the switch. For the switch to function, an oxidizable electrode is made positive (anode) with respect to an opposing electrode (cathode) when sufficient bias, typically on the order of a few tenths of a volt or more, is applied. This action causes the metal ions to flow toward the cathode through a coordinated hopping mechanism. At the cathode, a reduction reaction occurs to form a metal deposit. This metal deposit creates a conductive path that bridges the gap between electrodes to turn the switch on. Once this conductive path is formed, no further power is required to maintain it. To reverse this process, the metal deposit is made positive with respect to the original oxidizable electrode, causing the dissolution of the metal bridge thereby turning the switch off. Once the metal deposit has been completely dissolved, the process self-terminates. This switching process features the following attributes. It requires very little to change states (i.e., on and off). Furthermore, no power is required to maintain the states; hence, the state of the switch is nonvolatile. Because of these attributes the integration of a rectenna to provide the necessary power and control is unique to this embodiment. A rectenna, or rectifying antenna, generates DC power from an incident RF signal. The low voltages and power required for the nanoionic switch control are easily generated from this system and provide the switch with a novel capability to be operated and powered from an external wireless device. In one realization, an RF signal of a specific frequency can be used to set the switch into an off state, while another frequency can be used to set the switch to an on state. The wireless, miniaturized, and nomoving- part features of this switch make it

  10. Spectroscopic evidence for two-gap superconductivity in the quasi-1D chalcogenide Nb2Pd0.81S5

    Science.gov (United States)

    Park, Eunsung; Lee, Sangyun; Ronning, Filip; Thompson, Joe D.; Zhang, Qiu; Balicas, Luis; Lu, Xin; Park, Tuson

    2018-04-01

    Low-dimensional electronic systems with confined electronic wave functions have attracted interest due to their propensity toward novel quantum phases and their use in wide range of nanotechnologies. The newly discovered chalcogenide Nb2PdS5 possesses a quasi-one-dimensional electronic structure and becomes superconducting. Here, we report spectroscopic evidence for two-band superconductivity, where soft point-contact spectroscopic measurements in the superconducting (SC) state reveal Andreev reflection in the differential conductance G. Multiple peaks in G are observed at 1.8 K and explained by the two-band Blonder–Tinkham–Klapwijk model with two gaps Δ1  =  0.61 meV and Δ2  =  1.20 meV. The progressive evolution of G with temperature and magnetic field corroborates the multiple nature of the SC gaps.

  11. Stark effect investigations of excited cadmium, ytterbium, and thulium I-levels using the methods of double resonance and level crossing

    International Nuclear Information System (INIS)

    Rinkleff, R.H.

    1977-01-01

    Using the method of optical double resonance, the 5s5p 3 P 1 level tensor polarizability of Cadmium has been measured. For this state, various authors have published different results, using different experimental methods. The experimental result presented here is in excellent agreement with the value of Happer, based on level crossing investigations, and agrees well with the theoretical result of Robinson based on a modified Sternheimer approximation, and so gives a reliable value for the tensor polarizability. Furthermore the tensor polarizability of the 6s6p 3 P 1 - level of the even Ytterbium isotopes and the odd Ytterbium 171 nucleus have been measured with the optical double resonance method, and the Stark constant has been calculated based on a given theory and oscillator strengths. Using the methods of optical double resonance and level crossing, the tensor polarizability of 5 excited levels of the Thulium configurations 4f 13 6s6p + 4f 12 5d6s 2 have been measured. From the experimental Stark constants and the angular coefficients of the eigenfunctions calculated by Camus, the radial integrals I(5d, 5p) and I(6p, 5d) are calculated for electric dipole transitions between levels of the configurations 4f 12 5d6s 2 + 4f 13 6s6p and levels of the 4f 12 6p6s 2 + 4f 13 6s5d configurations. The tensor polarizability calculated with these radial integrals show very good agreement with the experimental values. (orig./LH) [de

  12. Scanning electron microscopy of real and artificial kidney stones before and after Thulium fiber laser ablation in air and water

    Science.gov (United States)

    Hardy, Luke A.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    We investigated proposed mechanisms of laser lithotripsy, specifically for the novel, experimental Thulium fiber laser (TFL). Previous lithotripsy studies with the conventional Holmium:YAG laser noted a primary photothermal mechanism (vaporization). Our hypothesis is that an additional mechanical effect (fragmentation) occurs due to vaporization of water in stone material from high absorption of energy, called micro-explosions. The TFL irradiated calcium oxalate monohydrate (COM) and uric acid (UA) stones, as well as artificial stones (Ultracal30 and BegoStone), in air and water environments. TFL energy was varied to determine the relative effect on the ablation mechanism. Scanning electron microscopy (SEM) was used to study qualitative and characteristic changes in surface topography with correlation to presumed ablation mechanisms. Laser irradiation of stones in air produced charring and melting of the stone surface consistent with a photothermal effect and minimal fragmentation, suggesting no mechanical effect from micro-explosions. For COM stones ablated in water, there was prominent fragmentation in addition to recognized photothermal effects, supporting dual mechanisms during TFL lithotripsy. For UA stones, there were minimal photothermal effects, and dominant effects were mechanical. By increasing TFL pulse energy, a greater mechanical effect was demonstrated for both stone types. For artificial stones, there was no significant evidence of mechanical effects. TFL laser lithotripsy relies on two prominent mechanisms for stone ablation, photothermal and mechanical. Water is necessary for the mechanical effect which can be augmented by increasing pulse energy. Artificial stones may not provide a predictive model for mechanical effects during laser lithotripsy.

  13. Phase change cellular automata modeling of GeTe, GaSb and SnSe stacked chalcogenide films

    Science.gov (United States)

    Mihai, C.; Velea, A.

    2018-06-01

    Data storage needs are increasing at a rapid pace across all economic sectors, so the need for new memory technologies with adequate capabilities is also high. Phase change memories (PCMs) are a leading contender in the emerging race for non-volatile memories due to their fast operation speed, high scalability, good reliability and low power consumption. However, in order to meet the present and future storage demands, PCM technologies must further increase the storage density. Here, we employ a probabilistic cellular automata approach to explore the multi-step threshold switching from the reset (off) to the set (on) state in chalcogenide stacked structures. Simulations have shown that in order to obtain multi-step switching with high contrast among different resistance states, the stacked structure needs to contain materials with a large difference among their crystallization temperatures and careful tuning of strata thicknesses. The crystallization dynamics can be controlled through the external energy pulses applied to the system, in such a way that a balance between nucleation and growth in phase change behavior can be achieved, optimized for PCMs.

  14. Thulium-yttrium-aluminium-garnet (Tm:YAG) laser treatment of penile cancer: oncological results, functional outcomes, and quality of life.

    Science.gov (United States)

    Musi, Gennaro; Russo, Andrea; Conti, Andrea; Mistretta, Francesco A; Di Trapani, Ettore; Luzzago, Stefano; Bianchi, Roberto; Renne, Giuseppe; Ramoni, Stefano; Ferro, Matteo; Matei, Deliu Victor; Cusini, Marco; Carmignani, Luca; de Cobelli, Ottavio

    2018-02-01

    To evaluate the oncological and functional outcomes of patients diagnosed with penile cancer undergoing conservative treatment through thulium-yttrium-aluminium-garnet (Tm:YAG) laser ablation. Twenty-six patients with a penile lesion underwent ablation with a RevoLix 200 W continuous-wave laser. The procedure was carried out with a pen-like laser hand piece, using a 360 μm laser fiber and 15-20 W of power. Median (IQR) follow-up time was 24 (15-30) months. Recurrence rate and post-operative sexual function were assessed. Median age at surgery was 61 years. Median (inter quartile range) size of the lesions was 15 [10-20] mm. Overall, 11 (47.8%) and 12 (52.2%) at the final pathology presented in situ and invasive squamous cell carcinoma (SCC), respectively. The final pathological stage was pTis, pT1a, pT2, and pT3 in 11 (47.8%), 7 (30.4%), 3 (13.0%), and 2 (8.7%) patients, respectively. Moreover, four (17.4%) patients had a recurrence of which three (13.0%) and one (4.3%) patients developed an invasive or in situ recurrence, respectively. After treatment 6 (26.1%) patients reported a conserved penile sensitivity, while 13 (56.5%) and 4 (17.4%) patients experienced a better or worse sensitivity after ablation, respectively. Post-treatment sexual activity was achieved within the first month after laser ablation in 82.6% of the patients. Early stage penile carcinomas can be effectively treated with an organ preservation strategy. Tm:YAG conservative laser treatment is easy, safe and offers good functional outcome, with a minor impact on patient's quality of life.

  15. Size-controlled synthesis of chalcogen and chalcogenide nanoparticles using protic ionic liquids with imidazolium cation

    International Nuclear Information System (INIS)

    Meenatchi, Boominathan; Renuga, Velayutham; Manikandan, Ayyar

    2016-01-01

    Green synthesis of selenium (chalcogen) nanoparticles (SeNPs) has been successfully attained by simple wet chemical method that involves the reaction of six different protic ionic liquids with imidazolium cations and sodium hydrogen selenide (NaHSe) in the presence of poly ethylene glycol-600 (PEG-600) as an additional stabilizer. The obtained SeNPs were characterized using UV spectral (UV), Fourier transform infra-red (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscope (SEM) with energy dispersive X-ray (EDX) and high resolution transmission electron microscope (TEM) analysis. The results illustrate that the synthesized SeNPs are spherical in shape with size ranging 19-24 nm and possess good optical property with greater band gap energy, high thermal stability up to 330 .deg. C, low melting point of 218-220 .deg. C comparing to precursor selenium. Using the synthesized SeNPs, two chalcogenides such as ZnSe and CdSe semiconductor nanoparticles were synthesized and characterized using XRD, SEM with EDX and TEM analysis. The fabricated CdSe and ZnSe nanoparticles appeared like pebble and cluster structure with particle size of 29.97 nm and 22.73 nm respectively.

  16. Size-controlled synthesis of chalcogen and chalcogenide nanoparticles using protic ionic liquids with imidazolium cation

    Energy Technology Data Exchange (ETDEWEB)

    Meenatchi, Boominathan [Cauvery College for Women, Tamilnadu (India); Renuga, Velayutham [National College, Tamilnadu (India); Manikandan, Ayyar [Bharath Institute of Higher Education and Research, Bharath University, Tamilnadu (India)

    2016-03-15

    Green synthesis of selenium (chalcogen) nanoparticles (SeNPs) has been successfully attained by simple wet chemical method that involves the reaction of six different protic ionic liquids with imidazolium cations and sodium hydrogen selenide (NaHSe) in the presence of poly ethylene glycol-600 (PEG-600) as an additional stabilizer. The obtained SeNPs were characterized using UV spectral (UV), Fourier transform infra-red (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscope (SEM) with energy dispersive X-ray (EDX) and high resolution transmission electron microscope (TEM) analysis. The results illustrate that the synthesized SeNPs are spherical in shape with size ranging 19-24 nm and possess good optical property with greater band gap energy, high thermal stability up to 330 .deg. C, low melting point of 218-220 .deg. C comparing to precursor selenium. Using the synthesized SeNPs, two chalcogenides such as ZnSe and CdSe semiconductor nanoparticles were synthesized and characterized using XRD, SEM with EDX and TEM analysis. The fabricated CdSe and ZnSe nanoparticles appeared like pebble and cluster structure with particle size of 29.97 nm and 22.73 nm respectively.

