WorldWideScience

Sample records for early tumor apoptosis

  1. Apoptosis in irradiated murine tumors.

    Science.gov (United States)

    Stephens, L C; Ang, K K; Schultheiss, T E; Milas, L; Meyn, R E

    1991-09-01

    Early radiation responses of transplantable murine ovarian (OCaI) and hepatocellular (HCaI) carcinomas were examined at 6, 24, 48, 96, and 144 h after single photon doses of 25, 35, or 45 Gy. Previous studies using tumor growth delay and tumor radiocurability assays had shown OCaI tumors to be relatively radiosensitive and HCaI tumors to be radioresistant. At 6 h, approximately 20% of nuclei in OCaI tumors showed aberrations characteristic of cell death by apoptosis. This contrasted to an incidence of 3% in HCaI tumors. Mitotic activity was eliminated in OCaI tumors but was only transiently suppressed in HCaI tumors. At 24-96 h, OCaI tumors continued to display apoptosis and progressive necrosis, whereas HCaI tumors responded by exhibiting marked pleomorphism. Factors other than mitotic activity may influence tumor radiosensitivity, and one of these may be susceptibility to induction of apoptosis (programmed cell death), because this was a prominent early radiation response by the radiosensitive OCaI tumors.

  2. Differentiation, early response gene expression, and apoptosis induction in human breast tumor cells by Okadaic Acid and related inhibitors of protein phosphatases 1 and 2A. Okadaic acid effects on human breast tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiguchi, K.; Giometti, C.; Chubb, C.H.; Huberman, E. [Argonne National Lab., IL (United States); Fujiki, H. [National Cancer Center Research Institute, Tokyo (Japan)

    1992-08-20

    Okadaic acid (OA), a tumor promoter and an inhibitor of protein phosphatases (PPH) 1 and 2A, was tested for its ability to induce events associated with differentiation and apoptosis induction in the human MCF-7, AU-565, and MB-231 breast tumor cells. Differentiation in these cells was characterized by inhibition of cell multiplication, reactivity with monoclonal antibodies to {alpha}-lactalbumin and {beta}-casein, and the appearance of large lipid droplets; apoptosis was characterized by the appearance of cells with segmented and fragmented nuclei. In the MCF-7 cell line, OA at nanomolar concentrations elicited within 5 min an increase in the phosphorylation of a set of cellular proteins, within hours expression of the early response genes, junB, c-jun, and c-fos and within days manifestation of differentiation and apoptosis markers. Differentiation and apoptosis were also induced by dinophysistoxin-1 and calyculin A, two other tumor promoters and inhibitors of PPH 1 and 2A, but not by OA tetramethyl ether, an inactive OA derivative, or microcystin LR, a PPH 1 and 2A inhibitor that penetrates epithelial cells poorly. OA induced both differentiation and apoptosis in MB-231 cells and MCF-7, but only differentiation in AU-565 cells. Phorbol 12-myristate 13-acetate (PMA), a tumor promoter that is not an inhibitor of PPH 1 and 2A but rather an activator of protein kinase C, also induced within minutes the phosphorylation of proteins, within hours the expression of early response genes, and within days differentiation, but not apoptosis; yet PMA was able to attenuate apoptosis induced by the okadaic acid class of tumor promoters. These results indicate that OA and related agents can induce processes that result in tumor breast cell differentiation and apoptosis, and this induction is associated with their ability to inhibit PPH 1 and 2A. Yet apoptosis is not necessarily required for differentiation induction by these agents.

  3. 6-Bromoisatin Found in Muricid Mollusc Extracts Inhibits Colon Cancer Cell Proliferation and Induces Apoptosis, Preventing Early Stage Tumor Formation in a Colorectal Cancer Rodent Model

    Directory of Open Access Journals (Sweden)

    Babak Esmaeelian

    2013-12-01

    Full Text Available Muricid molluscs are a natural source of brominated isatin with anticancer activity. The aim of this study was to examine the safety and efficacy of synthetic 6-bromoisatin for reducing the risk of early stage colorectal tumor formation. The purity of 6-bromoisatin was confirmed by 1H NMR spectroscopy, then tested for in vitro and in vivo anticancer activity. A mouse model for colorectal cancer was utilized whereby colonic apoptosis and cell proliferation was measured 6 h after azoxymethane treatment by hematoxylin and immunohistochemical staining. Liver enzymes and other biochemistry parameters were measured in plasma and haematological assessment of the blood was conducted to assess potential toxic side-effects. 6-Bromoisatin inhibited proliferation of HT29 cells at IC50 223 μM (0.05 mg/mL and induced apoptosis without increasing caspase 3/7 activity. In vivo 6-bromoisatin (0.05 mg/g was found to significantly enhance the apoptotic index (p ≤ 0.001 and reduced cell proliferation (p ≤ 0.01 in the distal colon. There were no significant effects on mouse body weight, liver enzymes, biochemical factors or blood cells. However, 6-bromoisatin caused a decrease in the plasma level of potassium, suggesting a diuretic effect. In conclusion this study supports 6-bromoisatin in Muricidae extracts as a promising lead for prevention of colorectal cancer.

  4. NMR exposure sensitizes tumor cells to apoptosis.

    Science.gov (United States)

    Ghibelli, L; Cerella, C; Cordisco, S; Clavarino, G; Marazzi, S; De Nicola, M; Nuccitelli, S; D'Alessio, M; Magrini, A; Bergamaschi, A; Guerrisi, V; Porfiri, L M

    2006-03-01

    NMR technology has dramatically contributed to the revolution of image diagnostic. NMR apparatuses use combinations of microwaves over a homogeneous strong (1 Tesla) static magnetic field. We had previously shown that low intensity (0.3-66 mT) static magnetic fields deeply affect apoptosis in a Ca2+ dependent fashion (Fanelli et al., 1999 FASEBJ., 13;95-102). The rationale of the present study is to examine whether exposure to the static magnetic fields of NMR can affect apoptosis induced on reporter tumor cells of haematopoietic origin. The impressive result was the strong increase (1.8-2.5 fold) of damage-induced apoptosis by NMR. This potentiation is due to cytosolic Ca2+ overload consequent to NMR-promoted Ca2+ influx, since it is prevented by intracellular (BAPTA-AM) and extracellular (EGTA) Ca2+ chelation or by inhibition of plasma membrane L-type Ca2+ channels. Three-days follow up of treated cultures shows that NMR decrease long term cell survival, thus increasing the efficiency of cytocidal treatments. Importantly, mononuclear white blood cells are not sensitised to apoptosis by NMR, showing that NMR may increase the differential cytotoxicity of antitumor drugs on tumor vs normal cells. This strong, differential potentiating effect of NMR on tumor cell apoptosis may have important implications, being in fact a possible adjuvant for antitumor therapies.

  5. Radiosensitivity of tumor cells. Oncogenes and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Peltenburg, L. T. C. [Leiden Univ., Leiden (Netherlands). Dept. of Clinical Oncology

    2000-12-01

    The success of treatment of cancer patients by radiotherapy largely depends on tumor radiosensitivity. Several molecular factors that determine the sensitivity of tumor cells to ionizing radiation have been identified during the last couple of years. Some of these factors are known as oncogenes and tumor suppressor genes. This review focuses on the influence of some of these molecular factors on a major determinant of radiosensitivity: i. e. programmed cell death or apoptosis. The crucial molecular step in ionizing radiation-induced apoptosis is the release of mitochondrial cytochrome c into the cell's cytosol. The ways the tumor suppressor protein p53, as well as the oncogenes ras and raf, c-myc and Bcl-2 can influence this process at different stages are presented. As will be discussed, the result of activation of an oncoprotein on tumor radiosensitivity depends on its mechanism of action and on the presence of other (oncogenic) factors, since complex interactions among many molecular factors determine the delicate balance between cell proliferation and cell death. The ongoing identification and characterization of factors influencing apoptosis will eventually make it possible to predict tumor radiosensitivity and thereby improve cancer treatment.

  6. Targeting IAP (inhibitor of apoptosis) proteins for therapeutic intervention in tumors.

    Science.gov (United States)

    Vucic, Domagoj

    2008-03-01

    Apoptosis, or programmed cell death, is a cell suicide process with a major role in development and homeostasis in vertebrates and invertebrates. Dysregulation of apoptosis leading to early cell death or the absence of normal cell death contributes to a number of disease conditions including neurodegenerative diseases and cancer. Inhibition of apoptosis enhances the survival of cancer cells and facilitates their escape from immune surveillance and cytotoxic therapies. Inhibitor of apoptosis (IAP) proteins, a family of anti-apoptotic regulators that block cell death in response to diverse stimuli through interactions with inducers and effectors of apoptosis are among the principal molecules contributing to this phenomenon. IAP proteins are expressed in the majority of human malignancies at elevated levels and play an active role in promoting tumor maintenance through the inhibition of cellular death and participation in signaling pathways associated with malignancies. Herein, the role of IAP proteins in cancer and strategies toward targeting IAP proteins for therapeutic intervention will be discussed.

  7. Two Chitotriose-Specific Lectins Show Anti-Angiogenesis, Induces Caspase-9-Mediated Apoptosis and Early Arrest of Pancreatic Tumor Cell Cycle.

    Directory of Open Access Journals (Sweden)

    Ruby Singh

    Full Text Available The antiproliferative activity of two chito-specific agglutinins purified from Benincasa hispida (BhL and Datura innoxia (DiL9 of different plant family origin was investigated on various cancer cell lines. Both lectins showed chitotriose specificity, by inhibiting lectin hemagglutinating activity. On further studies, it was revealed that these agglutinins caused remarkable concentration-dependent antiproliferative effect on human pancreatic cancerous cells but not on the normal human umbilical vein endothelial cells even at higher doses determined using MTT assay. The GI50 values were approximately 8.4 μg ml(-1 (0.247 μM and 142 μg ml(-1 (14.8 μM for BhL and DiL9, respectively, against PANC-1 cells. The growth inhibitory effect of these lectins on pancreatic cancer cells were shown to be a consequence of lectin cell surface binding and triggering G0/G1 arrest, mitochondrial membrane depolarization, sustained increase of the intracellular calcium release and the apoptotic signal is amplified by activation of caspases executing cell death. Interestingly, these lectins also showed anti-angiogenic activity by disrupting the endothelial tubulogenesis. Therefore, we report for the first time two chito-specific lectins specifically binding to tumor glycans; they can be considered to be a class of molecules with antitumor activity against pancreatic cancer cells mediated through caspase dependent mitochondrial apoptotic pathway.

  8. Induction of Tumor Cell Apoptosis via Fas/DR5

    Institute of Scientific and Technical Information of China (English)

    Wenzhu Li; Shengyu Wang; Caixia Chen; Guohong Zhuang

    2006-01-01

    The apoptosis inducing effects on tumor cell lines MGC803, BEL7402 and HL60 by Fas ligand and anti-human DR5 monoclonal antibodies (anti-DR5 mAb) and the underlying mechanism was studied, Fas/DR5 mRNA was detected by RT-PCR. Cytotoxicity exerted by FasL/anti-DR5 mAb on tumor cell lines was measured by MTT assay and the induced apoptosis was determined by agarose gel electrophoresis. Flow cytometry was employed to analyze the mode of cell death. The mRNA expression of DR5 in MGC803 and BEL7402 cells after giving anti-DR5 mAb was up-regulated compared with control group, while it was down-regulated in HL60 cells in the same condition.The mRNA expression of Fas in HL60 was higher after giving FasL compared with control group, while it was lower in MGC803 and BEL7402. MGC803 and BEL7402 were sensitive to anti-DR5 mAb but partially to FasL,and HL60 was sensitive to FasL but less sensitive to anti-DR5 mAb. Apoptosis induced by Fas ligand and anti-DR5 mAb vary among tumor cell lines. The underlying mechanism may be relevant to Fas/DR5 mRNA expression,which was presented as the release of caspase-8 and Bcl-2.

  9. [Peculiarities of urinary bladder cancer tumor cells apoptosis response on neoadjuvant chemotherapy].

    Science.gov (United States)

    Iatsyna, A I; Stakhovskiĭ, É A; Sheremet, Ia A; Spivak, S I; Stakhovskiĭ, A É; Gavriliuk, O N; Vitruk, Iu V; Emets, A I; Blium, Ia B

    2011-01-01

    Induced apoptosis in urinary bladder cancer tumor cells of patients was studied using TUNEL reaction. It was shown that increase in induced apoptosis value had a definite correlation between corresponding features of tumor reaction as a response on Gemcitabine-Cisplatin neoadjuvant chemotherapy application. It was found that evaluation of induced apoptosis in urinary bladder cancer tumor cells using TUNEL method allows forecasting the effectiveness of chemotherapy on the cellular level in patients with this type of cancer.

  10. A role for ADAM12 in breast tumor progression and stromal cell apoptosis

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Frohlich, Camilla; Albrechtsen, Reidar;

    2005-01-01

    of stromal fibroblasts in tumor initiation and progression has been elucidated. Here, we show that stromal cell apoptosis occurs in human breast carcinoma but is only rarely seen in nonmalignant breast lesions. Furthermore, we show that ADAM12, a disintegrin and metalloprotease up-regulated in human breast...... cancer, accelerates tumor progression in a mouse breast cancer model. ADAM12 does not influence tumor cell proliferation but rather confers both decreased tumor cell apoptosis and increased stromal cell apoptosis. This dual role of ADAM12 in governing cell survival is underscored by the finding that ADAM......12 increases the apoptotic sensitivity of nonneoplastic cells in vitro while rendering tumor cells more resistant to apoptosis. Together, these results show that the ability of ADAM12 to influence apoptosis may contribute to tumor progression....

  11. Apoptosis induced by norcantharidin in human tumor cells

    Institute of Scientific and Technical Information of China (English)

    Zhen Xiao Sun; Qing Wen Ma; Tian De Zhao; Yu Lin Wei; Guang Sheng Wang; Jia Shi Li

    2000-01-01

    @@INTRODUCTION The antitumor activity of norcantharidin (NCTD),the demethylated analogue of cantharidin, was studied in the early 1980s in China. NCTD has no side effects on urinary organs which cantharidin has shown and is easier to synthesize, and it can inhibit the proliferation of several tumor cell lines as well as transplanted tumors. Clinical trials with NCTD as a monotherapeutic agent indicated that NCTD had beneficial effects in patients with different kinds of digestive tract cancers, such as primary hepatoma,carcinomas of esophagus and gastric cancer, but no depressive effect on bone marrow cells. NCTD can increase the white blood cell count by stimulating the bone marrow and has some antagonistic effect against leukopenia caused by other agents. The exact cellular and molecular mechanisms of NCTD on tumor cells have not yet been elucidated to date[1-3].

  12. Early Contact Stage of Apoptosis: Its Morphological Features and Function

    Directory of Open Access Journals (Sweden)

    Etheri Mikadze

    2006-01-01

    Full Text Available Apoptosis has been a biological phenomenon of intense interest for 20 years, but the earlier morphological features of apoptosis have not been determined hitherto. Using the methods of semi- and ultrathin sections, the livers of intact embryos and young rats have been studied under the effect of cycloheximide to determine morphological features of an early stage of apoptosis. It is discovered that both in hepatoblasts and hepatocytes, apoptosis, besides the well-known stages, also includes an early contact stage, distinguishing features of which are agglutination of bound ribosomes (breaking of translation, elimination of the nucleolus, reduction of free polysomes (and in hepatocytes, reduction of cisterns of rough endoplasmic reticulum, formation of cytoplasmic excrescences, and cell shape changes. The early stage of apoptosis is characterized by close contact with neighboring cells. At a certain phase of the contact stage of apoptosis, the nucleolus reappears in the nucleus and the number of free polysomes in the cytoplasm increases, which suggests the renewal of synthesis of new RNA and proteins. Close contact of differentiating and mitotic hepatoblasts with apoptotic cells indicates a certain functional relationship between these cells that is realized not only by micropinocytosis, but through gap junctions as well. We assume that the apoptotic cell, besides proteolytic products, can contain newly synthesized, low-molecular substances, the relocation of which from apoptotic to neighboring cells may contribute to both functional activity and proliferation of adjacent hepatoblasts and, therefore, the function of apoptosis may not be limited only to the elimination of harmful, damaged, and unwanted cells.

  13. Early autophagy activation inhibits podocytes from apoptosis induced by aldosterone

    Institute of Scientific and Technical Information of China (English)

    王文琰

    2013-01-01

    Objective To explore the protection of early autoph-agy activation on podocyte injury induced by aldosterone.Methods In vitro cultured mouse podocyte clones(MPC5) were treated with aldosterone for 6,12,24,48 hrespectively. Apoptosis of podocytes was detected by

  14. Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis

    Science.gov (United States)

    Yuan, Ziming; Pan, Yue; Cheng, Ruoyu; Sheng, Lulu; Wu, Wei; Pan, Guoqing; Feng, Qiming; Cui, Wenguo

    2016-06-01

    There is a high local recurrence (LR) rate in breast-conserving therapy (BCT) and enhancement of the local treatment is promising as a way to improve this. Thus we propose a drug delivery system using doxorubicin (DOX)-loaded mesoporous silica nanoparticle composite nanofibers which can release anti-tumor drugs in two phases—burst release in the early stage and sustained release at a later stage—to reduce the LR of BCT. In the present study, we designed a novel composite nanofibrous scaffold to realize the efficient release of drugs by loading both DOX and DOX-loaded mesoporous silica nanoparticles into an electrospun PLLA nanofibrous scaffold. In vitro results demonstrated that this kind of nanomaterial can release DOX in two phases, and the results of in vivo experiments showed that this hybrid nanomaterial significantly inhibited the tumor growth in a solid tumor model. Histopathological examination demonstrated that the apoptosis of tumor cells in the treated group over a 10 week period was significant. The anti-cancer effects were also accompanied with decreased expression of Bcl-2 and TNF-α, along with up-regulation of Bax, Fas and the activation of caspase-3 levels. The present study illustrates that the mesoporous silica nanoparticle composite nanofibrous scaffold could have anti-tumor properties and could be further developed as adjuvant therapeutic protocols for the treatment of cancer.

  15. Overcoming Hypoxic-Resistance of Tumor Cells to TRAIL-Induced Apoptosis through Melatonin

    Directory of Open Access Journals (Sweden)

    You-Jin Lee

    2014-07-01

    Full Text Available A solid tumor is often exposed to hypoxic or anoxic conditions; thus, tumor cell responses to hypoxia are important for tumor progression as well as tumor therapy. Our previous studies indicated that tumor cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-induced cell apoptosis under hypoxic conditions. Melatonin inhibits cell proliferation in many cancer types and induces apoptosis in some particular cancer types. Here, we examined the effects of melatonin on hypoxic resistant cells against TRAIL-induced apoptosis and the possible mechanisms of melatonin in the hypoxic response. Melatonin treatment increased TRAIL-induced A549 cell death under hypoxic conditions, although hypoxia inhibited TRAIL-mediated cell apoptosis. In a mechanistic study, hypoxia inducible factor-1α and prolyl-hydroxylase 2 proteins, which increase following exposure to hypoxia, were dose-dependently down-regulated by melatonin treatment. Melatonin also blocked the hypoxic responses that reduced pro-apoptotic proteins and increased anti-apoptotic proteins including Bcl-2 and Bcl-xL. Furthermore, melatonin treatment reduced TRAIL resistance by regulating the mitochondrial transmembrane potential and Bax translocation. Our results first demonstrated that melatonin treatment induces apoptosis in TRAIL-resistant hypoxic tumor cells by diminishing the anti-apoptotic signals mediated by hypoxia and also suggest that melatonin could be a tumor therapeutic tool by combining with other apoptotic ligands including TRAIL, particularly in solid tumor cells exposed to hypoxia.

  16. Roscovitine sensitizes leukemia and lymphoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis

    OpenAIRE

    Molinsky, J.; Klánová, M.; Koc, M; Beranová, L. (Lenka); Anděra, L. (Ladislav); Ludvíková, Z.; Bohmova, M.; Gasova, Z.; Strnad, M.; Ivánek, R. (Robert); Trněný, M.; Nečas, E.; Živný, J.; Klener, P.

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a death ligand with selective antitumor activity. However, many primary tumors are TRAIL resistant. Previous studies reported that roscovitine, a cyclin-dependent kinase inhibitor, sensitized various solid cancer cells to TRAIL. We show that roscovitine and TRAIL demonstrate synergistic cytotoxicity in hematologic malignant cell lines and primary cells. Pretreatment of TRAIL-resistant leukemia cells with roscovitine induced en...

  17. Propolis suppresses tumor angiogenesis by inducing apoptosis in tube-forming endothelial cells.

    Science.gov (United States)

    Ohta, Toshiro; Kunimasa, Kazuhiro; Kobayashi, Tomomi; Sakamoto, Miwa; Kaji, Kazuhiko

    2008-09-01

    We have reported that propolis suppresses tumor-induced angiogenesis in vivo and in vitro, but antiangiogenic mechanism of propolis at cellular level remains unclear. In this study, we observed that propolis not only inhibited tube formation but also induced apoptosis of endothelial cells. These results suggest that propolis exerts its antiangiogenic effects at least in part through induction of apoptosis.

  18. Gracilaria edulis extract induces apoptosis and inhibits tumor in Ehrlich ascites tumor cells in vivo.

    Science.gov (United States)

    Patra, Satyajit; Muthuraman, Meenakshi Sundaram

    2013-11-25

    Marine environment is inestimable for their chemical and biological diversity and therefore is an extraordinary resource for the discovery of new anticancer drugs. Recent development in elucidation of the mechanism and therapeutic action of natural products helped to evaluate for their potential activity. We evaluated Gracilaria edulis J. Ag (Brown algae), for its antitumor potential against the Ehrlich ascites tumor (EAT) in vivo and in vitro. Cytotoxicity evaluation of Ethanol Extract of Gracilaria edulis (EEGE) using EAT cells showed significant activity. In vitro studies indicated that EEGE cytotoxicity to EAT cells is mediated through its ability to produce reactive oxygen species (ROS) and therefore decreasing intracellular glutathione (GSH) levels may be attributed to oxidative stress. Apoptotic parameters including Annexin-V positive cells, increased levels of DNA fragmentation and increased caspase-2, caspase-3 and caspase-9 activities indicated the mechanism might be by inducing apoptosis. Intraperitoneally administration of EEGE to EAT-bearing mice helped to increase the lifespan of the animals significantly inhibited tumor growth and increased survival of mice. Extensive hematology, biochemistry and histopathological analysis of liver and kidney indicated that daily doses of EEGE up to 300 mg/kg for 35 days are well tolerated and did not cause hematotoxicity nor renal or hepatotoxicity. Comprehensive antitumor analysis in animal model and in Ehrlich Ascites Tumor cells was done including biochemical, and pathological evaluations indicate antitumor activity of the extract and non toxic in vivo. It was evident that the mechanism explains the apoptotic activity of the algae extract.

  19. Tumor Necrosis Factor-related Apoptosis Ligand Induces Apoptosis in Prostate Cancer PC-3M Cell Line

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhohui; WANG Huafang; GU Longjie; YE Zhewei; XIAO Yajun

    2005-01-01

    To study the effect of tumor necrosis factor-related apoptosis inducing ligand (TRAIL)on PC-3M cell line, PC-3M cell line was incubated with gradient concentrations of TRAIL for 4-24h. Annixin-Ⅴ fluorescence staining and TUNEL method were employed to detect the apoptosis of PC-3M cells. The morphology of apoptotic PC-3M cells was observed by electron microscopy. The relationship between TRAIL concentrations and the percentage of apoptotic cells was evaluated by flow cytometry. The proliferation inhibitory ratio was calculated by using MTT colorimetry. Our results showed that apoptosis of PC-3M cells could be induced by treatment with TRAIL for at most 4 h. The results of flow cytometry and MTT colorimetry demonstrated a time- and concentration-dependent relationship between cell apoptosis rate and TRAIL concentration. It is concluded that apoptosis of PC-3M cells can be induced by TRAIL. Because of the selective killing effect of TRAIL on tumor ceils, it may become a potential alternative for the treatment of advanced prostate cancer.

  20. Role of the tumor microenvironment in regulating apoptosis and cancer progression.

    Science.gov (United States)

    Yaacoub, Katherine; Pedeux, Remy; Tarte, Karin; Guillaudeux, Thierry

    2016-08-10

    Apoptosis is a gene-directed program that is engaged to efficiently eliminate dysfunctional cells. Evasion of apoptosis may be an important gate to tumor initiation and therapy resistance. Like any other developmental program, apoptosis can be disrupted by several genetic aberrations driving malignant cells into an uncontrolled progression and survival. For its sustained growth, cancer develops in a complex environment, which provides survival signals and rescues malignant cells from apoptosis. Recent studies have clearly shown a wide interaction between tumor cells and their microenvironment, confirming the influence of the surrounding cells on tumor expansion and invasion. These non-malignant cells not only intensify tumor cells growth but also upgrade the process of metastasis. The strong crosstalk between malignant cells and a reactive microenvironment is mediated by soluble chemokines and cytokines, which act on tumor cells through surface receptors. Disturbing the microenvironment signaling might be an encouraging approach for patient's treatment. Therefore, the ultimate knowledge of "tumor-microenvironment" interactions facilitates the identification of novel therapeutic procedures that mobilize cancer cells from their supportive cells. This review focuses on cancer progression mediated by the dysfunction of apoptosis and by the fundamental relationship between tumor and reactive cells. New insights and valuable targets for cancer prevention and therapy are also presented. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. HAMLET kills tumor cells by apoptosis: structure, cellular mechanisms, and therapy.

    Science.gov (United States)

    Gustafsson, Lotta; Hallgren, Oskar; Mossberg, Ann-Kristin; Pettersson, Jenny; Fischer, Walter; Aronsson, Annika; Svanborg, Catharina

    2005-05-01

    New cancer treatments should aim to destroy tumor cells without disturbing normal tissue. HAMLET (human alpha-lactalbumin made lethal to tumor cells) offers a new molecular approach to solving this problem, because it induces apoptosis in tumor cells but leaves normal differentiated cells unaffected. After partial unfolding and binding to oleic acid, alpha-lactalbumin forms the HAMLET complex, which enters tumor cells and freezes their metabolic machinery. The cells proceed to fragment their DNA, and they disintegrate with apoptosis-like characteristics. HAMLET kills a wide range of malignant cells in vitro and maintains this activity in vivo in patients with skin papillomas. In addition, HAMLET has striking effects on human glioblastomas in a rat xenograft model. After convection-enhanced delivery, HAMLET diffuses throughout the brain, selectively killing tumor cells and controlling tumor progression without apparent tissue toxicity. HAMLET thus shows great promise as a new therapeutic with the advantage of selectivity for tumor cells and lack of toxicity.

  2. The dietary flavonoid apigenin sensitizes malignant tumor cells to tumor necrosis factor-related apoptosis-inducing ligand.

    Science.gov (United States)

    Horinaka, Mano; Yoshida, Tatsushi; Shiraishi, Takumi; Nakata, Susumu; Wakada, Miki; Sakai, Toshiyuki

    2006-04-01

    Dietary flavonoid apigenin is expected to have preventive and therapeutic potential against malignant tumors. In this report, we show for the first time that apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. TRAIL is a promising candidate for cancer therapeutics due to its ability to selectively induce apoptosis in cancer cells. The combined use of apigenin and TRAIL at suboptimal concentrations induces Bcl-2-interacting domain cleavage and the activation of caspases-8, -10, -9, and -3. Furthermore, human recombinant DR5/Fc chimera protein and caspase inhibitors dramatically inhibit apoptosis induced by the combination of apigenin and TRAIL. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. These results suggest that this combined treatment with apigenin and TRAIL might be promising as a new therapy against malignant tumors.

  3. A tumor suppressor role of the Bub3 spindle checkpoint protein after apoptosis inhibition

    Science.gov (United States)

    Moutinho-Santos, Tatiana

    2013-01-01

    Most solid tumors contain aneuploid cells, indicating that the mitotic checkpoint is permissive to the proliferation of chromosomally aberrant cells. However, mutated or altered expression of mitotic checkpoint genes accounts for a minor proportion of human tumors. We describe a Drosophila melanogaster tumorigenesis model derived from knocking down spindle assembly checkpoint (SAC) genes and preventing apoptosis in wing imaginal discs. Bub3-deficient tumors that were also deficient in apoptosis displayed neoplastic growth, chromosomal aneuploidy, and high proliferative potential after transplantation into adult flies. Inducing aneuploidy by knocking down CENP-E and preventing apoptosis does not induce tumorigenesis, indicating that aneuploidy is not sufficient for hyperplasia. In this system, the aneuploidy caused by a deficient SAC is not driving tumorigenesis because preventing Bub3 from binding to the kinetochore does not cause hyperproliferation. Our data suggest that Bub3 has a nonkinetochore-dependent function that is consistent with its role as a tumor suppressor. PMID:23609535

  4. Staphylococcus aureus - induced tumor necrosis factor - related apoptosis - inducing ligand expression mediates apoptosis and caspase-8 activation in infected osteoblasts

    Directory of Open Access Journals (Sweden)

    Bost Kenneth L

    2003-04-01

    Full Text Available Abstract Background Staphylococcus aureus infection of normal osteoblasts induces expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Results Normal osteoblasts were incubated in the presence of purified bacterial products over a range of concentrations. Results demonstrate that purified surface structures and a selected superantigen present in the extracellular environment are not capable of inducing TRAIL expression by osteoblasts. Osteoblasts were co-cultured with S. aureus at various multiplicities of infection utilizing cell culture chamber inserts. Results of those experiments suggest that direct contact between bacteria and osteoblasts is necessary for optimal TRAIL induction. Finally, S. aureus infection of osteoblasts in the presence of anti-TRAIL antibody demonstrates that TRAIL mediates caspase-8 activation and apoptosis of infected cells. Conclusions Collectively, these findings suggest a mechanism whereby S. aureus mediates bone destruction via induction of osteoblast apoptosis.

  5. Telmisartan inhibits human urological cancer cell growth through early apoptosis

    Science.gov (United States)

    MATSUYAMA, MASAHIDE; FUNAO, KIYOAKI; KURATSUKURI, KATSUYUKI; TANAKA, TOMOAKI; KAWAHITO, YUTAKA; SANO, HAJIME; CHARGUI, JAMEL; TOURAINE, JEAN-LOUIS; YOSHIMURA, NORIO; YOSHIMURA, RIKIO

    2010-01-01

    Angiotensin II receptor blockers (ARBs) are widely used as hypertensive therapeutic agents. In addition, studies have provided evidence that ARBs have the potential to inhibit the growth of several types of cancer cells. It was reported that telmisartan (a type of ARB) has peroxisome proliferator-activated receptor (PPAR)-γ activation activity. We previously reported that the PPAR-γ ligand induces growth arrest in human urological cancer cells through apoptosis. In this study, we evaluated the effects of telmisartan and other ARBs on cell proliferation in renal cell carcinoma (RCC), bladder cancer (BC), prostate cancer (PC) and testicular cancer (TC) cell lines. The inhibitory effects of telmisartan and other ARBs (candesartan, valsartan, irbesartan and losartan) on the growth of the RCC, BC, PC and TC cell lines was investigated using an MTT assay. Flow cytometry and Hoechst staining were used to determine whether the ARBs induced apoptosis. Telmisartan caused marked growth inhibition in the urological cancer cells in a dose- and time-dependent manner. Urological cancer cells treated with 100 μM telmisartan underwent early apoptosis and DNA fragmentation. However, the other ARBs had no effect on cell proliferation in any of the urological cancer cell lines. Telmisartan may mediate potent anti-proliferative effects in urological cancer cells through PPAR-γ. Thus, telmisartan is a potent target for the prevention and treatment of human urological cancer. PMID:22993542

  6. HAMLET triggers apoptosis but tumor cell death is independent of caspases, Bcl-2 and p53.

    Science.gov (United States)

    Hallgren, O; Gustafsson, L; Irjala, H; Selivanova, G; Orrenius, S; Svanborg, C

    2006-02-01

    HAMLET (Human alpha-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.

  7. Helicobacter pylori enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yi-Ying Wu; Hwei-Fang Tsai; We-Cheng Lin; Ai-Hsiang Chou; Hui-Ting Chen; Jyh-Chin Yang; Ping-I Hsu; Ping-Ning Hsu

    2004-01-01

    AIM: To investigate the relations between tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Helicobacter pylori(H pylori) infection in apoptosis of gastric epithelial cells and to assess the expression of TRAIL onthe surface of infiltrating T-cells in Hpylori-infected gastric mucosa.METHODS: Human gastric epithelial cell lines and primary gastric epithelial cells were co-cultured with H pylori in vitro, then recombinant TRAIL proteins were added to the culture. Apoptosis of gastric epithelial cells was determined by a specific ELISA for cell death. Infiltrating lymphocytes were isolated from H pylori-infected gastric mucosa, and expression of TRAIL in T cells was analyzed by flow cytometry.RESULTS: The apoptosis of gastric epithelial cell lines and primary human gastric epithelial cells was mildly increased by interaction with either TRAIL or H pylorialone. Interestingly,the apoptotic indices were markedly elevated when gastric epithelial cells were incubated with both TRAIL and H pylori (Control vsTRAIL and H pylori: 0.51±0.06 vs 2.29±0.27,P = 0.018). A soluble TRAIL receptor (DR4-Fc) could specifically block the TRAIL-mediated apoptosis. Further studies demonstrated that infiltrating T-cells in gastric mucosa expressed TRAIL on their surfaces, and the induction of TRAIL sensitivity by H pylori was dependent upon direct cell contact of viable bacteria, but not CagA and VacA of H pylori.CONCLUSION: H pylori can sensitize human gastric epithelial ceils and enhance susceptibility to TRAIL-mediated apoptosis. Modulation of host cell sensitivity to apoptosis by bacterial interaction adds a new dimension to the immunopathogenesis of H pylori infection.

  8. Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    Science.gov (United States)

    Fanger, N A; Maliszewski, C R; Schooley, K; Griffith, T S

    1999-10-18

    TRAIL (TNF-related apoptosis-inducing ligand) is a member of the TNF family that induces apoptosis in a variety of cancer cells. In this study, we demonstrate that human CD11c(+) blood dendritic cells (DCs) express TRAIL after stimulation with either interferon (IFN)-gamma or -alpha and acquire the ability to kill TRAIL-sensitive tumor cell targets but not TRAIL-resistant tumor cells or normal cell types. The DC-mediated apoptosis was TRAIL specific, as soluble TRAIL receptor blocked target cell death. Moreover, IFN-stimulated interleukin (IL)-3 receptor (R)alpha(+) blood precursor (pre-)DCs displayed minimal cytotoxicity toward the same target cells, demonstrating a clear functional difference between the CD11c(+) DC and IL-3Ralpha(+) pre-DC subsets. These results indicate that TRAIL may serve as an innate effector molecule on CD11c(+) DCs for the elimination of spontaneously arising tumor cells and suggest a means by which TRAIL-expressing DCs may regulate or eliminate T cells responding to antigen presented by the DCs.

  9. Activation of the Proapoptotic Bcl-2 Protein Bax by a Small Molecule Induces Tumor Cell Apoptosis

    Science.gov (United States)

    Zhao, Guoping; Zhu, Yanglong; Eno, Colins O.; Liu, Yanlong; DeLeeuw, Lynn; Burlison, Joseph A.; Chaires, Jonathan B.; Trent, John O.

    2014-01-01

    The proapoptotic Bcl-2 protein Bax by itself is sufficient to initiate apoptosis in almost all apoptotic paradigms. Thus, compounds that can facilitate disruptive Bax insertion into mitochondrial membranes have potential as cancer therapeutics. In our study, we have identified small-molecule compounds predicted to associate with the Bax hydrophobic groove by a virtual-screen approach. Among these, one lead compound (compound 106) promotes Bax-dependent but not Bak-dependent apoptosis. Importantly, this compound alters Bax protein stability in vitro and promotes the insertion of Bax into mitochondria, leading to Bax-dependent permeabilization of the mitochondrial outer membrane. Furthermore, as a single agent, compound 106 inhibits the growth of transplanted tumors, probably by inducing apoptosis in tumors. Our study has revealed a compound that activates Bax and induces Bax-dependent apoptosis, which may lead to the development of new therapeutic agents for cancer. PMID:24421393

  10. HCA520, A NOVEL TUMOR ASSOCIATED ANTIGEN, INVOLVED IN CELL PROLIFERATION AND APOPTOSIS

    Institute of Scientific and Technical Information of China (English)

    杨美香; 曲迅; 刘福利; 郑广娟

    2003-01-01

    Objective: Tumor associated antigen encoding gene HCA520 (AF146019) was identified by screening a human hepatocellular carcinoma expressing cDNA library using SEREX technique. In this experiment we studied the effect of HCA520 on cell proliferation and apoptosis. Methods: Gene HCA520 was gained by PCR and transfected into 293 cells. The stable expression cells were obtained by G418 selection. The cell proliferation was measured by [3H]-TdR uptake and apoptosis assay was measured by FACS. Results: Eukaryotic expression plasmid pcDNA3-HCA520 was constructed and its stable transfectants were obtained. Overexpression of HCA520 inhibited the cell proliferation and enhanced cell apoptosis after serum deprivation. Conclusion: HCA520 is a novel tumor associated antigen that can affect cell proliferation and apoptosis.

  11. The Methanol Extract of Angelica sinensis Induces Cell Apoptosis and Suppresses Tumor Growth in Human Malignant Brain Tumors

    Directory of Open Access Journals (Sweden)

    Yu-Ling Lin

    2013-01-01

    Full Text Available Glioblastoma multiforme (GBM is a highly vascularized and invasive neoplasm. The methanol extract of Angelica sinensis (AS-M is commonly used in traditional Chinese medicine to treat several diseases, such as gastric mucosal damage, hepatic injury, menopausal symptoms, and chronic glomerulonephritis. AS-M also displays potency in suppressing the growth of malignant brain tumor cells. The growth suppression of malignant brain tumor cells by AS-M results from cell cycle arrest and apoptosis. AS-M upregulates expression of cyclin kinase inhibitors, including p16, to decrease the phosphorylation of Rb proteins, resulting in arrest at the G0-G1 phase. The expression of the p53 protein is increased by AS-M and correlates with activation of apoptosis-associated proteins. Therefore, the apoptosis of cancer cells induced by AS-M may be triggered through the p53 pathway. In in vivo studies, AS-M not only suppresses the growth of human malignant brain tumors but also significantly prolongs patient survival. In addition, AS-M has potent anticancer effects involving cell cycle arrest, apoptosis, and antiangiogenesis. The in vitro and in vivo anticancer effects of AS-M indicate that this extract warrants further investigation and potential development as a new antibrain tumor agent, providing new hope for the chemotherapy of malignant brain cancer.

  12. Lumican reduces tumor growth via induction of fas-mediated endothelial cell apoptosis.

    Science.gov (United States)

    Williams, Kent E; Fulford, Logan A; Albig, Allan R

    2010-11-18

    Matrikines are important components of tumor microenvironments that integrate communication between extracellular matricies and membrane-bound receptors thereby regulating cellular behaviors. One such matrikine that is differentially expressed in cancer microenvironments is the extracellular matrix protein lumican; however its precise role in cancer remains ambiguous. To study the effects of lumican on cancer cells, we created lumican-overexpressing cell lines from murine fibrosarcoma (MCA102) and pancreatic adenocarcinoma (Pan02) cells. Lumican overexpression in Pan02 cells increased invasiveness, decreased soft agar colony size, and increased proliferation. Conversely in MCA102 cells, lumican decreased invasiveness, increased soft agar colony size, but did not influence proliferation. In contrast to these pleiotropic in vitro results, lumican overexpression within the in vivo tumor microenvironment produced uniformly smaller tumors. Importantly, reduced tumor size was correlated with reduced vascular density. Consistent with lumican's proposed anti-angiogenic activity, lumican increased endothelial cell apoptosis. Importantly, lumican was previously shown to influence Fas expression and our results show that lumican enhanced Fas mediated endothelial cell apoptosis although we were unable to detect any difference in Fas or Fas ligand expression between lumican-overexpressing and control cells. Interestingly, lumican had no effect on MCA102 apoptosis, suggesting that the observed reduction in tumor size is specifically due to endothelial cell apoptosis rather than a direct effect on the cancerous cells themselves. Therefore, this study is the first to demonstrate a causal relationship between tumor reduction and lumican's effect on angiogenesis as opposed to an effect on the cancerous cells themselves.

  13. The JNK inhibitor SP600129 enhances apoptosis of HCC cells induced by the tumor suppressor WWOX

    Science.gov (United States)

    Aderca, Ileana; Moser, Catherine D.; Veerasamy, Manivannan; Bani-Hani, Ahmad H.; Bonilla-Guerrero, Ruben; Ahmed, Kadra; Shire, Abdirashid; Cazanave, Sophie C.; Montoya, Damian P.; Mettler, Teresa A.; Burgart, Lawrence J.; Nagorney, David M.; Thibodeau, Stephen N.; Cunningham, Julie M.; Lai, Jin-Ping; Roberts, Lewis R.

    2008-01-01

    Background/Aims The FRA16D fragile site gene WWOX is a tumor suppressor that participates in p53-mediated apoptosis. The c-jun N-terminal kinase JNK1 interacts with WWOX and inhibits apoptosis. We investigated the function of WWOX in human hepatocellular carcinoma (HCC) and the effect of JNK inhibition on WWOX-mediated apoptosis. Methods Allelic imbalance on chromosome 16 was analyzed in 73 HCCs using 53 microsatellite markers. WWOX mRNA in HCC cell lines and primary HCCs was measured by real-time RT-PCR. Effects of WWOX on proliferation and apoptosis and the interaction between WWOX and JNK inhibition were examined. Results Loss on chromosome 16 occurred in 34 of 73 HCCs. Of 11 HCC cell lines, 2 had low, 7 intermediate, and 2 had high WWOX mRNA. Of 51 primary tumors, 23 had low WWOX mRNA. Forced expression of WWOX in SNU387 cells decreased FGF2-mediated proliferation and enhanced apoptosis induced by staurosporine and the JNK inhibitor SP600129. Conversely, knockdown of WWOX in SNU449 cells using shRNA targeting WWOX increased proliferation and resistance to SP600129 induced apoptosis. Conclusions WWOX induces apoptosis and inhibits human HCC cell growth through a mechanism enhanced by JNK inhibition. PMID:18620777

  14. The role of miR-100-mediated Notch pathway in apoptosis of gastric tumor cells.

    Science.gov (United States)

    Yang, Geng; Gong, Yi; Wang, Qizhi; Wang, Yumeng; Zhang, Xiaobo

    2015-06-01

    MicroRNAs (miRNAs) are small non-coding regulatory molecules that influence many biological functions, including apoptosis, but their role in the regulation of apoptosis in gastric tumor cells has not been intensively investigated. Here, we showed that miR-100 was specifically upregulated in human epithelium-derived gastric cancer cells and that silencing miR-100 expression in human gastric epithelial cancer cells initiated a robust apoptotic response in vitro. Our in vivo assays indicated that the development of gastric cancer was inhibited by the miR-100 antagonism via initiating apoptosis of tumor. The results presented that antagonism of miR-100 increased the expression level of HS3ST2, the target gene of miR-100, and further resulted in the activation of the Notch-apoptosis pathway in tumor cells. The data also revealed that silencing of miR-100 expression sensitized gastric cancer cells to chemotherapy. Therefore our study presented a novel miR-100 mediated Notch pathway in apoptosis of tumor cells.

  15. Phosphoinositide 3-kinase accelerates postoperative tumor growth by inhibiting apoptosis and enhancing resistance to chemotherapy-induced apoptosis. Novel role for an old enemy.

    LENUS (Irish Health Repository)

    Coffey, J Calvin

    2012-02-03

    Tumor removal remains the principal treatment modality in the management of solid tumors. The process of tumor removal may potentiate the resurgent growth of residual neoplastic tissue. Herein, we describe a novel murine model in which flank tumor cytoreduction is followed by accelerated local tumor recurrence. This model held for primary and recurrent tumors generated using a panel of human and murine (LS174T, DU145, SW480, SW640, and 3LL) cell lines and replicated accelerated tumor growth following excisional surgery. In investigating this further, epithelial cells were purified from LS174T primary and corresponding recurrent tumors for comparison. Baseline as well as tumor necrosis factor apoptosis-inducing ligand (TRAIL)-induced apoptosis were significantly reduced in recurrent tumor epithelia. Primary and recurrent tumor gene expression profiles were then compared. This identified an increase and reduction in the expression of p110gamma and p85alpha class Ia phosphoinositide 3-kinase (PI3K) subunits in recurrent tumor epithelia. These changes were further confirmed at the protein level. The targeting of PI3K ex vivo, using LY294002, restored sensitivity to TRAIL in recurrent tumor epithelia. In vivo, adjuvant LY294002 prolonged survival and significantly attenuated recurrent tumor growth by greatly enhancing apoptosis levels. Hence, PI3K plays a role in generating the antiapoptotic and chemoresistant phenotype associated with accelerated local tumor recurrence.

  16. Apoptosis is an early event during phthalocyanine photodynamic therapy-induced ablation of chemically induced squamous papillomas in mouse skin.

    Science.gov (United States)

    Agarwal, R; Korman, N J; Mohan, R R; Feyes, D K; Jawed, S; Zaim, M T; Mukhtar, H

    1996-04-01

    Photodynamic therapy (PDT) is a promising new modality to treat malignant neoplasms including superficial skin cancers. In our search for an ideal photosensitizer for PDT, Pc 4, a silicon phthalocyanine, has shown promising results both in in vitro assays and in implanted tumors. In this study we assessed the efficacy of Pc 4 PDT in the ablation of murine skin tumors; and the evidence for apoptosis during tumor ablation was also obtained. The Pc 4 was administered through tail vein injection to SENCAR mice bearing chemically induced squamous papillomas, and 24 h later the lesions were illuminated with an argon ion-pumped dye laser tuned at 675 nm for a total light dose of 135 J/cm2. Within 72-96 h, almost complete tumor shrinkage occurred; no tumor regrowth was observed up to 90 days post-PDT. As evident by nucleosome-size DNA fragmentation, appearance of apoptotic bodies in hematoxylin and eosin staining and direct immunoperoxidase detection of digoxigenin-labeled genomic DNA in sections, apoptosis was clearly evident 6 h post-PDT at which time tumor shrinkage was less than 30%. The apoptotic bodies, as evident by the condensation of chromatin material around the periphery of the nucleus and increased vacuolization of the cytoplasm, were also observed in electron microscopic studies of the tumor tissues following Pc 4 PDT. The extent of apoptosis was greater at 15 h than at 6 and 10 h post-PDT. Taken together, our results clearly show that Pc 4 may be an effective photosensitizer for PDT of nonmelanoma skin cancer, and that apoptosis is an early event during this process.

  17. Cell cycle-arrested tumor cells exhibit increased sensitivity towards TRAIL-induced apoptosis

    OpenAIRE

    Ehrhardt, H.; Wachter, F; Grunert, M.; Jeremias, I

    2013-01-01

    Resting tumor cells represent a huge challenge during anticancer therapy due to their increased treatment resistance. TNF-related apoptosis-inducing ligand (TRAIL) is a putative future anticancer drug, currently in phases I and II clinical studies. We recently showed that TRAIL is able to target leukemia stem cell surrogates. Here, we tested the ability of TRAIL to target cell cycle-arrested tumor cells. Cell cycle arrest was induced in tumor cell lines and xenografted tumor cells in G0, G1 o...

  18. Cell cycle-arrested tumor cells exhibit increased sensitivity towards TRAIL-induced apoptosis

    Science.gov (United States)

    Ehrhardt, H; Wachter, F; Grunert, M; Jeremias, I

    2013-01-01

    Resting tumor cells represent a huge challenge during anticancer therapy due to their increased treatment resistance. TNF-related apoptosis-inducing ligand (TRAIL) is a putative future anticancer drug, currently in phases I and II clinical studies. We recently showed that TRAIL is able to target leukemia stem cell surrogates. Here, we tested the ability of TRAIL to target cell cycle-arrested tumor cells. Cell cycle arrest was induced in tumor cell lines and xenografted tumor cells in G0, G1 or G2 using cytotoxic drugs, phase-specific inhibitors or RNA interference against cyclinB and E. Biochemical or molecular arrest at any point of the cell cycle increased TRAIL-induced apoptosis. Accordingly, when cell cycle arrest was disabled by addition of caffeine, the antitumor activity of TRAIL was reduced. Most important for clinical translation, tumor cells from three children with B precursor or T cell acute lymphoblastic leukemia showed increased TRAIL-induced apoptosis upon knockdown of either cyclinB or cyclinE, arresting the cell cycle in G2 or G1, respectively. Taken together and in contrast to most conventional cytotoxic drugs, TRAIL exerts enhanced antitumor activity against cell cycle-arrested tumor cells. Therefore, TRAIL might represent an interesting drug to treat static-tumor disease, for example, during minimal residual disease. PMID:23744361

  19. Development of apoptosis in irradiated murine tumors as a function of time and dose.

    Science.gov (United States)

    Stephens, L C; Hunter, N R; Ang, K K; Milas, L; Meyn, R E

    1993-07-01

    In a previous paper (Radiat. Res. 127, 308-316, 1991), we reported that a moderately radiosensitive, transplantable murine ovarian carcinoma (OCaI) displayed apoptosis after irradiation whereas a radioresistant hepatocellular carcinoma (HCaI) did not. These initial observations have been followed up in this detailed analysis of the development of apoptosis in these two tumors as a function of time and dose. Histological sections of OCaI and HCaI carcinomas were scored at various times between 0.5 and 24 h after single doses of 2.5 or 25 Gy gamma radiation for the incidence of apoptosis. The percentage of nuclei undergoing apoptosis in untreated tumors was 5% in OCaI and 0.6% in HCaI. The peak in the number of apoptotic bodies occurred in the OCaI tumors 3-5 h after either dose. After 2.5 Gy, the peak incidence was about 20% and after 25 Gy it was about 30%. Irrespective of dose, HCaI tumors had an incidence of apoptosis of less than 3%. Based on the results of this time course, 4 h after irradiation was chosen for the determination of the dose response, over doses ranging from 2.5 to 25 Gy. The dose response for the OCaI tumors reached a plateau at 25-30% apoptotic nuclei after doses of about 7.5 Gy and above. Autoradiographic analysis of histological sections from mice injected with [3H]thymidine showed that some apoptotic bodies in the OCaI tumors arose from cycling cells. These results confirm that the apoptotic mode of cell death may represent an important response in some irradiated tumors.

  20. The tumor suppressor gene RBM5 inhibits lung adenocarcinoma cell growth and induces apoptosis

    Directory of Open Access Journals (Sweden)

    Shao Chen

    2012-08-01

    Full Text Available Abstract Background The loss of tumor suppressor gene (TSG function is a critical step in the pathogenesis of human lung cancer. RBM5 (RNA-binding motif protein 5, also named H37/LUCA-15 gene from chromosome 3p21.3 demonstrated tumor suppressor activity. However, the role of RBM5 played in the occurrence and development of lung cancer is still not well understood. Method Paired non-tumor and tumor tissues were obtained from 30 adenocarcinomas. The expression of RBM5 mRNA and protein was examined by RT-PCR and Western blot. A549 cell line was used to determine the apoptotic function of RBM5 in vitro. A549 cells were transiently transfected with pcDNA3.1-RBM5. AnnexinV analysis was performed by flow cytometry. Expression of Bcl-2, cleaved caspase-3, caspase-9 and PAPP proteins in A549 lung cancer cells and the A549 xenograft BALB/c nude mice model was determined by Western blot. Tumor suppressor activity of RBM5 was also examined in the A549 xenograft model treated with pcDNA3.1-RBM5 plasmid carried by attenuated Salmonella typhi Ty21a. Result The expression of RBM5 mRNA and protein was decreased significantly in adenocarcinoma tissues compared to that in the non-tumor tissues. In addition, as compared to the vector control, a significant growth inhibition of A549 lung cancer cells was observed when transfected with pcDNA3.1-RBM5 as determined by cell proliferation assay. We also found that overexpression of RBM5 induced both early and late apoptosis in A549 cells using AnnexinV/PI staining as determined by flow cytometry. Furthermore, the expression of Bcl-2 protein was decreased, whereas the expression of cleaved caspase-3, caspase-9 and PARP proteins was significantly increased in the RBM5 transfected cells; similarly, expression of decreased Bcl-2 and increased cleaved caspase-3 proteins was also examined in the A549 xenograft model. More importantly, we showed that accumulative and stable overexpression of RBM5 in the A549 xenograft BALB

  1. Signal transduction and metabolic changes during tumor cell apoptosis following phthalocyanine-sensitized photodynamic therapy

    Science.gov (United States)

    Oleinick, Nancy L.; Agarwal, Munna L.; Berger, Nathan A.; Cheng, Ming-Feng; Chatterjee, Satadel; He, Jin; Kenney, Malcolm E.; Larkin, Hedy E.; Mukhter, Hasan; Rihter, Boris D.; Zaidi, Syed I. A.

    1993-06-01

    Mechanisms of cell death have been explored in cells and tumors treated with photodynamic therapy (PDT). Photosensitizers used for these studies were Photofrin, tetrasulfonated and nonsulfonated aluminum phthalocyanine, and a new silicon phthalocyanine [SiPc(OH)OSi(CH3)2(CH2)3N(CH3)2], referred to as PcIV. In mouse lymphoma L5178Y cells, a dose of PDT sensitized by PcIV which causes a 90% loss of cell survival induces apoptosis (programmed cell death) over a several-hour time course, beginning within 10 minutes of irradiation. Apoptosis is a metabolic process initiated by PDT-induced damage to membranes and triggered by the activation of phospholipases A2 and C and the release of Ca++ from intracellular stores. An endogenous endonuclease is activated and cleaves nuclear DNA in the internucleosomal region of chromatin. Subsequent metabolic events now appear to cause the loss of cellular NAD and ATP, the former a result of the activation of a second nuclear enzyme, poly(ADP-ribose) polymerase, by the endonucleolytically generated DNA strand breaks. Loss of ATP follows upon the loss of NAD needed for energy metabolism. Although the induction of apoptosis is efficiently produced by direct PDT damage to L5178Y cells, we now find that apoptosis is also produced by treatment of certain other lymphoid-derived cells and cells of epithelial origin. Under the limited set of conditions tested, there was no evidence for PDT-induced apoptosis in a fibroblast cell line, in mouse fibrosarcoma RIF-1 and L929 cells, in human adenocarcinoma A549 cells, or in human squamous cell carcinoma cells in culture. The evidence suggests that apoptosis, a form of metabolic cell death, is an important mechanism of tumor ablation in PDT-treated tumors, and that the induction of apoptosis may involve the interaction of direct PDT damage to malignant cells with factors produced by PDT action on vascular and other host cells.

  2. Studies on apoptosis in bone tumor cells induced by 153Sm

    Institute of Scientific and Technical Information of China (English)

    ZHU Shou-Peng; XIAO Dong; HAN Xiao-Feng

    2004-01-01

    The apoptosis in human bone tumor cells induced by internal irradiation with 153Sm was studied. The morphological changes in bone tumor cells were observed by electronic and fluorescent microscopy, as well as DNA agarose gel eletrophoresis. DNA chain fragmentation, microautoradiographic tracing and the inhibition rate of proliferation in bone tumor cells exposed to 153Sm with different duration time were examined. It was demonstrated that the bone tumor cells exposed to 153Sm displayed nuclear fragmentation, pyknosis, margination of condensed chromatin, and formation of membrane bounded apoptotic bodies, whereas the percentage of DNA chain fragmentation of bone tumor cells increases in direct proportion to the duration of irradiation with 153Sm, as well as DNA ladder formation in apoptotic cells. Also a marked inhibition effect of proliferation in bone tumor cells after exposure with 153Sm was observed.

  3. Bupivacaine induces apoptosis through caspase-dependent and -independent pathways in canine mammary tumor cells.

    Science.gov (United States)

    Chiu, Yi-Shu; Cheng, Yeong-Hsiang; Lin, Sui-Wen; Chang, Te-Sheng; Liou, Chian-Jiun; Lai, Yu-Shen

    2015-06-01

    Local anesthetics have been reported to induce apoptosis in various cell lines. In this study, we showed that bupivacaine also induced apoptosis in DTK-SME cells, a vimentin(+)/AE1(+)/CK7(+)/HSP27(+), tumorigenic, immortalized, canine mammary tumor cell line. Bupivacaine induced apoptosis in DTK-SME cells in a time- and concentration-dependent manner. Apoptosis-associated morphological changes, including cell shrinkage and rounding, chromatin condensation, and formation of apoptotic bodies, were observed in the bupivacaine-treated DTK-SME cells. Apoptosis was further confirmed with annexin V staining, TUNEL staining, and DNA laddering assays. At the molecular level, the activation of caspases-3, -8, and -9 corresponded well to the degree of DNA fragmentation triggered by bupivacaine. We also demonstrated that the pan-caspase inhibitor, z-VAD-fmk, only partially inhibited the apoptosis induced by bupivacaine. Moreover, treated cells increased expression of endonuclease G, a death effector that acts independently of caspases. Our data suggested that bupivacaine-induced apoptosis occurs through both caspase-dependent and caspase-independent apoptotic pathways.

  4. Quercetin induces tumor-selective apoptosis through downregulation of Mcl-1 and activation of Bax.

    Science.gov (United States)

    Cheng, Senping; Gao, Ning; Zhang, Zhuo; Chen, Gang; Budhraja, Amit; Ke, Zunji; Son, Young-ok; Wang, Xin; Luo, Jia; Shi, Xianglin

    2010-12-01

    To investigate the in vivo antitumor efficacy of quercetin in U937 xenografts and the functional roles of Mcl-1 and Bax in quercetin-induced apoptosis in human leukemia. Leukemia cells were treated with quercetin, after which apoptosis, Mcl-1 expression, and Bax activation and translocation were evaluated. The efficacy of quercetin as well as Mcl-1 expression and Bax activation were investigated in xenografts of U937 cells. Administration of quercetin caused pronounced apoptosis in both transformed and primary leukemia cells but not in normal blood peripheral mononuclear cells. Quercetin-induced apoptosis was accompanied by Mcl-1 downregulation and Bax conformational change and mitochondrial translocation that triggered cytochrome c release. Knockdown of Bax by siRNA reversed quercetin-induced apoptosis and abrogated the activation of caspase and apoptosis. Ectopic expression of Mcl-1 attenuated quercetin-mediated Bax activation, translocation, and cell death. Conversely, interruption of Mcl-1 by siRNA enhanced Bax activation and translocation, as well as lethality induced by quercetin. However, the absence of Bax had no effect on quercetin-mediated Mcl-1 downregulation. Furthermore, in vivo administration of quercetin attenuated tumor growth in U937 xenografts. The TUNEL-positive apoptotic cells in tumor sections increased in quercetin-treated mice as compared with controls. Mcl-1 downregulation and Bax activation were also observed in xenografts. These data suggest that quercetin may be useful for the treatment of leukemia by preferentially inducing apoptosis in leukemia versus normal hematopoietic cells through a process involving Mcl-1 downregulation, which, in turn, potentiates Bax activation and mitochondrial translocation, culminating in apoptosis. ©2010 AACR.

  5. Chloroquine-Inducible Par-4 Secretion Is Essential for Tumor Cell Apoptosis and Inhibition of Metastasis

    Directory of Open Access Journals (Sweden)

    Ravshan Burikhanov

    2017-01-01

    Full Text Available The induction of tumor suppressor proteins capable of cancer cell apoptosis represents an attractive option for the re-purposing of existing drugs. We report that the anti-malarial drug, chloroquine (CQ, is a robust inducer of Par-4 secretion from normal cells in mice and cancer patients in a clinical trial. CQ-inducible Par-4 secretion triggers paracrine apoptosis of cancer cells and also inhibits metastatic tumor growth. CQ induces Par-4 secretion via the classical secretory pathway that requires the activation of p53. Mechanistically, p53 directly induces Rab8b, a GTPase essential for vesicle transport of Par-4 to the plasma membrane prior to secretion. Our findings indicate that CQ induces p53- and Rab8b-dependent Par-4 secretion from normal cells for Par-4-dependent inhibition of metastatic tumor growth.

  6. TRAF6 Restricts p53 Mitochondrial Translocation, Apoptosis, and Tumor Suppression.

    Science.gov (United States)

    Zhang, Xian; Li, Chien-Feng; Zhang, Ling; Wu, Ching-Yuan; Han, Lixia; Jin, Guoxiang; Rezaeian, Abdol Hossein; Han, Fei; Liu, Chunfang; Xu, Chuan; Xu, Xiaohong; Huang, Chih-Yang; Tsai, Fuu-Jen; Tsai, Chang-Hai; Watabe, Kounosuke; Lin, Hui-Kuan

    2016-11-17

    Mitochondrial p53 is involved in apoptosis and tumor suppression. However, its regulation is not well studied. Here, we show that TRAF6 E3 ligase is a crucial factor to restrict mitochondrial translocation of p53 and spontaneous apoptosis by promoting K63-linked ubiquitination of p53 at K24 in cytosol, and such ubiquitination limits the interaction between p53 and MCL-1/BAK. Genotoxic stress reduces this ubiquitination in cytosol by S13/T330 phosphorylation-dependent translocation of TRAF6 from cytosol to nucleus, where TRAF6 also facilitates the K63-linked ubiquitination of nuclear p53 and its transactivation by recruiting p300 for p53 acetylation. Functionally, K63-linked ubiquitination of p53 compromised p53-mediated apoptosis and tumor suppression. Colorectal cancer samples with WT p53 reveal that TRAF6 overexpression negatively correlates with apoptosis and predicts poor response to chemotherapy and radiotherapy. Together, our study identifies TRAF6 as a critical gatekeeper to restrict p53 mitochondrial translocation, and such mechanism may contribute to tumor development and drug resistance.

  7. The early antitumor immune response is necessary for tumor growth

    OpenAIRE

    Parmiani, Giorgio; Maccalli, Cristina

    2012-01-01

    Early events responsible of tumor growth in patients with a normal immune system are poorly understood. Here, we discuss, in the context of human melanoma, the Prehn hypothesis according to which a weak antitumor immune response may be required for tumor growth before weakly or non-immunogenic tumor cell subpopulations are selected by the immune system.

  8. Interferon-gamma and tumor necrosis factor-alpha sensitize primarily resistant human endometrial stromal cells to Fas-mediated apoptosis

    DEFF Research Database (Denmark)

    Fluhr, Herbert; Krenzer, Stefanie; Stein, Gerburg M

    2007-01-01

    -mediated signaling during early implantation. Here we show that ESCs are primarily resistant to Fas-mediated apoptosis independently of their state of hormonal differentiation. Pre-treatment of ESCs with interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha sensitizes them to become apoptotic upon stimulation......-inhibitory protein (FLIP, CFLAR) expression in ESCs. Additionally, we observed an activation of caspase 3, caspase 8 and caspase 9 upon apoptotic Fas triggering. In summary, we demonstrate that IFN-gamma and TNF-alpha sensitize primarily apoptosis-resistant ESCs to Fas-mediated cell death. This might be due...... to an upregulation of Fas expression, and apoptosis seems to be mediated by active caspase 3, caspase 8 and caspase 9. The observed pro-apoptotic effect of IFN-gamma and TNF-alpha on ESCs could play an important role in the modulation of early implantation....

  9. Inhibition of apoptosis in early tooth development alters tooth shape and size.

    Science.gov (United States)

    Kim, J-Y; Cha, Y-G; Cho, S-W; Kim, E-J; Lee, M-J; Lee, J-M; Cai, J; Ohshima, H; Jung, H-S

    2006-06-01

    Apoptosis plays important roles in various stages of organogenesis. In this study, we hypothesized that apoptosis would play an important role in tooth morphogenesis. We examined the role of apoptosis in early tooth development by using a caspase inhibitor, z-VAD-fmk, concomitant with in vitro organ culture and tooth germ transplantation into the kidney capsule. Inhibition of apoptosis at the early cap stage did not disrupt the cell proliferation level when compared with controls. However, the macroscopic morphology of mice molar teeth exhibited dramatic alterations after the inhibition of apoptosis. Crown height was reduced, and mesiodistal diameter was increased in a concentration-dependent manner with z-VAD-fmk treatment. Overall, apoptosis in the enamel knot would be necessary for the proper formation of molar teeth, including appropriate shape and size.

  10. Protein Expression of BLM Gene and Its Apoptosis Sensitivity in Hematopoietic Tumor Cell Strains

    Institute of Scientific and Technical Information of China (English)

    Xiaobei WANG; Lihua HU

    2008-01-01

    Patients with Bloom syndrome (BS) show an immunodeficiency, an enhanced sister chromatid exchanges (SCEs), a strong genetic instability and an increased predisposition to all. In order to investigate the differential expression of BLM protein in hematopoietic tumor cell strains and study the effects of BLM gene on ultraviolet (UV)- or hydroxyurea (HU)-induced apoptosis, Western blot was used to detect the expression of BLM protein in normal human bone marrow mononuclear cells and 4 kinds of hematopoietic tumor cell strains. The 4 kinds of hematopoietic tumor cells were exposed to UV light with a germicidal UV lamp or treated with 2 mmol/L hydroxyurea and the apoptotic rate was detected by using AnnexinV-FITC. The results showed that these tumor cells ex- pressed BLM protein higher than the normal human bone marrow mononuclear cells (P<0.01). In the 4 hematopoietic tumor cells, BLM protein was all specially cleaved in response to UV- or HU-induced apoptosis. The increase of BLM protein expression may play an important role in the evelopment of these tumors, and BLM proteolysis is likely to be a general feature of the apoptotic esponse.

  11. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL but not its receptors during oral cancer progression

    Directory of Open Access Journals (Sweden)

    Muller Susan

    2007-06-01

    Full Text Available Abstract Background TRAIL plays an important role in host immunosurveillance against tumor progression, as it induces apoptosis of tumor cells but not normal cells, and thus has great therapeutic potential for cancer treatment. TRAIL binds to two cell-death-inducing (DR4 and DR5 and two decoy (DcR1, and DcR2 receptors. Here, we compare the expression levels of TRAIL and its receptors in normal oral mucosa (NOM, oral premalignancies (OPM, and primary and metastatic oral squamous cell carcinomas (OSCC in order to characterize the changes in their expression patterns during OSCC initiation and progression. Methods DNA microarray, immunoblotting and immunohistochemical analyses were used to examine the expression levels of TRAIL and its receptors in oral epithelial cell lines and in archival tissues of NOM, OPM, primary and metastatic OSCC. Apoptotic rates of tumor cells and tumor-infiltrating lymphocytes (TIL in OSCC specimens were determined by cleaved caspase 3 immunohistochemistry. Results Normal oral epithelia constitutively expressed TRAIL, but expression was progressively lost in OPM and OSCC. Reduction in DcR2 expression levels was noted frequently in OPM and OSCC compared to respective patient-matched uninvolved oral mucosa. OSCC frequently expressed DR4, DR5 and DcR1 but less frequently DcR2. Expression levels of DR4, DR5 and DcR1 receptors were not significantly altered in OPM, primary OSCC and metastatic OSCC compared to patient-matched normal oral mucosa. Expression of proapoptotic TRAIL-receptors DR4 and DR5 in OSCC seemed to depend, at least in part, on whether or not these receptors were expressed in their parental oral epithelia. High DR5 expression in primary OSCC correlated significantly with larger tumor size. There was no significant association between TRAIL-R expression and OSSC histology grade, nodal status or apoptosis rates of tumor cells and TIL. Conclusion Loss of TRAIL expression is an early event during oral

  12. Inhibition of autophagy stimulate molecular iodine-induced apoptosis in hormone independent breast tumors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Preeti [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow (India); Godbole, Madan, E-mail: madangodbole@yahoo.co.in [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow (India); Rao, Geeta [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow (India); Annarao, Sanjay [Centre of Biomedical Magnetic Resonance, Lucknow (India); Mitra, Kalyan [Electron Microscopy Unit, Central Drug Research Institute, Lucknow (India); Roy, Raja [Centre of Biomedical Magnetic Resonance, Lucknow (India); Ingle, Arvind [Advanced Centre for Treatment Research and Education in Cancer, Mumbai (India); Agarwal, Gaurav; Tiwari, Swasti [Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow (India)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Molecular iodine (I{sub 2}) causes non-apoptotic cell death in MDA-MB231 breast tumor cells. Black-Right-Pointing-Pointer Autophagy is activated as a survival mechanism in response to I{sub 2} in MDA-MB231. Black-Right-Pointing-Pointer Autophagy inhibition sensitizes tumor cells to I{sub 2}-induced apoptotic cell death. Black-Right-Pointing-Pointer Autophagy inhibitor potentiates apoptosis and tumor regressive effects of I{sub 2} in mice. -- Abstract: Estrogen receptor negative (ER{sup -ve}) and p53 mutant breast tumors are highly aggressive and have fewer treatment options. Previously, we showed that molecular Iodine (I{sub 2}) induces apoptosis in hormone responsive MCF-7 breast cancer cells, and non-apoptotic cell death in ER{sup -ve}-p53 mutant MDA-MB231 cells (Shrivastava, 2006). Here we show that I{sub 2} (3 {mu}M) treatment enhanced the features of autophagy in MDA-MB231 cells. Since autophagy is a cell survival response to most anti-cancer therapies, we used both in vitro and in vivo systems to determine whether ER{sup -ve} mammary tumors could be sensitized to I{sub 2}-induced apoptosis by inhibiting autophagy. Autophagy inhibition with chloroquine (CQ) and inhibitors for PI3K (3MA, LY294002) and H+/ATPase (baflomycin) resulted in enhanced cell death in I{sub 2} treated MDA-MB231 cells. Further, CQ (20 {mu}M) in combination with I{sub 2}, showed apoptotic features such as increased sub-G1 fraction ({approx}5-fold), expression of cleaved caspase-9 and -3 compared to I{sub 2} treatment alone. Flowcytometry of I{sub 2} and CQ co-treated cells revealed increase in mitochondrial membrane permeability (p < 0.01) and translocation of cathepsin D activity to cytosol relative to I{sub 2} treatment. For in vivo studies ICRC mice were transplanted subcutaneously with MMTV-induced mammary tumors. A significant reduction in tumor volumes, as measured by MRI, was found in I{sub 2} and CQ co-treated mice relative to I{sub 2} or

  13. Ursolic acid inhibits tumor angiogenesis and induces apoptosis through mitochondrial-dependent pathway in Ehrlich ascites carcinoma tumor.

    Science.gov (United States)

    Saraswati, Sarita; Agrawal, S S; Alhaider, Abdulqader A

    2013-11-25

    Ursolic acid (UA) is a pentacyclic triterpene naturally occurring in many plant foods. In the present study, we investigated anti-cancer activity of UA in vivo in Ehrlich ascites carcinoma (EAC) tumor. 15 × 10(6) EAC cells were implanted intraperitoneally (i.p., ascitic tumor) and subcutaneous (s.c., solid tumor) in Swiss albino mice. Mice with established tumors received UA i.p. at 25, 50 and 100mg/kg bw for 14 d in ascitic and 100mg/kg bw in solid tumor for 30 d. On day 15, blood samples were collected for hematological assessment of hemoglobin (Hb%), RBCs, WBCs and PCV. Tumor volume, cell viability, angiogenic, anti-angiogenic, anti-inflammatory factors and antioxidant parameters were determined. Immunohistochemistry analysis for VEGF, iNOS, CD31, caspase-3 and Bax were also performed. UA significantly inhibited tumor growth, cell viability, in both ascites and solid tumor model in vivo (p<0.001). The anti-angiogenic effects were accompanied with decreased VEGF, iNOS, TNF-α and increased IL-12 levels. UA at 100mg/kg bw dose significantly increased SOD and CAT activity (p<0.01). GSH and TBARS were increased as compared to control group (p<0.001). Furthermore, UA increased total RBCs, WBCs as well as Hb% significantly (p<0.05) compared to cyclophosphamide (CP). Histopathological examination of tumor cells in the treated group demonstrated signs of apoptosis with chromatin condensation and cell shrinkage. Decreased peritoneal angiogenesis showed the anti-angiogenic potential. UA downregulated VEGF & iNOS expression whereas bax and caspase-3 expressions were upregulated suggesting drug induced tumor cell apoptosis through activating the pro-apoptotic bcl-2 family and caspase-3 and downregulation of VEGF. The present study sheds light on the potent antitumor property of the UA and can be extended further to develop therapeutic protocols for treatment of cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Midazolam Induces Cellular Apoptosis in Human Cancer Cells and Inhibits Tumor Growth in Xenograft Mice

    Science.gov (United States)

    Mishra, Siddhartha Kumar; Kang, Ju-Hee; Lee, Chang Woo; Oh, Seung Hyun; Ryu, Jun Sun; Bae, Yun Soo; Kim, Hwan Mook

    2013-01-01

    Midazolam is a widely used anesthetic of the benzodiazepine class that has shown cytotoxicity and apoptosis-inducing activity in neuronal cells and lymphocytes. This study aims to evaluate the effect of midazolam on growth of K562 human leukemia cells and HT29 colon cancer cells. The in vivo effect of midazolam was investigated in BALB/c-nu mice bearing K562 and HT29 cells human tumor xenografts. The results show that midazolam decreased the viability of K562 and HT29 cells by inducing apoptosis and S phase cell-cycle arrest in a concentration-dependent manner. Midazolam activated caspase-9, capspase-3 and PARP indicating induction of the mitochondrial intrinsic pathway of apoptosis. Midazolam lowered mitochondrial membrane potential and increased apoptotic DNA fragmentation. Midazolam showed reactive oxygen species (ROS) scavenging activity through inhibition of NADPH oxidase 2 (Nox2) enzyme activity in K562 cells. Midazolam caused inhibition of pERK1/2 signaling which led to inhibition of the anti-apoptotic proteins Bcl-XL and XIAP and phosphorylation activation of the pro-apoptotic protein Bid. Midazolam inhibited growth of HT29 tumors in xenograft mice. Collectively our results demonstrate that midazolam caused growth inhibition of cancer cells via activation of the mitochondrial intrinsic pathway of apoptosis and inhibited HT29 tumor growth in xenograft mice. The mechanism underlying these effects of midazolam might be suppression of ROS production leading to modulation of apoptosis and growth regulatory proteins. These findings present possible clinical implications of midazolam as an anesthetic to relieve pain during in vivo anticancer drug delivery and to enhance anticancer efficacy through its ROS-scavenging and pro-apoptotic properties. PMID:24008365

  15. Mitochondrial-derived ROS in edelfosine-induced apoptosis in yeasts and tumor cells

    Institute of Scientific and Technical Information of China (English)

    Hui ZHANG; Consuelo GAJATE; Li-ping YU; Yun-xiang FANG; Faustino MOLLINEDO

    2007-01-01

    Aim: To investigate whether a similar process mediates cytotoxicity of 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET- 18-OCH3, edelfosine) in both yeasts and human tumor cells.Methods: A modified version of a previously described assay for the intracellular conversion of nitro blue tetrazolium to formazan by superoxide anion was used to measure the generation of reactive oxygen spe-cies (ROS). Apoptotic yeast cells were detected using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. DNA fragmenta-tion and the generation of ROS were measured by cytofluorimetric analysis in Jurkat cells.Results: Edelfosine induced apoptosis in Saccharomyces cerevisiae,as assessed by TUNEL assay. Meanwhile, edelfosine induced a time- and con-centration-dependent generation of ROS in yeasts. Rotenone, an inhibitor of the mitochondrial electron transport chain, prevented ROS generation and apoptosis in response to edelfosine in S cerevisiae, α-Tocopherol abrogated the edelfosine-induced generation of intracellular ROS and apoptosis. Edelfosine also induced an increase of ROS in human leukemic cells that preceded apoptosis. The overexpression of Bcl-2 by gene transfer abrogated both ROS generation and apoptosis induced by edelfosine in leukemic cells. Changes in the relative mito-chondrial membrane potential were detected in both yeasts and Jurkat cells.Conclusion: These results indicate that edelfosine induces apoptosis in yeasts in addition to human tumor cells, and this apoptotic process involves mitochondria,likely through mitochondrial-derived ROS. These data also suggest that yeasts can be used as a suitable cell model in elucidating the antitumor mechanism of action of edelfosine.

  16. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Lin, E-mail: pchen@dal.ca [Department of Pathology, Dalhousie University, Halifax, Nova Scotia (Canada); Easton, Alexander S., E-mail: alexander.easton@dal.ca [Department of Pathology, Dalhousie University, Halifax, Nova Scotia (Canada); Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia (Canada)

    2010-01-01

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10{sup -5} mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  17. HAMLET kills tumor cells by an apoptosis-like mechanism--cellular, molecular, and therapeutic aspects.

    Science.gov (United States)

    Svanborg, Catharina; Agerstam, Helena; Aronson, Annika; Bjerkvig, Rolf; Düringer, Caroline; Fischer, Walter; Gustafsson, Lotta; Hallgren, Oskar; Leijonhuvud, Irene; Linse, Sara; Mossberg, Ann-Kristin; Nilsson, Hanna; Pettersson, Jenny; Svensson, Malin

    2003-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a protein-lipid complex that induces apoptosis-like death in tumor cells, but leaves fully differentiated cells unaffected. This review summarizes the information on the in vivo effects of HAMLET in patients and tumor models on the tumor cell biology, and on the molecular characteristics of the complex. HAMLET limits the progression of human glioblastomas in a xenograft model and removes skin papillomas in patients. This broad anti-tumor activity includes >40 different lymphomas and carcinomas and apoptosis is independent of p53 or bcl-2. In tumor cells HAMLET enters the cytoplasm, translocates to the perinuclear area, and enters the nuclei where it accumulates. HAMLET binds strongly to histones and disrupts the chromatin organization. In the cytoplasm, HAMLET targets ribosomes and activates caspases. The formation of HAMLET relies on the propensity of alpha-lactalbumin to alter its conformation when the strongly bound Ca2+ ion is released and the protein adopts the apo-conformation that exposes a new fatty acid binding site. Oleic acid (C18:1,9 cis) fits this site with high specificity, and stabilizes the altered protein conformation. The results illustrate how protein folding variants may be beneficial, and how their formation in peripheral tissues may depend on the folding change and the availability of the lipid cofactor. One example is the acid pH in the stomach of the breast-fed child that promotes the formation of HAMLET. This mechanism may contribute to the protective effect of breastfeeding against childhood tumors. We propose that HAMLET should be explored as a novel approach to tumor therapy.