  17. Optical waveguide based on amorphous Er{sup 3+}-doped Ga-Ge-Sb-S(Se) pulsed laser deposited thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nazabal, V., E-mail: virginie.nazabal@univ-rennes1.f [Sciences Chimiques de Rennes (SCR), UMR CNRS 6226, Equipe Verres et Ceramiques, Universite de Rennes 1, Rennes (France); Nemec, P. [Department of General and Inorganic Chemistry and Research Center, Faculty of Chemical Technology, University of Pardubice, Legions Sq. 565, 53210, Pardubice (Czech Republic); Jurdyc, A.M [Laboratoire de Physico-Chimie des Materiaux Luminescents (LPCML), UMR CNRS 5620, Universite Claude Bernard-Lyon 1, Villeurbanne (France); Zhang, S.; Charpentier, F. [Sciences Chimiques de Rennes (SCR), UMR CNRS 6226, Equipe Verres et Ceramiques, Universite de Rennes 1, Rennes (France); Lhermite, H. [IETR-Microelectronique, UMR CNRS 6251, Universite de Rennes 1, 35042 Rennes (France); Charrier, J. [FOTON, UMR 6082-ENSSAT, UMR CNRS 6251, Universite de Rennes 1, 35042 Rennes (France); Guin, J.P. [LARMAUR, UMR CNRS 6251, Universite de Rennes 1, 35042 Rennes (France); Moreac, A. [Institut de Physique de Rennes, UMR CNRS 6251, Universite de Rennes 1, 35042 Rennes (France); Frumar, M. [Department of General and Inorganic Chemistry and Research Center, Faculty of Chemical Technology, University of Pardubice, Legions Sq. 565, 53210, Pardubice (Czech Republic); Adam, J.-L. [Sciences Chimiques de Rennes (SCR), UMR CNRS 6226, Equipe Verres et Ceramiques, Universite de Rennes 1, Rennes (France)

    2010-06-30

    Amorphous chalcogenide films play a motivating role in the development of integrated planar optical circuits due to their potential functionality in near infrared (IR) and mid-IR spectral regions. More specifically, the photoluminescence of rare earth ions in amorphous chalcogenide films can be used in laser and amplifier devices in the IR spectral domain. The aim of the present investigation was to optimize the deposition conditions for the fabrication of undoped and Er{sup 3+} doped sulphide and selenide thin films with nominal composition Ga{sub 5}Ge{sub 20}Sb{sub 10}S(Se){sub 65} or Ga{sub 5}Ge{sub 23}Sb{sub 5}S{sub 67} by pulsed laser deposition (PLD). The study of compositional, morphological and structural characteristics of the layers was realized by scanning electron microscopy-energy dispersive spectroscopy, atomic force microscopy and Raman spectroscopy analyses, respectively. Some optical properties (transmittance, index of refraction, optical band gap, etc.) of prepared chalcogenide films and optical losses were investigated as well. The clear identification of near-IR photoluminescence of Er{sup 3+} ions was obtained for both selenide and sulphide films. The decay of the {sup 4}I{sub 13/2} {yields} {sup 4}I{sub 15/2} transition at 1.54 {mu}m in Er{sup 3+} doped Ga{sub 5}Ge{sub 20}Sb{sub 10}S{sub 65} PLD sulphide films was studied to assess the effects of film thickness, rare earth concentration and multilayer PLD deposition on their spectroscopic properties.

  18. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe.

    Science.gov (United States)

    Parker, David S

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large T c value is unlikely.

  19. The question about increasing of thermoelectrical Q and percent of the yield of the semiconductor material on the basis of chalcogenides of the bismuth and antimony under conditions of experimental-industrial production

    International Nuclear Information System (INIS)

    Magerramov, A.A.; Barkhalov, B.S.

    2005-01-01

    Full text : Different methods of the receiving of monocrystalline ingots of the semiconductor materials for thermo electrical inverter of energy have been considered. On the basis of the analyses of theoretical and experimental data generated series of recommendations, directed to increase thermo electrical Q receiving from thermo electrical materials and increasing percent of yield of semiconductor materials on the basis of chalcogenides of the bismuth and antimony on the basis of industrial production

  20. Engineering of lead chalcogenide nanostructures for carrier multiplication: Core/shell, 1D, and 2D

    Science.gov (United States)

    Lin, Qianglu

    Near infrared emitting semiconductors have been used widely in industry especially in solar-cell fabrications. The efficiency of single junction solar-cell can reach the Shockley-Queisser limit by using optimum band gap material such as silicon and cadmium telluride. The theoretical efficiency can be further enhanced through carrier multiplication, in which a high energy photon is absorbed and more than one electron-hole pair can be generated, reaching more than 100% quantum efficiency in the high energy region of sunlight. The realization of more than unity external quantum efficiency in lead selenide quantum dots solar cell has motivated vast investigation on lowering the carrier multiplication threshold and further improving the efficiency. This dissertation focuses on synthesis of lead chalcogenide nanostructures for their optical spectroscopy studies. PbSe/CdSe core/shell quantum dots were synthesized by cation exchange to obtain thick shells (up to 14 monolayers) for studies of visible and near infrared dual band emissions and carrier multiplication efficiency. By examining the reaction mechanism, a thermodynamic and a kinetic model are introduced to explain the vacancy driven cation exchange. As indicated by the effective mass model, PbSe/CdSe core/shell quantum dots has quasi-type-II band alignment, possessing electron delocalized through the entire quantum dot and hole localized in the core, which breaks down the symmetry of energy levels in the conduction and valence band, leading to hot-hole-assisted efficient multi-exciton generation and a lower carrier multiplication threshold to the theoretical value. For further investigation of carrier multiplication study, PbTe, possessing the highest efficiency among lead chalcogenides due to slow intraband cooling, is synthesized in one-dimensional and two-dimensional nanostructures. By using dodecanethiol as the surfactant, PbTe NRs can be prepared with high uniformity in width and resulted in fine quantum

  1. Synthesis, Characterization, and Properties of the Two-Dimensional Chalcogenides: Monolayers, Alloys, and Heterostructures

    Science.gov (United States)

    Cain, Jeffrey D.

    Inspired by the triumphs of graphene, and motivated by its limitations, the science and engineering community is rapidly exploring the landscape of other layered materials in their atomically-thin forms. Dominating this landscape are the layered chalcogenides; diverse in chemistry, crystal structure, and properties, there are well over 100 primary members of this material family. Driven by quantum confinement, single layers (or few, in some cases) of these materials exhibit electronic, optical, and mechanical properties that diverge dramatically from their bulk counterparts. While initially isolated in monolayer form via mechanical exfoliation, the field of two-dimensional (2D) materials is being forced evolve to more scalable and reliable methods. Focusing on the chalcogenides (e.g. MoS2, Bi 2Se3, etc.), this dissertation introduces and mechanistically examines multiple novel synthetic approaches for the direct growth of monolayers, heterostructures, and alloys with the desired quality, reproducibility and generality. The first methods described in this thesis are physical vapor transport (PVT) and evaporative thinning (ET): a facile, top-down synthesis approach for creating ultrathin specimens of layered materials down to the two-dimensional limit. Evaporative thinning, applied in this study to the fabrication of A2X3 (Bi2Se3 and Sb2Te3) monolayers, is based on the controlled evaporation of material from initially thick specimens until the 2D limit is reached. The resultant flakes are characterized with a suite of imaging and spectroscopic techniques and the mechanism of ET is investigated via in-situ heating within a transmission electron microscope. Additionally, the basic transport properties of the resultant flakes are probed. The growth of ultrathin GeSe flakes is explored using PVT and the material's basic structure, properties, and stability are addressed. Second, oxide precursor based chemical vapor deposition (CVD) is presented for the direct growth of

  2. Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths

    International Nuclear Information System (INIS)

    Li, Jun; Shen, Xiang; Sun, Junqiang; Vu, Khu; Choi, Duk-Yong; Wang, Rongping; Luther-Davies, Barry; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua

    2013-01-01

    We report on the fabrication and optical properties of Ge 20 Sb 15 Se 65 chalcogenide glass rib waveguides on a single photonic chip. Radio-frequency magnetron sputtering method is employed to deposit 1.36-μm-thick films and reactive ion etching with CHF 3 is used to pattern 0.76-μm-deep rib waveguides of 1–4 μm wide with low surface roughness and vertical sidewalls. Using lensed fibers, the insertion losses for rib waveguides of different widths are measured and propagation losses are estimated to be lower than 1 dB/cm. Finite difference method simulations and refractive index/curve fitting are used to observe a moderate normal dispersion of the waveguides at 1550 nm. - Highlights: • RF magnetron sputtering was used to deposit uniform Ge 20 Sb 15 Se 65 thin films. • CHF 3 reactive ion etching of rib waveguides vertical profile and smooth sidewall. • Insertion losses at 1550 nm measured and low propagation losses estimated. • Dispersion engineered by finite difference methods and refractive curve fitting

  3. ac conductivity and dielectric properties of amorphous Se80Te20-xGex chalcogenide glass film compositions

    International Nuclear Information System (INIS)

    Hegab, N.A.; Afifi, M.A.; Atyia, H.E.; Farid, A.S.

    2009-01-01

    Thin films of the prepared Se 80 Te 20-x Ge x (x = 5, 7 and 10 at.%) were prepared by thermal evaporation technique. X-ray diffraction patterns showed that the films were in amorphous state. The ac conductivity and dielectric properties of the investigated film compositions were studied in the frequency range 0.1-100 kHz and in temperature range (303-373 K). The experimental results indicated that the ac conductivity and the dielectric properties depended on the temperature and frequency. The ac conductivity is found to obey the ω s law, in accordance with the hopping model, s is found to be temperature dependent (s 1 and dielectric loss ε 2 were found to decrease with frequency and increase with temperature. The maximum barrier height W m , calculated from dielectric measurements according to Guintini equation, agrees with that proposed by the theory of hopping over potential barrier as suggested by Elliott in case of chalcogenide glasses. The density of localized states was estimated for the studied film compositions. The variation of the studied properties with Ge content was also investigated.

  4. Tissue irradiator

    International Nuclear Information System (INIS)

    Hungate, F.P.; Riemath, W.F.; Bunnell, L.R.

    1975-01-01

    A tissue irradiator is provided for the in-vivo irradiation of body tissue. The irradiator comprises a radiation source material contained and completely encapsulated within vitreous carbon. An embodiment for use as an in-vivo blood irradiator comprises a cylindrical body having an axial bore therethrough. A radioisotope is contained within a first portion of vitreous carbon cylindrically surrounding the axial bore, and a containment portion of vitreous carbon surrounds the radioisotope containing portion, the two portions of vitreous carbon being integrally formed as a single unit. Connecting means are provided at each end of the cylindrical body to permit connections to blood-carrying vessels and to provide for passage of blood through the bore. In a preferred embodiment, the radioisotope is thulium-170 which is present in the irradiator in the form of thulium oxide. A method of producing the preferred blood irradiator is also provided, whereby nonradioactive thulium-169 is dispersed within a polyfurfuryl alcohol resin which is carbonized and fired to form the integral vitreous carbon body and the device is activated by neutron bombardment of the thulium-169 to produce the beta-emitting thulium-170

  5. Blue luminescence in Tm3+-doped KGd(WO4)2 single crystals

    International Nuclear Information System (INIS)

    Gueell, F.; Mateos, X.; Gavalda, Jna.; Sole, R.; Aguilo, M.; Diaz, F.; Massons, J.

    2004-01-01

    Up-conversion blue emissions of trivalent thulium ions in monoclinic KGd(WO 4 ) 2 single crystals at 454 and 479 nm are reported for a single pump laser source at 688 nm. We grew thulium-doped KGd(WO 4 ) 2 single crystals at several concentrations from 0.1% to 10%. We recorded a polarized optical absorption spectrum for the 3 F 2 + 3 F 3 energy levels of thulium at room temperature and low temperature (6 K). From the low temperature emission spectra we determined the splitting of the 3 H 6 ground state. The blue emissions are characterized as a function of the dopant concentration and temperature from 10 K to room temperature. To our knowledge, this is the first time that sequential two-photon excitation process (STEP) generated blue emissions in thulium-doped single crystals with a single excitation wavelength

  6. Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR).

    Science.gov (United States)

    Gao, Min-Rui; Jiang, Jun; Yu, Shu-Hong

    2012-01-09

    Late transition metal chalcogenide (LTMC) nanomaterials have been introduced as a promising Pt-free oxygen reduction reaction (ORR) electrocatalysts because of their low cost, good ORR activity, high methanol tolerance, and facile synthesis. Herein, an overview on the design and synthesis of LTMC nanomaterials by solution-based strategies is presented along with their ORR performances. Current solution-based synthetic approaches towards LTMC nanomaterials include a hydrothermal/solvothermal approach, single-source precursor approach, hot-injection approach, template-directed soft synthesis, and Kirkendall-effect-induced soft synthesis. Although the ORR activity and stability of LTMC nanomaterials are still far from what is needed for practical fuel-cell applications, much enhanced electrocatalytic performance can be expected. Recent advances have emphasized that decorating the surface of the LTMC nanostructures with other functional nanoparticles can lead to much better ORR catalytic activity. It is believed that new synthesis approaches to LTMCs, modification techniques of LTMCs, and LTMCs with desirable morphology, size, composition, and structures are expected to be developed in the future to satisfy the requirements of commercial fuel cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe

    Energy Technology Data Exchange (ETDEWEB)

    Parker, David S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large Tc value is unlikely.

  8. Investigation of electrical and optical properties of Ge-Ga-As-S glasses doped with rare-earth ions

    Czech Academy of Sciences Publication Activity Database

    Zavadil, Jiří; Kubliha, M.; Kostka, Petr; Iovu, M.; Labaš, V.; Ivanova, Z.G.

    -, č. 377 (2013), s. 85-89 ISSN 0022-3093 R&D Projects: GA ČR GAP106/12/2384; GA MŠk 7AMB12SK147 Institutional support: RVO:67985882 ; RVO:67985891 Keywords : Chalcogenide glass * Direct electrical conductivity * Photoluminescence Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; DB - Geology ; Mineralogy (USMH-B) Impact factor: 1.716, year: 2013

  9. An Earth-sized planet with an Earth-like density.

    Science.gov (United States)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  10. Towards earth AntineutRino TomograpHy (EARTH)

    NARCIS (Netherlands)

    De Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Wortche, H. J.; Mantovani, F.

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection.

  11. Solvent extraction studies on separation of yttrium from xenotime

    International Nuclear Information System (INIS)

    Singh, D.K.; Anitha, M.; Kain, V.

    2017-01-01

    Rare earths consists a group of 15 element from La to Lu in the periodic table and it also includes Sc and Y since they tend to occur in the same ore deposits as the lanthanides and exhibit similar chemical properties. The unique physical-chemical properties of the REEs render them important in applications as varies as high strength magnets, lighting phosphors, policing compounds and ceramics. In particular, yttrium finds numerous applications in many areas including superconductors, lasers, phosphors, nuclear reactors, astronavigation, ceramics etc. Yttrium is chemically similar to heavy rare earths (HRE: terbium, dysprosium, erbium, holmium, ytterbium, thulium and lutecium). Yttrium behaves like HRE due to similarity in ionic radius and finds place between Ho and Er. The cross current profile in terms of the plot of concentration of yttrium in raffinate as a function of contact number indicated the complete recovery of rare earths from nitrate solution of xenotime wet cake

  12. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  13. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  14. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides); Synthese assistee par faisceau d'ions d'agregats dans les verres (argent et chalcogenures de plomb)

    Energy Technology Data Exchange (ETDEWEB)

    Espiau de Lamaestre, R

    2005-04-15

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  15. Optimal Safety EarthingEarth Electrode Sizing Using A ...

    African Journals Online (AJOL)

    In this paper a deterministic approach in the sizing of earth electrode using the permissible touch voltage criteria is presented. The deterministic approach is effectively applied in the sizing of the length of earth rod required for the safe earthing of residential and facility buildings. This approach ensures that the earthing ...

  16. Impact of sulfur content on structural and optical properties of Ge20Se80-xSx chalcogenide glasses thin films

    Science.gov (United States)

    Dongol, M.; Elhady, A. F.; Ebied, M. S.; Abuelwafa, A. A.

    2018-04-01

    Chalcogenide system Ge20Se80-xSx (x = 0, 15 and 30%) thin films were prepared by thermal evaporation technique. The amorphous state of the samples was confirmed according to XRD. The structural changes occurring upon replacement Se by S was investigated using Raman spectroscopy. The optical properties of the as-deposited Ge20Se80-xSx thin films have been studied by analysis the transmittance T(λ) measured at room temperature in the wavelength range 200-2500 nm using Swanepoel's method. Urbach energy (Ee) and optical band gap (Eg) were strongly affected by sulfur concentration in the sample. The refractive index evaluated through envelope method was extrapolated by Cauchy dispersion relationship over the whole spectral range. Moreover, the dispersion of refractive index was analyzed in terms of the single-oscillator Wemple-Di Domenico model. The third-order nonlinear susceptibility (χ(3)) and nonlinear refractive index (n2) were calculated and discussed for different Ge20Se80-xSx (x = 0, 15 and 30%).

  17. Phase change and optical band gap behavior of Se0.8S0.2 chalcogenide glass films

    International Nuclear Information System (INIS)

    Abdel Rafea, M.; Farid, Huda

    2009-01-01

    Se 0.8 S 0.2 chalcogenide glass films have been prepared by thermal vacuum evaporation technique with thickness 583 nm. Annealing process at T ≥ 333 K crystallizes the films and nanostructured films are formed. The crystallite size was increased to 24 nm as the annealing temperature increased to 373 K. Orthorhombic crystalline system was identified for the annealed films. SEM micrographs show that films consist of two parallel surfaces and the thickness was determined by cross section imaging. The optical transmittance is characterized by interference patterns as a result of these two parallel surfaces, besides their average value at longer wavelength decreases as a result of annealing process. The band gap, E g is red shifted due to crystallization by annealing. As the phase of the films changes from amorphous to crystalline in the annealing temperature range 333-363 K, a non sharp change of the band gap (E g ) is observed. This change was explained by Brus's model of the energy gap confinement behavior of the nanostructured films. The optical refractive index increases suddenly when the system starts to be crystallized by annealing

  18. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  19. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  20. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  1. A new method to study complex materials in solid state chemistry: application to chalcogenide materials

    International Nuclear Information System (INIS)

    Lippens, P.E.; Olivier-Fourcade, J.; Jumas, J.C.

    1998-01-01

    We show that a combined application of Moessbauer spectroscopy and other experimental tools such as X-ray photoelectron spectroscopy, X-ray absorption spectroscopy and nuclear magnetic resonance provides a coherent picture of the local electronic structure in chalcogenide materials. In order to develop this idea we propose an analysis of the Sn, Sb and Te local electronic structures for three different systems of materials. The first example concerns the In-Sn-S system. We show that Li insertion in In 16 Sn 4 S 32 leads to changes of the Sn oxidation states from Sn(IV) to Sn(II). The second example concerns materials of the Tl-Sb-S system. We show that variations of the 121 Sb Moessbauer isomer shift and surface of the first peak of the X-ray absorption spectra at the Sb L III edge can be linearly correlated because of the main influence of the Sb 5s electrons. This is explained by changes in the local environment of the Sb atoms. The last example concerns the crystalline phases of the Tl-Sn-Te system. The formal oxidation numbers of the Te atoms are determined from 125 Te Moessbauer spectroscopy and X-ray photoelectron spectroscopy. They are related to the different types of bonds involving the Te atoms in the Tl-Sn-Te compounds

  2. Neutron diffraction study of structural transformations in ternary systems of HgSe sub 1 sub - sub x S sub x mercury chalcogenides at high pressure

    CERN Document Server

    Voronin, V I; Berger, I F; Glazkov, V P; Kozlenko, D P; Savenko, B N; Tikhomirov, S V

    2001-01-01

    The structure of the ternary systems of the HgSe sub 1 sub - sub x S sub x mercury chalcogenides is studied at high pressures up to 35 kbar. It is established that by increase in the pressure in the HgSe sub 1 sub - sub x S sub x there takes place the transition from the sphalerite type cubic structure to the cinnabar type hexagonal structure, which is accompanied by the jump-like change in the elementary cell volume and interatomic distances. The parameters of the elementary cell and positional parameters of the Hg and Se/S for the hexagonal phase of high pressure are determined. The existence of the two-phase state in the area of the phase transformation is determined

  3. Low-energy near Earth asteroid capture using Earth flybys and aerobraking

    Science.gov (United States)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2018-04-01

    Since the Sun-Earth libration points L1 and L2 are regarded as ideal locations for space science missions and candidate gateways for future crewed interplanetary missions, capturing near-Earth asteroids (NEAs) around the Sun-Earth L1/L2 points has generated significant interest. Therefore, this paper proposes the concept of coupling together a flyby of the Earth and then capturing small NEAs onto Sun-Earth L1/L2 periodic orbits. In this capture strategy, the Sun-Earth circular restricted three-body problem (CRTBP) is used to calculate target Lypaunov orbits and their invariant manifolds. A periapsis map is then employed to determine the required perigee of the Earth flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with and without aerobraking are investigated to design a transfer trajectory capturing a small NEA from its initial orbit to the stable manifolds associated with Sun-Earth L1/L2 periodic orbits. Finally, a global optimization is carried out, based on a detailed design procedure for NEA capture using an Earth flyby. Results show that the NEA capture strategies using an Earth flyby with and without aerobraking both have the potential to be of lower cost in terms of energy requirements than a direct NEA capture strategy without the Earth flyby. Moreover, NEA capture with an Earth flyby also has the potential for a shorter flight time compared to the NEA capture strategy without the Earth flyby.