  18. NSAIDs induce apoptosis in nonproliferating ovarian cancer cells and inhibit tumor growth in vivo.

    Science.gov (United States)

    Duncan, Kristal; Uwimpuhwe, Henriette; Czibere, Akos; Sarkar, Devanand; Libermann, Towia A; Fisher, Paul B; Zerbini, Luiz F

    2012-07-01

    Ovarian cancer (OC) is one of the most lethal gynaecological cancers, which usually has a poor prognosis due to late diagnosis. A large percentage of the OC cell population is in a nonproliferating and quiescent stage, which poses a barrier to success when using most chemotherapeutic agents. Recent studies have shown that several nonsteroidal anti-inflammatory drugs (NSAIDs) are effective in the treatment of OC. Furthermore, we have previously described the molecular mechanisms of NSAIDs' induction of cancer apoptosis. In this report, we evaluated various structurally distinct NSAIDs for their efficacies in inducing apoptosis in nonproliferating OC cells. Although several NSAIDs-induced apoptosis, Flufenamic Acid, Flurbiprofen, Finasteride, Celocoxib, and Ibuprofen were the most potent NSAIDs inducing apoptosis. A combination of these agents resulted in an enhanced effect. Furthermore, we demonstrate that the combination of Flurbiprofen, which targets nonproliferative cells, and Sulindac Sulfide, that affects proliferative cells, strongly reduced tumor growth when compared with a single agent treatment. Our data strongly support the hypothesis that drug treatment regimens that target nonproliferating and proliferating cells may have significant efficacy against OC. These results also provide a rationale for employing compounds or even chemically modified NSAIDs, which selectively and efficiently induce apoptosis in cells during different stages of the cell cycle, to design more potent anticancer drugs.

  19. TLSC702, a Novel Inhibitor of Human Glyoxalase I, Induces Apoptosis in Tumor Cells.

    Science.gov (United States)

    Takasawa, Ryoko; Shimada, Nami; Uchiro, Hiromi; Takahashi, Satoshi; Yoshimori, Atsushi; Tanuma, Sei-Ichi

    2016-01-01

    Human glyoxalase I (hGLO I) is a rate-limiting enzyme in the pathway for detoxification of apoptosis-inducible methylglyoxal (MG), which is the side product of tumor-specific aerobic glycolysis. GLO I has been reported to be overexpressed in various types of cancer cells, and has been expected as an attractive target for the development of new anticancer drugs. We previously discovered a novel inhibitor of hGLO I, named TLSC702, by our in silico screening method. Here, we show that TLSC702 inhibits the proliferation of human leukemia HL-60 cells and induces apoptosis in a dose-dependent manner. In addition, TLSC702 more significantly inhibits the proliferation of human lung cancer NCI-H522 cells, which highly express GLO I, than that of GLO I lower-expressing human lung cancer NCI-H460 cells. Furthermore, this antiproliferative effect of TLSC702 on NCI-H522 cells is in a dose- and time-dependent manner. These results suggest that TLSC702 can induce apoptosis in tumor cells by GLO I inhibition, which lead to accumulation of MG. Taken together, TLSC702 could become a unique seed compound for the generation of novel chemotherapeutic drugs targeting GLO I-dependent human tumors.

  20. The necrotic signal induced by mycophenolic acid overcomes apoptosis-resistance in tumor cells.

    Directory of Open Access Journals (Sweden)

    Gwendaline Guidicelli

    Full Text Available BACKGROUND: The amount of inosine monophosphate dehydrogenase (IMPDH, a pivotal enzyme for the biosynthesis of the guanosine tri-phosphate (GTP, is frequently increased in tumor cells. The anti-viral agent ribavirin and the immunosuppressant mycophenolic acid (MPA are potent inhibitors of IMPDH. We recently showed that IMPDH inhibition led to a necrotic signal requiring the activation of Cdc42. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we strengthened the essential role played by this small GTPase in the necrotic signal by silencing Cdc42 and by the ectopic expression of a constitutive active mutant of Cdc42. Since resistance to apoptosis is an essential step for the tumorigenesis process, we next examined the effect of the MPA-mediated necrotic signal on different tumor cells demonstrating various mechanisms of resistance to apoptosis (Bcl2-, HSP70-, Lyn-, BCR-ABL-overexpressing cells. All tested cells remained sensitive to MPA-mediated necrotic signal. Furthermore, inhibition of IMPDH activity in Chronic Lymphocytic Leukemia cells was significantly more efficient at eliminating malignant cells than apoptotic inducers. CONCLUSIONS/SIGNIFICANCE: These findings indicate that necrosis and apoptosis are split signals that share few if any common hub of signaling. In addition, the necrotic signaling pathway induced by depletion of the cellular amount of GTP/GDP would be of great interest to eliminate apoptotic-resistant tumor cells.

  1. Early mutation bursts in colorectal tumors

    Science.gov (United States)

    Salomon, Matthew P.; Shibata, Darryl; Curtis, Christina; Siegmund, Kimberly; Marjoram, Paul

    2017-01-01

    Tumor growth is an evolutionary process involving accumulation of mutations, copy number alterations, and cancer stem cell (CSC) division and differentiation. As direct observation of this process is impossible, inference regarding when mutations occur and how stem cells divide is difficult. However, this ancestral information is encoded within the tumor itself, in the form of intratumoral heterogeneity of the tumor cell genomes. Here we present a framework that allows simulation of these processes and estimation of mutation rates at the various stages of tumor development and CSC division patterns for single-gland sequencing data from colorectal tumors. We parameterize the mutation rate and the CSC division pattern, and successfully retrieve their posterior distributions based on DNA sequence level data. Our approach exploits Approximate Bayesian Computation (ABC), a method that is becoming widely-used for problems of ancestral inference. PMID:28257429

  2. Roscovitine sensitizes leukemia and lymphoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis.

    Science.gov (United States)

    Molinsky, Jan; Klanova, Magdalena; Koc, Michal; Beranova, Lenka; Andera, Ladislav; Ludvikova, Zdenka; Bohmova, Martina; Gasova, Zdenka; Strnad, Miroslav; Ivanek, Robert; Trneny, Marek; Necas, Emanuel; Zivny, Jan; Klener, Pavel

    2013-02-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a death ligand with selective antitumor activity. However, many primary tumors are TRAIL resistant. Previous studies reported that roscovitine, a cyclin-dependent kinase inhibitor, sensitized various solid cancer cells to TRAIL. We show that roscovitine and TRAIL demonstrate synergistic cytotoxicity in hematologic malignant cell lines and primary cells. Pretreatment of TRAIL-resistant leukemia cells with roscovitine induced enhanced cleavage of death-inducing signaling complex-bound proximal caspases after exposure to TRAIL. We observed increased levels of both pro- and antiapoptotic BCL-2 proteins at the mitochondria following exposure to roscovitine. These results suggest that roscovitine induces priming of cancer cells for death by binding antiapoptotic BCL-2 proteins to proapoptotic BH3-only proteins at the mitochondria, thereby decreasing the threshold for diverse proapoptotic stimuli. We propose that the mitochondrial priming and enhanced processing of apical caspases represent major molecular mechanisms of roscovitine-induced sensitization to TRAIL in leukemia/lymphoma cells.

  3. Apoptosis and tumor cell death in response to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Hallgren, Oskar; Aits, Sonja; Brest, Patrick; Gustafsson, Lotta; Mossberg, Ann-Kristin; Wullt, Björn; Svanborg, Catharina

    2008-01-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a molecular complex derived from human milk that kills tumor cells by a process resembling programmed cell death. The complex consists of partially unfolded alpha-lactalbumin and oleic acid, and both the protein and the fatty acid are required for cell death. HAMLET has broad antitumor activity in vitro, and its therapeutic effect has been confirmed in vivo in a human glioblastoma rat xenograft model, in patients with skin papillomas and in patients with bladder cancer. The mechanisms of tumor cell death remain unclear, however. Immediately after the encounter with tumor cells, HAMLET invades the cells and causes mitochondrial membrane depolarization, cytochrome c release, phosphatidyl serine exposure, and a low caspase response. A fraction of the cells undergoes morphological changes characteristic of apoptosis, but caspase inhibition does not rescue the cells and Bcl-2 overexpression or altered p53 status does not influence the sensitivity of tumor cells to HAMLET. HAMLET also creates a state of unfolded protein overload and activates 20S proteasomes, which contributes to cell death. In parallel, HAMLET translocates to tumor cell nuclei, where high-affinity interactions with histones cause chromatin disruption, loss of transcription, and nuclear condensation. The dying cells also show morphological changes compatible with macroautophagy, and recent studies indicate that macroautophagy is involved in the cell death response to HAMLET. The results suggest that HAMLET, like a hydra with many heads, may interact with several crucial cellular organelles, thereby activating several forms of cell death, in parallel. This complexity might underlie the rapid death response of tumor cells and the broad antitumor activity of HAMLET.

  4. PTHrP induces autocrine/paracrine proliferation of bone tumor cells through inhibition of apoptosis.

    Directory of Open Access Journals (Sweden)

    Isabella W Y Mak

    Full Text Available Giant Cell Tumor of Bone (GCT is an aggressive skeletal tumor characterized by local bone destruction, high recurrence rates and metastatic potential. Previous work in our lab has shown that the neoplastic cell of GCT is a proliferating pre-osteoblastic stromal cell in which the transcription factor Runx2 plays a role in regulating protein expression. One of the proteins expressed by these cells is parathyroid hormone-related protein (PTHrP. The objectives of this study were to determine the role played by PTHrP in GCT of bone with a focus on cell proliferation and apoptosis. Primary stromal cell cultures from 5 patients with GCT of bone and one lung metastasis were used for cell-based experiments. Control cell lines included a renal cell carcinoma (RCC cell line and a human fetal osteoblast cell line. Cells were exposed to optimized concentrations of a PTHrP neutralizing antibody and were analyzed with the use of cell proliferation and apoptosis assays including mitochondrial dehydrogenase assays, crystal violet assays, APO-1 ELISAs, caspase activity assays, flow cytometry and immunofluorescent immunohistochemistry. Neutralization of PTHrP in the cell environment inhibited cell proliferation in a consistent manner and induced apoptosis in the GCT stromal cells, with the exception of those obtained from a lung metastasis. Cell cycle progression was not significantly affected by PTHrP neutralization. These findings indicate that PTHrP plays an autocrine/paracrine neoplastic role in GCT by allowing the proliferating stromal cells to evade apoptosis, possibly through non-traditional caspase-independent pathways. Thus PTHrP neutralizing immunotherapy is an intriguing potential therapeutic strategy for this tumor.

  5. TIG3 tumor suppressor-dependent organelle redistribution and apoptosis in skin cancer cells.

    Directory of Open Access Journals (Sweden)

    Tiffany M Scharadin

    Full Text Available TIG3 is a tumor suppressor protein that limits keratinocyte survival during normal differentiation. It is also important in cancer, as TIG3 level is reduced in tumors and in skin cancer cell lines, suggesting that loss of expression may be required for cancer cell survival. An important goal is identifying how TIG3 limits cell survival. In the present study we show that TIG3 expression in epidermal squamous cell carcinoma SCC-13 cells reduces cell proliferation and promotes morphological and biochemical apoptosis. To identify the mechanism that drives these changes, we demonstrate that TIG3 localizes near the centrosome and that pericentrosomal accumulation of TIG3 alters microtubule and microfilament organization and organelle distribution. Organelle accumulation at the centrosome is a hallmark of apoptosis and we demonstrate that TIG3 promotes pericentrosomal organelle accumulation. These changes are associated with reduced cyclin D1, cyclin E and cyclin A, and increased p21 level. In addition, Bax level is increased and Bcl-XL level is reduced, and cleavage of procaspase 3, procaspase 9 and PARP is enhanced. We propose that pericentrosomal localization of TIG3 is a key event that results in microtubule and microfilament redistribution and pericentrosomal organelle clustering and that leads to cancer cell apoptosis.

  6. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer.

  7. Jolkinolide B induces apoptosis and inhibits tumor growth in mouse melanoma B16F10 cells by altering glycolysis.

    Science.gov (United States)

    Gao, Caixia; Yan, Xinyan; Wang, Bo; Yu, Lina; Han, Jichun; Li, Defang; Zheng, Qiusheng

    2016-10-31

    Most cancer cells preferentially rely on glycolysis to produce the energy (adenosine triphosphate, ATP) for growth and proliferation. Emerging evidence demonstrates that the apoptosis in cancer cells could be closely associated with the inhibition of glycolysis. In this study, we have found that jolkinolide B (JB), a bioactive diterpenoid extracted from the root of Euphorbia fischeriana Steud, induced tumor cells apoptosis and decreased the production of ATP and lactic acid in mouse melanoma B16F10 cells. Furthermore, we found that JB downregulated the mRNA expression of glucose transporter genes (Glut1, Glut3 and Glut4) and glycolysis-related kinase genes (Hk2 and Ldha) in B16F10 cells. Moreover, treatment with JB upregulated the mRNA expression of pro-apoptosis genes (Bax), downregulated the mRNA expression of anti-apoptosis genes (Bcl-2, Caspase-3 and Caspase-9), decreased the potential of mitochondrial membrane and increased reactive oxygen species (ROS) levels in B16F10 cells. Finally, intragastric administration of JB suppressed tumor growth and induced tumor apoptosis in mouse xenograft model of murine melanoma B16F10 cells. Taken together, these results suggest that JB could induce apoptosis through the mitochondrial pathway and inhibit tumor growth. The inhibition of glycolysis could play a crucial role in the induction of apoptosis in JB-treated B16F10 cells.

  8. Comparative analysis of dendritic cells transduced with different anti-apoptotic molecules: sensitivity to tumor-induced apoptosis.

    Science.gov (United States)

    Balkir, Levent; Tourkova, Irina L; Makarenkova, Valeria P; Shurin, Galina V; Robbins, Paul D; Yin, Xiao-Ming; Chatta, Gurkamal; Shurin, Michael R

    2004-05-01

    Tumors develop mechanisms to escape recognition by the immune system. It has recently been demonstrated that tumors cause apoptotic death of key immune cells, including the major antigen-presenting cells, dendritic cells (DC). Elimination of DC from the tumor environment significantly diminishes development of specific immunologic responses. We have recently demonstrated that tumor-induced DC apoptosis could be prevented by overexpression of the anti-apoptotic molecule Bcl-x(L). The aim of this study was to identify extrinsic and intrinsic tumor-induced apoptotic pathways in DC by targeting different anti-apoptotic molecules, including FLIP, XIAP/hILP, dominant-negative procaspase-9 and HSP70. Murine bone marrow derived DC were transduced with adenoviral vectors carrying different anti-apoptotic molecules and co-incubated with tumor cells in a Transwell system. Apoptosis of DC was assessed by Annexin V and PI staining. We have demonstrated that adenoviral infection of DC with genes encoding different anti-apoptotic molecules exhibits different degrees of resistance to melanoma-induced apoptosis. Furthermore, we have shown that anti-apoptotic molecules other than the Bcl-2 family of proteins are able to protect DC and prevent tumor-induced apoptosis in DC. The results show that tumor-induced apoptosis of DC is not limited to the mitochondrial pathway of cell death and open additional possibilities for targeted molecular protection of DC longevity in cancer. Therefore, effective protection of DC from tumor-induced apoptosis may significantly improve the efficacy of DC-based therapies for cancer. Copyright 2004 John Wiley & Sons, Ltd.

  9. Radiolabeled Apoptosis Imaging Agents for Early Detection of Response to Therapy

    Directory of Open Access Journals (Sweden)

    Kazuma Ogawa

    2014-01-01

    Full Text Available Since apoptosis plays an important role in maintaining homeostasis and is associated with responses to therapy, molecular imaging of apoptotic cells could be useful for early detection of therapeutic effects, particularly in oncology. Radiolabeled annexin V compounds are the hallmark in apoptosis imaging in vivo. These compounds are reviewed from the genesis of apoptosis (cell death imaging agents up to recent years. They have some disadvantages, including slow clearance and immunogenicity, because they are protein-based imaging agents. For this reason, several studies have been conducted in recent years to develop low molecule apoptosis imaging agents. In this review, radiolabeled phosphatidylserine targeted peptides, radiolabeled bis(zinc(II-dipicolylamine complex, radiolabeled 5-fluoropentyl-2-methyl-malonic acid (ML-10, caspase-3 activity imaging agents, radiolabeled duramycin, and radiolabeled phosphonium cation are reviewed as promising low-molecular-weight apoptosis imaging agents.

  10. Electron microscopic observations and DNA chain fragmentation studies on apoptosis in bone tumor cells induced by 153Sm—EDTMP

    Institute of Scientific and Technical Information of China (English)

    ZhuShou-Peng; XiaoDong; 等

    1997-01-01

    The morphological changes observed by electron microscopy indicate that after internal irradiation with 153Sm-ESTMP bone tumor cells displayed feature of apoptosis,such as margination of condensed chromatin,chromatin fragmentation.as well as the membranebouded apoptotic bodies formation.THe quantification analysis of fragmentation DNA for bone tumor cells induced by 153Sm-EDTMP shows that the DNA fragmentation is enhanced with the prolongation of internally irradiated time.These characteristics suggest that 153Sm-EDTMP internal irradiation could induce bone tumor cells to go9 to apoptosis.

  11. Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells

    Directory of Open Access Journals (Sweden)

    Tao Yan-Fang

    2012-12-01

    Full Text Available Abstract Background Survivin, a member of the family of inhibitor of apoptosis proteins, functions as a key regulator of mitosis and programmed cell death. YM155, a novel molecular targeted agent, suppresses survivin, which is overexpressed in many tumor types. The aim of this study was to determine the antitumor activity of YM155 in SK-NEP-1 cells. Methods SK-NEP-1 cell growth in vitro and in vivo was assessed by MTT and nude mice experiments. Annexin V/propidium iodide staining followed by flow cytometric analysis was used to detect apoptosis in cell culture. Then gene expression profile of tumor cells treated with YM155 was analyzed with real-time PCR arrays. We then analyzed the expression data with MEV (Multi Experiment View cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis tool. Results YM155 treatment resulted in inhibition of cell proliferation of SK-NEP-1cells in a dose-dependent manner. Annexin V assay, cell cycle, and activation of caspase-3 demonstrates that YM155 induced apoptosis in SK-NEP-1 cells. YM155 significantly inhibited growth of SK-NEP-1 xenografts (YM155 5 mg/kg: 1.45 ± 0.77 cm3; YM155 10 mg/kg: 0.95 ± 0.55 cm3 compared to DMSO group (DMSO: 3.70 ± 2.4 cm3 or PBS group cells (PBS: 3.78 ± 2.20 cm3, ANOVA P Conclusions The present study demonstrates that YM155 treatment resulted in apoptosis and inhibition of cell proliferation of SK-NEP-1cells. YM155 had significant role and little side effect in the treatment of SK-NEP-1 xenograft tumors. Real-time PCR array analysis firstly showed expression profile of genes dyes-regulated after YM155 treatment. IPA analysis also represents new molecule mechanism of YM155 treatment, such as NR3C1 and dexamethasone may be new target of YM155. And our results may provide new clues of molecular mechanism of apoptosis induced by YM155.

  12. Exenatide Reduces Tumor Necrosis Factor-α-induced Apoptosis in Cardiomyocytes by Alleviating Mitochondrial Dysfunction

    Institute of Scientific and Technical Information of China (English)

    Yuan-Yuan Cao; Zhang-Wei Chen; Yan-Hua Gao; Xing-Xu Wang; Jian-Ying Ma; Shu-Fu Chang; Ju-Ying Qian

    2015-01-01

    Background: Tumor necrosis factor-α (TNF-α) plays an important role in progressive contractile dysfunction in several cardiac diseases.The cytotoxic effects of TNF-α are suggested to be partly mediated by reactive oxygen species (ROS)-and mitochondria-dependent apoptosis.Glucagon-like peptide-1 (GLP-1) or its analogue exhibits protective effects on the cardiovascular system.The objective of the study was to assess the effects of exenatide, a GLP-1 analogue, on oxidative stress, and apoptosis in TNF-c-treated cardiomyocytes in vitro.Methods: Isolated neonatal rat cardiomyocytes were divided into three groups: Control group, with cells cultured in normal conditions without intervention;TNF-α group, with cells incubated with TNF-c (40 ng/ml) for 6, 12, or 24 h without pretreatment with exenatide;and exenatide group, with cells pretreated with exenatide (100 nmol/L) 30 mins before TNF-α (40 ng/ml) stimulation.We evaluated apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry, measured ROS production and mitochondrial membrane potential (MMP) by specific the fluorescent probes, and assessed the levels of proteins by Western blotting for all the groups.Results: Exenatide pretreatment significantly reduced cardiomyocyte apoptosis as measured by flow cytometry and TUNEL assay at 12 h and 24 h.Also, exenatide inhibited excessive ROS production and maintained MMP.Furthermore, declined cytochrome-c release and cleaved caspase-3 expression and increased bcl-2 expression with concomitantly decreased Bax activation were observed in exenatide-pretreated cultures.Conclusion: These results suggested that exenatide exerts a protective effect on cardiomyocytes, preventing TNF-α-induced apoptosis;the anti-apoptotic effects may be associated with protection of mitochondrial function.

  13. Targeting apoptosis in solid tumors: the role of bortezomib from preclinical to clinical evidence.

    Science.gov (United States)

    Russo, Antonio; Fratto, Maria E; Bazan, Viviana; Schiró, Valentina; Agnese, Valentina; Cicero, Giuseppe; Vincenzi, Bruno; Tonini, Giuseppe; Santini, Daniele

    2007-12-01

    The ubiquitin-proteasome pathway is the main proteolytic system present in the nucleus and cytoplasm of all eukaryotic cells. Apoptosis activation induced by ubiquitin-proteasome pathway inhibition makes the proteasome a new target of anticancer therapy. Bortezomib is the first proteasome inhibitor to be approved by the US FDA; in 2003 as a third line and in 2005 as a second line therapy for the treatment of multiple myeloma only. This review focuses on the use of bortezomib, not only in its therapeutic role but also, more specifically, in its biologic role and discusses the most recent applications of the drug in solid tumors, both at a preclinical and clinical level.

  14. Hypoxia-induced down-modulation of PKCepsilon promotes trail-mediated apoptosis of tumor cells.

    Science.gov (United States)

    Gobbi, Giuliana; Masselli, Elena; Micheloni, Cristina; Nouvenne, Antonio; Russo, Domenico; Santi, Patrizia; Matteucci, Alessandro; Cocco, Lucio; Vitale, Marco; Mirandola, Prisco

    2010-09-01

    Tumor oxygen status is considered as a prognostic marker that impacts on malignant progression and outcome of tumor therapy. TNF-related apoptosis inducing ligand (TRAIL) plays a key role in cancer immunity, with potential applications in cancer therapy. Protein kinase C (PKC)epsilon, a transforming oncogene, has a role in the protection of cardiomyocytes and neurons from hypoxia-induced damage while, it can also modulate the susceptibility of tumor cells to TRAIL-induced cell death. Here we demonstrate that hypoxia induces a tumor cell phenotype highly sensitive to the cytotoxic effects of TRAIL. Based on the observation that: i) PKCepsilon expression levels are impaired during hypoxia, ii) the overexpression of PKCepsilon, but not of a kinase-inactive PKCepsilon mutant, is able to revert the hypoxia-induced sensitivity to TRAIL, iii) the down-modulation of PKCepsilon levels by RNA interference, on the contrary, induces the highly TRAIL-sensitive phenotype, iv) the inhibition of hypoxia-inducible transcription factor-1alpha (HIF-1alpha) by specific siRNA blocks both the hypoxia-induced down-modulation of PKCepsilon and the induction of the highly TRAIL-sensitive phenotype; we conclude that the HIF-1alpha upregulation during hypoxia is associated to PKCepsilon down-modulation that likely represents the key molecular event promoting the apoptogenic effects of TRAIL in hypoxic tumor cells.

  15. Global Tumor RNA Expression in Early Establishment of Experimental Tumor Growth and Related Angiogenesis following Cox-Inhibition Evaluated by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Kent Lundholm

    2007-01-01

    Full Text Available Altered expression of COX-2 and overproduction of prostaglandins, particularly prostaglandin E2, are common in malignant tumors. Consequently, non-steroidal anti-inflammatory drugs (NSAIDs attenuate tumor net growth, tumor related cachexia, improve appetite and prolong survival. We have also reported that COX-inhibition (indomethacin interfered with early onset of tumor endothelial cell growth, tumor cell proliferation and apoptosis. It is however still unclear whether such effects are restricted to metabolic alterations closely related to eicosanoid pathways and corresponding regulators, or whether a whole variety of gene products are involved both up- and downstream effects of eicosanoids. Therefore, present experiments were performed by the use of an in vivo, intravital chamber technique, where micro-tumor growth and related angiogenesis were analyzed by microarray to evaluate for changes in global RNA expression caused by indomethacin treatment. Indomethacin up-regulated 351 and down-regulated 1852 genes significantly (p < 0.01; 1066 of these genes had unknown biological function. Genes with altered expression occurred on all chromosomes. Our results demonstrate that indomethacin altered expression of a large number of genes distributed among a variety of processes in the carcinogenic progression involving angiogenesis, apoptosis, cell-cycling, cell adhesion, inflammation as well as fatty acid metabolism and proteolysis. It remains a challenge to distinguish primary key alterations from secondary adaptive changes in transcription of genes altered by cyclooxygenase inhibition.

  16. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    Full Text Available BACKGROUND: We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells. PRINCIPAL FINDINGS: Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL. SIGNIFICANCE: We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages

  17. Proliferation and apoptosis in early molar morphogenesis-- voles as models in odontogenesis.

    Science.gov (United States)

    Setkova, Jana; Lesot, Herve; Matalova, Eva; Witter, Kirsti; Matulova, Petra; Misek, Ivan

    2006-01-01

    Proliferation and apoptosis play crucial roles in the development of multicellular organisms. Their precise balance is necessary for tissue homeostasis throughout life. The developing dentition is a suitable model to study proliferation and apoptosis during embryogenesis, but the corresponding studies have been carried out principally in the mouse. The present study aimed to examine proliferation and apoptosis in the vole (Microtus sp., Rodentia) during the early morphogenesis of the first upper molar and compare it to what is known from the mouse. To this end, apoptosis and proliferation were investigated using histology and computer-aided 3D reconstruction. Mitoses accumulated predominantly in the developing cervical loop. Apoptosis during early odontogenesis showed highly specific spatio-temporal patterns in the dental epithelium. Apoptotic bodies were localised in non-dividing cell populations. They accumulated in the same places as described in the mouse: antemolar vestiges (ED 12.5 15.5), enamel knot (ED 14.5 15.5), stalk and palatally along the whole first molar tooth germ longitudinal axis (ED 15 - 15.5). Early tooth development in the field vole, including the distribution of apoptosis and mitosis, is very similar to that reported in the mouse, with the exception of the antemolar region. The microtine antemolar vestige is preserved longer than the murine one. It is conceivable that additional distinct differences in morphogenetic processes appear later in tooth development.

  18. Suppression of peroxiredoxin 4 in glioblastoma cells increases apoptosis and reduces tumor growth.

    Directory of Open Access Journals (Sweden)

    Tae Hyong Kim

    Full Text Available Glioblastoma multiforme (GBM, the most common and aggressive primary brain malignancy, is incurable despite the best combination of current cancer therapies. For the development of more effective therapies, discovery of novel candidate tumor drivers is urgently needed. Here, we report that peroxiredoxin 4 (PRDX4 is a putative tumor driver. PRDX4 levels were highly increased in a majority of human GBMs as well as in a mouse model of GBM. Reducing PRDX4 expression significantly decreased GBM cell growth and radiation resistance in vitro with increased levels of ROS, DNA damage, and apoptosis. In a syngenic orthotopic transplantation model, Prdx4 knockdown limited GBM infiltration and significantly prolonged mouse survival. These data suggest that PRDX4 can be a novel target for GBM therapies in the future.

  19. Combined analysis of cell growth and apoptosis-regulating proteins in HPVs associated anogenital tumors

    Directory of Open Access Journals (Sweden)

    Kawana Seiji

    2010-03-01

    Full Text Available Abstract Background The clinical course of human papillomavirus (HPV associated with Bowenoid papulosis and condyloma acuminatum of anogenital tumors are still unknown. Here we evaluated molecules that are relevant to cellular proliferation and regulation of apoptosis in HPV associated anogenital tumors. Methods We investigated the levels of telomerase activity, and inhibitor of apoptosis proteins (IAPs family (c-IAP1, c-IAP2, XIAP and c-Myc mRNA expression levels in 20 specimens of Bowenoid papulosis and 36 specimens of condyloma acuminatum in anogenital areas. Overall, phosphorylated (p- AKT, p-ribosomal protein S6 (S6 and p-4E-binding protein 1 (4EBP1 expression levels were examined by immunohistochemistry in anogenital tumors both with and without positive telomerase activity. Results Positive telomerase activity was detected in 41.7% of Bowenoid papulosis and 27.3% of condyloma acuminatum compared to normal skin (p p p p = 0.022, respectively and normal skin (p p = 0.002, p = 0.034, respectively. Overall, 30% of Bowenoid papulosis with high risk HPV strongly promoted IAPs family and c-Myc but condyloma acuminatum did not significantly activate those genes. Immunohistochemically, p-Akt and p-S6 expressions were associated with positive telomerase activity but not with p-4EBP1 expression. Conclusion Combined analysis of the IAPs family, c-Myc mRNA expression, telomerase activity levels and p-Akt/p-S6 expressions may provide clinically relevant molecular markers in HPV associated anogenital tumors.

  20. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  1. Induction of apoptosis in osteogenic sarcoma cells by combination of tumor necrosis factor-related apoptosis inducing ligand and chemotherapeutic agents

    Institute of Scientific and Technical Information of China (English)

    SUN Jie; FU Zhi-min; FANG Chang-qing; LI Jian-hua

    2007-01-01

    Background Osteosarcoma is one of the most common primary malignant tumors of bone with poor prognosis.TNF-related apoptosis inducing ligand (TRAIL) is a member of the tumor necrosis factor (TNF) cytokine family. TRAIL induces apoptosis in various tumor cell lines but is not found to be cytotoxic to many normal cell types in vitro. We investigated the cytotoxic activity of TRAIL and chemotherapeutic agents, including methotrexate (MTX), doxorubicin(DOX) and cisplatin (CDDP), on established osteosarcoma cell line-OS-732.Methods OS-732 cells were incubated with chemotherapeutic agents MTX,DOX and CDDP at various peak plasma concentrations(PPC), 0.1PPC,1PPC and 10PPC, alone or with 100 ng/ml of TRAIL for 24 hours or 48 hours. MTT was used to evaluate the cytotoxic activity of different agents on OS-732. The apoptosis proportion was assayed by flow cytometry. Cellular morphologic changes were observed by phase contrast microscope, scan electron microscope, and transmission electron microscope.Results The inhibitory rate was (24.438±3.414)% with TRAIL of 100 ng/ml for 24 hours. The cells were responsive to DOX and CDDP with a dose-effect relationship (P<0.05). In OS-732 cells, DOX and CDDP cooperated synergistically with TRAIL when incubated the cells with them for 24 hours (the combined inhibitory rate is (58.360±2.146)% and (54.101 ±2.721)%, respectively). TRAIL alone or drugs alone induced the apoptosis rate was less than 25% (P<0.05).However, the combination of TRAIL and MTX did not present synergistic effects on OS-732 cells (P>0.05, compared with TRAIL alone).Conclusions Osteosarcoma OS-732 cells were not responsive to TRAIL-induced apoptosis. DOX and CDDP sensitize osteosarcoma OS-732 cells to TRAIL-induced apoptosis. The combination of TRAIL and MTX presented no synergistic effects on killing OS-732 cells.

  2. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Suhail Mahmoud M

    2011-12-01

    Full Text Available Abstract Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp. are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231 and an immortalized normal human breast cell line (MCF10-2A. Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil

  3. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    Science.gov (United States)

    2011-01-01

    Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231) and an immortalized normal human breast cell line (MCF10-2A). Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil treatment. Boswellia sacra

  4. p53 DNA Binding Cooperativity Is Essential for Apoptosis and Tumor Suppression In Vivo

    Directory of Open Access Journals (Sweden)

    Oleg Timofeev

    2013-05-01

    Full Text Available Four molecules of the tumor suppressor p53 assemble to cooperatively bind proapoptotic target genes. The structural basis for cooperativity consists of interactions between adjacent DNA binding domains. Mutations at the interaction interface that compromise cooperativity were identified in cancer patients, suggesting a requirement of cooperativity for tumor suppression. We report on an analysis of cooperativity mutant p53E177R mice. Apoptotic functions of p53 triggered by DNA damage and oncogenes were abolished in these mice, whereas functions in cell-cycle control, senescence, metabolism, and antioxidant defense were retained and were sufficient to suppress development of spontaneous T cell lymphoma. Cooperativity mutant mice are nevertheless highly cancer prone and susceptible to different oncogene-induced tumors. Our data underscore the relevance of DNA binding cooperativity for p53-dependent apoptosis and tumor suppression and highlight cooperativity mutations as a class of p53 mutations that result in a selective loss of apoptotic functions due to an altered quaternary structure of the p53 tetramer.

  5. Structure-function relationship of thiazolide-induced apoptosis in colorectal tumor cells.

    Science.gov (United States)

    Brockmann, Anette; Strittmatter, Tobias; May, Sarah; Stemmer, Kerstin; Marx, Andreas; Brunner, Thomas

    2014-07-18

    Thiazolides are a novel class of anti-infectious agents against intestinal intracellular and extracellular protozoan parasites, bacteria, and viruses. While the parent compound nitazoxanide (NTZ; 2-(acetolyloxy)-N-(5-nitro-2-thiazolyl)benzamide) has potent antimicrobial activity, the bromo-thiazolide RM4819 (N-(5-bromothiazol-2-yl)-2-hydroxy-3-methylbenzamide) shows only reduced activity. Interestingly, both molecules are able to induce cell death in colon carcinoma cell lines, indicating that the molecular target in intestinal pathogens and in colon cancer cells is different. The detoxification enzyme glutathione S-transferase of class Pi 1 (GSTP1) is frequently overexpressed in various tumors, including colon carcinomas, and limits the efficacy of antitumor chemotherapeutic drugs due to its detoxifying activities. In colorectal tumor cells RM4819 has been shown to interact with GSTP1, and GSTP1 enzymatic activity is required for thiazolide-induced apoptosis. At present it is unclear which molecular structures of RM4819 are required to interact with GSTP1 and to induce cell death in colon carcinoma cell lines. Here, we demonstrate that novel thiazolide derivatives with variation in their substituents of the benzene ring do not significantly affect apoptosis induction in Caco-2 cells, whereas removal of the bromide atom on the thiazole ring leads to a strong reduction of cell death induction in colon cancer cells. We further show that active thiazolides require caspase activation and GSTP1 expression in order to induce apoptosis. We demonstrate that increased glutathione (GSH) levels sensitize colon cancer cells to thiazolides, indicating that both GSTP1 enzymatic activity as well as GSH levels are critical factors in thiazolide-induced cell death.

  6. Relationship of doxorubicin- and radiation-induced apoptosis with Ki-67 labeling index in human tumors in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Kayoko; Hasegawa, Masatoshi; Kawashima, Miho; Toda, Hisako; Hayakawa, Kazushige; Mitsuhashi, Norio; Niibe, Hideo [Gunma Univ., Maebashi (Japan). School of Medicine

    1999-11-01

    In the use of doxorubicin and radiation for treatment of human malignant tumors in vivo, the relationship between treatment-induced apoptosis and Ki-67 labeling index was investigated. Four human tumor xenografts (ependymoblastoma, NNE; primitive neuroectodermal tumor, YKP; small cell lung carcinoma, GLS; glioblastoma, KYG) were transplanted under the skin of thigh of the nude mice (BALB/cA JcL-nu). The mice were given a single radiation dose of 1 Gy, or doxorubicin alone intraperitoneally at a dose of 8 mg/kg. After treatment, sections of tumor specimens were prepared from paraffin-embedded tissues. Hematoxylin and eosin staining, TUNEL staining, and immunohistochemical analysis of Ki-67 were performed. In NNE, apoptotic cells appeared most frequently after treatment compared with all other tumors, and the incidence of apoptosis in the radiation-treated group was much higher than in the doxorubicintreated group. As the incidence of apoptosis in NNE increased, the Ki-67 labeling index tended to decrease. In GLS and KYG, there was a low incidence of treatment-induced apoptosis, although the Ki-67 labeling index decreased transiently after treatment. In YKP, few apoptotic cells appeared and Ki-67 the labeling index was unchanged throughout the time course after treatment. Ki-67 labeling index in malignant tumors after treatment may be affected by various kinds of cell deaths and treatment methods. (author)

  7. A new mixed-backbone oligonucleotide against glucosylceramide synthase sensitizes multidrug-resistant tumors to apoptosis.

    Directory of Open Access Journals (Sweden)

    Gauri A Patwardhan

    Full Text Available Enhanced ceramide glycosylation catalyzed by glucosylceramide synthase (GCS limits therapeutic efficiencies of antineoplastic agents including doxorubicin in drug-resistant cancer cells. Aimed to determine the role of GCS in tumor response to chemotherapy, a new mixed-backbone oligonucleotide (MBO-asGCS with higher stability and efficiency has been generated to silence human GCS gene. MBO-asGCS was taken up efficiently in both drug-sensitive and drug-resistant cells, but it selectively suppressed GCS overexpression, and sensitized drug-resistant cells. MBO-asGCS increased doxorubicin sensitivity by 83-fold in human NCI/ADR-RES, and 43-fold in murine EMT6/AR1 breast cancer cells, respectively. In tumor-bearing mice, MBO-asGCS treatment dramatically inhibited the growth of multidrug-resistant NCI/ADR-RE tumors, decreasing tumor volume to 37%, as compared with scrambled control. Furthermore, MBO-asGCS sensitized multidrug-resistant tumors to chemotherapy, increasing doxorubicin efficiency greater than 2-fold. The sensitization effects of MBO-asGCS relied on the decreases of gene expression and enzyme activity of GCS, and on the increases of C(18-ceramide and of caspase-executed apoptosis. MBO-asGCS was accumulation in tumor xenografts was greater in other tissues, excepting liver and kidneys; but MBO-asGCS did not exert significant toxic effects on liver and kidneys. This study, for the first time in vivo, has demonstrated that GCS is a promising therapeutic target for cancer drug resistance, and MBO-asGCS has the potential to be developed as an antineoplastic agent.

  8. The tumor suppressor Caliban regulates DNA damage-induced apoptosis through p53-dependent and -independent activity.

    Science.gov (United States)

    Wang, Y; Wang, Z; Joshi, B H; Puri, R K; Stultz, B; Yuan, Q; Bai, Y; Zhou, P; Yuan, Z; Hursh, D A; Bi, X

    2013-08-15

    We previously identified Caliban (Clbn) as the Drosophila homolog of human Serologically defined colon cancer antigen 1 gene and demonstrated that it could function as a tumor suppressor in human non-small-cell lung cancer (NSCLC) cells, although its mode of action was unknown. Herein, we identify roles for Clbn in DNA damage response. We generate clbn knockout flies using homologous recombination and demonstrate that they have a heightened sensitivity to irradiation. We show that normal Clbn function facilitates both p53-dependent and -independent DNA damage-induced apoptosis. Clbn coordinates different apoptosis pathways, showing a two-stage upregulation following DNA damage. Clbn has proapoptotic functions, working with both caspase and the proapoptotic gene Hid. Finally, ecotopic expression of clbn(+) in NSCLC cells suppresses tumor formation in athymic nude mice. We conclude that Caliban is a regulator of DNA damage-induced apoptosis, functioning as a tumor suppressor in both p53-dependent and -independent pathways.

  9. Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis

    DEFF Research Database (Denmark)

    Zhuang, Hongqin; Jiang, Weiwei; Cheng, Wei

    2010-01-01

    oxygen species or anticancer drugs. Their elevated expressions facilitate cells to survive in stress circumstances. The HSP27 expression is enhanced in many tumor cells, implying that it is involved in tumor progression and the development of treatment resistance in various tumors, including lung cancer...... siRNA on drug sensitization of A549 cells to TRAIL treatment. The results showed that treatment of A549 cells with HSP27 siRNA down-regulated HSP27 expression but did not induce significant apoptosis. However, combination of HSP27 siRNA with TRAIL-induced significant apoptosis in TRAIL-resistant A549...... cells. In addition to inducing caspases activation and apoptosis, combined treatment with HSP27 siRNA and TRAIL also increased JNK and p53 expression and activity. Collectively, these findings provide a conclusion that siRNA targeting of the HSP27 gene specifically down-regulated HSP27 expression in A...

  10. Smad4 inhibits tumor growth by inducing apoptosis in estrogen receptor-alpha-positive breast cancer cells.

    Science.gov (United States)

    Li, Qingnan; Wu, Liyu; Oelschlager, Denise K; Wan, Mei; Stockard, Cecil R; Grizzle, William E; Wang, Ning; Chen, Huaiqing; Sun, Yi; Cao, Xu

    2005-07-22

    Estrogen is a mitogen in most estrogen receptor-alpha (ERalpha)-positive breast cancers. We have found that Smad4, a common signal transducer in the transforming growth factor-beta superfamily, acts as an ERalpha transcriptional corepressor. Here, we show that Smad4 induces apoptosis in ERalpha-positive MCF-7 breast cancer cells, but not in ERalpha-negative MDA-MB-231 cells. Smad4 induced expression of short Bim isoforms (by alternative splicing) and Bax and release of cytochrome c in ERalpha-positive cells only, and expression of these apoptotic marker genes was reduced when ERalpha small interfering RNA was introduced. Notably, Smad4 was able to induce apoptosis in MDA-231 cells with acquired ERalpha expression. Furthermore, Smad4 inhibited ERalpha-positive tumor growth by inducing apoptosis in tumor xenografts in nude mice. The sizes of tumors expressing Smad4 were only one-tenth the size of those expressing green fluorescent protein, whereas in ERalpha-negative cells, Smad4 did not reduce the tumor size. Notably, Smad4 also promoted short Bim isoform and Bax expression and release of cytochrome c only in ERalpha-positive MCF-7 tumor xenografts. Bim was sufficient for induction of apoptosis, and the short form was the most potent inducer. Our results demonstrate that Smad4 induces apoptosis by regulating Bim splicing as an initial intrinsic signal in ERalpha-positive cells. Smad4-induced apoptosis in ERalpha-positive breast cancer cells may explain the invasive nature of ERalpha-negative breast tumors, thereby providing a potential target for breast cancer intervention.

  11. A quantification model for apoptosis in mouse embryos in the early stage of fetation

    Institute of Scientific and Technical Information of China (English)

    WANG PengFei; FU JianHua; MA WanYun; CHEN DieYan; Lü DanYu; BAI WenJia

    2009-01-01

    Apoptosis is the most important inducement and modulator for embryos in the early stage of fetation, i.e. after the 8-cell stage, mostly the morula and blastula stage, to proceed to the stage of nonlinear development. Using a two-photon laser scanning microscopy (TPLSM) system, we obtained 3-dimensional (3D) fluorescent images of preimplantation mouse embryos. A model for quantification was established. The statistical results for the spatial location of apoptosis bodies in embryos was obtained following image processing, as well as investigation of the kinetics of apoptosis. It was found that most (70%) apoptosis occurred in the trophectoderm, and the departure between the centroid and geometric center of embryos had a step transition when embryos developed into the 32-cell stage,which was consistent with the theoretical prediction that the blastocele would induce a symmetry break of the distribution of cells in embryos.

  12. A quantification model for apoptosis in mouse embryos in the early stage of fetation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Apoptosis is the most important inducement and modulator for embryos in the early stage of fetation, i.e. after the 8-cell stage, mostly the morula and blastula stage, to proceed to the stage of nonlinear development. Using a two-photon laser scanning microscopy (TPLSM) system, we obtained 3-dimensional (3D) fluorescent images of preimplantation mouse embryos. A model for quantification was established. The statistical results for the spatial location of apoptosis bodies in embryos was obtained following image processing, as well as investigation of the kinetics of apoptosis. It was found that most (70%) apoptosis occurred in the trophectoderm, and the departure between the centroid and geometric center of embryos had a step transition when embryos developed into the 32-cell stage, which was consistent with the theoretical prediction that the blastocele would induce a symmetry break of the distribution of cells in embryos.

  13. Expression of Apoptosis and Inducible Nitric Oxide Synthase in Trophoblastic Cells in Early Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    夏革清; 孙永玉

    2001-01-01

    Objective To investigate the effect of apoptosis and inducible nitric oxide (Inos) on the early spontaneous abortion Methods TUNEL method was used to detect the apoptosis in trophoblast cells in early pregnancy with and without spontaneous abortion (the experiment group and the control group), while Inos was detected by both in situ hybridization and immunohis tochemistry. By computer color magic image analysis system (CMIAS), positive cell indexes were represented by D (density) and N/S (number/square) in both apoptosis and in situ hybridization, in immunohistochemistry were N/S and PU (positive unit).Results Positive cell indexes of apoptosis D and N/S were significntly higher in the experiment group (0. 48± 0. 004, 0. 045±0. 002) than that in the control group( 0. 35 +0. 06, 0. 031±0. 003. P<0. 001). D and N/S of inducible nitric oxide synthase in situ hybridization were 0. 33± 0. 028, 0. 074± 0. 001 respectively in the experiment group and 0. 13± 0. 015, 0. 019± 0. 004 respectively in the control group. N/S and PU were significantly higher in the experiment group( 0. 058± 0. 007, 11. 94± 2. 01)than that in the control group (0. 007± 0. 001, 1. 18± 0. 35, P<0. 01). There existed a positive correlation between Inos and apoptosis too.Conclution Apoptosis and Inos in trophoblasts might play an important role in early spontaneous abortion and there was a positive correlation between apoptosis and Inos.

  14. Dynamic computational model suggests that cellular citizenship is fundamental for selective tumor apoptosis.

    Directory of Open Access Journals (Sweden)

    Megan Olsen

    Full Text Available Computational models in the field of cancer research have focused primarily on estimates of biological events based on laboratory generated data. We introduce a novel in-silico technology that takes us to the next level of prediction models and facilitates innovative solutions through the mathematical system. The model's building blocks are cells defined phenotypically as normal or tumor, with biological processes translated into equations describing the life protocols of the cells in a quantitative and stochastic manner. The essentials of communication in a society composed of normal and tumor cells are explored to reveal "protocols" for selective tumor eradication. Results consistently identify "citizenship properties" among cells that are essential for the induction of healing processes in a healthy system invaded by cancer. These properties act via inter-cellular communication protocols that can be optimized to induce tumor eradication along with system recovery. Within the computational systems, the protocols universally succeed in removing a wide variety of tumors defined by proliferation rates, initial volumes, and apoptosis resistant phenotypes; they show high adaptability for biological details and allow incorporation of population heterogeneity. These protocols work as long as at least 32% of cells obey extra-cellular commands and at least 28% of cancer cells report their deaths. This low percentage implies that the protocols are resilient to the suboptimal situations often seen in biological systems. We conclude that our in-silico model is a powerful tool to investigate, to propose, and to exercise logical anti-cancer solutions. Functional results should be confirmed in a biological system and molecular findings should be loaded into the computational model for the next level of directed experiments.

  15. Polymorphisms in apoptosis and cell cycle control genes and risk of brain tumors in adults.

    Science.gov (United States)

    Rajaraman, Preetha; Wang, Sophia S; Rothman, Nathaniel; Brown, Merideth M; Black, Peter M; Fine, Howard A; Loeffler, Jay S; Selker, Robert G; Shapiro, William R; Chanock, Stephen J; Inskip, Peter D

    2007-08-01

    Despite the potential importance of the cell cycle and apoptosis pathways in brain tumor etiology, little has been published regarding brain tumor risk associated with common gene variants in these pathways. Using data from a hospital-based case-control study conducted by the National Cancer Institute between 1994 and 1998, we evaluated risk of glioma (n = 388), meningioma (n = 162), and acoustic neuroma (n = 73) with respect to 12 single nucleotide polymorphisms from 10 genes involved in apoptosis and cell cycle control: CASP8, CCND1, CCNH, CDKN1A, CDKN2A, CHEK1, CHEK2, MDM2, PTEN, and TP53. We observed significantly decreased risk of meningioma with the CASP8 Ex14-271A>T variant [odds ratio (OR)(AT), 0.8; 95% confidence interval (95% CI), 0.5-1.2; OR(AA), 0.5; 95% CI, 0.3-0.9; P(trend) = 0.03] and increased risk of meningioma with the CASP8 Ex13+51G>C variant (OR(GC), 1.4; 95% CI, 0.9-2.1; OR(CC), 3.6; 95% CI, 1.0-13.1; P(trend) = 0.04). The CT haplotype of the two CASP8 polymorphisms was associated with significantly increased risk of meningioma (OR, 1.7; 95% CI, 1.1-2.6), but was not associated with risk of glioma or acoustic neuroma. The CCND1 Ex4-1G>A variant was associated with increased risk for glioma, and the Ex8+49T>C variant of CCNH was associated with increased risk of glioma and acoustic neuroma. The MDM2 Ex12+162A>G variant was associated with significantly reduced risk of glioma. Our results suggest that common variants in the CASP8, CCND1, CCNH, and MDM2 genes may influence brain tumor risk. Future research in this area should include more detailed coverage of genes in the apoptosis/cell cycle control pathways.

  16. Progress in molecular probes of radionuclide tumor apoptosis imaging%肿瘤细胞凋亡核素显像分子探针研究进展

    Institute of Scientific and Technical Information of China (English)

    陈顺军; 程兵

    2016-01-01

    Apoptosis is one of the important indices about the early assessment of the efficacy of tumor treatment.Among molecular imaging techniques of tumor apoptosis,radionuclide imaging is the most extensively studied and the most sensitive imaging modality,which can noninvasively and dynamically detect cell apoptosis induced by treatment in vivo,especially for efficacy of cancer therapies and prognosis of malignancies.Recently,as one of the key techniques,specific molecular probes are being developed.The representative molecular probes of the radionuclide imaging for tumor apoptosis are reviewed.%测定肿瘤细胞凋亡是早期评价肿瘤疗效的指标之一,放射性核素凋亡显像是目前研究最为广泛、技术最为成熟的体内肿瘤细胞凋亡分子影像学检测技术,能在活体内动态、无创地检测抗肿瘤治疗引起的细胞凋亡,有助于肿瘤疗效的早期评判和预后分析,其中特异性分子探针技术的研究开发是放射性核素凋亡显像的关键技术之一.笔者将目前有代表性的肿瘤细胞凋亡核素显像分子探针进行了总结.

  17. Hispolon from Phellinus linteus induces apoptosis and sensitizes human cancer cells to the tumor necrosis factor-related apoptosis-inducing ligand through upregulation of death receptors.

    Science.gov (United States)

    Kim, Ji-Hun; Kim, Yu Chul; Park, Byoungduck

    2016-02-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potent anticancer agent possessing the ability to induce apoptosis in various cancer cells but not in non‑malignant cells. However, certain type of cancer cells are resistant to TRAIL‑induced apoptosis and some acquire resistance after the first treatment. So development of an agent that can reduce or avoid resistance in TRAIL‑induced apoptosis has garnered significant attention. The present study evaluated the anticancer potential of hispolon in TRAIL‑induced apoptosis and indicated hispolon can sensitize cancer cells to TRAIL. As the mechanism of action was examined, hispolon was found to activate caspase‑3, caspase‑8 and caspase‑9, while downregulating the expression of cell survival proteins such as cFLIP, Bcl‑2 and Bcl‑xL and upregulating the expression of Bax and truncated Bid. We also found hispolon induced death receptors in a non‑cell type‑specific manner. Upregulation of death receptors by hispolon was found to be p53-independent but linked to the induction of CAAT enhancer binding protein homologous protein (CHOP). Overall, hispolon was demonstrated to potentiate the apoptotic effects of TRAIL through downregulation of anti‑apoptotic proteins and upregulation of death receptors linked with CHOP and pERK elevation.

  18. Enhanced apoptosis during early neuronal differentiation in mouse ES cells with autosomal imbalance

    Institute of Scientific and Technical Information of China (English)

    Yoshiteru Kai; Teruhiko Wakayama; Mitsuo Oshimura; Chi Chiu Wang; Satoshi Kishigami; Yasuhiro Kazuki; Satoshi Abe; Masato Takiguchi; Yasuaki Shirayoshi; Toshiaki Inoue; Hisao Ito

    2009-01-01

    Although particular chromosomal syndromes are phenotypically and clinically distinct, the majority of individuals with autosomai imbalance, such as aneuploidy, manifest mental retardation. A common abnormal phenotype of Down syndrome (DS), the most prevalent autosomal aneuploidy, shows a reduction in both the number and the density of neurons in the brain. As a DS model, we have recently created chimeric mice from ES cells containing a single human chromosome 21. The mice mimicked the characteristic phenotypic features of DS, and ES cells showed a higher incidence of apoptosis during early neuronal differentiation in vitro. In this study, we examined the induction of anomalous early neural development by aneuploidy in mouse ES cells by transferring various human chromosomes or additional mouse chromosomes. Results showed an elevated incidence of apoptosis in all autosome-aneuploid clones examined during early neuronal differentiation in vitro. Further, cDNA microarray analysis revealed a common cluster of down-regulated genes, of which eight known genes are related to cell proliferation, neurite outgrowth and differentiation. Importantly, targeting of these genes by siRNA knockdown in normal mouse ES cells led to enhanced apoptosis during early neuronal differentiation. These findings strongly suggest that autosomal imbalance is associated with general neuronal loss through a common molecular mechanism for apoptosis.

  19. Tumor necrosis factor inhibitors block apoptosis of human epithelial cells of the salivary glands.

    Science.gov (United States)

    Sisto, Margherita; D'Amore, Massimo; Caprio, Simone; Mitolo, Vincenzo; Scagliusi, Pasquale; Lisi, Sabrina

    2009-08-01

    Inhibition of tumor necrosis factor-alpha (TNF-alpha) in organ-specific autoimmune disease is proving efficacious for a large number of patients. A wide array of biological agents has been designed to inhibit TNF-alpha, such as adalimumab (fully humanized) and etanercept (soluble TNF-alpha receptor fusion constructs p75 subunit). Recently, we suggested that anti-Ro and anti-La autoantibodies (Abs) isolated from patients with Sjögren's syndrome, an autoimmune rheumatic disease, are able to trigger cell death through extrinsic apoptotic mechanisms in human salivary gland epithelial cells (SGEC). We analyzed if primary human SGEC cultures, established from biopsy of labial minor salivary glands, are able to produce TNF-alpha, an inductor of the extrinsic apoptotic pathway, when treated with anti-Ro autoantibodies. A comparative study was performed to test the efficacy of adalimumab and etanercept to block TNF-alpha-mediated apoptosis. ELISA assay and RT-PCR were employed to visualize TNF-alpha production, and apoptosis was evaluated by DNA ladder and flow cytometry. We found that cell treatment with anti-Ro autoantibodies determines TNF-alpha production that reaches a maximum at 16 h and is decreased (P < 0.05) at 24 and 48 h. Adalimumab seems to be more efficacious than etanercept in blocking TNF-alpha-mediated apoptosis. The YOPRO-1 (+) and propidium iodide (-) method revealed 60% of apoptotic cells after 24 h of incubation with anti-Ro compared with 15% of apoptotic cells treated with anti-Ro plus adalimumab and 25% of apoptotic cells treated with anti-Ro plus etanercept. The antiapoptotic effect of adalimumab and etanercept was supported by inhibition of DNA laddering induced by anti-Ro Abs. These data validate the therapeutic efficacy of the anti-TNF reagents in the treatment of autoimmune disorders.

  20. Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2014-10-01

    Inhibitors of catalase (such as ascorbate, methyldopa, salicylic acid and neutralizing antibodies) synergize with modulators of nitric oxide (NO) metabolism (such as arginine, arginase inhibitor, NO synthase-inducing interferons and NO dioxygenase inhibitors) in the singlet oxygen-mediated inactivation of tumor cell protective catalase. This is followed by reactive oxygen species (ROS)-dependent apoptosis induction. TGF-beta, NADPH oxidase-1, NO synthase, dual oxidase-1 and caspase-9 are characterized as essential catalysts in this process. The FAS receptor and caspase-8 are required for amplification of ROS signaling triggered by individual compounds, but are dispensable when the synergistic effect is established. Our findings explain the antitumor effects of catalase inhibitors and of compounds that target NO metabolism, as well as their synergy. These data may have an impact on epidemiological studies related to secondary plant compounds and open new perspectives for the establishment of novel antitumor drugs and for the improvement of established chemotherapeutics.

  1. Programmed activation of cancer cell apoptosis: A tumor-targeted phototherapeutic topoisomerase I inhibitor

    Science.gov (United States)

    Shin, Weon Sup; Han, Jiyou; Kumar, Rajesh; Lee, Gyung Gyu; Sessler, Jonathan L.; Kim, Jong-Hoon; Kim, Jong Seung

    2016-07-01

    We report here a tumor-targeting masked phototherapeutic agent 1 (PT-1). This system contains SN-38—a prodrug of the topoisomerase I inhibitor irinotecan. Topoisomerase I is a vital enzyme that controls DNA topology during replication, transcription, and recombination. An elevated level of topoisomerase I is found in many carcinomas, making it an attractive target for the development of effective anticancer drugs. In addition, PT-1 contains both a photo-triggered moiety (nitrovanillin) and a cancer targeting unit (biotin). Upon light activation in cancer cells, PT-1 interferes with DNA re-ligation, diminishes the expression of topoisomerase I, and enhances the expression of inter alia mitochondrial apoptotic genes, death receptors, and caspase enzymes, inducing DNA damage and eventually leading to apoptosis. In vitro and in vivo studies showed significant inhibition of cancer growth and the hybrid system PT-1 thus shows promise as a programmed photo-therapeutic (“phototheranostic”).

  2. Cytotoxicity, apoptosis induction, and mitotic arrest by a novel podophyllotoxin glucoside, 4DPG, in tumor cells

    Institute of Scientific and Technical Information of China (English)

    Yi-lin QI; Fan LIAO; Chang-qi ZHAO; Yong-da LIN; Ming-xue ZUO

    2005-01-01

    Aim: To define the in vitro cytotoxic activities of 4-demethyl-picropodophyllotoxin 7'-O-β-D-glucopyranoside (4DPG), a new podophyllotoxin glucoside. Methods:Antiproliferation activity was measured in several tumor cell lines by using the microculture tetrazolium MTT assays. Cell cycle distribution was analyzed using flow cytometry and mitosis index assays. Furthermore, transmission electron microscopy, TUNEL, DNA agarose electrophoresis, and activated caspase-3 were used to analyze the induction of apoptotic cell death. Moreover, intracellular changes in the cytoskeleton were detected using immunocytochemistry. Results:4DPG effectively inhibited the proliferation of cancer cells (HeLa, CNE, SH-SY5Y,and K562 cell lines). For the K562 cell line, the antiproliferation effect of 4DPG was much more potent than that of etoposide (IC50 value: 7.79× 10-9 mol/L for 4DPG vs 2.23× 10-5 mol/L for etoposide). Further, 4DPG blocked the cell cycle in the mitotic phase. The induction of apoptosis and elevated levels of activated caspase-3were confirmed in cells treated with 4DPG. The microtubule skeleton of HeLa cells was disrupted immediately after treatment with 4DPG. Conclusion: The cytotoxicity of 4DPG is due to its inhibition of the microtubule assembly of cancer cells at a low concentration, thus inducing apoptosis. These properties qualify 4DPG to be a potential antitumor drug.

  3. Early apoptosis of monocytes induced by Helicobacter pylori infection through multiple pathways.

    Science.gov (United States)

    Zhang, Ying; Sun, Hui; Zhao, Huilin; Chen, Xingxing; Li, Jiaojiao; Li, Boqing

    2017-08-01

    Only a small percentage of people infected with Helicobacter pylori (H. pylori) will develop overt chronic gastric diseases. To understand the pathological mechanism, the action of H. pylori on monocyte apoptosis was detected. H. pylori co-culturing with peripheral blood monocytes, THP-1 or U937 cells result in early apoptosis at 6, 12, and 24 h after infection. The phosphorylated Bad and JNK were increased, and Bcl-2 was declined at 6, 12, and 24 h in peripheral blood monocytes after H. pylori infection. The phosphorylated Akt was augmented at 6 and 12 h post-infection. A slow apoptotic response was induced by H. pylori via Bad and Bcl-2 regulators, activated caspase-8 and caspase-9, and JNK at 24 h in THP-1 cells. Meanwhile, only Bad and JNK were involved in regulating U937 cells apoptosis at 24 h after infection. These results supported a novel mechanism of H. pylori escaping from monocytes by upregulation of early apoptosis and inhibition of late apoptosis. The differences among the three cells may reveal why H. pylori-derived disease occurs in relatively few people and provide a pathological mechanism whereby a treatment for H. pylori-derived disease may be developed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sophoridinol derivative 05D induces tumor cells apoptosis by topoisomerase1-mediated DNA breakage

    Directory of Open Access Journals (Sweden)

    Zhao W

    2016-05-01

    Full Text Available Wuli Zhao, Caixia Zhang, Chongwen Bi, Cheng Ye, Danqing Song, Xiujun Liu, Rongguang Shao Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China Abstract: Sophoridine is a quinolizidine natural product of Sophora alopecuroides and has been applied for treatment of malignant trophoblastic tumors. Although characterized by low toxicity, the limited-spectrum antitumor activity hinders its further applications. 05D, a derivative of sophoridine, exhibits a better anticancer activity on diverse cancer cells, including solid tumors, and hematologic malignancy. It could inhibit topoisomerase 1 (top1 activity by stabilizing DNA–top1 complex and induce mitochondria-mediated apoptosis by promoting DNA single- and double-strand breakage mediated by top1. Also, 05D induced HCT116 cells arrest at G1 phase by inactivating CDK2/CDK4–Rb–E2F and cyclinD1–CDK4–p21 checkpoint signal pathways. 05D suppressed the ataxia telangiectasia mutated (ATM and ATM and Rad3-related (ATR activation and decreased 53BP level, which contributed to DNA damage repair, suggesting that the novel compound 05D might be helpful to improve the antitumor activity of DNA damaging agent by repressing ATM and ATR activation and 53BP level. In addition, the priorities in molecular traits and druggability, such as a simple structure and formulation for oral administration, further prove 05D to be a promising targeting topoisomerase agent. Keywords: topoisomerase inhibitor, topoisomerase 1, DNA breakage, sophoridinol, anticancer, apoptosis, cell cycle

  5. MicroRNA-383 regulates the apoptosis of tumor cells through targeting Gadd45g.

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are a class of small non-coding single-stranded RNA molecules that inhibit gene expression at post-transcriptional level. Gadd45g (growth arrest and DNA-damage-inducible 45 gamma is a stress-response protein, which has been implicated in several biological processes, including DNA repair, the cell cycle and cell differentiation. RESULTS: In this work, we found that miR-383 is a negative regulator of Gadd45g. Forced expression of miR-383 decreased the expression of Gadd45g through binding to the 3' untranslated region (3'-UTR, whereas inhibition of miR-383 increased Gadd45g expression. The presence of miR-383 increased the cellular sensitivity to DNA damage in breast cancer cells, which was rescued by ectopic expression of Gadd45g without the 3'-UTR. miR-383 also regulates the expression of Gadd45g in embryonic stem (ES cells, but not their apoptosis under genotoxic stress. miR-383 was further showed to negatively regulate ES cell differentiation via targeting Gadd45g, which subsequently modulates the pluripotency-associated genes. Taken together, our study demonstrates that miR-383 is a negative regulator of Gadd45g in both tumor cells and ES cells, however, has distinct function in regulating cell apoptosis. miR-383 may be used as antineoplastic agents in cancer chemotherapy. CONCLUSION: We demonstrate for the first time that miR-383 can specifically regulates the expression of Gadd45g by directly targeting to the 3-UTR region of Gadd45g mRNA, a regulatory process conserved in human tumor cells and mouse embryonic stem cells. These two compotents can be potentially used as antineoplastic agents in cancer chemotherapy.

  6. Tumor cell apoptosis induced by nanoparticle conjugate in combination with radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang Li; Yang Wensha; Read, Paul; Larner, James; Sheng Ke, E-mail: Ks2mc@virginia.edu [Department of Radiation Oncology, University of Virginia (United States)

    2010-11-26

    Semiconductor nanoparticles conjugated to photosensitizers have been shown to increase tumor cell death with ionizing radiation but the mechanism, particularly the role of photodynamic therapy in the process, was unknown. We used a molecular probe to measure production of {sup 1}O{sub 2} to quantify the component of photodynamic cell-killing in an in vitro system. The intracellular distribution of the nanoparticle conjugate (NC) was determined by the co-localization of nanoparticles and the lysotracker. Induction of apoptosis was measured by the TUNEL assay and western blot analysis of the cleaved caspase-3. As a result, dose-dependent {sup 1}O{sub 2} production was observed with 48 nm NC after irradiating with 6 MV x-rays. A high geometrical coincidence between the fluorescence emission of the nanoparticle and lysotracker was observed using confocal microscopy. Finally, apoptosis, as indicated by the TUNEL stain and cleavage of the caspase-3, was observed in cells treated by both the NC and 6 Gy of radiation but not in cells treated with radiation alone. In conclusion, the cell death induced by the NC in combination with radiation is consistent with a supra-additive effect to radiation-or NC-alone-killing and is mediated by an NC-induced photodynamic therapy mechanism, which is distinctly different from that for radiation-killing alone. By providing a second distinct cell-killing mechanism, this nanoparticle conjugate has great promise as a targeted physical radiosensitizer aimed at overcoming radioresistant tumor clonogens or/and reducing normal tissue toxicity by using a lower ionizing radiation dose.

  7. Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors.

    Science.gov (United States)

    Mafuvadze, Benford; Liang, Yayun; Besch-Williford, Cynthia; Zhang, Xu; Hyder, Salman M

    2012-08-01

    Recent clinical and epidemiological evidence shows that hormone replacement therapy (HRT) containing both estrogen and progestin increases the risk of primary and metastatic breast cancer in post-menopausal women while HRT containing only estrogen does not. We and others previously showed that progestins promote the growth of human breast cancer cells in vitro and in vivo. In this study, we sought to determine whether apigenin, a low molecular weight anti-carcinogenic flavonoid, inhibits the growth of aggressive Her2/neu-positive BT-474 xenograft tumors in nude mice exposed to medroxyprogesterone acetate (MPA), the most commonly used progestin in the USA. Our data clearly show that apigenin (50 mg/kg) inhibits progression and development of these xenograft tumors by inducing apoptosis, inhibiting cell proliferation, and reducing expression of Her2/neu. Moreover, apigenin reduced levels of vascular endothelial growth factor (VEGF) without altering blood vessel density, indicating that continued expression of VEGF may be required to promote tumor cell survival and maintain blood flow. While previous studies showed that MPA induces receptor activator of nuclear factor kappa-B ligand (RANKL) expression in rodent mammary gland, MPA reduced levels of RANKL in human tumor xenografts. RANKL levels remained suppressed in the presence of apigenin. Exposure of BT-474 cells to MPA in vitro also resulted in lower levels of RANKL; an effect that was independent of progesterone receptors since it occurred both in the presence and absence of the antiprogestin RU-486. In contrast to our in vivo observations, apigenin protected against MPA-dependent RANKL loss in vitro, suggesting that MPA and apigenin modulate RANKL levels differently in breast cancer cells in vivo and in vitro. These preclinical findings suggest that apigenin has potential as an agent for the treatment of progestin-dependent breast disease.

  8. Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Elangovan, Indira; Thirugnanam, Sivasakthivel; Chen, Aoshuang; Zheng, Guoxing [Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL 61107 (United States); Bosland, Maarten C.; Kajdacsy-Balla, Andre [Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Gnanasekar, Munirathinam, E-mail: mgnanas@uic.edu [Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL 61107 (United States)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Targeting RAGE by RNAi induces apoptosis in prostate cancer cells. Black-Right-Pointing-Pointer Silencing RAGE expression abrogates rHMGB1 mediated cell proliferation. Black-Right-Pointing-Pointer Down regulation of RAGE by RNAi inhibits PSA secretion of prostate cancer cells. Black-Right-Pointing-Pointer Knock down of RAGE abrogates prostate tumor growth in vivo. Black-Right-Pointing-Pointer Disruption of RAGE expression in prostate tumor activates death receptors. -- Abstract: Expression of receptor for advanced glycation end products (RAGE) plays a key role in the progression of prostate cancer. However, the therapeutic potential of targeting RAGE expression in prostate cancer is not yet evaluated. Therefore in this study, we have investigated the effects of silencing the expression of RAGE by RNAi approach both in vitro and in vivo. The results of this study showed that down regulation of RAGE expression by RNAi inhibited the cell proliferation of androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells. Furthermore, targeting RAGE expression resulted in apoptotic elimination of these prostate cancer cells by activation of caspase-8 and caspase-3 death signaling. Of note, the levels of prostate specific antigen (PSA) were also reduced in LNCaP cells transfected with RAGE RNAi constructs. Importantly, the RAGE RNAi constructs when administered in nude mice bearing prostate tumors, inhibited the tumor growth by targeting the expression of RAGE, and its physiological ligand, HMGB1 and by up regulating death receptors DR4 and DR5 expression. Collectively, the results of this study for the first time show that targeting RAGE by RNAi may be a promising alternative therapeutic strategy for treating prostate cancer.

  9. The apoptosis linked gene ALG-2 is dysregulated in tumors of various origin and contributes to cancer cell viability

    DEFF Research Database (Denmark)

    la Cour, Jonas; Høj, Berit Rahbek; Mollerup, Jens

    2008-01-01

    The apoptosis linked gene-2 (ALG-2), discovered as a proapoptotic calcium binding protein, has recently been found upregulated in lung cancer tissue indicating that this protein may play a role in the pathology of cancer cells and/or may be a tumor marker. Using immunohistochemistry on tissue mic...

  10. Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain

    Directory of Open Access Journals (Sweden)

    Chiles Thomas C

    2008-05-01

    Full Text Available Abstract Background AMP-activated protein kinase (AMPK is a known physiological cellular energy sensor and becomes phosphorylated at Thr-172 in response to changes in cellular ATP levels. Activated AMPK acts as either an inducer or suppressor of apoptosis depending on the severity of energy stress and the presence or absence of certain functional tumor suppressor genes. Results Here we show that energy stress differentially affects AMPK phosphorylation and cell-death in brain tumor tissue and in tissue from contra-lateral normal brain. We compared TSC2 deficient CT-2A mouse astrocytoma cells with syngeneic normal astrocytes that were grown under identical condition in vitro. Energy stress induced by glucose withdrawal or addition of 2-deoxyglucose caused more ATP depletion, AMPK phosphorylation and apoptosis in CT-2A cells than in the normal astrocytes. Under normal energy conditions pharmacological stimulation of AMPK caused apoptosis in CT-2A cells but not in astrocytes. TSC2 siRNA treated astrocytes are hypersensitive to apoptosis induced by energy stress compared to control cells. AMPK phosphorylation and apoptosis were also greater in the CT-2A tumor tissue than in the normal brain tissue following implementation of dietary energy restriction. Inefficient mTOR and TSC2 signaling, downstream of AMPK, is responsible for CT-2A cell-death, while functional LKB1 may protect normal brain cells under energy stress. Conclusion Together these data demonstrates that AMPK phosphorylation induces apoptosis in mouse astrocytoma but may protect normal brain cells from apoptosis under similar energy stress condition. Therefore, using activator of AMPK along with glycolysis inhibitor could be a potential therapeutic approach for TSC2 deficient human malignant astrocytoma.

  11. Near-criticality underlies the behavior of early tumor growth

    Science.gov (United States)

    Remy, Guillaume; Cluzel, Philippe

    2016-04-01

    The controlling factors that underlie the growth of tumors have often been hard to identify because of the presence in this system of a large number of intracellular biochemical parameters. Here, we propose a simplifying framework to identify the key physical parameters that govern the early growth of tumors. We model growth by means of branching processes where cells of different types can divide and differentiate. First, using this process that has only one controlling parameter, we study a one cell type model and compute the probability for tumor survival and the time of tumor extinction. Second, we show that when cell death and cell division are perfectly balanced, stochastic effects dominate the growth dynamics and the system exhibits a near-critical behavior that resembles a second-order phase transition. We show, in this near-critical regime, that the time interval before tumor extinction is power-law distributed. Finally, we apply this branching formalism to infer, from experimental growth data, the number of different cell types present in the observed tumor.

  12. Changes in fractal dimension and lacunarity as early markers of UV-induced apoptosis.

    Science.gov (United States)

    Pantic, Igor; Harhaji-Trajkovic, Ljubica; Pantovic, Aleksandar; Milosevic, Nebojsa T; Trajkovic, Vladimir

    2012-06-21

    The aim of our study was to employ fractal analysis for evaluation of ultrastructural changes during early stages of apoptosis. Apoptosis was induced in U251 human glioma cell line by exposure to UVB light. The cells were visualized by optical phase-contrast microscopy and photographed before the UV treatment, immediately after the treatment, as well as at 30 min intervals during 5h observation period. For each of the 32 cells analyzed, cellular and nuclear fractal dimension, as well as nuclear lacunarity, were determined at each time point. Our data demonstrate that cellular ultrastructural complexity determined by fractal dimension and lacunarity significantly decreases after the UV irradiation, with the nuclear lacunarity being a particularly sensitive parameter in detecting early apoptosis. Importantly, fractal analysis was able to detect cellular apoptotic changes earlier than conventional flow cytometric analysis of phosphatidylserine exposure, DNA fragmentation and cell membrane permeabilization. These results indicate that fractal analysis might be a powerful and affordable method for non-invasive early identification of apoptosis in cell cultures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Quercetin induces tumor-selective apoptosis through down-regulation of Mcl-1 and activation of Bax

    Science.gov (United States)

    Cheng, Senping; Gao, Ning; Zhang, Zhuo; Chen, Gang; Budhraja, Amit; Ke, Zunji; Son, Young-ok; Wang, Xin; Luo, Jia; Shi, Xianglin

    2010-01-01

    Purpose To investigate the in vivo antitumor efficacy of querctin in U937 xenografts and the functional role of Mcl-1 and Bax in quercetin-induced apoptosis in human leukemia cells. Experimental Design Leukemia cells were treated with quercetin, after which apoptosis, Mcl-1 expression, and Bax activation and translocation were evaluated. The efficacy of quercein, as well as Mcl-1 expression and Bax activation were investigated in xenografts of leukemia cells. Results Administration of quercetin caused pronounced apoptosis in both transformed and primary leukemia cells, but not in normal blood peripheral mononuclear cells. Quercetin-induced apoptosis was accompanied by Mcl-1 down-regulation and Bax conformational change and mitochondrial translocation which triggered cytochrome c release. Knockdown of Bax by siRNA reversed querctin-induced apoptosis. Knockout of Bax abrogated the activation of caspase and apoptosis. Ectopic expression of Mcl-1 attenuated quercetin-mediated Bax activation, translocation and cell death. Conversely, interruption of Mcl-1 by siRNA enhanced Bax activation and translocation, as well as lethality induced by quercetin. However, the absence of Bax had no effect on quercetin-mediated Mcl-1 down-regulation. Furthermore, in vivo administration of quercetin attenuated tumor growth in U937 xenografts. The TUNEL positive apoptotic cells in tumor sections increased in quercetin-treated mice as compared with controls. Mcl-1 down-regulation and Bax activation were observed in xenografts. Conclusions These data suggest that quercetin may be useful for the treatment of leukemia by preferentially inducing apoptosis in leukemia versus normal hematopoietic cells, through a process involving Mcl-1 down-regulation, which in turn potentiates Bax activation and mitochondrial translocation, culminating in apoptosis. PMID:21138867

  14. Significance of Micrometastases: Circulating Tumor Cells and Disseminated Tumor Cells in Early Breast Cancer

    Directory of Open Access Journals (Sweden)

    Catherine Oakman

    2010-06-01

    Full Text Available Adjuvant systemic therapy targets minimal residual disease. Our current clinical approach in the adjuvant setting is to presume, rather than confirm, the presence of minimal residual disease. Based on assessment of the primary tumor, we estimate an individual’s recurrence risk. Subsequent treatment decisions are based on characteristics of the primary tumor, with the presumption of consistent biology and treatment sensitivity between micrometastases and the primary lesion. An alternative approach is to identify micrometastatic disease. Detection of disseminated tumor cells (DTC in the bone marrow and circulating tumor cells (CTC from peripheral blood collection may offer quantification and biocharacterization of residual disease. This paper will review the prognostic and predictive potential of micrometastatic disease in early breast cancer.

  15. Up-regulation of clusterin during phthalocyanine 4 photodynamic therapy-mediated apoptosis of tumor cells and ablation of mouse skin tumors.

    Science.gov (United States)

    Kalka, K; Ahmad, N; Criswell, T; Boothman, D; Mukhtar, H

    2000-11-01

    Photodynamic therapy (PDT) using the silicon phthalocyanine photo-sensitizer Pc 4 is an oxidative stress associated with the induction of apoptosis in many cancer cells in vitro and in vivo. The mechanisms of PDT-induced tumor cell killing leading to apoptosis are incompletely understood. Clusterin, a widely expressed glycoprotein, is induced in tissues regressing as a consequence of oxidative stress-mediated cell death. Treatment of apoptosis-sensitive human epidermoid carcinoma cells (A431) with PDT resulted in significant up-regulation of clusterin with a maximum at 12 h after treatment, whereas clusterin levels in Pc 4-PDT-treated, apoptosis-resistant, radiation-induced fibrosarcoma (RIF-1) cells remained unchanged. The i.v. administration of Pc 4 to mice bearing chemically or UVB radiation-induced skin papillomas, followed by light application, led to increased clusterin protein expression, peaking 24 h after the treatment, when tumor regression was apparently visible. These data, for the first time, demonstrate the involvement of clusterin in PDT-mediated cell death and during tumor regression. This may have relevance in improving the efficacy of PDT using pharmacological inducers of clusterin.