  4. Role of heat treatment on structural and optical properties of thermally evaporated Ga{sub 10}Se{sub 81}Pb{sub 9} chalcogenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    El-Sebaii, A.A., E-mail: ahmedelsebaii@yahoo.com [Department of Physics, Faculty of Science, King Abdulaziz University, 80203 Jeddah 21589 (Saudi Arabia); Khan, Shamshad A. [Department of Physics, St. Andrews College, Gorakhpur 273001 (India); Al-Marzouki, F.M.; Faidah, A.S.; Al-Ghamdi, A.A. [Department of Physics, Faculty of Science, King Abdulaziz University, 80203 Jeddah 21589 (Saudi Arabia)

    2012-08-15

    Amorphous chalcogenides, based on Se, have become materials of commercial importance and were widely used for optical storage media. The present work deals with the structural and optical properties of Ga{sub 10}Se{sub 81}Pb{sub 9} ternary chalcogenide glass prepared by melt quenching technique. The glass transition, crystallization and melting temperatures of the synthesized glass were measured by non-isothermal DSC measurements at a constant heating rate of 30 K/min. Thin films of thickness 4000 A were prepared by thermal evaporation techniques on glass/Si (1 0 0) wafer substrate. These thin films were thermally annealed for two hours at three different annealing temperatures of 345, 360 and 375 K, which were in between the glass transition and crystallization temperatures of the Ga{sub 10}Se{sub 81}Pb{sub 9} glass. The structural, morphological and optical properties of as-prepared and annealed thin films were studied. Analysis of the optical absorption data showed that the rules of the non-direct transitions predominate. It was also found that the optical band gap decreases while the absorption coefficient, refractive index and extinction coefficient increase with increasing the annealing temperature. Due to the higher values of absorption coefficient and annealing dependence of the optical band gap and optical constants, the investigated material could be used for optical storage. - Highlights: Black-Right-Pointing-Pointer Annealing effect on structure and optical band gap has been investigated. Black-Right-Pointing-Pointer The amorphous nature has been verified by x-ray diffraction and DSC measurements. Black-Right-Pointing-Pointer Thermal annealing causes a decrease in optical band gap in Ga{sub 10}Se{sub 81}Pb{sub 9} thin films. Black-Right-Pointing-Pointer The decrease in optical band gap can be interpreted on the basis of amorphous-crystalline phase transformation. Black-Right-Pointing-Pointer Optical absorption data showed that the rules of the non

  5. Enhanced hydrogen production from water via a photo-catalyzed reaction using chalcogenide d-element nanoparticles induced by UV light.

    Science.gov (United States)

    El Naggar, Ahmed M A; Nassar, Ibrahim M; Gobara, Heba M

    2013-10-21

    Hydrogen has the potential to meet the requirements as a clean non-fossil fuel in the future. The photocatalytic production of H2 through water splitting has been demonstrated and enormous efforts have been published. The present work is an attempt to enhance the production of H2 during water splitting using synthesized nanoparticles based on chalcogenide d-element semiconductors via a photochemical reaction under UV-light in the presence of methanol as a hole-scavenger. In general, the enhanced activity of a semiconductor is most likely due to the effective charge separation of photo generated electrons and holes in the semiconductors. Hence, the utilization of different semiconductors in combination can consequently provide better hydrogen production. Accordingly in this research work, two different semiconductors, with different concentrations, either used individually or combined together were introduced. They in turn produced a high concentration of H2 as detected and measured using gas chromatography. Herein, data revealed that the nano-structured semiconductors prepared through this work are a promising candidate in the production of an enhanced H2 flux under visible UV radiation.

  6. Microstructure and thermal properties of dysprosium and thulium co-doped barium titanate ceramics for high performance multilayer ceramic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinseong; Kim, Dowan; Noh, Taimin [School of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Ahn, Byungmin [Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241 (United States); Lee, Heesoo, E-mail: heesoo@pusan.ac.kr [School of Materials Science and Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2011-09-15

    Highlights: > Dy/Tm co-doping method in BaTiO{sub 3} was suggested to improve electrical properties and temperature stability simultaneously. > We examined these properties in terms of microstructural analysis and substitution rate. > Increase of Dy{sub 2}O{sub 3} addition enhanced dielectric constant. > Increase of Tm{sub 2}O{sub 3} addition enhanced temperature stability. > Improved electrical properties and temperature stability through Dy/Tm co-doping were deduced from formation of electrons and core-shell structure. - Abstract: The co-doping characteristics on microstructure and thermal properties of barium titanate (BaTiO{sub 3}) were investigated to elucidate formation of core-shell structure by dysprosium (Dy) and thulium (Tm) addition in the BaTiO{sub 3}-Dy{sub 2}O{sub 3}-Tm{sub 2}O{sub 3} system. The dielectrics co-doped with 0.7 mol% Dy{sub 2}O{sub 3} and 0.3 mol% Tm{sub 2}O{sub 3} had the dielectric constant up to 2200 as a function of temperature, which was 30% higher than that of specimen containing only Tm{sub 2}O{sub 3} at the room temperature. It could be explained by the fact that the increase of Dy{sub 2}O{sub 3} addition contributed to the improvement of dielectric constant. On the other hand, the rapid diffusion rate of Dy{sup 3+} ions in BaTiO{sub 3} showed an adverse effect on temperature stability caused by destruction of core-shell. As the compensation for shell expansion in BaTiO{sub 3}, the reinforcement of the core-shell structure through the addition of Tm{sub 2}O{sub 3} was confirmed by TEM-EDS analysis and attributed the temperature coefficient of capacitance (TCC) in a reliability condition (-55 deg. C to 125 deg. C, {Delta}C = {+-}15% or less). The enhanced electrical properties and temperature stability could be deduced from the generation of electrons and the formation core-shell structure in co-doped BaTiO{sub 3} system respectively.

  7. Thulium fiber laser-induced vapor bubble dynamics using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    Science.gov (United States)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-03-01

    This study characterizes laser-induced vapor bubble dynamics for five different distal fiber optic tip configurations, to provide insight into stone retropulsion commonly experienced during laser ablation of kidney stones. A thulium fiber laser with 1908-nm wavelength delivered 34-mJ energy per pulse at 500-μs pulse duration through five different fibers such as 100-μm-core / 170-μm-OD bare fiber tip, 150- to 300-μm-core tapered fiber tip, 100-μm-core / 300-μm-OD ball tip fiber, 100-μm-core / 340-μm-OD hollow steel tip fiber, and 100-μm-core / 560-μm-OD muzzle brake fiber tip. A high-speed camera with 10-μm-spatial and 9.5-μs-temporal resolution was used to image the vapor bubble dynamics. A needle hydrophone measured pressure transients in the forward (0 deg) and side (90 deg) directions while placed at a 6.8 ± 0.4 mm distance from the distal fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7 / 1.5 mm, for bare, tapered, ball, hollow steel, and muzzle brake fiber tips, respectively (n = 5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n = 5). For the hollow steel tip, forward pressure was 4 × higher than for the bare fiber. For the muzzle brake fiber tip, forward pressure was 5 × lower than the bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle brake fiber tip reduced forward pressure by partially venting vapors through the portholes, which is consistent with the observation of lower stone retropulsion in previous reports.

  8. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  9. Synchronous γ (Co60) photons and thermal processing induced insulator metal transition in amorphous chalcogenide As4Se3Te3 composition

    Science.gov (United States)

    El-Sayed, S. A.; Morsy, M. A.

    2018-05-01

    Amorphous chalcogenide composition AS4Se3Te3 is prepared by conventional quenching technique. The separate annealing or γ quanta irradiation not effect on the dc conductivity properties of the prepared composition. When the prepared samples are subjected to simultaneous annealing at temperature 413 K and γ quanta irradiation the dc conductivity increases. The dark dc conductivity increases by increasing the time of exposure to γ irradiation. At irradiation dose 1.47 × 104 Gy the dc conductivity starts to have metallic like conductivity character. These samples could be used as high temperature γ quanta dosimeter. By applying scaling theory on the samples irradiated with different dose of γ irradiation the critical exponents are determined and found to be temperature tends to zero. The steric value is low in the insulator side of conductivity, but high and almost saturated in the metallic side of conductivity.

  10. ISS EarthKam: Taking Photos of the Earth from Space

    Science.gov (United States)

    Haste, Turtle

    2008-01-01

    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  11. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  12. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  13. Thermo-chemical properties and electrical resistivity of Zr-based arsenide chalcogenides

    Directory of Open Access Journals (Sweden)

    A. Schlechte, R. Niewa, M. Schmidt, G. Auffermann, Yu. Prots, W. Schnelle, D. Gnida, T. Cichorek, F. Steglich and R. Kniep

    2007-01-01

    Full Text Available Ternary phases in the systems Zr–As–Se and Zr–As–Te were studied using single crystals of ZrAs1.40(1Se0.50(1 and ZrAs1.60(2Te0.40(1 (PbFCl-type of structure, space group P4/nmm as well as ZrAs0.70(1Se1.30(1 and ZrAs0.75(1Te1.25(1 (NbPS-type of structure, space group Immm. The characterization covers chemical compositions, crystal structures, homogeneity ranges and electrical resistivities. At 1223 K, the Te-containing phases can be described with the general formula ZrAsxTe2−x, with 1.53(1≤x≤1.65(1 (As-rich and 0.58(1≤x≤0.75(1 (Te-rich. Both phases are located directly on the tie-line between ZrAs2 and ZrTe2, with no indication for any deviation. Similar is true for the Se-rich phase ZrAsxSe2−x with 0.70(1≤x≤0.75(1. However, the compositional range of the respective As-rich phase ZrAsx−ySe2−x (0.03(1≤y≤0.10(1; 1.42(1≤x≤1.70(1 is not located on the tie-line ZrAs2–ZrSe2, and exhibits a triangular region of existence with intrinsic deviation of the composition towards lower non-metal contents. Except for ZrAs0.75Se1.25, from the homogeneity range of the Se-rich phase, all compounds under investigation show metallic characteristics of electrical resistivity at temperatures >20 K. Related uranium and thorium arsenide selenides display a typical magnetic field-independent rise of the resistivity towards lower temperatures, which has been explained by a non-magnetic Kondo effect. However, a similar observation has been made for ZrAs1.40Se0.50, which, among the Zr-based arsenide chalcogenides, is the only system with a large concentration of intrinsic defects in the anionic substructure.

  14. Digital Earth – A sustainable Earth

    International Nuclear Information System (INIS)

    Mahavir

    2014-01-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth

  15. Why Earth Science?

    Science.gov (United States)

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  16. Earth observation from the manned low Earth orbit platforms

    Science.gov (United States)

    Guo, Huadong; Dou, Changyong; Zhang, Xiaodong; Han, Chunming; Yue, Xijuan

    2016-05-01

    The manned low Earth orbit platforms (MLEOPs), e.g., the U.S. and Russia's human space vehicles, the International Space Station (ISS) and Chinese Tiangong-1 experimental space laboratory not only provide laboratories for scientific experiments in a wide range of disciplines, but also serve as exceptional platforms for remote observation of the Earth, astronomical objects and space environment. As the early orbiting platforms, the MLEOPs provide humans with revolutionary accessibility to the regions on Earth never seen before. Earth observation from MLEOPs began in early 1960s, as a part of manned space flight programs, and will continue with the ISS and upcoming Chinese Space Station. Through a series of flight missions, various and a large amount of Earth observing datasets have been acquired using handheld cameras by crewmembers as well as automated sophisticated sensors onboard these space vehicles. Utilizing these datasets many researches have been conducted, demonstrating the importance and uniqueness of studying Earth from a vantage point of MLEOPs. For example, the first, near-global scale digital elevation model (DEM) was developed from data obtained during the shuttle radar topography mission (SRTM). This review intends to provide an overview of Earth observations from MLEOPs and present applications conducted by the datasets collected by these missions. As the ISS is the most typical representative of MLEOPs, an introduction to it, including orbital characteristics, payload accommodations, and current and proposed sensors, is emphasized. The advantages and challenges of Earth observation from MLEOPs, using the ISS as an example, is also addressed. At last, a conclusive note is drawn.

  17. Thermoelectric properties of chalcogenide based Cu2+xZnSn1−xSe4

    Directory of Open Access Journals (Sweden)

    Ch. Raju

    2013-03-01

    Full Text Available Quaternary chalcogenide compounds Cu2+xZnSn1−xSe4 (0 ≤ x ≤ 0.15 were prepared by solid state synthesis. Rietveld powder X-ray diffraction (XRD refinements combined with Electron Probe Micro Analyses (EPMA, WDS-Wavelength Dispersive Spectroscopy and Raman spectra of all samples confirmed the stannite structure (Cu2FeSnS4-type as the main phase. In addition to the main phase, small amounts of secondary phases like ZnSe, CuSe and SnSe were observed. Transport properties of all samples were measured as a function of temperature in the range from 300 K to 720 K. The electrical resistivity of all samples decreases with an increase in Cu content except for Cu2.1ZnSn0.9Se4, most likely due to a higher content of the ZnSe. All samples showed positive Seebeck coefficients indicating that holes are the majority charge carriers. The thermal conductivity of doped samples was high compared to Cu2ZnSnSe4 and this may be due to the larger electronic contribution and the presence of the ZnSe phase in the doped samples. The maximum zT = 0.3 at 720 K occurs for Cu2.05ZnSn0.95Se4 for which a high-pressure torsion treatment resulted in an enhancement of zT by 30% at 625 K.

  18. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films

    Science.gov (United States)

    Hassanien, A. S.; Akl, Alaa A.

    2016-01-01

    Compositional dependence of optical and electrical properties of chalcogenide CdSxSe1-x (0.4 ≥ x ≥ 0.0 at. %) thin films was studied. Cadmium sulphoselenide films were deposited by thermal evaporation technique at vacuum (8.2 × 10-4 Pa) onto preheated glass substrates (523 K). The evaporation rate and film thickness were kept constant at 2.50 nm/s and 375 ± 5 nm, respectively. X-ray diffractograms showed that, the deposited films have the low crystalline nature. Energy dispersive analysis by X-ray (EDAX) was used to check the compositional elements of deposited films. The absorption coefficient was determined from transmission and reflection measurements at room temperature in the wavelength range 300-2500 nm. Optical density, skin depth, optical energy gap and Urbach's parameters of CdSSe thin films have also been estimated. The direct optical energy gap decreased from 2.248 eV to 1.749 eV when the ratio of Se-content was increased from 0.60 to 1.00 . Conduction band and valance band positions were evaluated. The temperature dependence of dc-electrical resistivity in the temperature range (293-450 K) has been reported. Three conduction regions due to different conduction mechanisms were detected. Electrical sheet resistance, activation energy and pre-exponential parameters were discussed. The estimated values of optical and electrical parameters were strongly dependent upon the Se-content in CdSSe matrix.

  19. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  20. New Intermetallic Ternary Phosphide Chalcogenide AP2-xXx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure

    Science.gov (United States)

    Kitô, Hijiri; Yanagi, Yousuke; Ishida, Shigeyuki; Oka, Kunihiko; Gotoh, Yoshito; Fujihisa, Hiroshi; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi

    2014-07-01

    We have synthesized a series of intermetallic ternary phosphide chalcogenide superconductors, AP2-xXx (A = Zr, Hf; X = S, Se), using the high-pressure synthesis technique. These materials have a PbFCl-type crystal structure (space group P4/nmm) when x is greater than 0.3. The superconducting transition temperature Tc changes systematically with x, yielding dome-like phase diagrams. The maximum Tc is achieved at approximately x = 0.7, at which point the Tc is 6.3 K for ZrP2-xSex (x = 0.75), 5.5 K for HfP2-xSex (x = 0.7), 5.0 K for ZrP2-xSx (x = 0.675), and 4.6 K for Hfp2-xSx (x = 0.5). They are typical type-II superconductors and the upper and lower critical fields are estimated to be 2.92 T at 0 K and 0.021 T at 2 K for ZrP2-xSex (x = 0.75), respectively.

  1. An Earth-sized planet with an Earth-like density

    DEFF Research Database (Denmark)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W.

    2013-01-01

    significantly larger than the Earth. Recently, the planet Kepler-78b was discovered(8) and found to have a radius of only 1.16R(circle plus). Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth...

  2. A Novel Effect of CO2 Laser Induced Piezoelectricity in Ag2Ga2SiS6 Chalcogenide Crystals

    Directory of Open Access Journals (Sweden)

    Oleg V. Parasyuk

    2016-08-01

    Full Text Available We have discovered a substantial enhancement of the piezoelectric coefficients (from 10 to 78 pm/V in the chalcogenide Ag2Ga2SiS6 single crystals. The piezoelectric studies were done under the influence of a CO2 laser (wavelength 10.6 μm, time duration 200 ns, lasers with power densities varying up to 700 MW/cm2. Contrary to the earlier studies where the photoinduced piezoelectricity was done under the influence of the near IR lasers, the effect is higher by at least one order, which is a consequence of the phonon anharmonic contributions and photopolarizations. Such a discovery allows one to build infrared piezotronic devices, which may be used for the production of the IR laser tunable optoelectronic triggers and memories. This is additionally confirmed by the fact that analogous photoillumination by the near IR laser (Nd:YAG (1064 nm and Er:glass laser (1540 nm gives the obtained values of the effective piezoelectricity at of least one order less. The effect is completely reversible with a relaxation time up to several milliseconds. In order to clarify the role of free carriers, additional studies of photoelectrical spectra were done.

  3. Electrochemical lithium and sodium intercalation into the tantalum-rich layered chalcogenides Ta2Se and Ta2Te3

    International Nuclear Information System (INIS)

    Lavela, P.; Tirado, J.L.

    1999-01-01

    Two-layered tantalum chalcogenides are evaluated as alkali metal intercalation hosts in lithium and sodium electrochemical cells. The metal-rich pseudo-two-dimensional solid Ta 2 Se shows a poor intercalation behaviour. Lithium reacts with the selenide by deintercalating selenium from the blocks of Ta-related b.c.c. structure leading to a collapse of the structure and the formation of tantalum metal. Sodium is reversibly intercalated to a limited extent leading to complex structural changes in the selenide, as revealed by electron diffraction. The two-dimensional telluride Ta 2 Te 3 allows a topotactic intercalation of lithium below 1 F/mol, while a more extended reaction leads to sample amorphization. The better intercalation behaviour of this solid can be related with the one-atom thick metal layer and the van der Waals gap separating tellurium atoms of successive layers. Sodium can be reversibly intercalated into Ta 2 Te 3 in sodium cells which show a good cycling behaviour. Exposure of the intercalated solid to water vapour allows the preparation of hydrated products with a monolayer or a bilayer of water molecules solvating sodium in the interlayer space. (orig.)

  4. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  5. Red-emitting alkaline-earth rare-earth pentaoxometallates powders ...

    Indian Academy of Sciences (India)

    Moisture-insensitive metal carboxylates that are mostly liquids at room temperature have been first applied to ... alkaline-earth ion, or possibly even a rare-earth ion and alkali metal ... sion spectra of the powders were recorded on a fluorescent.

  6. Earth - South America (first frame of Earth Spin Movie)

    Science.gov (United States)

    1990-01-01

    This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  7. Building a Dashboard of the Planet with Google Earth and Earth Engine

    Science.gov (United States)

    Moore, R. T.; Hancher, M.

    2016-12-01

    In 2005 Google Earth, a popular 3-D virtual globe, was first released. Scientists immediately recognized how it could be used to tell stories about the Earth. From 2006 to 2009, the "Virtual Globes" sessions of AGU included innovative examples of scientists and educators using Google Earth, and since that time it has become a commonplace tool for communicating scientific results. In 2009 Google Earth Engine, a cloud-based platform for planetary-scale geospatial analysis, was first announced. Earth Engine was initially used to extract information about the world's forests from raw Landsat data. Since then, the platform has proven highly effective for general analysis of georeferenced data, and users have expanded the list of use cases to include high-impact societal issues such as conservation, drought, disease, food security, water management, climate change and environmental monitoring. To support these use cases, the platform has continuously evolved with new datasets, analysis functions, and user interface tools. This talk will give an overview of the latest Google Earth and Earth Engine functionality that allow partners to understand, monitor and tell stories about of our living, breathing Earth. https://earth.google.com https://earthengine.google.com

  8. Inaugeral lecture - Meteorite impacts on Earth and on the Earth ...

    African Journals Online (AJOL)

    There is some controversial evidence for the theory that the first life on Earth itself may have been transported here on meteorites from Mars. The possibility of a major meteorite impact on Earth in the near future emphasizes the dramatic nature of these recent discoveries, which are having deep impacts in the Earth sciences ...