  16. Nanoparticle Delivery of Artesunate Enhances the Anti-tumor Efficiency by Activating Mitochondria-Mediated Cell Apoptosis

    Science.gov (United States)

    Liu, Rui; Yu, Xiwei; Su, Chang; Shi, Yijie; Zhao, Liang

    2017-06-01

    Artemisinin and its derivatives were considered to exert a broad spectrum of anti-cancer activities, and they induced significant anti-cancer effects in tumor cells. Artemisinin and its derivatives could be absorbed quickly, and they were widely distributed, selectively killing tumor cells. Since low concentrations of artesunate primarily depended on oncosis to induce cell death in tumor cells, its anti-tumor effects were undesirable and limited. To obtain better anti-tumor effects, in this study, we took advantage of a new nanotechnology to design novel artesunate-loaded bovine serum albumin nanoparticles to achieve the mitochondrial accumulation of artesunate and induce mitochondrial-mediated apoptosis. The results showed that when compared with free artesunate's reliance on oncotic death, artesunate-loaded bovine serum albumin nanoparticles showed higher cytotoxicity and their significant apoptotic effects were induced through the distribution of artesunate in the mitochondria. This finding indicated that artesunate-loaded bovine serum albumin nanoparticles damaged the mitochondrial integrity and activated mitochondrial-mediated cell apoptosis by upregulating apoptosis-related proteins and facilitating the rapid release of cytochrome C.

  17. Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    Full Text Available Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.

  18. Evodiamine induces tumor cell death through different pathways: apoptosis and necrosis

    Institute of Scientific and Technical Information of China (English)

    YingZHANG; Li-junWU; Shin-ichiTASHIRO; SatoshiONODERA; TakashiIKEJIMA

    2004-01-01

    AIM: To study the different death pathways in human cervical cancer HeLa and melanoma A375-S2 cells initiated by evodiamine. METHODS: Viability of evodiamine-induced HeLa and A375-S2 cells was measured by MTT assay. Apoptotic cells with condensed or fragmented nuclei were visualized by Hoechst 33258 staining. Nucleosomal DNA fragmentation was assayed by agarose gel electrophoresis. Proportion of cell death through apoptotic and necrotic pathways was determined by LDH activity-based cytotoxicity assays. Cell cycle distribution was observed by flow cytometry. RESULTS: Evodiamine induced HeLa and A375-S2 cell death dose- and time-dependently.Caspase-3 and -8 were activated in apoptosis induced by evodiamine 15 μmol/L. However, over 24- h incubation of A375-S2 cells, evodiamine 15 μmol/L initiated necrosis related to p38 and ERK (extracellular signal-regulated kinases)activities. Evodiamine-induced HeLa cell death was preceded by an accumulation of cells at the G2/M phase of the cell cycle, but there was no significant effect of evodiamine on A375-S2 cell cycle. CONCLUSION: Evodiamineinduces caspase-3,8-dependent apoptosis in HeLa cells which is related to G2/M arrest of the cell cycle. On the other hand, in A375-S2 cells, evodiamine initiates caspase-3,8-mediated apoptosis at early stages and the induction of MAPK-mediated necrosis at later stages of cell culture.

  19. Verticillin A Inhibits Leiomyosarcoma and Malignant Peripheral Nerve Sheath Tumor Growth via Induction of Apoptosis

    Science.gov (United States)

    Zewdu, A; Lopez, G; Braggio, D; Kenny, C; Constantino, D; Bid, HK; Batte, K; Iwenofu, OH; Oberlies, NH; Pearce, CJ; Strohecker, AM; Lev, D; Pollock, RE

    2017-01-01

    Objective The heterogeneity of soft tissue sarcoma (STS) represents a major challenge for the development of effective therapeutics. Comprised of over 50 different histology subtypes of various etiologies, STS subsets are further characterized as either karyotypically simple or complex. Due to the number of genetic anomalies associated with genetically complex STS, development of therapies demonstrating potency against this STS cluster is especially challenging and yet greatly needed. Verticillin A is a small molecule natural product with demonstrated anticancer activity; however, the efficacy of this agent has never been evaluated in STS. Therefore, the goal of this study was to explore verticillin A as a potential STS therapeutic. Methods We performed survival (MTS) and clonogenic analyses to measure the impact of this agent on the viability and colony formation capability of karyotypically complex STS cell lines: malignant peripheral nerve sheath tumor (MPNST) and leiomyosarcoma (LMS). The in vitro effects of verticillin A on apoptosis were investigated through annexin V/PI flow cytometry analysis and by measuring fluorescently-labeled cleaved caspase 3/7 activity. The impact on cell cycle progression was assessed via cytometric measurement of propidium iodide intercalation. In vivo studies were performed using MPNST xenograft models. Tumors were processed and analyzed using immunohistochemistry (IHC) for verticillin A effects on growth (Ki67) and apoptosis (cleaved caspase 3). Results Treatment with verticillin A resulted in decreased STS growth and an increase in apoptotic levels after 24 h. 100 nM verticillin A induced significant cellular growth abrogation after 24 h (96.7, 88.7, 72.7, 57, and 39.7% reduction in LMS1, S462, ST88, SKLMS1, and MPNST724, respectively). We observed no arrest in cell cycle, elevated annexin, and a nearly two-fold increase in cleaved caspase 3/7 activity in all MPNST and LMS cell lines. Control normal human Schwann (HSC) and

  20. A novel benzothiazole derivative YLT322 induces apoptosis via the mitochondrial apoptosis pathway in vitro with anti-tumor activity in solid malignancies.

    Science.gov (United States)

    Xuejiao, Song; Yong, Xia; Ningyu, Wang; Lidan, Zhang; Xuanhong, Shi; Youzhi, Xu; Tinghong, Ye; Yaojie, Shi; Yongxia, Zhu; Luoting, Yu

    2013-01-01

    Benzothiazole derivatives are known for various biological activities, and their potency in cancer therapy has received considerable attention in recent years. YLT322, a novel synthesized benzothiazole derivative, exhibits potent anti-tumor activity via inducing apoptosis both in vitro and in vivo. In this study, we found that YLT322 showed growth inhibition against a broad spectrum of human cancer cells and induced apoptosis of HepG2 cells in a dose- and time-dependent manner. The occurrence of its apoptosis was associated with activation of caspases-3 and -9, but not caspase-8. YLT322 increased the expression of Bax, decreased the expression of Bcl-2, and induced the release of cytochrome c which activates the mitochondrial apoptotic pathway. The down-regulation of phosphorylated p42/44 MAPK and phosphorylated Akt was also observed. Moreover, YLT322 suppressed the growth of established tumors in xenograft models in mice without obvious side effects. Histological and immunohistochemical analyses revealed an increase in TUNEL and caspase-3-positive cells and a decrease in Ki67-positive cells upon YLT322. These results suggest that YLT322 may be a potential candidate for cancer therapy.

  1. Cyclophosphamide Induces an Early Wave of Acrolein-Independent Apoptosis in the Urothelium.

    Science.gov (United States)

    Hughes, Francis M; Corn, Alexa G; Nimmich, Andrew R; Pratt-Thomas, Jeffery D; Purves, J Todd

    2013-08-01

    Hemorrhagic cystitis (HC or bladder inflammation) affects a significant number of patients undergoing cyclophosphamide (CP) chemotherapy despite treatment with 2-mercaptoethane sulfonate (Mesna) to inactivate the metabolite acrolein. While the mechanism is unknown, there is clearly acrolein-independent damage to the urothelium. In this study we have explored the induction of apoptosis in the urothelium as a marker of damage and the mechanism underlying the acrolein-independent apoptosis. Apoptosis in urothelium (caspase-3/7 activity and Poly (ADP-ribosyl) polymerase (PARP) cleavage) was measured following CP administration (80 mg/kg). Sodium 2-mercaptoethane sulfonate (Mesna) was used to mask acrolein's effect. An IL-1β receptor antagonist and a cell-permeable caspase-1 inhibitor were used to assess the involvement of IL-1β and caspase-1, respectively. Two waves of apoptosis were detected following CP administration, one peaking at 2 h and a second at 48 h. The first wave was independent of acrolein. Caspase-1 was also active at 2 h and activation of caspase-3/7 was blocked by a caspase-1 inhibitor but not an IL-1β receptor antagonist suggesting the direct activation of caspase-3/7 by caspase-1 without the need for IL-1β as an intermediate. Our results indicate that CP initiates an early, acrolein-independent wave of apoptosis that results from direct cleavage of caspase-3/7 by caspase-1.

  2. TCDD promotes lung tumors via attenuation of apoptosis through activation of the Akt and ERK1/2 signaling pathways.

    Directory of Open Access Journals (Sweden)

    Rong-Jane Chen

    Full Text Available 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD is a multiple-site, multiple-species carcinogen that induces cancer in multiple organs. The molecular mechanisms underlying TCDD-induced lung tumorigenesis remain unclear. In the present study, a two-stage lung tumorigenesis model was established by administrating a single low dose of 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK combined with TCDD to female A/J mice. The results indicated that TCDD combined with low-dose NNK has a significant tumor-promoting effect compared with TCDD or low-dose NNK alone. Resistance to apoptosis is a hallmark of cancer and is thought to be one of the tumor-promoting mechanisms regulated by TCDD. We performed an additional series of experiments in the normal human bronchial epithelial cell line Beas2B cells, in which TCDD was combined with the apoptosis inducer staurosporine. Our in vitro results confirmed that TCDD could rescue cells from apoptosis induced by staurosporine. The inhibition of apoptosis is likely mediated by the activation of the Akt and ERK1/2 pathways, as determined by the effectiveness of pathway-specific inhibitors in abrogating the anti-apoptotic activity of TCDD. In conclusion, we demonstrated that TCDD promoted NNK-induced lung tumorigenesis and revealed that TCDD inhibits staurosporine-induced apoptosis, at least in part, through the Akt and ERK1/2 signaling pathways.

  3. TCDD promotes lung tumors via attenuation of apoptosis through activation of the Akt and ERK1/2 signaling pathways.

    Science.gov (United States)

    Chen, Rong-Jane; Siao, Shih-He; Hsu, Chung-Huei; Chang, Chu-Yung; Chang, Louis W; Wu, Chih-Hsiung; Lin, Pinpin; Wang, Ying-Jan

    2014-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a multiple-site, multiple-species carcinogen that induces cancer in multiple organs. The molecular mechanisms underlying TCDD-induced lung tumorigenesis remain unclear. In the present study, a two-stage lung tumorigenesis model was established by administrating a single low dose of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) combined with TCDD to female A/J mice. The results indicated that TCDD combined with low-dose NNK has a significant tumor-promoting effect compared with TCDD or low-dose NNK alone. Resistance to apoptosis is a hallmark of cancer and is thought to be one of the tumor-promoting mechanisms regulated by TCDD. We performed an additional series of experiments in the normal human bronchial epithelial cell line Beas2B cells, in which TCDD was combined with the apoptosis inducer staurosporine. Our in vitro results confirmed that TCDD could rescue cells from apoptosis induced by staurosporine. The inhibition of apoptosis is likely mediated by the activation of the Akt and ERK1/2 pathways, as determined by the effectiveness of pathway-specific inhibitors in abrogating the anti-apoptotic activity of TCDD. In conclusion, we demonstrated that TCDD promoted NNK-induced lung tumorigenesis and revealed that TCDD inhibits staurosporine-induced apoptosis, at least in part, through the Akt and ERK1/2 signaling pathways.

  4. CIDE-3 interacts with lipopolysaccharide-induced tumor necrosis factor, and overexpression increases apoptosis in hepatocellular carcinoma.

    Science.gov (United States)

    Min, Jie; Zhang, Wei; Gu, Yu; Hong, Liu; Yao, Li; Li, Fanfan; Zhao, Daqing; Feng, Yingming; Zhang, Helong; Li, Qing

    2011-12-01

    Cell death-inducing DFF45-like effector-3 (CIDE-3) is a novel member of an apoptosis-inducing protein family, but its function is unknown. CIDE-3 shows a different distribution pattern in hepatocellular carcinoma (HCC) tissues and normal adjacent tissues. Therefore, this work tested the hypothesis that CIDE-3 induces apoptosis in HCC cells, inhibiting oncogenesis and tumor development. We used immunohistochemistry to evaluate the expression of CIDE-3 in 82 HCC samples and 51 adjacent liver tissues. Overexpression of CIDE-3 induced apoptosis, as detected by flow cytometry, in the HCC cell line SMMC-7721, which had undetectable levels of CIDE-3 in the absence of CIDE-3 overexpression. A yeast two-hybrid system was employed to screen for proteins that interact with CIDE-3. The expression of CIDE-3 was decreased in HCC tissue, compared to adjacent normal tissues, and CIDE-3 expression and HCC differentiation were positively correlated. CIDE-3 expression levels were lower in poorly differentiated HCC tissue than in well-differentiated HCC tissue. Overexpressed CIDE-3 inhibited proliferation and induced apoptosis in HCC cells. We found that lipopolysaccharide-induced tumor necrosis factor (LITAF) interacted with CIDE-3 in hepatic cells. This is the first demonstrated interaction between CIDE-3 and LITAF, and the first report that CIDE-3 induces apoptosis in hepatocellular carcinoma.

  5. Induction of apoptosis and inhibition of proliferation in human tumor cells treated with extracts of Uncaria tomentosa.

    Science.gov (United States)

    Sheng, Y; Pero, R W; Amiri, A; Bryngelsson, C

    1998-01-01

    Growth inhibitory activities of novel water extracts of Uncaria tomentosa (C-Med-100) were examined in vitro using two human leukemic cell lines (K562 and HL60) and one human EBV-transformed B lymphoma cell line (Raji). The proliferative capacities of HL60 and Raji cells were strongly suppressed in the presence of the C-Med-100 while K562 was more resistant to the inhibition. Furthermore, the antiproliferative effect was confirmed using the clonogenic assay, which showed a very close correlation between C-Med-100 concentration and the surviving fraction. The suppressive effect of Uncaria tomentosa extracts on tumor cell growth appears to be mediated through induction of apoptosis which was demonstrated by characteristic morphological changes, internucleosomal DNA fragmentation after agarose gel electrophoresis and DNA fragmentation quantification. C-Med-100 induced a delayed type of apoptosis becoming most dose-dependently prominent after 48 hours of exposure. Both DNA single and double strand breaks were increased 24 hours after C-Med-100 treatment, which suggested a well-established linkage between the DNA damage and apoptosis. The induction of DNA strand breaks coupled to apoptosis may explain the growth inhibition of the tumor cells by Uncaria tomentosa extracts. These results provide the first direct evidence for the antitumor properties of Uncaria tomentosa extracts to be via a mechanism of selective induction of apoptosis.

  6. KANK1 inhibits cell growth by inducing apoptosis though regulating CXXC5 in human malignant peripheral nerve sheath tumors

    Science.gov (United States)

    Cui, Zhibin; Shen, Yingjia; Chen, Kenny H.; Mittal, Suresh K.; Yang, Jer-Yen; Zhang, GuangJun

    2017-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are a type of rare sarcomas with a poor prognosis due to its highly invasive nature and limited treatment options. Currently there is no targeted-cancer therapy for this type of malignancy. Thus, it is important to identify more cancer driver genes that may serve as targets of cancer therapy. Through comparative oncogenomics, we have found that KANK1 was a candidate tumor suppressor gene (TSG) for human MPNSTs. Although KANK1 is known as a cytoskeleton regulator, its tumorigenic function in MPNSTs remains largely unknown. In this study, we report that restoration of KANK1 in human MPNST cells inhibits cell growth both in human cell culture and xenograft mice by increasing apoptosis. Consistently, knockdown of KANK1 in neurofibroma cells promoted cell growth. Using RNA-seq analysis, we identified CXXC5 and other apoptosis-related genes, and demonstrated that CXXC5 is regulated by KANK1. Knockdown of CXXC5 was found to diminish KANK1-induced apoptosis in MPNST cells. Thus, KANK1 inhibits MPNST cell growth though CXXC5 mediated apoptosis. Our results suggest that KANK1 may function as a tumor suppressor in human MPNSTs, and thus it may be useful for targeted therapy. PMID:28067315

  7. 1,10-Phenanthroline promotes copper complexes into tumor cells and induces apoptosis by inhibiting the proteasome activity.

    Science.gov (United States)

    Zhang, Zhen; Bi, Caifeng; Schmitt, Sara M; Fan, Yuhua; Dong, Lili; Zuo, Jian; Dou, Q Ping

    2012-12-01

    Indole-3-acetic acid and indole-3-propionic acid, two potent natural plant growth hormones, have attracted attention as promising prodrugs in cancer therapy. Copper is known to be a cofactor essential for tumor angiogenesis. We have previously reported that taurine, L-glutamine, and quinoline-2-carboxaldehyde Schiff base copper complexes inhibit cell proliferation and proteasome activity in human cancer cells. In the current study, we synthesized two types of copper complexes, dinuclear complexes and ternary complexes, to investigate whether a certain structure could easily carry copper into cancer cells and consequently inhibit tumor proteasome activity and induce apoptosis. We observed that ternary complexes binding with 1,10-phenanthroline are more potent proteasome inhibitors and apoptosis inducers than dinuclear complexes in PC-3 human prostate cancer cells. Furthermore, the ternary complexes potently inhibit proteasome activity before induction of apoptosis in MDA-MB-231 human breast cancer cells, but not in nontumorigenic MCF-10A cells. Our results suggest that copper complexes binding with 1,10-phenanthroline as the third ligand could serve as potent, selective proteasome inhibitors and apoptosis inducers in tumor cells, and that the ternary complexes may be good potential anticancer drugs.

  8. Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis.

    Science.gov (United States)

    Parra, Valentina; Eisner, Veronica; Chiong, Mario; Criollo, Alfredo; Moraga, Francisco; Garcia, Alejandra; Härtel, Steffen; Jaimovich, Enrique; Zorzano, Antonio; Hidalgo, Cecilia; Lavandero, Sergio

    2008-01-15

    In cells, mitochondria are organized as a network of interconnected organelles that fluctuate between fission and fusion events (mitochondrial dynamics). This process is associated with cell death. We investigated whether activation of apoptosis with ceramides affects mitochondrial dynamics and promotes mitochondrial fission in cardiomyocytes. Neonatal rat cardiomyocytes were incubated with C(2)-ceramide or the inactive analog dihydro-C(2)-ceramide for up to 6 h. Three-dimensional images of cells loaded with mitotracker green were obtained by confocal microscopy. Dynamin-related protein-1 (Drp-1) and mitochondrial fission protein 1 (Fis1) distribution and levels were studied by immunofluorescence and western blot. Mitochondrial membrane potential (DeltaPsi(m)) and cytochrome c (cyt c) distribution were used as indexes of early activation of apoptosis. Cell viability and DNA fragmentation were determined by propidium iodide staining/flow cytometry, whereas cytotoxicity was evaluated by lactic dehydrogenase activity. To decrease the levels of the mitochondrial fusion protein mitofusin 2, we used an antisense adenovirus (AsMfn2). C(2)-ceramide, but not dihydro-C(2)-ceramide, promoted rapid fragmentation of the mitochondrial network in a concentration- and time-dependent manner. C(2)-ceramide also increased mitochondrial Drp-1 and Fis1 content, Drp-1 colocalization with Fis1, and caused early activation of apoptosis. AsMfn2 accentuated the decrease in DeltaPsi(m) and cyt c redistribution induced by C(2)-ceramide. Doxorubicin, which induces cardiomyopathy and apoptosis through ceramide generation, also stimulated mitochondrial fragmentation. Ceramides stimulate mitochondrial fission and this event is associated with early activation of cardiomyocyte apoptosis.

  9. Zebrafish Noxa promotes mitosis in early embryonic development and regulates apoptosis in subsequent embryogenesis.

    Science.gov (United States)

    Zhong, J-X; Zhou, L; Li, Z; Wang, Y; Gui, J-F

    2014-06-01

    Noxa functions in apoptosis and immune system of vertebrates, but its activities in embryo development remain unclear. In this study, we have studied the role of zebrafish Noxa (zNoxa) by using zNoxa-specifc morpholino knockdown and overexpression approaches in developing zebrafish embryos. Expression pattern analysis indicates that zNoxa transcript is of maternal origin, which displays a uniform distribution in early embryonic development until shield stage, and the zygote zNoxa transcription is initiated from this stage and mainly localized in YSL of the embryos. The zNoxa expression alterations result in strong embryonic development defects, demonstrating that zNoxa regulates apoptosis from 75% epiboly stage of development onward, in which zNoxa firstly induces the expression of zBik, and then cooperates with zBik to regulate apoptosis. Moreover, zNoxa knockdown also causes a reduction in number of mitotic cells before 8 h.p.f., suggesting that zNoxa also promotes mitosis before 75% epiboly stage. The effect of zNoxa on mitosis is mediated by zWnt4b in early embryos, whereas zMcl1a and zMcl1b suppress the ability of zNoxa to regulate mitosis and apoptosis at different developmental stages. In addition, mammalian mouse Noxa (mNoxa) mRNA was demonstrated to rescue the arrest of mitosis when zNoxa was knocked down, suggesting that mouse and zebrafish Noxa might have similar dual functions. Therefore, the current findings indicate that Noxa is a novel regulator of early mitosis before 75% epiboly stage when it translates into a key mediator of apoptosis in subsequent embryogenesis.

  10. 5-Fluorouracil concentration in blood, liver and tumor tissues and apoptosis of tumor cells after preoperative oral 5'-deoxy-5-fluorouridine in patients with hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jin-Fang Zheng; Hai-Dong Wang

    2005-01-01

    AIM: To study the levels of 5-fluorouracail (5-FU) in plasma,liver and tumor in patients with hepatocellular carcinoma after oral administration of 5'-deoxy-5-fluorouridine (5'-DFUR).METHODS: Thirty-nine patients with hepatocellular carcinoma were treated with oral 5'-DFUR for more than 4 d before operation. The contents of 5-FU in plasma,liver and tumor were measured by high performance liquid chromatography (HPLC) and apoptosis of tumor cells was evaluated by in-situ TUNEL after resection of tumor.RESULTS: The concentrations of 5-FU were 1.1 μg/mL,5.6, 5.9, and 10.5 μg/g in plasma, the liver tissue, the center of tumor and the periphery of tumor, respectively.5-FU concentration was significantly higher in the periphery of tumor than that in the liver tissue and the center of tumor (10.5±1.6 μg/g vs 5.6±0.8 μg/g, t= 21.38, P<0.05;10.5±1.6 μg/g vs 5.9±0.9 μg/g, t= 20.07, P<0.05). 5-FU level was significantly lower in plasma than that in the liver and the tumor (1.1±0.3 μg/mL vs 5.6±0.8 μg/g, t= 19.63,P<0.05; 1.1±0.3 μg/mL vs 10.5±1.6 μg/g, t= 41.01, P<0.05).Apoptosis of tumor cells was significantly increased after oral 5'-DFUR compared to the control group without 5'-DFUR treatment.CONCLUSION: There is a higher concentration of 5-FU distributed in the tumor compared with liver tissue and apoptosis of tumor cells is increased following oral 5'-DFUR compared with the control group. The results indicate that 5'-DFUR is hopeful as neo-adjuvant chemotherapy to prevent recurrence after resection of hepatocellular carcinoma.

  11. Arctigenin anti-tumor activity in bladder cancer T24 cell line through induction of cell-cycle arrest and apoptosis.

    Science.gov (United States)

    Yang, Shucai; Ma, Jing; Xiao, Jianbing; Lv, Xiaohong; Li, Xinlei; Yang, Huike; Liu, Ying; Feng, Sijia; Zhang, Yafang

    2012-08-01

    Bladder cancer is the most common neoplasm in the urinary system. This study assesses arctigenin anti-tumor activity in human bladder cancer T24 cells in vitro and the underlying molecular events. The flow cytometry analysis was used to detect cell-cycle distribution and apoptosis. Western blotting was used to detect changes in protein expression. The data showed that arctigenin treatment reduced viability of bladder cancer T24 cells in a dose- and time-dependent manner after treatment with arctigenin (10, 20, 40, 80, and 100 μmol/L) for 24 hr and 48 hr. Arctigenin treatment clearly arrested tumor cells in the G1 phase of the cell cycle. Apoptosis was detected by hoechst stain and flow cytometry after Annexin-V-FITC/PI double staining. Early and late apoptotic cells were accounted for 2.32-7.01% and 3.07-7.35%, respectively. At the molecular level, arctigenin treatment decreased cyclin D1 expression, whereas CDK4 and CDK6 expression levels were unaffected. Moreover, arctigenin selectively altered the phosphorylation of members of the MAPK superfamily, decreasing phosphorylation of ERK1/2 and activated phosphorylation of p38 significantly in a dose-dependent manner. These results suggest that arctigenin may inhibit cell viability and induce apoptosis by direct activation of the mitochondrial pathway, and the mitogen-activated protein kinase pathway may play an important role in the anti-tumor effect of arctigenin. The data from the current study demonstrate the usefulness of arctigenin in bladder cancer T24 cells, which should further be evaluated in vivo before translation into clinical trials for the chemoprevention of bladder cancer.

  12. MicroRNA-340 Inhibits Tumor Cell Proliferation and Induces Apoptosis in Endometrial Carcinoma Cell Line RL 95-2.

    Science.gov (United States)

    Xie, Wei; Qin, Wen; Kang, Yalin; Zhou, Ziyan; Qin, Aiping

    2016-05-06

    BACKGROUND The purpose of our study was to investigate the functional role of microRNA-340 (miR-340) in endometrial carcinoma (EC). MATERIAL AND METHODS Human EC cell line RL 95-2 was transfected with miR-340 mimics, inhibitors, or controls. After 48 h of transfection, the cell viability was determined by 3-(4, 5-dimethyl-2- thiazolyl)-2, 5-diphenyl -2-H-tetrazolium bromide (MTT) assay. The BrdU assay and apoptosis assay were performed to determine the effects of miR-340 mimics or inhibitors on cell proliferation and apoptosis, respectively. The underlying mechanisms involved in cell proliferation and apoptosis were explored by measuring the protein levels of cell cycle regulators (p27 kinase inhibition protein (KIP) 1 and p21) and apoptosis-related factors (B-cell lymphoma-2 (Bcl-2), Bax, pro-Caspase 3, and active-Caspase-3). RESULTS Overexpression of miR-340 significantly inhibited the cell viability (PRL 95-2 cells compared with the control group, but increased the apoptosis (PRL 95-2 by inhibition of tumor cell proliferation and induction of apoptosis.

  13. Complement C1q activates tumor suppressor WWOX to induce apoptosis in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Qunying Hong

    Full Text Available BACKGROUND: Tissue exudates contain low levels of serum complement proteins, and their regulatory effects on prostate cancer progression are largely unknown. We examined specific serum complement components in coordinating the activation of tumor suppressors p53 and WWOX (also named FOR or WOX1 and kinases ERK, JNK1 and STAT3 in human prostate DU145 cells. METHODOLOGY/PRINCIPAL FINDINGS: DU145 cells were cultured overnight in 1% normal human serum, or in human serum depleted of an indicated complement protein. Under complement C1q- or C6-free conditions, WOX1 and ERK were mainly present in the cytoplasm without phosphorylation, whereas phosphorylated JNK1 was greatly accumulated in the nuclei. Exogenous C1q rapidly restored the WOX1 activation (with Tyr33 phosphorylation in less than 2 hr. Without serum complement C9, p53 became activated, and hyaluronan (HA reversed the effect. Under C6-free conditions, HA induced activation of STAT3, an enhancer of metastasis. Notably, exogenous C1q significantly induced apoptosis of WOX1-overexpressing DU145 cells, but not vehicle-expressing cells. A dominant negative and Y33R mutant of WOX1 blocked the apoptotic effect. C1q did not enhance p53-mediated apoptosis. By total internal reflection fluorescence (TIRF microscopy, it was determined that C1q destabilized adherence of WOX1-expressing DU145 cells by partial detaching and inducing formation of clustered microvilli for focal adhesion particularly in between cells. These cells then underwent shrinkage, membrane blebbing and death. Remarkably, as determined by immunostaining, benign prostatic hyperplasia and prostate cancer were shown to have a significantly reduced expression of tissue C1q, compared to age-matched normal prostate tissues. CONCLUSIONS/SIGNIFICANCE: We conclude that complement C1q may induce apoptosis of prostate cancer cells by activating WOX1 and destabilizing cell adhesion. Downregulation of C1q enhances prostate hyperplasia and cancerous

  14. Zebrafish Noxa promotes mitosis in early embryonic development and regulates apoptosis in subsequent embryogenesis

    OpenAIRE

    2014-01-01

    Noxa functions in apoptosis and immune system of vertebrates, but its activities in embryo development remain unclear. In this study, we have studied the role of zebrafish Noxa (zNoxa) by using zNoxa-specifc morpholino knockdown and overexpression approaches in developing zebrafish embryos. Expression pattern analysis indicates that zNoxa transcript is of maternal origin, which displays a uniform distribution in early embryonic development until shield stage, and the zygote zNoxa transcriptio...

  15. Genomic alterations associated with early stages of breast tumor metastasis.

    Science.gov (United States)

    Ellsworth, Rachel E; Ellsworth, Darrell L; Patney, Heather L; Deyarmin, Brenda; Hooke, Jeffrey A; Love, Brad; Shriver, Craig D

    2008-07-01

    Molecular studies suggest that acquisition of metastatic potential occurs early in the development of breast cancer; mechanisms by which cells disseminate from the primary carcinomas and successfully colonize foreign tissues are, however, largely unknown. Thus, we examined levels and patterns of chromosomal alterations in primary breast tumors from node-negative (n = 114) and node-positive (n = 115) patients to determine whether specific genomic changes are associated with tumor metastasis. Fifty-two genetic markers representing 26 chromosomal regions commonly altered in breast cancer were examined in laser microdissected tumor samples to assess levels and patterns of allelic imbalance (AI). Real time-PCR (RT-PCR) was performed to determine expression levels of candidate genes. Data was analyzed using exact unconditional and Student's t-tests with significance values of P .05 and P .002 used for the clinicopathological and genomic analyses, respectively. Overall levels of AI in primary breast tumors from node-negative (20.8%) and node-positive (21.9%) patients did not differ significantly (P = 0.291). When data were examined by chromosomal region, only chromosome 8q24 showed significantly higher levels (P .0005) of AI in node-positive primary tumors (23%) versus node-negative samples (6%). c-MYC showed significantly higher levels of gene expression in primary breast tumors from patients with lymph node metastasis. Higher frequencies of AI at chromosome 8q24 in patients with positive lymph nodes suggest that genetic changes in this region are important to the process of metastasis. Because overexpression of c-MYC has been associated with cellular dissemination as well as development of the premetastatic niche, alterations of the 8q24 region, including c-MYC, may be key determinants in the development of lymph node metastasis.

  16. APOPTOSIS AND PROLIFERATION OF TUMOR CELLS IN LOCALLY ADVANCED CERVICAL CANCER AFTER NEOADJUVANT INTRAARTERIAL CHEMOTHERAPY

    Institute of Scientific and Technical Information of China (English)

    朱雪琼; 岳天孚; 惠京; 张颖; 王德华

    2003-01-01

    Objective: Through observing the clinical response to neoadjuvant intraarterial chemotherapy in locally advanced cervical cancer and investigating the changes of p53 protein expression, proliferation and apoptosis of tumor cells after chemotherapy, to study the relationship between biological markers and chemotherapeutic response. Methods: 20 women with locally advanced squamous cervical cancer received consecutive infusion chemotherapy of five days of cisplatin and adriamycin via the superselective uterine artery. The response to chemotherapy was evaluated by gynecologic examination and ultrasonography 3 weeks after chemotherapy. The changes of apoptotic index (AI), proliferation index (PI) and p53 expression of tumor cells were detected by immunohistochemical technique. Results: The clinical response rate of locally advanced squamous cervical cancer to uterine artery infusion chemotherapy was 70%. No change of PI was found 3 weeks after treatment, but AI significantly increased from 2.79±0.76 to 4.29±1.13 (P<0.01), and AI/PI from 5.68±1.21 to 9.00±1.95 (P<0.05). On the contrary, the expression of p53 was significantly decreased (P<0.05). Patients who responded to chemotherapy showed higher PI before chemotherapy and significantly increased AI and AI/PI after chemotherapy than non-responders (P<0.05). Conclusion: Higher PI was an indication for neoadjuvant intraarterial chemotherapy. One more cycle of chemotherapy should be given to those who have significantly increased AI or AI/PI after chemotherapy, while definite treatment such as surgery or/and radiotherapy should be immediately given to those patients without increased AI or AI/PI.

  17. TNF-Related Apoptosis-Inducing Ligand (TRAIL)-Armed Exosomes Deliver Proapoptotic Signals to Tumor Site.

    Science.gov (United States)

    Rivoltini, Licia; Chiodoni, Claudia; Squarcina, Paola; Tortoreto, Monica; Villa, Antonello; Vergani, Barbara; Bürdek, Maja; Botti, Laura; Arioli, Ivano; Cova, Agata; Mauri, Giorgio; Vergani, Elisabetta; Bianchi, Beatrice; Della Mina, Pamela; Cantone, Laura; Bollati, Valentina; Zaffaroni, Nadia; Gianni, Alessandro Massimo; Colombo, Mario Paolo; Huber, Veronica

    2016-07-15

    Exosomes deliver signals to target cells and could thus be exploited as an innovative therapeutic tool. We investigated the ability of membrane TRAIL-armed exosomes to deliver proapoptotic signals to cancer cells and mediate growth inhibition in different tumor models. K562 cells, transduced with lentiviral human membrane TRAIL, were used for the production of TRAIL(+) exosomes, which were studied by nanoparticle tracking analysis, cytofluorimetry, immunoelectronmicroscopy, Western blot, and ELISA. In vitro, TRAIL(+) exosomes induced more pronounced apoptosis (detected by Annexin V/propidium iodide and activated caspase-3) in TRAIL-death receptor (DR)5(+) cells (SUDHL4 lymphoma and INT12 melanoma), with respect to the DR5(-)DR4(+)KMS11 multiple myeloma. Intratumor injection of TRAIL(+) exosomes, but not mock exosomes, induced growth inhibition of SUDHL4 (68%) and INT12 (51%), and necrosis in KMS11 tumors. After rapid blood clearance, systemically administered TRAIL(+) exosomes accumulated in the liver, lungs, and spleen and homed to the tumor site, leading to a significant reduction of tumor growth (58%) in SUDHL4-bearing mice. The treatment of INT12-bearing animals promoted tumor necrosis and a not statistically significant tumor volume reduction. In KMS11-bearing mice, despite massive perivascular necrosis, no significant tumor growth inhibition was detected. TRAIL-armed exosomes can induce apoptosis in cancer cells and control tumor progression in vivo Therapeutic efficacy was particularly evident in intratumor setting, while depended on tumor model upon systemic administration. Thanks to their ability to deliver multiple signals, exosomes thus represent a promising therapeutic tool in cancer. Clin Cancer Res; 22(14); 3499-512. ©2016 AACR. ©2016 American Association for Cancer Research.

  18. BET Bromodomain Inhibition Triggers Apoptosis of NF1-Associated Malignant Peripheral Nerve Sheath Tumors through Bim Induction

    Directory of Open Access Journals (Sweden)

    Amish J. Patel

    2014-01-01

    Full Text Available Malignant peripheral nerve sheath tumors (MPNSTs are highly aggressive sarcomas that develop sporadically or in neurofibromatosis type 1 (NF1 patients. There is no effective treatment for MPNSTs and they are typically fatal. To gain insights into MPNST pathogenesis, we utilized an MPNST mouse model that allowed us to study the evolution of these tumors at the transcriptome level. Strikingly, in MPNSTs we found upregulation of a chromatin regulator, Brd4, and show that BRD4 inhibition profoundly suppresses both growth and tumorigenesis. Our findings reveal roles for BET bromodomains in MPNST development and report a mechanism by which bromodomain inhibition induces apoptosis through induction of proapoptotic Bim, which may represent a paradigm shift in therapy for MPNST patients. Moreover, these findings indicate epigenetic mechanisms underlying the balance of anti- and proapoptotic molecules and that bromodomain inhibition can shift this balance in favor of cancer cell apoptosis.

  19. Arsenic trioxide treatment of rabbit liver VX-2 carcinoma via hepatic arterial cannulation-induced apoptosis and decreased levels of survivin in the tumor tissue.

    Science.gov (United States)

    Li, Hong; Gong, Jian; Jiang, Xuyuan; Shao, Haibo

    2013-02-01

    To investigate the role of tumor apoptosis-inhibitory protein survivin in arsenic trioxide-induced apoptosis in VX-2 carcinoma in the rabbit liver by means of transcatheter arterial chemoembolization. Sixteen rabbits with 32 implanted hepatic VX-2 tumors were randomly divided into two groups. The experimental group received 2 mg of arsenic trioxide and 1 mL of ultra-fluid lipiodol co-injected via hepatic arterial cannulation and the control group received only 1 mL of lipiodol. Animals were sacrificed 3 weeks after trans-catheterial arterial chemoembolization. Tumor tissue and tumor-peripheral tissue were collected for analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling staining was used to assess tumor cells apoptosis. Immunohistochemistry was used to assess the presence of survivin protein. Reverse transcription polymerase chain reaction was used to determine the expression of survivin gene. The number of apoptotic cells significantly increased in the tumor tissue (5.20 ± 0.60%) compared to tumor-peripheral tissue (1.29 ± 0.42%) of the arsenic trioxide-treated group. Survivin expression levels in the tumor tissue were significantly reduced in arsenic trioxide-treated group (7.68 ± 0.65) compared to the control group (35.30 ± 4.63). Transcatheter arterial chemoembolization with arsenic trioxide induced apoptosis of VX-2 carcinoma, in which tumor apoptosis-inhibitory protein survivin may have played a role.

  20. Role of mechanical stretching and lipopolysaccharide in early apoptosis and IL-8 of alveolar epithelial typeⅡ cells A549

    Institute of Scientific and Technical Information of China (English)

    Qiao-Ming Ning; Xiao-Ning Sun; Xin-Kai Zhao

    2012-01-01

    Objective:To investigate the effects of mechanical stretching and lipopolysaccharide (LPS) on the early apoptosis and IL-8 production of alveolar epithelial typeⅡ cellsA549.Methods:The experimental matrix consisted of three integrated studies.In the first study,A549 cells were subjected to different stretching strain frequency and duration time to see the effects on the early apoptosis.In the second study,A549 cells were subjected to mechanical stretch(15%4 h, 0.5Hz) andLPS(1 or100 ng/mL) to see whether mechanical strain andLPS also have an addictive effect on the early apoptosis.In the third study to investigate whether this addictive effect could be induced byLPS and mechanical stretch onIL-8 production,A549 cells were subjected to LPS(100 ng/mL) and mechanical strain(15%,0.5Hz,4 h).Real timePCR and enzyme linked immunosorbent assay were used to measure mRNA and protein level ofIL-8.The early apoptosis was detected by flow cytometry.Results:Mechanical stretch induced the early apoptosis in a force and frequency and time-dependent manner.In the presence ofLPS, mechanical stretch enhancedLPS-induced early apoptosis, especially in100 ng/mLLPS group compared with1 ng/mLLPS and the control group.Mechanical stretch increasedIL-8 production and enhancedLPS-inducedIL-8 screation both in mRNA and protein levels.Conclusions:Mechanical stretch can induce the early apoptosis andIL-8 secretion.Mechanical stretch andLPS have an addictive effect on the early apoptosis andIL-8 production in alveolar type2 cells, which is one of the mechanisms of ventilator-induced lung injury.

  1. Administration of IκB-kinase inhibitor PS1145 enhances apoptosis in DMBA-induced tumor in male Wistar rats.

    Science.gov (United States)

    Rajmani, R S; Gandham, Ravi Kumar; Gupta, Shishir Kumar; Sahoo, Aditya P; Singh, Prafull Kumar; Saxena, Shikha; Kumar, Rajiv; Chaturvedi, Uttara; Tiwari, Ashok K

    2015-11-01

    Nuclear factor kappa-B (NF-κB), a key anti-apoptotic factor, plays a critical role in tumor cell growth, metastasis, and angiogenesis. The transcriptional activity of NF-κB is normally suppressed in the cytoplasm due to its association with a natural inhibitor molecule IκB. Phosphorylation of the IκB at Ser 32 and Ser 36 by the IκB kinase complex (IKK) marks the degradation of the molecule by 26S proteasome. As NF-κB is constitutively activated in most of the tumor cells, inhibition of the activities of IKK may significantly sensitize the tumor cells to apoptosis. In the present study, we investigated the effect of IκB kinase-specific blocker PS1145 on DMBA-induced skin tumor of male Wistar rats. We examined the apoptotic effect of PS1145 on DMBA-induced tumor by various histopathological and molecular techniques. Our results demonstrate the significant expression of major pro-apoptotic genes like caspases 2, 3, 8, 9, and p53 in PS1145-treated tumor bearing group at mRNA levels as well as significant (P tumor progression, mitotic, AgNOR, and PCNA indices were significantly reduced in PS1145 treatment groups as compared to PBS control on day 28 of post-treatment. Furthermore, significant increase in TUNEL positive nuclei and observation of peculiar apoptotic nuclei in transmission electron microscopy were seen in PS1145 treatment group. We conclude that intravenous application of PS1145 promotes direct apoptosis in DMBA-induced skin tumor in male Wistar rats by blocking NF-κB and VEGF activities.

  2. Paclitaxel-induced apoptosis is BAK-dependent, but BAX and BIM-independent in breast tumor.

    Directory of Open Access Journals (Sweden)

    Anna V Miller

    Full Text Available Paclitaxel (Taxol-induced cell death requires the intrinsic cell death pathway, but the specific participants and the precise mechanisms are poorly understood. Previous studies indicate that a BH3-only protein BIM (BCL-2 Interacting Mediator of cell death plays a role in paclitaxel-induced apoptosis. We show here that BIM is dispensable in apoptosis with paclitaxel treatment using bim(-/- MEFs (mouse embryonic fibroblasts, the bim(-/- mouse breast tumor model, and shRNA-mediated down-regulation of BIM in human breast cancer cells. In contrast, both bak (-/- MEFs and human breast cancer cells in which BAK was down-regulated by shRNA were more resistant to paclitaxel. However, paclitaxel sensitivity was not affected in bax(-/- MEFs or in human breast cancer cells in which BAX was down-regulated, suggesting that paclitaxel-induced apoptosis is BAK-dependent, but BAX-independent. In human breast cancer cells, paclitaxel treatment resulted in MCL-1 degradation which was prevented by a proteasome inhibitor, MG132. A Cdk inhibitor, roscovitine, blocked paclitaxel-induced MCL-1 degradation and apoptosis, suggesting that Cdk activation at mitotic arrest could induce subsequent MCL-1 degradation in a proteasome-dependent manner. BAK was associated with MCL-1 in untreated cells and became activated in concert with loss of MCL-1 expression and its release from the complex. Our data suggest that BAK is the mediator of paclitaxel-induced apoptosis and could be an alternative target for overcoming paclitaxel resistance.

  3. Expression of tumor necrosis factor related apoptosis inducing ligand receptor in glioblastoma

    Institute of Scientific and Technical Information of China (English)

    Dongling Gao; Zhongwei Zhao; Hongxin Zhang; Lan Zhang; Kuisheng Chen; Yunhan Zhang

    2008-01-01

    BACKGROUND: Receptors for tumor necrosis factor related apoptosis inducing ligand (TRAIL) include death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2. Activation of death receptor 4 and 5 selectively kills tumor cells.OBJECTIVE: To detect TRAIL receptor expression in glioblastoma by immunohistochemistry and RT-PCR and to compare this expression to that in normal brain tissue.DESIGN: Observational analysis.SETTING: Department of Pathology, the First Affiliated Hospital of Zhengzhou University; Henan Tumor Pathology Key Laboratory.PARTICIPANTS: Twenty-five patients (17 males and 8 females) who received glioblastoma resection were selected from the Fifth Affiliated Hospital of Zhengzhou University, between September 2003 to June 2004. All glioblastoma samples were diagnosed pathologically. Twenty patients (12 males and 8 females) with craniocerebral injury who received normal brain tissue resection were selected in the same time period. There were no significant differences in sex and age between glioblastoma patients or between craniocerebral injury patients (P>0.05). All patients and appropriate relatives provided informed consent, and this study was approved by the local research ethics committee.METHODS: Polyclonal antibody against TRAIL receptors and an immunohistochemical kit (batch number: 200502) were purchased from Boster Company, Wuhan. Immunohistochemistry: Expression of death receptor 4, death receptor 5, decoy receptor 1, and decoy receptor 2 were observed in both glioblastoma and normal brain tissue. The experiment was performed according to the kit instructions, and positive staining was brown-yellow. Assessment: There were no positive signals (-); weakly positive signals, positive cells75% (++++). Evaluation: Expression levels of TRAIL receptors were estimated in both normal brain tissue and glioblastoma. Expression of decoy receptor 1 and decoy receptor 2 mRNA in glioblastoma were detected by reverse transcription polymerase

  4. Arsenic trioxide treatment of rabbit liver VX-2 carcinoma via hepatic arterial cannulationinduced apoptosis and decreased levels of survivin in the tumor tissue

    OpenAIRE

    LI, HONG; Gong, Jian; Jiang, Xuyuan; Shao, Haibo

    2013-01-01

    Aim To investigate the role of tumor apoptosis-inhibitory protein survivin in arsenic trioxide-induced apoptosis in VX-2 carcinoma in the rabbit liver by means of transcatheter arterial chemoembolization. Methods Sixteen rabbits with 32 implanted hepatic VX-2 tumors were randomly divided into two groups. The experimental group received 2 mg of arsenic trioxide and 1 mL of ultra-fluid lipiodol co-injected via hepatic arterial cannulation and the control group received o...

  5. Inhibition of tumor necrosis factor-α reduces alveolar septal cell apoptosis in passive smoking rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Cheng; CAI Shan; CHEN Ping; CHEN Jian-bo; WU Jie; WU Shang-jie; ZHOU Rui

    2008-01-01

    Background Recent studies have revealed that lung cell apoptosis plays an important role in pathogenesis of cigarette-induced chronic obstructive pulmonary disease (COPD).Tumor necrosis factor alpha(TNF-α)is one of the most important cytokines which are involved in COPD.This study aimed at investigating the jnfluence of its inhibitor,recombinant human necrosis factor-alpha receptor Ⅱ:IgG Fc fusion protein(rhTNFR:Fc)on alveolar septal cell apoptosis in passive smoking rats.Methods Forty-eight rats were randomly divided into a normal control group,a passive smoking group,an rhTNFR:Fc intervention group and a sham intervention group.The passive smoking rats were treated by exposure to cigarette smoking daily for 80 days.Afcer smoking for one month the rhTNFR:Fc Intervention group was treated with rhTNFR:Fc by subcutaneous injection,the sham intervention group injected subcutaneousIv with a neutral preparation(normal saline 0.1 ml,manicol 0.8 ml,cane sugar 0.2 mg,Tris 0.024 mg as a control.Lung function was determined and the levels of TNF-α in serum and broncho-alveolar lavage fluid(BALF)were measured with enzyme-linked immunosorbnent assay (ELISA).Lung tissue sections stained by hematoxylin and eosin(HE)were observed for study of morphological alternations.Mean linear intercept(MLI)and mean alveolar numbers(MAN)were measured and the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling(TUNEL)method was carried out to determine the percentage of positive cells and distribution of apoptotic cells.Results Increased MLI and decreased MAN were found in the passive smoking group compared with both the normal control group and the rhTNFR:Fc intervention group(P<0.05).Forced expiratory volume in 0.3 second(FEV0.3)/forced vital capacity(FVC)and peak expiratory flow(PEF)were lower in the passive smoking group than that in the normal control group(P<0.05).Compared with the sham intervention group,FEV0.3/FVC and PEF increased in the rhTNFR:Fc intervention

  6. Assessment of serum tumor markers, tumor cell apoptosis and immune response in patients with advanced colon cancer after DC-CIK combined with intravenous chemotherapy

    Institute of Scientific and Technical Information of China (English)

    Lei-Fan Li; Xiu-Yun Wang; Hui-Qiong Xu; Xia Liu

    2016-01-01

    Objective:To study the effect of DC-CIK combined with intravenous chemotherapy on serum tumor markers, tumor cell apoptosis and immune response in patients with advanced colon cancer.Methods:A total of 79 patients with advanced colon cancer conservatively treated in our hospital between May 2012 and October 2015 were retrospectively studied and divided into DC-CIK group and intravenous chemotherapy group according to different therapeutic regimens, DC-CIK group received DC-CIK combined with intravenous chemotherapy and intravenous chemotherapy group received conventional intravenous chemotherapy. After three cycles of chemotherapy, the content of tumor markers in serum, expression levels of apoptotic molecules in tumor lesions as well as immune function indexes were determined.Results:After 3 cycles of chemotherapy, CEA, CA199, CA242, HIF-1α, IL-4, IL-5 and IL-10 content in serum of DC-CIK group were significantly lower than those of intravenous chemotherapy group;p53, FAM96B, PTEN, PHLPP, ASPP2and RASSF10 mRNA content in tumor lesions of DC-CIK group were significantly higher than those of intravenous chemotherapy group; the fluorescence intensity of CD3, CD4 and CD56 on peripheral blood mononuclear cell surface of DC-CIK group were significantly higher than those of intravenous chemotherapy group while the fluorescence intensity of CD8 and CD25 were significantly lower than those of intravenous chemotherapy group; IL-2 and IFN-γ content in serum of DC-CIK group were significantly higher than those of intravenous chemotherapy group while IL-4, IL-5 and IL-10 content were significantly lower than those of intravenous chemotherapy group.Conclusions: DC-CIK combined with intravenous chemotherapy has better effect on killing colon cancer cells and inducing colon cancer cell apoptosis than conventional intravenous chemotherapy, and can also improve the body's anti-tumor immune response.

  7. Novel insights into the apoptosis mechanism of DNA topoisomerase I inhibitor isoliquiritigenin on HCC tumor cell

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ze-xin; Li, Jian; Li, Yan; You, Kun; Xu, Hongwei; Wang, Jianguo, E-mail: wangjianguoxx@163.com

    2015-08-21

    The inhibitory effect of DNA topoisomerase (Top I) by isoliquiritigenin(ISO) were investigated and their interaction mechanism was evaluated using methods including UV–vis absorption, fluorescence, coupled with molecular simulation, and using the MTT method of inhibition rate of HCC tumor cell SNU475 proliferation assay, finally, the interaction of ISO with calf thymus DNA was investigated by melting measurements and molecular docking studies. It was found that isoliquiritigenin reversibly inhibited DNA Top I in a competitive manner with the concentrations of ISO resulting in 50% activity lost (IC{sub 50}) were estimated to be 0.178 ± 0.12 mM. Isoliquiritigenin exhibited a strong ability to quench the intrinsic fluorescence of Top I through a static quenching procedure. The positive values of enthalpy change and entropy change suggested that the binding of isoliquiritigenin to Top I was driven mainly by hydrophobic interactions. The molecular docking results revealed isoliquiritigenin actually interacted with the primary amino acid residues on the active site of Top I, and the detection results of fluorescence staining and the inhibitory effect on the growth of HCC SUN475 showed that isoliquiritigenin induced the apoptosis cells increased gradually. The interaction of ISO with DNA can cause the denaturation temperature to be increased, which indicated that the stabilization of the DNA helix was increased in the presence of ISO, which indicated that the results provide strong evidence for intercalative binding of ISO with DNA. - Highlights: • ISO reversibly inhibits TOP I activity in an A dose dependent manner. • Hydrophobic interactions play a major role in ISO–TOP I interaction. • ISO has a high affinity close to the active site pocket of TOP I. • The binding of ISO to DNA induces the stability of the structure of DNA.

  8. Tumor cell-selective apoptosis induction through targeting of KV10.1 via bifunctional TRAIL antibody

    Directory of Open Access Journals (Sweden)

    Pardo Luis A

    2011-09-01

    Full Text Available Abstract Background The search for strategies to target ion channels for therapeutic applications has become of increasing interest. Especially, the potassium channel KV10.1 (Ether-á-go-go is attractive as target since this surface protein is virtually not detected in normal tissue outside the central nervous system, but is expressed in approximately 70% of tumors from different origins. Methods We designed a single-chain antibody against an extracellular region of KV10.1 (scFv62 and fused it to the human soluble TRAIL. The KV10.1-specific scFv62 antibody -TRAIL fusion protein was expressed in CHO-K1 cells, purified by chromatography and tested for biological activity. Results Prostate cancer cells, either positive or negative for KV10.1 were treated with the purified construct. After sensitization with cytotoxic drugs, scFv62-TRAIL induced apoptosis only in KV10.1-positive cancer cells, but not in non-tumor cells, nor in tumor cells lacking KV10.1 expression. In co-cultures with KV10.1-positive cancer cells the fusion protein also induced apoptosis in bystander KV10.1-negative cancer cells, while normal prostate epithelial cells were not affected when present as bystander. Conclusions KV10.1 represents a novel therapeutic target for cancer. We could design a strategy that selectively kills tumor cells based on a KV10.1-specific antibody.

  9. Tumor-associated miRNA and apoptosis%肿瘤相关微小RNA与凋亡

    Institute of Scientific and Technical Information of China (English)

    南阳

    2009-01-01

    微小RNA(miRNA) 在转录后水平调控基因的表达.研究证实miRNA通过调控细胞的凋亡,在肿瘤的发生发展过程中发挥着重要的作用.肿瘤相关miRNA与凋亡的研究在未来的肿瘤诊疗中miRNA可能具有广阔的应用前景.%MicroRNA,known as micro-RNA or miRNA,is a class of small non-coding RNA whose ma-ture products is ~22 nucleotides long.It negatively regulates gene expression at the post-transcriptional lev-el.More and more studies confirm the important role of miRNA in carcinogenesis and tumor development by reg-ulating cell apoptosis,and the research focuses on tumor-associated miRNA in tumor cell apoptosis may bring widest perspective on treatment and diagnosis of tumor in the future.

  10. Apoptosis of non-tumor cells contributes to increased serum cytochrome c level in a neuroblastoma xenograft model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Da; WANG Jia-xiang; YU Jie-kai; YANG Fu-quan; WANG Lei; ZHANG Guo-feng; MENG Qing-lei; MU Xin; MA Wei; JIA Zhan-kui

    2012-01-01

    Background Neuroblastoma (NB) is one of the most common malignant solid tumors of childhood.It is still not clear whether the apoptosis of tumor cells or the non-tumor cells contributes to the increase of concentration of cytochrome c (Cyt c) in the serum of the cancer patients.The aim of this research was to identify the source of the Cyt c in the serum when the tumor grows up by subcutaneous inoculation of human NB cells into nude mice.Methods We subcutaneously inoculated human NB cells (KP-N-NS) into nude mice and collected the sera of tumor-bearing mice (n=14) and control mice (n=25) 4 weeks later in order to screen for and identify differentially expressed proteins in the serum.Differentially expressed proteins in the serum were screened by surface-enhanced laser desorption/ionization-time-of-fiight (SELDI-TOF) mass spectrometry.Results The relative intensity of a protein having a mass-to-charge ratio (m/z) of 11 609 was 3338.37±3410.85 in the tumor group and 59.84±40.74 in the control group,indicating that the expression level of this protein in the tumor group was 55.8 times higher than that in the control group.Serum proteins were separated and purified by high-performance liquid chromatography (HPLC).Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to produce peptide mass fingerprints (PMFs).Spectrum analysis and a database search revealed that the highly expressed protein (m/z=11605.4) from the serum of tumor-bearing mice was the mouse Cyt c.Conclusions Increased concentration of Cyt c in the serum of tumor-bearing nude mice might be partially attributed to the secretion of this protein by non-tumor cells.

  11. Early imaging findings in germ cell tumors arising from the basal ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Mi [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Kyungpook National University Medical Center, Department of Radiology, Daegu (Korea, Republic of); Kim, In-One; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun [Seoul National University College of Medicine, Department of Radiology and Institute of Radiation Medicine, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Cho, Hyun-Hae [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Ewha Woman' s University Mokdong Hospital, Department of Radiology, Seoul (Korea, Republic of); You, Sun Kyoung [Seoul National University College of Medicine, Department of Radiology, 101 Daehak-ro, Jongno-gu, Seoul (Korea, Republic of); Chungnam National University Hospital, Department of Radiology, Daejeon (Korea, Republic of)

    2016-05-15

    It is difficult to diagnosis early stage germ cell tumors originating in the basal ganglia, but early recognition is important for better outcome. To evaluate serial MR images of basal ganglia germ cell tumors, with emphasis on the features of early stage tumors. We retrospectively reviewed serial MR images of 15 tumors in 14 children and young adults. We categorized MR images of the tumors as follows: type I, ill-defined patchy lesions (<3 cm) without cyst; type II, small mass lesions (<3 cm) with cyst; and type III, large lesions (≥3 cm) with cyst. We also assessed temporal changes of the MR images. On the initial images, 8 of 11 (73%) type I tumors progressed to types II or III, and 3 of 4 (75%) type II tumors progressed to type III. The remaining 4 tumors did not change in type. All type II tumors (5/5, 100%) that changed from type I had a few tiny cysts. Intratumoral hemorrhage was observed even in the type I tumor. Ipsilateral hemiatrophy was observed in most of the tumors (13/15, 87%) on initial MR images. As tumors grew, cystic changes, intratumoral hemorrhage, and ipsilateral hemiatrophy became more apparent. Early stage basal ganglia germ cell tumors appear as ill-defined small patchy hyperintense lesions without cysts on T2-weighted images, are frequently associated with ipsilateral hemiatrophy, and sometimes show microhemorrhage. Tumors develop tiny cysts at a relatively early stage. (orig.)

  12. Apoptotic circulating tumor cells in early and metastatic breast cancer patients.

    Science.gov (United States)

    Kallergi, Galatea; Konstantinidis, Georgios; Markomanolaki, Harris; Papadaki, Maria A; Mavroudis, Dimitris; Stournaras, Christos; Georgoulias, Vassilis; Agelaki, Sofia

    2013-09-01

    The detection of circulating tumor cells (CTC) in breast cancer is strongly associated with disease relapse. Since it is unclear whether all CTCs are capable of generating metastasis, we investigated their apoptotic and proliferative status in 56 CTC-positive (29 early and 27 metastatic) patients with breast cancer. Double-staining immunofluorescence experiments were carried out in peripheral blood mononuclear cells (PBMC) cytospins, using the pancytokeratin A45-B/B3 antibody and either M30 (apoptotic marker) or Ki67 (proliferation marker) antibodies. Apoptosis was also evaluated using a polycaspase detection kit. Patients with metastatic disease had significantly lower numbers of apoptotic CTCs compared with patients with early breast cancer (polycaspase kit: 8.1% vs. 47.4% of the total CTC number; P = 0.0001; M30-antibody: 32.1% vs. 76.63%; P = 0.002). The median percentage of apoptotic CTCs per patient was also lower in patients with advanced compared with those with early disease (polycaspase kit: 0% vs. 53.6%; M30-antibody: 15% vs. 80%). Ki67-positive CTCs were identified in 51.7% and 44% of patients with early and metastatic disease, respectively. Adjuvant chemotherapy reduced both the number of CTCs per patient and the number of proliferating CTCs (63.9% vs. 30%). In conclusion, apoptotic CTCs could be detected in patients with breast cancer irrespective of their clinical status, though the incidence of detection is higher in early compared with metastatic patients. The detection of CTCs that survive despite adjuvant therapy implies that CTC elimination should be attempted using agents targeting their distinctive molecular characteristics.

  13. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming, E-mail: wsenming@126.com

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  14. Nortriptyline induces mitochondria and death receptor-mediated apoptosis in bladder cancer cells and inhibits bladder tumor growth in vivo.

    Science.gov (United States)

    Yuan, Sheau-Yun; Cheng, Chen-Li; Ho, Hao-Chung; Wang, Shian-Shiang; Chiu, Kun-Yuan; Su, Chung-Kuang; Ou, Yen-Chuan; Lin, Chi-Chen

    2015-08-15

    Nortriptyline (NTP), an antidepressant, has antitumor effects on some human cancer cells, but its effect on human bladder cancer cells is not known. In this study, we used a cell viability assay to demonstrate that NTP is cytotoxic to human TCCSUP and mouse MBT-2 bladder cancer cells in a concentration and time-dependent manner. We also performed cell cycle analysis, annexin V and mitochondrial membrane potential assays, and Western blot analysis to show that NTP inhibits cell growth in these cells by inducing both mitochondria-mediated and death receptor-mediated apoptosis. Specifically, NTP increases the expression of Fas, FasL, FADD, Bax, Bak, and cleaved forms of caspase-3, caspase-8, caspase-9, and poly(ADP-ribose) polymerase. In addition, NTP decreases the expression of Bcl-2, Bcl-xL, BH3 interacting domain death agonist, X-linked inhibitor of apoptosis protein, and survivin. Furthermore, NTP-induced apoptosis is associated with reactive oxygen species (ROS) production, which can be reduced by antioxidants, such as N-acetyl-L-cysteine. Finally, we showed that NTP suppresses tumor growth in mice inoculated with MBT-2 cells. Collectively, our results suggest that NTP induces both intrinsic and extrinsic apoptosis in human and mouse bladder cancer cells and that it may be a clinically useful chemotherapeutic agent for bladder cancer in humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Treatment of natural mammary gland tumors in canines and felines using gold nanorods-assisted plasmonic photothermal therapy to induce tumor apoptosis

    Directory of Open Access Journals (Sweden)

    Ali MRK

    2016-09-01

    Full Text Available Moustafa R K Ali,1 Ibrahim M Ibrahim,2,† Hala R Ali,2,3 Salah A Selim,2 Mostafa A El-Sayed1,4 1School of Chemistry and Biochemistry, Georgia Institute of Technology, and Laser Dynamics Laboratory, Atlanta, GA, USA; 2Department of Veterinary Medicine, Cairo University, Giza, Cairo, Egypt; 3Department of Bacteriology and Immunology, Animal Health Research Institute (AHRI, Dokki, Giza, Egypt; 4School of Chemistry, King Abdul Aziz University, Jeddah, Saudi Arabia †Ibrahim M Ibrahim passed away on August 23, 2015 Abstract: Plasmonic photothermal therapy (PPTT is a cancer therapy in which gold nanorods are injected at the site of a tumor before near-infrared light is transiently applied to the tumor causing localized cell death. Previously, PPTT studies have been carried out on xenograft mice models. Herein, we report a study showing the feasibility of PPTT as applied to natural tumors in the mammary glands of dogs and cats, which more realistically represent their human equivalents at the molecular level. We optimized a regime of three low PPTT doses at 2-week intervals that ablated tumors mainly via apoptosis in 13 natural mammary gland tumors from seven animals. Histopathology, X-ray, blood profiles, and comprehensive examinations were used for both the diagnosis and the evaluation of tumor statuses before and after treatment. Histopathology results showed an obvious reduction in the cancer grade shortly after the first treatment and a complete regression after the third treatment. Blood tests showed no obvious change in liver and kidney functions. Similarly, X-ray diffraction showed no metastasis after 1 year of treatment. In conclusion, our study suggests the feasibility of applying the gold nanorods-PPTT on natural tumors in dogs and cats without any relapse or toxicity effects after 1 year of treatment. Keywords: gold nanorods, natural mammary tumors, plasmonic photothermal therapy, canine, feline

  16. Staphylococcal Entertotoxins of the Enterotoxin Gene Cluster (egcSEs Induce Nitrous Oxide- and Cytokine Dependent Tumor Cell Apoptosis in a Broad Panel of Human Tumor Cells

    Directory of Open Access Journals (Sweden)

    David eTerman

    2013-08-01

    Full Text Available The egcSEs comprise five genetically linked staphylococcal enterotoxins, SEG, SEI, SElM, SElN and SElO and two pseudotoxins which constitute an operon present in up to 80% of Staphylococcus aureus isolates. A preparation containing theses proteins was recently used to treat advanced lung cancer with pleural effusion. We investigated the hypothesis that egcSEs induce nitrous oxide (NO and associated cytokine production and that these agents may be involved in tumoricidal effects against a broad panel of clinically relevant human tumor cells. Preliminary studies showed that egcSEs and SEA activated T cells (range: 11-25% in a concentration dependent manner. Peripheral blood mononuclear cells (PBMCs stimulated with equimolar quantities of egcSEs expressed NO synthase and generated robust levels of nitrite (range: 200-250 µM, a breakdown product of NO; this reaction was inhibited by NG-monomethyl-L-arginine (L-NMMA (0.3 mM, an NO synthase antagonist. Cell free supernatants (CSFs of all egcSE-stimulated PBMCs were also equally effective in inducing concentration dependent tumor cell apoptosis in a broad panel of human tumor cells. The latter effect was due in part to the generation of NO and TNF-α since it was significantly abolished by L-NMMA, anti-TNF-α antibodies respectively and a combination thereof. A hierarchy of tumor cell sensitivity to these CFSs was as follows: lung carcinoma>osteogenic sarcoma>melanoma>breast carcinoma>neuroblastoma. Notably, SEG induced robust activation of NO/TNFα-dependent tumor cell apoptosis comparable to the other egcSEs and SEA despite TNF-α and IFN-γ levels that were 2 and 8 fold lower respectively than the other egcSEs and SEA. Thus, egcSEs produced by S. aureus induce NO synthase and the increased NO formation together with TNF-α appear to contribute to egcSE-mediated apoptosis against a broad panel of human tumor cells.

  17. Increasing the endogenous NO level causes catalase inactivation and reactivation of intercellular apoptosis signaling specifically in tumor cells.

    Science.gov (United States)

    Bauer, Georg

    2015-12-01

    Tumor cells generate extracellular superoxide anions and are protected against intercellular apoptosis-inducing HOCl- and NO/peroxynitrite signaling through the expression of membrane-associated catalase. This enzyme decomposes H2O2 and thus prevents HOCl synthesis. It efficiently interferes with NO/peroxynitrite signaling through oxidation of NO and decomposition of peroxynitrite. The regulatory potential of catalase at the crosspoint of ROS and RNS chemical biology, as well as its high local concentration on the outside of the cell membrane of tumor cells, establish tight control of intercellular signaling and thus prevent tumor cell apoptosis. Therefore, inhibition of catalase or its inactivation by singlet oxygen reactivate intercellular apoptosis-inducing signaling. Nitric oxide and peroxynitrite are connected with catalase in multiple and meaningful ways, as (i) NO can be oxidated by compound I of catalase, (ii) NO can reversibly inhibit catalase, (iii) peroxynitrite can be decomposed by catalase and (iv) the interaction between peroxynitrite and H2O2 leads to the generation of singlet oxygen that inactivates catalase. Therefore, modulation of the concentration of free NO through addition of arginine, inhibition of arginase, induction of NOS expression or inhibition of NO dioxygenase triggers an autoamplificatory biochemical cascade that is based on initial formation of singlet oxygen, amplification of superoxide anion/H2O2 and NO generation through singlet oxygen dependent stimulation of the FAS receptor and caspase-8. Finally, singlet oxygen is generated at sufficiently high concentration to inactivate protective catalase and to reactivate intercellular apoptosis-inducing ROS signaling. This regulatory network allows to establish several pathways for synergistic interactions, like the combination of modulators of NO metabolism with enhancers of superoxide anion generation, modulators of NO metabolism that act at different targets and between modulators of

  18. Multiple organ parenchymal cell apoptosis and its induction early after ischemia-reperfusion in rats and mice

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: To determine the evolutionary pattern of parenchymal cell apoptosis in multiple organs early after intestinal ischemia-reperfusion(I/R) and its induction mechanisms and the role of apoptosis in triggering SIRS/MODS. METHODS: An I/R model was reproduced by clipping and releasing the superior mesenteric artery in rats and mice. Flow cytometry, electron microscope, DNA agarose gel electrophoresis, TUNEL method, fluorescent and Gomori's silver-HE staining were used to detect apoptosis. Distribution features of apoptotic parenchymal cells in multiple organs were observed. Immunohistochemical staining of HSP 70 and Bcl-2 were performd to study the induction mechanisms of apoptosis.RESULTS and CONCLUSION: 1. Damage of the liver, lung, gut and kidney was appeared in early phase of I/R. The percentages of apoptosis in parenchyma organs increased progressively. The percentages of cell necrosis increased with the prolonged I/R duration. 2. Percentages of apoptosis were much higher near the central veins of liver lobules, in the outer medulla of the kidney, and the antimescenteric border of intestinal mucosal epithelium because of ischemia. 3. The expression of HSP 70 increased and Bcl-2 reduced in the areas mentioned above because of hypoperfusion. 4. Apoptosis of I/R hepatocytes, splenocytes and thymocytes was obviously increased after Kupffer cell blockage with GdCl3, showing the functional state of Kupffer cells may play an important role in SIRS/MODS.

  19. Tumor necrosis factor receptors support murine hematopoietic progenitor function in the early stages of engraftment.

    Science.gov (United States)

    Pearl-Yafe, Michal; Mizrahi, Keren; Stein, Jerry; Yolcu, Esma S; Kaplan, Ofer; Shirwan, Haval; Yaniv, Isaac; Askenasy, Nadir

    2010-07-01

    Tumor necrosis factor (TNF) family receptors/ligands are important participants in hematopoietic homeostasis, in particular as essential negative expansion regulators of differentiated clones. As a prominent injury cytokine, TNF-alpha has been traditionally considered to suppress donor hematopoietic stem and progenitor cell function after transplantation. We monitored the involvement of TNF receptors (TNF-R) 1 and 2 in murine hematopoietic cell engraftment and their inter-relationship with Fas. Transplantation of lineage-negative (lin(-)) bone marrow cells (BMC) from TNF receptor-deficient mice into wild-type recipients showed defective early engraftment and loss of durable hematopoietic contribution upon recovery of host hematopoiesis. Consistently, cells deficient in TNF receptors had reduced competitive capacity as compared to wild-type progenitors. The TNF receptors were acutely upregulated in bone marrow (BM)-homed donor cells (wild-type) early after transplantation, being expressed in 60%-75% of the donor cells after 6 days. Both TNF receptors were detected in fast cycling, early differentiating progenitors, and were ubiquitously expressed in the most primitive progenitors with long-term reconstituting potential (lin(-)c-kit(+) stem cell antigen (SCA)-1(+)). BM-homed donor cells were insensitive to apoptosis induced by TNF-alpha and Fas-ligand and their combination, despite reciprocal inductive cross talk between the TNF and Fas receptors. The engraftment supporting effect of TNF-alpha is attributed to stimulation of progenitors through TNF-R1, which involves activation of the caspase cascade. This stimulatory effect was not observed for TNF-R2, and this receptor did not assume redundant stimulatory function in TNFR1-deficient cells. It is concluded that TNF-alpha plays a tropic role early after transplantation, which is essential to successful progenitor engraftment.

  20. Histopathological and expression profiling studies of early tumor responses to near-infrared PDT treatment in SCID mice

    Science.gov (United States)

    Starkey, Jean R.; Rebane, Aleksander; Drobizhev, Mikhail A.; Meng, Fanqin; Gong, Aijun; Elliott, Aleisha; McInnerney, Kate; Pascucci, Elizabeth; Spangler, Charles W.

    2008-02-01

    A novel class of porphyrin-based near-infrared photodynamic therapy (PDT) sensitizers is studied. We achieve regressions of human small cell lung cancer (NCI-H69), non-small cell lung cancer (A 459) and breast cancer (MDAMB- 231) xenografts in SCID mice at significant tissue depth by irradiation with an amplified femtosecond pulsed laser at 800 nm wavelength. Significant tumor regressions were observed during the first 10-14 days post treatment. Tumor histopathology was consistent with known PDT effects, while no significant changes were noted in irradiated normal tissues. In vivo imaging studies using intravenous injections of fluorescent dextran demonstrated an early loss of tumor blood flow. RNA was isolated from NCI-H69 PDT treated SCID mouse xenografts and paired untreated xenografts at 4 hours post laser irradiation. Similarly RNA was isolated from PDT treated and untreated Lewis lung carcinomas growing in C57/Bl6 mice. Expression profiling was carried out using Affymetrix TM human and mouse GeneChips®. Cluster analysis of microarray expression profiling results demonstrated reproducible increases in transcripts associated with apoptosis, stress, oxygen transport and gene regulation in the PDT treated NCI-H69 samples. In addition, PDT treated Lewis lung carcinomas showed reproducible increases in transcripts associated with immune response and lipid biosynthesis. PDT treated C57/Bl6 mice developed cytotoxic T cell activity towards this tumor, while untreated tumor bearing mice failed to do so.

  1. MicroRNA-21 regulates the proliferation and apoptosis of cervical cancer cells via tumor necrosis factor-α.

    Science.gov (United States)

    Xu, Lin; Xu, Qian; Li, Xiwen; Zhang, Xiaoling

    2017-08-02

    The proliferation and apoptosis of tumor cells are regulated by a variety of microRNAs (miRs). miR‑21 can inhibit the apoptosis of cancer cells in vitro. Tumor necrosis factor α (TNF‑α) serves an important role in the induction of proliferation of cervical cancer cells. Previous studies have demonstrated that the expression level of miR‑21 is associated with TNF‑α expression in alveolar macrophages. However, to the best of our knowledge, whether miR‑21 regulates TNF‑α in cervical cells has not been reported. The present study was designed to investigate whether miR‑21 regulates TNF‑α expression, proliferation and apoptosis of cervical cancer cells. miR‑21, miR‑21 inhibitor and control miRNA were synthesized and transfected into HeLa cervical cancer cells. Reverse transcription‑quantitative polymerase chain reaction was used to measure the expression levels of miR‑21 and TNF‑α at the mRNA level. Western blotting was used to measure the expression levels of TNF‑α at the protein level. MTT assay and Hoechest‑33342 staining were used to measure the proliferation and apoptosis of HeLa cells. miR‑21 was identified to upregulate the mRNA and protein expression levels of TNF‑α. Furthermore, upregulation of TNF‑α enhanced the proliferation capability of HeLa cells. Changes in the expression levels of miR‑21 and TNF‑α did not significantly affect the apoptosis of Hela cells. In conclusion, the present study demonstrated that miR‑21 regulates the expression of TNF‑α in HeLa cells. Additionally, the expression level of TNF‑α was positively associated with the proliferation capability of Hela cells, but not apoptosis. Therefore, miR‑21 regulates the proliferation of HeLa cells through regulation of TNF‑α. These results provide novel potential therapeutic targets for the treatment of cervical cancer.

  2. Dietary Flavonoids Sensitize HeLa Cells to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL

    Directory of Open Access Journals (Sweden)

    Wojciech Król

    2008-01-01

    Full Text Available TRAIL is a promising candidate for cancer therapeutics that preferentially induces apoptosis in cancer cells. The combined treatment flavonoids with TRAIL might be promising as a chemoprevention and/or new therapy against malignant tumors. We examined the cytotoxic effect of dietary flavonoids in combination with TRAIL on HeLa cells. It was found that treatment with noncytotoxic concentration of some flavonoids significantly sensititizes to TRAIL induced death in HeLa cells. Our study demonstrated that flavone, apigenin and genistein markedly augmented TRAIL mediated cytotoxicity against HeLa, whereas kaempferol and quercetin produced no effect.

  3. Dietary flavonoids sensitize HeLa cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    Science.gov (United States)

    Szliszka, Ewelina; Czuba, Zenon P; Jernas, Katarzyna; Król, Wojciech

    2008-01-01

    TRAIL is a promising candidate for cancer therapeutics that preferentially induces apoptosis in cancer cells. The combined treatment flavonoids with TRAIL might be promising as a chemoprevention and/or new therapy against malignant tumors. We examined the cytotoxic effect of dietary flavonoids in combination with TRAIL on HeLa cells. It was found that treatment with noncytotoxic concentration of some flavonoids significantly sensititizes to TRAIL induced death in HeLa cells. Our study demonstrated that flavone, apigenin and genistein markedly augmented TRAIL mediated cytotoxicity against HeLa, whereas kaempferol and quercetin produced no effect.

  4. Mammalian Target of Rapamycin Inhibitors Induce Tumor Cell Apoptosis In Vivo Primarily by Inhibiting VEGF Expression and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Patrick Frost

    2013-01-01

    Full Text Available We found that rapalog mTOR inhibitors induce G1 arrest in the PTEN-null HS Sultan B-cell lymphoma line in vitro, but that administration of rapalogs in a HS Sultan xenograft model resulted in significant apoptosis, and that this correlated with induction of hypoxia and inhibition of neoangiogenesis and VEGF expression. Mechanistically, rapalogs prevent cap-dependent translation, but studies have shown that cap-independent, internal ribosome entry site (IRES-mediated translation of genes, such as c-myc and cyclin D, can provide a fail-safe mechanism that regulates tumor survival. Therefore, we tested if IRES-dependent expression of VEGF could likewise regulate sensitivity of tumor cells in vivo. To achieve this, we developed isogenic HS Sultan cell lines that ectopically express the VEGF ORF fused to the p27 IRES, an IRES sequence that is insensitive to AKT-mediated inhibition of IRES activity and effective in PTEN-null tumors. Mice challenged with p27-VEGF transfected tumor cells were more resistant to the antiangiogenic and apoptotic effects of the rapalog, temsirolimus, and active site mTOR inhibitor, pp242. Our results confirm the critical role of VEGF expression in tumors during treatment with mTOR inhibitors and underscore the importance of IRES activity as a resistance mechanism to such targeted therapy.

  5. Clitocine targets Mcl-1 to induce drug-resistant human cancer cell apoptosis in vitro and tumor growth inhibition in vivo.

    Science.gov (United States)

    Sun, Jian-Guo; Li, Hua; Li, Xia; Zeng, Xueli; Wu, Ping; Fung, Kwok-Pui; Liu, Fei-Yan

    2014-05-01

    Drug resistance is a major reason for therapy failure in cancer. Clitocine is a natural amino nucleoside isolated from mushroom and has been shown to inhibit cancer cell proliferation in vitro. In this study, we observed that clitocine can effectively induce drug-resistant human cancer cell apoptosis in vitro and inhibit tumor xenograft growth in vivo. Clitocine treatment inhibited drug-resistant human cancer cell growth in vitro in a dose- and time-dependent manner. Biochemical analysis revealed that clitocine-induced tumor growth inhibition is associated with activation of caspases 3, 8 and 9, PARP cleavage, cytochrome c release and Bax, Bak activation, suggesting that clitocine inhibits drug-resistant cancer cell growth through induction of apoptosis. Analysis of apoptosis regulatory genes indicated that Mcl-1 level was dramatically decreased after clitocine treatment. Over-expression of Mcl-1 reversed the activation of Bax and attenuated clitocine-induced apoptosis, suggesting that clitocine-induced apoptosis was at least partially by inducing Mcl-1 degradation to release Bax and Bak. Consistent with induction of apoptosis in vitro, clitocine significantly suppressed the drug-resistant hepatocellular carcinoma xenograft growth in vivo by inducing apoptosis as well as inhibiting cell proliferation. Taken together, our data demonstrated that clitocine is a potent Mcl-1 inhibitor that can effectively induce apoptosis to suppress drug-resistant human cancer cell growth both in vitro and in vivo, and thus holds great promise for further development as potentially a novel therapeutic agent to overcome drug resistance in cancer therapy.

  6. Canine distemper virus induces apoptosis in cervical tumor derived cell lines

    Directory of Open Access Journals (Sweden)

    Rajão Daniela S

    2011-06-01

    Full Text Available Abstract Apoptosis can be induced or inhibited by viral proteins, it can form part of the host defense against virus infection, or it can be a mechanism for viral spread to neighboring cells. Canine distemper virus (CDV induces apoptotic cells in lymphoid tissues and in the cerebellum of dogs naturally infected. CDV also produces a cytopathologic effect, leading to apoptosis in Vero cells in tissue culture. We tested canine distemper virus, a member of the Paramyxoviridae family, for the ability to trigger apoptosis in HeLa cells, derived from cervical cancer cells resistant to apoptosis. To study the effect of CDV infection in HeLa cells, we examined apoptotic markers 24 h post infection (pi, by flow cytometry assay for DNA fragmentation, real-time PCR assay for caspase-3 and caspase-8 mRNA expression, and by caspase-3 and -8 immunocytochemistry. Flow cytometry showed that DNA fragmentation was induced in HeLa cells infected by CDV, and immunocytochemistry revealed a significant increase in the levels of the cleaved active form of caspase-3 protein, but did not show any difference in expression of caspase-8, indicating an intrinsic apoptotic pathway. Confirming this observation, expression of caspase-3 mRNA was higher in CDV infected HeLa cells than control cells; however, there was no statistically significant change in caspase-8 mRNA expression profile. Our data suggest that canine distemper virus induced apoptosis in HeLa cells, triggering apoptosis by the intrinsic pathway, with no participation of the initiator caspase -8 from the extrinsic pathway. In conclusion, the cellular stress caused by CDV infection of HeLa cells, leading to apoptosis, can be used as a tool in future research for cervical cancer treatment and control.

  7. Paclitaxel-loaded PEG-PE-based micellar nanopreparations targeted with tumor specific landscape phage fusion protein enhance apoptosis and efficiently reduce tumors

    Science.gov (United States)

    Wang, Tao; Yang, Shenghong; Mei, Leslie A.; Parmar, Chirag K.; Gillespie, James W.; Praveen, Kulkarni P.; Petrenko, Valery A.; Torchilin, Vladimir P.

    2014-01-01

    In an effort to improve the therapeutic index of cancer chemotherapy, we developed an advanced nanopreparation based on the combination of landscape phage display to obtain new targeting ligands with micellar nanoparticles for tumor targeting of water insoluble neoplastic agents. With paclitaxel as a drug, this self-assembled nanopreparation composed of MCF-7-specific phage protein and polyethylene glycol phosphatidyl ethanolamine (PEG- PE) micelles showed selective toxicity to target cancer cells rather than non-target, non- cancer cells in vitro. In vivo, the targeted phage-micelles triggered a dramatic tumor reduction and extensive necrosis as a result of improved tumor delivery of paclitaxel. The enhanced anticancer effect was also verified by an enhanced apoptosis and reduced tumor cell proliferation following the treatment with the targeted micellar paclitaxel both in vitro and in vivo. The absence of hepatotoxicity and pathological changes in tissue sections of vital organs, together with maintenance of overall health of mice following the treatment, further support its translational potential as an effective and safe chemotherapy for improved breast cancer treatment. PMID:25239936

  8. A preliminary study of imaging paclitaxel-induced tumor apoptosis with 99Tcm-His10-Annexin V

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yu-min; WANG Feng; FANG Wei; HUA Zi-chun; WANG Zi-zheng; MENG Qing-le; YAN Jue

    2013-01-01

    Backgroud In tumors the process of apoptosis occurs over an interval of time after chemotherapy.It is important to determine the best time for detecting apoptosis by in vivo imaging.In this study,we evaluated the dynamics and feasibility of imaging non-small cell lung cancer (NSCLC) apoptosis induced by paclitaxel treatment using a 99Tcm-labeled Annexin V recombinant with ten consecutive histidines (His10-Annexin V) in a mouse model.Methods 99Tcm-His10-Annexin V was prepared by one step direct labeling; radio-chemical purity (RCP) and radio-stability was tested.The binding of 99Tcm-His10-Annexin V to apoptotic cells was validated in vitro using camptothecin-induced Jurkat cells.In vivo bio-distribution was determined in mice by dissection.The human H460 NSCLC tumor cell line (H460) tumor-bearing mice were treated with intravenous paclitaxel 24,48 and 72 hours later.99Tcm-His10-Annexin V was injected intravenously,and planar images were acquired at 2,4 and 6 hours post-injection on a dual-head gamma camera fitted with a pinhole collimator.Tumor-to-normal tissue ratios (T/NT) were calculated by ROI analysis and they reflected specific binding of 99Tcm-His10-Annexin V.Mice were sacrificed after imaging.Caspase-3,as the apoptosis detector,was determined by flow cytometry,and DNA fragmentation was analyzed by the terminal deoxynucleotidytransferase mediated dUTP nick-end labeling (TUNEL) assay.Nonspecific accumulation of protein was estimated using bovine serum albumin (BSA).The imaging data were correlated with TUNEL-positive nuclei and caspase-3 activity.Results 99Tcm-His10-Annexin V had a RCP >98% and high stability 2 hours after radio-labeling,and it could bind to apoptotic cells with high affinity.Bio-distribution of 99Tcm-His10-Annexin V showed predominant uptake in kidney,relatively low uptake in myocardium,liver and gastrointestinal tract,and rapid clearance from blood and kidney was observed.The T/NT was significantly increased after paclitaxel treatment

  9. A dynamical model of apoptosis and its role in tumor progression

    Science.gov (United States)

    Laise, Pasquale; Fanelli, Duccio; Arcangeli, Annarosa

    2012-04-01

    Apoptosis is a biological process crucial for the development and maintenance of healthy living organism. A deregulated apoptosis underlies many diseases, including cancer. Under hypoxic conditions, p53 starts to accumulate and competes with HIF-1 for their common binding target p300. This can lead to the repression of HIF-1, and trigger the apoptotic derive. In addition apoptosis is accompanied by an enhancement of potassium (K +) fluxes, which in turn create a low-potassium intracellular micro-environment, which cooperates to the activation of caspases, the final actors of the apoptotic cascade. Based on this scenario, we elaborate a dynamical model aimed at resolving the complex dynamical interplay between the aforementioned processes. In the ideal continuum limit, the model reduces to a system of coupled differential equations, whose dynamics is analytically inspected.

  10. Kaempferol Promotes Apoptosis in Human Bladder Cancer Cells by Inducing the Tumor Suppressor, PTEN

    Directory of Open Access Journals (Sweden)

    Liqun Zhou

    2013-10-01

    Full Text Available Kaempferol (Kae, a natural flavonoid, is widely distributed in fruits and vegetables. Previous studies have identified Kae as a possible cancer preventive and therapeutic agent. We found Kae to exhibit potent antiproliferation and anti-migration effects in human bladder cancer EJ cells. Kaempferol robustly induced apoptosis in EJ cells in a dose-dependent manner, as evidenced by increased cleavage of caspase-3. Furthermore, we found Kae-induced apoptosis in EJ cells to be associated with phosphatase and the tensin homolog deleted on the chromosome 10 (PTEN/PI3K/Akt pathway. Kae significantly increased PTEN and decreased Akt phosphorylation. Kae-induced apoptosis was partially attenuated in PTEN-knockdown cells. Our findings indicate that Kae could be an alternative medicine for bladder cancer, based on a PTEN activation mechanism.

  11. Histone H4 deacetylation plays a critical role in early gene silencing during neuronal apoptosis

    Directory of Open Access Journals (Sweden)

    Schlamp Cassandra L

    2010-05-01

    Full Text Available Abstract Background Silencing of normal gene expression occurs early in the apoptosis of neurons, well before the cell is committed to the death pathway, and has been extensively characterized in injured retinal ganglion cells. The causative mechanism of this widespread change in gene expression is unknown. We investigated whether an epigenetic change in active chromatin, specifically histone H4 deacetylation, was an underlying mechanism of gene silencing in apoptotic retinal ganglion cells (RGCs following an acute injury to the optic nerve. Results Histone deacetylase 3 (HDAC3 translocates to the nuclei of dying cells shortly after lesion of the optic nerve and is associated with an increase in nuclear HDAC activity and widespread histone deacetylation. H4 in promoters of representative genes was rapidly and indiscriminately deacetylated, regardless of the gene examined. As apoptosis progressed, H4 of silenced genes remained deacetylated, while H4 of newly activated genes regained, or even increased, its acetylated state. Inhibition of retinal HDAC activity with trichostatin A (TSA was able to both preserve the expression of a representative RGC-specific gene and attenuate cell loss in response to optic nerve damage. Conclusions These data indicate that histone deacetylation plays a central role in transcriptional dysregulation in dying RGCs. The data also suggests that HDAC3, in particular, may feature heavily in apoptotic gene silencing.

  12. The role of apoptosis in early embryonic development of the adenohypophysis in rats

    Directory of Open Access Journals (Sweden)

    Gedrange Tomas

    2008-07-01

    Full Text Available Abstract Background Apoptosis is involved in fundamental processes of life, like embryonic development, tissue homeostasis, or immune defense. Defects in apoptosis cause or contribute to developmental malformation, cancer, and degenerative disorders. Methods The developing adenohypophysis area of rat fetuses was studied at the embryonic stage 13.5 (gestational day for apoptotic and proliferative cell activities using histological serial sections. Results A high cell proliferation rate was observed throughout the adenohypophysis. In contrast, apoptotic cells visualized by evidence of active caspase-3, were detected only in the basal epithelial cones as an introducing event for fusion and closure of the pharyngeal roof. Conclusion We can clearly show an increasing number of apoptotic events only at the basic fusion sides of the adenohypophysis as well as in the opening region of this organ. Apoptotic destruction of epithelial cells at the basal cones of the adenohypophysis begins even before differentiation of the adenohypophyseal cells and their contact with the neurohypophysis. In early stages of development, thus, apoptotic activity of the adenohypophysis is restricted to the basal areas mentioned. In our test animals, the adenohypophysis develops after closure of the anterior neuroporus.

  13. Phytochemical Compositions of Immature Wheat Bran, and Its Antioxidant Capacity, Cell Growth Inhibition, and Apoptosis Induction through Tumor Suppressor Gene

    Directory of Open Access Journals (Sweden)

    Mi Jeong Kim

    2016-09-01

    Full Text Available The purpose of this study was to investigate the phytochemical compositions and antioxidant capacity, cell growth inhibition, and apoptosis induction in extracts of immature wheat bran. Immature wheat bran (IWB was obtained from immature wheat harvested 10 days earlier than mature wheat. The phytochemical compositions of bran extract samples were analyzed by ultra-high performance liquid chromatography. The total ferulic acid (3.09 mg/g and p-coumaric acid (75 µg/g in IWB were significantly higher than in mature wheat bran (MWB, ferulic acid: 1.79 mg/g; p-coumaric acid: 55 µg/g. The oxygen radical absorbance capacity (ORAC: 327 µM Trolox equivalents (TE/g and cellular antioxidant activity (CAA: 4.59 µM Quercetin equivalents (QE/g of the IWB were higher than those of the MWB (ORAC: 281 µM TE/g; CAA: 0.63 µM QE/g. When assessing cell proliferation, the IWB extracts resulted in the lowest EC50 values against HT-29 (18.9 mg/mL, Caco-2 (7.74 mg/mL, and HeLa cells (8.17 mg/mL among bran extract samples. Additionally, the IWB extracts increased the gene expression of p53 and PTEN (tumor suppressor genes in HT-29 cells, indicating inhibited cell growth and induced apoptosis through tumor suppressor genes.

  14. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo.

    Science.gov (United States)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming

    2014-01-10

    Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  15. PI3K/Akt signaling mediated Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Baobiao; Li, Yuan; Li, Zhengwei; Qin, Haihui; Sun, Qingzeng; Zhang, Fengfei; Shen, Yang; Shi, Yingchun [Department of Surgery, The Children' s Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006 (China); Wang, Rong, E-mail: wangrong2008163@163.com [Department of Ultrasonography, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province 221006 (China)

    2015-08-21

    Accumulating evidence has shown that PI3K/Akt pathway is frequently hyperactivated in osteosarcoma (OS) and contributes to tumor initiation and progression. Altered phenotype of glucose metabolism is a key hallmark of cancer cells including OS. However, the relationship between PI3K/Akt pathway and glucose metabolism in OS remains largely unexplored. In this study, we showed that elevated Hexokinase-2 (HK2) expression, which catalyzes the first essential step of glucose metabolism by conversion of glucose into glucose-6-phosphate, was induced by activated PI3K/Akt signaling. Immunohistochemical analysis showed that HK2 was overexpressed in 83.3% (25/30) specimens detected and was closely correlated with Ki67, a cell proliferation index. Silencing of endogenous HK2 resulted in decreased aerobic glycolysis as demonstrated by reduced glucose consumption and lactate production. Inhibition of PI3K/Akt signaling also suppressed aerobic glycolysis and this effect can be reversed by reintroduction of HK2. Furthermore, knockdown of HK2 led to increased cell apoptosis and reduced ability of colony formation; meanwhile, these effects were blocked by 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor through its actions on hexokinase, indicating that HK2 functions in cell apoptosis and growth were mediated by altered aerobic glycolysis. Taken together, our study reveals a novel relationship between PI3K/Akt signaling and aerobic glycolysis and indicates that PI3K/Akt/HK2 might be potential therapeutic approaches for OS. - Highlights: • PI3K/Akt signaling contributes to elevated expression of HK2 in osteosarcoma. • HK2 inhibits cell apoptosis and promotes tumor growth through enhanced Warburg effect. • Inhibition of glycolysis blocks the oncogenic activity of HK2.

  16. Distinct domains of M-T2, the myxoma virus tumor necrosis factor (TNF) receptor homolog, mediate extracellular TNF binding and intracellular apoptosis inhibition.

    OpenAIRE

    Schreiber, M; Sedger, L; McFadden, G

    1997-01-01

    The myxoma virus tumor necrosis factor (TNF) receptor homolog, M-T2, is expressed both as a secreted glycoprotein that inhibits the cytolytic activity of rabbit TNF-alpha and as an endoglycosidase H-sensitive intracellular species that prevents myxoma virus-infected CD4+ T lymphocytes from undergoing apoptosis. To compare the domains of M-T2 mediating extracellular TNF inhibition and intracellular apoptosis inhibition, recombinant myxoma viruses expressing nested C-terminal truncations of M-T...

  17. Characterization of a Novel Anti-DR5 Monoclonal Antibody WD1 with the Potential to Induce Tumor Cell Apoptosis

    Institute of Scientific and Technical Information of China (English)

    Jing Wang; Beifen Shen; Yuanfang Ma; Yan Li; Zhou Lin; Chunxia Qiao; Ming Lv; Ming Yu; He Xiao; Qingyang Wang; Liyan Wang; Jiannan Feng

    2008-01-01

    TNF-related apoptosis. inducing ligand (TRAIL) is a TNF family member capable of inducing apoptosis. Death receptor 5(DR 51 is a key receptor of TRAIL and plays an important role in TRAIL-induced apoptosis. To prepare monoclonal antibodies (mAbs) against DR5, cDNA encoding soluble DR5(sDR5)was firstly amplified by revere transcriptase. polymerase chain reaction (RT-PCR) with specific primers, and then inserted into a prokaryotic expression vector pET-30a. The recombinant plasmid Was expressed in Escherichia coil strain BL21(DE3), and sDR5 was purified by nickel affinity chromatography. As an antigen. sDR5 Was used to immunize mice. Hybridomas secreting antibodies against sDR5 were identified. One positive clone Was selected to produce antibody, WD1. ELISA and immunofluorescence demonstrated that WD1 could bind recombinant sDR5 and membrane bound DR5 (mDR5)on Jurkat and Molt-4 cells. ATPLite assays showed that Jurkat and Molt-4 cells were sensitive to the antibody in a dose dependent manner. The Annexin V/PI assays and Giemsa's staining both showed that WD1 could induce Jurkat cell apoptosis efficiently. Transient transfection of 293T cells and indirect immunofluorescence assay demonstrated that mAb(WD1)couldn't cross. react with DR4.Our findings indicated that the novel antibody, WD1 could act as a direct agonist, bind DR5 characteristically, and initiate efficient apoptotic signaling and tumor regression. Thus, WD1 would be a leading candidate for potential cancer therapeutics. Cellular & Molecular Immunology. 2008;5(1):55-60.

  18. Downregulation of protein kinase CK2 activity facilitates tumor necrosis factor-α-mediated chondrocyte death through apoptosis and autophagy.

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    Full Text Available Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence

  19. Berberine induces caspase-independent cell death in colon tumor cells through activation of apoptosis-inducing factor.

    Directory of Open Access Journals (Sweden)

    Lihong Wang

    Full Text Available Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IMCE cells carrying the Apc(min mutation, and of normal colon epithelial cells, namely young adult mouse colonic epithelium (YAMC cells. Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-inducing factor (AIF release from mitochondria and nuclear translocation in a ROS production-dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, two targets of ROS production in cells, cathepsin B release from lysosomes and PARP activation were induced by berberine. Blockage of either of these pathways decreased berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS production leads to cathepsin B release and PARP activation-dependent AIF activation, resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory effects of berberine on colon tumor cell growth.

  20. Total Alkaloids of Sophora alopecuroides Inhibit Growth and Induce Apoptosis in Human Cervical Tumor HeLa Cells In vitro

    Science.gov (United States)

    Li, Jian-Guang; Yang, Xiao-Yi; Huang, Wei

    2016-01-01

    Background: Uygur females of Xinjiang have the higher incidence of cervical tumor in the country. Alkaloids are the major active ingredients in Sophora alopecuroides, and its antitumor effect was recognized by the medical profession. Xinjiang is the main site of S. alopecuroides production in China so these plants are abundant in the region. Studies on the antitumor properties of total alkaloids of S. alopecuroides (TASA) can take full use of the traditional folk medicine in antitumor unique utility. Objectives: To explore the effects of TASA on proliferation and apoptosis of human cervical tumor HeLa cells in vitro. Materials and Methods: TASA was extracted, purified, and each monomer component was analyzed by high-performance liquid chromatography. The effect of TASA at different concentrations on the survival of HeLa cells was determined after 24 h using the Cell Counting Kit-8. In addition, cells were photographed using an inverted microscope to document morphological changes. The effect of TASA on apoptotic rate of HeLa cells was assessed by flow cytometry. Results: Monomers of TASA were found to be sophoridine, matrine, and sophocarpine. On treatment with 8.75 mg/ml of TASA, more than 50% of HeLa cells died, and cell death rate increased further with longer incubation. The apoptotic rates of HeLa cells in the experimental groups were 16.0% and 33.3% at concentrations of 6.25 mg/ml and 12.50 mg/ml, respectively. Conclusion: TASA can induce apoptosis in cervical tumor HeLa cells, and it has obvious inhibitory effects on cell growth. SUMMARY Total alkaloids of Sophora alopecuroides (TASA) exhibits anti-human cervical tumor propertiesMonomer component of TASA was analyzed by high-performance liquid chromatography, and its main effect component are sophoridine, matrine, and sophocarpineTASA inhibits growth and induces apoptosis in HeLa cells. Abbreviations used: TASA: Total alkaloids of S. alopecuroides, CCK-8: Cell Counting Kit-8, FBS: Fetal bovine serum, PBS

  1. Myeloid cell leukemia-1 is a key molecular target for mithramycin A-induced apoptosis in androgen-independent prostate cancer cells and a tumor xenograft animal model.

    Science.gov (United States)

    Choi, Eun-Sun; Jung, Ji-Youn; Lee, Jin-Seok; Park, Jong-Hwan; Cho, Nam-Pyo; Cho, Sung-Dae

    2013-01-01

    Mithramycin A (Mith) is a natural polyketide that has been used in multiple areas of research including apoptosis of various cancer cells. Here, we examined the critical role of Mith in apoptosis and its molecular mechanism in DU145 and PC3 prostate cancer cells and tumor xenografts. Mith decreased cell growth and induced apoptosis in DU145 and PC-3 cells. Myeloid cell leukemia-1 (Mcl-1) was over-expressed in both cell lines compared to RWPE1 cells. Mith inhibited Mcl-1 protein expression in both cells, but only altered Mcl-1 mRNA levels in PC-3 cells. We also found that Mith reduced Mcl-1 protein levels through both proteasome-dependent protein degradation and the inhibition of protein synthesis in DU145 cells. Studies using siRNA confirmed that the knockdown of Mcl-1 induced apoptosis. Mith significantly suppressed TPA-induced neoplastic cell transformation through the down-regulation of the Mcl-1 protein in JB6 cells, and suppressed the transforming activity of both cell types. Mith also inhibited tumor growth and Mcl-1 levels, in addition to inducing apoptosis, in athymic nude mice bearing DU145 cell xenografts without affecting five normal organs. Therefore, Mith inhibits cell growth and induces apoptosis by suppressing Mcl-1 in both prostate cancer cells and xenograft tumors, and thus is a potent anticancer drug candidate for prostate cancer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Epstein-Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells

    Institute of Scientific and Technical Information of China (English)

    Qin FU; Chen HE; Zheng-rong MAO

    2013-01-01

    Epstein-Barr virus (EBV),a human gammaherpesvirus carried by more than 90% of the world's population,is associated with malignant tumors such as Burkitt's lymphoma (BL),Hodgkin lymphoma,post-transplant lymphoma,extra-nodal natural killer/T cell lymphoma,and nasopharyngeal and gastric carcinomas in immune-compromised patients.In the process of infection,EBV faces challenges:the host cell environment is harsh,and the survival and apoptosis of host cells are precisely regulated.Only when host cells receive sufficient survival signals may they immortalize.To establish efficiently a lytic or long-term latent infection,EBV must escape the host cell immunologic mechanism and resist host cell apoptosis by interfering with multiple signaling pathways.This review details the apoptotic pathway disrupted by EBV in EBV-infected cells and describes the interactions of EBV gene products with host cellular factors as well as the function of these factors,which decide the fate of the host cell.The relationships between other EBV-encoded genes and proteins of the B-cell leukemia/lymphoma (Bcl) family are unknown.Still,EBV seems to contribute to establishing its own latency and the formation of tumors by modifying events that impact cell survival and proliferation as well as the immune response of the infected host.We discuss potential therapeutic drugs to provide a foundation for further studies of tumor pathogenesis aimed at exploiting novel therapeutic strategies for EBV-associated diseases.

  3. PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53

    DEFF Research Database (Denmark)

    Zandi, Roza; Selivanova, Galina; Christensen, Camilla Laulund;

    2011-01-01

    Small cell lung cancer (SCLC) is a highly malignant disease with poor prognosis, necessitating the need to develop new and efficient treatment modalities. PRIMA-1(Met) (p53-dependent reactivation of massive apoptosis), also known as APR-246, is a small molecule, which restores tumor suppressor...... function to mutant p53 and induces cancer cell death in various cancer types. Since p53 is mutated in more than 90% of SCLC, we investigated the ability of PRIMA-1(Met) to induce apoptosis and inhibit tumor growth in SCLC with different p53 mutations....

  4. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    OpenAIRE

    Suhail Mahmoud M; Wu Weijuan; Cao Amy; Mondalek Fadee G; Fung Kar-Ming; Shih Pin-Tsen; Fang Yu-Ting; Woolley Cole; Young Gary; Lin Hsueh-Kung

    2011-01-01

    Abstract Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to opt...

  5. Radiation Induced Apoptosis of Murine Bone Marrow Cells Is Independent of Early Growth Response 1 (EGR1)

    Science.gov (United States)

    Oben, Karine Z.; Gachuki, Beth W.; Alhakeem, Sara S.; McKenna, Mary K.; Liang, Ying; St. Clair, Daret K.; Rangnekar, Vivek M.; Bondada, Subbarao

    2017-01-01

    An understanding of how each individual 5q chromosome critical deleted region (CDR) gene contributes to malignant transformation would foster the development of much needed targeted therapies for the treatment of therapy related myeloid neoplasms (t-MNs). Early Growth Response 1 (EGR1) is a key transcriptional regulator of myeloid differentiation located within the 5q chromosome CDR that has been shown to regulate HSC (hematopoietic stem cell) quiescence as well as the master regulator of apoptosis—p53. Since resistance to apoptosis is a hallmark of malignant transformation, we investigated the role of EGR1 in apoptosis of bone marrow cells; a cell population from which myeloid malignancies arise. We evaluated radiation induced apoptosis of Egr1+/+ and Egr1-/- bone marrow cells in vitro and in vivo. EGR1 is not required for radiation induced apoptosis of murine bone marrow cells. Neither p53 mRNA (messenger RNA) nor protein expression is regulated by EGR1 in these cells. Radiation induced apoptosis of bone marrow cells by double strand DNA breaks induced p53 activation. These results suggest EGR1 dependent signaling mechanisms do not contribute to aberrant apoptosis of malignant cells in myeloid malignancies. PMID:28081176

  6. Inhibition of fatty acid synthase by Orlistat accelerates gastric tumor cell apoptosis in culture and increases survival rates in gastric tumor bearing mice in vivo.

    Science.gov (United States)

    Dowling, Shawn; Cox, James; Cenedella, Richard J

    2009-06-01

    Orlistat, an anti-obesity drug, is a potent inhibitor of fatty acid synthase (FAS) and tumor cell viability. It can also induce apoptotic cancer cell death. We examined the effects of Orlistat on cultured NUGC-3 gastric cancer cells. We identified that inhibition of FAS via Orlistat exposure results in rapid cellular damage preceded by a direct but short-lived autophagic response. The Orlistat induced damage can be reversed through the addition of lipid containing media in a process that normally leads to cell death. By limiting exogenous lipid availability and inhibiting FAS using Orlistat, we demonstrated both a greater sensitivity and amplified cancer cell death by activation of apoptosis. We have identified "windows of opportunity" at which time apoptosis can be aborted and cells can be reversed from the death pathway. However, when challenged beyond the window of recovery, cell death becomes all but certain as the ability to be rescued decreases considerably. In vivo examination of Orlistat's ability to inhibit gastrointestinal cancer was examined using heterozygous male C57BL/6J APC-Min mice, which spontaneously develop a fatal gastrointestinal cancer. Mice were fed either a high fat (11%) or low fat (1.2%) diet containing no Orlistat or 0.5 mg Orlistat/g of chow. Orlistat treated mice fed the high fat, but not low fat diet, survived 7-10% longer than the untreated controls.

  7. Proficient Feature Extraction Strategy for Performance Enhancement of NN Based Early Breast Tumor Detection

    Directory of Open Access Journals (Sweden)

    Khondker Jahid Reza

    2014-01-01

    Full Text Available Ultra Wideband is one of the promising microwave imaging techniques for breast tumor prognosis. The basic principle of tumor detection depends on the dielectric properties discrepancies between healthy and tumorous tissue. Usually, the tumor affected tissues scatter more signal than the healthy one and are used for early tumor detection through received pulses. Feedforward backpropagation neural network(NN was so far used for some research works by showing its detection efficiency up to 1mm (radius size with 95.8% accuracy. This paper introduces an efficient feature extraction method to further improve the performance by considering four main features of backpropagation NN. This performance is being increased to 99.99%. This strategy is well justified for classifying the normal and tumor affected breast with 100% accuracy in its early stage. It also enhances the training and testing performances by reducing the required duration. The overall performance is 99.99% verified by using thirteen different tumor sizes.

  8. Early Decrease in Respiration and Uncoupling Event Independent of Cytochrome c Release in PC12 Cells Undergoing Apoptosis

    Science.gov (United States)

    Berghella, Libera; Ferraro, Elisabetta

    2012-01-01

    Cytochrome c is a key molecule in mitochondria-mediated apoptosis. It also plays a pivotal role in cell respiration. The switch between these two functions occurs at the moment of its release from mitochondria. This process is therefore extremely relevant for the fate of the cell. Since cytochrome c mediates respiration, we studied the changes in respiratory chain activity during the early stages of apoptosis in order to contribute to unravel the mechanisms of cytochrome c release. We found that, during staurosporine (STS)- induced apoptosis in PC12 cells, respiration is affected before the release of cytochrome c, as shown by a decrease in the endogenous uncoupled respiration and an uncoupling event, both occurring independently of cytochrome c release. The decline in the uncoupled respiration occurs also upon Bcl-2 overexpression (which inhibits cytochrome c release), while the uncoupling event is inhibited by Bcl-2. We also observed that the first stage of nuclear condensation during STS-induced apoptosis does not depend on the release of cytochrome c into the cytosol and is a reversibile event. These findings may contribute to understand the mechanisms affecting mitochondria during the early stages of apoptosis and priming them for the release of apoptogenic factors. PMID:22666257

  9. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chun-Ru [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Liao, Wei-Siang [Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Wu, Ya-Hui [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Murugan, Kaliyappan [Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan (China); Chen, Chinpiao, E-mail: chinpiao@mail.ndhu.edu.tw [Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan (China); Chao, Jui-I, E-mail: jichao@faculty.nctu.edu.tw [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 30068, Taiwan (China)

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy.

  10. Quercetin, a Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis

    Science.gov (United States)

    Srivastava, Shikha; Somasagara, Ranganatha R.; Hegde, Mahesh; Nishana, Mayilaadumveettil; Tadi, Satish Kumar; Srivastava, Mrinal; Choudhary, Bibha; Raghavan, Sathees C.

    2016-01-01

    Naturally occurring compounds are considered as attractive candidates for cancer treatment and prevention. Quercetin and ellagic acid are naturally occurring flavonoids abundantly seen in several fruits and vegetables. In the present study, we evaluate and compare antitumor efficacies of quercetin and ellagic acid in animal models and cancer cell lines in a comprehensive manner. We found that quercetin induced cytotoxicity in leukemic cells in a dose-dependent manner, while ellagic acid showed only limited toxicity. Besides leukemic cells, quercetin also induced cytotoxicity in breast cancer cells, however, its effect on normal cells was limited or none. Further, quercetin caused S phase arrest during cell cycle progression in tested cancer cells. Quercetin induced tumor regression in mice at a concentration 3-fold lower than ellagic acid. Importantly, administration of quercetin lead to ~5 fold increase in the life span in tumor bearing mice compared to that of untreated controls. Further, we found that quercetin interacts with DNA directly, and could be one of the mechanisms for inducing apoptosis in both, cancer cell lines and tumor tissues by activating the intrinsic pathway. Thus, our data suggests that quercetin can be further explored for its potential to be used in cancer therapeutics and combination therapy. PMID:27068577

  11. Salinomycin possesses anti-tumor activity and inhibits breast cancer stem-like cells via an apoptosis-independent pathway.

    Science.gov (United States)

    An, Hyunsook; Kim, Ji Young; Lee, Nahyun; Cho, Youngkwan; Oh, Eunhye; Seo, Jae Hong

    2015-10-30

    Cancer stem cells (CSCs) play important roles in the formation, growth and recurrence of tumors, particularly following therapeutic intervention. Salinomycin has received recent attention for its ability to target breast cancer stem cells (BCSCs), but the mechanisms of action involved are not fully understood. In the present study, we sought to investigate the mechanisms responsible for salinomycin's selective targeting of BCSCs and its anti-tumor activity. Salinomycin suppressed cell viability, concomitant with the downregulation of cyclin D1 and increased p27(kip1) nuclear accumulation. Mammosphere formation assays revealed that salinomycin suppresses self-renewal of ALDH1-positive BCSCs and downregulates the transcription factors Nanog, Oct4 and Sox2. TUNEL analysis of MDA-MB-231-derived xenografts revealed that salinomycin administration elicited a significant reduction in tumor growth with a marked downregulation of ALDH1 and CD44 levels, but seemingly without the induction of apoptosis. Our findings shed further light on the mechanisms responsible for salinomycin's effects on BCSCs.

  12. Association between Up-regulation of Fas Ligand Expression and Apoptosis of Tumor-infiltrating Lymphocytes in Human Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    CHENG Bo

    2006-01-01

    In order to study the significance of FasL expression in immune escape of breast cancer,FasL protein expression and the number of tumor-infiltrating lymphocytes (TILs) in 40 specimens of breast cancer were detected by immunohistochemitry. The expression of FasL mRNA was measured by in situ hybridization in the consecutive tissue slices of 40 breast cancers respectively. By using terminal deoxynucleotidyl transferase-mediaed dUTP nick end labeling (TUNEL), apoptotic cells were detected in 40 specimens of breast cancer. The expression of FasL was detected in all 40 specimens to varying degrees. In the consecutive tissue slices, the location of expression of FasL protein corresponded with that of FasL mRNA. In those with FasL extensive expression, the number of TILs was less (P<0.05), the apoptotic index (AI) of TILs was higher and the AI of tumor cells was lower (P<0.01) than those with FasL weak expression respectively. The AI of TILs was correlated with that of tumor cells (r=-0.629, P<0.01). In conclusion, breast cancer cells can induce the apoptosis of TILs through the expression of FasL, which can counterattack the immune system. This may be a mechanism of immune evasion in breast cancer.

  13. Apoptosis-related genes induced in response to ketamine during early life stages of zebrafish.

    Science.gov (United States)

    Félix, Luís M; Serafim, Cindy; Valentim, Ana M; Antunes, Luís M; Matos, Manuela; Coimbra, Ana M

    2017-09-05

    Increasing evidence supports that ketamine, a widely used anaesthetic, potentiates apoptosis during development through the mitochondrial pathway of apoptosis. Defects in the apoptotic machinery can cause or contribute to the developmental abnormalities previously described in ketamine-exposed zebrafish. The involvement of the apoptotic machinery in ketamine-induced teratogenicity was addressed by assessing the apoptotic signals at 8 and 24 hpf following 20min exposure to ketamine at three stages of early zebrafish embryo development (256 cell, 50% epiboly and 1-4 somites stages). Exposure at the 256-cell stage to ketamine induced an up-regulation of casp8 and pcna at 8 hpf while changes in pcna at the mRNA level were observed at 24 hpf. After the 50% epiboly stage exposure, the mRNA levels of casp9 were increased at 8 and 24 hpf while aifm1 was affected at 24 hpf. Both tp53 and pcna expressions were increased at 8 hpf. After exposure during the 1-4 somites stage, no meaningful changes on transcript levels were observed. The distribution of apoptotic cells and the caspase-like enzymatic activities of caspase-3 and -9 were not affected by ketamine exposure. It is proposed that ketamine exposure at the 256-cell stage induced a cooperative mechanism between proliferation and cellular death while following exposure at the 50% epiboly, a p53-dependent and -independent caspase activation may occur. Finally, at the 1-4 somites stage, the defence mechanisms are already fully in place to protect against ketamine-insult. Thus, ketamine teratogenicity seems to be dependent on the functional mechanisms present in each developmental stage. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Early skin toxicity predicts better outcomes, and early tumor shrinkage predicts better response after cetuximab treatment in advanced colorectal cancer.

    Science.gov (United States)

    Kogawa, T; Doi, A; Shimokawa, M; Fouad, T M; Osuga, T; Tamura, F; Mizushima, T; Kimura, T; Abe, S; Ihara, H; Kukitsu, T; Sumiyoshi, T; Yoshizaki, N; Hirayama, M; Sasaki, T; Kawarada, Y; Kitashiro, S; Okushiba, S; Kondo, H; Tsuji, Y

    2015-03-01

    Cetuximab-containing treatments for metastatic colorectal cancer have been shown to have higher overall response rates and longer progression-free and overall survival than other systemic therapies. Cetuximab-related manifestations, including severe skin toxicity and early tumor shrinkage, have been shown to be predictors of response to cetuximab. We hypothesized that early skin toxicity is a predictor of response and better outcomes in patients with advanced colorectal carcinoma. We retrospectively evaluated 62 patients with colorectal adenocarcinoma who had unresectable tumors and were treated with cetuximab in our institution. Skin toxicity grade was evaluated on each treatment day. Tumor size was evaluated using computed tomography prior to treatment and 4-8 weeks after the start of treatment with cetuximab.Patients with early tumor shrinkage after starting treatment with cetuximab had a significantly higher overall response rate (P = 0.0001). Patients with early skin toxicity showed significantly longer overall survival (P = 0.0305), and patients with higher skin toxicity grades had longer progression-free survival (P = 0.0168).We have shown that early tumor shrinkage, early onset of skin toxicity, and high skin toxicity grade are predictors of treatment efficacy and/or outcome in patients with advanced colorectal carcinoma treated with cetuximab.

  15. Midazolam induces apoptosis in MA-10 mouse Leydig tumor cells through caspase activation and the involvement of MAPK signaling pathway

    Directory of Open Access Journals (Sweden)

    So EC

    2014-02-01

    Full Text Available Edmund Cheung So,1,2 Yu-Xuan Lin,3 Chi Hao Tseng,1 Bo-Syong Pan,3 Ka-Shun Cheng,2 Kar-Lok Wong,2 Lyh-Jyh Hao,4 Yang-Kao Wang,5 Bu-Miin Huang2 1Department of Anesthesia, Tainan Municipal An Nan Hospital, China Medical University, Tainan, Taiwan; 2Department of Anesthesia, China Medical University, Taichung, Taiwan; 3Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan; 4Department of Internal Medicine, Division of Endocrinology and Metabolism, Kaohsiung Veteran General Hospital Tainan Branch Tainan, Taiwan; 5Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan Purpose: The present study aims to investigate how midazolam, a sedative drug for clinical use with cytotoxicity on neuronal and peripheral tissues, induced apoptosis in MA-10 mouse Leydig tumor cells. Methods: The apoptotic effect and underlying mechanism of midazolam to MA-10 cells were investigated by flow cytometry assay and Western blotting methods. Results: Data showed that midazolam induced the accumulation of the MA-10 cell population in the sub-G1 phase and a reduction in the G2/M phase in a time- and dose-dependent manner, suggesting an apoptotic phenomenon. Midazolam could also induce the activation of caspase-8, -9, and -3 and poly (ADP-ribose polymerase proteins. There were no changes in the levels of Bax and cytochrome-c, whereas Bid was significantly decreased after midazolam treatment. Moreover, midazolam decreased both pAkt and Akt expression. In addition, midazolam stimulated the phosphorylation of p38 and c-Jun NH2-terminal kinase but not extracellular signal-regulated kinase. Conclusion: Midazolam could induce MA-10 cell apoptosis through the activation of caspase cascade, the inhibition of pAkt pathway, and the induction of p38 and c-Jun NH2-terminal kinase pathways. Keywords: midazolam, apoptosis, MA-10 cell, caspase, Akt, MAPKs

  16. Retracted: Knockdown of tumor protein D52-like 2 induces cell growth inhibition and apoptosis in oral squamous cell carcinoma.

    Science.gov (United States)

    2016-03-01

    The above article, published online on 13 October 2014 in Wiley Online Library (http://onlinelibrary.wiley.com/doi/10.1002/cbin.10388/abstract), has been retracted by agreement between the authors, the journal Editor, Sergio Schenkman, and John Wiley & Sons Ltd. The retraction has been agreed because the authors discovered after publication that one of the cell lines described in the article had been unintentionally misidentified. The experiments described in the article as being conducted on Human Oral Squamous Cell Carcinoma cell line KB were in fact conducted on a Human Oral Epidermal-like Cancer cell line. The authors and publisher apologise for any inconvenience. References He Y, Chen F, Cai Y and Chen S (2015) Knockdown of tumor protein D52-like 2 induces cell growth inhibition and apoptosis in oral squamous cell carcinoma. Cell Biology International 39: 264-271. doi: 10.1002/cbin.10388.

  17. Apigenin induces apoptosis through mitochondrial dysfunction in U-2 OS human osteosarcoma cells and inhibits osteosarcoma xenograft tumor growth in vivo.

    Science.gov (United States)

    Lin, Chin-Chung; Chuang, Ya-Ju; Yu, Chien-Chih; Yang, Jai-Sing; Lu, Chi-Cheng; Chiang, Jo-Hua; Lin, Jing-Pin; Tang, Nou-Ying; Huang, An-Cheng; Chung, Jing-Gung

    2012-11-14

    The cytostatic drug from natural products has acted as a chemotherapeutic agent used in treatment of a wide variety of cancers. Apigenin, a type of flavonoid, exhibits anticancer actions, but there is no report to show that apigenin induced apoptosis in osteosarcoma cells. The aim of this study was to investigate the effects of apigenin on U-2 OS human osteosarcoma cells and clarify that the apigenin-induced apoptosis-associated signals. The cytotoxic effects of apigenin were examined by culturing U-2 OS cells with or without apigenin. The percentage of viable cells via PI staining, apoptotic cells, productions of ROS and Ca²⁺, and the level of mitochondrial membrane potential (ΔΨm) were assayed by flow cytometry. The levels of apoptosis-related proteins were measured by immunoblotting. Results indicated that apigenin significantly decreased cell viability. Apigenin effectively induced apoptosis through the activations of caspase-3, -8, -9, and BAX and promoted the release of AIF in U-2 OS cells. In nude mice bearing U-2 OS xenograft tumors, apigenin inhibited tumor growth. In conclusion, apigenin has anticancer properties for induction of cell apoptosis in U-2 OS cells and suppresses the xenograft tumor growth. These findings offer novel information that apigenin possibly possesses anticancer activity in human osteosarcoma.

  18. Solanum lyratum Extracts Induce Extrinsic and Intrinsic Pathways of Apoptosis in WEHI-3 Murine Leukemia Cells and Inhibit Allograft Tumor

    Directory of Open Access Journals (Sweden)

    Jai-Sing Yang

    2012-01-01

    Full Text Available We investigated the molecular mechanisms of cell cycle arrest and apoptotic death induced by Solanum lyratum extracts (SLE or diosgenin in WEHI-3 murine leukemia cells in vitro and antitumor activity in vivo. Diosgenin is one of the components of SLE. Our study showed that SLE and diosgenin decreased the viable WEHI-3 cells and induced G0/G1 phase arrest and apoptosis in concentration- or time-dependent manners. Both reagents increased the levels of ROS production and decreased the mitochondrial membrane potential (ΔΨm. SLE- and diosgenin-triggered apoptosis is mediated through modulating the extrinsic and intrinsic signaling pathways. Intriguingly, the p53 inhibitor (pifithrin-α, anti-Fas ligand (FasL mAb, and specific inhibitors of caspase-8 (z-IETD-fmk, caspase-9 (z-LEHD-fmk, and caspase-3 (z-DEVD-fmk blocked SLE- and diosgenin-reduced cell viability of WEHI-3 cells. The in vivo study demonstrated that SLE has marked antitumor efficacy against tumors in the WEHI-3 cell allograft model. In conclusion, SLE- and diosgenin-induced G0/G1 phase arrest and triggered extrinsic and intrinsic apoptotic pathways via p53 activation in WEHI-3 cells. SLE also exhibited antitumor activity in vivo. Our findings showed that SLE may be potentially efficacious in the treatment of leukemia in the future.

  19. The 1p36 Tumor Suppressor KIF 1Bβ Is Required for Calcineurin Activation, Controlling Mitochondrial Fission and Apoptosis.

    Science.gov (United States)

    Li, Shuijie; Fell, Stuart M; Surova, Olga; Smedler, Erik; Wallis, Karin; Chen, Zhi Xiong; Hellman, Ulf; Johnsen, John Inge; Martinsson, Tommy; Kenchappa, Rajappa S; Uhlén, Per; Kogner, Per; Schlisio, Susanne

    2016-01-25

    KIF1Bβ is a candidate 1p36 tumor suppressor that regulates apoptosis in the developing sympathetic nervous system. We found that KIF1Bβ activates the Ca(2+)-dependent phosphatase calcineurin (CN) by stabilizing the CN-calmodulin complex, relieving enzymatic autoinhibition and enabling CN substrate recognition. CN is the key mediator of cellular responses to Ca(2+) signals and its deregulation is implicated in cancer, cardiac, neurodegenerative, and immune disease. We show that KIF1Bβ affects mitochondrial dynamics through CN-dependent dephosphorylation of Dynamin-related protein 1 (DRP1), causing mitochondrial fission and apoptosis. Furthermore, KIF1Bβ actuates recognition of all known CN substrates, implying a general mechanism for KIF1Bβ in Ca(2+) signaling and how Ca(2+)-dependent signaling is executed by CN. Pathogenic KIF1Bβ mutations previously identified in neuroblastomas and pheochromocytomas all fail to activate CN or stimulate DRP1 dephosphorylation. Importantly, KIF1Bβ and DRP1 are silenced in 1p36 hemizygous-deleted neuroblastomas, indicating that deregulation of calcineurin and mitochondrial dynamics contributes to high-risk and poor-prognosis neuroblastoma.

  20. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth

    Science.gov (United States)

    Cañibano, Carmen; Rodriguez, Noela L; Saez, Carmen; Tovar, Sulay; Garcia-Lavandeira, Montse; Borrello, Maria Grazia; Vidal, Anxo; Costantini, Frank; Japon, Miguel; Dieguez, Carlos; Alvarez, Clara V

    2007-01-01

    Somatotrophs are the only pituitary cells that express Ret, GFRα1 and GDNF. This study investigated the effects of Ret in a somatotroph cell line, in primary pituitary cultures and in Ret KO mice. Ret regulates somatotroph numbers by inducing Pit-1 overexpression, leading to increased p53 expression and apoptosis, both of which can be prevented with Ret or Pit-1 siRNA. The Pit-1 overexpression is mediated by sustained activation of PKCδ, JNK, c/EBPα and CREB induced by a complex of Ret, caspase 3 and PKCδ. In the presence of GDNF, Akt is activated, and the Pit-1 overexpression and resulting apoptosis are blocked. The adenopituitary of Ret KO mice is larger than normal, showing Pit-1 and somatotroph hyperplasia. In normal animals, activation of the Ret/Pit-1/p53 pathway by retroviral introduction of Ret blocked tumor growth in vivo. Thus, somatotrophs have an intrinsic mechanism for controlling Pit-1/GH production through an apoptotic/survival pathway. Ret might be of value for treatment of pituitary adenomas. PMID:17380130

  1. The dependence receptor Ret induces apoptosis in somatotrophs through a Pit-1/p53 pathway, preventing tumor growth.

    Science.gov (United States)

    Cañibano, Carmen; Rodriguez, Noela L; Saez, Carmen; Tovar, Sulay; Garcia-Lavandeira, Montse; Borrello, Maria Grazia; Vidal, Anxo; Costantini, Frank; Japon, Miguel; Dieguez, Carlos; Alvarez, Clara V

    2007-04-18

    Somatotrophs are the only pituitary cells that express Ret, GFRalpha1 and GDNF. This study investigated the effects of Ret in a somatotroph cell line, in primary pituitary cultures and in Ret KO mice. Ret regulates somatotroph numbers by inducing Pit-1 overexpression, leading to increased p53 expression and apoptosis, both of which can be prevented with Ret or Pit-1 siRNA. The Pit-1 overexpression is mediated by sustained activation of PKCdelta, JNK, c/EBPalpha and CREB induced by a complex of Ret, caspase 3 and PKCdelta. In the presence of GDNF, Akt is activated, and the Pit-1 overexpression and resulting apoptosis are blocked. The adenopituitary of Ret KO mice is larger than normal, showing Pit-1 and somatotroph hyperplasia. In normal animals, activation of the Ret/Pit-1/p53 pathway by retroviral introduction of Ret blocked tumor growth in vivo. Thus, somatotrophs have an intrinsic mechanism for controlling Pit-1/GH production through an apoptotic/survival pathway. Ret might be of value for treatment of pituitary adenomas.

  2. Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival.

    Science.gov (United States)

    Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina

    2004-03-15

    Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.

  3. Intestinal epithelial HuR modulates distinct pathways of proliferation and apoptosis and attenuates small intestinal and colonic tumor development.

    Science.gov (United States)

    Giammanco, Antonina; Blanc, Valerie; Montenegro, Grace; Klos, Coen; Xie, Yan; Kennedy, Susan; Luo, Jianyang; Chang, Sung-Hee; Hla, Timothy; Nalbantoglu, Ilke; Dharmarajan, Sekhar; Davidson, Nicholas O

    2014-09-15

    HuR is a ubiquitous nucleocytoplasmic RNA-binding protein that exerts pleiotropic effects on cell growth and tumorigenesis. In this study, we explored the impact of conditional, tissue-specific genetic deletion of HuR on intestinal growth and tumorigenesis in mice. Mice lacking intestinal expression of HuR (Hur (IKO) mice) displayed reduced levels of cell proliferation in the small intestine and increased sensitivity to doxorubicin-induced acute intestinal injury, as evidenced by decreased villus height and a compensatory shift in proliferating cells. In the context of Apc(min/+) mice, a transgenic model of intestinal tumorigenesis, intestinal deletion of the HuR gene caused a three-fold decrease in tumor burden characterized by reduced proliferation, increased apoptosis, and decreased expression of transcripts encoding antiapoptotic HuR target RNAs. Similarly, Hur(IKO) mice subjected to an inflammatory colon carcinogenesis protocol [azoxymethane and dextran sodium sulfate (AOM-DSS) administration] exhibited a two-fold decrease in tumor burden. Hur(IKO) mice showed no change in ileal Asbt expression, fecal bile acid excretion, or enterohepatic pool size that might explain the phenotype. Moreover, none of the HuR targets identified in Apc(min/+)Hur(IKO) were altered in AOM-DSS-treated Hur(IKO) mice, the latter of which exhibited increased apoptosis of colonic epithelial cells, where elevation of a unique set of HuR-targeted proapoptotic factors was documented. Taken together, our results promote the concept of epithelial HuR as a contextual modifier of proapoptotic gene expression in intestinal cancers, acting independently of bile acid metabolism to promote cancer. In the small intestine, epithelial HuR promotes expression of prosurvival transcripts that support Wnt-dependent tumorigenesis, whereas in the large intestine epithelial HuR indirectly downregulates certain proapoptotic RNAs to attenuate colitis-associated cancer. Cancer Res; 74(18); 5322-35. ©2014 AACR.

  4. Expression of cell cycle and apoptosis-related proteins in ameloblastoma and keratocystic odontogenic tumor.

    Science.gov (United States)

    Metgud, Rashmi; Gupta, Kanupriya

    2013-12-01

    Tumors arising from epithelium of the odontogenic apparatus or from its derivatives or remnants exhibit considerable histologic variation and are classified into several benign and malignant entities. A high proliferative activity of the odontogenic epithelium in ameloblastoma (AM) and keratocystic odontogenic tumor (KCOT) has been demonstrated in some studies individually. However, very few previous studies have simultaneously evaluated cell proliferation and apoptotic indexes in AM and KCOT, comparing both lesions. The aim of this study was to assess and compare cell proliferation and apoptotic rates between these two tumors. Specimens of 15 solid AM and 15 KCOT were evaluated. The proliferation index (PI) was assessed by immunohistochemical detection of Ki-67 and the apoptotic index (AI) by methyl green-pyronin stain. KCOT presented a higher PI than AM (P < .05). No statistically significant difference was found in the AI between AM and KCOT. PI and AI were higher in the peripheral cells of AM and respectively in the suprabasal and superficial layers of KCOT. In conclusion, KCOT showed a higher cell proliferation than AM and the AI was similar between these tumors. These findings reinforce the classification of KCOT as an odontogenic tumor and should contribute to its aggressive clinical behavior. © 2013.

  5. Antiapoptotic factor humanin is expressed in normal and tumoral pituitary cells and protects them from TNF-α-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    María Florencia Gottardo

    Full Text Available Humanin (HN is a 24-amino acid peptide with cytoprotective action in several cell types such as neurons and testicular germ cells. Rattin (HNr, a homologous peptide of HN expressed in several adult rat tissues, also has antiapoptotic action. In the present work, we demonstrated by immunocytochemical analysis and flow cytometry the expression of HNr in the anterior pituitary of female and male adult rats as well as in pituitary tumor GH3 cells. HNr was localized in lactotropes and somatotropes. The expression of HNr was lower in females than in males, and was inhibited by estrogens in pituitary cells from both ovariectomized female and orquidectomized male rats. However, the expression of HNr in pituitary tumor cells was not regulated by estrogens. We also evaluated HN action on the proapoptotic effect of TNF-α in anterior pituitary cells assessed by the TUNEL method. HN (0.5 µM per se did not modify basal apoptosis of anterior pituitary cells but completely blocked the proapoptotic effect of TNF-α in total anterior pituitary cells, lactotropes and somatotropes from both female and male rats [corrected]. Also, HN inhibited the apoptotic effect of TNF-α on pituitary tumor cells. In summary, our results demonstrate that HNr is present in the anterior pituitary gland, its expression showing sexual dimorphism, which suggests that gonadal steroids may be involved in the regulation of HNr expression in this gland. Antiapoptotic action of HN in anterior pituitary cells suggests that this peptide could be involved in the homeostasis of this gland. HNr is present and functional in GH3 cells, but it lacks regulation by estrogens, suggesting that HN could participate in the pathogenesis of pituitary tumors.

  6. Targeting apoptosis: preclinical and early clinical experience with mapatumumab, an agonist monoclonal antibody targeting TRAIL-R1.

    Science.gov (United States)

    Moretto, Patricia; Hotte, Sébastien J

    2009-03-01

    In spite of the advances in survival with chemotherapy and radiotherapy, many cancer patients continue to experience failure with treatments. Advances in molecular oncology and the development of numerous targeted therapies, used by themselves or in combination with at present available treatments such as chemotherapy and radiation, will hopefully improve the fate of these patients. It has been well understood for many years now that deregulation of apoptosis is a major hallmark of cancer cells. Mapatumumab, a fully human agonistic monoclonal antibody to TNF-related apoptosis-inducing ligand receptor 1, has been developed to induce apoptosis in cancer cells although having minimal effects on normal cells. This paper reviews the preclinical and early clinical data of this exciting new agent and discusses options for future development of mapatumumab, mostly in combinations with other therapies.

  7. Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv : sTRAIL fusion protein with specificity for human EGFR

    NARCIS (Netherlands)

    Bremer, E; Samplonius, DF; van Genne, L; Dijkstra, MH; Kroesen, BJ; de Leij, LFMH; Helfrich, W

    2005-01-01

    Epidermal growth factor receptor (EGFR) signaling inhibition by monoclonal antibodies and EGFR-specific tyrosine kinase inhibitors has shown clinical efficacy in cancer by restoring susceptibility of tumor cells to therapeutic apoptosis induction. Tumor necrosis factor-related apoptosis-inducing lig

  8. STAT3 as a target for inducing apoptosis in solid and hematological tumors

    Institute of Scientific and Technical Information of China (English)

    Khandaker Al Zaid Siddiquee; James Turkson

    2008-01-01

    Studies in the past few years have provided compelling evidence for the critical role of aberrant Signal Transducer and Activator of Transcription 3 (STAT3) in malignant transformation and tumorigenesis. Thus, it is now generally accepted that STAT3 is one of the critical players in human cancer formation and represents a valid target for novel anticancer drug design. This review focuses on aberrant STAT3 and its role in promoting tumor cell survival and supporting the malignant phenotype. A brief evaluation of the current strategies targeting STAT3 for the development of novel anticancer agents against human tumors harboring constitutively active STAT3 will also be presented.

  9. Sustained proliferation and resistance to apoptosis after a cytotoxic insult are early alterations in rat colon carcinogenesis.

    Science.gov (United States)

    Femia, Angelo Pietro; Salvianti, Francesca; Luceri, Cristina; Dolara, Piero; Salvadori, Maddalena; Pinzani, Pamela; Caderni, Giovanna

    2012-08-01

    To study the early alterations in carcinogenesis, we determined apoptosis and proliferation in rat mucin depleted foci (MDF), precancerous lesions in the colon under basal conditions and 24 h after treatment with 1,2-dimethylhydrazine (DMH), which induces apoptosis in the colon. Spontaneous apoptosis in MDF was higher than in normal mucosa (Apoptotic Index was 1.61 ± 0.30 and 0.21 ± 0.02 in MDF and normal mucosa, respectively, mean ± SE, p MDF (up to 20 times higher compared to basal levels in normal mucosa, but only two times in MDF). MDF had a higher and deregulated pattern of proliferation along the crypt compared to normal mucosa. After DMH, proliferation in normal mucosa was significantly depressed, but it did not vary in MDF. Survivin-Birc5 regulating apoptosis and proliferation was significantly over-expressed (RT-qPCR and immunohistochemistry experiments) in MDF vs. normal mucosa, but did not vary in response to DMH. The expression of the pro-apoptotic protein Bak did not vary in normal mucosa and MDF. Since inflammation is present in MDF, which may hamper apoptosis, we studied the effect of pre-treatment with aspirin (600 ppm in the diet for 10 days). No significant effects of aspirin were observed. In conclusion, MDF had a higher spontaneous apoptosis and proliferation coupled with a reduced response to apoptotic stimuli from cytotoxic compounds. Survivin over-expression in MDF indicates that this is an early event in colon carcinogenesis and suggests that down-regulation of Survivin may represent a strategy for cancer prevention. Copyright © 2011 UICC.

  10. Angiotensin Ⅱ type Ⅰ receptor agonistic autoantibody-induced apoptosis in neonatal rat cardiomyocytes is dependent on the generation of tumor necrosis factor-α

    Institute of Scientific and Technical Information of China (English)

    Weiran Chai; Wenhui Zhang; Zhu Jin; Yiping Feng; Yanping Kuang; Jianming Zhi

    2012-01-01

    Angiotensin Ⅱ type Ⅰ receptor agonistic autoantibodies (AT1-AA) are related to pre-eclampsia and hypertension and have a direct effect of stimulating the production of tumor necrosis factor-alpha (TNF-α) in the placenta.TNF-α is a known mediator of apoptosis.However,few studies have reported the role of TNF-α and its relationship within AT1-AA-induced apoptosis of cardiomyocytes.In this study,neonatal rat cardiomyocytes were treated with various concentrations of AT1-AA.The apoptosis of neonatal rat cardiomyocytes was determined using TUNEL assay and flow cytometry.The level of secreted TNF-α was measured by enzyme-linked immunosorbent assay,and caspase-3 activity was measured by a fluorogenic protease assay kit.AT1 receptor blockade and TNF inhibitor were added to determine whether they could inhibit the apoptotic effect of AT1-AA.Results showed that AT1-AA induced the apoptosis of neonatal rat cardiomyocytes in a dose-dependent and time-dependent manner.AT1-AA increased TNF secretion and caspase-3activities.AT1 receptor blockade completely abrogated AT1-AA-induced TNF-α secretion,caspase-3 activation,and cardiomyocyte apoptosis.TNF-α receptor inhibitor significantly attenuated AT1-AA-induced neonatal rat cardiomyocyte apoptosis.AT1-AA in the plasma of preeclamptic patients promoted neonatal rat cardiomyocyte apoptosis through a TNF-caspase signaling pathway.

  11. Resveratrol synergistically augments anti-tumor effect of 5-FU in vitro and in vivo by increasing S-phase arrest and tumor apoptosis.

    Science.gov (United States)

    Dun, Jiening; Chen, Xueyan; Gao, Haixia; Zhang, Yan; Zhang, Huajun; Zhang, Yongjian

    2015-12-01

    Many studies have shown that natural dietary agents, in combination with chemical agents, can improve the therapeutic response of cancers to chemotherapy and reduce the associated side-effects. In the present study, we investigated the therapeutic potential and mechanisms of anticancer effects for the combination of 5-fluorouracil (5-FU) and resveratrol (Res). In these studies, we employed the cancer cell lines TE-1 and A431 and an animal model of skin cancer. The presented results provide the first evidence that Res can enhance the anti-tumor potency of 5-FU by inducing S-phase arrest. The combination of Res and 5-FU demonstrates synergistic efficacy, causing tumor regression in a two-stage model of mouse skin carcinogenesis induced by DMBA and TPA. There was clear evidence of Res augmenting the growth inhibitory effect of 5-FU on the TE-1 and A431 cancer cells in vitro. In the in vivo studies, the tumor regression rate in the combination group increased significantly after four weeks of treatment (P 5-FU and Res significantly increased the percentage of apoptotic cells and the level of activated caspase-3, cleaved PARP and p53 proteins as well as increased the Bax/Bcl-2 ratio. In conclusion, the 5-FU/Res combination enabled a more effective inhibition of cell growth and the induction of apoptosis in cancer cells than 5-FU alone. The results of this study suggest that chemotherapy using natural dietary agents with chemical agents represents a superior cancer treatment option.

  12. Genetic ablation of Bcl-x attenuates invasiveness without affecting apoptosis or tumor growth in a mouse model of pancreatic neuroendocrine cancer.

    Directory of Open Access Journals (Sweden)

    Jeffrey H Hager

    Full Text Available Tumor cell death is modulated by an intrinsic cell death pathway controlled by the pro- and anti-apoptotic members of the Bcl-2 family. Up-regulation of anti-apoptotic Bcl-2 family members has been shown to suppress cell death in pre-clinical models of human cancer and is implicated in human tumor progression. Previous gain-of-function studies in the RIP1-Tag2 model of pancreatic islet carcinogenesis, involving uniform or focal/temporal over-expression of Bcl-x(L, demonstrated accelerated tumor formation and growth. To specifically assess the role of endogenous Bcl-x in regulating apoptosis and tumor progression in this model, we engineered a pancreatic beta-cell-specific knockout of both alleles of Bcl-x using the Cre-LoxP system of homologous recombination. Surprisingly, there was no appreciable effect on tumor cell apoptosis rates or on tumor growth in the Bcl-x knockout mice. Other anti-apoptotic Bcl-2 family members were expressed but not substantively altered at the mRNA level in the Bcl-x-null tumors, suggestive of redundancy without compensatory transcriptional up-regulation. Interestingly, the incidence of invasive carcinomas was reduced, and tumor cells lacking Bcl-x were impaired in invasion in a two-chamber trans-well assay under conditions mimicking hypoxia. Thus, while the function of Bcl-x in suppressing apoptosis and thereby promoting tumor growth is evidently redundant, genetic ablation implicates Bcl-x in selectively facilitating invasion, consistent with a recent report documenting a pro-invasive capability of Bcl-x(L upon exogenous over-expression.

  13. A paradigm linking herpesvirus immediate-early gene expression apoptosis and myalgic encephalomyelitis chronic fatigue syndrome

    Directory of Open Access Journals (Sweden)

    A Martin Lerner

    2011-02-01

    Full Text Available A Martin Lerner1, Safedin Beqaj21Department of Medicine, William Beaumont Hospital, Royal Oak, MI, USA; 2DCL Medical Laboratories, Indianapolis, IN, USAAbstract: There is no accepted science to relate herpesviruses (Epstein–Barr virus [EBV], human cytomegalovirus [HCMV], and human herpesvirus 6 [HHV6] as causes of myalgic encephalomyelitis (ME/chronic fatigue syndrome (CFS. ME/CFS patients have elevated serum immunoglobulin (IgG serum antibody titers to EBV, HCMV, and HHV6, but there is no herpesvirus DNA-emia, herpesvirus antigenemia, or uniformly elevated IgM serum antibody titers to the complete virions. We propose that herpesvirus EBV, HCMV, and HHV6 immediate-early gene expression in ME/CFS patients leads to host cell dysregulation and host cell apoptosis without lytic herpesvirus replication. Specific antiviral nucleosides, which alleviate ME/CFS, namely valacyclovir for EBV ME/CFS and valganciclovir for HCMV/HHV6 ME/CFS, inhibit herpesvirus DNA polymerases and/or thymidine kinase functions, thus inhibiting lytic virus replication. New host cell recruitment thus ceases. In the absence of new herpesvirus, nonpermissive herpesvirus replication stops, and ME/CFS recovery ensues.Keywords: ME/CFS, Epstein–Barr virus (EBV, human cytomegalovirus (HCMV, HHV6, abortive replication

  14. Tumor Interstitial Fluid Pressure as an Early-Response Marker for Anticancer Therapeutics

    Directory of Open Access Journals (Sweden)

    Stephane Ferretti

    2009-09-01

    Full Text Available Solid tumors have a raised interstitial fluid pressure (IFP due to high vessel permeability, low lymphatic drainage, poor perfusion, and high cell density around the blood vessels. To investigate tumor IFP as an early-response biomarker, we have tested the effect of seven anticancer chemotherapeutics including cytotoxics and targeted cytostatics in 13 experimental tumor models. IFP was recorded with the wick-in-needle method. Models were either ectopic or orthotopic and included mouse and rat syngeneic as well as human xenografts in nude mice. The mean basal IFP was between 4.4 and 15.2mm Hg; IFP was lowest in human tumor xenografts and highest in rat syngeneic models. Where measured, basal IFP correlated positively with relative tumor blood volume (rTBV determined by dynamic contrast-enhanced magnetic resonance imaging. Most chemotherapeutics sooner (2 or 3 days or later (6 or 7 days lowered tumor IFP significantly, and the cytotoxic patupilone caused the greatest decrease in IFP. In rat mammary orthotopic BN472 tumors, significant drug-induced decreases in IFP and rTBV correlated positively with each other for both patupilone and the cytostatic vatalanib. In the two orthotopic models studied, early decreases in IFP were significantly (P ≤ .005 correlated with late changes in tumor volume. Thus, drug-induced decreases in tumor IFP are an early marker of response to therapy, which could aid clinical development.

  15. Tumor interstitial fluid pressure as an early-response marker for anticancer therapeutics.

    Science.gov (United States)

    Ferretti, Stephane; Allegrini, Peter R; Becquet, Mike M; McSheehy, Paul Mj

    2009-09-01

    Solid tumors have a raised interstitial fluid pressure (IFP) due to high vessel permeability, low lymphatic drainage, poor perfusion, and high cell density around the blood vessels. To investigate tumor IFP as an early-response biomarker, we have tested the effect of seven anticancer chemotherapeutics including cytotoxics and targeted cytostatics in 13 experimental tumor models. IFP was recorded with the wick-in-needle method. Models were either ectopic or orthotopic and included mouse and rat syngeneic as well as human xenografts in nude mice. The mean basal IFP was between 4.4 and 15.2mm Hg; IFP was lowest in human tumor xenografts and highest in rat syngeneic models. Where measured, basal IFP correlated positively with relative tumor blood volume (rTBV) determined by dynamic contrast-enhanced magnetic resonance imaging. Most chemotherapeutics sooner (2 or 3 days) or later (6 or 7 days) lowered tumor IFP significantly, and the cytotoxic patupilone caused the greatest decrease in IFP. In rat mammary orthotopic BN472 tumors, significant drug-induced decreases in IFP and rTBV correlated positively with each other for both patupilone and the cytostatic vatalanib. In the two orthotopic models studied, early decreases in IFP were significantly (P tumor volume. Thus, drug-induced decreases in tumor IFP are an early marker of response to therapy, which could aid clinical development.

  16. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  17. Chelidonium majus crude extract inhibits migration and induces cell cycle arrest and apoptosis in tumor cell lines.

    Science.gov (United States)

    Deljanin, Milena; Nikolic, Mladen; Baskic, Dejan; Todorovic, Danijela; Djurdjevic, Predrag; Zaric, Milan; Stankovic, Milan; Todorovic, Milos; Avramovic, Dusko; Popovic, Suzana

    2016-08-22

    Chelidonium majus L (Papaveraceae) is widely used in alternative medicine for treatment of various disorders. Antitumor activities of alkaloids isolated from this plant have been reviewed, while there are only a few studies that examine properties of the whole extract. The aim of the present study was to investigate direct cytotoxic effects, as well as indirect antitumor effects of Chelidonium majus ethanolic extract against different tumor cell lines,. MTT and SRB assays were performed to estimate cytotoxic effects of Chelidonium majus extract against human tumor cell lines A549, H460, HCT 116, SW480, MDA-MB 231 and MCF-7 and peripheral blood mononuclear cells from healthy individuals. Cell cycle analysis was performed by flow cytometry. Type of cell death induced by extract was determined by flow cytometry and cell morphology assessment. Inhibitory effect on migration of cancer cells was assessed by wound healing assay. Chelidonium majus extract showed selective time- and dose-dependent increase of cytotoxicity in all six cell lines, with individual cell line sensitivities. Extract promoted cell cycle arrest and induced apoptosis. Cotreatment with doxorubicin enhanced cytotoxicity of the drug. Also, inhibitory effect on migration was shown with non-toxic extract concentration. These results indicate possible usefulness of Chelidonium majus crude extract in antitumor therapy, whether through its direct cytotoxic effect, by prevention of metastasis, or as adjuvant therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Cellular stress response in Eca-109 cells inhibits apoptosis during early exposure to isorhamnetin.

    Science.gov (United States)

    Shi, C; Fan, L Y; Cai, Z; Liu, Y Y; Yang, C L

    2012-01-01

    The flavonol aglycone isorhamnetin shows anti-proliferative activity in a variety of cancer cells. Previous work, from our laboratory showed that isorhamnetin inhibits the proliferation of human esophageal squamous carcinoma Eca-109 cells in vitro, but only after 72 h of exposure. This led us to propose that isorhamnetin exposure induces a cellular stress response that inhibits the antiproliferative and apoptotic effects of the compound during early exposure. To test this hypothesis, the present study examined the effects of isorhamnetin on Eca-109 cells during the first 72 h of exposure. Cell growth was assessed using the trypan blue exclusion assay, and expression of IκBα, NF-κB/p65, NF-κB/p50, phospho-Akt, Bcl-2, COX-2, Mcl-1, Bax, p53 and Id-1 were analyzed by Western blot. During the first 72 h of exposure, NF-κB/p65 and NF-κB/p50 accumulated in nuclei and expression of COX-2, Bcl-2 and Mcl-1 increased. In contrast, expression of IκBα and Bax fell initially but later increased. Expression of phospho-Akt and p53 showed no detectable change during the first 48 h. Pretreatment with the NF-κB inhibitor MG132 before exposure to isorhamnetin blocked the nuclear accumulation of p50 and p65, thereby inhibiting cell proliferation. These results show that during early exposure of Eca-109 cells to isorhamnetin, the NF-κB signaling pathway is activated and COX-2 expression increases, and this increase in expression partially inhibits isorhamnetin-induced apoptosis. Beyond 72 h of exposure, however, the apoptotic effect of isorhamnetin dominates, leading to inhibition of the NF-κB pathway and of cellular proliferation. These results will need to be taken into account when exploring the use of isorhamnetin against cancer in vivo.

  19. Low toxic and high soluble camptothecin derivative 2–47 effectively induces apoptosis of tumor cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao; Zhao, Hong-Ye; Jiang, Du; Wang, Lu-Yao; Xiang, Cen; Wen, Shao-Peng [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China); Fan, Zhen-Chuan [Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Ministry of Education, Tianjin, 300457 (China); Obesita & Algaegen LLC, College Station, TX 77845 (United States); Zhang, Yong-Min [Université Pierre et Marie Curie-Paris 6, Institut Parisien de Chimie Moléculaire UMR CNRS 8232, 4 place Jussieu, 75005, Paris (France); Guo, Na [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China); Teng, Yu-Ou, E-mail: tyo201485@tust.edu.cn [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China); Yu, Peng, E-mail: yupeng@tust.edu.cn [Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, Sino-French Joint Laboratory of Food Nutrition, Safety and Medicinal Chemistry, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2016-04-08

    The cytotoxic activity of camptothecin derivatives is so high that these compounds need to be further modified before their successful application as anti-cancer agents clinically. In this study, we reported the synthesis and biological evaluation of a novel camptothecin derivative called compound 2–47. The changes in structure did not reduce its activity to inhibit DNA topoisomerase I. Compound 2–47 induced apoptosis of many tumor cells including leukemia cells K562, Jurkat, HL-60, breast cancer cell BT-549, colon cancer cell HT-29 and liver cancer cell HepG2 with a half maximal inhibitory concentration (IC{sub 50}) of 2- to 3-fold lower than HCPT as a control. In particular, 2–47 inhibited the proliferation of Jurkat cells with an IC{sub 50} of as low as 40 nM. By making use of Jurkat cell as a model, following treatment of Jurkat cells, compound 2–47 activated caspase-3 and PARP, resulting in a decreased Bcl-2/Bax ratio. These data showed that compound 2–47 induces Jurkat cell death through the mitochondrial apoptotic pathway. In addition, compound 2–47 showed a decreased cytotoxic activity against normal cells and an improved solubility in low-polar solvent. For example, compound 2–47 solutes in CHCl{sub 3} 130-fold higher than HCPT. Taken together, our data demonstrated that camptothecin derivative 2–47 notably inhibits the tumor cell proliferation through mitochondrial-mediated apoptosis in vitro. - Highlights: • Compound 2–47 showed a wide inhibitory effect on the tested tumor cell lines with an IC{sub 50} of 3 times lower than that of HCPT in general. • Compound 2–47 inhibited the proliferation of the human leukemia cell Jurkat at an IC{sub 50} of as low as 40 nM. • As compared to HCPT, compound 2–47 showed much reduced cytotoxicity on normal human cells. • As compared to others, compound 2–47 showed a hundreds-fold higher solubility in non-polar organic solution.

  20. Lin28 sustains early renal progenitors and induces Wilms tumor.

    Science.gov (United States)

    Urbach, Achia; Yermalovich, Alena; Zhang, Jin; Spina, Catherine S; Zhu, Hao; Perez-Atayde, Antonio R; Shukrun, Rachel; Charlton, Jocelyn; Sebire, Neil; Mifsud, William; Dekel, Benjamin; Pritchard-Jones, Kathy; Daley, George Q

    2014-05-01

    Wilms Tumor, the most common pediatric kidney cancer, evolves from the failure of terminal differentiation of the embryonic kidney. Here we show that overexpression of the heterochronic regulator Lin28 during kidney development in mice markedly expands nephrogenic progenitors by blocking their final wave of differentiation, ultimately resulting in a pathology highly reminiscent of Wilms tumor. Using lineage-specific promoters to target Lin28 to specific cell types, we observed Wilms tumor only when Lin28 is aberrantly expressed in multiple derivatives of the intermediate mesoderm, implicating the cell of origin as a multipotential renal progenitor. We show that withdrawal of Lin28 expression reverts tumorigenesis and markedly expands the numbers of glomerulus-like structures and that tumor formation is suppressed by enforced expression of Let-7 microRNA. Finally, we demonstrate overexpression of the LIN28B paralog in a significant percentage of human Wilms tumor. Our data thus implicate the Lin28/Let-7 pathway in kidney development and tumorigenesis.

  1. 3-bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth.

    Science.gov (United States)

    Wang, Ting-An; Zhang, Xiao-Dong; Guo, Xing-Yu; Xian, Shu-Lin; Lu, Yun-Fei

    2016-03-01

    Glycolysis is the primary method utilized by cancer cells to produce the energy (adenosine triphosphate, ATP) required for cell proliferation. Therefore, inhibition of glycolysis may inhibit tumor growth. We previously found that both 3-bromopyruvate (3-BrPA) and sodium citrate (SCT) can inhibit glycolysis in vitro; however, the underlying inhibitory mechanisms remain unclear. In the present study, we used a human gastric cancer cell line (SGC-7901) and an orthotopic transplantation tumor model in nude mice to explore the specific mechanisms of 3-BrPA and SCT. We found that both 3-BrPA and SCT effectively suppressed cancer cell proliferation, arrested the cell cycle, induced apoptosis, and decreased the production of lactate and ATP. 3-BrPA significantly reduced the glycolytic enzyme hexokinase activity, while SCT selectively inhibited phosphofructokinase-1 activity. Furthermore, 3-BrPA and SCT upregulated the expression of pro-apoptotic proteins (Bax, cytochrome c, and cleaved caspase-3) and downregulated the expression of anti-apoptotic proteins (Bcl-2 and survivin). Finally, our animal model of gastric cancer indicated that intraperitoneal injection of 3-BrPA and SCT suppressed orthotopic transplantation tumor growth and induced tumor apoptosis. Taken together, these results suggest that 3-BrPA and SCT selectively suppress glycolytic enzymes, decrease ATP production, induce mitochondrial-mediated apoptosis, downregulate survivin, and inhibit tumor growth. Moreover, an intraperitoneal injection is an effective form of administration of 3-BrPA and SCT.

  2. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    Science.gov (United States)

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling.

  3. miR-103 inhibits proliferation and sensitizes hemopoietic tumor cells for glucocorticoid-induced apoptosis

    Science.gov (United States)

    Biton, Moshe; Stepensky, Polina

    2017-01-01

    Glucocorticoid (GC) hormones are an important ingredient of leukemia therapy since they are potent inducers of lymphoid cell apoptosis. However, the development of GC resistance remains an obstacle in GC-based treatment. In the present investigation we found that miR-103 is upregulated in GC-sensitive leukemia cells treated by the hormone. Transfection of GC resistant cells with miR-103 sensitized them to GC induced apoptosis (GCIA), while miR-103 sponging of GC sensitive cells rendered them partially resistant. miR-103 reduced the expression of cyclin dependent kinase (CDK2) and its cyclin E1 target, thereby leading to inhibition of cellular proliferation. miR-103 is encoded within the fifth intron of PANK3 gene. We demonstrate that the GC receptor (GR) upregulates miR-103 by direct interaction with GC response element (GRE) in the PANK3 enhancer. Consequently, miR-103 targets the c-Myc activators c-Myb and DVL1, thereby reducing c-Myc expression. Since c-Myc is a transcription factor of the miR-17~92a poly-cistron, all six miRNAs of the latter are also downregulated. Of these, miR-18a and miR-20a are involved in GCIA, as they target GR and BIM, respectively. Consequently, GR and BIM expression are elevated, thus advancing GCIA. Altogether, this study highlights miR-103 as a useful prognostic biomarker and drug for leukemia management in the future. PMID:27888798

  4. miR-103 inhibits proliferation and sensitizes hemopoietic tumor cells for glucocorticoid-induced apoptosis.

    Science.gov (United States)

    Kfir-Erenfeld, Shlomit; Haggiag, Noa; Biton, Moshe; Stepensky, Polina; Assayag-Asherie, Nathalie; Yefenof, Eitan

    2017-01-03

    Glucocorticoid (GC) hormones are an important ingredient of leukemia therapy since they are potent inducers of lymphoid cell apoptosis. However, the development of GC resistance remains an obstacle in GC-based treatment. In the present investigation we found that miR-103 is upregulated in GC-sensitive leukemia cells treated by the hormone. Transfection of GC resistant cells with miR-103 sensitized them to GC induced apoptosis (GCIA), while miR-103 sponging of GC sensitive cells rendered them partially resistant. miR-103 reduced the expression of cyclin dependent kinase (CDK2) and its cyclin E1 target, thereby leading to inhibition of cellular proliferation. miR-103 is encoded within the fifth intron of PANK3 gene. We demonstrate that the GC receptor (GR) upregulates miR-103 by direct interaction with GC response element (GRE) in the PANK3 enhancer. Consequently, miR-103 targets the c-Myc activators c-Myb and DVL1, thereby reducing c-Myc expression. Since c-Myc is a transcription factor of the miR-17~92a poly-cistron, all six miRNAs of the latter are also downregulated. Of these, miR-18a and miR-20a are involved in GCIA, as they target GR and BIM, respectively. Consequently, GR and BIM expression are elevated, thus advancing GCIA. Altogether, this study highlights miR-103 as a useful prognostic biomarker and drug for leukemia management in the future.