  9. Earth-Abundant Chalcogenide Photovoltaic Devices with over 5% Efficiency Based on a Cu2 BaSn(S,Se)4 Absorber.

    Science.gov (United States)

    Shin, Donghyeop; Zhu, Tong; Huang, Xuan; Gunawan, Oki; Blum, Volker; Mitzi, David B

    2017-06-01

    In recent years, Cu 2 ZnSn(S,Se) 4 (CZTSSe) materials have enabled important progress in associated thin-film photovoltaic (PV) technology, while avoiding scarce and/or toxic metals; however, cationic disorder and associated band tailing fundamentally limit device performance. Cu 2 BaSnS 4 (CBTS) has recently been proposed as a prospective alternative large bandgap (~2 eV), environmentally friendly PV material, with ~2% power conversion efficiency (PCE) already demonstrated in corresponding devices. In this study, a two-step process (i.e., precursor sputter deposition followed by successive sulfurization/selenization) yields high-quality nominally pinhole-free films with large (>1 µm) grains of selenium-incorporated (x = 3) Cu 2 BaSnS 4- x Se x (CBTSSe) for high-efficiency PV devices. By incorporating Se in the sulfide film, absorber layers with 1.55 eV bandgap, ideal for single-junction PV, have been achieved within the CBTSSe trigonal structural family. The abrupt transition in quantum efficiency data for wavelengths above the absorption edge, coupled with a strong sharp photoluminescence feature, confirms the relative absence of band tailing in CBTSSe compared to CZTSSe. For the first time, by combining bandgap tuning with an air-annealing step, a CBTSSe-based PV device with 5.2% PCE (total area 0.425 cm 2 ) is reported, >2.5× better than the previous champion pure sulfide device. These results suggest substantial promise for the emerging Se-rich Cu 2 BaSnS 4- x Se x family for high-efficiency and earth-abundant PV. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  11. A comparative study of the experimental and the theoretical elastic data of Tm{sup 3+} doped zinc borotellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Hasnimulyati, L. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Halimah, M.K., E-mail: halimahmk@upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Zakaria, A.; Halim, S.A. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor (Malaysia); Ishak, M. [Technical Support Division, Malaysian Institute for Nuclear Technology Research (MINT), Bangi, 43000 Kajang (Malaysia)

    2017-05-01

    A series of glass samples with composition {[(TeO_2)_0_._7(B_2O_3)_0_._3]_0_._7[ZnO]_0_._3}{sub 1-x}{Tm_2O_3}{sub x} was prepared by using the melt-quenching technique. Then, the samples were characterized by using the densimeter, FTIR and ultrasound technique. The variations of density, molar volume, ultrasonic velocity, elastic moduli, and Poisson’s ratio were discussed and correlated with the composition of the glass samples and the FTIR spectra. It was found that the addition of thulium caused bridging and non-bridging oxygen to be formed at the same time due to the different effect that occur to tellurite and borate network as thulium is added. As thulium is varied from 1 until 3 mol%, bridging oxygens had been found to occur at a high rate and caused the ultrasonic velocity to increase. Nonetheless, when thulium oxide exceeded 3 mol%, non-bridging oxygens formed at a high rate. As a result, ultrasonic velocity was reduced. Furthermore, the values of elastic moduli (including bulk, shear, Young’s modulus, and Poisson’s ratio) were compared with the data that were calculated theoretically by using bulk compression, Makishima-Mackenzie, and Rocherulle models. - Highlights: • Bridging and non-bridging oxygen produced concurrently with the addition of Tm{sub 2}O{sub 3}. • All elastic moduli are increase with the increment of thulium oxide. • The three theoretical models are found invalid to be used in this study.

  12. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  13. Optical properties change in laser-induced Te/As{sub 2}Se{sub 3} chalcogenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Mukta; Naik, Ramakanta [Utkal University, Department of Physics, Bhubaneswar (India)

    2016-10-15

    In the present work, we report the change in optical parameters due to the deposition and photo-induced diffusion of Te layer into the chalcogenide As{sub 2}Se{sub 3} film. The photo-diffusion creates a solid solution of As-Se-Te which has potential application in optical devices. The Te/As{sub 2}Se{sub 3} bilayer films prepared by thermal evaporation technique were studied by various experimental techniques. The photo-diffusion of Te into As{sub 2}Se{sub 3} matrix was done by 532-nm laser irradiation. The structure of the As{sub 2}Se{sub 3}, as-prepared and irradiated Te/As{sub 2}Se{sub 3} films was studied by X-ray diffraction which were amorphous in nature. The presence of all the elements was checked by energy-dispersive X-ray analysis, and the optical transmission spectra were recorded by Fourier transform infrared spectrometer. The optical band gap is reduced by the deposition and diffusion of Te into As{sub 2}Se{sub 3} film which is due to the increase in density of defect states in the gap region. The transmission is decreased, whereas the absorption efficiency is increased with the increase in disorderness. The X-ray photoelectron spectroscopy carried out on these films gives information about the bonding change due to the photo-diffusion process. Therefore, this is an important result which will open up new directions for the application of this material in semiconducting devices. (orig.)

  14. Tetravalent thulium

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, Yu.M.; Goryachenkov, S.A.; Martynenko, L.I.; Spitsyn, V.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    It is shown by the DTA method that the CsTmCl/sub 6/ and Cs/sub 3/TmF/sub 6/ interaction with XeF/sub 2/ reagents ratio (1:6) proceeds exothermally respectively below 100 deg C and at 380 deg C. The results of IR-spectroscopic investigation and magnetic moment measurement have shown that in the first case in fluorination products there are about 50% of Tm(4) in the TmF/sub 7//sup 3 -/ form, in the second 20-30%. Lesser percent of Tm(4) in Tm(3) fluorocomplex fluorination products as compared with the Tm(3) chlorocomplex fluorination products is caused by kinetic reasons. Radiographically the Cs/sub 3/TmF/sub 6/ and Cs/sub 3/TmF/sub 7/ cubic structures similarity is shown which can be a reason of additional stabilization of the system containing Tm(4) for account of formation of solid solutions.

  15. Atmospheric acceleration and Earth-expansion deceleration of the Earth rotation

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2017-11-01

    Full Text Available Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation deceleration. Atmospheric solar semi-diurnal tide has a small amplitude and certain amount of phase lead. This periodic global air-mass excess distribution exerts a quasi-constant torque to accelerate the Earth's spin rotation. Using an updated atmospheric tide model, we re-estimate the amounts of this atmospheric acceleration torque and corresponding energy input, of which the associated change rate in LOD (length of day is −0.1 ms/cy. In another aspect, evidences from space-geodesy and sea level rise observations suggest that Earth expands at a rate of 0.35 mm/yr in recent decades, which gives rise to the increase of LOD at rate of 1.0 ms/cy. Hence, if the previous estimate due to the tidal friction is correct, the secular Earth rotation deceleration due to tidal friction and Earth expansion should be 3.15 ms/cy.

  16. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  17. Early Earth(s) Across Time and Space

    Science.gov (United States)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  18. Rare earths and rare earth alloys electrolytic preparation process and device for this process

    International Nuclear Information System (INIS)

    Seon, F.; Barthole, G.

    1986-01-01

    Electrolysis of a molten salt of rare earth or rare earth alloy for preparation of the metal or alloy is described. The molten salt bath comprises at least a rare earth chloride, at least an alkaline or alkaline earth chloride and at least an alkaline or alkaline earth fluoride [fr

  19. Electrical properties and transport mechanisms in phase change memory thin films of quasi-binary-line GeTe–Sb{sub 2}Te{sub 3} chalcogenide semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sherchenkov, A. A. [National Research University of Electronic Technology (Russian Federation); Kozyukhin, S. A., E-mail: sergkoz@igic.ras.ru [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); Lazarenko, P. I.; Babich, A. V. [National Research University of Electronic Technology (Russian Federation); Bogoslovskiy, N. A. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Sagunova, I. V.; Redichev, E. N. [National Research University of Electronic Technology (Russian Federation)

    2017-02-15

    The temperature dependences of the resistivity and current–voltage (I–V) characteristics of phase change memory thin films based on quasi-binary-line GeTe–Sb{sub 2}Te{sub 3} chalcogenide semiconductors Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 5}, and GeSb{sub 4}Te{sub 7} are investigated. The effect of composition variation along the quasibinary line on the electrical properties and transport mechanisms of the thin films is studied. The existence of three ranges with different I–V characteristics is established. The position and concentration of energy levels controlling carrier transport are estimated. The results obtained show that the electrical properties of the thin films can significantly change during a shift along the quasi-binary line GeTe–Sb{sub 2}Te{sub 3}, which is important for targeted optimization of the phase change memory technology.

  20. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    Science.gov (United States)

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  1. Thulium laser enucleation (ThuLEP) versus transurethral resection of the prostate in saline (TURis): A randomized prospective trial to compare intra and early postoperative outcomes.

    Science.gov (United States)

    Bozzini, G; Seveso, M; Melegari, S; de Francesco, O; Buffi, N M; Guazzoni, G; Provenzano, M; Mandressi, A; Taverna, G

    2017-06-01

    To compare clinical intra and early postoperative outcomes between thulium laser transurethral enucleation of the prostate (ThuLEP) and transurethral bipolar resection of the prostate (TURis) for treating benign prostatic hyperplasia (BPH) in a prospective randomized trial. The study randomized 208 consecutive patients with BPH to ThuLEP (n=102) or TURis (n=106). For all patients were evaluated preoperatively with regards to blood loss, catheterization time, irrigation volume, hospital stay and operative time. At 3 months after surgery they were also evaluated by International Prostate Symptom Score (IPSS), maximum flow rate (Qmax), and postvoid residual urine volume (PVR). The patients in each study arm each showed no significant difference in preoperative parameters. Compared with TURIS, ThuLEP had same operative time (53.69±31.44 vs 61.66±18.70minutes, P=.123) but resulted in less hemoglobin decrease (0.45 vs 2.83g/dL, P=.005). ThuLEP also needed less catheterization time (1.3 vs 4.8 days, P=.011), irrigation volume (29.4 vs 69.2 L, P=.002), and hospital stay (1.7 vs 5.2 days, P=.016). During the 3 months of follow-up, the procedures did not demonstrate a significant difference in Qmax, IPSS, PVR, and QOLS. ThuLEP and TURis both relieve lower urinary tract symptoms equally, with high efficacy and safety. ThuLEP was statistically superior to TURis in blood loss, catheterization time, irrigation volume, and hospital stay. However, procedures did not differ significantly in Qmax, IPSS, PVR, and QOLS through 3 months of follow-up. Copyright © 2016 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)

    Science.gov (United States)

    Kim, Yeong E.; Braswell, W. Danny

    1989-01-01

    Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.