  5. The role of p53 tumor suppressor gene in the suppression of teratogenesis. Mechanism of suppression in the embryonic stage by p53-dependent apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nomoto, Satoshi; Ohtsu, Yamaaki; Norimura, Toshiyuki [University of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan)

    1996-12-01

    This review described the relationships between radiation-induced teratogenesis in the embryonic stage and p53-dependent apoptosis together with recent authors` findings. The p53 tumor suppressor gene in the embryonic and fetal stages: Thymocytes deficient of p53 gene are markedly resistant to radiation. While the survival rate of wild type cells decreased at 1 Gy irradiation, that of the deficient cells hardly changed even at 20 Gy. Starting from these facts, the role of p53 gene in the teratogenesis has been investigated with use of radiation-irradiated wild type and p53-deficient knock-out mice and of mdm2/p53 double knock-out mice. Types of malformation yielded were described. The relationships between radiation-induced teratogenesis and p53 in mouse fetus: Authors performed the following experiment in the p53 knock-out mice to elucidate how p53 participated in the radiation-induced teratogenesis: X-ray at 1 and 2 Gy (250 kVp, 12 mA, 0.5 mm Cu + 1.0 mm Al) was irradiated to the recipient mice at 3.5 days (early nidation) or 9.5 days (organogenesis) of gestation. Malformation in the alive and dead fetuses was observed at 18.5 days and classified according to the p53 genotype. The teratogenesis due to chemicals and radiation in p53 gene deficient mice was discussed. (K.H.)

  6. Novel levamisole derivative induces extrinsic pathway of apoptosis in cancer cells and inhibits tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Mahesh Hegde

    Full Text Available BACKGROUND: Levamisole, an imidazo(2,1-bthiazole derivative, has been reported to be a potential antitumor agent. In the present study, we have investigated the mechanism of action of one of the recently identified analogues, 4a (2-benzyl-6-(4'-fluorophenyl-5-thiocyanato-imidazo[2,1-b][1], [3], [4]thiadiazole. MATERIALS AND METHODS: ROS production and expression of various apoptotic proteins were measured following 4a treatment in leukemia cell lines. Tumor animal models were used to evaluate the effect of 4a in comparison with Levamisole on progression of breast adenocarcinoma and survival. Immunohistochemistry and western blotting studies were performed to understand the mechanism of 4a action both ex vivo and in vivo. RESULTS: We have determined the IC(50 value of 4a in many leukemic and breast cancer cell lines and found CEM cells most sensitive (IC(50 5 µM. Results showed that 4a treatment leads to the accumulation of ROS. Western blot analysis showed upregulation of pro-apoptotic proteins t-BID and BAX, upon treatment with 4a. Besides, dose-dependent activation of p53 along with FAS, FAS-L, and cleavage of CASPASE-8 suggest that it induces death receptor mediated apoptotic pathway in CEM cells. More importantly, we observed a reduction in tumor growth and significant increase in survival upon oral administration of 4a (20 mg/kg, six doses in mice. In comparison, 4a was found to be more potent than its parental analogue Levamisole based on both ex vivo and in vivo studies. Further, immunohistochemistry and western blotting studies indicate that 4a treatment led to abrogation of tumor cell proliferation and activation of apoptosis by the extrinsic pathway even in animal models. CONCLUSION: Thus, our results suggest that 4a could be used as a potent chemotherapeutic agent.

  7. Novel Levamisole Derivative Induces Extrinsic Pathway of Apoptosis in Cancer Cells and Inhibits Tumor Progression in Mice

    Science.gov (United States)

    Hegde, Mahesh; Karki, Subhas S.; Thomas, Elizabeth; Kumar, Sujeet; Panjamurthy, Kuppusamy; Ranganatha, Somasagara R.; Rangappa, Kanchugarakoppal S.; Choudhary, Bibha; Raghavan, Sathees C.

    2012-01-01

    Background Levamisole, an imidazo(2,1-b)thiazole derivative, has been reported to be a potential antitumor agent. In the present study, we have investigated the mechanism of action of one of the recently identified analogues, 4a (2-benzyl-6-(4′-fluorophenyl)-5-thiocyanato-imidazo[2,1-b][1], [3], [4]thiadiazole). Materials and Methods ROS production and expression of various apoptotic proteins were measured following 4a treatment in leukemia cell lines. Tumor animal models were used to evaluate the effect of 4a in comparison with Levamisole on progression of breast adenocarcinoma and survival. Immunohistochemistry and western blotting studies were performed to understand the mechanism of 4a action both ex vivo and in vivo. Results We have determined the IC50 value of 4a in many leukemic and breast cancer cell lines and found CEM cells most sensitive (IC50 5 µM). Results showed that 4a treatment leads to the accumulation of ROS. Western blot analysis showed upregulation of pro-apoptotic proteins t-BID and BAX, upon treatment with 4a. Besides, dose-dependent activation of p53 along with FAS, FAS-L, and cleavage of CASPASE-8 suggest that it induces death receptor mediated apoptotic pathway in CEM cells. More importantly, we observed a reduction in tumor growth and significant increase in survival upon oral administration of 4a (20 mg/kg, six doses) in mice. In comparison, 4a was found to be more potent than its parental analogue Levamisole based on both ex vivo and in vivo studies. Further, immunohistochemistry and western blotting studies indicate that 4a treatment led to abrogation of tumor cell proliferation and activation of apoptosis by the extrinsic pathway even in animal models. Conclusion Thus, our results suggest that 4a could be used as a potent chemotherapeutic agent. PMID:22970136

  8. TRA-8 anti-DR5 monoclonal antibody and gemcitabine induce apoptosis and inhibit radiologically validated orthotopic pancreatic tumor growth.

    Science.gov (United States)

    Derosier, Leo Christopher; Vickers, Selwyn M; Zinn, Kurt R; Huang, Zhi; Wang, Wenquan; Grizzle, William E; Sellers, Jeffrey; Stockard, Cecil R; Zhou, Tong; Oliver, Patsy G; Arnoletti, Pablo; Lobuglio, Albert F; Buchsbaum, Donald J

    2007-12-01

    To evaluate agonistic TRA-8 monoclonal antibody to human death receptor 5 (DR5) and gemcitabine in vitro and in an orthotopic pancreatic cancer model. Pancreatic cancer cell lines were screened for DR5 expression, cytotoxicity, and apoptosis induced by TRA-8, gemcitabine, or gemcitabine and TRA-8. An orthotopic model of pancreatic cancer was established in severe combined immunodeficient mice. Mice were treated with TRA-8, gemcitabine, or a combination for one or two cycles of therapy. Tumor growth (ultrasound) and survival were analyzed. All five pancreatic cancer cell lines showed DR5 protein expression and varying sensitivity to TRA-8-mediated cytotoxicity. MIA PaCa-2 cells were very sensitive to TRA-8, moderately resistant to gemcitabine, with additive cytotoxicity to the combination. S2-VP10 cells were resistant to TRA-8 and sensitive to gemcitabine with synergistic sensitivity to the combination. Combination treatment in vitro produced enhanced caspase-3 and caspase-8 activation. A single cycle of therapy produced comparable efficacy for single-agent TRA-8 and the combination of TRA-8 and gemcitabine, with significant reduction in tumor size and prolonged survival compared with gemcitabine alone or control animals. With two cycles of therapy, TRA-8 and combination therapy produced enhanced inhibition of tumor growth compared with single-agent gemcitabine or untreated animals. However, the combination regimen showed enhanced survival as compared with single-agent TRA-8. Pancreatic cancer cell lines express varying levels of DR5 and differ in their sensitivity to TRA-8 and gemcitabine-induced cytotoxicity. TRA-8 with two cycles of gemcitabine therapy produced the best overall survival.

  9. Sulindac Induces Apoptosis and Inhibits Tumor Growth In Vivo in Head and Neck Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Mark A. Scheper

    2007-03-01

    Full Text Available Sulindac has antineoplastic effects on various cancer cell lines; consequently, we assessed sulindac's effects on laryngeal squamous cell carcinoma (SCC cells in vitro and in vivo. In vitro, SCC (HEP-2 cells treated with various cyclooxygenase inhibitors or transfected with constitutively active signal transducer and activator of transcription 3 (Stat3 or survivin vectors were analyzed using Western blot analysis, annexin V assay, and cell proliferation assay. In parallel, nude mice injected subcutaneously with HEP-2 cells were either treated intraperitoneally with sulindac or left untreated, and analyzed for tumor weight, survivin expression, and tyrosine-phosphorylated Stat3 expression. In vitro studies confirmed the selective antiproliferative and proapoptotic effects of sulindac, which also downregulated Stat3 and survivin protein expression. Stat3 or survivin forced expression partially rescued the antiproliferative effects of sulindac. In vivo studies showed significant repression of HEP-2 xenograft growth in sulindactreated mice versus controls, with near-complete resolution at 10 days. Additionally, tumor specimens treated with sulindac showed downregulation of phosphorylated tyrosine-705 Stat3 and survivin expression. Taken together, our data suggest, for the first time, a specific inhibitory effect of sulindac on tumor growth and survivin expression in laryngeal cancer, both in vitro and in vivo, in a Stat3-dependent manner, suggesting a novel therapeutic approach to head and neck cancer.

  10. Proapoptotic protein Smac mediates apoptosis in cisplatin-resistant ovarian cancer cells when treated with the anti-tumor agent AT101.

    Science.gov (United States)

    Hu, Wenbin; Wang, Fang; Tang, Jingsheng; Liu, Xinyu; Yuan, Zhu; Nie, Chunlai; Wei, Yuquan

    2012-01-02

    Chemoresistance of ovarian cancer has been previously attributed to the expression and activation of Bcl-2 family proteins. BH3-mimetic molecules possessing potential anticancer activity are able to inhibit antiapoptotic Bcl-2 family proteins. AT101 (R-(-)-gossypol), a natural BH3-mimetic molecule, has shown anti-tumor activity as a single agent and in combination with standard anticancer therapies in a variety of tumor models. Here, we report the effect of AT101 on apoptosis in cisplatin-resistant ovarian cancer cells and identify the major molecular events that determine sensitivity. AT101 induced cell apoptosis by activating Bax through a conformational change, translocation, and oligomerization. The inhibition of Bax expression only partially prevented caspase-3 cleavage. However, the gene silencing of Bax had no effect on mitochondrial Smac release. Further experiments demonstrated that Smac reduction inhibited caspase-3 activation and attenuated cell apoptosis. More importantly, the inhibition of Smac or overexpression of XIAP attenuated Bax activation in ovarian cells. Furthermore, our data indicate that the Akt-p53 pathway is involved in the regulation of Smac release. Taken together, our data demonstrate the role of Smac and the molecular mechanisms of AT101-induced apoptosis of chemoresistant ovarian cancer cells. Our findings suggest that AT101 not only triggers Bax activation but also induces mitochondrial Smac release. Activated Smac can enhance Bax-mediated cellular apoptosis. Therefore, Smac mediates Bax activation to determine the threshold for overcoming cisplatin resistance in ovarian cancer cells.

  11. Early-stage tumor detection using photoacoustic microscopy: a pattern recognition approach

    Science.gov (United States)

    Yeh, Chenghung; Wang, Liang; Liang, Jinyang; Zhou, Yong; Hu, Song; Sohn, Rebecca E.; Arbeit, Jeffrey M.; Wang, Lihong V.

    2017-03-01

    We report photoacoustic microscopy (PAM) of arteriovenous (AV) shunts in early stage tumors in vivo, and develop a pattern recognition framework for computerized tumor detection. Here, using a high-resolution photoacoustic microscope, we implement a new blood oxygenation (sO2)-based disease marker induced by the AV shunt effect in tumor angiogenesis. We discovered a striking biological phenomenon: There can be two dramatically different sO2 values in bloodstreams flowing side-by-side in a single vessel. By tracing abnormal sO2 values in the blood vessels, we can identify a tumor region at an early stage. To further automate tumor detection based on our findings, we adopt widely used pattern recognition methods and develop an efficient computerized classification framework. The test result shows over 80% averaged detection accuracy with false positive contributing 18.52% of error test samples on a 50 PAM image dataset.

  12. Depletion of OLFM4 gene inhibits cell growth and increases sensitization to hydrogen peroxide and tumor necrosis factor-alpha induced-apoptosis in gastric cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Rui-hua

    2012-04-01

    Full Text Available Abstract Background Human olfactomedin 4 (OLFM4 gene is a secreted glycoprotein more commonly known as the anti-apoptotic molecule GW112. OLFM4 is found to be frequently up-regulated in many types of human tumors including gastric cancer and it was believed to play significant role in the progression of gastric cancer. Although the function of OLFM4 has been indicated in many studies, recent evidence strongly suggests a cell or tissue type-dependent role of OLFM4 in cell growth and apoptosis. The aim of this study is to examine the role of gastric cancer-specific expression of OLFM4 in cell growth and apoptosis resistance. Methods OLFM4 expression was eliminated by RNA interference in SGC-7901 and MKN45 cells. Cell proliferation, anchorage-independent growth, cell cycle and apoptosis were characterized in vitro. Tumorigenicity was analyzed in vivo. The apoptosis and caspase-3 activation in response to hydrogen peroxide (H2O2 or tumor necrosis factor-alpha (TNF α were assessed in the presence or absence of caspase inhibitor Z-VAD-fmk. Results The elimination of OLFM4 protein by RNA interference in SGC-7901 and MKN45 cells significantly inhibits tumorigenicity both in vitro and in vivo by induction of cell G1 arrest (all P 2O2 or TNF α-induced apoptosis and caspase-3 activity (all P 2O2 or TNF α-induced apoptosis in OLFM4 knockdown cells (all P Conclusion Our study suggests that depletion of OLFM4 significantly inhibits tumorigenicity of the gastric cancer SGC-7901 and MKN45 cells. Blocking OLFM4 expression can sensitize gastric cancer cells to H2O2 or TNF α treatment by increasing caspase-3 dependent apoptosis. A combination strategy based on OLFM4 inhibition and anticancer drugs treatment may provide therapeutic potential in gastric cancer intervention.

  13. Antitumor Activities and Apoptosis-regulated Mechanisms of Fermented Wheat Germ Extract in the Transplantation Tumor Model of Human HT-29 Cells in Nude Mice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia Yan; XIAO Xiang; DONG Ying; WU Jing; ZHOU Xing Hua

    2015-01-01

    Objective A subcutaneous transplantation tumor model of human HT-29 cells in nude mice was established to evaluate anticarcinogenic activities, and the apoptosis-regulated mechanism effect of aqueous extract of fermented wheat germ with Lactobacillus plantarum dy-1 (LFWGE). Methods The HT-29 cells were transplanted via subcutaneous injection of 1×107 cells into the right flank of each nude mouse. Then, nude mice were treated for 30 d with LFWGE (high-dose 2 g/kg/d;low-dose 1 g/kg/d) and for 7 d with 5-fluorouracil (5-FU, 25 mg/kg/d) by gavage and intraperitoneal injection, respectively. An inhibition of tumor growth was observed. Results Tumor volume and weights decreased significantly in both groups of nude mice treated with LFWGE. In addition, the cell apoptosis rate of the LFWGE group (2 g/kg/d, 60.1%±4.4%; 1 g/kg/d, 58.6%±6.9%) was significantly higher than that of the control group (11.5%±1.6%) and 5-FU group (32.1%±3.5%) as measured by the TUNEL assay. Moreover, the real-time fluorescent quantitative PCR and Western blot method further confirmed these enhancing apoptosis and growth inhibition effects. The involvement of LFWGE in inducing apoptosis was confirmed by the expression of Bax, Bcl-2, Caspase-3, and CyclinD1. Conclusion The results showed that LFWGE could induce subcutaneous transplantation tumor apoptosis in nude mice and could be as a natural nutrient supplements or chemopreventive agent in the treatment of human colon cancer.

  14. Phospho-Rb mediating cell cycle reentry induces early apoptosis following oxygen-glucose deprivation in rat cortical neurons.

    Science.gov (United States)

    Yu, Ying; Ren, Qing-Guo; Zhang, Zhao-Hui; Zhou, Ke; Yu, Zhi-Yuan; Luo, Xiang; Wang, Wei

    2012-03-01

    The aim of this study was to investigate the relationship between cell cycle reentry and apoptosis in cultured cortical neurons following oxygen-glucose deprivation (OGD). We found that the percentage of neurons with BrdU uptake, TUNEL staining, and colocalized BrdU uptake and TUNEL staining was increased relative to control 6, 12 and 24 h after 1 h of OGD. The number of neurons with colocalized BrdU and TUNEL staining was decreased relative to the number of TUNEL-positive neurons at 24 h. The expression of phosphorylated retinoblastoma protein (phospho-Rb) was significantly increased 6, 12 and 24 h after OGD, parallel with the changes in BrdU uptake. Phospho-Rb and TUNEL staining were colocalized in neurons 6 and 12 h after OGD. This colocalization was strikingly decreased 24 h after OGD. Treatment with the cyclin-dependent kinase inhibitor roscovitine (100 μM) decreased the expression of phospho-Rb and reduced neuronal apoptosis in vitro. These results demonstrated that attempted cell cycle reentry with phosphorylation of Rb induce early apoptosis in neurons after OGD and there must be other mechanisms involved in the later stages of neuronal apoptosis besides cell cycle reentry. Phosphoralated Rb may be an important factor which closely associates aberrant cell cycle reentry with the early stages of neuronal apoptosis following ischemia/hypoxia in vitro, and pharmacological interventions for neuroprotection may be useful directed at this keypoint.

  15. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol-A Natural Compound Present in Humulus lupulus L.

    Science.gov (United States)

    Kłósek, Małgorzata; Mertas, Anna; Król, Wojciech; Jaworska, Dagmara; Szymszal, Jan; Szliszka, Ewelina

    2016-06-22

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a prenylated chalcone found in Humulus lupulus on androgen-sensitive human prostate adenocarcinoma cells (LNCaP) in combination with TRAIL. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction assay (MTT) and lactate dehydrogenase assay (LDH). The expression of death receptors (DR4/TRAIL-R1 and DR5/TRAIL-R2) and apoptosis were detected using flow cytometry. We examined mitochondrial membrane potential (ΔΨm) by DePsipher reagent using fluorescence microscopy. The intracellular expression of proteins was evaluated by Western blotting. Our study showed that xanthohumol enhanced cytotoxic and apoptotic effects of TRAIL. The tested compounds activated caspases-3, -8, -9, Bid, and increased the expression of Bax. They also decreased expression of Bcl-xL and decreased mitochondrial membrane potential, while the expression of death receptors was not changed. The findings suggest that xanthohumol is a compound of potential use in chemoprevention of prostate cancer due to its sensitization of cancer cells to TRAIL-mediated apoptosis.

  16. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol—A Natural Compound Present in Humulus lupulus L.

    Directory of Open Access Journals (Sweden)

    Małgorzata Kłósek

    2016-06-01

    Full Text Available TRAIL (tumor necrosis factor-related apoptosis-inducing ligand is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a prenylated chalcone found in Humulus lupulus on androgen-sensitive human prostate adenocarcinoma cells (LNCaP in combination with TRAIL. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide tetrazolium reduction assay (MTT and lactate dehydrogenase assay (LDH. The expression of death receptors (DR4/TRAIL-R1 and DR5/TRAIL-R2 and apoptosis were detected using flow cytometry. We examined mitochondrial membrane potential (ΔΨm by DePsipher reagent using fluorescence microscopy. The intracellular expression of proteins was evaluated by Western blotting. Our study showed that xanthohumol enhanced cytotoxic and apoptotic effects of TRAIL. The tested compounds activated caspases-3, -8, -9, Bid, and increased the expression of Bax. They also decreased expression of Bcl-xL and decreased mitochondrial membrane potential, while the expression of death receptors was not changed. The findings suggest that xanthohumol is a compound of potential use in chemoprevention of prostate cancer due to its sensitization of cancer cells to TRAIL-mediated apoptosis.

  17. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol—A Natural Compound Present in Humulus lupulus L.

    Science.gov (United States)

    Kłósek, Małgorzata; Mertas, Anna; Król, Wojciech; Jaworska, Dagmara; Szymszal, Jan; Szliszka, Ewelina

    2016-01-01

    TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a prenylated chalcone found in Humulus lupulus on androgen-sensitive human prostate adenocarcinoma cells (LNCaP) in combination with TRAIL. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction assay (MTT) and lactate dehydrogenase assay (LDH). The expression of death receptors (DR4/TRAIL-R1 and DR5/TRAIL-R2) and apoptosis were detected using flow cytometry. We examined mitochondrial membrane potential (ΔΨm) by DePsipher reagent using fluorescence microscopy. The intracellular expression of proteins was evaluated by Western blotting. Our study showed that xanthohumol enhanced cytotoxic and apoptotic effects of TRAIL. The tested compounds activated caspases-3, -8, -9, Bid, and increased the expression of Bax. They also decreased expression of Bcl-xL and decreased mitochondrial membrane potential, while the expression of death receptors was not changed. The findings suggest that xanthohumol is a compound of potential use in chemoprevention of prostate cancer due to its sensitization of cancer cells to TRAIL-mediated apoptosis. PMID:27338375

  18. Targeted labeling of early-​stage tumor spheroid in chorioallantoic membrane model with upconversion nanoparticles

    NARCIS (Netherlands)

    K. Liu; J.A. Holz; Y. Ding; X. Liu; Y. Zhang; L. Tu; X. Kong; B. Priem; A. Nadort; S.A.G. Lambrechts; M.C.G. Aalders; W.J. Buma; Y. Liu; H. Zhang

    2015-01-01

    In vivo detection of cancer at early-​stage, i.e. smaller than 2 mm, is a challenge in biomedicine. In this work target labeling of early-​stage tumor spheroid (∼500 μm) is realized for the first time in chick embryo chorioallantoic membrane (CAM) model with monoclonal antibody functionalized upconv

  19. Multimodality Imaging of Tumor Response to Doxil

    Directory of Open Access Journals (Sweden)

    Fan Zhang, Lei Zhu, Gang Liu, Naoki Hida, Guangming Lu, Henry S. Eden, Gang Niu, Xiaoyuan Chen

    2011-01-01

    Full Text Available Purpose: Early assessment of tumor responses to chemotherapy could enhance treatment outcomes by ensuring that, from the beginning, treatments meet the individualized needs of patients. In this study, we applied multiple modality molecular imaging techniques to pre-clinical monitoring of early tumor responses to Doxil, focusing on imaging of apoptosis.Methods: Mice bearing UM-SCC-22B human head and neck squamous cancer tumors received either PBS or 1 to 2 doses of Doxil® (doxorubicin HCl liposome injection (10 mg/kg/dose. Bioluminescence signals from an apoptosis-responsive reporter gene were captured for apoptosis evaluation. Tumor metabolism and proliferation were assessed by 18F-FDG and 3'-18F-fluoro-3'-deoxythymidine (18F-FLT positron emission tomography. Diffusion-weighted magnetic resonance imaging (DW-MRI was performed to calculate averaged apparent diffusion coefficients (ADCs for the whole tumor volume. After imaging, tumor samples were collected for histological evaluation, including terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL, anti-CD31, and Ki-67 immunostaining.Results: Two doses of Doxil significantly inhibited tumor growth. Bioluminescence imaging (BLI indicated apoptosis of tumor cells after just 1 dose of Doxil treatment, before apparent tumor shrinkage. 18F-FDG and 18F-FLT PET imaging identified decreased tumor metabolism and proliferation at later time points than those at which BLI indicated apoptosis. MRI measurements of ADC altered in response to Doxil, but only after tumors were treated with 2 doses. Decreased tumor proliferation and increased apoptotic cells were confirmed by changes of Ki-67 index and apoptotic ratio.Conclusion: Our study of tumor responses to different doses of Doxil demonstrated that it is essential to combine apoptosis imaging strategies with imaging of other critical biological or pathological pathways, such as metabolism and proliferation, to improve clinical decision making

  20. Parenteral and Early Enteral Feeding in Patients with Colonic Tumor

    Directory of Open Access Journals (Sweden)

    O. A. Malkov

    2008-01-01

    Full Text Available Objective: to provide evidence whether it is expedient to use an early enteral feeding protocol in patients with colonic malignancies in the postoperative period to prevent and to correct hemodynamic disorders, oxygen imbalance, and malnutrition. Subjects and methods. A hundred patients (61 males and 39 females aged 66.2±5.0 years, who had Stages 2—3 colonic malignancies, were examined. Two algorithms of postoperative management were analyzed using the traditional diet and early enteral feeding. Results. The early enteral feeding protocol improves central hemodynamics and oxygen and nutritional status, prevents moderate protein-energy deficiency in the early postoperative period and reduces the number of complications and fatal outcomes in patients with colonic malignancies. Key words: malignancies, malnutrition, hemo-dynamics, oxygen status, enteral feeding.

  1. Stimulation of non-Hodgkin's lymphoma via HVEM: an alternate and safe way to increase Fas-induced apoptosis and improve tumor immunogenicity.

    Science.gov (United States)

    Costello, R T; Mallet, F; Barbarat, B; Schiano De Colella, J-M; Sainty, D; Sweet, R W; Truneh, A; Olive, D

    2003-12-01

    Stimulation by CD40 ligand (L) improves B-cell malignancy immunogenicity, and also induces proliferative signals. To avoid these tumorigenic effects, we studied an alternate way of tumor-cell stimulation by homologous to lymphotoxin, inducible expression, competing for GpD of herpesvirus, which binds to the herpesvirus entry mediator (HVEM), and is expressed on T-lymphocytes (LIGHT), the ligand for HVEM, a new member of the tumor necrosis factor (TNF)/TNF-receptor (-R) family. HVEM is constitutively expressed on the surface of tumor B cells. We focused our attention on mantle cell lymphoma, a subtype of B-cell malignancy of poor prognosis. Triggering by LIGHT, in contrast to CD40L stimulation, did not increase lymphoma proliferation nor decrease chemotherapy entrance. We observed an upregulation of the TNFR apoptosis-inducing ligand Fas, and in contrast to CD40L-induced protection, an enhancement of lymphoma sensitivity to Fas-induced apoptosis. LIGHT triggering increased lymphoma cell recognition in a mixed lymphocyte response. In conclusion, LIGHT-mediated triggering renders B-cell lymphomas more immunogenic and sensitive to apoptosis, without inducing proliferation. Since LIGHT triggering also enhances the functions of T-lymphocytes and dendritic cells, it could be a unique way to restore an efficient cancer control by its pleiotropic effects on immune effectors and tumor cells.

  2. Application of conditionally replicating adenoviruses in tumor early diagnosis technology, gene-radiation therapy and chemotherapy.

    Science.gov (United States)

    Li, Shun; Ou, Mengting; Wang, Guixue; Tang, Liling

    2016-10-01

    Conditionally replicating adenoviruses (CRAds), or known as replication-selective adenoviruses, were discovered as oncolytic gene vectors several years ago. They have a strong ability of scavenging tumor and lesser toxicity to normal tissue. CRAds not only have a tumor-killing ability but also can combine with gene therapy, radiotherapy, and chemotherapy to induce tumor cell apoptosis. In this paper, we review the structure of CRAds and CRAd vectors and summarize the current application of CRAds in tumor detection as well as in radiotherapy and suicide gene-mediating chemotherapy. We also propose further research strategies that can improve the application value of CRAds, including enhancing tumor destruction effect, further reducing toxic effect, reducing immunogenicity, constructing CRAds that can target tumor stem cells, and trying to use mesenchymal stem cells (MSCs) as the carriers for oncolytic adenoviruses. As their importance to cancer diagnosis, gene-radiation, and chemotherapy, CRAds may play a considerable role in clinical diagnosis and various cancer treatments in the future.

  3. Circulating tumor cells in early bladder cancer: insight into micrometastatic disease.

    Science.gov (United States)

    Raimondi, Cristina; Gradilone, Angela; Gazzaniga, Paola

    2014-05-01

    Although several studies have demonstrated the prognostic and predictive potential of circulating tumor cells (CTCs), to date their evaluation still has not impacted the treatment strategy. There is wide consensus that CTC assessment would be more beneficial in early stage cancer, especially in those tumor types characterized by early progression and a lack of prognostic markers. Non-muscle-invasive bladder cancer represents an optimal model to this purpose. In fact, the rate of metastatic spread ranges between 20 and 40%, which is unacceptable for a 'superficial' tumor and unexpected in an early stage cancer. This may be due to the presence of non-clinically detectable micrometastases. CTCs may be used as a noninvasive, real-time tool for the stratification of early stage bladder cancer patients according to individual risk of progression.

  4. The role of apoptosis in early embryonic development of the adenohypophysis in rats

    OpenAIRE

    Gedrange Tomas; Kleinheinz Johannes; Driemel Oliver; Faltermeier Andreas; Lotz Kristina; Weingärtner Jens; Proff Peter

    2008-01-01

    Abstract Background Apoptosis is involved in fundamental processes of life, like embryonic development, tissue homeostasis, or immune defense. Defects in apoptosis cause or contribute to developmental malformation, cancer, and degenerative disorders. Methods The developing adenohypophysis area of rat fetuses was studied at the embryonic stage 13.5 (gestational day) for apoptotic and proliferative cell activities using histological serial sections. Results A high cell proliferation rate was ob...

  5. Neuroendocrine tumors (carcinoids of the stomach and intestines - early diagnosis and minimally invasive endoscopic procedures

    Directory of Open Access Journals (Sweden)

    Kuryk O.G.

    2014-03-01

    Full Text Available Background. Neuroendocrine tumors of the stomach and intestines are rare diseases. Increasing incidence and complexity of diagnosis of these diseases cause acuteness of the problem. Objective. To evaluate the effectiveness of morphological examination of endoscopic biopsy material for diagnostics of neuroendocrine tumors and for evaluation of completeness of minimally invasive endoscopic surgical interventions (endoscopic mucosal resection and endoscopic submucosal dissection at neuroendocrine tumors. Methods. On the basis of Medical center "Oberig" in 2009 - 2013 in eight cases neuroendocrine tumors were diagnosed: 2 (25 % in the stomach, 2 (25% – in the duodenum, 2 (25% - in the small intestine, 1 (12.5 % - in the ascending colon, 1 (12.5% - in the rectum. Neuroendocrine tumors of stomach and ileum were removed by endoscopic mucosal resection, duodenal bulb and rectum neuroendocrine tumors – by endoscopic submucosal dissection, papillary duodenum, colon and jejunum neuroendocrine tumors – by surgical resection. Results. It was shown, that morphological evaluation of endoscopic mucosal biopsies is effective way to diagnose the neuroendocrine tumors. Conclusion. Endoscopic mucosal resection and endoscopic submucosal dissection allows to get advanced material for morphological diagnosis of neuroendocrine tumors and an adequate method of their removing Citation: Kuryk OG, Yakovenko VO, Bazdyrev VV, Bodnar LV. [Neuroendocrine tumors (carcinoids of the stomach and intestines - early diagnosis and minimally invasive endoscopic procedures]. Morphologia. 2014;8(1:58-64. Ukrainian.

  6. Improvement of porcine cloning efficiency by trichostain A through early-stage induction of embryo apoptosis.

    Science.gov (United States)

    Ji, Qianqian; Zhu, Kongju; Liu, Zhiguo; Song, Zhenwei; Huang, Yuankai; Zhao, Haijing; Chen, Yaosheng; He, Zuyong; Mo, Delin; Cong, Peiqing

    2013-03-15

    Trichostain A (TSA), an inhibitor of histone deacetylases, improved developmental competence of SCNT embryos in many species, apparently by improved epigenetic reprogramming. The objective of the present study was to determine the effects of TSA-induced apoptosis in cloned porcine embryos. At various developmental stages, a comet assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining were used to detect apoptosis, and real-time polymerase chain reaction was used to assess expression of genes related to apoptosis and pluripotency. In this study, TSA significantly induced apoptosis (in a dose-dependent manner) at the one-, two-, and four-cell stages. However, in blastocyst stage embryos, TSA decreased the apoptotic index (P < 0.05). Expression levels of Caspase 3 were higher in TSA-treated versus control embryos at the two-cell stage (not statistically significant). The expression ratio of antiapoptotic Bcl-xl gene to proapoptotic Bax gene, an indicator of antiapoptotic potential, was higher in TSA-treated groups at the one-, two-, and four-cell and blastocyst stages. Furthermore, expression levels of pluripotency-related genes, namely, Oct4 and Nanog, were elevated at the morula stage (P < 0.05) in TSA treatment groups. We concluded that inducing apoptosis might be a mechanism by which TSA promotes development of reconstructed embryos. At the initial stage of apoptosis induction, abnormal cells were removed, thereby enhancing proliferation of healthy cells and improving embryo quality.

  7. Increase of tumor necrosis factor receptor 1 expression in women with unexplained early spontaneous abortion

    Institute of Scientific and Technical Information of China (English)

    YAN Chun-fang; YU Xue-wen; JIN Hui; LI Xu

    2004-01-01

    To investigate membrane tumor necrosis factor receptor 1 protein expression level in decidua andconcentration of soluble tumor necrosis factor receptor 1 in serum in women with unexplained early spontaneous abortion,threatened abortion, and compare the levels with healthy pregnant women. Methods: Thirty-seven women with unexplainedearly spontaneous abortion, 27 women with threatened abortion, and 34 healthy pregnant women undergoing artificial abortionof pregnancy at 6 - 10 weeks of gestation were selected. Decidual samples were collected when women were undergoing arti-ficial abortion, and blood samples were collected at the same time. The level of membrane tumor necrosis factor receptor 1 indecidua was detected by flow cytometer, and the concentration of soluble tumor necrosis factor receptor 1 in sera was mea-sured with an enzyme-linked immunosorbent assay. Results: The ercentages of membrane tumor necrosis factor receptor 1positive decidual cells were 16.42 ± 7.10 Mean ± SD for women with unexplained early spontaneous abortion and 13.14 ±6.30 for healthy pregnant women ( P < 0.05). Serum oncentration of soluble tumor necrosis factor receptor 1 was signifi-cantly higher in women with unexplained early spontaneous abortion than in healthy pregnant women and in women withthreatened abortion, and no difference was found between healthy pregnant women and women with threatened abortion.Conclusion: Women with unexplained early spontaneous abortion present significantly higher expression of tumor necrosisfactor receptor 1 than healthy pregnant women, suggesting that over-expression of tumor necrosis factor receptor 1 may cont-ribute to the development of early spontaneous abortion.

  8. Interferon (IFN)-beta induces apoptotic cell death in DHL-4 diffuse large B cell lymphoma cells through tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    Science.gov (United States)

    Oehadian, Amaylia; Koide, Naoki; Mu, Mya Mya; Hassan, Ferdaus; Islam, Shamima; Yoshida, Tomoaki; Yokochi, Takashi

    2005-07-08

    The effect of interferon (IFN)-alpha, beta and gamma on the growth of DHL-4 diffuse large B cell lymphoma cells was studied. IFN-beta significantly inhibited the cell growth, and the effect was stronger than that of IFN-alpha. IFN-gamma did not inhibit the cell growth because of lack of IFN-gamma receptors. IFN-beta caused apoptotic cell death which was accompanied by DNA fragmentation, caspase 3 activation and annexin V binding. IFN-beta lead to the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mRNA. Anti-TRAIL antibody significantly prevented IFN-beta-induced apoptosis. It was suggested that IFN-beta might cause apoptosis in DHL-4 cells through TRAIL.

  9. KLF10, transforming growth factor-{beta}-inducible early gene 1, acts as a tumor suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki-Duk [Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921 (Korea, Republic of); Laboratory of Protein Engineering and Comparative Immunology, School of Agricultural Biotechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Kim, Duk-Jung [The Institute of Hankook Life Science, 7-9 Myungryun-dong, Jongno-gu, Seoul 110-521 (Korea, Republic of); Lee, Jong Eun [Department of Anatomy, College of Medicine, Yonsei University, Seoul 120-752 (Korea, Republic of); Yun, Cheol-Heui [Center for Agricultural Biomaterials, Seoul National University, Seoul 151-921 (Korea, Republic of); Laboratory of Protein Engineering and Comparative Immunology, School of Agricultural Biotechnology, Seoul National University, Seoul 151-921 (Korea, Republic of); Lee, Woon Kyu, E-mail: wklee@inha.ac.kr [Laboratory of Developmental Genetics, School of Medicine, Inha University, Incheon 400-712 (Korea, Republic of); Brain Korea 21 Center for Advanced Medical Education, School of Medicine, Inha University, Incheon 400-712 (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer KLF10{sup -/-} mice exhibited accelerated papilloma development after DMBA/TPA treatment. Black-Right-Pointing-Pointer KLF10{sup -/-} keratinocytes showed increased proliferation and apoptosis. Black-Right-Pointing-Pointer KLF10{sup -/-} MEFs yielded more colonies than wild-type one with H-Ras transfection. Black-Right-Pointing-Pointer KLF10 dose-dependently activated p21{sup WAF1/CIP1} transcription. Black-Right-Pointing-Pointer KLF10 is a tumor suppressor and that it targets p21{sup WAF1/CIP1} transcription. -- Abstract: Krueppel-like factor 10 (KLF10) has been suggested to be a putative tumor suppressor. In the present study, we generated KLF10 deficient mice to explore this hypothesis in vivo. KLF10 deficient mice exhibited increased predisposition to skin tumorigenesis and markedly accelerated papilloma development after DMBA/TPA treatment. On the other hand, KLF10 deficient keratinocytes showed increased proliferation and apoptosis. In colony formation assays after oncogenic H-Ras transfection, KLF10 deficient mouse embryonic fibroblasts (MEFs) yielded more colonies than wild-type MEFs. Furthermore, KLF10 dose-dependently activated p21{sup WAF1/CIP1} transcription, which was independent of p53 and Sp1 binding sites in p21{sup WAF1/CIP1} promoter. This study demonstrates that KLF10 is a tumor suppressor and that it targets p21{sup WAF1/CIP1} transcription.

  10. Cytotoxicity and apoptosis induced by alfalfa (Medicago sativa) leaf extracts in sensitive and multidrug-resistant tumor cells.

    Science.gov (United States)

    Gatouillat, Grégory; Magid, Abdulmagid Alabdul; Bertin, Eric; Okiemy-Akeli, Marie-Genevieve; Morjani, Hamid; Lavaud, Catherine; Madoulet, Claudie

    2014-01-01

    Alfalfa (Medicago sativa) has been used to cure a wide variety of ailments. However, only a few studies have reported its anticancer effects. In this study, extracts were obtained from alfalfa leaves and their cytotoxic effects were assessed on several sensitive and multidrug-resistant tumor cells lines. Using the mouse leukaemia P388 cell line and its doxorubicin-resistant counterpart (P388/DOX), we showed that the inhibition of cell growth induced by alfalfa leaf extracts was mediated through the induction of apoptosis, as evidenced by DNA fragmentation analysis. The execution of programmed cell death was achieved via the activation of caspase-3, leading to PARP cleavage. Fractionation of toluene extract (To-1), the most active extract obtained from crude extract, led to the identification of 3 terpene derivatives and 5 flavonoids. Among them, (-)-medicarpin, (-)-melilotocarpan E, millepurpan, tricin, and chrysoeriol showed cytotoxic effects in P388 as well as P388/DOX cells. These results demonstrate that alfalfa leaf extract may have interesting potential in cancer chemoprevention and therapy.

  11. MCL1 and BCL-xL levels in solid tumors are predictive of dinaciclib-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Robert N Booher

    Full Text Available Dinaciclib is a potent CDK1, 2, 5 and 9 inhibitor being developed for the treatment of cancer. Additional understanding of antitumor mechanisms and identification of predictive biomarkers are important for its clinical development. Here we demonstrate that while dinaciclib can effectively block cell cycle progression, in vitro and in vivo studies, coupled with mouse and human pharmacokinetics, support a model whereby induction of apoptosis is a main mechanism of dinaciclib's antitumor effect and relevant to the clinical duration of exposure. This was further underscored by kinetics of dinaciclib-induced downregulation of the antiapoptotic BCL2 family member MCL1 and correlation of sensitivity with the MCL1-to-BCL-xL mRNA ratio or MCL1 amplification in solid tumor models in vitro and in vivo. This MCL1-dependent apoptotic mechanism was additionally supported by synergy with the BCL2, BCL-xL and BCL-w inhibitor navitoclax (ABT-263. These results provide the rationale for investigating MCL1 and BCL-xL as predictive biomarkers for dinaciclib antitumor response and testing combinations with BCL2 family member inhibitors.

  12. Urea derivates of ursolic, oleanolic and maslinic acid induce apoptosis and are selective cytotoxic for several human tumor cell lines.

    Science.gov (United States)

    Sommerwerk, Sven; Heller, Lucie; Kuhfs, Julia; Csuk, René

    2016-08-25

    2,3-Di-O-acetyl-maslinic acid benzylamide (5) has previously been shown to possess high cytotoxicity for a variety of human tumor cell lines while being of low cytotoxicity to non-malignant cells. Structural modifications performed on 5 revealed that the presence of these acetyl groups in 5 and the presence of (2β,3β)-configurated centers seems necessary for obtaining high cytotoxicity combined with best selectivity between malignant cells and non-malignant mouse fibroblasts. Compounds carrying an ursane skeleton showed weaker cytotoxicity than their oleanane derived analogs. In addition, the benzylamide function in compound 5 should be replaced by a phenylurea moiety to gain better cytotoxicity while retaining and improving the selectivity. Thus, maslinic acid derived N-[2β,3β-di-O-acetyl-17β-amino-28-norolean-12-en-17-yl]phenylurea (45) gave best results showing EC50 = 0.9 μM (for A2780 ovarian cancer cells) with EC50 > 120 μM for fibroblasts (NIH 3T3) and triggered apoptosis while caspase-3 was not activated by this compound.

  13. Cytotoxic and apoptosis-inducing activities, and anti-tumor-promoting effects of cyanogenated and oxygenated triterpenes.

    Science.gov (United States)

    Kikuchi, Takashi; Ishii, Kenta; Ogihara, Eri; Zhang, Jie; Ukiya, Motohiko; Tokuda, Harukuni; Iida, Takashi; Tanaka, Reiko; Akihisa, Toshihiro

    2014-04-01

    Two of each semisynthetic lanostane- and cycloartane-type triterpenes with a cyano-enone functionality, i.e., 13 and 18, and 23 and 28, respectively, sixteen of their synthetic intermediates, 9-12, 14-17, 19-22, and 24-27, along with seven semisynthetic oxygenated triterpene acetates, 29-35, and eight natural hydroxy triterpenes, 1-8, were evaluated for their cytotoxic activities against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK-BR-3) cancer cell lines. One natural triterpene, 8, and ten semisynthetic triterpenes, 9, 13, 15, 18, 23, 25, 28, 29, 32, and 33, exhibited potent cytotoxicities against one or more cell lines with IC50 values in the range of 1.4-9.9 μM. Two lanostane-type triterpenes with a cyano-enone functionality, 3-oxolanosta-1,8,24-triene-2-carbonitrile (13) and 3-oxolanosta-1,8-diene-2-carbonitrile (18), induced apoptosis in HL60 cells, as observed by membrane phospholipid exposure in flow cytometry. Western blot analysis showed that 13 and 18 significantly reduced procaspases-3, -8, and -9, and increased cleaved caspases-3, -8, and -9. These findings indicated that compounds 13 and 18 induced apoptosis in HL60 cells via both the mitochondrial and the death receptor-mediated pathways. In addition, upon evaluation of the inhibitory effects on EpsteinBarr virus early antigen (EBV-EA) activation induced with 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells, seven natural triterpenes, 1-6 and 8, and ten semisynthetic triterpenes, 9, 10, 14, 15, 19, 20, 24, 25, 29, and 30, exhibited inhibitory effects which were higher than that of β-carotene, a vitamin A precursor studied widely in cancer-chemoprevention animal models. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  14. DESC1, a novel tumor suppressor, sensitizes cells to apoptosis by downregulating the EGFR/AKT pathway in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Ng, Hoi Yan; Ko, Josephine Mun-Yee; Yu, Valen Zhuoyou; Ip, Joseph Chok Yan; Dai, Wei; Cal, Santiago; Lung, Maria Li

    2016-06-15

    Esophageal cancer is ranked as the eighth most common cancer and the sixth leading cause of cancer deaths worldwide. To identify candidate tumor suppressor genes related to esophageal squamous cell carcinoma (ESCC) development, a cDNA microarray analysis was performed using paired tumor and nontumor tissue samples from ESCC patients. Differentially expressed in squamous cell carcinoma 1 (DESC1), which belongs to the Type II transmembrane serine protease family, was frequently downregulated in ESCC. This study aims to elucidate the molecular mechanism for the tumor suppressive function of DESC1 in ESCC. We show that DESC1 reduced cell viability and sensitized cells to apoptosis, when cells were under apoptotic stimuli. The proapoptotic effect of DESC1 was mediated through downregulating AKT1 activation and the restoration of AKT activation by the introduction of the constitutively active AKT, myr-AKT, abolished the apoptosis-sensitizing effect of DESC1. DESC1 also reduced EGFR protein level, which was abrogated when the proteolytic function of DESC1 was lost, suggesting that DESC1 cleaved EGFR and downregulated the EGFR/AKT pathway to favor apoptosis. The transmembrane localization and the structural domains provide an opportunity for DESC1 to interact with the extracellular environment. The importance of such interaction was highlighted by the finding that DESC1 reduced cell colony formation ability in three-dimensional culture. In line with this, DESC1 reduced tumor growth kinetics in the in vivo orthotopic tumorigenesis assay. Taken together, our novel findings suggest how DESC1 may suppress ESCC development by sensitizing cells to apoptosis under an apoptotic stimulus through downregulating the EGFR/AKT signaling pathway.

  15. [Vaginal sonography: a screening method for early detection of ovarian tumors and endometrial cancers?].

    Science.gov (United States)

    Osmers, R; Völksen, M; Rath, W; Kuhn, W

    1989-01-01

    In total we performed a vaginosonographic measurement of 212 patients with or without a postmenopausal bleeding. Altogether 424 ovaries were sonographically examined. An endometrial thickness greater than 4 mm was histologically clarified by means of a curettage and all detectable ovarian tumors by means of a laparotomia. In total we found seven asymptomatic endometrial carcinomas, one cervical carcinoma and two ovarian cancers. The vaginosonography showed to be a very sensitive and acceptable method for the early detection of postmenopausal ovarian and endometrial tumors.

  16. Hinokitiol inhibits cell growth through induction of S-phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment.

    Science.gov (United States)

    Lee, Youn-Sun; Choi, Kyeong-Mi; Kim, Wonkyun; Jeon, Young-Soo; Lee, Yong-Moon; Hong, Jin-Tae; Yun, Yeo-Pyo; Yoo, Hwan-Soo

    2013-12-27

    Hinokitiol (1), a tropolone-related natural compound, induces apoptosis and has anti-inflammatory, antioxidant, and antitumor activities. In this study, the inhibitory effects of 1 were investigated on human colon cancer cell growth and tumor formation of xenograft mice. HCT-116 and SW-620 cells derived from human colon cancers were found to be similarly susceptible to 1, with IC50 values of 4.5 and 4.4 μM, respectively. Compound 1 induced S-phase arrest in the cell cycle progression and decreased the expression levels of cyclin A, cyclin E, and Cdk2. Conversely, 1 increased the expression of p21, a Cdk inhibitor. Compound 1 decreased Bcl-2 expression and increased the expression of Bax, and cleaved caspase-9 and -3. The effect of 1 on tumor formation when administered orally was evaluated in male BALB/c-nude mice implanted intradermally separately with HCT-116 and SW-620 cells. Tumor volumes and tumor weights in the mice treated with 1 (100 mg/kg) were decreased in both cases. These results suggest that the suppression of tumor formation by compound 1 in human colon cancer may occur through cell cycle arrest and apoptosis.

  17. Research of ALA combined with HpD-PDT which induced s180 ascitic tumor cells, death or apoptosis on cytology

    Science.gov (United States)

    Zhu, Jing; Yan, Min; Zhang, Hui-Guo; Li, Enling; Luo, Hongyu

    2005-07-01

    To ascertain the adequate dosage of ALA combined with HpD-PDT which induced tumor cell death or apoptosis on cytology. And to study the different effect of ALA-PDT and HPD-PDT used only. Rat ascitic tumor cells(S180) were randomly divided into several groups and incubated with ALA(20μg/ml 、40μg/ml、80μg/ml 、160μg/ml)、HPD(2.5μg/ml、5μg/ml、10μg/ml)and their combination dosages. 630nm light (total output 2W) was delivered to tumor cells at a constant fluence rate: 200mw/cm2 and a constant irradiated time period: 20 minutes. We set 3 groups (no photosensitizers or no irradiation or neither) to be the control groups. We used inversion microscopy to observe the morphological change of tumor cells and flow cytometry technology to detect the death or apoptosis of tumor cells during the experiment. ..

  18. Imbalance between apoptosis and cell proliferation during early stages of mammary gland carcinogenesis in ACI rats

    Energy Technology Data Exchange (ETDEWEB)

    Kutanzi, Kristy R.; Koturbash, Igor [Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4 (Canada); Bronson, Roderick T. [Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115 (United States); Pogribny, Igor P., E-mail: igor.pogribny@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Kovalchuk, Olga, E-mail: olga.kovalchuk@uleth.ca [Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K3M4 (Canada)

    2010-12-10

    Estrogen and ionizing radiation are well-documented human breast carcinogens, yet the exact mechanisms of their deleterious effects on mammary gland remain to be discerned. Here we analyze the balance between cellular proliferation and apoptosis in the mammary glands of rats exposed to estrogen and X-ray radiation and the combined action of these carcinogenic agents. For the first time, we show that combined exposure to estrogen and radiation has a synergistic effect on cell proliferation in the mammary glands of ACI rats, as evidenced by a substantially greater magnitude of cell proliferation, especially after 12 and 18 weeks of treatment, when compared to mammary glands of rats exposed to estrogen or radiation alone. We also demonstrate that an imbalance between cell proliferation and apoptosis, rather than enhanced cell proliferation or apoptosis suppression alone, may be a driving force for carcinogenesis. Our studies further suggest that compromised functional activity of p53 may be one of the mechanisms responsible for the proliferation/apoptosis imbalance. In sum, the results of our study indicate that evaluation of the extent of cell proliferation and apoptosis before the onset of preneoplastic lesions may be a potential biomarker of breast cancer risk after exposure to breast carcinogens.

  19. D-pinitol mitigates tumor growth by modulating interleukins and hormones and induces apoptosis in rat breast carcinogenesis through inhibition of NF-κB.

    Science.gov (United States)

    Rengarajan, Thamaraiselvan; Nandakumar, Natarajan; Rajendran, Peramaiyan; Ganesh, Mohanraj Karthik; Balasubramanian, Maruthaiveeran Periyasamy; Nishigaki, Ikuo

    2015-06-01

    Breast cancer is the most prevalent malignant neoplasm in the world, and chemoprevention through dietary intervention strategy is an emerging option to reduce the incidence. D-pinitol (DP), a major component of soya bean, possesses attractive biological actions. We have investigated whether D-pinitol have an effect on tumor growth in vivo against 7,12-dimethylbenz(a)anthracene (DMBA)-initiated rat mammary carcinogenesis and investigated its mechanism of action. Tumors were induced in Sprague-Dawley (SD) rats by a gastric dose of 20 mg/kg DMBA, and after 13 weeks of induction period, the rats were orally administered with D-pinitol for 45 days. At the end of the assay, animals in carcinogen control group prompted a tumor incidence of 100 % and developed a tumor volume of 8.35 ± 0.56, which was significantly reduced to 5.74 ± 0.32 for the animals treated with D-pinitol. The D-pinitol treatment not only decreased the tumor volume but also further examination revealed that tumors from animals that received D-pinitol reduced nuclear factor kappa B (NF-κB) activation which in turn results in modulation of its downstreaming p53 and proteins of caspase-3 family. Bcl-2 expression and caspase-3 activation were also decreased after D-pinitol supplementation leading to induction of apoptosis and finally cell death. Furthermore, the status of the inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-2, IL-6, and tumor markers, lipid profile, and hormones was also significantly declined up on D-pinitol administration. Thus, it reveals the collective involvement of the above-mentioned parameters along with NF-κB signaling through which D-pinitol induces apoptosis and subsequently suppresses breast cancer during DMBA-induced rat breast carcinogenesis.

  20. 6-Shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits anti-tumor activity in vivo through endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Rong Hu

    Full Text Available 6-Shogaol is an active compound isolated from Ginger (Zingiber officinale Rosc. In this work, we demonstrated that 6-shogaol induces apoptosis in human hepatocellular carcinoma cells in relation to caspase activation and endoplasmic reticulum (ER stress signaling. Proteomic analysis revealed that ER stress was accompanied by 6-shogaol-induced apoptosis in hepatocellular carcinoma cells. 6-shogaol affected the ER stress signaling by regulating unfolded protein response (UPR sensor PERK and its downstream target eIF2α. However, the effect on the other two UPR sensors IRE1 and ATF6 was not obvious. In prolonged ER stress, 6-shogaol inhibited the phosphorylation of eIF2α and triggered apoptosis in SMMC-7721 cells. Salubrinal, an activator of the PERK/eIF2α pathway, strikingly enhanced the phosphorylation of eIF2α in SMMC-7721 cells with no toxicity. However, combined treatment with 6-shogaol and salubrinal resulted in significantly increase of apoptosis and dephosphorylation of eIF2α. Overexpression of eIF2α prevented 6-shogaol-mediated apoptosis in SMMC-7721 cells, whereas inhibition of eIF2α by small interfering RNA markedly enhanced 6-shogaol-mediated cell death. Furthermore, 6-shogaol-mediated inhibition of tumor growth of mouse SMMC-7721 xenograft was associated with induction of apoptosis, activation of caspase-3, and inactivation of eIF2α. Altogether our results indicate that the PERK/eIF2α pathway plays an important role in 6-shogaol-mediated ER stress and apoptosis in SMMC-7721 cells in vitro and in vivo.

  1. Hemagglutinin protease secreted by V. cholerae induced apoptosis in breast cancer cells by ROS mediated intrinsic pathway and regresses tumor growth in mice model.

    Science.gov (United States)

    Ray, Tanusree; Chakrabarti, Monoj Kumar; Pal, Amit

    2016-02-01

    Conventional anticancer therapies are effective but have side effects, so alternative targets are being developed. Bacterial toxins that can kill cells or alter the cellular processes like proliferation, apoptosis and differentiation have been reported for cancer treatment. In this study we have shown antitumor activity of hemagglutinin protease (HAP) secreted by Vibrio cholerae. One µg of HAP showed potent antitumor activity when injected into Ehrlich ascites carcinoma (EAC) tumors in Swiss albino mice. Weekly administration of this dose is able to significantly diminish a large tumor volume within 3 weeks and increases the survival rates of cancerous mice. HAP showed apoptotic activity on EAC and other malignant cells. Increased level of pro-apoptotic p53 with increased ratio of pro-apoptotic Bax to anti-apoptotic Bcl-2 signify that HAP induced apoptogenic signals lead to death of the tumor cells. In vivo and ex vivo studies suggest that mitochondrial dependent intrinsic pathway is responsible for this apoptosis. The level of ROS in malignant cells is reported to be higher than the normal healthy cells. HAP induces oxidative stress and increases the level of ROS in malignant cells which is significantly higher than the normal healthy cells. As a result the malignant cells cross the threshold level of ROS for cell survival faster than normal healthy cells. This mechanism causes HAP mediated apoptosis in malignant cells, but normal cells remain unaltered in the same environment. Our study suggests that HAP may be used as a new candidate drug for cancer therapy.

  2. Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ.

    Science.gov (United States)

    Yuan, Youyong; Kwok, Ryan T K; Tang, Ben Zhong; Liu, Bin

    2014-02-12

    Targeted drug delivery to tumor cells with minimized side effects and real-time in situ monitoring of drug efficacy is highly desirable for personalized medicine. In this work, we report the synthesis and biological evaluation of a chemotherapeutic Pt(IV) prodrug whose two axial positions are functionalized with a cyclic arginine-glycine-aspartic acid (cRGD) tripeptide for targeting integrin αvβ3 overexpressed cancer cells and an apoptosis sensor which is composed of tetraphenylsilole (TPS) fluorophore with aggregation-induced emission (AIE) characteristics and a caspase-3 enzyme specific Asp-Glu-Val-Asp (DEVD) peptide. The targeted Pt(IV) prodrug can selectively bind to αvβ3 integrin overexpressed cancer cells to facilitate cellular uptake. In addition, the Pt(IV) prodrug can be reduced to active Pt(II) drug in cells and release the apoptosis sensor TPS-DEVD simultaneously. The reduced Pt(II) drug can induce the cell apoptosis and activate caspase-3 enzyme to cleave the DEVD peptide sequence. Due to free rotation of the phenylene rings, TPS-DEVD is nonemissive in aqueous media. The specific cleavage of DEVD by caspase-3 generates the hydrophobic TPS residue, which tends to aggregate, resulting in restriction of intramolecular rotations of the phenyl rings and ultimately leading to fluorescence enhancement. Such noninvasive and real-time imaging of drug-induced apoptosis in situ can be used as an indicator for early evaluation of the therapeutic responses of a specific anticancer drug.

  3. The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2012-09-01

    Full Text Available Abstract Background Post-ischemic microglial activation may contribute to neuronal damage through the release of large amounts of pro-inflammatory cytokines and neurotoxic factors. The involvement of microRNAs (miRNAs in the pathogenesis of disorders related to the brain and central nervous system has been previously studied, but it remains unknown whether the production of pro-inflammatory cytokines is regulated by miRNAs. Methods BV-2 and primary rat microglial cells were activated by exposure to oxygen-glucose deprivation (OGD. Global cerebral ischemia was induced using the four-vessel occlusion (4-VO model in rats. Induction of pro-inflammatory and neurotoxic factors, such as tumor necrosis factor (TNF-α, interleukin (IL-1β, and nitric oxide (NO, were assessed by ELISA, immunofluorescence, and the Griess assay, respectively. The miRNA expression profiles of OGD-activated BV-2 cells were subsequently compared with the profiles of resting cells in a miRNA microarray. BV-2 and primary rat microglial cells were transfected with miR-181c to evaluate its effects on TNF-α production after OGD. In addition, a luciferase reporter assay was conducted to confirm whether TNF-α is a direct target of miR-181c. Results OGD induced BV-2 microglial activation in vitro, as indicated by the overproduction of TNF-α, IL-1β, and NO. Global cerebral ischemia/reperfusion injury induced microglial activation and the release of pro-inflammatory cytokines in the hippocampus. OGD also downregulated miR-181c expression and upregulated TNF-α expression. Overproduction of TNF-α after OGD-induced microglial activation provoked neuronal apoptosis, whereas the ectopic expression of miR-181c partially protected neurons from cell death caused by OGD-activated microglia. RNAinterference-mediated knockdown of TNF-α phenocopied the effect of miR-181c-mediated neuronal protection, whereas overexpression of TNF-α blocked the miR-181c-dependent suppression of apoptosis

  4. Neurotrophin receptor homolog (NRH1) proteins regulate mesoderm formation and apoptosis during early Xenopus development.

    Science.gov (United States)

    Knapp, Dunja; Messenger, Nigel; Ahmed Rana, Amer; Smith, James C

    2006-12-15

    Recent experiments suggest that Xenopus Neurotrophin Receptor Homolog 1 (NRH1) proteins act through the planar cell polarity pathway to regulate convergent extension movements during gastrulation and neurulation. We show in this paper that NRH1 proteins are also required for the proper expression of mesodermally expressed genes such as Xbra and Chordin, and to a lesser extent, of Xwnt11. Loss of NRH1 function is followed, during gastrula and neurula stages, by a dramatic increase in apoptosis. Apoptosis is delayed by injection of Xbra RNA, suggesting that cell death is a consequence, at least in part, of the down-regulation of this gene, and it is also delayed by expression of activated forms of Rho, Rac and Cdc42. These small GTPases have previously been implicated in the planar cell polarity pathway in Xenopus and, in other systems, in the regulation of apoptosis. We conclude that the effects of NRH1 proteins include the regulation of mesodermal gene expression and that the disruption of gastrulation that is caused by their loss of function is a consequence of the down-regulation of Xbra and other genes, in addition to direct interference with the planar cell polarity pathway. The apoptosis observed in embryos lacking NRH1 function is not an indirect consequence of the disruption of gastrulation, and indeed it may contribute to the observed morphological defects.

  5. Ets-1 as an early response gene against hypoxia-induced apoptosis in pancreatic β-cells.

    Science.gov (United States)

    Qiao, N; Xu, C; Zhu, Y-X; Cao, Y; Liu, D-C; Han, X

    2015-02-19

    Hypoxia complicates islet isolation for transplantation and may contribute to pancreatic β-cell failure in type 2 diabetes. Pancreatic β-cells are susceptible to hypoxia-induced apoptosis. Severe hypoxic conditions during the immediate post-transplantation period are a main non-immune factor leading to β-cell death and islet graft failure. In this study, we identified the transcription factor Ets-1 (v-ets erythroblastosis virus E26 oncogene homolog 1) as an early response gene against hypoxia-induced apoptosis in pancreatic β-cells. Hypoxia regulates Ets-1 at multiple levels according to the degree of β-cell oxygen deprivation. Moderate hypoxia promotes Ets-1 gene transcription, whereas severe hypoxia promotes its transactivation activity, as well as its ubiquitin-proteasome mediated degradation. This degradation causes a relative insufficiency of Ets-1 activity, and limits the transactivation effect of Ets-1 on downstream hypoxic-inducible genes and its anti-apoptotic function. Overexpression of ectopic Ets-1 in MIN6 and INS-1 cells protects them from severe hypoxia-induced apoptosis in a mitochondria-dependent manner, confirming that a sufficient amount of Ets-1 activity is critical for protection of pancreatic β-cells against hypoxic injury. Targeting Ets-1 expression may be a useful strategy for islet graft protection during the immediate post-transplantation period.

  6. Intracellular magnesium content changes during mitochondria-mediated apoptosis: in depth study of early events on mitochondrial membrane potential

    Directory of Open Access Journals (Sweden)

    Lucia Merolle

    2014-01-01

    Full Text Available A recent study showed the antitumor activity of a new indole-derivative – MM-67 – inducing mitochondria-mediated apoptosis and a decrease of intracellular magnesium (Mg concentration in HT29 colon cancer cells. Aim of this work was to assess cellular Mg levels throughout MM-67-induced apoptosis from the early to the final stage of the process and to evaluate the correlation with mitochondrial membrane potential (ΔΨm variations. All analysis were performed by flow cytometry: ΔΨm was assessed by using mitochondrial potential sensitive dye DiOC6, while free and total intracellular cation concentrations were assessed by using the commercial probe MagFluo4-AM (Kd=4.7 mM, and the new synthesized DCHQ5 (Kd=8.3 mM, respectively. Our results evidenced that the MM67 induced apoptosis is characterized by a direct correlation between ΔΨ and free intracellular Mg content variations.

  7. Nitric oxide-induced eosinophil apoptosis is dependent on mitochondrial permeability transition (mPT, JNK and oxidative stress: apoptosis is preceded but not mediated by early mPT-dependent JNK activation

    Directory of Open Access Journals (Sweden)

    Ilmarinen-Salo Pinja

    2012-08-01

    Full Text Available Abstract Background Eosinophils are critically involved in the pathogenesis of asthma. Nitric oxide (NO is produced in high amounts in asthmatic lungs and has an important role as a regulator of lung inflammation. NO was previously shown to induce eosinophil apoptosis mediated via c-jun N-terminal kinase (JNK and caspases. Our aim was to clarify the cascade of events leading to NO-induced apoptosis in granulocyte macrophage-colony stimulating factor (GM-CSF-treated human eosinophils concentrating on the role of mitochondria, reactive oxygen species (ROS and JNK. Methods Apoptosis was determined by flow cytometric analysis of relative DNA content, by Annexin-V labelling and/or morphological analysis. Immunoblotting was used to study phospho-JNK (pJNK expression. Mitochondrial membrane potential was assessed by JC-1-staining and mitochondrial permeability transition (mPT by loading cells with calcein acetoxymethyl ester (AM and CoCl2 after which flow cytometric analysis was conducted. Statistical significance was calculated by repeated measures analysis of variance (ANOVA or paired t-test. Results NO-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP induced late apoptosis in GM-CSF-treated eosinophils. SNAP-induced apoptosis was suppressed by inhibitor of mPT bongkrekic acid (BA, inhibitor of JNK SP600125 and superoxide dismutase-mimetic AEOL 10150. Treatment with SNAP led to late loss of mitochondrial membrane potential. Additionally, we found that SNAP induces early partial mPT (1 h that was followed by a strong increase in pJNK levels (2 h. Both events were prevented by BA. However, these events were not related to apoptosis because SNAP-induced apoptosis was prevented as efficiently when BA was added 16 h after SNAP. In addition to the early and strong rise, pJNK levels were less prominently increased at 20–30 h. Conclusions Here we demonstrated that NO-induced eosinophil apoptosis is mediated via ROS, JNK and late mPT. Additionally

  8. 3p21.3 tumor suppressor gene RBM5 inhibits growth of human prostate cancer PC-3 cells through apoptosis

    Directory of Open Access Journals (Sweden)

    Zhao Lijing

    2012-11-01

    Full Text Available Abstract Background Recent studies have indicated that the nuclear RNA-binding protein RBM5 has the ability to modulate apoptosis and suppress tumor growth. The aim of this study is to investigate the expression of RBM5 in human prostate cancer and its mechanism of tumor suppression. Methods The expression of RBM5 protein in cancerous prostatic tissues and normal tissues was examined by IHC. PC-3 cell line was used to determine the apoptotic function of RBM5 in vitro. PC-3 cells were transiently transfected with pcDNA3.1-RBM5. Cell viability was determined by MTT assay. Rhodamine 123 staining and Annexin V analysis were performed to observe the apoptotic activity of PC-3 cells overexpressing RBM5. Expression of apoptosis-related genes was assessed by western blot. Results The expression of RBM5 protein was significantly decreased in cancerous prostatic tissues compared to the normal tissues. PC-3 cells overexpressing RBM5 showed not only significant growth inhibition compared with the vector controls, but also dysfunction of mitochondrial membrane potential and increased apoptotic activity. To further define RBM5 function in apoptotic pathways, we investigated differential expression profiles of various BH3-only proteins including Bid, Bad, and Bim, and apoptosis regulatory proteins include P53, cleaved caspase9, and cleaved caspase3. We found that the expression of both BH3-only proteins and apoptosis regulatory proteins was increased in RBM5 transfected cells. Conclusion The expression of RBM5 protein was significantly decreased in cancerous prostatic tissues, which suggests that RBM5 plays an important role in the pathogenesis of prostate cancer. RBM5 may induce the apoptosis of prostate cancer PC-3 cells by modulating the mitochondrial apoptotic pathway, and thus RBM5 might be a promising target for gene therapy on prostate cancer.

  9. Tumor-targeted delivery of a C-terminally truncated FADD (N-FADD) significantly suppresses the B16F10 melanoma via enhancing apoptosis

    Science.gov (United States)

    Yang, Yun-Wen; Zhang, Chun-Mei; Huang, Xian-Jie; Zhang, Xiao-Xin; Zhang, Lin-Kai; Li, Jia-Huang; Hua, Zi-Chun

    2016-01-01

    Fas-associated protein with death domain (FADD), a pivotal adaptor protein transmitting apoptotic signals, is indispensable for the induction of extrinsic apoptosis. However, overexpression of FADD can form large, filamentous aggregates, termed death effector filaments (DEFs) by self-association and initiate apoptosis independent of receptor cross-linking. A mutant of FADD, which is truncated of the C-terminal tail (m-FADD, 182–205 aa) named N-FADD (m-FADD, 1–181 aa), can dramatically up-regulate the strength of FADD self-association and increase apoptosis. In this study, it was found that over-expression of FADD or N-FADD caused apoptosis of B16F10 cells in vitro, even more, N-FADD showed a more potent apoptotic effect than FADD. Meanwhile, Attenuated Salmonella Typhimurium strain VNP20009 was engineered to express FADD or N-FADD under the control of a hypoxia-induced NirB promoter and each named VNP-pN-FADD and VNP-pN-N-FADD. The results showed both VNP-pN-FADD and VNP-pN-N-FADD delayed tumor growth in B16F10 mice model, while VNP-pN-N-FADD suppressed melanoma growth more significantly than VNP-pN-FADD. Additionally, VNP-pN-FADD and VNP-pN-N-FADD induced apoptosis of tumor cells by activating caspase-dependent apoptotic pathway. Our results show that N-FADD is a more potent apoptotic inducer and VNP20009-mediated targeted expression of N-FADD provides a possible cancer gene therapeutic approach for the treatment of melanoma. PMID:27767039

  10. High Throughput Sequencing of Germline and Tumor from Men With Early-Onset Metastatic Prostate Cancer

    Science.gov (United States)

    2014-10-01

    challenge, Dr. Tomlins has continued to develop state of the art technologies to use formalin-fixed paraffin-embedded (FFPE) prostate cancer specimens...men with early-onset, metastatic prostate cancer PRINCIPAL INVESTIGATOR: Kathleen A. Cooney, M.D. CONTRACTING ORGANIZATION...High-Throughput Sequencing of Germline and Tumor From Men with Early-Onset Metastatic Prostate Cancer 5b. GRANT NUMBER W81XWH-13-1-0371 5c

  11. β-Caryophyllene, a Compound Isolated from the Biblical Balm of Gilead (Commiphora gileadensis, Is a Selective Apoptosis Inducer for Tumor Cell Lines

    Directory of Open Access Journals (Sweden)

    Eitan Amiel

    2012-01-01

    Full Text Available The biblical balm of Gilead (Commiphora gileadensis was investigated in this study for anticancerous activity against tumor cell lines. The results obtained from ethanol-based extracts and from essential oils indicated that β-caryophyllene (trans-(1R,9S-8-methylene-4,11,11-trimethylbicyclo[7.2.0]undec-4-ene is a key component in essential oils extracted from the balm of Gilead. β-Caryophyllene can be found in spice blends, citrus flavors, soaps, detergents, creams, and lotions, as well as in a variety of food and beverage products, and it is known for its anti-inflammatory, local anaesthetic, and antifungal properties. It is also a potent cytotoxic compound over a wide range of cell lines. In the current paper, we found that Commiphora gileadensis stem extracts and essential oil have an antiproliferative proapoptotic effect against tumor cells and not against normal cells. β-caryophyllene caused a potent induction of apoptosis accompanied by DNA ladder and caspase-3 catalytic activity in tumor cell lines. In summary, we showed that C. gileadensis stems contain an apoptosis inducer that acts, in a selective manner, against tumor cell lines and not against normal cells.

  12. Inhibiting autophagy with chloroquine enhances the anti-tumor effect of high-LET carbon ions via ER stress-related apoptosis.

    Science.gov (United States)

    Zheng, Xiaogang; Jin, Xiaodong; Li, Feifei; Liu, Xiongxiong; Liu, Yan; Ye, Fei; Li, Ping; Zhao, Ting; Li, Qiang

    2017-02-01

    Energetic carbon ions (CI) offer great advantages over conventional radiations such as X- or γ-rays in cancer radiotherapy. High linear energy transfer (LET) CI can induce both endoplasmic reticulum (ER) stress and autophagy in tumor cells under certain circumstances. The molecular connection between ER stress and autophagy in tumor exposed to high-LET radiation and how these two pathways influence the therapeutic effect against tumor remain poorly understood. In this work, we studied the impact of autophagy and apoptosis induced by ER stress following high-LET CI radiation on the radiosensitivity of S180 cells both in vitro and in vivo. In the in vitro experiment, X-rays were also used as a reference radiation. Our results documented that the combination of CI radiation with chloroquine (CQ), a special autophagy inhibitor, produced more pronounced proliferation suppression in S180 cells and xenograft tumors. Co-treatment with CI radiation and CQ could block autophagy through the IRE1/JNK/Beclin-1 axis and enhance apoptotic cell death via the activation of C/EBP homologous protein (CHOP) by the IRE1 pathway rather than PERK in vitro and in vivo. Thus, our study indicates that inhibiting autophagy might be a promising therapeutic strategy in CI radiotherapy via aggravating the ER stress-related apoptosis.

  13. DNA damage and apoptosis of endometrial cells cause loss of the early embryo in mice exposed to carbon disulfide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bingzhen [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China); Shen, Chunzi [Centers for Disease Control and Prevention, Zibo (China); Yang, Liu; Li, Chunhui; Yi, Anji [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China); Wang, Zhiping, E-mail: zhipingw@sdu.edu.cn [Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan (China)

    2013-12-01

    Carbon disulfide (CS{sub 2}) may lead to spontaneous abortion and very early pregnancy loss in women exposed in the workplace, but the mechanism remains unclear. We designed an animal model in which gestating Kunming strain mice were exposed to CS{sub 2} via i.p. on gestational day 4 (GD4). We found that the number of implanted blastocysts on GD8 was significantly reduced by each dose of 0.1 LD{sub 50} (157.85 mg/kg), 0.2 LD{sub 50} (315.7 mg/kg) and 0.4 LD{sub 50} (631.4 mg/kg). In addition, both the level of DNA damage and apoptosis rates of endometrial cells on GD4.5 were increased, showed definite dose–response relationships, and inversely related to the number of implanted blastocysts. The expressions of mRNA and protein for the Bax and caspase-3 genes in the uterine tissues on GD4.5 were up-regulated, while the expressions of mRNA and protein for the Bcl-2 gene were dose-dependently down-regulated. Our results indicated that DNA damage and apoptosis of endometrial cells were important reasons for the loss of implanted blastocysts induced by CS{sub 2}. - Highlights: • We built an animal model of CS2 exposure during blastocyst implantation. • Endometrial cells were used in the comet assay to detect DNA damage. • CS2 exposure caused DNA damage and endometrial cell apoptosis. • DNA damage and endometrial cell apoptosis were responsible for embryo loss.

  14. Effect of N-tosyl-L-phenylalanylchloromethyl Ketone on Tumor Necrosis Factor-alpha -induced NF-κB Activation and Apoptosis in U937 Cell Line

    Institute of Scientific and Technical Information of China (English)

    陈卫华; 陈燕; 崔国惠

    2004-01-01

    To investigate the effect of N-tosyl-L-phenylalanylchloromethyl ketone (TPCK) on tumor necrosis factor-alpha-induced NF-κB activation and apoptosis in U937 cell line, changes and subcellular localization of NF-κB/p65 and IκB-α were observed by fluorescencemicroscopy and expression and degradation of IκB-α by flow cytometry. The apoptosis of U937 cells was measured by flow cytometry and electrophoresis of DNA. Immunolfluorescence assay showed that NF-κB/p65,IκB-α only localized in cytoplasm. After TNF-α stimulation, p65 was localized only in nuclei, and IκB-α was only localized in cytoplasm and decreased. The changes of TNF-α stimulation were specifically inhibited by TPCK. Flow cytometry also revealed the downregulation of IκB-α protein during TNF-α-induced apoptosis and the down-regulation was specifically inhibited by TPCK. Flow cytometry also showed the apoptosis of U937 cells after TNF-α induction. DNA ladder can be detected in cells treated by TNF-α. It is concluded that degradation of IκB-α protein and NF-κB/p65 translocation occur during TNF-α-induced apoptosis of U937 cells, suggesting the activation of NF-κB.TPCK-sensitive protease plays an important role in the degradation of IκB-α protein induced by TNF-α in U937 cells. TPCK sensitive protease also plays an inportant role in the apoptosis of U937cells induced by TNF-α.

  15. Inhibition of Casein kinase-2 induces p53-dependent cell cycle arrest and sensitizes glioblastoma cells to tumor necrosis factor (TNFα)-induced apoptosis through SIRT1 inhibition.

    Science.gov (United States)

    Dixit, D; Sharma, V; Ghosh, S; Mehta, V S; Sen, E

    2012-02-09

    Glioblastoma multiforme (GBM) are resistant to TNFα-induced apoptosis and blockade of TNFα-induced NF-κB activation sensitizes glioma cells to apoptosis. As Casein kinase-2 (CK2) induces aberrant NF-κB activation and as we observed elevated CK2 levels in GBM tumors, we investigated the potential of CK2 inhibitors (CK2-Is) - DRB and Apigenin in sensitizing glioma cells to TNFα-induced apoptosis. CK2-Is and CK2 small interfering RNA (siRNA) reduced glioma cell viability, inhibited TNFα-mediated NF-κB activation, and sensitized cell to TNFα-induced apoptosis. Importantly, CK2-Is activated p53 function in wild-type but not in p53 mutant cells. Activation of p53 function involved its increased transcriptional activation, DNA-binding ability, increased expression of p53 target genes associated with cell cycle progression and apoptosis. Moreover, CK2-Is decreased telomerase activity and increased senescence in a p53-dependent manner. Apoptotic gene profiling indicated that CK2-Is differentially affect p53 and TNFα targets in p53 wild-type and mutant glioma cells. CK2-I decreased MDM2-p53 association and p53 ubiquitination to enhance p53 levels. Interestingly, CK2-Is downregulated SIRT1 activity and over-expression of SIRT1 decreased p53 transcriptional activity and rescued cells from CK2-I-induced apoptosis. This ability of CK2-Is to sensitize glioma to TNFα-induced death via multiple mechanisms involving abrogation of NF-κB activation, reactivation of wild-type p53 function and SIRT1 inhibition warrants investigation.

  16. Hyperforin inhibits Akt1 kinase activity and promotes caspase-mediated apoptosis involving Bad and Noxa activation in human myeloid tumor cells.

    Directory of Open Access Journals (Sweden)

    Faten Merhi

    Full Text Available BACKGROUND: The natural phloroglucinol hyperforin HF displays anti-inflammatory and anti-tumoral properties of potential pharmacological interest. Acute myeloid leukemia (AML cells abnormally proliferate and escape apoptosis. Herein, the effects and mechanisms of purified HF on AML cell dysfunction were investigated in AML cell lines defining distinct AML subfamilies and primary AML cells cultured ex vivo. METHODOLOGY AND RESULTS: HF inhibited in a time- and concentration-dependent manner the growth of AML cell lines (U937, OCI-AML3, NB4, HL-60 by inducing apoptosis as evidenced by accumulation of sub-G1 population, phosphatidylserine externalization and DNA fragmentation. HF also induced apoptosis in primary AML blasts, whereas normal blood cells were not affected. The apoptotic process in U937 cells was accompanied by downregulation of anti-apoptotic Bcl-2, upregulation of pro-apoptotic Noxa, mitochondrial membrane depolarization, activation of procaspases and cleavage of the caspase substrate PARP-1. The general caspase inhibitor Z-VAD-fmk and the caspase-9- and -3-specific inhibitors, but not caspase-8 inhibitor, significantly attenuated apoptosis. HF-mediated apoptosis was associated with dephosphorylation of active Akt1 (at Ser(473 and Akt1 substrate Bad (at Ser(136 which activates Bad pro-apoptotic function. HF supppressed the kinase activity of Akt1, and combined treatment with the allosteric Akt1 inhibitor Akt-I-VIII significantly enhanced apoptosis of U937 cells. SIGNIFICANCE: Our data provide new evidence that HF's pro-apoptotic effect in AML cells involved inhibition of Akt1 signaling, mitochondria and Bcl-2 members dysfunctions, and activation of procaspases -9/-3. Combined interruption of mitochondrial and Akt1 pathways by HF may have implications for AML treatment.

  17. microRNA-142 is upregulated by tumor necrosis factor-alpha and triggers apoptosis in human gingival epithelial cells by repressing BACH2 expression

    Science.gov (United States)

    Li, Song; Song, Zhongchen; Dong, Jiachen; Shu, Rong

    2017-01-01

    Tumor necrosis factor-alpha (TNF-α) has been shown to cause apoptosis of gingival epithelial cells (GECs) in periodontitis. However, the underlying molecular mechanism is still unclear. In this study, we showed that miR-142 expression was significantly elevated in human GECs after exposure to TNF-α. Such induction was in a time- and concentration-dependent manner. Serum miR-142 levels were positively correlated with serum TNF-α levels in patients with chronic periodontitis (r = 0.314, P = 0.0152). Depletion of miR-142 was found to attenuate TNF-α-induced apoptosis, as determined by TUNEL staining and caspase-3 activity assays. In contrast, overexpression of miR-142 significantly reduced viability and induced apoptosis in GECs. Basic leucine zipper transcription factor 2 (BACH2) was identified to be a functional target of miR-142. Overexpression of miR-142 caused a 3-fold reduction of BACH2 protein in primary GECs. Overexpression of BACH2 significantly reversed miR-142- or TNF-α-induced apoptosis of GECs. Similar to the findings with miR-142 mimic, depletion of BACH2 significantly promoted apoptosis in GECs, which was accompanied by decreased expression of Bcl-2 and Bcl-xL and increased expression of Bax and Bim. Overall, miR-142 mediates TNF-α-induced apoptosis in gingival epithelial cells by targeting BACH2 and may represent a potential therapeutic target for periodontitis. PMID:28123644

  18. Early rehabilitation improves neurofunctional outcome after surgery in children with spinal tumors

    Institute of Scientific and Technical Information of China (English)

    Nezire Kose; Ozge Muezzinoglu; Sevil Bilgin; Sevilay Karahan; Ilkay Iskay; Burcak Bilginer

    2014-01-01

    To investigate the effect of early rehabilitation on neurofunctional outcome after surgery in chil-dren with spinal tumors, this study reviewed the medical charts and radiographic records of 70 pediatric patients (1-17 years old) who received spinal tumor surgical removal. The peddiatric patients received rahabilitation treatment at 4 (range, 2-7) days after surgery for 10 (range, 7-23) days. Results from the Modiifed McCormick Scale, Functional Independence Measure for Chil-dren, American Spinal Injury Association Impairment Scale and Karnofsky Performance Status Scale demonstrated that the sensory function, motor function and activity of daily living of pedi-atric children who received early rehabilitation were signiifcantly improved. Results also showed that tumor setting and level localization as well as patients’s clinical symptoms have no inlfuences on neurofunctional outcomes.

  19. Early treatment with metformin induces resistance against tumor growth in adult rats.

    Science.gov (United States)

    Trombini, Amanda B; Franco, Claudinéia Cs; Miranda, Rosiane A; de Oliveira, Júlio C; Barella, Luiz F; Prates, Kelly V; de Souza, Aline A; Pavanello, Audrei; Malta, Ananda; Almeida, Douglas L; Tófolo, Laize P; Rigo, Kesia P; Ribeiro, Tatiane As; Fabricio, Gabriel S; de Sant'Anna, Juliane R; Castro-Prado, Marialba Aa; de Souza, Helenir Medri; de Morais, Hely; Mathias, Paulo Cf

    2015-01-01

    It is known that antidiabetic drug metformin, which is used worldwide, has anti-cancer effects and can be used to prevent cancer growth. We tested the hypothesis that tumor cell growth can be inhibited by early treatment with metformin. For this purpose, adult rats chronically treated with metformin in adolescence or in adulthood were inoculated with Walker 256 carcinoma cells. Adult rats that were treated with metformin during adolescence presented inhibition of tumor growth, and animals that were treated during adult life did not demonstrate any changes in tumor growth. Although we do not have data to disclose a molecular mechanism to the preventive metformin effect, we present, for the first time, results showing that cancer growth in adult life is dependent on early life intervention, thus supporting a new therapeutic prevention for cancer.

  20. Midazolam regulated caspase pathway, endoplasmic reticulum stress, autophagy, and cell cycle to induce apoptosis in MA-10 mouse Leydig tumor cells

    Directory of Open Access Journals (Sweden)

    So EC

    2016-04-01

    Full Text Available Edmund Cheung So,1,2 Yung-Chia Chen,3 Shu-Chun Wang,4 Chia-Ching Wu,4 Man-Chi Huang,4 Meng-Shao Lai,4 Bo-Syong Pan,4,5 Fu-Chi Kang,6 Bu-Miin Huang4 1Department of Anesthesia, An Nan Hospital, China Medical University, Tainan, Taiwan, Republic of China; 2Department of Anesthesia, School of Medicine, China Medical University, Taichung, Taiwan; Republic of China; 3Department of Anatomy, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China; 4Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China; 5Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA; 6Department of Anesthesia, Chi Mei Medical Center, Chiali, Tainan, Taiwan, Republic of China Purpose: Midazolam is widely used as a sedative and anesthetic induction agent by modulating the different GABA receptors in the central nervous system. Studies have also shown that midazolam has an anticancer effect on various tumors. In a previous study, we found that midazolam could induce MA-10 mouse Leydig tumor cell apoptosis by activating caspase cascade. However, the detailed mechanism related to the upstream and downstream pathways of the caspase cascade, such as endoplasmic reticulum (ER stress, autophagy, and p53 pathways plus cell cycle regulation in MA-10 mouse Leydig tumor cells, remains elusive.Methods: Flow cytometry assay and Western blot analyses were exploited.Results: Midazolam significantly decreased cell viability but increased sub-G1 phase cell numbers in MA-10 cells (P<0.05. Annexin V/propidium iodide double staining further confirmed that midazolam induced apoptosis. In addition, expressions of Fas and Fas ligand could be detected in MA-10 cells with midazolam treatments, and Bax translocation and cytochrome c release were also involved in midazolam-induced MA-10 cell apoptosis. Moreover, the staining and expression of LC3-II proteins could

  1. Suppression of tumor growth by Pleurotus ferulae ethanol extract through induction of cell apoptosis, and inhibition of cell proliferation and migration.

    Science.gov (United States)

    Wang, Weilan; Chen, Kaixu; Liu, Qing; Johnston, Nathan; Ma, Zhenghai; Zhang, Fuchun; Zheng, Xiufen

    2014-01-01

    Cancer is the second leading cause of death worldwide. Edible medicinal mushrooms have been used in traditional medicine as regimes for cancer patients. Recently anti-cancer bioactive components from some mushrooms have been isolated and their anti-cancer effects have been tested. Pleurotus ferulae, a typical edible medicinal mushroom in Xinjiang China, has also been used to treat cancer patients in folk medicine. However, little studies have been reported on the anti-cancer components of Pleurotus ferulae. This study aims to extract bioactive components from Pleurotus ferulae and to investigate the anti-cancer effects of the extracts. We used ethanol to extract anti-cancer bioactive components enriched with terpenoids from Pleurotus ferulae. We tested the anti-tumour effects of ethanol extracts on the melanoma cell line B16F10, the human gastric cancer cell line BGC 823 and the immortalized human gastric epithelial mucosa cell line GES-1 in vitro and a murine melanoma model in vivo. Cell toxicity and cell proliferation were measured by MTT assays. Cell cycle progression, apoptosis, caspase 3 activity, mitochondrial membrane potential (MMP), migration and gene expression were studied in vitro. PFEC suppressed tumor cell growth, inhibited cell proliferation, arrested cells at G0/G1 phases and was not toxic to non-cancer cells. PFEC also induced cell apoptosis and necrosis, increased caspase 3 activity, reduced the MMP, prevented cell invasion and changed the expression of genes associated with apoptosis and the cell cycle. PFEC delayed tumor formation and reduced tumor growth in vivo. In conclusion, ethanol extracted components from Pleurotus ferulae exert anti-cancer effects through direct suppression of tumor cell growth and invasion, demonstrating its therapeutic potential in cancer treatment.

  2. RGD-targeted paramagnetic liposomes for early detection of tumor: In vitro and in vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei; Su Bo; Meng Shuyan; Ju Lixia; Yan Linghua; Ding Yongmei; Song Yin; Zhou Wei; Li Heyan; Tang Liang; Zhao Yinmin [Research Institute of Oncology, Tongji University Medical School, 507 Zhenmin Road, Shanghai 200433 (China); Zhou Caicun, E-mail: caicunzhou@yahoo.com.cn [Research Institute of Oncology, Tongji University Medical School, 507 Zhenmin Road, Shanghai 200433 (China)

    2011-11-15

    Magnetic resonance molecular imaging has emerged as a potential approach for tumor diagnosis in the last few decades. This approach consists of the delivery of MR contrast agents to the tumor by specific targeted carriers. For this purpose, a lipopeptide was constructed by using a cyclic RGD peptide headgroup coupled to palmitic acid anchors via a KGG tripeptide spacer. Targeted paramagnetic liposomes were then prepared by the incorporation of RGD-coupled-lipopeptides into lipid bilayers for specific bounding to tumor. In vitro, study demonstrated that RGD-targeted liposomes exhibited a better binding affinity to targeted cells than non-targeted liposomes. MR imaging of mice bearing A549 tumors with the RGD-targeted paramagnetic liposomes also resulted in a greater signal enhancement of tumor compared to non-targeted liposomes and pure contrast agents groups. In addition, biodistribution study also showed specific tumor targeting of RGD-targeted paramagnetic liposomes in vivo. Therefore, RGD-targeted paramagnetic liposomes prepared in the present study may be a more promising method for early tumor diagnosis.

  3. The epimer of kaurenoic acid from Croton antisyphiliticus is cytotoxic toward B-16 and HeLa tumor cells through apoptosis induction.

    Science.gov (United States)

    Fernandes, V C; Pereira, S I V; Coppede, J; Martins, J S; Rizo, W F; Beleboni, R O; Marins, M; Pereira, P S; Pereira, A M S; Fachin, A L

    2013-01-01

    Cancer has become the leading cause of death in developing countries due to increased life expectancy of the population and changes in lifestyle. Studies on active principles of plant have motivated researchers to develop new antitumor agents that are specific and effective for treatment of neoplasms. Kaurane diterpenes are considered important compounds in the development of new and highly effective anticancer chemotherapeutic agents due to their cytotoxic properties in the induction of apoptosis. We evaluated the cytotoxic and apoptotic activity of the epimer of kaurenoic acid (EKA) isolated from the medicinal plant Croton antisyphiliticus (Euphorbiaceae) toward tumor cell lines HeLa and B-16 and normal fibroblasts 3T3. Based on analyses with the MTT test, EKA showed cytotoxic activity, with half maximal inhibitory concentration values of 59.41, 68.18 and 60.30 µg/mL for the B-16, HeLa and 3T3 cell lines, respectively. The assay for necrotic or apoptotic cells by differential staining showed induction of apoptosis in all three cell lines. We conclude that EKA is not selective between tumor and normal cell lines; the mechanism of action of EKA is induction of apoptosis, which is part of the innate mechanism of cell defense against neoplasia.

  4. Triterpenoid saponin flaccidoside II from Anemone flaccida triggers apoptosis of NF1-associated malignant peripheral nerve sheath tumors via the MAPK-HO-1 pathway

    Directory of Open Access Journals (Sweden)

    Han LT

    2016-04-01

    Full Text Available Lin-tao Han,1 Yin Fang,1 Yan Cao,2 Feng-hua Wu,1 E Liu,2 Guo-yan Mo,2 Fang Huang1 1China Key Laboratory of TCM Resource and Prescription, Ministry of Education, 2Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, People’s Republic of China Abstract: Malignant peripheral nerve sheath tumors (MPNSTs are highly aggressive soft tissue neoplasms that are extremely rare and are frequently associated with neurofibromatosis type 1 patients. MPNSTs are typically fatal, and there is no effective treatment so far. In our previous study, we showed that flaccidoside II, one of the triterpenoid saponins isolated from Anemone flaccida Fr. Schmidt, has antitumor potential by inducing apoptosis. In the present study, we found that flaccidoside II inhibits proliferation and facilitates apoptosis in MPNST cell lines ST88-14 and S462. Furthermore, this study provides a mechanism by which the downregulation of heme oxygenase-1 via extracellular signal-regulated kinase-1/2 and p38 mitogen-activated protein kinase pathways is involved in the apoptotic role of flaccidoside II. This study suggested the potential of flaccidoside II as a novel pharmacotherapeutic approach for MPNSTs. Keywords: flaccidoside II, malignant peripheral nerve sheath tumors, apoptosis, MAPK, HO-1

  5. Harmine combined with paclitaxel inhibits tumor proliferation and induces apoptosis through down-regulation of cyclooxygenase-2 expression in gastric cancer

    Science.gov (United States)

    Yu, Xiao-Juan; Sun, Kun; Tang, Xiao-He; Zhou, Cun-Jin; Sun, Hui; Yan, Zhe; Fang, Ling; Wu, Hong-Wen; Xie, Yi-Kui; Gu, Bin

    2016-01-01

    Cyclooxygenase-2 (COX-2) serves an important role in the carcinogenesis and progression of gastric cancer. Harmine (HM) and paclitaxel (PTX) are reported as promising drug candidates for cancer therapy, but whether a synergistic anti-tumor effect of HM combined with PTX exists in human gastric cancer remains unknown. The present study evaluated the effects of HM and/or PTX on cell proliferation and apoptosis in a gastric cancer cell line, SGC-7901. HM and PTX inhibited cell proliferation in a dose-dependent manner. Both HM and PTX alone induced apoptosis in gastric cancer cells. The combination of HM and PTX exerted synergistic effects on proliferation inhibition and apoptosis induction in SGC-7901 cells, with down-regulation of COX-2, PCNA and Bcl-2 and up-regulation of Bax expression. The results indicated that combination chemotherapy using HM with PTX exerts an anti-tumor effect for treating gastric cancer. The combination of the two drugs inhibits gastric cancer development more effectively than each drug alone through down-regulation of COX-2 expression. PMID:27446381

  6. 18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumors.

    NARCIS (Netherlands)

    Troost, E.G.C.; Bussink, J.; Hoffmann, A.L.; Boerman, O.C.; Oyen, W.J.G.; Kaanders, J.H.A.M.

    2010-01-01

    Accelerated tumor cell proliferation is an important mechanism adversely affecting therapeutic outcome in head and neck cancer. 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a PET tracer to noninvasively image tumor cell proliferation. The aims of this study were to monitor early tumor response b

  7. Zanthoxylum avicennae extracts induce cell apoptosis through protein phosphatase 2A activation in HA22T human hepatocellular carcinoma cells and block tumor growth in xenografted nude mice.

    Science.gov (United States)

    Dung, Tran Duc; Chang, Hsien-Cheh; Chen, Chung-Yu; Peng, Wen-Huang; Tsai, Chang-Hai; Tsai, Fuu-Jen; Kuo, Wei-Wen; Chen, Li-Mien; Huang, Chih-Yang

    2011-12-01

    The use of herbs as alternative cancer therapies has attracted a great deal of attention owing to their lower toxicity. Whether Zanthoxylum avicennae (Ying Bu Bo, YBB) induces liver cancer cell apoptosis remains unclear. In this study, we investigated the effect of YBB extracts (YBBEs) on HA22T human hepatocellular carcinoma cells in vitro and in an in vivo mouse xenograft model. HA22T cells were treated with different concentrations of YBBEs and analyzed with Western blot analysis, TUNEL, JC-1 staining and siRNA transfection assays. Additionally, the HA22T-implanted xenograft nude mice model was applied to confirm the cellular effects. YBBEs-induced apoptosis, up-regulated death receptor apoptotic pathway markers as well as mitochondrial proteins, and suppressed the survival proteins in a dose-dependent manner. Pro-survival Bcl-2 family proteins were inhibited and the pro-apoptotic ones were increased. Protein phosphatase 2A (PP2A) siRNA or okadaic acid reversed the YBBEs effects, confirming the role of PP2A in YBBEs-induced HA22T apoptosis. All our experimental evidence indicates that YBBEs significantly promote HA22T apoptosis and reduce tumor sizes in xenograft nude mice via PP2A in a dose-dependent manner.

  8. Early lactate clearance is associated with biomarkers of inflammation, coagulation, apoptosis, organ dysfunction and mortality in severe sepsis and septic shock

    Directory of Open Access Journals (Sweden)

    Suarez Arturo

    2010-01-01

    Full Text Available Abstract Background Lactate clearance, a surrogate for the magnitude and duration of global tissue hypoxia, is used diagnostically, therapeutically and prognostically. This study examined the association of early lactate clearance with selected inflammatory, coagulation, apoptosis response biomarkers and organ dysfunction scores in severe sepsis and septic shock. Methods Measurements of serum arterial lactate, biomarkers (interleukin-1 receptor antagonist, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-alpha, intercellular adhesion molecule-1, high mobility group box-1, D-Dimer and caspase-3, and organ dysfunction scores (Acute Physiology and Chronic Health Evaluation II, Simplified Acute Physiology Score II, Multiple Organ Dysfunction Score, and Sequential Organ Failure Assessment were obtained in conjunction with a prospective, randomized study examining early goal-directed therapy in severe sepsis and septic shock patients presenting to the emergency department (ED. Lactate clearance was defined as the percent change in lactate levels after six hours from a baseline measurement in the ED. Results Two-hundred and twenty patients, age 65.0 +/- 17.1 years, were examined, with an overall lactate clearance of 35.5 +/- 43.1% and in-hospital mortality rate of 35.0%. Patients were divided into four quartiles of lactate clearance, -24.3 +/- 42.3, 30.1 +/- 7.5, 53.4 +/- 6.6, and 75.1 +/- 7.1%, respectively (p p p Conclusions Early lactate clearance as a surrogate for the resolution of global tissue hypoxia is significantly associated with decreased levels of biomarkers, improvement in organ dysfunction and outcome in severe sepsis and septic shock.

  9. Multimodality multiparametric imaging of early tumor response to a novel antiangiogenic therapy based on anticalins.

    Directory of Open Access Journals (Sweden)

    Reinhard Meier

    Full Text Available Anticalins are a novel class of targeted protein therapeutics. The PEGylated Anticalin Angiocal (PRS-050-PEG40 is directed against VEGF-A. The purpose of our study was to compare the performance of diffusion weighted imaging (DWI, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI and positron emission tomography with the tracer [18F]fluorodeoxyglucose (FDG-PET for monitoring early response to antiangiogenic therapy with PRS-050-PEG40. 31 mice were implanted subcutaneously with A673 rhabdomyosarcoma xenografts and underwent DWI, DCE-MRI and FDG-PET before and 2 days after i.p. injection of PRS-050-PEG40 (n = 13, Avastin (n = 6 or PBS (n = 12. Tumor size was measured manually with a caliper. Imaging results were correlated with histopathology. In the results, the tumor size was not significantly different in the treatment groups when compared to the control group on day 2 after therapy onset (P = 0.09. In contrast the imaging modalities DWI, DCE-MRI and FDG-PET showed significant differences between the therapeutic compared to the control group as early as 2 days after therapy onset (P<0.001. There was a strong correlation of the early changes in DWI, DCE-MRI and FDG-PET at day 2 after therapy onset and the change in tumor size at the end of therapy (r = -0.58, 0.71 and 0.67 respectively. The imaging results were confirmed by histopathology, showing early necrosis and necroptosis in the tumors. Thus multimodality multiparametric imaging was able to predict therapeutic success of PRS-050-PEG40 and Avastin as early as 2 days after onset of therapy and thus promising for monitoring early response of antiangiogenic therapy.

  10. Diffuse optical measurements of head and neck tumor hemodynamics for early prediction of chemoradiation therapy outcomes

    Science.gov (United States)

    Dong, Lixin; Kudrimoti, Mahesh; Irwin, Daniel; Chen, Li; Kumar, Sameera; Shang, Yu; Huang, Chong; Johnson, Ellis L.; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang

    2016-08-01

    This study used a hybrid near-infrared diffuse optical instrument to monitor tumor hemodynamic responses to chemoradiation therapy for early prediction of treatment outcomes in patients with head and neck cancer. Forty-seven patients were measured once per week to evaluate the hemodynamic status of clinically involved cervical lymph nodes as surrogates for the primary tumor response. Patients were classified into two groups: complete response (CR) (n=29) and incomplete response (IR) (n=18). Tumor hemodynamic responses were found to be associated with clinical outcomes (CR/IR), wherein the associations differed depending on human papillomavirus (HPV-16) status. In HPV-16 positive patients, significantly lower levels in tumor oxygenated hemoglobin concentration ([HbO2]) at weeks 1 to 3, total hemoglobin concentration at week 3, and blood oxygen saturation (StO2) at week 3 were found in the IR group. In HPV-16 negative patients, significantly higher levels in tumor blood flow index and reduced scattering coefficient (μs‧) at week 3 were observed in the IR group. These hemodynamic parameters exhibited significantly high accuracy for early prediction of clinical outcomes, within the first three weeks of therapy, with the areas under the receiver operating characteristic curves (AUCs) ranging from 0.83 to 0.96.

  11. A polysaccharide from Ganoderma atrum inhibits tumor growth by induction of apoptosis and activation of immune response in CT26-bearing mice.

    Science.gov (United States)

    Zhang, Shenshen; Nie, Shaoping; Huang, Danfei; Huang, Jianqin; Feng, Yanling; Xie, Mingyong

    2014-09-24

    Ganoderma atrum is one species of edible and pharmaceutical mushroom with various biological activities. Recently, a novel polysaccharide, PSG-1, was purified from G. atrum. The antitumor activity and its mechanism of action were studied. In vitro, PSG-1 has little effect on inhibiting proliferation of CT26 tumor cells. However, the tumor size was significantly decreased in PSG-1-treated mice. The results showed that PSG-1 induced apoptosis in CT26 cells. Moreover, the intracellular cyclic AMP (cAMP) level and protein kinase A (PKA) activity were markedly increased in PSG-1-treated mice. In contrast, the contents of cyclic GMP and DAG and the PKC activity were decreased. Similarly, the expression of PKA protein was upregulated, while PKC protein expression in PSG-1-treated group was lowered. Additionally, PSG-1 increased the immune organ index and serum biochemistry parameter. In general, PSG-1 enhances the antitumor immune response, induces apoptosis in CT26-bearing mice, and could be a safe and effective adjuvant for tumor therapy or functional food.

  12. Brain edema and tumor necrosis factor-like weak inducer of apoptosis in rats with cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Renlan Zhou; Peng Xie

    2008-01-01

    BACKGROUND: Recent studies have demonstrated that tumor necrosis factor-like weak inducer of apoptosis (TWEAK) participates in brain edema. However, it is unclear whether blood-brain barrier (BBB) disruption is associated with TWEAK during the process of brain edema OBJECTIVE: To investigate the effects of TWEAK on BBB permeability in brain edema.DESIGN, TIME AND SETTING: An immunohistochemical observation, randomized, controlled animal experiment was pertbrmed at the Laboratory of Neurosurgical Anatomy, Xiangya Medical College, Central South University & Central Laboratory, Third Xiangya Hospital, Central South University between January 2006 and December 2007.MATERIALS: A total of 48 adult Wistar rats were randomly divided into three groups: normal control (n =8), sham-operated (n = 8), and ischemia/reperfusion (n = 32). Rats from the ischemia/reperfusion group were randomly assigned to four subgroups according to different time points, i.e., 2 hours of ischemia followed by 6 hours (n = 8), 12 hours {n = 8), 1 day (n = 8), or 12 days (n = 8) of reperfusion.METHODS: Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion (MCAO) using the suture method in rats from the ischemia/reperfusion group. Thread was introduced at a depth of 17-19 mm. Rats in the sham-operated group were subjected to experimental procedures similar to the ischemia/reperfusion group; however, the introducing depth of thread was 10 mm. The normal control group was not given any intervention.MAIN OUTCOME MEASURES: TWEAK expression was examined by immunohistochemistry; brain water content on the ischemic side was calculated as the ratio of dry to wet tissue weight; BBB permeability was measured by Evans blue extravasation.RESULTS: A total of eight rats died prior to and after surgery and an additional eight rats were randomly entered into the study. Thus 48 rats were included in the final analysis. In the ischemia/reperfusion group,TWEAK-positive cells were

  13. Monitoring early tumor response to drug therapy with diffuse optical tomography

    Science.gov (United States)

    Flexman, Molly L.; Vlachos, Fotios; Kim, Hyun Keol; Sirsi, Shashank R.; Huang, Jianzhong; Hernandez, Sonia L.; Johung, Tessa B.; Gander, Jeffrey W.; Reichstein, Ari R.; Lampl, Brooke S.; Wang, Antai; Borden, Mark A.; Yamashiro, Darrell J.; Kandel, Jessica J.; Hielscher, Andreas H.

    2012-01-01

    Although anti-angiogenic agents have shown promise as cancer therapeutics, their efficacy varies between tumor types and individual patients. Providing patient-specific metrics through rapid noninvasive imaging can help tailor drug treatment by optimizing dosages, timing of drug cycles, and duration of therapy--thereby reducing toxicity and cost and improving patient outcome. Diffuse optical tomography (DOT) is a noninvasive three-dimensional imaging modality that has been shown to capture physiologic changes in tumors through visualization of oxygenated, deoxygenated, and total hemoglobin concentrations, using non-ionizing radiation with near-infrared light. We employed a small animal model to ascertain if tumor response to bevacizumab (BV), an anti-angiogenic agent that targets vascular endothelial growth factor (VEGF), could be detected at early time points using DOT. We detected a significant decrease in total hemoglobin levels as soon as one day after BV treatment in responder xenograft tumors (SK-NEP-1), but not in SK-NEP-1 control tumors or in non-responder control or BV-treated NGP tumors. These results are confirmed by magnetic resonance imaging T2 relaxometry and lectin perfusion studies. Noninvasive DOT imaging may allow for earlier and more effective control of anti-angiogenic therapy.

  14. TRAIL-secreting mesenchymal stem cells promote apoptosis in heat-shock-treated liver cancer cells and inhibit tumor growth in nude mice.

    Science.gov (United States)

    Deng, Q; Zhang, Z; Feng, X; Li, T; Liu, N; Lai, J; Shuai, L; Xiong, Q; Fu, C; Zou, H; Wang, Y; Li, X; Ma, K; Bie, P

    2014-03-01

    Liver cancer is one of the top six leading causes of cancer-related death. Radiofrequency ablation (RFA) is an important means of treating liver cancer. Residual cancer after RFA is the most frequent cause of recurrence in cases of liver cancer. The main difference between residual cancer cells and ordinary liver cancer cells is that residual cancer cells experience heat shock. The secretable form of trimeric human tumor necrosis factor-related apoptosis-inducing ligand (stTRAIL) induces apoptosis in a variety of human cancers but not in normal tissues. It has shown potent cancer-selective killing activity and has drawn considerable attention as a possible cancer therapy. In the present work, the therapeutic potential of this stTRAIL-based gene therapy was evaluated in hepatocellular carcinoma subjected to RFA. Rat bone marrow mesenchymal stem cells (BM-MSCs) were isolated and transduced with a lentiviral vector encoding stTRAIL (stTRAIL-MSCs, T-MSCs). Cells treated with heat treatment at 43 °C for 45 min served as simulated residual cancer cells. After treatment with T-MSCs, apoptosis in heat-shock-treated liver cancer cells increased significantly, and caspase-3 was upregulated. When T-MSCs were subcutaneously injected into nude mice, they localized to the tumors and inhibited tumor growth, significantly increasing survival. Collectively, the results of the present study indicate that BM-MSC can provide a steady source of stTRAIL and may be suitable for use in the prevention of the recurrence of hepatocellular carcinoma after RFA with secretable trimeric TRAIL.

  15. Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells.

    Science.gov (United States)

    Pal, Harish Chandra; Baxter, Ronald D; Hunt, Katherine M; Agarwal, Jyoti; Elmets, Craig A; Athar, Mohammad; Afaq, Farrukh

    2015-09-29

    Melanoma is the most deadly form of cutaneous malignancy, and its incidence rates are rising worldwide. In melanoma, constitutive activation of the BRAF/MEK/ERK (MAPK) and PI3K/AKT/mTOR (PI3K) signaling pathways plays a pivotal role in cell proliferation, survival and tumorigenesis. A combination of compounds that lead to an optimal blockade of these critical signaling pathways may provide an effective strategy for prevention and treatment of melanoma. The phytochemical fisetin is known to possess anti-proliferative and pro-apoptotic activities. We found that fisetin treatment inhibited PI3K signaling pathway in melanoma cells. Therefore, we investigated the effect of fisetin and sorafenib (an RAF inhibitor) alone and in combination on cell proliferation, apoptosis and tumor growth. Combination treatment (fisetin + sorafenib) more effectively reduced the growth of BRAF-mutated human melanoma cells at lower doses when compared to individual agents. In addition, combination treatment resulted in enhanced (i) apoptosis, (ii) cleavage of caspase-3 and PARP, (iii) expression of Bax and Bak, (iv) inhibition of Bcl2 and Mcl-1, and (v) inhibition of expression of PI3K, phosphorylation of MEK1/2, ERK1/2, AKT and mTOR. In athymic nude mice subcutaneously implanted with melanoma cells (A375 and SK-MEL-28), we found that combination therapy resulted in greater reduction of tumor growth when compared to individual agents. Furthermore, combination therapy was more effective than monotherapy in: (i) inhibition of proliferation and angiogenesis, (ii) induction of apoptosis, and (iii) inhibition of the MAPK and PI3K pathways in xenograft tumors. These data suggest that simultaneous inhibition of both these signaling pathways using combination of fisetin and sorafenib may serve as a therapeutic option for the management of melanoma.

  16. Endosomes and lysosomes are involved in early steps of Tl(III)-mediated apoptosis in rat pheochromocytoma (PC12) cells.

    Science.gov (United States)

    Hanzel, Cecilia E; Almeira Gubiani, María F; Verstraeten, Sandra V

    2012-11-01

    The mechanisms that mediate thallium (Tl) toxicity are still not completely understood. The exposure of rat pheochromocytoma (PC12) cells to Tl(I) or Tl(III) activates both mitochondrial (Tl(I) and Tl(III)) and extrinsic (Tl(III)) pathways of apoptosis. In this work we evaluated the hypothesis that the effects of Tl(III) may be mediated by the damage to lysosomes, where it might be incorporated following the route of iron uptake. PC12 cells exposed for 3 h to 100 μM Tl(III) presented marked endosomal acidification, effect that was absent when cells were incubated in a serum-free medium and that was fully recovered when the latter was supplemented with transferrin. After 6 h of incubation the colocalization of cathepsins D and B with the lysosomal marker Lamp-1 was decreased together with an increase in the total activity of the enzymes. A permanent damage to lysosomes after 18 h of exposure was evidenced from the impairment of acridine orange uptake. Cathepsin D caused the cleavage of pro-apoptotic protein BID that is involved in the activation of the intrinsic pathway of apoptosis. Supporting that, BID cleavage and the activation of caspase 3 by Tl(III) were fully prevented when cells were preincubated with cathepsin D inhibitor (pepstatin A) and only partially prevented when cathepsin B inhibitor (E64d) was used. None of these inhibitors affected BID cleavage or caspase 3 activation in Tl(I)-treated cells. Together, experimental results support the role of Tl(III) uptake by the acidic cell compartments and their involvement in the early steps of Tl(III)-mediated PC12 cells apoptosis.

  17. Target and resistance-related proteins of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand on myeloma cell lines

    OpenAIRE

    JIAN, YUAN; Chen, Yuling; GENG, CHUANYING; Liu, Nian; YANG, GUANGZHONG; Liu, Jinwei; Li, Xin; Deng, Haiteng; CHEN, WENMING

    2016-01-01

    Recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) has become a potential therapeutic drug for multiple myeloma (MM). However, the exact targets and resistance mechanisms of rmhTRAIL on MM cells remain to be elucidated. The present study aimed to investigate the target and resistance-related proteins of rmhTRAIL on myeloma cell lines. A TRAIL-sensitive myeloma cell line, RPMI 8226, and a TRAIL-resistance one, U266, were chosen and the differentially ex...

  18. Evaluation of potential prognostic value of Bmi-1 gene product and selected markers of proliferation (Ki-67 and apoptosis (p53 in the neuroblastoma group of tumors

    Directory of Open Access Journals (Sweden)

    Katarzyna Taran

    2016-02-01

    Full Text Available Introduction: Cancer in children is a very important issue in pediatrics. The least satisfactory treatment outcome occurs among patients with clinically advanced neuroblastomas. Despite much research, the biology of this tumor still remains unclear, and new prognostic factors are sought. The Bmi-1 gene product is a currently highly investigated protein which belongs to the Polycomb group (PcG and has been identified as a regulator of primary neural crest cells. It is believed that Bmi‑1 and N-myc act together and are both involved in the pathogenesis of neuroblastoma. The aim of the study was to assess the potential prognostic value of Bmi-1 protein and its relations with mechanisms of proliferation and apoptosis in the neuroblastoma group of tumors.Material/Methods: 29 formalin-fixed and paraffin-embedded neuroblastoma tissue sections were examined using mouse monoclonal antibodies anti-Bmi-1, anti-p53 and anti-Ki-67 according to the manufacturer’s instructions.Results: There were found statistically significant correlations between Bmi-1 expression and tumor histology and age of patients.Conclusions: Bmi-1 seems to be a promising marker in the neuroblastoma group of tumors whose expression correlates with widely accepted prognostic parameters. The pattern of BMI-1 expression may indicate that the examined protein is also involved in maturation processes in tumor tissue.

  19. Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling.

    Science.gov (United States)

    Dong, Yushu; Fan, Chongxi; Hu, Wei; Jiang, Shuai; Ma, Zhiqiang; Yan, Xiaolong; Deng, Chao; Di, Shouyin; Xin, Zhenlong; Wu, Guiling; Yang, Yang; Reiter, Russel J; Liang, Guobiao

    2016-04-01

    Subarachnoid hemorrhage (SAH) is a devastating condition with high morbidity and mortality rates due to the lack of effective therapy. Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation associated with the upregulation of apoptotic signaling pathway has been implicated in various inflammatory diseases including hemorrhagic insults. Melatonin is reported to possess substantial anti-inflammatory properties, which is beneficial for early brain injury (EBI) after SAH. However, the molecular mechanisms have not been clearly identified. This study was designed to investigate the protective effects of melatonin against EBI induced by SAH and to elucidate the potential mechanisms. The adult mice were subjected to SAH. Melatonin or vehicle was injected intraperitoneally 2 hr after SAH. Melatonin was neuroprotective, as shown by increased survival rate, as well as elevated neurological score, greater survival of neurons, preserved brain glutathione levels, and reduced brain edema, malondialdehyde concentrations, apoptotic ratio, and blood-brain barrier (BBB) disruption. Melatonin also attenuated the expressions of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase-1, interleukin-1β (IL-1β), and interleukin-6 (IL-6); these changes were also associated with an increase in the anti-apoptotic factor (Bcl2) and reduction in the pro-apoptotic factor (Bim). In summary, our results demonstrate that melatonin treatment attenuates the EBI following SAH by inhibiting NLRP3 inflammasome-associated apoptosis.

  20. Impact of Salinomycin on human cholangiocarcinoma: induction of apoptosis and impairment of tumor cell proliferation in vitro

    Directory of Open Access Journals (Sweden)

    Lieke Thorsten

    2012-10-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a primary liver cancer with increasing incidence worldwide. Despite all efforts made in past years, prognosis remains to be poor. At least in part, this might be explained by a pronounced resistance of CC cells to undergo apoptosis. Thus, new therapeutic strategies are imperatively required. In this study we investigated the effect of Salinomycin, a polyether ionophore antibiotic, on CC cells as an appropriate agent to treat CC. Salinomycin was quite recently identified to induce apoptosis in cancer stem cells and to overcome apoptosis-resistance in several leukemia-cells and other cancer cell lines of different origin. Methods To delineate the effects of Salinomycin on CC, we established an in vitro cell culture model using three different human CC cell lines. After treatment apoptosis as well as migration and proliferation behavior was assessed and additional cell cycle analyses were performed by flowcytometry. Results By demonstrating Annexin V and TUNEL positivity of human CC cells, we provide evidence that Salinomycin reveals the capacity to break apoptosis-resistance in CC cells. Furthermore, we are able to demonstrate that the non-apoptotic cell fraction is characterized by sustainable impaired migration and proliferation. Cell cycle analyses revealed G2-phase accumulation of human CC cells after treatment with Salinomycin. Even though apoptosis is induced in two of three cell lines of CC cells, one cell line remained unaffected in regard of apoptosis but revealed as the other CC cells decreased proliferation and migration. Conclusion In this study, we are able to demonstrate that Salinomycin is an effective agent against previously resistant CC cells and might be a potential candidate for the treatment of CC in the future.

  1. Effects of Herceptin on circulating tumor cells in HER2 positive early breast cancer.

    Science.gov (United States)

    Zhang, J-L; Yao, Q; Chen Y Wang, J-H; Wang, H; Fan, Q; Ling, R; Yi, J; Wang, L

    2015-03-20

    The objective of this study was to determine the changes in peripheral blood circulating tumor cells in HER2-positive early breast cancer before and after Herceptin therapy, and to explore the effects of the HER2 gene and Herceptin on circulating tumor cells. CK19 mRNA expression in peripheral blood was evaluated by qRT-PCR as an index of circulating tumor cells in 15 cases of HER-2-positive breast cancer and 18 cases of HER2-negative breast cancer before, and after chemotherapy as well. Ten cases of HER2-positive breast cancer continued on Herceptin therapy for 3 months after chemotherapy, and their peripheral blood was again drawn and assayed for CK-19 mRNA expression. Preoperatively, all cases of HER2-positive cancer were positive for CK19 mRNA in peripheral blood, but 6 cases of HER2-negative breast cancer were positive (33.3%), where there was a substantial difference between the two groups. After 6 cycles of adjuvant chemotherapy, CK19 positive rates in cases of HER2-positive and -negative breast cancer reduced by 93.3 and 11.1%, respectively, with a significant difference still existing. After 3 months of Herceptin therapy, expression of CK19 mRNA declined considerably in 10 cases of HER2 positive breast cancer (113.66 ± 88.65 vs 63.35 ± 49.27, P = 0.025). HER-2 gene expression closely correlated with circulating tumor cells in peripheral blood of early breast cancer patients. Moreover, Herceptin, a monoclonal antibody for HER2, can reduce the number of circulating tumor cells, which can be an early predictive factor for Herceptin therapy effectiveness against breast cancer.

  2. Curcumol induces apoptosis in SPC-A-1 human lung adenocarcinoma cells and displays anti-neoplastic effects in tumor bearing mice.

    Science.gov (United States)

    Tang, Qi-Ling; Guo, Ji-Quan; Wang, Qi-You; Lin, Hai-Shu; Yang, Zhou-Ping; Peng, Tong; Pan, Xue-Diao; Liu, Bing; Wang, Su-Jun; Zang, Lin-Quan

    2015-01-01

    Curcumol is a sesquiterpene originally isolated from curcuma rhizomes, a component of herbal remedies commonly used in oriental medicine. Its beneficial pharmacological activities have attract significant interest recently. In this study, anti-cancer activity of curcumol was examined with both in vitro and in vivo models. It was found that curcumol exhibited time- and concentration-dependent anti-proliferative effects in SPC-A-1 human lung adenocarcinoma cells with cell cycle arrest in the G0/G1 phase while apoptosis-induction was also confirmed with flow cytometry and morphological analyses. Interestingly, curcumol did not display growth inhibition in MRC-5 human embryonic lung fibroblasts, suggesting the anti-proliferative effects of curcumol were specific to cancer cells. Anti-neoplastic effects of curcumol were also confirmed in tumor bearing mice. Curcumol (60 mg/kg daily) significantly reduced tumor size without causing notable toxicity. In conclusion, curcumol appears a favorable anti-cancer candidate for further development.

  3. In Vivo Tagging of Lung Epithelial Cells To Define the Early Steps of Tumor Cell Dissemination

    Science.gov (United States)

    2015-12-01

    determine the tumor cell of origin [KrasG12D L/-/ /Sftpc- creER or KrasG12D L/-/ / p53 L/L /Sftpc-creER], or the contribution of alveolar type II cells in...cancer have advanced disease at the time of presentation, a finding that may be consistent with early spread. Even when lung cancer is diagnosed and...identify early stage patients at high risk of recurrence or metastatic disease as well as to develop more effective therapies for NSCLC. 7 The studies

  4. Alpha-lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human alpha-lactalbumin made lethal to tumor cells).

    Science.gov (United States)

    Svensson, Malin; Fast, Jonas; Mossberg, Ann-Kristin; Düringer, Caroline; Gustafsson, Lotta; Hallgren, Oskar; Brooks, Charles L; Berliner, Lawrence; Linse, Sara; Svanborg, Catharina

    2003-12-01

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex of human alpha-lactalbumin and oleic acid (C18:1:9 cis) that kills tumor cells by an apoptosis-like mechanism. Previous studies have shown that a conformational change is required to form HAMLET from alpha-lactalbumin, and that a partially unfolded conformation is maintained in the HAMLET complex. This study examined if unfolding of alpha-lactalbumin is sufficient to induce cell death. We used the bovine alpha-lactalbumin Ca(2+) site mutant D87A, which is unable to bind Ca(2+), and thus remains partially unfolded regardless of solvent conditions. The D87A mutant protein was found to be inactive in the apoptosis assay, but could readily be converted to a HAMLET-like complex in the presence of oleic acid. BAMLET (bovine alpha-lactalbumin made lethal to tumor cells) and D87A-BAMLET complexes were both able to kill tumor cells. This activity was independent of the Ca(2+)site, as HAMLET maintained a high affinity for Ca(2+) but D87A-BAMLET was active with no Ca(2+) bound. We conclude that partial unfolding of alpha-lactalbumin is necessary but not sufficient to trigger cell death, and that the activity of HAMLET is defined both by the protein and the lipid cofactor. Furthermore, a functional Ca(2+)-binding site is not required for conversion of alpha-lactalbumin to the active complex or to cause cell death. This suggests that the lipid cofactor stabilizes the altered fold without interfering with the Ca(2+)site.

  5. Cotransfection of TrkA and p75 NTR in neuroblastoma cell line (IMR-32) promotes differentiation and apoptosis of tumor cells

    Institute of Scientific and Technical Information of China (English)

    陈杰; 折晓宁

    2003-01-01

    Objective To assess the effects of both TrkA and p75NTR on nerve growth factor (NGF)-induced differentiation of neuroblastoma cells. Methods Retroviral vectors were constructed to express the high affinity NGF receptor (TrkA) and low affinity NGF receptor (p75NTR). Neuroblastoma cell line IMR-32 was transfected by the vectors expressing either TrkA or p75NTR or both by using lipofectmine TM reagent separately or cotransfected at the same time. Southern blot, Northern blot, RT-PCR and flow cytometry were used to determine the success of the transfection. MTT technique was to monitor the cell proliferation. Colony formation in soft agar and tumor forming assay in nude mice were used to test the biological characteristics of the tumor cells. Terminal-deoxynucleotidytransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay was used to test the apoptosis of the tumor cells. Results Stable transformant cell lines expressing TrkA, p75NTR or both genes were established. Studies on these transformant cell lines have shown different NGF responses. The p75NTR transfection only resulted in the mild differentiation response, and transfection of TrkA gene caused remarkable neurite extension, up-regulation of neurofilament and decreased expression of N-myc oncogene after NGF reatment. The cotransfection of the two genes into this cell line resulted in the more rapid and more apparent morphological changes than single TrkA transfected cells after NGF treatment. The cotransfected cells underwent apoptosis after withdrawal of NGF. Conclusions The results indicate that coexpression of both low- and high-affinity NGF receptors are not only more efficient in restoration of NGF-induced differentiation pathway, but also be able to activate the pro-apoptotic activity of low-affinity NGF receptor and make the tumor cells become NGF-dependent and irreversibly differentiated.

  6. Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo.

    Science.gov (United States)

    Chakrabarti, Mrinmay; Ray, Swapan K

    2016-03-01

    Glioblastoma is the deadliest brain tumor in humans. High systemic toxicity of conventional chemotherapies prompted the search for natural compounds for controlling glioblastoma. The natural flavonoids luteolin (LUT) and silibinin (SIL) have anti-tumor activities. LUT inhibits autophagy, cell proliferation, metastasis, and angiogenesis and induces apoptosis; while SIL activates caspase-8 cascades to induce apoptosis. However, synergistic anti-tumor effects of LUT and SIL in glioblastoma remain unknown. Overexpression of tumor suppressor microRNA (miR) could enhance the anti-tumor effects of LUT and SIL. Here, we showed that 20 µM LUT and 50 µM SIL worked synergistically for inhibiting growth of two different human glioblastoma U87MG (wild-type p53) and T98G (mutant p53) cell lines and natural combination therapy was more effective than conventional chemotherapy (10 µM BCNU or 100 µM TMZ). Combination of LUT and SIL caused inhibition of growth of glioblastoma cells due to induction of significant amounts of apoptosis and complete inhibition of invasion and migration. Further, combination of LUT and SIL inhibited rapamycin (RAPA)-induced autophagy, a survival mechanism, with suppression of PKCα and promotion of apoptosis through down regulation of iNOS and significant increase in expression of the tumor suppressor miR-7-1-3p in glioblastoma cells. Our in vivo studies confirmed that overexpression of miR-7-1-3p augmented anti-tumor activities of LUT and SIL in RAPA pre-treated both U87MG and T98G tumors. In conclusion, our results clearly demonstrated that overexpression of miR-7-1-3p augmented the anti-tumor activities of LUT and SIL to inhibit autophagy and induce apoptosis for controlling growth of different human glioblastomas in vivo.

  7. Reduced life expectancy seen in hereditary diseases which predispose to early-onset tumors

    Directory of Open Access Journals (Sweden)

    Evans DGR

    2013-07-01

    Full Text Available D Gareth R Evans,1 Sarah Louise Ingham21Genetic Medicine, Manchester Academic Health Science Centre, Central Manchester Foundation Trust, St Mary's Hospital, Manchester, UK; 2Centre for Health Informatics, Institute of Population Health, The University of Manchester, Manchester, UKAbstract: There are several hereditary diseases that are a predisposition to early-onset tumors. These include syndromic conditions like neurofibromatosis 1 and 2, von Hippel–Lindau syndrome, Gorlin syndrome, multiple endocrine neoplasia, and familial adenomatous polyposis; and conditions which are usually not possible to diagnose clinically in a single individual, such as Lynch syndrome and BRCA1/2. Understanding of the mortality in hereditary cancer predisposing diseases is important for developing effective disease treatment programs. A number of studies have been undertaken to investigate the genetic predictors, prevalence and incidence, and treatment outcomes of these diseases; however, the majority examine only the most common of these diseases (eg, neurofibromatosis or BRCA, or look into postoperative survival. The mortality of individuals who are diagnosed with one of these hereditary diseases remains an area for investigation. This review is the first to attempt identification of studies investigating life expectancy in hereditary diseases which predispose to early-onset tumors.Keywords: mortality, survival, life expectancy, early-onset, tumors

  8. Small gastrointestinal stromal tumor concomitant with early gastric cancer: A case report

    Institute of Scientific and Technical Information of China (English)

    Ying-Lung Lin; Jeh-En Tzeng; Chang-Kou Wei; Chih-Wen Lin

    2006-01-01

    The term gastrointestinal stromal tumors (GISTs)is defined diagnostically as the main group of mesenchymal tumors with spindle or epithelioid cells arising from the wall of the gastrointestinal tract with immunohistochemical reactivity for CD117 antibody.Previous studies revealed that cells in GISTs express a growth factor receptor with tyrosine kinase activity (termed c-kit), which is the product of the c-kit protooncogene. The most specific and practical diagnostic criteria for GISTs are: immunohistochemically determined c-kit (CD117) expression; mitotic score; and tumor size.A small GIST concomitant with early gastric cancer is rarely encountered clinically. Herein we have reported a case of a 1.1-cm GIST detected by esophagogastroduo denoscopy concomitant with a Ⅱc type of early gastric cancer (signet ring cell type). It was detected during a routine physical health examination. To our knowledge,this is the first report of a small GIST concomitant with a signet ring cell type of early gastric cancer.

  9. Early experience with percutaneous cryoablation of extra-abdominal desmoid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Kujak, Jennifer L.; Liu, Patrick T. [Mayo Clinic Arizona, Department of Radiology, Phoenix, AZ (United States); Johnson, Geoffrey B.; Callstrom, Matthew R. [Mayo Clinic Rochester, Department of Radiology, Rochester, MN (United States)

    2010-02-15

    Surgical resection, radiation therapy and chemotherapy are all accepted as standard treatments for extra-abdominal desmoid (EAD) tumors, but their effectiveness has been limited by frequent local recurrence. The purpose of this article is to describe our early experiences with using percutaneous cryoablation for local control of extra-abdominal desmoid tumors in five patients whose tumors had failed to respond to standard therapy. In a retrospective search of our institution's radiology database for patients who had undergone percutaneous cryoablation for treatment of EAD tumors between June 2004 and July 2007, we identified five patients (three female and two male). No patients were excluded from this review. Three of these patients had been referred for cryoablation for local tumor control, and two had been referred for palliation of inoperable tumors. The age range of the patients at the time of cryoablation was 9-41 years. The treated EAD tumors were located in the neck, shoulders and trunk and ranged in size from 3.0 cm to 10.0 cm. Medical records were reviewed for short-term and long-term follow-up, and patients were contacted for additional follow-up. Patients were asked to rate their pain as absent, mild, moderate or severe, and to compare it with their levels before cryoablation, describing it as improved, unchanged or worsened. Radiology records were reviewed to follow the size of the EAD tumors before and after cryotherapy. For the three patients referred for local control of EAD tumors, complete tumor coverage with the ablation zones was achieved. Two of these patients, with masses 3.0 cm and 4.9 cm in diameter, reported complete absence of pain at both short-term and long-term follow-up at 13 months and 49 months. Their tumors had completely resolved on long-term imaging follow-up at 19 months and 43 months. The third patient, with a 6.1 cm mass, reported improved mild pain at 6 months, and imaging showed a moderate decrease of tumor size. For the

  10. Protein kinase Cmu downregulation of tumor-necrosis-factor-induced apoptosis correlates with enhanced expression of nuclear-factor-kappaB-dependent protective genes.

    Science.gov (United States)

    Johannes, F J; Horn, J; Link, G; Haas, E; Siemienski, K; Wajant, H; Pfizenmaier, K

    1998-10-01

    Protein kinase Cmu (PKCmu) represents a new subtype of the PKC family characterized by the presence of a pleckstrin homology (PH) domain and an amino-terminal hydrophobic region. In order to analyse the potential role of PKCmu in signal-transduction pathways, stable PKCmu transfectants were established with human and murine cell lines. All transfectants showed a reduced sensitivity to tumor-necrosis-factor (TNF)-induced apoptosis, which correlated with the amount of transgene expressed and with an enhanced basal transcription rate of NF-kappaB-driven genes including the inhibitor of apoptosis protein 2 (cIAP2) and TNF-receptor-associated protein 1 (TRAF1). Sensitivity to apoptosis induced by the lipid mediator ceramide was unchanged in PKCmu transfectants. In support of a PKCmu action on NF-kappaB, we show enhancement and downregulation of TNF-induced expression of a NF-kappaB-dependent reporter gene by transient overexpression of wild-type and kinase-negative mutants of PKCmu, respectively. Interestingly, no significant changes were found in an electrophoretic mobility shift assay, indicative of PKCmu action downstream of IkappaB degradation, probably by modulation of the transactivation capacity of NF-kappaB. The dominant negative action of the kinase-negative mutant further suggest a regulatory role of PKCmu for NF-kappaB-dependent gene expression.

  11. Antibody-Guided In Vivo Imaging for Early Detection of Mammary Gland Tumors

    Directory of Open Access Journals (Sweden)

    Laura Jeffords Moore

    2016-08-01

    Full Text Available BACKGROUND: Earlier detection of transformed cells using target-specific imaging techniques holds great promise. We have developed TAB 004, a monoclonal antibody highly specific to a protein sequence accessible in the tumor form of MUC1 (tMUC1. We present data assessing both the specificity and sensitivity of TAB 004 in vitro and in genetically engineered mice in vivo. METHODS: Polyoma Middle T Antigen mice were crossed to the human MUC1.Tg mice to generate MMT mice. In MMT mice, mammary gland hyperplasia is observed between 6 and 10 weeks of age that progresses to ductal carcinoma in situ by 12 to 14 weeks and adenocarcinoma by 18 to 24 weeks. Approximately 40% of these mice develop metastasis to the lung and other organs with a tumor evolution that closely mimics human breast cancer progression. Tumor progression was monitored in MMT mice (from ages 8 to 22 weeks by in vivo imaging following retro-orbital injections of the TAB 004 conjugated to indocyanine green (TAB-ICG. At euthanasia, mammary gland tumors and normal epithelial tissues were collected for further analyses. RESULTS: In vivo imaging following TAB-ICG injection permitted significantly earlier detection of tumors compared with physical examination. Furthermore, TAB-ICG administration in MMT mice enabled the detection of lung metastases while sparing recognition of normal epithelia. CONCLUSIONS: The data highlight the specificity and the sensitivity of the TAB 004 antibody in differentiating normal versus tumor form of MUC1 and its utility as a targeted imaging agent for early detection, tumor monitoring response, as well as potential clinical use for targeted drug delivery.

  12. Sunitinib significantly suppresses the proliferation, migration, apoptosis resistance, tumor angiogenesis and growth of triple-negative breast cancers but increases breast cancer stem cells.

    Science.gov (United States)

    Chinchar, Edmund; Makey, Kristina L; Gibson, John; Chen, Fang; Cole, Shelby A; Megason, Gail C; Vijayakumar, Srinivassan; Miele, Lucio; Gu, Jian-Wei

    2014-01-01

    The majority of triple-negative breast cancers (TNBCs) are basal-like breast cancers. However there is no reported study on anti-tumor effects of sunitinib in xenografts of basal-like TNBC (MDA-MB-468) cells. In the present study, MDA-MB-231, MDA-MB-468, MCF-7 cells were cultured using RPMI 1640 media with 10% FBS. Vascular endothelia growth factor (VEGF) protein levels were detected using ELISA (R & D Systams). MDA-MB-468 cells were exposed to sunitinib for 18 hours for measuring proliferation (3H-thymidine incorporation), migration (BD Invasion Chamber), and apoptosis (ApopTag and ApoScreen Anuexin V Kit). The effect of sunitinib on Notch-1 expression was determined by Western blot in cultured MDA-MB-468 cells. 10(6) MDA-MB-468 cells were inoculated into the left fourth mammary gland fat pad in athymic nude-foxn1 mice. When the tumor volume reached 100 mm(3), sunitinib was given by gavage at 80 mg/kg/2 days for 4 weeks. Tumor angiogenesis was determined by CD31 immunohistochemistry. Breast cancer stem cells (CSCs) isolated from the tumors were determined by flow cytometry analysis using CD44(+)/CD24(-) or low. ELISA indicated that VEGF was much more highly expressed in MDA-MB-468 cells than MDA-MB-231 and MCF-7 cells. Sunitinib significantly inhibited the proliferation, invasion, and apoptosis resistance in cultured basal like breast cancer cells. Sunitinib significantly increased the expression of Notch-1 protein in cultured MDA-MB-468 or MDA-MB-231 cells. The xenograft models showed that oral sunitinib significantly reduced the tumor volume of TNBCs in association with the inhibition of tumor angiogeneisis, but increased breast CSCs. These findings support the hypothesis that the possibility should be considered of sunitinib increasing breast CSCs though it inhibits TNBC tumor angiogenesis and growth/progression, and that effects of sunitinib on Notch expression and hypoxia may increase breast cancer stem cells. This work provides the groundwork for an

  13. How numbers, nature and immune status of Foxp3+ regulatory T cells shape the early immunological events in tumor development.

    Directory of Open Access Journals (Sweden)

    Guillaume eDarrasse-Jeze

    2013-09-01

    Full Text Available The influence of CD4+CD25+Foxp3+ regulatory T cells (Tregs on cancer progression has been demonstrated in a large number of preclinical models and confirmed in several types of malignancies. Neoplastic processes trigger an increase of Treg numbers in draining lymph nodes, spleen, blood, and tumors, leading to the suppression of anti-tumor responses. Treg depletion before or early in tumor development may lead to complete tumor eradication and extends survival of mice and humans. However this strategy is ineffective in established tumors, highlighting the critical role of the early Treg-tumor encounters. In this review, after discussing old and new concepts of immunological tumor tolerance, we focus on the nature (thymus-derived vs. peripherally-derived and status (naïve or activated / memory of the regulatory T cells at tumor emergence. The recent discoveries in this field suggest that the activation status of Tregs and effector T cells (Teffs at the first encounter with the tumor are essential to shape the fate and speed of the immune response across a variety of tumor models. The relative timing of activation/recruitment of antitumor cells versus tolerogenic cells at tumor emergence appears to be crucial in the identification of tumor cells as friend or foe, which has broad implications for the design of cancer immunotherapies.

  14. Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derived factor-1 and their receptors in epithelial metastatic breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Labovsky Vivian

    2012-06-01

    Full Text Available Abstract Background While breast cancer (BC is the major cause of death among women worldwide, there is no guarantee of better patient survival because many of these patients develop primarily metastases, despite efforts to detect it in its early stages. Bone metastasis is a common complication that occurs in 65-80 % of patients with disseminated disease, but the molecular basis underlying dormancy, dissemination and establishment of metastasis is not understood. Our objective has been to evaluate simultaneously osteoprotegerin (OPG, receptor activator of nuclear factor kappa B ligand (RANKL, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, stromal cell-derived factor-1 (SDF-1, and their receptors (R in 2 human BC cell lines, MDA-MB-231 and MCF-7. Methods OPG, RANKL, TRAIL and SDF-1 expression and release, in addition to the expression of their receptors has been investigated using immunofluorescence, immunocytochemistry and ELISA analyses. Results MCF-7 cells released higher levels of OPG in conditioned media (CM than MDA-MB-231 cells; 100 % of both types of cell expressed OPG, RANKL, TRAIL and SDF-1. Moreover, 100 % in both lines expressed membrane RANKL and RANK, whereas only 50 % expressed CXCR4. Furthermore, 100 % expressed TRAIL-R1 and R4, 30-50 % TRAIL-R2, and 40-55 % TRAIL-R3. Conclusions MCF-7 and MDA-MB-231 cells not only released OPG, but expressed RANKL, TRAIL and SDF-1. The majority of the cells also expressed RANK, CXCR4 and TRAIL-R. Since these ligands and their receptors are implicated in the regulation of proliferation, survival, migration and future bone metastasis during breast tumor progression, assessment of these molecules in tumor biopsies of BC patients could be useful in identifying patients with more aggressive tumors that are also at risk of bone metastasis, which may thus improve the available options for therapeutic intervention.

  15. Apigenin induces apoptosis via tumor necrosis factor receptor- and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcinoma to 5-fluorouracil and cisplatin.

    Science.gov (United States)

    Chan, Leong-Perng; Chou, Tzung-Han; Ding, Hsiou-Yu; Chen, Pin-Ru; Chiang, Feng-Yu; Kuo, Po-Lin; Liang, Chia-Hua

    2012-07-01

    Apigenin, a natural plant flavone, may have chemopreventive and therapeutic potentials for anti-inflammatory, antioxidant, and anti-cancer. Nevertheless, the anti-tumor effect of apigenin on human head and neck squamous cell carcinoma (HNSCC) is not fully understood. The antioxidant capacity and protective effects of apigenin against oxidative stress in murine normal embryonic liver BNLCL2 cells are examined. Cell viability, morphologic change, clonogenic survival, cell cycle distribution, reactive oxygen species (ROS) production, glutathione formation, and death receptors- and Bcl-2-mediated caspase pathways of HNSCC SCC25 cells and A431 cells with apigenin are investigated. Apigenin inhibits the growth of SCC25 and A431 cells and induces cell cycle arrest in the G2/M phase. Apigenin has an antioxidant capacity as well as the ability to inhibit lipid peroxidation. It protects BNLCL2 cells against oxidative damage, and is potentially able to prevent cancer. Apigenin increases intracellular ROS levels and reduces levels of glutathione; it also induces cell apoptosis via tumor necrosis factor receptor (TNF-R)-, TNF-related apoptosis-inducing ligand receptor (TRAIL-R)-, and Bcl-2-mediated caspase-dependent cell death pathways in SCC25 cells. The combination of apigenin with 5-fluorouracil (5-Fu) or cisplatin induces the dramatic death of SCC25 cells. Apigenin induces SCC25 cell apoptosis via the up-regulation of both TNF-R and TRAIL-R signaling pathways, and has a synergistic effect on the inhibition of cell proliferation in combination with 5-Fu or cisplatin. These analytical findings suggest that apigenin may be a good therapeutic agent against HNSCC cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Dendrobium chrysanthum ethanolic extract induces apoptosis via p53 up-regulation in HeLa cells and inhibits tumor progression in mice.

    Science.gov (United States)

    Prasad, Ritika; Rana, Nishant Kumar; Koch, Biplob

    2017-06-01

    Background Dendrobium is one of the diverse genus of orchid plants. It possesses a number of pharmacological activities and has long been used in traditional system of medicine. The goal of this study was to investigate the apoptosis inducing property of the ethanolic extract from the leaves of Dendrobium chrysanthum, a species of Dendrobium whose anticancer role has not been ascertained yet. Methods To evaluate the anticancer activity of the ethanolic extract of D. chrysanthum in vitro in HeLa (human cervical cancer) cells, cytotoxic activity, generation of reactive oxygen species (ROS), induction of apoptosis and effect on cell cycle were determined. The in vivo study was carried out in Dalton's lymphoma (DL) bearing mice to assess the tumor growth delay. Results Our study demonstrated that the ethanolic extract showed dose-dependent cytotoxicity against HeLa cells. The extract exhibited dose-dependent increase in ROS production as well as apoptotic cell death which was further confirmed through presence of DNA fragmentation. Cell cycle analysis by flow cytometry suggests that the ethanolic extract perturbed cell cycle progression and leads to the delay of the cells in S phase. Further, the real-time PCR studies also showed up-regulation of apoptotic genes p53 and Bax. The in vivo antitumor activity exhibited significant increase in the life span of DL bearing mice as compared to control with significant decrease in abdominal size along with reduced tumor ascites. Conclusions These observations demonstrate the anticancer potential of the D. chrysanthum ethanolic extract mediated through p53-dependent apoptosis.

  17. Cdk5 phosphorylates non-genotoxically overexpressed p53 following inhibition of PP2A to induce cell cycle arrest/apoptosis and inhibits tumor progression

    Directory of Open Access Journals (Sweden)

    Kumari Ratna

    2010-07-01

    Full Text Available Abstract Background p53 is the most studied tumor suppressor and its overexpression may or may not cause cell death depending upon the genetic background of the cells. p53 is degraded by human papillomavirus (HPV E6 protein in cervical carcinoma. Several stress activated kinases are known to phosphorylate p53 and, among them cyclin dependent kinase 5 (Cdk5 is one of the kinase studied in neuronal cell system. Recently, the involvement of Cdk5 in phosphorylating p53 has been shown in certain cancer types. Phosphorylation at specific serine residues in p53 is essential for it to cause cell growth inhibition. Activation of p53 under non stress conditions is poorly understood. Therefore, the activation of p53 and detection of upstream kinases that phosphorylate non-genotoxically overexpressed p53 will be of therapeutic importance for cancer treatment. Results To determine the non-genotoxic effect of p53; Tet-On system was utilized and p53 inducible HPV-positive HeLa cells were developed. p53 overexpression in HPV-positive cells did not induce cell cycle arrest or apoptosis. However, we demonstrate that overexpressed p53 can be activated to upregulate p21 and Bax which causes G2 arrest and apoptosis, by inhibiting protein phosphatase 2A. Additionally, we report that the upstream kinase cyclin dependent kinase 5 interacts with p53 to phosphorylate it at Serine20 and Serine46 residues thereby promoting its recruitment on p21 and bax promoters. Upregulation and translocation of Bax causes apoptosis through intrinsic mitochondrial pathway. Interestingly, overexpressed activated p53 specifically inhibits cell-growth and causes regression in vivo tumor growth as well. Conclusion Present study details the mechanism of activation of p53 and puts forth the possibility of p53 gene therapy to work in HPV positive cervical carcinoma.

  18. Transcriptomic and proteomic analyses in bone tumor cells: Deciphering parathyroid hormone-related protein regulation of the cell cycle and apoptosis.

    Science.gov (United States)

    Mak, Isabella W Y; Turcotte, Robert E; Ghert, Michelle

    2012-09-01

    Giant cell tumor of bone (GCT) is an aggressive skeletal tumor characterized by local bone destruction, high recurrence rates, and metastatic potential. Previous works in our laboratory, including functional assays, have shown that neutralization of parathyroid hormone-related protein (PTHrP) in the cell environment inhibits cell proliferation and induces cell death in GCT stromal cells, indicating a role for PTHrP in cell propagation and survival. The objective of this study was to investigate the global gene and protein expression patterns of GCT cells in order to identify the underlying pathways and mechanisms of neoplastic proliferation provided by PTHrP in the bone microenvironment. Primary stromal cell cultures from 10 patients with GCT were used in this study. Cells were exposed to optimized concentrations of either PTHrP peptide or anti-PTHrP neutralizing antiserum and were analyzed with both cDNA microarray and proteomic microarray assays in triplicate. Hierarchical clustering and principal component analyses confirmed that counteraction of PTHrP in GCT stromal cells results in a clear-cut gene expression pattern distinct from all other treatment groups and the control cell line human fetal osteoblast (hFOB). Multiple bioinformatics tools were used to analyze changes in gene/protein expression and identify important gene ontologies and pathways common to this anti-PTHrP-induced regulatory gene network. PTHrP neutralization interferes with multiple cell survival and apoptosis signaling pathways by triggering both death receptors and cell cycle-mediated apoptosis, particularly via the caspase pathway, TRAIL pathway, JAK-STAT signaling pathway, and cyclin E/CDK2-associated G1/S cell cycle progression. These findings indicate that PTHrP neutralization exhibits anticancer potential by regulating cell-cycle progression and apoptosis in bone tumor cells, with the corollary being that PTHrP is a pro-neoplastic factor that can be targeted in the treatment of bone

  19. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers

    Directory of Open Access Journals (Sweden)

    Vatn Morten

    2008-12-01

    Full Text Available Abstract Background Multiple epigenetic and genetic changes have been reported in colorectal tumors, but few of these have clinical impact. This study aims to pinpoint epigenetic markers that can discriminate between non-malignant and malignant tissue from the large bowel, i.e. markers with diagnostic potential. The methylation status of eleven genes (ADAMTS1, CDKN2A, CRABP1, HOXA9, MAL, MGMT, MLH1, NR3C1, PTEN, RUNX3, and SCGB3A1 was determined in 154 tissue samples including normal mucosa, adenomas, and carcinomas of the colorectum. The gene-specific and widespread methylation status among the carcinomas was related to patient gender and age, and microsatellite instability status. Possible CIMP tumors were identified by comparing the methylation profile with microsatellite instability (MSI, BRAF-, KRAS-, and TP53 mutation status. Results The mean number of methylated genes per sample was 0.4 in normal colon mucosa from tumor-free individuals, 1.2 in mucosa from cancerous bowels, 2.2 in adenomas, and 3.9 in carcinomas. Widespread methylation was found in both adenomas and carcinomas. The promoters of ADAMTS1, MAL, and MGMT were frequently methylated in benign samples as well as in malignant tumors, independent of microsatellite instability. In contrast, normal mucosa samples taken from bowels without tumor were rarely methylated for the same genes. Hypermethylated CRABP1, MLH1, NR3C1, RUNX3, and SCGB3A1 were shown to be identifiers of carcinomas with microsatellite instability. In agreement with the CIMP concept, MSI and mutated BRAF were associated with samples harboring hypermethylation of several target genes. Conclusion Methylated ADAMTS1, MGMT, and MAL are suitable as markers for early tumor detection.

  20. Apoptosis in the transplanted canine transmissible venereal tumor during growth and regression phases Apoptose no tumor venéreo transmissível canino durante as fases de crescimento e regressão

    Directory of Open Access Journals (Sweden)

    F.G.A. Santos

    2008-06-01

    Full Text Available Twelve male, mongrel, adult dogs were subcutaneously transplanted with cells originated from two canine transmissible venereal tumors (TVT. The aim was to demonstrate and to quantify the occurrence of apoptosis in the TVT regression. After six months of transplantation, a tumor sample was obtained from each dog, being six dogs with TVT in the growing phase and six in the regression phase as verified by daily measurements. Samples were processed for histological and ultrastructural purposes as well as for DNA extraction. Sections of 4µm were stained by HE, Shorr, methyl green pyronine, Van Gieson, TUNEL reaction and immunostained for P53. The Shorr stained sections went through morphometry that demonstrated an increase of the apoptotic cells per field in the regressive tumors. It was also confirmed by transmission electron microscopy, which showed cells with typical morphology of apoptosis and by the TUNEL reaction that detected in situ the 3'OH nick end labeling mainly in the regressive tumors. The regressive TVTs also showed an intensified immunostaining for P53 besides a more intense genomic DNA fragmentation detected by the agarose gel electrophoresis. In conclusion, apoptosis has an important role in the regression of the experimental TVT in a way that is P53-dependent.Doze cães, adultos, machos e sem raça definida foram transplantados subcutaneamente, na região hipogástrica, com células originadas de dois tumores venéreos transmissíveis caninos (TVT. O objetivo do estudo foi demonstrar e quantificar a ocorrência de apoptose na regressão do TVT. Após seis meses, foi obtido um tumor de cada animal, totalizando seis em crescimento e seis em regressão. Fragmentos dos tumores foram processados para avaliação histológica, ultra-estrutural e também para extração de DNA. Cortes de 4µm foram corados em HE, Shorr, verde de metila pironina e Van Gieson e alguns foram submetidos à reação do TUNEL e à imunoistoquímica para P53

  1. Absence of tumor suppressor tumor protein 53-induced nuclear protein 1 (TP53INP1) sensitizes mouse thymocytes and embryonic fibroblasts to redox-driven apoptosis.

    Science.gov (United States)

    N'guessan, Prudence; Pouyet, Laurent; Gosset, Gaëlle; Hamlaoui, Sonia; Seillier, Marion; Cano, Carla E; Seux, Mylène; Stocker, Pierre; Culcasi, Marcel; Iovanna, Juan L; Dusetti, Nelson J; Pietri, Sylvia; Carrier, Alice

    2011-09-15

    The p53-transcriptional target TP53INP1 is a potent stress-response protein promoting p53 activity. We previously showed that ectopic overexpression of TP53INP1 facilitates cell cycle arrest as well as cell death. Here we report a study investigating cell death in mice deficient for TP53INP1. Surprisingly, we found enhanced stress-induced apoptosis in TP53INP1-deficient cells. This observation is underpinned in different cell types in vivo (thymocytes) and in vitro (thymocytes and MEFs), following different types of injury inducing either p53-dependent or -independent cell death. Nevertheless, absence of TP53INP1 is unable to overcome impaired cell death of p53-deficient thymocytes. Stress-induced ROS production is enhanced in the absence of TP53INP1, and antioxidant NAC complementation abolishes increased sensitivity to apoptosis of TP53INP1-deficient cells. Furthermore, antioxidant defenses are defective in TP53INP1-deficient mice in correlation with ROS dysregulation. Finally, we show that autophagy is reduced in TP53INP1-deficient cells both at the basal level and upon stress. Altogether, these data show that impaired ROS regulation in TP53INP1-deficient cells is responsible for their sensitivity to induced apoptosis. In addition, they suggest that this sensitivity could rely on a defect of autophagy. Therefore, these data emphasize the role of TP53INP1 in protection against cell injury.

  2. Exposures in early life: associations with DNA promoter methylation in breast tumors.

    Science.gov (United States)

    Tao, M-H; Marian, C; Shields, P G; Potischman, N; Nie, J; Krishnan, S S; Berry, D L; Kallakury, B V; Ambrosone, C; Edge, S B; Trevisan, M; Winston, J; Freudenheim, J L

    2013-04-01

    There is evidence that epigenetic changes occur early in breast carcinogenesis. We hypothesized that early-life exposures associated with breast cancer would be associated with epigenetic alterations in breast tumors. In particular, we examined DNA methylation patterns in breast tumors in association with several early-life exposures in a population-based case-control study. Promoter methylation of E-cadherin, p16 and RAR-β2 genes was assessed in archived tumor blocks from 803 cases with real-time methylation-specific PCR. Unconditional logistic regression was used for case-case comparisons of those with and without promoter methylation. We found no differences in the prevalence of DNA methylation of the individual genes by age at menarche, age at first live birth and weight at age 20. In case-case comparisons of premenopausal breast cancer, lower birth weight was associated with increased likelihood of E-cadherin promoter methylation (OR = 2.79, 95% CI, 1.15-6.82, for ⩽2.5 v. 2.6-2.9 kg); higher adult height with RAR-β2 methylation (OR = 3.34, 95% CI, 1.19-9.39, for ⩾1.65 v. <1.60 m); and not having been breastfed with p16 methylation (OR = 2.75, 95% CI, 1.14-6.62). Among postmenopausal breast cancers, birth order was associated with increased likelihood of p16 promoter methylation. Being other than first in the birth order was inversely associated with likelihood of ⩾1 of the three genes being methylated for premenopausal breast cancers, but positively associated with methylation in postmenopausal women. These results suggest that there may be alterations in methylation associated with early-life exposures that persist into adulthood and affect breast cancer risk.

  3. Tumor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008479 Preliminary study of MR elastography in brain tumors. XU Lei(徐磊), et al.Neurosci Imaging Center, Beijing Tiantan Hosp, Capital Med Univ, Beijing 100050.Chin J Radiol 2008;42(6):605-608. Objective To investigate the potential values of magnetic resonance elastography (MRE) for evaluating the brain tumor consistency in vivo. Methods Fourteen patients with known solid brain tumor (5 male, 9 female; age range: 16-63 years)

  4. Stimulation of macrophages with the β-glucan produced by aureobasidium pullulans promotes the secretion of tumor necrosis factor-related apoptosis inducing ligand (TRAIL.

    Directory of Open Access Journals (Sweden)

    Koji Kawata

    Full Text Available A β-glucan produced by Aureobasidium pullulans (AP-PG is consisting of a β-(1,3-linked main chain with β-(1,6-linked glucose side residues. Various β-glucans consisting of β-(1,3-linked main chain including AP-PG are believed to exhibit anti-tumor activities, and actually, anti-tumor activities of AP-PG in mice have been demonstrated. In this study, we demonstrate that stimulation with AP-PG induces TRAIL expression in mouse and human macrophage-like cell lines. TRAIL is known to be a cytokine which specifically induces apoptosis in transformed cells, but not in untransformed cells. The expression of TRAIL mRNA after stimulation with AP-PG was increased in RAW264.7 cells, Mono Mac 6 cells, and macrophage-differentiated THP-1 cells. The mRNA expression of TNF-α and FasL is only weakly increased after stimulation with AP-PG. The induction activity of TRAIL by curdlan, a bacterial β-glucan, was very similar to that by AP-PG in RAW264.7 cells, but weaker in macrophage-differentiated THP-1 cells. Activation of caspases was found in HeLa cells after treatment with the supernatant of cultured medium from AP-PG-stimulated Mono Mac 6 cells, and was inhibited by the anti-TRAIL neutralizing antibody. These findings suggest that the stimulation with AP-PG effectively induces TRAIL in macrophages, and that it may be related to apoptosis induction of tumor cells.

  5. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chih-Yeu Fang

    2015-01-01

    Full Text Available (−-Epigallocatechin-3-gallate (EGCG, a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC, yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC.

  6. The soybean peptide lunasin promotes apoptosis of mammary epithelial cells via induction of tumor suppressor PTEN: similarities and distinct actions from soy isoflavone genistein.

    Science.gov (United States)

    Pabona, John Mark P; Dave, Bhuvanesh; Su, Ying; Montales, Maria Theresa E; de Lumen, Ben O; de Mejia, Elvira G; Rahal, Omar M; Simmen, Rosalia C M

    2013-01-01

    Breast cancer is the leading cause of cancer deaths in women. Diet and lifestyle are major contributing factors to increased breast cancer risk. While mechanisms underlying dietary protection of mammary tumor formation are increasingly elucidated, there remains a dearth of knowledge on the nature and precise actions of specific bioactive components present in foods with purported health effects. The 43-amino acid peptide lunasin (LUN) is found in soybeans, is bioavailable similar to the isoflavone genistein (GEN), and thus may mediate the beneficial effects of soy food consumption. Here, we evaluated whether LUN displays common and distinct actions from those of GEN in non-malignant (mouse HC11) and malignant (human MCF-7) mammary epithelial cells. In MCF-7 cells, LUN up-regulated tumor suppressor phosphatase and tensin homolog deleted in chromosome ten (PTEN) promoter activity, increased PTEN transcript and protein levels and enhanced nuclear PTEN localization, similar to that shown for GEN in mammary epithelial cells. LUN-induced cellular apoptosis, akin to GEN, was mediated by PTEN, but unlike that for GEN, was p53-independent. LUN promoted E-cadherin and β-catenin non-nuclear localization similar to GEN, but unlike GEN, did not influence the proliferative effects of oncogene Wnt1 on HC11 cells. Further, LUN did not recapitulate GEN inhibitory effects on expansion of the cancer stem-like/progenitor population in MCF-7 cells. Results suggest the concerted actions of GEN and LUN on cellular apoptosis for potential mammary tumor preventive effects and highlight whole food consumption rather than intake of specific dietary supplements with limited biological effects for greater health benefits.