  3. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    Science.gov (United States)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  4. Raising awareness for research on earth walls, and earth scientific aspects

    Science.gov (United States)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Baas, Henk; Groenewoudt, Bert; Peen, Charlotte

    2013-04-01

    A conference to raise awareness In the Netherlands, little research on earth walls has been done. To improve attention for earth walls, a number of organisations, including Geoheritage NL, organized a conference at the RCE, the Cultural Heritage Agency of the Netherlands. The conference* presented a state-of-the-art of research done. The book with the presentations, and extra case studies added, was published in December 2012. The book concludes with a research action list, including earth science research, and can be downloaded freely from the internet. It has English summaries. The earth science aspects Historical earth walls do not only add cultural value to a landscape, but also geodiversity value. Apart from geomorphological aspects, the walls contain information about past land- and climate conditions: - They cover up a former topography, a past landscape. A relevant source of scientific information where lands are levelled, as is the case in many parts of The Netherlands; - The soil formation under the earth wall is a reference soil. The soil formation in the top of the wall gives insight in the rate of soil formation in relationship with the age and parent material of the wall; - The soil profiles of different age have ecological significance. Older walls with a more pronounced soil formation often hold forest flora that has disappeared from the surrounding environment, such as historical bush or tree species, autogenetic DNA material or a specific soil fauna; - The materials in the earth walls tell about the process of wall-building. Paleosols and sedimentary structures in the earth walls, in the gullies and colluvial fans along the walls contain information about past land management and climate. - The eroded appearance of the earth walls is part of their history, and contain information about past management and land conditions, has ecological relevance, for example for insects, and is often visually more interesting. Insight in the rates of erosion are

  5. Extraction of rare earths from iron-rich rare earth deposits

    OpenAIRE

    Bisaka, K.; Thobadi, I.C.; Pawlik, C.

    2017-01-01

    Rare earth metals are classified as critical metals by the United Nations, as they have found wide application in the fabrication of magnets, particularly those used in green energy technologies which mitigate global warming. Processing of ores containing rare earth elements is complex, and differs according to the nature of each ore. In the conventional process, run of mine (ROM) ores are processed in a physical separation plant to produce a concentrate from which rare earth elements are ext...

  6. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  7. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  8. EarthServer: Cross-Disciplinary Earth Science Through Data Cube Analytics

    Science.gov (United States)

    Baumann, P.; Rossi, A. P.

    2016-12-01

    The unprecedented increase of imagery, in-situ measurements, and simulation data produced by Earth (and Planetary) Science observations missions bears a rich, yet not leveraged potential for getting insights from integrating such diverse datasets and transform scientific questions into actual queries to data, formulated in a standardized way.The intercontinental EarthServer [1] initiative is demonstrating new directions for flexible, scalable Earth Science services based on innovative NoSQL technology. Researchers from Europe, the US and Australia have teamed up to rigorously implement the concept of the datacube. Such a datacube may have spatial and temporal dimensions (such as a satellite image time series) and may unite an unlimited number of scenes. Independently from whatever efficient data structuring a server network may perform internally, users (scientist, planners, decision makers) will always see just a few datacubes they can slice and dice.EarthServer has established client [2] and server technology for such spatio-temporal datacubes. The underlying scalable array engine, rasdaman [3,4], enables direct interaction, including 3-D visualization, common EO data processing, and general analytics. Services exclusively rely on the open OGC "Big Geo Data" standards suite, the Web Coverage Service (WCS). Conversely, EarthServer has shaped and advanced WCS based on the experience gained. The first phase of EarthServer has advanced scalable array database technology into 150+ TB services. Currently, Petabyte datacubes are being built for ad-hoc and cross-disciplinary querying, e.g. using climate, Earth observation and ocean data.We will present the EarthServer approach, its impact on OGC / ISO / INSPIRE standardization, and its platform technology, rasdaman.References: [1] Baumann, et al. (2015) DOI: 10.1080/17538947.2014.1003106 [2] Hogan, P., (2011) NASA World Wind, Proceedings of the 2nd International Conference on Computing for Geospatial Research

  9. Towards Big Earth Data Analytics: The EarthServer Approach

    Science.gov (United States)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  10. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  11. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    Science.gov (United States)

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  12. Rare earth octacyanomolybdates(4)

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Sergeeva, A.N.; Pisak, Yu.V.

    1980-01-01

    Optimal conditions for synthesis of rare-earth octacyanomolybdates(4) of the Ln 4 [Mo(CN) 8 ] 3 xnH 2 O composition (where Ln is a rare-earth element, other than Pr, Pm, Lu, Tb) have been worked out. The synthesis has been accomplished by neutralization with octacianomolybdic acid with rare-earth carbonates. The composition and structure of the compounds synthesized have been studied by infrared-spectroscopy. It has been established that rare-earth octacyanomolybdates(4) form three isostructural groups

  13. Rare earths as a future resource

    International Nuclear Information System (INIS)

    Cornell, D.H.

    1988-01-01

    The fourteen rare earth or lanthanide elements have recently emerged as an important natural resource because of the rapidly growing demand in the electronic, chemical and metallurgical industries. The Symposium on rare earth elements as a future resource presented a multidisciplinary review of rare earth chemistry, geology, beneficiation, industrial applications and marketing. Papers by experts in many fields were presented on the following topics: chemical properties of the rare earth elements; the analysis of rare earth elements and minerals; beneficiation and extraction of rare earth elements; economic geochemistry and mineralogy of rare earths; present industrial uses of rare earth elements; the role of rare earth elements in high-temperature superconductors; the technical application of high-temperature superconductors; supply and demand for rare earth products - now and in the future, and the geology of rare earth deposits

  14. Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons

    International Nuclear Information System (INIS)

    Chevalier, G.; Chevalier, G.; Sinatra, S.T.; Oschman, J.L.; Sokal, K.; Sokal, P.

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and un wellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits including better sleep and reduced pain from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance

  15. Next-generation Digital Earth.

    Science.gov (United States)

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  16. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Johnson, Benjamin W.; Goldblatt, Colin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth's biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  17. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  18. Fast sono assisted ferrofluid mediated silver super - Adsorption over magnesium ferrite-copper sulfide chalcogenide with the aid of multivariate optimization.

    Science.gov (United States)

    Rezaei, Ali Asghar; Hossein Beyki, Mostafa; Shemirani, Farzaneh

    2017-07-01

    This research focuses on the development of a fast ultrasonic assisted ferrofluid mediated methodology to obtain the optimum conditions for silver adsorption from aqueous solutions. For this purpose magnesium ferrite-copper sulfide chalcogenide was synthesized and employed as an efficient nanosorbent. The sorbent was characterized with energy-dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD) and vibrational sample magnetometry (VSM) techniques. For obtaining the optimal operating conditions of silver adsorption, response surface methodology (RSM) was used. Tests were performed by Box-Behnken design (BBD). The value of optimum conditions for silver adsorption include pH=2.5, adsorbent dosage=10.0mg, sonicating time=1min and ionic strength=2.2%. According optimum conditions, percentage of removal should be 99.34%. With replication of similar experiment (n=6) average percentage of 100±0.95% was obtained for Ag + adsorption which shows good agreement between predicted and experimental results. Silver ion adsorption follow Langmuir model with maximum sorption capacity of 2113mgg -1 . Ultrasonic power helped to prepare ferrofluid and demonstrated that had an important role in better dispersing of it in solution and efficient adsorption of analyte. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  20. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  1. Studies with the EC-Earth seamless Earth system prediction model

    NARCIS (Netherlands)

    Hazeleger, W.; Bintanja, R.

    2012-01-01

    EC-Earth is a new Earth System Model (ESM) based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF). Climate and weather forecasting applications share a common ancestry and are build on the same physical principles. The emerging concept of

  2. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  3. All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials.

    Science.gov (United States)

    Petronijevic, E; Sibilia, C

    2016-12-26

    Electromagnetically induced transparency (EIT) is a pump-induced narrowband transparency window within an absorption line of the probe beam spectrum in an atomic system. In this paper we propose a way to bring together the all-dielectric metamaterials to have EIT-like effects and to optically tune the response by hybridizing them with a layer of a phase change material. We propose a design of the metamaterial based on Si nanoresonators that can support an EIT-like resonant response. On the top of the resonators we consider a thin layer of a chalcogenide phase change material, which we will use to tune the optical response. Our choice is Ge2Sb2Te5 (GST), since it has two stable phases at room temperature, namely amorphous and crystalline, between which it can be switched quickly, nonvolatively and reversibly, sustaining a large number of switching cycles. They differ in optical properties, while still having moderately low losses in telecom range. Since such dielectric resonators do not have non-radiative losses of metals around 1550nm, they can lead to a high-Q factor of the EIT-like response in this range. Firstly, we optimize the starting structure so that it gives an EIT-like response at 1550 nm when the GST layer is in the amorphous state. Our starting design uses glass as a substrate, but we also consider implementation in SOI technology. If we then switch the thin layer of GST to its crystalline phase, which has higher losses, the EIT-like response is red shifted, providing around 10:1 contrast at 1550nm. This reversible tuning can be done with an ns visible pulsed laser. We discuss the results of the simulation of the dielectric metasurface for different configurations and the tuning possibility.

  4. The International Year of Planet Earth (2007-2009):Earth Sciences for Society

    Institute of Scientific and Technical Information of China (English)

    Eduardo F.J.de Mulder; Ted Nield; Edward Derbyshire

    2006-01-01

    Natural disasters like the 2004 tsunami bear graphic testimony to the Earth's incredible power. More effective use of geoscientific knowledge can save lives and protect property. Such knowledge also enables us to satisfy, in a sustainable manner,the growing need for Earth's resources by an expanding human population. Such knowledge is readily available in the practical experience and publications of some half a million Earth scientists all over the world, a professional community that is ready and willing to contribute to a safer, healthier and wealthier society if called upon by politicians and decision makers. Professional guidance by Earth scientists is available in many aspects of everyday life including, for example, identification of the best areas for urban expansion, sites to avoid for waste disposal, the location of new underground fresh water resources, and where certain toxic agents implicated in Earth-related diseases may be located, etc.The International Year of Planet Earth (2007-2009) aims to build on existing knowledge and make it more available for the improvement of everyday life, especially in the less developed countries, as expressed in the Year's subtitle: Earth sciences for Society. Ambitious outreach and science programmes constitute the backbone of the International Year, now politically endorsed by all 191 member states of the United Nations Organisation which has proclaimed 2008, the central year of the triennium, as the UN Year of Planet Earth. This paper describes who is behind the initiative,how it will work, and how the political process leading to United Nations proclamation proceeded. It also describes the financial and organisational aspects of the International Year, sets out the commitments necessary for the realization of the Year's ambitions by all nations, and explains how the raising of US$ 20 million will be approached.