  7. Surgery for Primary Cardiac Tumors in Children Early and Late Results in a Multicenter European Congenital Heart Surgeons Association Study

    NARCIS (Netherlands)

    Padalino, Massimo A.; Vida, Vladimiro L.; Boccuzzo, Giovanna; Tonello, Marco; Sarris, George E.; Berggren, Hakan; Comas, Juan V.; Di Carlo, Duccio; Di Donato, Roberto M.; Ebels, Tjark; Hraska, Viktor; Jacobs, Jeffrey P.; Gaynor, J. William; Metras, Dominique; Pretre, Rene; Pozzi, Marco; Rubay, Jean; Sairanen, Heikki; Schreiber, Christian; Maruszewski, Bohdan; Basso, Cristina; Stellin, Giovanni

    2012-01-01

    Background-To evaluate indications and results of surgery for primary cardiac tumors in children. Methods and Results-Eighty-nine patients aged Conclusions-Surgery for primary cardiac tumors in children has good early and long-term outcomes, with low recurrence rate. Rhabdomyomas are the most freque

  8. A Tumor-Targeted Nanodelivery System to Improve Early MRI Detection of Cancer

    Directory of Open Access Journals (Sweden)

    Kathleen F. Pirollo

    2006-01-01

    Full Text Available The development of improvements in magnetic resonance imaging (MRI that would enhance sensitivity, leading to earlier detection of cancer and visualization of metastatic disease, is an area of intense exploration. We have devised a tumor-targeting, liposomal nanodelivery platform for use in gene medicine. This systemically administered nanocomplex has been shown to specifically and efficiently deliver both genes and oligonucleotides to primary and metastatic tumor cells, resulting in significant tumor growth inhibition and even tumor regression. Here we examine the effect on MRI of incorporating conventional MRI contrast agent Magnevist® into our anti-transferrin receptor single-chain antibody (TfRscFv liposomal complex. Both in vitro and in an in vivo orthotopic mouse model of pancreatic cancer, we show increased resolution and image intensity with the complexed Magnevist®. Using advanced microscopy techniques (scanning electron microscopy and scanning probe microscopy, we also established that the Magnevist® is in fact encapsulated by the liposome in the complex and that the complex still retains its nanodimensional size. These results demonstrate that this TfRscFv-liposome-Magnevist® nanocomplex has the potential to become a useful tool in early cancer detection.

  9. Early apoptosis and cell death induced by ATX-S10Na ( Ⅱ)-mediated photodynamic therapy are Bax- and p53-dependent in human colon cancer cells

    Institute of Scientific and Technical Information of China (English)

    Makoto Mitsunaga; Akihito Tsubota; Kohichi Nariai; Yoshihisa Namiki; Makoto Sumi; Tetsuya Yoshikawa; Kiyotaka Fujise

    2007-01-01

    AIM: To investigate the roles of Bax and p53 proteins in photosensitivity of human colon cancer cells by using lysosome-localizing photosensitizer, ATX-S10Na (Ⅱ).METHODS: HCT116 human colon cancer cells and Bax-null or p53-null isogenic derivatives were irradiated with a diode laser. Early apoptosis and cell death in response to photodynamic therapy were determined by MTT assays, annexin V assays, transmission electron microscopy assays, caspase assays and western blotting.RESULTS: Induction of early apoptosis and cell death was Bax- and p53-dependent. Bax and p53 were required for caspase-dependent apoptosis. The levels of anti-apoptotic Bcl-2 family proteins, Bcl-2 and Bcl-XL,were decreased in Bax- and p53-independent manner.CONCLUSION: Our results indicate that early apoptosis and cell death of human colon cancer cells induced by photodynamic therapy with lysosome-localizingphotosensitizer ATX-S10Na (Ⅱ) are mediated by p53-Bax network and Iow levels of Bcl-2 and Bcl-XL proteins.Our results might help in formulating new therapeutic approaches in photedynamic therapy.

  10. Multiphoton microscopic imaging of esophagus during the early phase of tumor progression.

    Science.gov (United States)

    Xu, Jian; Kang, Deyong; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Chen, Jianxin

    2013-01-01

    Esophageal cancer is one of the most common cancer and leading cause of cancer death worldwide. Multiphoton microscopy (MPM) has become a novel optical tool of choice for imaging tissue architecture and cellular morphology based on two-photon excited fluorescence and second harmonic generation. In this study, we used MPM to image microstructure of human normal esophagus, carcinoma in situ, and early invasive carcinoma in order to investigate the morphological change of tissue structure during the early phase of tumor progression. The diagnostic features such as the appearance of cancerous cells, the absence of the basement membrane were extracted to distinguish between normal and cancerous esophagus tissue. The infiltration depth during tumor progression was determined by the appearance of cancerous cells. The significant change of layer structure between cancerous tissue and normal esophagus was described. We also quantitatively described the differences of morphology between normal and cancerous cells. These results correlated well with the corresponding histological findings. With the advancement of clinically miniaturized MPM and the multi-photon probe, combining MPM with standard endoscopy will therefore allow us to make a real-time in vivo diagnosis of early esophageal cancer at the cellular level. © Wiley Periodicals, Inc.

  11. Early-Stage Breast Cancer in the Octogenarian: Tumor Characteristics, Treatment Choices, and Clinical Outcomes

    Science.gov (United States)

    Mamtani, Anita; Gonzalez, Julie J.; Neo, Dayna; Slanetz, Priscilla J.; Houlihan, Mary Jane; Herold, Christina I.; Recht, Abram; Hacker, Michele R.; Sharma, Ranjna

    2016-01-01

    Background Nodal staging with sentinel node biopsy (SLNB), post-lumpectomy radiotherapy (RT), and endocrine therapy (ET) for estrogen receptor-positive (ER+) tumors is valuable in the treatment of early-stage (stages 1 or 2) breast cancer but used less often for elderly women. Methods This retrospective study investigated women referred for surgical evaluation of biopsy-proven primary early-stage invasive breast cancer from January 2001 to December 2010. Clinicopathologic features, treatment course, and outcomes for women ages 80–89 years and 50–59 years were compared. Results The study identified 178 eligible women ages 80–89 years and 169 women ages 50–59 years. The elderly women more often had grade 1 or 2 disease (p = 0.003) and ER+ tumors (p = 0.007) and less frequently had undergone adjuvant therapies (all p ≤ 0.001). Lumpectomy was performed more commonly for the elderly (92 vs. 83 %, p = 0.02), and axillary surgery was less commonly performed (46 vs. 96 %; p < 0.001). Fewer elderly women had undergone post-lumpectomy RT (42 vs. 89 %; p < 0.001) and ET for ER+ tumors (72 vs. 95 %; p < 0.001). During the median follow-up period of 56 months for the 80- to 89-year old group and 98 months for the 50- to 59-year-old group, death from breast cancer was similar (4 vs. 5 %; p = 0.5). The two groups respectively experienced 7 versus 6 locoregional recurrences and 11 versus 13 distant recurrences. Conclusions The octogenarians had disease survivorship similar to that of the younger women despite less frequent use of adjuvant therapies, likely reflecting lower-risk disease features. Whether increased use of axillary surgery, post-lumpectomy RT, and/or ET for ER+ tumors would further improve outcomes is an important area for further study, but treatment should not be deferred solely on the basis of age. PMID:27364507

  12. Combined effect of tumor necrosis factor-alpha and ionizing radiation on the induction of apoptosis in 5637 bladder carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Baierlein, S.A.; Distel, L.; Sieber, R.; Weiss, C.; Roedel, C.; Sauer, R.; Roedel, F. [Dept. of Radiation Oncology, Friedrich Alexander Univ. Erlangen-Nuremberg (Germany)

    2006-08-15

    Background and Purpose: Apoptosis can be induced by distinct but overlapping pathways. Ionizing radiation induces apoptosis by an ''intrinsic'', mitochondria-dependent pathway. Ligation of tumor necrosis factor-(TNF-){alpha}, FAS (CD95) or TRAIL receptors are typical representatives of an extrinsic, death-receptor-mediated pathway. In this study the effect of irradiation, treatment with the cytokine TNF-{alpha}, or a combination of both on the induction of apoptosis and clonogenic survival of bladder carcinoma cells was investigated. Material and Methods: 5637 bladder carcinoma cells were treated with different concentrations of recombinant TNF-{alpha} (0-10 ng/ml), irradiated with single doses ranging from 0.5 to 10 Gy, or a combination of both modalities. Apoptotic cells were quantified by the TUNEL assay up to 96 h following treatment, clonogenic cell survival by a clonogenic assay. Synergistic effects of both modalities were evaluated using isobolographic analysis. Results: Irradiation of 5637 carcinoma cells resulted in a discontinuous dose dependence of the apoptotic fraction with a pronounced increase in the range of 0-2 Gy and a slighter increase at 2-10 Gy. The percentage of apoptotic carcinoma cells also increased continuously after treatment with lower concentrations of TNF-{alpha} reaching a plateau at concentrations of 5.0-10.0 ng/ml. Isobolographic analysis revealed a supraadditive interrelationship between irradiation and TNF-{alpha} in the range between 0.005 and 0.5 ng/ml, and an additive effect for TNF-{alpha} concentrations > 0.5 ng/ml. The additive effects were confirmed in clonogenic survival assays with reduced survival fractions following combined TNF-{alpha} administration and irradiation. Conclusion: The combination of two apoptosis-inducing modalities resulted in a synergistic effect on the induction of apoptosis in 5637 bladder carcinoma cells. Although a radiosensitizing effect still has to be proven in animal models

  13. TGF-beta induces serous borderline ovarian tumor cell invasion by activating EMT but triggers apoptosis in low-grade serous ovarian carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jung-Chien Cheng

    Full Text Available Apoptosis in ovarian surface epithelial (OSE cells is induced by transforming growth factor-beta (TGF-β. However, high-grade serous ovarian carcinomas (HGC are refractory to the inhibitory functions of TGF-β; their invasiveness is up-regulated by TGF-β through epithelial-mesenchymal transition (EMT activation. Serous borderline ovarian tumors (SBOT have been recognized as distinct entities that give rise to invasive low-grade serous carcinomas (LGC, which have a relatively poor prognosis and are unrelated to HGC. While it is not fully understood how TGF-β plays disparate roles in OSE cells and its malignant derivative HGC, its role in SBOT and LGC remains unknown. Here we demonstrate the effects of TGF-β on cultured SBOT3.1 and LGC-derived MPSC1 cells, which express TGF-β type I and type II receptors. TGF-β treatment induced the invasiveness of SBOT3.1 cells but reduced the invasiveness of MPSC1 cells. The analysis of apoptosis, which was assessed by cleaved caspase-3 and trypan blue exclusion assay, revealed TGF-β-induced apoptosis in MPSC1, but not SBOT3.1 cells. The pro-apoptotic effect of TGF-β on LGC cells was confirmed in another immortalized LGC cell line ILGC. TGF-β treatment led to the activation of Smad3 but not Smad2. The specific TβRI inhibitor SB431542 and TβRI siRNA abolished the SBOT3.1 invasion induced by TGF-β, and it prevented TGF-β-induced apoptosis in MPSC1 cells. In SBOT3.1 cells, TGF-β down-regulated E-cadherin and concurrently up-regulated N-cadherin. TGF-β up-regulated the expression of the transcriptional repressors of E-cadherin, Snail, Slug, Twist and ZEB1. In contrast, co-treatment with SB431542 and TβRI depletion by siRNA abolished the effects of TGF-β on the relative cadherin expression levels and that of Snail, Slug, Twist and ZEB1 as well. This study demonstrates dual TGF-β functions: the induction of SBOT cell invasion by EMT activation and apoptosis promotion in LGC cells.

  14. Sodium orthovanadate associated with pharmacological doses of ascorbate causes an increased generation of ROS in tumor cells that inhibits proliferation and triggers apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Günther, T-hat nia Mara Fischer; Kviecinski, Maicon Roberto; Baron, Carla Cristine; Felipe, Karina Bettega; Farias, Mirelle Sifroni; Ourique da Silva, Fabiana; Bücker, Nádia Cristina Falcão [Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Pich, Claus Tröger [Campus de Araranguá, Universidade Federal de Santa Catarina, Araranguá (Brazil); Ferreira, Eduardo Antonio [Universidade de Brasília, Faculdade de Ceilândia, DF (Brazil); Filho, Danilo Wilhelm [Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis (Brazil); Verrax, Julien; Calderon, Pedro Buc [Toxicology and Cancer Biology Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels (Belgium); Pedrosa, Rozangela Curi, E-mail: rozangelapedrosa@gmail.com [Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis (Brazil)

    2013-01-18

    Graphical abstract: -- Abstract: Pharmacological doses of ascorbate were evaluated for its ability to potentiate the toxicity of sodium orthovanadate (Na{sub 3}VO{sub 4}) in tumor cells. Cytotoxicity, inhibition of cell proliferation, generation of ROS and DNA fragmentation were assessed in T24 cells. Na{sub 3}VO{sub 4} was cytotoxic against T24 cells (EC{sub 50} = 5.8 μM at 24 h), but in the presence of ascorbate (100 μM) the EC{sub 50} fell to 3.3 μM. Na{sub 3}VO{sub 4} plus ascorbate caused a strong inhibition of cell proliferation (up to 20%) and increased the generation of ROS (4-fold). Na{sub 3}VO{sub 4} did not directly cleave plasmid DNA, at this aspect no synergism was found occurring between Na{sub 3}VO{sub 4} and ascorbate once the resulting action of the combination was no greater than that of both substances administered separately. Cells from Ehrlich ascites carcinoma-bearing mice were used to determine the activity of antioxidant enzymes, the extent of the oxidative damage and the type of cell death. Na{sub 3}VO{sub 4} alone, or combined with ascorbate, increased catalase activity, but only Na{sub 3}VO{sub 4} plus ascorbate increased superoxide dismutase activity (up to 4-fold). Oxidative damage on proteins and lipids was higher due to the treatment done with Na{sub 3}VO{sub 4} plus ascorbate (2–3-fold). Ascorbate potentiated apoptosis in tumor cells from mice treated with Na{sub 3}VO{sub 4}. The results indicate that pharmacological doses of ascorbate enhance the generation of ROS induced by Na{sub 3}VO{sub 4} in tumor cells causing inhibition of proliferation and apoptosis. Apoptosis induced by orthovanadate and ascorbate is closer related to inhibition on Bcl-xL and activation of Bax. Our data apparently rule out a mechanism of cell demise p53-dependent or related to Cdk2 impairment.

  15. Technical Insights into Highly Sensitive Isolation and Molecular Characterization of Fixed and Live Circulating Tumor Cells for Early Detection of Tumor Invasion

    Science.gov (United States)

    Laget, Sophie; Dhingra, Dalia M.; BenMohamed, Fatima; Capiod, Thierry; Osteras, Magne; Farinelli, Laurent; Jackson, Stephen; Paterlini-Bréchot, Patrizia

    2017-01-01

    Circulating Tumor Cells (CTC) and Circulating Tumor Microemboli (CTM) are Circulating Rare Cells (CRC) which herald tumor invasion and are expected to provide an opportunity to improve the management of cancer patients. An unsolved technical issue in the CTC field is how to obtain highly sensitive and unbiased collection of these fragile and heterogeneous cells, in both live and fixed form, for their molecular study when they are extremely rare, particularly at the beginning of the invasion process. We report on a new protocol to enrich from blood live CTC using ISET® (Isolation by SizE of Tumor/Trophoblastic Cells), an open system originally developed for marker-independent isolation of fixed tumor cells. We have assessed the impact of our new enrichment method on live tumor cells antigen expression, cytoskeleton structure, cell viability and ability to expand in culture. We have also explored the ISET® in vitro performance to collect intact fixed and live cancer cells by using spiking analyses with extremely low number of fluorescent cultured cells. We describe results consistently showing the feasibility of isolating fixed and live tumor cells with a Lower Limit of Detection (LLOD) of one cancer cell per 10 mL of blood and a sensitivity at LLOD ranging from 83 to 100%. This very high sensitivity threshold can be maintained when plasma is collected before tumor cells isolation. Finally, we have performed a comparative next generation sequencing (NGS) analysis of tumor cells before and after isolation from blood and culture. We established the feasibility of NGS analysis of single live and fixed tumor cells enriched from blood by our system. This study provides new protocols for detection and characterization of CTC collected from blood at the very early steps of tumor invasion. PMID:28060956

  16. The Shh receptor Boc promotes progression of early medulloblastoma to advanced tumors.

    Science.gov (United States)

    Mille, Frédéric; Tamayo-Orrego, Lukas; Lévesque, Martin; Remke, Marc; Korshunov, Andrey; Cardin, Julie; Bouchard, Nicolas; Izzi, Luisa; Kool, Marcel; Northcott, Paul A; Taylor, Michael D; Pfister, Stefan M; Charron, Frédéric

    2014-10-13

    During cerebellar development, Sonic hedgehog (Shh) signaling drives the proliferation of granule cell precursors (GCPs). Aberrant activation of Shh signaling causes overproliferation of GCPs, leading to medulloblastoma. Although the Shh-binding protein Boc associates with the Shh receptor Ptch1 to mediate Shh signaling, whether Boc plays a role in medulloblastoma is unknown. Here, we show that BOC is upregulated in medulloblastomas and induces GCP proliferation. Conversely, Boc inactivation reduces proliferation and progression of early medulloblastomas to advanced tumors. Mechanistically, we find that Boc, through elevated Shh signaling, promotes high levels of DNA damage, an effect mediated by CyclinD1. High DNA damage in the presence of Boc increases the incidence of Ptch1 loss of heterozygosity, an important event in the progression from early to advanced medulloblastoma. Together, our results indicate that DNA damage promoted by Boc leads to the demise of its own coreceptor, Ptch1, and consequently medulloblastoma progression.

  17. Label-free nanoplasmonic sensing of tumor-associate autoantibodies for early diagnosis of colorectal cancer.

    Science.gov (United States)

    Soler, Maria; Estevez, M-Carmen; Villar-Vazquez, Roi; Casal, J Ignacio; Lechuga, Laura M

    2016-08-03

    Colorectal cancer is treatable and curable when detected at early stages. However there is a lack of less invasive and more specific screening and diagnosis methods which would facilitate its prompt identification. Blood circulating autoantibodies which are immediately produced by the immune system at tumor appearance have become valuable biomarkers for preclinical diagnosis of cancer. In this work, we present the rapid and label-free detection of colorectal cancer autoantibodies directly in blood serum or plasma using a recently developed nanoplasmonic biosensor. Our nanoplasmonic device offers sensitive and real-time quantification of autoantibodies with excellent selectivity and reproducibility, achieving limits of detection around 1 nM (150-160 ng mL(-1)). A preliminary evaluation of clinical samples of colorectal cancer patients has shown good correlation with ELISA. These results demonstrate the reliability of the nanobiosensor strategy and pave the way towards the achievement of a sensitive diagnostic tool for early detection of colorectal cancer.

  18. Target and resistance-related proteins of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand on myeloma cell lines.

    Science.gov (United States)

    Jian, Yuan; Chen, Yuling; Geng, Chuanying; Liu, Nian; Yang, Guangzhong; Liu, Jinwei; Li, Xin; Deng, Haiteng; Chen, Wenming

    2016-06-01

    Recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) has become a potential therapeutic drug for multiple myeloma (MM). However, the exact targets and resistance mechanisms of rmhTRAIL on MM cells remain to be elucidated. The present study aimed to investigate the target and resistance-related proteins of rmhTRAIL on myeloma cell lines. A TRAIL-sensitive myeloma cell line, RPMI 8226, and a TRAIL-resistance one, U266, were chosen and the differentially expressed proteins between the two cell lines were analyzed prior and subsequent to rmhTRAIL administration by a liquid chromatography-tandem mass spectrometry method. The results showed that following TRAIL treatment, 6 apoptosis-related proteins, calpain small subunit 1 (CPNS1), peflin (PEF1), B-cell receptor-associated protein 31 (BAP31), apoptosis-associated speck-like protein containing CARD (ASC), BAG family molecular chaperone regulator 2 (BAG2) and chromobox protein homolog 3 (CBX3), were upregulated in RPMI 8226 cells while no change was identified in the U266 cells. Furthermore, small ubiquitin-related modifier 1 and several other ubiquitin proteasome pathway (UPP)-related proteins expressed higher levels in TRAIL-resistant cells U266 compared to the RPMI-8226 cells prior and subsequent to rmhTRAIL treatment. These results suggested that CPNS1, PEF1, BAP31, ASC, BAG2 and CBX3 were possibly target proteins of rmhTRAIL on RPMI 8226 cells, while UPP may have a vital role in mediating TRAIL-resistance in U266 cells.

  19. Protective effect of Homer 1a on tumor necrosis factor-α with cycloheximide-induced apoptosis is mediated by mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Luo, Peng; Zhao, Yongbo; Li, Dong; Chen, Tao; Li, Sanzhong; Chao, Xiaodong; Liu, Wenbo; Zhang, Lei; Qu, Yan; Jiang, Xiaofan; Lu, Gang; Poon, Waisang; Fei, Zhou

    2012-09-01

    Although Homer 1, of the postsynaptic density, regulates apoptosis, the signaling mechanisms are not fully elucidated. In this study, we found that tumor necrosis factor-α (TNF-α)/cycloheximide (CHX) treatment transiently increased Homer 1a (the short variant of Homer 1), but did not affect Homer 1b/c (the long variant of Homer 1). Overexpression of Homer 1a blocked TNF-α/CHX-induced apoptotic cell death, whereas inhibition of Homer 1a induction enhanced the pro-apoptotic effect of TNF-α/CHX treatment. Moreover, brain-derived neurotrophic factor, as a potential activator of endogenous Homer 1a, inhibited apoptotic cell death after TNF-α/CHX treatment through induction of Homer 1a. Since three major mitogen-activated protein kinase (MAPK) pathways have important roles in apoptosis, we examined if Homer 1a is involved in the effects of MAPK pathways on apoptosis. It was shown that inhibition of the ERK1/2 pathway increased the expression and the protective effect of Homer 1a, but inhibition of the p38 pathway produced the opposite effect. Cross-talk among MAPK pathways was also associated with the regulation of Homer 1a during apoptotic cell death. Blocking the p38 pathway increased the activity in the ERK1/2 pathway, while inhibition of ERK1/2 pathway abolished the effect of p38 inhibitor on Homer 1a. Furthermore, Homer 1a reversely affected the activation of MAPK pathways. These findings suggest that Homer 1a plays an important role in the prevention of apoptotic cell death and contributes to distinct regulatory effects of MAPK pathways on apoptotic cell death.

  20. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    Science.gov (United States)

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Lidocaine Induces Apoptosis and Suppresses Tumor Growth in Human Hepatocellular Carcinoma Cells In Vitro and in a Xenograft Model In Vivo.

    Science.gov (United States)

    Xing, Wei; Chen, Dong-Tai; Pan, Jia-Hao; Chen, Yong-Hua; Yan, Yan; Li, Qiang; Xue, Rui-Feng; Yuan, Yun-Fei; Zeng, Wei-An

    2017-05-01

    Recent epidemiologic studies have focused on the potential beneficial effects of regional anesthetics, and the differences in cancer prognosis may be the result of anesthetics on cancer biologic behavior. However, the function and underlying mechanisms of lidocaine in hepatocellular carcinoma both in vitro and in vivo have been poorly studied. Human HepG2 cells were treated with lidocaine. Cell viability, colony formation, cell cycle, and apoptosis were assessed. The effects of lidocaine on apoptosis-related and mitogen-activated protein kinase protein expression were evaluated by Western blot analysis. The antitumor activity of lidocaine in hepatocellular carcinoma with or without cisplatin was investigated with in vitro experiments and also with animal experiments. Lidocaine inhibited the growth of HepG2 cells in a dose- and time-dependent manner. The authors also found that lidocaine arrested cells in the G0/G1 phase of the cell cycle (63.7 ± 1.7% vs. 72.4 ± 3.2%; P = 0.0143) and induced apoptosis (1.7 ± 0.3% vs. 5.0 ± 0.7%; P = 0.0009). Lidocaine may exert these functions by causing an increase in Bax protein and activated caspase-3 and a corresponding decrease in Bcl-2 protein through the extracellular signal-regulated kinase 1/2 and p38 pathways. More importantly, for the first time, xenograft experiments (n = 8 per group) indicated that lidocaine suppressed tumor development (P lidocaine vs. control) and enhanced the sensitivity of cisplatin (P = 0.0008; lidocaine plus cisplatin vs. cisplatin). The authors' findings suggest that lidocaine may exert potent antitumor activity in hepatocellular carcinoma. Furthermore, combining lidocaine with cisplatin may be a novel treatment option for hepatocellular carcinoma.

  2. Role of tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) axis in rheumatic diseases

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-xiu; ZHANG Hai-hong; MEI Yi-fang; ZHAO Yan-ping; ZHANG Zhi-yi

    2012-01-01

    Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a member of the TNF superfamily of structurally related cytokines and is known to induce proliferation,migration,differentiation,apoptotic cell death,inflammation,and angiogenesis.These physiological processes are induced by the binding of TWEAK to fibroblast growth factor-inducible 14 (Fn14),a highly inducible cell-surface receptor that is linked to several intracellular signaling pathways,including the nuclear factor-κB (NF-κB) pathway.This review discusses the role of the TWEAK-Fn14 axis in several rheumatic diseases and the potential therapeutic benefits of modulation of the TWEAK-Fn14 pathway.

  3. Assessment of early tumor response to cytotoxic chemotherapy with dynamic contrast-enhanced ultrasound in human breast cancer xenografts.

    Directory of Open Access Journals (Sweden)

    Jian-Wei Wang

    Full Text Available There is a strong need to assess early tumor response to chemotherapy in order to avoid adverse effects from unnecessary chemotherapy and allow early transition to second-line therapy. This study was to quantify tumor perfusion changes with dynamic contrast-enhanced ultrasound (CEUS in the evaluation of early tumor response to cytotoxic chemotherapy. Sixty nude mice bearing with MCF-7 breast cancer were administrated with either adriamycin or sterile saline. CEUS was performed on days 0, 2, 4 and 6 of the treatment, in which time-signal intensity (SI curves were obtained from the intratumoral and depth-matched liver parenchyma. Four perfusion parameters including peak enhancement (PE, area under the curve of wash-in (WiAUC, wash-in rate (WiR and wash-in perfusion index (WiPI were calculated from perfusion curves and normalized with respect to perfusion of adjacent liver parenchyma. Histopathological analysis was conducted to evaluate tumor perfusion, tumor cell density, microvascular density (MVD and proliferating cell density. Significant decreases of tumor normalized perfusion parameters (i.e., nPE, nWiAUC, nWiR and nWiPI were noticed between adriamycin-treated and control groups (P0.05. Significant decreases of tumor perfusion, tumor cell density, MVD and proliferating cell density were seen in adrianycin-treated group 2 days after therapy when compared to control group (P<0.001. Dynamic CEUS for quantification of tumor perfusion could be used for early detection of cancer response to cytotoxic chemotherapy prior to notable tumor shrinkage.

  4. Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: role of tumor necrosis factor alpha and apoptosis.

    Science.gov (United States)

    Garraway, Sandra M; Woller, Sarah A; Huie, J Russell; Hartman, John J; Hook, Michelle A; Miranda, Rajesh C; Huang, Yung-Jen; Ferguson, Adam R; Grau, James W

    2014-11-01

    We previously showed that peripheral noxious input after spinal cord injury (SCI) inhibits beneficial spinal plasticity and impairs recovery of locomotor and bladder functions. These observations suggest that noxious input may similarly affect the development and maintenance of chronic neuropathic pain, an important consequence of SCI. In adult rats with a moderate contusion SCI, we investigated the effect of noxious tail stimulation, administered 1 day after SCI on mechanical withdrawal responses to von Frey stimuli from 1 to 28 days after treatment. In addition, because the proinflammatory cytokine tumor necrosis factor alpha (TNFα) is implicated in numerous injury-induced processes including pain hypersensitivity, we assessed the temporal and spatial expression of TNFα, TNF receptors, and several downstream signaling targets after stimulation. Our results showed that unlike sham surgery or SCI only, nociceptive stimulation after SCI induced mechanical sensitivity by 24h. These behavioral changes were accompanied by increased expression of TNFα. Cellular assessments of downstream targets of TNFα revealed that nociceptive stimulation increased the expression of caspase 8 and the active subunit (12 kDa) of caspase 3, indicative of active apoptosis at a time point consistent with the onset of mechanical allodynia. In addition, immunohistochemical analysis revealed distinct morphological signs of apoptosis in neurons and microglia at 24h after stimulation. Interestingly, expression of the inflammatory mediator NFκB was unaltered by nociceptive stimulation. These results suggest that noxious input caudal to the level of SCI can increase the onset and expression of behavioral responses indicative of pain, potentially involving TNFα signaling.

  5. Sulindac derivatives inhibit cell growth and induce apoptosis in primary cells from malignant peripheral nerve sheath tumors of NF1-patients

    Directory of Open Access Journals (Sweden)

    Friedrich Reinhard E

    2004-05-01

    Full Text Available Abstract Background Malignant peripheral nerve sheath tumors (MPNSTs are neoplasms leading to death in most cases. Patients with Neurofibromatosis type 1 have an increased risk of developing this malignancy. The metabolites of the inactive prodrug Sulindac, Sulindac Sulfide and Sulindac Sulfone (Exisulind are new chemopreventive agents that show promising results in the treatment of different cancer types. In this study we examined the antineoplastic effect of these compounds on primary cells derived from two MPNSTs of Neurofibromatosis type 1 patients. Results Exisulind and Sulindac Sulfide showed a dramatic time- and dose-dependent growth inhibitory effect with IC50-values of 120 μM and 63 μM, respectively. The decrease in viability of the tested cells correlated with induction of apoptosis. Treatment with 500 μM Exisulind and 125 μM Sulindac Sulfide for a period of 2 days increased the rate of apoptosis 21-27-fold compared to untreated cells. Reduced expression of RAS-GTP and phosphorylated ERK1/2 was detected in treated MPNST cells. Moreover, elevated levels of phosphorylated SAPK/JNK were found after drug treatment, and low activation of cleaved caspase-3 was seen. Conclusions Our results suggest that this class of compounds may be of therapeutic benefit for Neurofibromatosis type 1 patients with MPNST.

  6. CSTP1, a novel protein phosphatase, blocks cell cycle, promotes cell apoptosis, and suppresses tumor growth of bladder cancer by directly dephosphorylating Akt at Ser473 site.

    Directory of Open Access Journals (Sweden)

    De-Xiang Zhuo

    Full Text Available Akt/protein kinase B is a pivotal component downstream of phosphatidylinositol 3-kinase (PI3K pathway, whose activity regulates the balance between cell survival and apoptosis. Phosphorylation of Akt occurs at two key sites either at Thr308 site in the activation loop or at Ser473 site in the hydrophobic motif. The phosphorylated form of Akt (pAkt is activated to promote cell survival. The mechanisms of pAkt dephosphorylation and how the signal transduction of Akt pathway is terminated are still largely unknown. In this study, we identified a novel protein phosphatase CSTP1(complete s transactivated protein 1, which interacts and dephosphorylates Akt specifically at Ser473 site in vivo and in vitro, blocks cell cycle progression and promotes cell apoptosis. The effects of CSTP1 on cell survival and cell cycle were abrogated by depletion of phosphatase domain of CSTP1 or by expression of a constitutively active form of Akt (S473D, suggesting Ser473 site of Akt as a primary cellular target of CSTP1. Expression profile analysis showed that CSTP1 expression is selectively down-regulated in non-invasive bladder cancer tissues and over-expression of CSTP1 suppressed the size of tumors in nude mice. Kaplan-Meier curves revealed that decreased expression of CSTP1 implicated significantly reduced recurrence-free survival in patients suffered from non-invasive bladder cancers.

  7. Targeted labeling of an early-stage tumor spheroid in a chorioallantoic membrane model with upconversion nanoparticles

    NARCIS (Netherlands)

    K. Liu; J.A. Holz; Y. Ding; X. Liu; Y. Zhang; L. Tu; X. Kong; B. Priem; A. Nadort; S.A.G. Lambrechts; M.C.G. Aalders; W.J. Buma; Y. Liu; H. Zhang

    2015-01-01

    In vivo detection of cancer at an early-stage, i.e. smaller than 2 mm, is a challenge in biomedicine. In this work target labeling of an early-stage tumor spheroid (similar to 500 mu m) is realized for the first time in a chick embryo chorioallantoic membrane (CAM) model with monoclonal antibody fun

  8. Microwave-Assisted Synthesis of Arene Ru(II Complexes Induce Tumor Cell Apoptosis Through Selectively Binding and Stabilizing bcl-2 G-Quadruplex DNA

    Directory of Open Access Journals (Sweden)

    Yanhua Chen

    2016-05-01

    Full Text Available A series of arene Ru(II complexes coordinated with phenanthroimidazole derivatives, [(η6-C6H6Ru(lCl]Cl(1b L = p-ClPIP = 2-(4-Chlorophenylimidazole[4,5f] 1,10-phenanthroline; 2b L = m-ClPIP = 2-(3-Chlorophenylimidazole[4,5f] 1,10-phenanthroline; 3b L = p-NPIP = 2-(4-Nitrophenylimidazole[4,5f] 1,10-phenanthroline; 4b L = m-NPIP = 2-(3-Nitrophenyl imidazole [4,5f] 1,10-phenanthroline were synthesized in yields of 89.9%–92.7% under conditions of microwave irradiation heating for 30 min to liberate four arene Ru(II complexes (1b, 2b, 3b, 4b. The anti-tumor activity of 1b against various tumor cells was evaluated by MTT assay. The results indicated that this complex blocked the growth of human lung adenocarcinoma A549 cells with an IC50 of 16.59 μM. Flow cytometric analysis showed that apoptosis of A549 cells was observed following treatment with 1b. Furthermore, the in vitro DNA-binding behaviors that were confirmed by spectroscopy indicated that 1b could selectively bind and stabilize bcl-2 G-quadruplex DNA to induce apoptosis of A549 cells. Therefore, the synthesized 1b has impressive bcl-2 G-quadruplex DNA-binding and stabilizing activities with potential applications in cancer chemotherapy.

  9. Challenges in early operative approaches to intramedullary spinal cord tumors: Harvey Cushing's perspective.

    Science.gov (United States)

    Pendleton, Courtney; Rincon-Torroella, Jordina; Gokaslan, Ziya L; Jallo, George I; Quinones-Hinojosa, Alfredo

    2015-10-01

    Although Harvey Cushing was mostly known for his contributions to brain tumor surgery, he was also a pioneer in the development of spinal cord surgery. This lesser known facet of Cushing's career can provide a fresh and unique perspective into how the founders of neurosurgery surmounted early challenges in the field. The authors bring to light and examine for the first time Cushing's unpublished writing "Technique of Laminectomy" along with his first 3 documented intramedullary spinal cord tumor (IMSCT) cases at the Johns Hopkins Hospital. The authors draw lessons from the challenges in pathological classification, preoperative diagnosis, tumor localization, and surgical technique of that time. Although Cushing's attempts at exploration and resection of IMSCT as described here were of limited success, his ability to adapt his clinical and surgical technique to the challenges of the time, as well as develop skills to successfully manipulate the spinal cord during these exploratory procedures without the patients incurring neurological damage, postoperative infection, or complications, is a testament to his determination to advance the field and his meticulous operative technique. In spite of the limitations imposed on the pioneer neurosurgeons, Harvey Cushing and his contemporaries persevered through many of the challenges and built an essential part of neurosurgery's common story.

  10. APPLICATION VALUE OF MAGNETIC RESONANCE SEQUENCES IN DIAGNOSIS OF EARLY SPINAL METASTATIC TUMOR

    Institute of Scientific and Technical Information of China (English)

    Li-xia Wang; Xiang-quan Kong; He-shui Shi; Ding-xi Liu; Yin Xiong

    2007-01-01

    Objective To investigate the clinical value of different magnetic resonance (MR) pulse sequences in diagnosis of spinal metastatic tumor.Methods Fifteen patients with clinically suspected spinal metastatic tumor were included in this study. These patients were with documented primary tumors. Four MR pulse sequences, T1-weighted spin echo (T1WI SE), T2-weighted fast spin echo (T2WI FSE), short time inversion recovery (STIR), and gradient echo 2-D multi echo data imaging combination (GE Me-2D) were used to detect spinal metastasis.Results Fifteen vertebral bodies were entire involvement, 38 vertebral bodies were section involvement, and totally 53 vertebral bodies were involved. There were 19 focal infections in pedicle of vertebral arch, 15 metastases in spi-nous process and transverse process. Fifty-three vertebral bodies were abnormal in T1WI SE and GE Me-2D, 35 vertebral bodies were found abnormal in T2WI FSE, and 50 vertebral bodies were found abnormal in STIR. The verges of focal signal of involved vertebral bodies were comparatively clear in T1WI SE, comparatively clear or vague in T2WI FSE, vague in STIR, and clear in GE Me-2D.Conclusions GE Me-2D may be the most sensitive technique to detect metastases. So three sequences (T1WI SE, T2WI FSE, GE Me-2D) can demonstrate the early changes of spinal metastasis roundly.

  11. Overexpression of fatty acid synthase in human gliomas correlates with the WHO tumor grade and inhibition with Orlistat reduces cell viability and triggers apoptosis.

    Science.gov (United States)

    Grube, Susanne; Dünisch, Pedro; Freitag, Diana; Klausnitzer, Maren; Sakr, Yasser; Walter, Jan; Kalff, Rolf; Ewald, Christian

    2014-06-01

    Fatty acid synthase (FASN), catalyzing the de novo synthesis of fatty acids, is known to be deregulated in several cancers. Inhibition of this enzyme reduces tumor cell proliferation. Unfortunately, adverse effects and chemical instability prevent the in vivo use of the best-known inhibitors, Cerulenin and C75. Orlistat, a drug used for obesity treatment, is also considered as a potential FASN inhibitor, but its impact on glioma cell biology has not yet been described. In this study, we analyzed FASN expression in human glioma samples and primary glioblastoma cell cultures and the effects of FASN inhibition with Orlistat, Cerulenin and C75. Immunohistochemistry followed by densitometric analysis of 20 glioma samples revealed overexpression of FASN that correlated with the WHO tumor grade. Treatment of glioblastoma cells with these inhibitors resulted in a significant, dose-dependent reduction in tumor cell viability and fatty acid synthesis. Compared to Cerulenin and C75, Orlistat was a more potent inhibitor in cell cultures and cell lines. In LN229, cell-growth was reduced by 63.9 ± 8.7 % after 48 h and 200 µM Orlistat compared to controls; in LT68, the reduction in cell growth was 76.3 ± 23.7 %. Nuclear fragmentation assay and Western blotting analysis after targeting FASN with Orlistat demonstrated autophagy and apoptosis. Organotypic slice cultures treated with Orlistat showed reduced proliferation after Ki67 staining and increased caspase-3 cleavage. Our results suggest that FASN may be a therapeutic target in malignant gliomas and identify Orlistat as a possible anti-tumor drug in this setting.

  12. Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis

    Directory of Open Access Journals (Sweden)

    Li Changgong

    2011-10-01

    Full Text Available Abstract Background Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple inflammatory and developmental pathways including dorsal-ventral patterning in fruit flies; limb, mammary and submandibular gland development in mice; and branching morphogenesis in chick lungs. We have previously shown that epithelial overexpression of NF-κB accelerates lung maturity using transgenic mice. The purpose of this study was to test our hypothesis that targeted deletion of NF-κB signaling in lung epithelium would impair alveolar formation. Methods We generated double transgenic mice with lung epithelium-specific deletion of IKKβ, a known activating kinase upstream of NF-κB, using a cre-loxP transgenic recombination strategy. Lungs of resulting progeny were analyzed at embryonic and early postnatal stages to determine specific effects on lung histology, and mRNA and protein expression of relevant lung morphoreulatory genes. Lastly, results measuring expression of the angiogenic factor, VEGF, were confirmed in vitro using a siRNA-knockdown strategy in cultured mouse lung epithelial cells. Results Our results showed that IKKβ deletion in the lung epithelium transiently decreased alveolar type I and type II cells and myofibroblasts and delayed alveolar formation. These effects were mediated through increased alveolar type II cell apoptosis and decreased epithelial VEGF expression. Conclusions These results suggest that epithelial NF-κB plays a critical role in early alveolar development possibly through regulation of VEGF.

  13. Serum IGF-1, IGFBP-3 levels and circulating tumor cells (CTCs) in early breast cancer patients.

    Science.gov (United States)

    Papadakis, Georgios Z; Mavroudis, Dimitrios; Georgoulias, Vasilios; Souglakos, John; Alegakis, Athanasios K; Samonis, George; Bagci, Ulas; Makrigiannakis, Antonis; Zoras, Odysseas

    2017-04-01

    Insulin-like growth factor (IGF)-axis is involved in human oncogenesis and metastasis development for various solid tumors including breast cancer. Aim of this study was to assess the association between IGF-1, IGF-binding protein-3 (IGFBP-3) serum levels and the presence of circulating tumor cells (CTCs) in the peripheral blood of women diagnosed with early breast cancer (EBC), before and after adjuvant chemotherapy. 171 patients with early-stage breast adenocarcinomas were retrospectively evaluated. Immunoradiometric (IRMA) assays were employed for the in-vitro determination of IGF-1 and IGFBP-3 serum levels in blood samples collected after surgical treatment and before initiation of adjuvant chemotherapy. CTCs' presence was assessed through detection of cytokeratin-19 (CK-19) mRNA transcripts using quantitative real time reverse transcription polymerase chain reaction (RT-PCR). IGF-1, IGFBP-3 serum levels were correlated with CTCs' presence before and after adjuvant chemotherapy as well as with tumor characteristics including tumor size, axillary lymph node status, oestrogen (ER)/progestorene (PR) and human epidermural growth factor receptor 2 (HER2) receptor status. Log-rank test was applied to investigate possible association between IGF-1, IGFBP-3 serum levels and disease-free interval (DFI) and overall survival (OS). Before initiation of adjuvant therapy IGF-1, IGFBP-3 serum levels were moderately associated (Spearman's rho=0.361, p<0.001) with each other, while presenting significant differences across age groups (all p values<0.05). IGF-1 serum levels did not correlate with the presence of CTCs before initiation (p=0.558) or after completion (p=0.474) of adjuvant chemotherapy. Similarly, IGFBP-3 serum levels did not show significant association with detectable CTCs either before (p=0.487) or after (p=0.134) completion of adjuvant chemotherapy. There was no statistically significant association between the clinical outcome of patients in terms of DFI, OS

  14. Early Cognitive Outcomes Following Proton Radiation in Pediatric Patients With Brain and Central Nervous System Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Pulsifer, Margaret B., E-mail: mpulsifer@mgh.harvard.edu [Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts (United States); Sethi, Roshan V. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Kuhlthau, Karen A. [Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts (United States); MacDonald, Shannon M.; Tarbell, Nancy J.; Yock, Torunn I. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2015-10-01

    Purpose: To report, from a longitudinal study, cognitive outcome in pediatric patients treated with proton radiation therapy (PRT) for central nervous system (CNS) tumors. Methods and Materials: Sixty patients receiving PRT for medulloblastoma (38.3%), gliomas (18.3%), craniopharyngioma (15.0%), ependymoma (11.7%), and other CNS tumors (16.7%) were administered age-appropriate measures of cognitive abilities at or near PRT initiation (baseline) and afterward (follow-up). Patients were aged ≥6 years at baseline to ensure consistency in neurocognitive measures. Results: Mean age was 12.3 years at baseline; mean follow-up interval was 2.5 years. Treatment included prior surgical resection (76.7%) and chemotherapy (61.7%). Proton radiation therapy included craniospinal irradiation (46.7%) and partial brain radiation (53.3%). At baseline, mean Wechsler Full Scale IQ was 104.6; means of all 4 Index scores were also in the average range. At follow-up, no significant change was observed in mean Wechsler Full Scale IQ, Verbal Comprehension, Perceptual Reasoning/Organization, or Working Memory. However, Processing Speed scores declined significantly (mean 5.2 points), with a significantly greater decline for subjects aged <12 years at baseline and those with the highest baseline scores. Cognitive outcome was not significantly related to gender, extent of radiation, radiation dose, tumor location, histology, socioeconomic status, chemotherapy, or history of surgical resection. Conclusions: Early cognitive outcomes after PRT for pediatric CNS tumors are encouraging, compared with published outcomes from photon radiation therapy.

  15. Induction of PDCD4 tumor suppressor gene expression by RAR agonists, antiestrogen and HER-2/neu antagonist in breast cancer cells. Evidence for a role in apoptosis.

    Science.gov (United States)

    Afonja, Olubunmi; Juste, Dominique; Das, Sharmistha; Matsuhashi, Sachiko; Samuels, Herbert H

    2004-10-21

    The growth of human breast tumor cells is regulated through signaling involving cell surface growth factor receptors and nuclear receptors of the steroid/thyroid/retinoid receptor gene family. Retinoic acid receptors (RARs), members of the steroid/thyroid hormone receptor gene family, are ligand-dependent transcription factors, which have in vitro and in vivo growth inhibitory activity against breast cancer cells. RAR-agonists inhibit the proliferation of many human breast cancer cell lines, particularly those whose growth is stimulated by estradiol (E2) or growth factors. Additionally, RAR-agonists and synthetic retinoids such as Ferentinide have been shown to induce apoptosis in malignant breast cells but not normal breast cells. To better define the genes involved in RAR-mediated growth inhibition of breast cancer cells, we used oligonucleotide microarray analysis to create a database of genes that are potentially regulated by RAR-agonists in breast cancer cells. We found that PDCD4 (programmed cell death 4), a tumor suppressor gene presently being evaluated as a target for chemoprevention, was induced about three-fold by the RARalpha-selective agonist Am580, in T-47D breast cancer cells. RAR pan-agonists and Am580, but not retinoid X receptors (RXR)-agonists, stimulate the expression of PDCD4 in a wide variety of retinoid-inhibited breast cancer cell lines. RAR-agonists did not induce PDCD4 expression in breast cancer cell lines, which were not growth inhibited by retinoids. We also observed that antiestrogen and the HER-2/neu antagonist, Herceptin (Trastuzumab), also induced PDCD4 expression in T-47D cells, suggesting that PDCD4 may play a central role in growth inhibition in breast cancer cells. Transient overexpression of PDCD4 in T-47D (ER+, RAR+) and MDA-MB-231 (ER-, RAR-) cells resulted in apoptotic death, suggesting a role for PDCD4 in mediating apoptosis in breast cancer cells. PDCD4 protein expression has previously been reported in small ductal

  16. ADAM12 redistributes and activates MMP-14, resulting in gelatin degradation, reduced apoptosis and increased tumor growth

    DEFF Research Database (Denmark)

    Albrechtsen, Reidar; Hansen, Dorte Stautz; Vikeså, Jonas;

    2013-01-01

    Matrix metalloproteinases (MMPs), in particular MMP-2, MMP-9 and MMP-14, play a key role in various aspects of cancer pathology. Likewise, ADAMs (a disintegrin and metalloproteinases), including ADAM12, are upregulated in malignant tumors and contribute to the pathology of cancers. Here, we show...

  17. Low p21(Waf1/Cip1) protein level sensitizes testicular germ cell tumor cells to Fas-mediated apoptosis

    NARCIS (Netherlands)

    Spierings, DCJ; de Vries, EGE; Stel, AJ; Rietstap, NT; Vellenga, E; de Jong, S

    2004-01-01

    In the present study, we investigated the relation between p21 expression and the sensitivity of testicular germ cell tumor (TGCT) cells to apoptotic stimuli. Despite similar cisplatin-induced wild-type p53 accumulation, the TGCT cell lines Tera and Scha expressed low p21 protein and mRNA levels in

  18. A hemagglutinin from northeast red beans with immunomodulatory activity and anti-proliferative and apoptosis-inducing activities toward tumor cells.

    Science.gov (United States)

    Chan, Yau Sang; Wong, Jack Ho; Fang, Evandro Fei; Pan, Wenliang; Ng, Tzi Bun

    2013-10-01

    A 64-kDa hemagglutinin from a Phaseolus vulgaris cultivar, the northeast red bean, was purified by a protocol composed of three chromatographic steps involving affinity chromatography on Affi-gel blue gel, cation exchange chromatography on SP-Sepharose and FPLC-gel filtration on Superdex 75. The purified hemagglutinin appeared as a single 32-kDa band in SDS-PAGE indicating its dimeric nature. The N-terminal amino acid sequence of the hemagglutinin resembled the sequences of lectins and hemagglutinins from a number of Phaseolus species. The hemagglutinin manifested moderate thermostability and pH stability. It retained full activity up to 65 °C and in the pH range 2-12. It did not interact with simple sugars such as glucose, mannose and galactose. The hemagglutinin exerted immunostimulatory effects by upregulating the expression of cytokines like interferon-γ and tumor necrosis factor-α. It also exhibited antiproliferative activity on a number of tumor cells including MCF7 (breast cancer), HepG2 (liver cancer), CNE1 and CNE2 (nasopharyngeal cancer) cells, with stronger activity toward MCF7 and CNE1 cells. The hemagglutinin induced phophatidylserine externalization, mitochondrial depolarization and DNA condensation in MCF7 cells, indicating initiation of apoptosis. However, at high hemagglutinin concentrations, severe damage to the MCF7 cells was detected.

  19. Overexpression of cyclooxygenase-2 in malignant peripheral nerve sheath tumor and selective cyclooxygenase-2 inhibitor-induced apoptosis by activating caspases in human malignant peripheral nerve sheath tumor cells.

    Directory of Open Access Journals (Sweden)

    Michiyuki Hakozaki

    Full Text Available BACKGROUND: Cyclooxygenase-2 (COX-2 is a key enzyme in the conversion of arachidonic acid to prostanoids, and its activation is associated with carcinogenesis as well as inflammation. The antitumor effect of selective COX-2 inhibitors has been noted in various malignancies. Malignant peripheral nerve sheath tumor (MPNST is a rare and aggressive soft tissue sarcoma for which effective treatments have not yet been established. The purpose of this study was to investigate a potential therapeutic role of COX-2 in MPNST. METHODS: We evaluated the expression of COX-2 in 44 cases of high-grade MPNST using immunohistochemical staining and compared the staining results with the characteristics and outcome of the patients. We also investigated the antitumor effect of etodolac, a selective COX-2 inhibitor, on MPNST cells in vitro using the MPNST cell line, FMS-1. RESULTS: Overexpression of COX-2 (≥50% positive cells was observed in 29 cases (65.9%, was significantly associated with a poor overall survival (P = 0.0495, and was considered an independent risk factor for a poor outcome by the results of both univariate and multivariate analysis. Etodolac induced apoptosis of FMS-1 cells through the activation of caspase-8, -9, and -3. Moreover, several caspase inhibitors significantly inhibited etodolac-induced apoptosis. CONCLUSIONS: Selective COX-2 inhibitors including etodolac had an antitumor effect on MPNST cells, and their use holds promise as a novel therapeutic strategy for patients with MPNST to improve their prognoses.

  20. Small interfering RNA targeting mcl-1 enhances proteasome inhibitor-induced apoptosis in various solid malignant tumors

    Directory of Open Access Journals (Sweden)

    Zhou Wei

    2011-11-01

    Full Text Available Abstract Background Targeting the ubiquitin-proteasome pathway is a promising approach for anticancer strategies. Recently, we found Bik accumulation in cancer cell lines after they were treated with bortezomib. However, recent evidence indicates that proteasome inhibitors may also induce the accumulation of anti-apoptotic Bcl-2 family members. The current study was designed to analyze the levels of several anti-apoptotic members of Bcl-2 family in different human cancer cell lines after they were treated with proteasome inhibitors. Methods Different human cancer cell lines were treated with proteasome inhibitors. Western blot were used to investigate the expression of Mcl-1 and activation of mitochondrial apoptotic signaling. Cell viability was investigated using SRB assay, and induction of apoptosis was measured using flow cytometry. Results We found elevated Mcl-1 level in human colon cancer cell lines DLD1, LOVO, SW620, and HCT116; human ovarian cancer cell line SKOV3; and human lung cancer cell line H1299, but not in human breast cancer cell line MCF7 after they were treated with bortezomib. This dramatic Mcl-1 accumulation was also observed when cells were treated with other two proteasome inhibitors, MG132 and calpain inhibitor I (ALLN. Moreover, our results showed Mcl-1 accumulation was caused by stabilization of the protein against degradation. Reducing Mcl-1 accumulation by Mcl-1 siRNA reduced Mcl-1 accumulation and enhanced proteasome inhibitor-induced cell death and apoptosis, as evidenced by the increased cleavage of caspase-9, caspase-3, and poly (ADP-ribose polymerase. Conclusions Our results showed that it was not only Bik but also Mcl-1 accumulation during the treatment of proteasome inhibitors, and combining proteasome inhibitors with Mcl-1 siRNA would enhance the ultimate anticancer effect suggesting this combination might be a more effective strategy for cancer therapy.

  1. Early Detection of Tumor Response by FLT/MicroPET Imaging in a C26 Murine Colon Carcinoma Solid Tumor Animal Model

    Directory of Open Access Journals (Sweden)

    Wan-Chi Lee

    2011-01-01

    Full Text Available Fluorine-18 fluorodeoxyglucose (18F-FDG positron emission tomography (PET imaging demonstrated the change of glucose consumption of tumor cells, but problems with specificity and difficulties in early detection of tumor response to chemotherapy have led to the development of new PET tracers. Fluorine-18-fluorothymidine (18F-FLT images cellular proliferation by entering the salvage pathway of DNA synthesis. In this study, we evaluate the early response of colon carcinoma to the chemotherapeutic drug, lipo-Dox, in C26 murine colorectal carcinoma-bearing mice by 18F-FDG and 18F-FLT. The male BALB/c mice were bilaterally inoculated with 1×105 and 1×106 C26 tumor cells per flank. Mice were intravenously treated with 10 mg/kg lipo-Dox at day 8 after 18F-FDG and 18F-FLT imaging. The biodistribution of 18F-FDG and 18F-FLT were followed by the microPET imaging at day 9. For the quantitative measurement of microPET imaging at day 9, 18F-FLT was superior to 18F-FDG for early detection of tumor response to Lipo-DOX at various tumor sizes (<0.05. The data of biodistribution showed similar results with those from the quantification of SUV (standard uptake value by microPET imaging. The study indicates that 18F-FLT/microPET is a useful imaging modality for early detection of chemotherapy in the colorectal mouse model.

  2. Suppressor of cytokine signalling-3 inhibits Tumor necrosis factor-alpha induced apoptosis and signalling in beta cells

    DEFF Research Database (Denmark)

    Bruun, Christine; Heding, Peter E; Rønn, Sif G

    2009-01-01

    Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction of the pancr......Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction...... in INSr3#2 cells and in primary rat islets. Furthermore, SOCS-3 repressed TNFalpha-induced degradation of IkappaB, NFkappaB DNA binding and transcription of the NFkappaB-dependent MnSOD promoter. Finally, expression of Socs-3 mRNA was induced by TNFalpha in rat islets in a transient manner with maximum...

  3. Wilms' tumor suppressor gene (WT1) suppresses apoptosis by transcriptionally downregulating BAX expression in immature rat granulosa cells

    National Research Council Canada - National Science Library

    Park, Minji; Choi, Yuri; Choi, Hyeonhae; Roh, Jaesook

    2014-01-01

    The important role of WT1 in early folliculogenesis was evident from its restricted expression pattern in immature follicles and from its involvement in transcriptional control of inhibin-α and FSH receptor...

  4. Synthetic phosphoethanolamine a precursor of membrane phospholipids reduce tumor growth in mice bearing melanoma B16-F10 and in vitro induce apoptosis and arrest in G2/M phase.

    Science.gov (United States)

    Ferreira, Adilson Kleber; Meneguelo, Renato; Marques, Fabio Luiz Navarro; Radin, Adriano; Filho, Otaviano Mendonça R; Neto, Salvador Claro; Chierice, Gilberto Orivaldo; Maria, Durvanei Augusto

    2012-10-01

    Phosphoethanolamine (Pho-s) is a compound involved in phospholipid turnover, acting as a substrate for many phospholipids of the cell membranes, especially phosphatidylcholine. We recently reported that synthetic Pho-s has potent effects on a wide variety of tumor cells. To determine if Pho-s has a potential antitumor activity, in this study we evaluated the activity of Pho-s against the B16-F10 melanoma both in vitro and in mice bearing a dorsal tumor. The treatment of B16F10 cells with Pho-s resulted in a dose-dependent inhibition of cell proliferation. At low concentrations, this activity appears to be involved in the arrest of the cell cycle at G2/M, while at high concentrations Pho-s induces apoptosis. In accordance with these results, the loss of mitochondrial potential and increased caspase-3 activity suggest that Pho-s has dual antitumor effects; i.e. it induces apoptosis at high concentrations and modulates the cell cycle at lower concentrations. In vivo, we evaluated the effect of Pho-s in mice bearing B16-F10 melanoma. The results show that Pho-s reduces the tumoral volume increasing survival rate. Furthermore, the tumor doubling time and tumor delays were substantially reduced when compared with untreated mice. Histological analyses reveal that Pho-s induces changes in cell morphology, typical characteristics of apoptosis, in addition the large areas of necrosis correlating with a reduction of tumor size. The results presented here support the hypothesis that Pho-s has antitumor effects by the induction of apoptosis as well as the inhibition of cell proliferation by arrest at G2/M. Thus, Pho-s can be regarded as a promising agent for the treatment of melanoma. Published by Elsevier SAS.

  5. Caspase-Mediated Apoptosis in the Cochleae Contributes to the Early Onset of Hearing Loss in A/J Mice

    Directory of Open Access Journals (Sweden)

    Xu Han

    2015-03-01

    Full Text Available A/J and C57BL/6 J (B6 mice share a mutation in Cdh23 (ahl allele and are characterized by age-related hearing loss. However, hearing loss occurs much earlier in A/J mice at about four weeks of age. Recent study has revealed that a mutation in citrate synthase (Cs is one of the main contributors, but the mechanism is largely unknown. In the present study, we showed that A/J mice displayed more severe degeneration of hair cells, spiral ganglion neurons, and stria vascularis in the cochleae compared with B6 mice. Moreover, messenger RNA accumulation levels of caspase-3 and caspase-9 in the inner ears of A/J mice were significantly higher than those in B6 mice at 2 and 8 weeks of age. Immunohistochemistry localized caspase-3 expression mainly to the hair cells, spiral ganglion neurons, and stria vascularis in cochleae. In vitro transfection with Cs short hairpin RNA (shRNA alone or cotransfection with Cs shRNA and Cdh23 shRNA significantly increased the levels of caspase-3 in an inner ear cell line (HEI-OC1. Finally, a pan-caspase inhibitor Z-VAD-FMK could preserve the hearing of A/J mice by lowering about 15 decibels of the sound pressure level for the auditory-evoked brainstem response thresholds. In conclusion, our results suggest that caspase-mediated apoptosis in the cochleae, which may be related to a Cs mutation, contributes to the early onset of hearing loss in A/J mice.

  6. Decreased oxygen tension lowers reactive oxygen species and apoptosis and inhibits osteoblast matrix mineralization through changes in early osteoblast differentiation.

    Science.gov (United States)

    Nicolaije, Claudia; Koedam, Marijke; van Leeuwen, Johannes P T M

    2012-04-01

    Accumulating data show that oxygen tension can have an important effect on cell function and fate. We used the human pre-osteoblastic cell line SV-HFO, which forms a mineralizing extracellular matrix, to study the effect of low oxygen tension (2%) on osteoblast differentiation and mineralization. Mineralization was significantly reduced by 60-70% under 2% oxygen, which was paralleled by lower intracellular levels of reactive oxygen species (ROS) and apoptosis. Following this reduction in ROS the cells switched to a lower level of protection by down-regulating their antioxidant enzyme expression. The downside of this is that it left the cells more vulnerable to a subsequent oxidative challenge. Total collagen content was reduced in the 2% oxygen cultures and expression of matrix genes and matrix-metabolizing enzymes was significantly affected. Alkaline phosphatase activity and RNA expression as well as RUNX2 expression were significantly reduced under 2% oxygen. Time phase studies showed that high oxygen in the first phase of osteoblast differentiation and prior to mineralization is crucial for optimal differentiation and mineralization. Switching to 2% or 20% oxygen only during mineralization phase did not change the eventual level of mineralization. In conclusion, this study shows the significance of oxygen tension for proper osteoblast differentiation, extra cellular matrix (ECM) formation, and eventual mineralization. We demonstrated that the major impact of oxygen tension is in the early phase of osteoblast differentiation. Low oxygen in this phase leaves the cells in a premature differentiation state that cannot provide the correct signals for matrix maturation and mineralization.

  7. Loss of Pnn expression results in mouse early embryonic lethality and cellular apoptosis through SRSF1-mediated alternative expression of Bcl-xS and ICAD.

    Science.gov (United States)

    Leu, Steve; Lin, Yen-Ming; Wu, Chu-Han; Ouyang, Pin

    2012-07-01

    Pinin (Pnn), a serine/arginine-rich (SR)-related protein, has been shown to play multiple roles within eukaryotic cells including cell-cell adhesion, cell migration, regulation of gene transcription, mRNA export and alternative splicing. In this study, an attempt to generate mice homozygously deficient in Pnn failed because of early embryonic lethality. To evaluate the effects of loss of Pnn expression on cell survival, RNA interference experiments were performed in MCF-7 cells. Depletion of Pnn resulted in cellular apoptosis and nuclear condensation. In addition, nuclear speckles were disrupted, and expression levels of SR proteins were diminished. RT-PCR analysis showed that alternative splicing patterns of SRSF1 as well as of apoptosis-related genes Bcl-x and ICAD were altered, and expression levels of Bim isoforms were modulated in Pnn-depleted cells. Cellular apoptosis induced by Pnn depletion was rescued by overexpression of SRSF1, which also restored generation of Bcl-xL and functionless ICAD. Pnn expression is, therefore, essential for survival of mouse embryos and the breast carcinoma cell line MCF-7. Moreover, Pnn depletion, modulated by SRSF1, determines cellular apoptosis through activation of the expression of pro-apoptotic Bcl-xS transcripts.

  8. Early dental epithelial transcription factors distinguish ameloblastoma from keratocystic odontogenic tumor.

    Science.gov (United States)

    Heikinheimo, K; Kurppa, K J; Laiho, A; Peltonen, S; Berdal, A; Bouattour, A; Ruhin, B; Catón, J; Thesleff, I; Leivo, I; Morgan, P R

    2015-01-01

    The aim of the study was to characterize the molecular relationship between ameloblastoma and keratocystic odontogenic tumor (KCOT) by means of a genome-wide expression analysis. Total RNA from 27 fresh tumor samples of 15 solid/multicystic intraosseous ameloblastomas and 12 sporadic KCOTs was hybridized on Affymetrix whole genome arrays. Hierarchical clustering separated ameloblastomas and KCOTs into 2 distinct groups. The gene set enrichment analysis based on 303 dental genes showed a similar separation of ameloblastomas and KCOTs. Early dental epithelial markers PITX2, MSX2, DLX2, RUNX1, and ISL1 were differentially overexpressed in ameloblastoma, indicating its dental identity. Also, PTHLH, a hormone involved in tooth eruption and invasive growth, was one of the most differentially upregulated genes in ameloblastoma. The most differentially overexpressed genes in KCOT were squamous epithelial differentiation markers SPRR1A, KRTDAP, and KRT4, as well as DSG1, a component of desmosomal cell-cell junctions. Additonally, the epithelial stem cell marker SOX2 was significantly upregulated in KCOT when compared with ameloblastoma. Taken together, the gene expression profile of ameloblastoma reflects differentiation from dental lamina toward the cap/bell stage of tooth development, as indicated by dental epithelium-specific transcription factors. In contrast, gene expression of KCOT indicates differentiation toward keratinocytes. © International & American Associations for Dental Research 2014.

  9. T-cell phenotypes, apoptosis and inflammation in HIV+ patients on virologically effective cART with early atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Esther Merlini

    Full Text Available OBJECTIVE: We investigated the potential relationship between T-cell phenotype, inflammation, endotoxemia, and atherosclerosis evaluated by carotid intima-media thickness (IMT in a cohort of HIV-positive patients undergoing long-term virologically suppressive combination antiretroviral therapy (cART. DESIGN: We studied 163 patients receiving virologically suppressive cART. METHODS: We measured IMT (carotid ultrasound; CD4+/CD8+ T-cell activation (CD38, CD45R0, differentiation (CD127, apoptosis (CD95, and senescence (CD28, CD57 (flow cytometry; plasma sCD14, IL-6, TNF- α, sVCAM-1, hs-CRP, anti-CMV IgG (ELISA; LPS (LAL. The results were compared by Mann-Whitney, Kruskal-Wallis or Chi-square tests, and factors associated with IMT were evaluated by multivariable logistic regression. RESULTS: Of 163 patients, 112 demonstrated normal IMT (nIMT, whereas 51 (31.3% had pathological IMT (pIMT: ≥1 mm. Of the patients with pIMT, 22 demonstrated an increased IMT (iIMT, and 29 were shown to have plaques. These patient groups had comparable nadir and current CD4+, VLs and total length of time on cART. Despite similar proportions of CD38-expressing CD8+ cells (p = .95, pIMT patients exhibited higher activated memory CD8+CD38+CD45R0+ cells (p = .038 and apoptotic CD4+CD95+ (p = .01 and CD8+CD95+ cells (p = .003. In comparison to nIMT patients, iIMT patients tended to have lower numbers of early differentiated CD28+CD57- memory CD4+ (p = .048 and CD28-CD57-CD8+ cells (p = .006, both of which are associated with a higher proliferative potential. Despite no differences in plasma LPS levels, pIMT patients showed significantly higher circulating levels of sCD14 than did nIMT patients (p = .046. No differences in anti-CMV IgG was shown. Although circulating levels of sCD14 seemed to be associated with a risk of ATS in an unadjusted analysis, this effect was lost after adjusting for classical cardiovascular predictors. CONCLUSIONS: Despite the provision of full

  10. Prognostic implication of the primary tumor location in early-stage breast cancer: focus on lower inner zone.

    Science.gov (United States)

    Yang, Jiqiao; Tang, Shenli; Zhou, Yuting; Qiu, Juanjuan; Zhang, Juying; Zhu, Sui; Lv, Qing

    2017-08-18

    The aim of this study was to investigate the prognostic significance of tumor location of lower inner zone (LIZ) on the survival of patients with early-stage breast cancer. We retrospectively identified 961 breast cancer patients from Jan 2000 to Apr 2016 from hospital database. We evaluated overall survival (OS) and disease-free survival (DFS) in patients with tumors in and outside LIZ. Subgroup analyses were performed according to clinicopathological characteristics and treatment strategies. A total of 838 cases were finally included. Patients with tumor location of LIZ showed significantly lower survival rates than tumors in other sites in terms of DFS (p = 0.028) but not OS (p = 0.106). When stratified into subgroups, tumors in LIZ retained a significant worse prognosis in DFS in patients with HER-2-negative, high ki-67 expression breast cancers, those who received neoadjuvant chemotherapy, axillary nodal negative patients, and patients with lymphovascular invasion. Univariate and multivariate analyses suggested that tumor location of LIZ was an independent prognostic factor for DFS (p = 0.022). Our results suggested that tumor location of LIZ was an independent adverse prognostic factor for DFS in patients with early-stage breast cancer. Multicenter studies with larger sample size are needed to confirm the conclusion and anatomical experiments are desired to elaborate the mechanism.

  11. Etiology and early pathogenesis of malignant testicular germ cell tumors: towards possibilities for preinvasive diagnosis.

    Science.gov (United States)

    Elzinga-Tinke, Jenny E; Dohle, Gert R; Looijenga, Leendert Hj

    2015-01-01

    Malignant testicular germ cell tumors (TGCT) are the most frequent cancers in Caucasian males (20-40 years) with an 70% increasing incidence the last 20 years, probably due to combined action of (epi)genetic and (micro)environmental factors. It is expected that TGCT have carcinoma in situ(CIS) as their common precursor, originating from an embryonic germ cell blocked in its maturation process. The overall cure rate of TGCT is more than 90%, however, men surviving TGCT can present long-term side effects of systemic cancer treatment. In contrast, men diagnosed and treated for CIS only continue to live without these long-term side effects. Therefore, early detection of CIS has great health benefits, which will require an informative screening method. This review described the etiology and early pathogenesis of TGCT, as well as the possibilities of early detection and future potential of screening men at risk for TGCT. For screening, a well-defined risk profile based on both genetic and environmental risk factors is needed. Since 2009, several genome wide association studies (GWAS) have been published, reporting on single-nucleotide polymorphisms (SNPs) with significant associations in or near the genes KITLG, SPRY4, BAK1, DMRT1, TERT, ATF7IP, HPGDS, MAD1L1, RFWD3, TEX14, and PPM1E, likely to be related to TGCT development. Prenatal, perinatal, and postnatal environmental factors also influence the onset of CIS. A noninvasive early detection method for CIS would be highly beneficial in a clinical setting, for which specific miRNA detection in semen seems to be very promising. Further research is needed to develop a well-defined TGCT risk profile, based on gene-environment interactions, combined with noninvasive detection method for CIS.

  12. Intranasal Administration of Type V Collagen Reduces Lung Carcinogenesis through Increasing Endothelial and Epithelial Apoptosis in a Urethane-Induced Lung Tumor Model.

    Science.gov (United States)

    Parra, Edwin Roger; Alveno, Renata Antunes; Faustino, Carolina Brito; Corrêa, Paula Yume Sato Serzedello; Vargas, Camilla Mutai; de Morais, Jymenez; Rangel, Maristela Peres; Velosa, Ana Paula Pereira; Fabro, Alexandre Todorovic; Teodoro, Walcy Rosolia; Capelozzi, Vera Luiza

    2016-08-01

    Type V collagen (Col V) is a "minor" component of normal lung extracellular matrix, which is subjected to decreased and abnormal synthesis in human lung infiltrating adenocarcinoma. We previously reported that a direct link between low amounts of Col V and decreased cell apoptosis may favor cancer cell growth in the mouse lung after chemical carcinogenesis. Moreover, this collagen species was able to trigger DNA fragmentation and impair survival of neoplastic cells. In this study, we have extended our investigation with the aim to obtain further evidence that the death induced by Col V-treatment is of the caspase-9 apoptotic type. We used (1) optical and electron microscopy, (2) quantitation of TUNEL-labeled cells and (3) analysis of the expression levels of Col V and selected genes coding for apoptosis-linked factors, by conventional RT-PCR. BALB/c mice were injected intraperitoneally with 1.5 g/kg body weight of urethane. After urethane injection, the animals received intranasal administration of 20 µg/20 µl of Col V every day during 2 months. We report here that Col V treatment was able to determine significant increase in Col V protein and gene expression and in the percentage of TUNEL-positive cells, to up-regulate caspase-9, resulting in low growth of tumor cells. Our data validate chemical carcinogenesis as a suitable "in vivo" model for further and more detailed studies on the molecular mechanisms of the death response induced by Col V in lung infiltrating adenocarcinoma opening new strategies for treatment.

  13. Tumor Necrosis Factor-α and Apoptosis Signal-Regulating Kinase 1 Control Reactive Oxygen Species Release, Mitochondrial Autophagy and C-Jun N-Terminal Kinase/P38 Phosphorylation During Necrotizing Enterocolitis

    Directory of Open Access Journals (Sweden)

    Naira Baregamian

    2009-01-01

    Full Text Available Background: Oxidative stress and inflammation may contribute to the disruption of the protective gut barrier through various mechanisms; mitochondrial dysfunction resulting from inflammatory and oxidative injury may potentially be a significant source of apoptosis during necrotizing enterocolitis (NEC. Tumor necrosis factor (TNFα is thought to generate reactive oxygen species (ROS and activate the apoptosis signal-regulating kinase 1 (ASK1-c-Jun N-terminal kinase (JNK/p38 pathway. Hence, the focus of our study was to examine the effects of TNFα/ROs on mitochondrial function, ASK1-JNK/p38 cascade activation in intestinal epithelial cells during NEC.

  14. Human Immunodeficiency Virus Type 1 Nef Binds to Tumor Suppressor p53 and Protects Cells against p53-Mediated Apoptosis

    OpenAIRE

    2002-01-01

    The nef gene product of human immunodeficiency virus type 1 (HIV-1) is important for the induction of AIDS, and key to its function is its ability to manipulate T-cell function by targeting cellular signal transduction proteins. We reported that Nef coprecipitates a multiprotein complex from cells which contains tumor suppressor protein p53. We now show that Nef interacts directly with p53. Binding assays showed that an N-terminal, 57-residue fragment of Nef (Nef 1-57) contains the p53-bindin...

  15. Susceptibility to Radiation Induced Apoptosis and Senescence in p53 Wild Type and p53 Mutant Breast Tumor Cells

    Science.gov (United States)

    2006-07-01

    a, 25 ( OH ) 2D3 exerts cytostatic effects on murine osteosarcoma cells and enhances the cytocidal effects of anticancer drugs. Clin Orthop Relat Res...dihydroxyvitamin D3 (1,25( OH ) 2D3 ) and vitamin D3 analogs such as EB 1089 potentiate the response to ionizing radiation in breast tumor cells. The current...Appended Page Proofs ………………………………………………………… 5 Introduction 1,25-dihydroxyvitamin D3 (1,25( OH ) 2D3 ) and vitamin D3 analogs such as EB 1089

  16. Rhodiola rosea suppresses thymus T-lymphocyte apoptosis by downregulating tumor necrosis factor-α-induced protein 8-like-2 in septic rats.

    Science.gov (United States)

    Liu, Ming-Wei; Su, Mei-Xian; Zhang, Wei; Zhang, Lin-Ming; Wang, Yun-Hui; Qian, Chuan-Yun

    2015-08-01

    In recent years, several studies have shown that Rhodiola rosea can enhance cellular immunity and humoral immune function in mice, and thus, it has become a research hotspot. However, its underlying mechanism of action has remained elusive. The present study investigated whether Rhodiola rosea was able to downregulate the expression of tumor necrosis factor-α-inducible protein 8-like 2 (TIPE2), thereby inhibiting the expression of apoptotic genes, attenuating T-lymphocyte apoptosis and improving immunity in septic mice. A mouse model of caecal ligation and puncture (CLP)-induced sepsis was established, and animals in the treatment group were pre-treated with an intraperitoneal injection of Rhodiola rosea extract, while animals in the control group and sham-operated group were injected with an equivalent amount of normal saline. TIPE2, B-cell lymphoma 2 (Bcl-2), Fas and Fas ligand (FasL) mRNA and protein levels in thymic T cells were determined using reverse transcription quantitative polymerase chain reaction and western blot analysis, respectively. Furthermore, the thymus T-lymphocyte apoptosis rate, thymus T-lymphocyte count and thymus T-lymphocyte sub-sets were assessed using flow cytometry. Levels of T-helper cell type 1 (Th1) cytokines [Interleukin (IL)-2, IL-12 and interferon (IFN)-γ] and Th2 cytokines (IL-4 and IL-10) were determined using ELISA. The results showed that, compared to that in the CLP group, the expression of TIPE2, Fas and FasL in the treatment group was significantly decreased, while the expression of Bcl-2 was increased (Pthymus lymphocyte count in the CLP group was significantly higher compared with that in the treatment group (Pthymus T-lymphocytes in the treatment group was significantly lower than that in the CLP group (Pthymus T lymphocytes in the CLP group (Pthymus index of septic mice treated with Rhodiola rosea as well as their survival rate were improved as compared with those in the CLP group. These findings suggested that

  17. A20 overexpression under control of mouse osteocalcin promoter in MC3T3-E1 cells inhibited tumor necrosis factor-alpha-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Yue-juan QIN; Zhen-lin ZHANG; Lu-yang YU; Jin-wei HE; Ya-nan HOU; Tian-jin LIU; Jia-cai WU; Song-hua WU; Li-he GUO

    2006-01-01

    Aim: To construct an A20 expression vector under the control of mouse osteocalcin promoter (OC-A20), and investigate osteoblastic MC3T3-E1 cell line, which stably overexpresses A20 protein prevented tumor necrosis factor (TNF)-alpha-induced apoptosis. Methods: OC-A20 vector was constructed by fusing a fragment of the mouse osteocalcin gene-2 promoter with human A20 complementary DNA. Then the mouse MC3T3-E1 cell line, stably transfected by A20, was established. The expression of A20 mRNA and A20 protein in the cells were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. To determine the specificity of A20 expression in osteoblast, the mouse osteoblastic MC3T3-E1 cell line and mouse embryo fibro-blast NIH3T3 cell line were transiently transfected with OC-A20. The anti-apoptotic role of A20 in MC3T3-E1 cells was determined by Flow cytometric analysis (FACS), terminal dUTP nick endo-labeling (TUNEL) and DNA gel electrophoresis analysis (DNA Ladder), respectively. Results: Weak A20 expression was found in MC3T3-El cells with the primers of mouse A20. A20 mRNA and A20 protein expression were identified in MC3T3-E1 cells transfected with OC-A20 using RT-PCR and Western blot analysis. Only A20 mRNA expression was found in MC3T3-E1 cell after MC3T3-E1 cells and NIH3T3 cells were transient transfected with OC-A20. A decrease obviously occurred in the rate of apoptosis in the OC-A20 group compared with the empty vector (pcDNA3) group by FACS (P<0.001). A significant increase in TUNEL positive staining was found in the pcDNA group compared with OC-A20 group (P<0.001). Simultaneously, similar effects were demonstrated in DNA gel electrophoresis analysis. Conclusion: We constructed an osteoblast-specific expression vector that expressed A20 protein in MC3T3-E1 cells and confirmed that A20 protects osteoblast against TNF-alpha-induced apoptosis.