  5. OpenEarth : Using Google Earth as outreach for NCK's data

    NARCIS (Netherlands)

    de Boer, G.J.; Baart, F.; Bruens, A.; Damsma, T.; van Geer, P.; Grasmeijer, B.; den Heijer, C.; van Koningsveld, M.; Santinelli, G.

    2012-01-01

    In 2003 various projects at Deltares and the TU-Delft merged their toolboxes for marine and coastal science and engineering into one toolbox, culminating in 2008 in an open source release, known as OpenEarthTools (OET). OpenEarth adopts the wikipedia approach to growth: web 2.0 crowd sourcing. All

  6. Rare earths: occurrence, production and applications

    International Nuclear Information System (INIS)

    Murthy, T.K.S.; Mukherjee, T.K.

    2002-01-01

    The mining and processing of rare earth minerals, particularly of monazite, began in a modest way in 1880s for commercialized production of mantle for gas lighting. For all major applications up to mid-twentieth century- production of lighter flints, misch metal as a metallurgical alloying agent, colouring, decolourizing and polishing agents for glass, petroleum cracking catalysts and arc-carbons, unseparated or partially separated rare earths were adequate. These applications continue till today. With the development and industrial application of powerful techniques like ion exchange and solvent extraction for the separation of rare earths, the decades after 1960 saw increasing utilization of the specific properties of the individual rare earths. Some of these advanced technological applications include: special glass for optical systems including camera lenses, phosphors for colour television, cathode ray tubes and fluorescent lighting, X-ray intensification screens, high intensity permanent magnets, electro optical devices, lasers, hydrogen storage materials, hydride rechargeable batteries, photomagnetic data storage systems, autoexhaust catalysts, special ceramics of unusual toughness, artificial diamonds and nonpoisonous plastic colorants. The topics covered in the book include rare earths: their story identity, rare earth resources, processing of ores and recovery of mixed rare earths products, separation and purification of rare earths, nonmetallic applications of rare earths, rare earth metals: production and applications, rare earth alloys and their applications, analysis of rare earth, processing of rare earth resources in India by Indian Rare Earth Ltd. and availability and market conditions

  7. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  8. Rare earths 1998 market update

    International Nuclear Information System (INIS)

    Tourre, J.M.

    1998-01-01

    The rare earth industry has always been a world of rapid change with the emergence of new markets, new ores and new players, as well as the disappearance of old applications. Rare earth based products are used in a great diversity of applications such as hard disk drives, CD drives, batteries, capacitors, pigments, ceramics, polishing powders, fuel cells, flints, catalyst converter, fluid cracking catalysts, etc. South East Asia holds the largest share of the known reserve of rare earth ores and is one of the major markets for rare earth compounds; in the last ten years, China has become the largest producer of rare earth intermediates as well as an important exporter of separated rare earth elements. Today, China has approximately 150 factories producing rare earth compounds, most of which are experiencing financial difficulties due to the lack of knowledge of true market needs, lack of control of their distribution channels and production over-capacity. Recently the Chinese rare earth producers have recognized the situation and efforts are underway to rationalize rare earth production. Japan has dominated many of the major application markets, and is by far the largest market for metal and alloy products. This will remain the case for the next five years; however, new countries are emerging as significant users of rare earth products such as Korea, Taiwan and Malaysia. During the last ten years rare earth producers adjusted to several radical changes that affected the raw materials, the application mix and the price structure. New producers have emerged, especially from China; some have subsequently stopped their activities while others have focused their efforts in a specific market segment

  9. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    Science.gov (United States)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  10. Earth and Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kosygin, Yu A

    1986-12-01

    Rocks, the age of which according to certain data exceeds considerably the recognized age of the Earth and approximates the age of the Universe, have been detected on the Earth. There is a necessity to coordinate the geological data with cosmological structures.

  11. Baltic Earth - Earth System Science for the Baltic Sea Region

    Science.gov (United States)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  12. Optimization of Phase Change Memory with Thin Metal Inserted Layer on Material Properties

    Science.gov (United States)

    Harnsoongnoen, Sanchai; Sa-Ngiamsak, Chiranut; Siritaratiwat, Apirat

    This works reports, for the first time, the thorough study and optimisation of Phase Change Memory (PCM) structure with thin metal inserted chalcogenide via electrical resistivity (ρ) using finite element modeling. PCM is one of the best candidates for next generation non-volatile memory. It has received much attention recently due to its fast write speed, non-destructive readout, superb scalability, and great compatibility with current silicon-based mass fabrication. The setback of PCM is a high reset current typically higher than 1mA based on 180nm lithography. To reduce the reset current and to solve the over-programming failure, PCM with thin metal inserted chalcogenide (bottom chalcogenide/metal inserted/top chalcogenide) structure has been proposed. Nevertheless, reports on optimisation of the electrical resistivity using the finite element method for this new PCM structure have never been published. This work aims to minimize the reset current of this PCM structure by optimizing the level of the electrical resistivity of the PCM profile using the finite element approach. This work clearly shows that PCM characteristics are strongly affected by the electrical resistivity. The 2-D simulation results reveal clearly that the best thermal transfer of and self-joule-heating at the bottom chalcogenide layer can be achieved under conditions; ρ_bottom chalcogenide > ρ_metal inserted > ρ_top chalcogenide More specifically, the optimized electrical resistivity of PCMTMI is attained with ρ_top chalcogenide: ρ_metal inserted: ρ_bottom chalcogenide ratio of 1:6:16 when ρ_top chalcogenide is 10-3 Ωm. In conclusion, high energy efficiency can be obtained with the reset current as low as 0.3mA and with high speed operation of less than 30ns.

  13. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...... and accepted. The European Space Agency mission Gaia is a proposed space observatory, designed to perform a highly accurate census of our galaxy, the Milky Way, and beyond. Through accurate measurement of star positions, Gaia is expected to discover thousands of extra-solar planets and follow the bending...... of starlight by the Sun, and therefore directly observe the structure of space-time. This thesis explores several aspects of the observation of NEOs with Gaia, emphasising detection of NEOs and the quality of orbits computed from Gaia observations. The main contribution is the work on motion detection...

  14. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1978-01-01

    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  15. Microorganism mediated biosynthesis of metal chalcogenides; a powerful tool to transform toxic effluents into functional nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Vena, M. Paula; Jobbágy, Matías; Bilmes, Sara A., E-mail: sarabil@qi.fcen.uba.ar

    2016-09-15

    Cadmium contained in soil and water can be taken up by certain crops and aquatic organisms and accumulate in the food-chain, thus removal of Cd from mining or industrial effluents – i.e. Ni-Cd batteries, electroplating, pigments, fertilizers – becomes mandatory for human health. In parallel, there is an increased interest in the production of luminescent Q-dots for applications in bioimaging, sensors and electronic devices, even the present synthesis methods are economic and environmentally costly. An alternative green pathway for producing Metal chalcogenides (MC: CdS, CdSe, CdTe) nanocrystals is based on the metabolic activity of living organisms. Intracellular and extracellular biosynthesis of can be achieved within a biomimetic approach feeding living organisms with Cd precursors providing new routes for combining bioremediation with green routes for producing MC nanoparticles. In this mini-review we present the state-of-the-art of biosynthesis of MC nanoparticles with a critical discussion of parameters involved and protocols. Few existing examples of scaling-up are also discussed. A modular reactor based on microorganisms entrapped in biocompatible mineral matrices – already proven for bioremediation of dissolved dyes – is proposed for combining both Cd-depletion and MC nanoparticle's production. - Highlights: • Removal of heavy metals by living matter is feasible trough biosorption and bioaccumulation • Algae, fungi, bacteria and yeasts can synthesize CdS, CdSe and CdTe Q-dots • Encapsulation of microorganisms in mineral gels provides building blocks for reactor design. • Depletion of Cd with production of Q-dots can be achieved with modular bioreactors with entrapped cells.

  16. The Chinese Society of Rare Earth is Studying The Feasibility of Marketing Rare Earth Futures

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Lin Donglu,secretary-general of the Chinese Society of Rare Earth recently said,the Chinese Society of Rare Earth undertook the research on subject of the National Social Science Fund Foundation on the reform of Chinese rare earth trading pricing mechanism on promoting RMB globalization,and is focusing on studying the feasibility of marketing rare earth futures variety.

  17. Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: the case of GeS.

    Science.gov (United States)

    Li, Chun; Huang, Liang; Snigdha, Gayatri Pongur; Yu, Yifei; Cao, Linyou

    2012-10-23

    We report a synthesis of single-crystalline two-dimensional GeS nanosheets using vapor deposition processes and show that the growth behavior of the nanosheet is substantially different from those of other nanomaterials and thin films grown by vapor depositions. The nanosheet growth is subject to strong influences of the diffusion of source materials through the boundary layer of gas flows. This boundary layer diffusion is found to be the rate-determining step of the growth under typical experimental conditions, evidenced by a substantial dependence of the nanosheet's size on diffusion fluxes. We also find that high-quality GeS nanosheets can grow only in the diffusion-limited regime, as the crystalline quality substantially deteriorates when the rate-determining step is changed away from the boundary layer diffusion. We establish a simple model to analyze the diffusion dynamics in experiments. Our analysis uncovers an intuitive correlation of diffusion flux with the partial pressure of source materials, the flow rate of carrier gas, and the total pressure in the synthetic setup. The observed significant role of boundary layer diffusions in the growth is unique for nanosheets. It may be correlated with the high growth rate of GeS nanosheets, ~3-5 μm/min, which is 1 order of magnitude higher than other nanomaterials (such as nanowires) and thin films. This fundamental understanding of the effect of boundary layer diffusions may generally apply to other chalcogenide nanosheets that can grow rapidly. It can provide useful guidance for the development of general paradigms to control the synthesis of nanosheets.

  18. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  19. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  20. Geomagnetic field of earth

    International Nuclear Information System (INIS)

    Delipetrev, Marjan; Delipetrev, Blagoj; Panovska, Sanja

    2008-01-01

    In this paper is introduced the theory of geomagnetic field of the Earth. A homogenous and isotropic sphere is taken for a model of Earth with a bar magnet at its center as a magnetic potential. The understanding of the real origin of geomagnetic field produced from differential rotation of inner core with respect to the outer core of Earth is here presented. Special attention is given to the latest observed data of the established net of geomagnetic repeat stations in the Republic of Macedonia. Finally, the maps of elements of geomagnetic field and the equation for calculation of normal magnetic field of Earth are provided. (Author)