  18. A CLINICAL STUDY FOR EVALUATING EARLY RADIOTHERAPY EFFECT IN PATIENTS WITH BRAIN TUMOR USING 99Tcm-HL91 SPECT

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ming; ZHANG Yong-xue; ZHANG Cheng-gang; LAN Sheng-min; WANG Zhong-min; ZHANG Xiu-fu

    2006-01-01

    Objective: The purpose of this study was to evaluate the early radiotherapy effect using 99Tcm-HL91 SPECT in patients with brain tumors. Methods: Twenty-one patients with brain tumors who were treated by radiotherapy were studied. KPS grade, tumor size on 99Tcm-HL91 SPECT , tumor size on MRI, and ratio of T/N (tumor counts/sec over normal brain tissue counts/sec) were investigated before ,during and after radiotherapy. Results: The average tumor size on 99Tcm-HL91 SPECT and MRI was 11.34(5.88 cm2, 9.46(5.66 cm2, respectively before radiotherapy. The tumor size on 99Tcm-HL91 SPECT was not in accordance with to that on MRI (P<0.05). KPS grade, tumor size on 99Tcm-HL91 SPECT and ratio of T/N had significance differences before, during and after radiotherapy (P<0.05), but the tumor size on MRI imaging had no significance differences before, during and after radiotherapy (P>0.05). The rate of symptom improvement was 80% during radiotherapy and 100% after radiotherapy. The rates of imaging remission based on the brain tumor size on 99Tcm-HL91 SPECT, MRI and T/N were 75%, 15%, and 80%, respectively during radiotherapy. The agreement rates between imaging remission diagnosed by those three methods and symptom improvement were 70%, 40%, and 60% respectively during radiotherapy. The rates of imaging remission based on the brain tumor sizes on 99Tcm-HL91 SPECT, MRI and T/N were 100%, 25%, and 95% respectively after radiotherapy. The agreement rates between imaging remission diagnosed by those three methods and symptoms improvement were 100%, 20%, and 95% respectively after radiotherapy. Conclusion: The tumor size on 99Tcm-HL91 SPECT is a valuable tool for evaluating early radiotherapy effect of brain tumor in process of radiotherapy. T/N is not a feasible method in evaluating radiotherapy effect of brain tumor because it may show elevation unrelated to the curative effect during radiotherapy.

  19. Quantification of sPLA2-induced early and late apoptosis changes in neuronal cell cultures using combined TUNEL and DAPI staining.

    Science.gov (United States)

    Daniel, Bron; DeCoster, Mark A

    2004-08-01

    The terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling (TUNEL) stain is in wide use for measuring apoptosis in neurons, as well as in other cell types. TUNEL may give false positive results due to variations in labeling technique as well as staining of cells that have undergone non-apoptotic DNA strand breaks. Therefore, in isolation, TUNEL is not a certain indicator of apoptosis. Recently, we have demonstrated the potent apoptotic effect of secreted phospholipase A2 from group III (sPLA2-III) on primary cortical neurons from rat. Here we describe a computer-assisted method for quantifying TUNEL-positive neurons after sPLA2-III induced apoptosis. Extent of TUNEL is normalized to total nuclear content using 4',6-diamidino-2-phenylindole (DAPI) staining. Furthermore, DAPI counterstaining allows for determination of a nuclear morphology indicator, based on nuclear size and roundness, which we call the nuclear area factor. We found that the nuclear area factor is an early indicator of cell death (significant after 4 h post treatment), while TUNEL staining is significant at later times (26 h). Thus, the independent staining techniques using TUNEL and DAPI complement each other, and with commercially available image analysis software, may be used to indicate early as well as delayed cell injury processes.

  20. Raman spectroscopic detection of rapid, reversible, early-stage inflammatory cytokine-induced apoptosis of adult hippocampal progenitors/stem cells

    CERN Document Server

    Ladiwala, Uma; Thakur, Bhushan; Santhosh, Chidangil; Mathur, Deepak

    2014-01-01

    The role of neuro-inflammation in diverse, acute and chronic brain pathologies is being increasingly recognized. Neuro-inflammation is accompanied by increased levels of both pro- and anti-inflammatory cytokines; these have deleterious as well as protective/reparative effects. Inflammation has varying effects on neurogenesis and is a subject of intense contemporary interest. We show that TNF-alpha and IFN-gamma, used concomitantly, cause apoptosis of adult rat hippocampal progenitor/stem cells in vitro as detected by the TUNEL and MTT assays on time scales of several hours. We have coupled Raman spectroscopy to an optical trap to probe early changes of apoptosis in single, live neural stem cells that have been treated with pro-inflammatory cytokines, TNF-alpha and IFN-gamma. Changes caused by inflammation-induced denaturation of DNA are observed in the Raman spectra that correspond to very early stages of apoptosis, occurring on very fast time scales: as short as 10 minutes. Addition of the anti-inflammatory ...

  1. Bi-model processing for early detection of breast tumor in CAD system

    Science.gov (United States)

    Mughal, Bushra; Sharif, Muhammad; Muhammad, Nazeer

    2017-06-01

    Early screening of skeptical masses in mammograms may reduce mortality rate among women. This rate can be further reduced upon developing the computer-aided diagnosis system with decrease in false assumptions in medical informatics. This method highlights the early tumor detection in digitized mammograms. For improving the performance of this system, a novel bi-model processing algorithm is introduced. It divides the region of interest into two parts, the first one is called pre-segmented region (breast parenchyma) and other is the post-segmented region (suspicious region). This system follows the scheme of the preprocessing technique of contrast enhancement that can be utilized to segment and extract the desired feature of the given mammogram. In the next phase, a hybrid feature block is presented to show the effective performance of computer-aided diagnosis. In order to assess the effectiveness of the proposed method, a database provided by the society of mammographic images is tested. Our experimental outcomes on this database exhibit the usefulness and robustness of the proposed method.

  2. Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos activates maternal program of apoptosis as a "fail-safe" mechanism of early embryogenesis

    Institute of Scientific and Technical Information of China (English)

    MASATAKE KAI; CHIKARA KAITO; HIROSHI FUKAMACHI; TAKAYASU HIGO; EIJI TA-KAYAMA; HIROSHI HARA; YOSHIKAZU OHYA; KAZUEI IGARASHI; KOICHIRO SHIOKAWA

    2003-01-01

    In Xenopus, injection of S-adenosylmethionine decarboxylase (SAMDC) mRNA into fertilized eggs or2-cell stage embryos induces massive cell dissociation and embryo-lysis at the early gastrula stage due toactivation of the maternal program of apoptosis. We injected SAMDC mRNA into only one of the animalside blastomeres of embryos at different stages of cleavage, and examined the timing of the onset of theapoptotic reaction. In the injection at 4- and 8-cell stages, a considerable number of embryos developed intotadpoles and in the injection at 16- and 32-cell stages, all the embryos became tadpoles, although tadpolesobtained were sometimes abnormal. However, using GFP as a lineage tracer, we found that descendant cellsof the blastomere injected with SAMDC mRNA at 8- to 32-cell stages are confined within the blastocoel atthe early gastrula stage and undergo apoptotic cell death within the blastocoel, in spite of the continueddevelopment of the injected embryos. These results indicate that cells overexpressed with SAMDC undergoapoptotic cell death consistently at the early gastrula stage, irrespective of the timing of the mRNA injection.We assume that apoptosis is executed in Xenopus early gastrulae as a "fail-safe" mechanism to eliminatephysiologically-severely damaged cells to save the rest of the embryo.

  3. Tumor necrosis factor-alpha and interleukin-6 in early-onset neonatal sepsis

    Directory of Open Access Journals (Sweden)

    Prambudi Rukmono

    2016-05-01

    Full Text Available Background Neonatal sepsis remains a major cause of mortality and morbidity in newborns. Early-onset neonatal sepsis occurs in infants under the age of 72 hours, while late-onset neonatal sepsis occurs in infants over the age of 72 hours and may be due to nosocomial infection. Diagnosing neonatal sepsis is a challenge, as its clinical symptoms are not clear. Corroborating tests include routine blood, C-reactive protein (CRP, serology, tumor necrosis factor-alpha (TNF-α, and interleukin-6 (IL-6 examinations.Objective To compare the TNF-α and IL-6 levels in patients with proven and unproven early-onset neonatal sepsis (EONSMethods This case-control study was done in the Perinatology Unit, Abdul Moeloek Hospital, Lampung. Subjects were under the age of 72 hours with risk factors and clinical symptoms of sepsis. They underwent routine blood tests and blood cultures. Infants with positive cultures were considered to have proven sepsis (26 subjects and infants with negative blood cultures were considered to have unproven sepsis (26 subjects. All subjects underwent serological examinations of TNF-α and IL-6.Results There were no differences in the basic characteristics of subjects between the two groups. Levels of TNF-α in the sepsis group were significantly higher than in the unproven group [(28.30 vs. 10.96 pg/mL, respectively (P=0.001]. Furthermore, Il-6 was significantly higher in the proven sepsis group than in the unproven sepsis group [(28.3 vs. 9.69 pg/mL, respectively (P=0.006].Conclusion Levels of TNF-alpha and IL-6 are significantly higher in infants with proven than unproven early-onset neonatal sepsis.

  4. Enhanced p62 Is Responsible for Mitochondrial Pathway-Dependent Apoptosis and Interleukin-1β Production at the Early Phase by Monosodium Urate Crystals in Murine Macrophage.

    Science.gov (United States)

    Kim, Seong-Kyu; Choe, Jung-Yoon; Park, Ki-Yeun

    2016-10-01

    The aim of this study was to clarify the role of p62-dependent mitochondrial apoptosis in the initiation of monosodium urate (MSU) crystal-induced inflammation in macrophages. The induction of mitochondrial apoptosis in RAW 264.7 murine macrophages by MSU crystals was measured using western blotting and quantitative real-time polymerase chain reaction for Bax, caspase-3, caspase-9, or PARP1, and by flow cytometric analysis. Immunoprecipitation and western blotting was applied to detect ubiquitination of p62, TRAF6, and caspase-9. Mitochondrial apoptosis, reactive oxygen species (ROS) generation, and cell proliferation were assessed in cells transfected with p62 small interfering RNA (siRNA). Treatment of RAW 264.7 cells with MSU crystals induced activation of Bax, caspase-3, caspase-9, and PARP1 at the early phase, in addition to enhancing IL-1β expression, but these findings were attenuated at the late phase. MSU crystals induced ubiquitination of p62, followed by ubiquitination of TRAF6 and caspase-9, which were significantly reversed by ascorbic acid. RAW 264.7 cells transfected with p62 siRNA showed attenuated expression of Bax, caspase-3, caspase-9, and PARP1, decreased ROS and IL-1β production, and increased cell proliferation, compared to controls. The antioxidant ascorbic acid inhibited p62, caspase-9, and IL-1β expression increased by MSU crystals. p62 may be a crucial mediator for the mitochondrial apoptosis pathway in MSU crystal-induced inflammation, which is linked to the acute inflammatory response during the early phase of gout.

  5. Goniothalamin prevents the development of chemically induced and spontaneous colitis in rodents and induces apoptosis in the HT-29 human colon tumor cell line.

    Science.gov (United States)

    Vendramini-Costa, Débora Barbosa; Alcaide, Antonio; Pelizzaro-Rocha, Karin Juliane; Talero, Elena; Ávila-Román, Javier; Garcia-Mauriño, Sofia; Pilli, Ronaldo Aloise; de Carvalho, João Ernesto; Motilva, Virginia

    2016-06-01

    Colon cancer is the third most incident type of cancer worldwide. One of the most important risk factors for colon cancer development are inflammatory bowel diseases (IBD), thus therapies focusing on IBD treatment have great potential to be used in cancer prevention. Nature has been a source of new therapeutic and preventive agents and the racemic form of the styryl-lactone goniothalamin (GTN) has been shown to be a promising antiproliferative agent, with gastroprotective, antinociceptive and anti-inflammatory effects. As inflammation is a well-known tumor promoter, the major goal of this study was to evaluate the therapeutic and preventive potentials of GTN on chemically induced and spontaneous colitis, as well as the cytotoxic effects of GTN on a human colon tumor cell line (HT-29). GTN treatments inhibited TNBS-induced acute and chronic colitis development in Wistar rats, reducing myeloperoxidase levels and inflammatory cells infiltration in the mucosa. In spontaneous-colitis using IL-10 deficient mice (C57BL/6 background), GTN prevented colitis development through downregulation of TNF-α, upregulation of SIRT-1 and inhibition of proliferation (PCNA index), without signs of toxicity after three months of treatment. In HT-29 cells, treatment with 10μM of GTN induced apoptosis by increasing BAX/BCL2, p-JNK1/JNK1, p-P38/P38 ratios as well as through ROS generation. Caspase 8, 9 and 3 activation also occurred, suggesting caspase-dependent apoptotic pathway, culminating in PARP-1 cleavage. Together with previous data, these results show the importance of GTN as a pro-apoptotic, preventive and therapeutic agent for IBD and highlight its potential as a chemopreventive agent for colon cancer.

  6. Anti-Müllerian hormone inhibits growth of AMH type II receptor-positive human ovarian granulosa cell tumor cells by activating apoptosis.

    Science.gov (United States)

    Anttonen, Mikko; Färkkilä, Anniina; Tauriala, Hanna; Kauppinen, Marjut; Maclaughlin, David T; Unkila-Kallio, Leila; Bützow, Ralf; Heikinheimo, Markku

    2011-11-01

    Ovarian granulosa cell tumors (GCTs) are sex cord stromal tumors that constitute 3-5% of all ovarian cancers. GCTs usually present with an indolent course but there is a high risk of recurrence, which associates with increased mortality, and targeted treatments would be desirable. Anti-Müllerian hormone (AMH), a key factor regulating sexual differentiation of the reproductive organs, has been implicated as a growth inhibitor in ovarian cancer. GCTs and normal granulosa cells produce AMH, but its expression in large GCTs is usually downregulated. Further, as the lack of specific AMH-signaling pathway components leads to GCT development in mice, we hypothesized that AMH inhibits growth of GCTs. Utilizing a large panel of human GCT tissue samples, we found that AMH type I receptors (ALK2, ALK3 and ALK6) and type II receptor (AMHRII), as well as their downstream effectors Smad1/5, are expressed and active in GCTs. AMHRII expression was detected in the vast majority (96%) of GCTs and correlated with AMH mRNA and protein expression. AMH mRNA level was low in large GCTs, confirming previous findings on low-AMH protein expression in large human as well as mouse GCTs. To study the functional role of AMH in this peculiar ovarian cancer, we utilized a human GCT cell line (KGN) and 10 primary GCT cell cultures. We found that the AMH-Smad1/5-signaling pathway was active in these cells, and that exogenous AMH further activated Smad1/5 in KGN cells. Furthermore, AMH treatment reduced the number of KGN cells and primary GCT cells, with increasing amounts of AMH leading to augmented activation of caspase-3 and subsequent apoptosis. All in all, these data support the premise that AMH is a growth inhibitor of GCTs.

  7. Photo-activated psoralen binds the ErbB2 catalytic kinase domain, blocking ErbB2 signaling and triggering tumor cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Wenle Xia

    Full Text Available Photo-activation of psoralen with UVA irradiation, referred to as PUVA, is used in the treatment of proliferative skin disorders. The anti-proliferative effects of PUVA have been largely attributed to psoralen intercalation of DNA, which upon UV treatment, triggers the formation of interstrand DNA crosslinks (ICL that inhibit transcription and DNA replication. Here, we show that PUVA exerts antitumor effects in models of human breast cancer that overexpress the ErbB2 receptor tyrosine kinase oncogene, through a new mechanism. Independent of ICL formation, the antitumor effects of PUVA in ErbB2+ breast cancer models can instead be mediated through inhibition of ErbB2 activation and signaling. Using a mass spectroscopy-based approach, we show for the first time that photo-activated 8MOP (8-methoxypsoralen interacts with the ErbB2 catalytic autokinase domain. Furthermore, PUVA can reverse therapeutic resistance to lapatinib and other ErbB2 targeted therapies, including resistance mediated via expression of a phosphorylated, truncated form of ErbB2 (p85(ErbB2 that is preferentially expressed in tumor cell nuclei. Current ErbB2 targeted therapies, small molecule kinase inhibitors or antibodies, do not block the phosphorylated, activated state of p85(ErbB2. Here we show that PUVA reduced p85(ErbB2 phosphorylation leading to tumor cell apoptosis. Thus, in addition to its effects on DNA and the formation of ICL, PUVA represents a novel ErbB2 targeted therapy for the treatment of ErbB2+ breast cancers, including those that have developed resistance to other ErbB2 targeted therapies.

  8. The Role of Selected Flavonols in Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptor–1 (TRAIL-R1 Expression on Activated RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Monika Warat

    2015-01-01

    Full Text Available Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptors (TRAIL-R are an important factor of apoptosis in cancer cells. There are no data about the effect of flavonols on the receptor expression on a surface of macrophage like cells. In this study, the expression level of TRAIL-R1 on murine RAW264.7 macrophages in the presence of selected flavonols: galangin, kaempferol, kaempferide and quercetin, which differ from their phenyl ring substituents, were studied. The expression of TRAIL-R1 death receptors on non-stimulated and lipopolysaccharide (LPS-stimulated macrophages was determined using flow cytometry. The results suggested that compounds being tested can modulate TRAIL-R1 expression and can enhance TRAIL-mediated apoptosis.

  9. Prevalence and Risk Factors of Early Endocrine Disorders in Childhood Brain Tumor Survivors: A Nationwide, Multicenter Study

    NARCIS (Netherlands)

    Clement, S.C.; Schouten-van Meeteren, A.Y.; Boot, A.M.; Claahsen-van der Grinten, H.L.; Granzen, B.; Han, K.; Janssens, G.O.; Michiels, E.M.; Trotsenburg, A.S. van; Vandertop, W.P.; Vuurden, D.G. van; Kremer, L.C.; Caron, H.N.; Santen, H.M. van

    2016-01-01

    Purpose To evaluate the prevalence of, and risk factors for, early endocrine disorders in childhood brain tumor survivors (CBTS). Patients and Methods This nationwide study cohort consisted of 718 CBTS who were diagnosed between 2002 and 2012, and who survived >/= 2 years after diagnosis.

  10. Prevalence and Risk Factors of Early Endocrine Disorders in Childhood Brain Tumor Survivors : A Nationwide, Multicenter Study

    NARCIS (Netherlands)

    Clement, Sarah C; Schouten-van Meeteren, Antoinette Y N; Boot, Annemieke M; Claahsen-van der Grinten, Hedy L; Granzen, Bernd; Sen Han, K; Janssens, Geert O; Michiels, Erna M; van Trotsenburg, A S Paul; Vandertop, W Peter; van Vuurden, Dannis G; Kremer, Leontien C M; Caron, Hubert N; van Santen, Hanneke M

    2016-01-01

    Purpose To evaluate the prevalence of, and risk factors for, early endocrine disorders in childhood brain tumor survivors (CBTS). Patients and Methods This nationwide study cohort consisted of 718 CBTS who were diagnosed between 2002 and 2012, and who survived ≥ 2 years after diagnosis. Patients

  11. Prevalence and Risk Factors of Early Endocrine Disorders in Childhood Brain Tumor Survivors : A Nationwide, Multicenter Study

    NARCIS (Netherlands)

    Clement, Sarah C.; Schouten-van Meeteren, Antoinette Y. N.; Boots, Annemieke; Claahsen-van der Grinten, Hedy L.; Granzen, Bernd; Sen Han, K.; Janssens, Geert O.; Michiels, Erna M.; van Trotsenburg, A. S. Paul; Vandertop, W. Peter; van Vuurden, Dannis G.; Kremer, Leontien C. M.; Caron, Hubert N.; van Santen, Hanneke M.

    2016-01-01

    Purpose To evaluate the prevalence of, and risk factors for, early endocrine disorders in childhood brain tumor survivors (CBTS). Patients and Methods This nationwide study cohort consisted of 718 CBTS who were diagnosed between 2002 and 2012, and who survived >= 2 years after diagnosis. Patients

  12. Prevalence and Risk Factors of Early Endocrine Disorders in Childhood Brain Tumor Survivors : A Nationwide, Multicenter Study

    NARCIS (Netherlands)

    Clement, Sarah C.; Schouten-van Meeteren, Antoinette Y. N.; Boots, Annemieke; Claahsen-van der Grinten, Hedy L.; Granzen, Bernd; Sen Han, K.; Janssens, Geert O.; Michiels, Erna M.; van Trotsenburg, A. S. Paul; Vandertop, W. Peter; van Vuurden, Dannis G.; Kremer, Leontien C. M.; Caron, Hubert N.; van Santen, Hanneke M.

    2016-01-01

    Purpose To evaluate the prevalence of, and risk factors for, early endocrine disorders in childhood brain tumor survivors (CBTS). Patients and Methods This nationwide study cohort consisted of 718 CBTS who were diagnosed between 2002 and 2012, and who survived >= 2 years after diagnosis. Patients wi

  13. Prevalence and Risk Factors of Early Endocrine Disorders in Childhood Brain Tumor Survivors : A Nationwide, Multicenter Study

    NARCIS (Netherlands)

    Clement, Sarah C; Schouten-van Meeteren, Antoinette Y N; Boot, Annemieke M; Claahsen-van der Grinten, Hedy L; Granzen, Bernd; Sen Han, K; Janssens, Geert O; Michiels, Erna M; van Trotsenburg, A S Paul; Vandertop, W Peter; van Vuurden, Dannis G; Kremer, Leontien C M; Caron, Hubert N; van Santen, Hanneke M

    2016-01-01

    Purpose To evaluate the prevalence of, and risk factors for, early endocrine disorders in childhood brain tumor survivors (CBTS). Patients and Methods This nationwide study cohort consisted of 718 CBTS who were diagnosed between 2002 and 2012, and who survived ≥ 2 years after diagnosis. Patients wit

  14. Prevalence and Risk Factors of Early Endocrine Disorders in Childhood Brain Tumor Survivors: A Nationwide, Multicenter Study

    NARCIS (Netherlands)

    Clement, S.C.; Schouten-van Meeteren, A.Y.; Boot, A.M.; Claahsen-van der Grinten, H.L.; Granzen, B.; Han, K.; Janssens, G.O.; Michiels, E.M.; Trotsenburg, A.S. van; Vandertop, W.P.; Vuurden, D.G. van; Kremer, L.C.; Caron, H.N.; Santen, H.M. van

    2016-01-01

    Purpose To evaluate the prevalence of, and risk factors for, early endocrine disorders in childhood brain tumor survivors (CBTS). Patients and Methods This nationwide study cohort consisted of 718 CBTS who were diagnosed between 2002 and 2012, and who survived >/= 2 years after diagnosis. Patient

  15. Prevalence and Risk Factors of Early Endocrine Disorders in Childhood Brain Tumor Survivors : A Nationwide, Multicenter Study

    NARCIS (Netherlands)

    Clement, Sarah C; Schouten-van Meeteren, Antoinette Y N; Boot, Annemieke M; Claahsen-van der Grinten, Hedy L; Granzen, Bernd; Sen Han, K; Janssens, Geert O; Michiels, Erna M; van Trotsenburg, A S Paul; Vandertop, W Peter; van Vuurden, Dannis G; Kremer, Leontien C M; Caron, Hubert N; van Santen, Hanneke M

    2016-01-01

    Purpose To evaluate the prevalence of, and risk factors for, early endocrine disorders in childhood brain tumor survivors (CBTS). Patients and Methods This nationwide study cohort consisted of 718 CBTS who were diagnosed between 2002 and 2012, and who survived ≥ 2 years after diagnosis. Patients wit

  16. Prevalence and Risk Factors of Early Endocrine Disorders in Childhood Brain Tumor Survivors : A Nationwide, Multicenter Study

    NARCIS (Netherlands)

    Clement, Sarah C.; Schouten-van Meeteren, Antoinette Y. N.; Boots, Annemieke; Claahsen-van der Grinten, Hedy L.; Granzen, Bernd; Sen Han, K.; Janssens, Geert O.; Michiels, Erna M.; van Trotsenburg, A. S. Paul; Vandertop, W. Peter; van Vuurden, Dannis G.; Kremer, Leontien C. M.; Caron, Hubert N.; van Santen, Hanneke M.

    2016-01-01

    Purpose To evaluate the prevalence of, and risk factors for, early endocrine disorders in childhood brain tumor survivors (CBTS). Patients and Methods This nationwide study cohort consisted of 718 CBTS who were diagnosed between 2002 and 2012, and who survived >= 2 years after diagnosis. Patients wi

  17. Microglia-derived proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta induce Purkinje neuronal apoptosis via their receptors in hypoxic neonatal rat brain.

    Science.gov (United States)

    Kaur, Charanjit; Sivakumar, Viswanathan; Zou, Zhirong; Ling, Eng-Ang

    2014-01-01

    The developing cerebellum is extremely vulnerable to hypoxia which can damage the Purkinje neurons. We hypothesized that this might be mediated by tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) derived from activated microglia as in other brain areas. One-day-old rats were subjected to hypoxia following, which the expression changes of various proteins in the cerebellum including hypoxia inducible factor-1α, TNF-α, IL-1β, TNF-R1 and IL-1R1 were analyzed. Following hypoxic exposure, TNF-α and IL-1β immunoexpression in microglia was enhanced coupled by that of TNF-R1 and IL-1R1 in the Purkinje neurons. Along with this, hypoxic microglia in vitro showed enhanced release of TNF-α and IL-1β whose receptor expression was concomitantly increased in the Purkinje neurons. In addition, nitric oxide (NO) level was significantly increased in the cerebellum and cultured microglia subjected to hypoxic exposure. Moreover, cultured Purkinje neurons treated with conditioned medium derived from hypoxic microglia underwent apoptosis but the incidence was significantly reduced when the cells were treated with the same medium that was neutralized with TNF-α/IL-1β antibody. We conclude that hypoxic microglia in the neonatal cerebellum produce increased amounts of NO, TNF-α and IL-1β which when acting via their respective receptors could induce Purkinje neuron death.

  18. Supra-additive antitumor activity of 5FU with tumor necrosis factor-related apoptosis-inducing ligand on gastric and colon cancers in vitro.

    Science.gov (United States)

    Shimoyama, Shouji; Mochizuki, Yoshino; Kusada, Osamu; Kaminishi, Michio

    2002-09-01

    We investigated supra-additive cytotoxic effects of 5-fluorouracil (5FU) on gastric and colon cancer cells with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in vitro. p53 wild- and mutant-type gastric and colon cancer cell lines were treated by 5FU alone, TRAIL alone, and a combination of 5FU and TRAIL, and cell viability after each treatment was determined by MTT assay. The p53 wild-type cells were more sensitive to 5FU alone or to TRAIL alone than p53 mutant-type cells. The cell growth inhibitory effects of the combined treatment were supra-additive and more significant in proportion to the increasing concentrations of TRAIL as compared with 5FU alone both in p53 wild- and mutant-type cells. Furthermore, TRAIL could cause a decrease in 5FU IC(50) to within the range of clinically relevant doses, particularly in p53 wild-type cells. This is the first demonstration of the supra-additive antitumor activity of 5FU with TRAIL on gastric cancer cells, giving evidence that TRAIL can reduce the requirement for 5FU that ultimately results in minimizing risks for systemic side effects while increasing the antitumor activity of 5FU, suggesting the clinical applicability of this combination for gastric and colon cancers.

  19. Huge malignant phyllodes breast tumor: a real entity in a new era of early breast cancer.

    Science.gov (United States)

    Testori, Alberto; Meroni, Stefano; Errico, Valentina; Travaglini, Roberto; Voulaz, Emanuele; Alloisio, Marco

    2015-02-27

    Phyllodes tumor is an extremely rare tumor of the breast. It occurs in females in the third and fourth decades. The difficulty in distinguishing between phyllodes tumors and benign fibroadenoma may lead to misdiagnosis. Lymph node involvement is rarely described in phyllodes tumors; for this reason, sentinel node biopsy may be warranted. We present a case of a 33-year-old woman affected by huge tumor of the right breast with ulceration in the skin with a rapid tumor growth and with omolateral axillary metastasis.

  20. Feeding mice with Aloe vera gel diminishes L-1 sarcoma-induced early neovascular response and tumor growth.

    Science.gov (United States)

    Kocik, Janusz; Bałan, Barbara Joanna; Zdanowski, Robert; Jung, Leszek; Skopińska-Różewska, Ewa; Skopiński, Piotr

    2014-01-01

    Aloe vera (Aloe arborescens, aloe barbadensis) is a medicinal plant belonging to the Liliaceae family. Aloe vera gel prepared from the inner part of Aloe leaves is increasingly consumed as a beverage dietary supplement. Some data suggest its tumor growth modulatory properties. The aim of the present study was to evaluate in Balb/c mice the in vivo influence of orally administered Aloe vera drinking gel on the syngeneic L-1 sarcoma tumor growth and its vascularization: early cutaneous neovascular response, tumor-induced angiogenesis (TIA test read after 3 days), and tumor hemoglobin content measured 14 days after L-1 sarcoma cell grafting. Feeding mice for 3 days after tumor cell grafting with 150 μl daily dose of Aloe vera gel significantly diminished the number of newly-formed blood vessels in comparison to the controls. The difference between the groups of control and Aloe-fed mice (150 μl daily dose for 14 days) with respect to the 14 days' tumor volume was on the border of statistical significance. No difference was observed in tumor hemoglobin content.

  1. Spy1 induces de-ubiquitinating of RIP1 arrest and confers glioblastoma's resistance to tumor necrosis factor (TNF-α)-induced apoptosis through suppressing the association of CLIPR-59 and CYLD

    Science.gov (United States)

    Ding, Zongmei; Liu, Yonghua; Yao, Li; Wang, Donglin; Zhang, Jianguo; Cui, Gang; Yang, Xiaojing; Huang, Xianting; Liu, Fang; Shen, Aiguo

    2015-01-01

    Glioblastoma multiforme (GBM), a grade-IV glioma, is resistant to TNF-α induced apoptosis. CLIPR-59 modulates ubiquitination of RIP1, thus promoting Caspase-8 activation to induce apoptosis by TNF-α. Here we reported that CLIPR-59 was down-regulated in GBM cells and high-grade glioma tumor samples, which was associated with decreased cancer-free survival. In GBM cells, CLIPR-59 interacts with Spy1, resulting in its decreased association with CYLD, a de-ubiquitinating enzyme. Moreover, experimental reduction of Spy1 levels decreased GBM cells viability, while increased the lysine-63-dependent de-ubiquitinating activity of RIP1 via enhancing the binding ability of CLIPR-59 and CYLD in GBM, thus promoting Caspase-8 and Caspase-3 activation to induce apoptosis by TNF-α. These findings have identified a novel Spy1-CLIPR-59 interplay in GBM cell's resistance to TNF-α-induced apoptosis revealing a potential target in the intervention of malignant brain tumors. PMID:26017671

  2. The Role of 99mTc-Annexin V Apoptosis Scintigraphy in Visualizing Early Stage Glucocorticoid-Induced Femoral Head Osteonecrosis in the Rabbit

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    2016-01-01

    Full Text Available Objective. To validate the ability of 99mTc-Annexin V to visualize early stage of glucocorticoid-induced femoral head necrosis by comparing with 99mTc-MDP bone scanning. Methods. Femoral head necrosis was induced in adult New Zealand white rabbits by intramuscular injection of methylprednisolone. 99mTc-Annexin scintigraphy and 99mTc-MDP scans were performed before and 5, 6, and 8 weeks after methylprednisolone administration. Rabbits were sacrificed at various time points and conducted for TUNEL and H&E staining. Results. All methylprednisolone treated animals developed femoral head necrosis; at 8 weeks postinjection, destruction of bone structure was evident in H&E staining, and apoptosis was confirmed by the TUNEL assay. This was matched by 99mTc-Annexin V images, which showed a significant increase in signal over baseline. Serial 99mTc-Annexin V scans revealed that increased 99mTc-Annexin V uptake could be observed in 5 weeks. In contrast, there was no effect on 99mTc-MDP signal until 8 weeks. The TUNEL assay revealed that bone cell apoptosis occurred at 5 weeks. Conclusion. 99mTc-Annexin V is superior to 99mTc-MDP for the early detection of glucocorticoid-induced femoral head necrosis in the rabbit and may be a better strategy for the early detection of glucocorticoid-induced femoral head necrosis in patients.

  3. Spontaneous Tumor Lysis Syndrome and Secondary Thrombotic Thrombocytopenic Purpura in Early Stage Colorectal Cancer

    Institute of Scientific and Technical Information of China (English)

    Saad Usmani; Joel Appel; Zainab Shahid; Husain Saleh

    2008-01-01

    @@ Acute tumor lysis syndrome (ATLS) is a well-described oncological emergency that is usually associated with hematological malignan-cies complicated by treatment. It is typically related to a high tumor burden, rapidly growing and chemosensitive malignancies.

  4. Early testicular effects in rats perinatally exposed to DEHP in combination with DEHA - apoptosis assessment and immunohistochemical studies

    DEFF Research Database (Denmark)

    Borch, Julie; Dalgaard, Majken; Ladefoged, Ole

    2005-01-01

    -hydroxysteroid dehydrogenase, smooth muscle actin (SMA), proliferating cell nuclear antigen (PCNA), histone H3 and vimentin. Additionally, testicular apoptosis levels were assessed in fetal, prepubertal and adult rats. As the plasticizer di(2-ethylhexyl) adipate (DEHA) has similarities with DEHP in chemical structure...

  5. Nrf2/HO-1 mediates the neuroprotective effect of mangiferin on early brain injury after subarachnoid hemorrhage by attenuating mitochondria-related apoptosis and neuroinflammation.

    Science.gov (United States)

    Wang, Zefeng; Guo, Songxue; Wang, Junxing; Shen, Yuanyuan; Zhang, Jianmin; Wu, Qun

    2017-09-19

    Early brain injury (EBI) is involved in the process of cerebral tissue damage caused by subarachnoid hemorrhage (SAH), and multiple mechanisms, such as apoptosis and inflammation, participate in its development. Mangiferin (MF), a natural C-glucoside xanthone, has been reported to exert beneficial effects against several types of organ injury by influencing various biological progresses. The current study aimed to investigate the potential of MF to protect against EBI following SAH via histological and biological assessments. A rat perforation model of SAH was established, and MF was subsequently administered via intraperitoneal injection at a low and a high dose. High-dose MF significantly lowered the mortality of SAH animals and ameliorated their neurological deficits and brain edema. MF also dose-relatedly attenuated SAH-induced oxidative stress and decreased cortical cell apoptosis by influencing mitochondria-apoptotic proteins. In addition, MF downregulated the activation of the NLRP3 inflammasome and NF-κB as well as the production of inflammatory cytokines, and the expression of Nrf2 and HO-1 was upregulated by MF. The abovementioned findings indicate that MF is neuroprotective against EBI after SAH and Nrf2/HO-1 cascade may play a key role in mediating its effect through regulation of the mitochondrial apoptosis pathway and activation of the NLRP3 inflammasome and NF-κB.

  6. Diffuse optical measurements of head and neck tumor hemodynamics for early prediction of radiation therapy (Conference Presentation)

    Science.gov (United States)

    Dong, Lixin; Kudrimoti, Mahesh; Irwin, Daniel; Chen, Li; Shang, Yu; Li, Xingzhe; Stevens, Scott D.; Shelton, Brent J.; Yu, Guoqiang

    2016-03-01

    Radiation therapy is a principal modality for head and neck cancers and its efficacy depends on tumor hemodynamics. Our laboratory developed a hybrid diffuse optical instrument allowing for simultaneous measurements of tumor blood flow and oxygenation. In this study, the clinically involved cervical lymph node was monitored by the hybrid instrument once a week over the treatment period of seven weeks. Based on treatment outcomes within one year, patients were classified into a complete response group (CR) and an incomplete response group (IR) with remote metastasis and/or local recurrence. A linear mixed models was used to compare tumor hemodynamic responses to the treatment between the two groups. Interestingly, we found that human papilloma virus (HPV-16) status largely affected tumor hemodynamic responses. For HPV-16 negative tumors, significant differences in blood flow index (BFI, p = 0.007) and reduced scattering coefficient (μs', p = 0.0005) were observed between the two groups; IR tumors exhibited higher μs' values and a continuous increase in BFI over the treatment period. For HPV-16 positive tumors, oxygenated hemoglobin concentration ([HbO2]) and blood oxygen saturation (StO2) were significant different (p = 0.003 and 0.01, respectively); IR group showed lower [HbO2] and StO2. Our results imply HPV-16 negative tumors with higher density of vasculature (μs') and higher blood flow show poor responses to radiotherapy and HPV-16 positive tumors with lower tissue oxygenation level (lower StO2 and [HbO2]) exhibit poor treatment outcomes. Our diffuse optical measurements show the great potential for early prediction of radiotherapy in head and neck cancers.

  7. Results of surgical treatment versus chemoradiation therapy in oropharyngeal early tumors

    Directory of Open Access Journals (Sweden)

    Chedid, Helma Maria

    2009-03-01

    Full Text Available Introduction: The epidermoid carcinoma of the upper aerodigestive tract is diagnosed in approximately 40% of the cases of advanced clinical stages. Objective: To evaluate the disease-free interval in patients with clinical stages I and II epidermoid carcinoma who were submitted to surgery or chemoradiation. Method: Retrospective study of the records of 139 patients treated for oropharyngeal epidermoid carcinoma submitted to treatment with curative intent. Among those patients, 38 were classified with early tumors clinical stages I and II. Twenty-seven (71.1% underwent surgical treatment whereas eleven (28.9% were treated with chemoradiation. The mean age was 56.4 years; 31 cases (81.6% were in men and seven (18.4% were in women. Results: Among the eleven patients who were submitted to chemoradiation, 72.7% obtained locoregional control of the disease and their disease-free survival was of 42%. Among the 27 patients operated, 19 remained in Clinical Stages I and II in the histological report and six underwent postoperative radiation therapy. The disease-free interval for two years was of 70%. Conclusion: The patients submitted to the surgery had a better disease-free interval as compared to those submitted to chemoradiation treatment.

  8. Inhibition of telomerase with human telomerase reverse transcriptase antisense enhances tumor necrosis factor-a-induced apoptosis in bladder cancer cells

    Institute of Scientific and Technical Information of China (English)

    GAO Xiao-dong; CHEN Yi-rong

    2007-01-01

    Background Telomerase activity is found in 85%-90% of all human cancers but not in their adjacent normal cells.Human telomerase reverse transcriptase (hTERT) is an essential component in the telomerase complex that plays an important role in telomerase activity. This study investigated the effect of the telomerase inhibition with an hTERT antisense oligodeoxynucleotide (ODN) in bladder cancer cells (T24) on tumor necrosis factor-o (TNF-α)-induced apoptosis.Methods Antisense phosphorothioate oligodeoxynucleotide (AS PS-ODN) was synthesized and purified. Telomerase activity was measured by polymerase chain reaction enzyme-linked immunoassay (PCR-ELISA). hTERT mRNA expression was measured by reverse transcription polymerase chain reaction (RT-PCR) assay and a gel-image system.hTERT protein was detected by immunochemistry and flow cytometry. Cell viability was measured by the 3-(4,5-dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium (MTT) assay. Cell apoptosis was observed by a morphological method and determined by flow cytometry.Results AS PS-ODN significantly inhibited telomerase activity and decreased the levels of hTERT mRNA which preceded the decline in the telomerase activity. AS PS-ODN significantly reduced the percentage of positive cells expressing hTERT protein following the decline of hTERT mRNA levels. There was no difference seen in the telomerase activity, hTERT mRNA expression or the protein levels between the sense phosphorothioate oligodeoxynucleotide (SPS-ODN) and the control group. AS PS-ODN treatment significantly decreased the cell viability and enhanced the apoptotic rate of T24 cells in response to TNF-α while there was no difference in cell viability and apoptotic rate between the S PS-ODN and the control group.Conclusions AS PS-ODN can significantly inhibit telomerase activity by downregulating the hTERT mRNA and protein expression. Treatment with AS PS-ODN may be a potential and most promising strategy for bladder cancer with telomerase

  9. Consumption of hydrogen-rich water protects against ferric nitrilotriacetate-induced nephrotoxicity and early tumor promotional events in rats.

    Science.gov (United States)

    Li, Fang-Yin; Zhu, Shao-Xing; Wang, Zong-Ping; Wang, Hua; Zhao, Yang; Chen, Gui-Ping

    2013-11-01

    The aim of this work was to test whether consumption with hydrogen-rich water (HW) alleviated renal injury and inhibited early tumor promotional events in Ferric nitrilotriacetate (Fe-NTA)-treated rats. Rats were injected with Fe-NTA solution (7.5mg Fe/kg body weight) intraperitoneally to induce renal injury and simultaneously treated with HW (1.3 ± 0.2mg/l). We found that consumption with HW ameliorated Fe-NTA-induced renal injuries including suppressing elevation of serum creatinine and blood urea nitrogen and inhibited early tumor promotional events including decreasing ornithine decarboxylase activity and incorporation of [3H]thymidine into renal DNA. Consumption with HW suppressed Fe-NTA-induced oxidative stress through decreasing formation of lipid peroxidation and peroxynitrite and activities of NADPH oxidase and xanthine oxidase, increasing activity of catalase, and restoring mitochondrial function in kidneys. Consumption with HW suppressed Fe-NTA-induced inflammation marked by reduced NF-κB, IL-6, and MCP-1 expression and macrophage accumulating in kidneys. In addition, consumption with HW suppressed VEGF expression, STAT3 phosphorylation and PCNA expression in kidneys of Fe-NTA-treated rats. Consumption with HW decreased the incidence of renal cell carcinoma and suppressed tumor growth in Fe-NTA-treated in rats. In conclusion, drinking with HW attenuated Fe-NTA-induced renal injury and inhibited early tumor promotional events in rats.

  10. UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression.

    Science.gov (United States)

    Bromati, Carla R; Lellis-Santos, Camilo; Yamanaka, Tatiana S; Nogueira, Tatiane C A; Leonelli, Mauro; Caperuto, Luciana C; Gorjão, Renata; Leite, Adriana R; Anhê, Gabriel F; Bordin, Silvana

    2011-01-01

    Endocrine pancreas from pregnant rats undergoes several adaptations that comprise increase in β-cell number, mass and insulin secretion, and reduction of apoptosis. Lactogens are the main hormones that account for these changes. Maternal pancreas, however, returns to a nonpregnant state just after the delivery. The precise mechanism by which this reversal occurs is not settled but, in spite of high lactogen levels, a transient increase in apoptosis was already reported as early as the 3rd day of lactation (L3). Our results revealed that maternal islets displayed a transient increase in DNA fragmentation at L3, in parallel with decreased RAC-alpha serine/threonine-protein kinase (AKT) phosphorylation (pAKT), a known prosurvival kinase. Wortmannin completely abolished the prosurvival action of prolactin (PRL) in cultured islets. Decreased pAKT in L3-islets correlated with increased Tribble 3 (TRB3) expression, a pseudokinase inhibitor of AKT. PERK and eIF2α phosphorylation transiently increased in islets from rats at the first day after delivery, followed by an increase in immunoglobulin heavy chain-binding protein (BiP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in islets from L3 rats. Chromatin immunoprecipitation (ChIP) and Re-ChIP experiments further confirmed increased binding of the heterodimer ATF4/CHOP to the TRB3 promoter in L3 islets. Treatment with PBA, a chemical chaperone that inhibits UPR, restored pAKT levels and inhibited the increase in apoptosis found in L3. Moreover, PBA reduced CHOP and TRB3 levels in β-cell from L3 rats. Altogether, our study collects compelling evidence that UPR underlies the physiological and transient increase in β-cell apoptosis after delivery. The UPR is likely to counteract prosurvival actions of PRL by reducing pAKT through ATF4/CHOP-induced TRB3 expression.

  11. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels

    Energy Technology Data Exchange (ETDEWEB)

    Mertins, Philipp; Yang, Feng; Liu, Tao; Mani, DR; Petyuk, Vladislav A.; Gillette, Michael; Clauser, Karl; Qiao, Jana; Gritsenko, Marina A.; Moore, Ronald J.; Levine, Douglas; Townsend, Reid; Erdmann-Gilmore, Petra; Snider, Jacqueline E.; Davies, Sherri; Ruggles, Kelly; Fenyo, David; Kitchens, R. T.; Li, Shunqiang; Olvera, Narcisco; Dao, Fanny; Rodriguez, Henry; Chan, Daniel W.; Liebler, Daniel; White, Forest; Rodland, Karin D.; Mills, Gordon; Smith, Richard D.; Paulovich, Amanda G.; Ellis, Matthew; Carr, Steven A.

    2014-07-01

    Advances in quantitative mass spectrometry (MS)-based proteomics have sparked efforts to characterize the proteomes of tumor samples to provide complementary and unique information inaccessible by genomics. Tumor samples are usually not accrued with proteomic characterization in mind, raising concerns regarding effects of undocumented sample ischemia on protein abundance and phosphosite stoichiometry. Here we report the effects of cold ischemia time on clinical ovarian cancer samples and patient-derived basal and luminal breast cancer xenografts. Tumor tissues were excised and collected prior to vascular ligation, subjected to accurately defined ischemia times up to 60 min, and analyzed by quantitative proteomics and phosphoproteomics using isobaric tags and high-performance, multidimensional LC-MS/MS. No significant changes were detected at the protein level in each tumor type after 60 minutes of ischemia, and the majority of the >25,000 phosphosites detected were also stable. However, large, reproducible increases and decreases in protein phosphorylation at specific sites were observed in up to 24% of the phosphoproteome starting as early as 5 minutes post-excision. Early and sustained activation of stress response, transcriptional regulation and cell death pathways were observed in common across tumor types. Tissue-specific changes in phosphosite stability were also observed suggesting idiosyncratic effects of ischemia in particular lineages. Our study provides insights into the information that may be obtained by proteomic characterization of tumor samples after undocumented periods of ischemia, and suggests caution especially in interpreting activation of stress pathways in such samples as they may reflect sample handling rather than tumor physiology.

  12. Early detection of poor outcome in patients with metastatic colorectal cancer: tumor kinetics evaluated by circulating tumor cells

    Directory of Open Access Journals (Sweden)

    Souza e Silva V

    2016-12-01

    Full Text Available Virgílio Souza e Silva,1 Ludmilla Thomé Domingos Chinen,2 Emne A Abdallah,2 Aline Damascena,2 Jociana Paludo,3 Rubens Chojniak,3 Aldo Lourenço Abbade Dettino,1 Celso Abdon Lopes de Mello,1 Vanessa S Alves,2 Marcello F Fanelli1 1Department of Clinical Oncology, 2International Research Center, 3Image Department, A. C. Camargo Cancer Center, São Paulo, Brazil Background: Colorectal cancer (CRC is the third most prevalent cancer worldwide. New prognostic markers are needed to identify patients with poorer prognosis, and circulating tumor cells (CTCs seem to be promising to accomplish this.Patients and methods: A prospective study was conducted by blood collection from patients with metastatic CRC (mCRC, three times, every 2 months in conjunction with image examinations for evaluation of therapeutic response. CTC isolation and counting were performed by Isolation by Size of Epithelial Tumor Cells (ISET.Results: A total of 54 patients with mCRC with a mean age of 57.3 years (31–82 years were included. Among all patients, 60% (n=32 were carriers of wild-type KRAS (WT KRAS tumors and 90% of them (n=29 were exposed to monoclonal antibodies along with systemic treatment. Evaluating CTC kinetics, when we compared the baseline (pretreatment CTC level (CTC1 with the level at first follow-up (CTC2, we observed that CTC1-positive patients (CTCs above the median, who became negative (CTCs below the median had a favorable evolution (n=14, with a median progression-free survival (PFS of 14.7 months. This was higher than that for patients with an unfavorable evolution (CTC1– that became CTC2+; n=13, 6.9 months; P=0.06. Patients with WT KRAS with favorable kinetics had higher PFS (14.7 months in comparison to those with WT KRAS with unfavorable kinetics (9.4 months; P=0.02. Moreover, patients whose imaging studies showed radiological progression had an increased quantification of CTCs at CTC2 compared to those without progression (P=0.04.Conclusion

  13. Low Incidence of Synchronous or Metachronous Tumors after Endoscopic Submucosal Dissection for Early Gastric Cancer with Undifferentiated Histology.

    Directory of Open Access Journals (Sweden)

    Chan Hyuk Park

    Full Text Available Gastric cancer with undifferentiated histology has different clinicopathologic characteristics compared to differentiated type gastric cancer. We aimed to compare the risk of synchronous or metachronous tumors after curative resection of early gastric cancer (EGC via endoscopic submucosal dissection (ESD, according to the histologic differentiation of the primary lesion.Clinicopathological data of patients with initial-onset EGC curatively resected via ESD between January 2007 and November 2014 in a single institution were reviewed. We analyzed the incidence of synchronous or metachronous tumors after ESD with special reference to the differentiation status of the primary lesion.Of 1,560 patients with EGC who underwent curative resection via ESD, 1,447 had differentiated type cancers, and 113 had undifferentiated type cancers. The cumulative incidence of metachronous or synchronous tumor after ESD was higher in the differentiated cancer group than in the undifferentiated cancer group (P = 0.008. Incidence of metachronous or synchronous tumor was 4.8% and 1.2% per person-year in the differentiated and undifferentiated cancer groups, respectively. The Cox proportional hazard model revealed that undifferentiated cancers were associated with a low risk of synchronous or metachronous tumors after adjusting for confounding variables (hazard ratio [95% confidence interval] = 0.287 [0.090-0.918].The rate of synchronous or metachronous tumors after curative ESD was significantly lower for undifferentiated cancers compare to differentiated cancers. These findings suggest that ESD should be actively considered as a possible treatment for undifferentiated type EGCs.

  14. Apoptosis : Target of cancer therapy

    NARCIS (Netherlands)

    Ferreira, CG; Epping, M; Kruyt, FAE; Giaccone, G

    2002-01-01

    Recent knowledge on apoptosis has made it possible to devise novel approaches, which exploit this process to treat cancer. In this review, we discuss in detail approaches to induce tumor cell apoptosis, their mechanism of action, stage of development, and possible drawbacks. Finally, the obstacles y

  15. Apoptosis : Target of cancer therapy

    NARCIS (Netherlands)

    Ferreira, CG; Epping, M; Kruyt, FAE; Giaccone, G

    2002-01-01

    Recent knowledge on apoptosis has made it possible to devise novel approaches, which exploit this process to treat cancer. In this review, we discuss in detail approaches to induce tumor cell apoptosis, their mechanism of action, stage of development, and possible drawbacks. Finally, the obstacles y

  16. Programmed cell death 2 protein induces gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis in a p53-dependent manner.

    Science.gov (United States)

    Zhang, Jian; Wei, Wei; Jin, Hui-Cheng; Ying, Rong-Chao; Zhu, A-Kao; Zhang, Fang-Jie

    2015-01-01

    Programmed cell death 2 (PDCD2) is a highly conserved nuclear protein, and aberrant PDCD2 expression alters cell apoptosis. The present study aimed to investigate PDCD2 expression in gastric cancer. Tissue specimens from 34 gastric cancer patients were collected for analysis of PDCD2 expression using immunohistochemistry, western blotting and qRT-PCR. Gastric cancer cell lines (a p53-mutated MKN28 line and a wild-type p53 MKN45 line) were used to assess the effects of PDCD2 overexpression. p53-/- nude mice were used to investigate the effect of PDCD2 on ultraviolet B (UVB)-induced skin carcinogenesis. The data showed that PDCD2 expression was reduced in gastric cancer tissue specimens, and loss of PDCD2 expression was associated with the poor survival of patients. PDCD2 expression induced gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis. The antitumor effects of PDCD2 expression were dependent on p53 expression in gastric cancer cells. Moreover, PDCD2 expression inhibited activity of the ATM/Chk1/2/p53 signaling pathway. In addition, PDCD2 expression suppressed UVB-induced skin carcinogenesis in p53+/+ nude mice, but not in p53-/- mice. The data from the present study demonstrated that loss of PDCD2 expression could contribute to gastric cancer development and progression and that PDCD2-induced gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis are p53-dependent.

  17. Novel miR-5582-5p functions as a tumor suppressor by inducing apoptosis and cell cycle arrest in cancer cells through direct targeting of GAB1, SHC1, and CDK2.

    Science.gov (United States)

    An, Hyun-Ju; Kwak, Seo-Young; Yoo, Je-Ok; Kim, Jae-Sung; Bae, In-Hwa; Park, Myung-Jin; Cho, Mee-Yon; Kim, Joon; Han, Young-Hoon

    2016-10-01

    MicroRNAs (miRNAs) play pivotal roles in tumorigenesis as either tumor suppressors or oncogenes. In the present study, we discovered and demonstrated the tumor suppressive function of a novel miRNA miR-5582-5p. miR-5582-5p induced apoptosis and cell cycle arrest in cancer cells, but not in normal cells. GAB1, SHC1, and CDK2 were identified as direct targets of miR-5582-5p. Knockdown of GAB1/SHC1 or CDK2 phenocopied the apoptotic or cell cycle arrest-inducing function of miR-5582-5p, respectively. The expression of miR-5582-5p was lower in tumor tissues than in adjacent normal tissues of colorectal cancer patients, while the expression of the target proteins exhibited patterns opposite to that of miR-5582-5p. Intratumoral injection of a miR-5582-5p mimic or induced expression of miR-5582-5p in tumor cells suppressed tumor growth in HCT116 xenografts. Collectively, our results suggest a novel tumor suppressive function for miR-5582-5p and its potential applicability for tumor control.

  18. Early Growth Response1and Fatty Acid Synthase Expression is Altered in Tumor Adjacent Prostate Tissue and Indicates Field Cancerization

    Science.gov (United States)

    Jones, Anna C.; Trujillo, Kristina A.; Phillips, Genevieve K.; Fleet, Trisha M.; Murton, Jaclyn K.; Severns, Virginia; Shah, Satyan K.; Davis, Michael S.; Smith, Anthony Y.; Griffith, Jeffrey K.; Fischer, Edgar G.; Bisoffi, Marco

    2011-01-01

    BACKGROUND Field cancerization denotes the occurrence of molecular alterations in histologically normal tissues adjacent to tumors. In prostate cancer, identification of field cancerization has several potential clinical applications. However, prostate field cancerization remains ill defined. Our previous work has shown up-regulated mRNA of the transcription factor early growth response 1 (EGR-1) and the lipogenic enzyme fatty acid synthase (FAS) in tissues adjacent to prostate cancer. METHODS Immunofluorescence data were analyzed quantitatively by spectral imaging and linear unmixing to determine the protein expression levels of EGR-1 and FAS in human cancerous, histologically normal adjacent, and disease-free prostate tissues. RESULTS EGR-1 expression was elevated in both structurally intact tumor adjacent (1.6× on average) and in tumor (3.0× on average) tissues compared to disease-free tissues. In addition, the ratio of cytoplasmic versus nuclear EGR-1 expression was elevated in both tumor adjacent and tumor tissues. Similarly, FAS expression was elevated in both tumor adjacent (2.7× on average) and in tumor (2.5× on average) compared to disease-free tissues. CONCLUSIONS EGR-1 and FAS expression is similarly deregulated in tumor and structurally intact adjacent prostate tissues and defines field cancerization. In cases with high suspicion of prostate cancer but negative biopsy, identification of field cancerization could help clinicians target areas for repeat biopsy. Field cancerization at surgical margins on prostatectomy specimen should also be looked at as a predictor of cancer recurrence. EGR-1 and FAS could also serve as molecular targets for chemoprevention. PMID:22127986

  19. Astaxanthin protects against early burn-wound progression in rats by attenuating oxidative stress-induced inflammation and mitochondria-related apoptosis

    Science.gov (United States)

    Fang, Quan; Guo, Songxue; Zhou, Hanlei; Han, Rui; Wu, Pan; Han, Chunmao

    2017-01-01

    Burn-wound progression can occur in the initial or peri-burn area after a deep burn injury. The stasis zone has a higher risk of deterioration mediated by multiple factors but is also considered salvageable. Astaxanthin (ATX), which is extracted from some marine organisms, is a natural compound with a strong antioxidant effect that has been reported to attenuate organ injuries caused by traumatic injuries. Hence, we investigated the potential effects of ATX on preventing early burn-wound progression. A classic “comb” burn rat model was established in this study for histological and biological assessments, which revealed that ATX, particularly higher doses, alleviated histological deterioration in the stasis zone. Additionally, we observed dose-dependent improvements in oxidative stress and the release of inflammatory mediators after ATX treatment. Furthermore, ATX dose-dependently attenuated burn-induced apoptosis in the wound areas, and this effect was accompanied by increases in Akt and Bad phosphorylation and a downregulation of cytochrome C and caspase expression. In addition, the administration of Ly 294002 further verified the effect of ATX. In summary, we demonstrated that ATX protected against early burn-wound progression in a rat deep-burn model. This protection might be mediated by the attenuation of oxidative stress-induced inflammation and mitochondria-related apoptosis. PMID:28128352

  20. CBP and Extracellular Matrix-Induced Apoptosis in p53(-) HMECs: A Model of Early Mammary Carcinogenesis

    Science.gov (United States)

    2006-09-01

    and Biomarker Development 3) Funding pending: a. DOD SIDA . Conclusions: In this report we demonstrate that suppression of the CREBP binding...molecular mechanism of Tam-induced apoptosis in acutely damaged HMECs. Acute cellular damage was modeled via expression of the human papilloma virus ...with virus . After 48 h two flasks containing transduced cells and one flask with untransduced cells were passaged 1 : 3 (passage 10) and selected

  1. Role of interferon gamma and tumor necrosis factor-related apoptosis-inducing ligand receptor 1 single nucleotide polymorphism in natural clearance and treatment response of HCV infection.

    Science.gov (United States)

    Azam, Sikandar; Manzoor, Sobia; Imran, Muhammad; Ashraf, Javed; Ashraf, Sarah; Resham, Saleha; Ghani, Eijaz

    2015-05-01

    Hepatitis C virus (HCV) pathogenesis and treatment outcomes are multifactorial phenomena involving both viral and host factors. This study was designed to determine the role of tumor necrosis factor-related apoptosis-inducing ligand receptor 1(TRAIL-R1) and interferon gamma (IFN-γ) genetic mutations in susceptibility and response to interferon-based therapy of hepatitis C virus (HCV) infection. The detection of TRAIL-R1 rs4242392 and IFN-γ rs2069707 single nucleotide polymorphisms was completed in 118 chronic HCV patients and 96 healthy controls by allele-specific polymerase chain reaction and restriction fragment length polymorphisms polymerase chain reaction. Patients were further categorized into sustained virological responder (SVR) and nonresponder (NR) groups on the basis of their response to interferon-based therapy for HCV infection. Real-time PCR was used for HCV quantification. HCV genotyping was performed by Ohno's method. The results demonstrated that the distribution of the TRAIL-R1 rs4242392TT genotype was significantly higher in the SVR group (78%) compared to the NR group (36%). It showed that chronic HCV patients possessing the TRAIL-R1 rs4242392TT genotype are better responders to interferon-based therapy (p0.05). The distribution of IFN-γ rs2069707 was the opposite to TRAIL-R1 rs4242392 prevalence, that is, there was high distribution of the IFN-γ rs2069707GG genotype in patients and healthy controls (p0.05). In conclusion, genetic variation of TRAIL-R1 rs4242392 is linked with response to interferon-based therapy for HCV infection, and genetic variation IFN-γ rs2069707 is associated with natural clearance of HCV infection.

  2. The nuclear factor κB family member RelB facilitates apoptosis of renal epithelial cells caused by cisplatin/tumor necrosis factor α synergy by suppressing an epithelial to mesenchymal transition-like phenotypic switch.

    Science.gov (United States)

    Benedetti, Giulia; Fokkelman, Michiel; Yan, Kuan; Fredriksson, Lisa; Herpers, Bram; Meerman, John; van de Water, Bob; de Graauw, Marjo

    2013-07-01

    Cis-diamminedichloroplatinum(II) (cisplatin)-induced renal proximal tubular apoptosis is known to be preceded by actin cytoskeleton reorganization, in conjunction with disruption of cell-matrix and cell-cell adhesion. In the present study, we show that the proinflammatory cytokine tumor necrosis factor α (TNF-α) aggravated these cisplatin-induced F-actin and cell adhesion changes, which was associated with enhanced cisplatin-induced apoptosis of immortalized proximal tubular epithelial cells. TNF-α-induced RelB expression and lentiviral small hairpin RNA (shRNA)-mediated knockdown of RelB, but not other nuclear factor κB members, abrogated the synergistic apoptosis observed with cisplatin/TNF-α treatment to the level of cisplatin-induced apoptosis. This protective effect was associated with increased stress fiber formation, cell-matrix, and cell-cell adhesion in the shRNARelB (shRelB) cells during cisplatin/TNF-α treatment, mimicking an epithelial-to-mesenchymal phenotypic switch. Indeed, gene array analysis revealed that knockdown of RelB was associated with upregulation of several actin regulatory genes, including Snai2 and the Rho GTPase proteins Rhophilin and Rho guanine nucleotide exchange factor 3 (ARHGEF3). Pharmacological inhibition of Rho kinase signaling re-established the synergistic apoptosis induced by combined cisplatin/TNF-α treatment of shRelB cells. In conclusion, our study shows for the first time that RelB is required for the cisplatin/TNF-α-induced cytoskeletal reorganization and apoptosis in renal cells by controlling a Rho kinase-dependent signaling network.

  3. Treatment of early arthritis using arthrofoon (ultra-low doses of antibodies to tumor necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Lyudmila V Sizova

    2011-01-01

    Full Text Available The main aim of treatment of early rheumatoid arthritis (RA should be to achieve clinical remission to prevent structural damage and physical disability. Arthrofoon modifies production/activity of endogenous inhibitors of tumor necrosis factor-α (TNF-α. The sublingual rout is the most acceptable to ambulatory treatment because it does not produce the adverse reactions associated with intravenous therapy. The treatment with arthrofoon in outpatient with early RA is analyzed here. This report is devoted to the 28-year-old Russian woman who received arthrofoon due to suspicion of early RA. The strategy of early prescription of ultra-low doses of TNF-α antibody within two years was confirmed by the clinical improvement and delay of radiological disease progression in patient with undifferentiated arthritis or probable RA initially.

  4. A20 zinc finger protein inhibits TNF-induced apoptosis and stress response early in the signaling cascades and independently of binding to TRAF2 or 14-3-3 proteins.

    Science.gov (United States)

    Lademann, U; Kallunki, T; Jäättelä, M

    2001-03-01

    A20 zinc finger protein is a negative regulator of tumor necrosis factor (TNF)-induced signaling pathways leading to apoptosis, stress response and inflammation. A20 has been shown to bind to TNF-receptor-associated factor 2 (TRAF2) and 14-3-3 chaperone proteins. Our data indicate that the zinc finger domain of A20 is sufficient and that neither TRAF2 nor 14-3-3 binding is necessary for the inhibitory effects of A20. Mutations in the 14-3-3 binding site of A20 did, however, result in a partial cleavage of A20 protein suggesting that 14-3-3 chaperone proteins may stabilize A20. Furthermore, we show that A20 acts early in TNF-induced signaling cascades blocking both TNF-induced rapid activation of c-Jun N-terminal kinase and processing of the receptor-associated caspase-8. Taken together our data indicate that the zinc finger domain of A20 contains all necessary functional domains required for the inhibition of TNF signaling and that A20 may function at the level of the receptor signaling complex.

  5. Will imaging of apoptosis play a role in clinical care? A tale of mice and men.

    Science.gov (United States)

    Blankenberg, F G; Strauss, H W

    2001-01-01

    Programmed cell death (apoptosis) plays a role in the pathophysiology of many diseases and in the outcome of treatment. Apoptosis is the likely mechanism behind the cytoreductive effects of standard chemotherapeutic and radiation treatments, rejection of organ transplants, cellular damage in collagen vascular disorders, and delayed cell death due to hypoxic-ischemic injury in myocardial infarction and neonatal hypoxic ischemic injury. Observations about the role of apoptosis have fueled the development of novel agents and treatment strategies specifically aimed at inducing or inhibiting apoptosis. Despite these research developments there are no clinical entities where specific measures of apoptosis are used in either diagnosis or patient management. Part of the difficulty in bridging the gap between the basic science understanding of apoptosis and the clinical application of this information is the lack of a sensitive marker to monitor programmed cell death in association with disease progression or regression. Technetium-99m labeled annexin V localizes at sites of apoptosis in-vivo, due to its nanomolar affinity for membrane bound phosphatidylserine. Radiolabeled annexin V imaging permits identification of the site and extent of apoptosis in experimental animals. Annexin V has been successfully used in animal models to image organ transplant rejection, characterize successful therapy of tumors, pinpoint acute myocardial infarction, and identify hypoxic ischemic brain injury of the newborn and adult. Early studies in human subjects suggest that 99mTc annexin imaging will be also be useful to identify rejection in transplant recipients, localize acute myocardial infarction, and characterize the effectiveness of a single treatment in patients with tumors. This review describes the imaging approaches to detect and monitor apoptosis in-vivo that are presently in early clinical trials. The preliminary data are extrapolated to identify conditions where apoptosis imaging

  6. Raman spectroscopic detection of early stages in DMBA-induced tumor evolution in hamster buccal pouch model: an exploratory study

    Science.gov (United States)

    Ghanate, Avinash D.; Kumar, G.; Talathi, Sneha; Maru, G. B.; Krishna, C. Murali

    2011-08-01

    Oral cancers are the serious health problem in developing as well as developed world, and more so in India and other south Asian countries. Survival rate of these cancers, despite advances in treatment modalities are one of the poorest which is attributed to lack of reliable screening and early detection methods. The hamster buccal pouch (HBP)carcinogenesis model closely mimics human oral cancers. Optical spectroscopy methods are sensitive enough to detect subtle biochemical changes and thus hold great potential in early detection of cancers. However, efficacy of these techniques in classifying of sequential evolution of tumors has never been tested. Therefore, in this study, we have explored the feasibility of Raman spectroscopic classification of different stages of cancers in hamster model. Strong vibrational modes of lipids (1440, 1654, and 1746 cm-1) are seen in control tissue spectra, whereas strong protein bands are seen in spectra of DMBA treated tissues. These differences were exploited to classify control and treated tissues using Linear Discriminant Analysis (LDA), Principle Component Analysis (PCA)-Limit test, Factorial Discriminant Analysis (FDA), Quadratic Discriminant Analysis (QDA), PLS-DA and non- linear decision tree methods. All these techniques have shown good classification between spectra of different stages of tumor evolution and results were further successfully verified by leave-one-out and single blinded methods. Thus findings of this study, first of its kind,demonstrate the feasibility of Raman spectroscopic detection of early changes in tumor evolution.

  7. Early effects of combretastatin-A4 disodium phosphate on tumor perfusion and interstitial fluid pressure

    DEFF Research Database (Denmark)

    Ley, C.D.; Horsman, Michael Robert; Kristjansen, P.E.G.

    2007-01-01

    of the tumor vasculature. It has been proposed that increased permeability causes a transient increase in interstitial fluid pressure (IFP), which in turn could collapse intratumoral blood vessels. We examined the immediate effects of CA4DP on tumor IFP in C3H mammary carcinoma. Mice were treated with 100 mg...

  8. Opposing roles for CD34 in B16 melanoma tumor growth alter early stage vasculature and late stage immune cell infiltration.

    Directory of Open Access Journals (Sweden)

    Steven Maltby

    Full Text Available Tumor growth and metastasis are determined by the complex interplay of factors, including those intrinsic to tumor cells and extrinsic factors associated with the tumor microenvironment. Our previous work demonstrated key roles for CD34 in the maintenance of vascular integrity and eosinophil and mast cell homing. Since both of these functions affect tumor development, we characterized the effect of CD34 ablation on tumor growth using the B16F1 melanoma model. Intriguingly, we found that CD34 plays a biphasic role in tumor progression. In early growth, both subcutaneous-injected tumors and intravenous-injected lung metastases grew more slowly in Cd34(-/- mice. This correlated with abnormal vessel morphology and increased vascular permeability in these mice. Bone marrow transplantation experiments confirmed that this reflects a non-hematopoietic function of CD34. At later stages, subcutaneous tumor growth was accelerated in Cd34(-/- mice and surpassed growth in wildtype mice. Bone marrow chimera experiments demonstrated this difference was due to a hematopoietic function for CD34 and, correspondingly we found reduced intra-tumor mast cell numbers in Cd34(-/- mice. In aggregate, our analysis reveals a novel role for CD34 in both early and late tumor growth and provides novel insights into the role of the tumor microenvironment in tumor progression.

  9. Apoptosis is signalled early by low doses of ionising radiation in a radiation-induced bystander effect

    Energy Technology Data Exchange (ETDEWEB)

    Furlong, Hayley, E-mail: hayley.furlong@dit.ie [DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); Mothersill, Carmel [Medical Physics and Applied Radiation Sciences, Nuclear Research Building, 1280 Hamilton, Ontario L8S 4K1 (Canada); Lyng, Fiona M. [DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); Howe, Orla [DIT Centre for Radiation and Environmental Science, Focas Research Institute, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland); School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin St, Dublin 8 (Ireland)

    2013-01-15

    Highlights: ► Molecular mechanisms involved in the production of a radiation induced bystander effect are not well known. ► We investigate gene expression changes in apoptotic genes in both direct and bystander responses. ► We demonstrate initiation of the apoptotic cascade in a bystander response. ► Lower doses reveal a specific but differential response related to apoptosis compared to higher doses. - Abstract: It is known that ionising radiation (IR) induces a complex signalling apoptotic cascade post-exposure to low doses ultimately to remove damaged cells from a population, specifically via the intrinsic pathway. Therefore, it was hypothesised that bystander reporter cells may initiate a similar apoptotic response if exposed to low doses of IR (0.05 Gy and 0.5 Gy) and compared to directly irradiated cells. Key apoptotic genes were selected according to their role in the apoptotic cascade; tumour suppressor gene TP53, pro-apoptotic Bax and anti-apoptotic Bcl2, pro-apoptotic JNK and anti-apoptotic ERK, initiator caspase 2 and 9 and effector caspase 3, 6 and 7. The data generated consolidated the role of apoptosis following direct IR exposure for all doses and time points as pro-apoptotic genes such as Bax and JNK as well as initiator caspase 7 and effector caspase 3 and 9 were up-regulated. However, the gene expression profile for the bystander response was quite different and more complex in comparison to the direct response. The 0.05 Gy dose point had a more significant apoptosis gene expression profile compared to the 0.5 Gy dose point and genes were not always expressed within 1 h but were sometimes expressed 24 h later. The bystander data clearly demonstrates initiation of the apoptotic cascade by the up-regulation of TP53, Bax, Bcl-2, initiator caspase 2 and effector caspase 6. The effector caspases 3 and 7 of the bystander samples demonstrated down-regulation in their gene expression levels at 0.05 Gy and 0.5 Gy at both time points therefore not

  10. NVP-BKM120 potentiates apoptosis in tumor necrosis factor-related apoptosis-inducing ligand-resistant glioma cell lines via upregulation of Noxa and death receptor 5.

    Science.gov (United States)

    Foster, Kimberly A; Jane, Esther P; Premkumar, Daniel R; Morales, Alejandro; Pollack, Ian F

    2015-08-01

    We previously observed that glioma cells are differentially sensitive to TRAIL-induced toxicity. Based on our observation that TRAIL-resistant glioma cell lines typically exhibited high levels of Akt activation, we hypothesized that inhibition of Akt signaling using the PI3 kinase inhibitor NVP-BKM120 could promote TRAIL-induced apoptosis in gliomas. We assessed this combination in established and primary cultured glioma cells. Combination treatment led to significant cellular death when compared to either drug alone, but had no effect in normal human astrocytes, and demonstrated activation of the caspase cascade. This enhanced apoptosis appears dependent upon the loss of mitochondrial membrane potential and the release of Smac/DIABLO, AIF and cytochrome c into the cytosol. The upregulation of Noxa and sequestration of Mcl-1 by Noxa were important factors for cell death. Knockdown of Noxa abrogated apoptosis and suggested dependency on Noxa in combination-induced apoptosis. BKM120 upregulated cell surface expression of death receptor 5 (DR5), but did not increase levels of the other major TRAIL receptor, death receptor 4 (DR4). This study demonstrates that antagonizing apoptosis-resistance pathways, such as the PI3/Akt pathway, in combination with death receptor activation, may induce cell death in TRAIL-resistant glioma.

  11. Inhibitory effects of vitamin E on osteocyte apoptosis and DNA oxidative damage in bone marrow hemopoietic cells at early stage of steroid-induced femoral head necrosis.

    Science.gov (United States)

    Jia, Yan-Bo; Jiang, Dian-Ming; Ren, Yi-Zhong; Liang, Zi-Hong; Zhao, Zhen-Qun; Wang, Yu-Xin

    2017-04-01

    Apoptosis and DNA oxidative damage serve significant roles in the pathogenesis of steroid‑induced femoral head necrosis. Vitamin E demonstrates anti‑apoptotic and anti‑oxidant properties. Therefore, the present study investigated the effects of vitamin E on osteocyte apoptosis and DNA oxidative damage in bone marrow hemopoietic cells at an early stage of steroid‑induced femoral head osteonecrosis. Japanese white rabbits were randomly divided into three groups (steroid, vitamin E‑treated, and control groups), each comprising 12 rabbits. Those in the steroid group (group S) were initially injected twice with an intravenous dose of 100 µg/kg Escherichia coli endotoxin, with a 24 h interval between the two injections, and then with an intramuscular dose of 20 mg/kg methylprednisolone, three times at intervals of 24 h in order to establish a rabbit model of osteonecrosis. The vitamin E treated group (group E) received the same treatment as group S, and were administered 0.6 g/kg/d vitamin E daily from the beginning of modeling. The control group (group C) was injected with normal saline at the equivalent dosage and times as the aforementioned two groups. Two time points, weeks 4 and 6 following the completion of modeling, were selected. Osteonecrosis was verified by histopathology with hematoxylin-eosin staining. The apoptosis rate of osteonecrosis was analyzed by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The apoptosis expression levels of caspase‑3 and B‑cell lymphoma 2 (Bcl‑2), and DNA oxidative damage of bone marrow hematopoietic cells were analyzed by immunohistochemistry. At weeks 4 and 6 following the completion of modeling, the vacant bone lacunae rates of group E were 15.87±1.97 and 25.09±2.67%, respectively, lower than the results of 20.02±2.21 and 27.79±1.39% for group S; and the osteocyte apoptosis indexes of group E were 20.99±2.95 and 33.93±1.62%, respectively, lower than the results

  12. Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC, in tumor cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Hofman Florence M

    2006-05-01

    Full Text Available Abstract Background 2,5-Dimethyl-celecoxib (DMC is a close structural analog of the selective cyclooxygenase-2 (COX-2 inhibitor celecoxib (Celebrex® that lacks COX-2-inhibitory function. However, despite its inability to block COX-2 activity, DMC is able to potently mimic the anti-tumor effects of celecoxib in vitro and in vivo, indicating that both of these drugs are able to involve targets other than COX-2 to exert their recognized cytotoxic effects. However, the molecular components that are involved in mediating these drugs' apoptosis-stimulatory consequences are incompletely understood. Results We present evidence that celecoxib and DMC are able to down-regulate the expression of survivin, an anti-apoptotic protein that is highly expressed in tumor cells and known to confer resistance of such cells to anti-cancer treatments. Suppression of survivin is specific to these two drugs, as other coxibs (valdecoxib, rofecoxib or traditional NSAIDs (flurbiprofen, indomethacin, sulindac do not affect survivin expression at similar concentrations. The extent of survivin down-regulation by celecoxib and DMC in different tumor cell lines is somewhat variable, but closely correlates with the degree of drug-induced growth inhibition and apoptosis. When combined with irinotecan, a widely used anticancer drug, celecoxib and DMC greatly enhance the cytotoxic effects of this drug, in keeping with a model that suppression of survivin may be beneficial to sensitize cancer cells to chemotherapy. Remarkably, these effects are not restricted to in vitro conditions, but also take place in tumors from drug-treated animals, where both drugs similarly repress survivin, induce apoptosis, and inhibit tumor growth in vivo. Conclusion In consideration of survivin's recognized role as a custodian of tumor cell survival, our results suggest that celecoxib and DMC might exert their cytotoxic anti-tumor effects at least in part via the down-regulation of survivin – in a

  13. 家蝇抗菌肽Cecropin对人源性肿瘤细胞增殖与凋亡的影响%Effect of antimicrobial peptide cecropin of Musca domestica on proliferation and apoptosis of human tumor cell

    Institute of Scientific and Technical Information of China (English)

    金小宝; 龚水明; 蒲俏虹; 朱家勇; 褚夫江; 梅寒芳

    2012-01-01

    Objective To observe the effect of antimicrobial peptide cecropin of Musca domestica on proliferation and apoptosis of human tumor cells in vitro. Methods Hie effect of housefly antimicrobial peptide cecropin on human lung cancer cell line A549, human breast cancer cell line MCF-7, human cervical cancer cell line Hela, human hepatoma cell line BEL -7402 and human normal liver cell line Changs, Liver was investigated by MTT colorimetric assay. The apoptosis of tumor cell were investigated by flow cytometry, and control group without cecropin. Result The growth of human tumor cells was inhibited by cecropin, and cecropin could induce apoptosis of tumor cells, but the effect on human liver cancer BEL-7402 cells was the strongest. Conclusion Housefly antimicrobial peptide cecropin pan affect growth and apoptosis of human tumor cell, but the mechanism needs further studying.%目的 分析家蝇抗菌肽Cecropin对人源性肿瘤细胞体外生长增殖与凋亡的影响.方法 采用四甲基偶氮噻唑蓝(MTT)MTT比色法测定家蝇抗菌肽Cecropin对人肺癌细胞株A549、人乳腺癌细胞株MCF-7、人宫颈癌细胞株Hela、人肝癌细胞株BEL-7402和人正常肝细胞株Changs,Liver生长增殖情况的影响,采用流式细胞术检测家蝇抗菌肽Cecropin作用后4株肿瘤细胞凋亡的情况,对照组不加家蝇抗菌肽Cecropin.结果 家蝇抗菌肽Cecropin对4株人源性肿瘤细胞的生长均有抑制作用,并能诱导肿瘤细胞发生凋亡,但对人肝癌细胞BEL-7402作用效果相对较强.结论 家蝇抗菌肽Cecropin能够影响人源性肿瘤细胞的生长与凋亡,作用机制