WorldWideScience

Sample records for early solar system

  1. Meteorites: messengers from the early solar system.

    Science.gov (United States)

    Hofmann, Beda A

    2010-01-01

    Meteorites are fragments from solar system bodies, dominantly asteroids. A small fraction is derived from the Moon and from Mars. These rocks tell a rich history of the early solar system and range from solids little changed since the earliest phases of solid matter condensation in the solar nebula (chondrites) to material representing asteroidal metamorphism and melting, impact processes on the Moon and even aqueous alteration near the surface of Mars. Meteorites are very rare. Currently many meteorites result from searches in Antarctica and the hot deserts of North Africa and Arabia. The present high find rate likely represents a unique short-term event, asking for a careful management of this scarce scientific resource.

  2. Water delivery in the Early Solar System

    CERN Document Server

    Dvorak, Rudolf; Süli, Áron; Sándor, Zsolt; Galiazzo, Mattia; Pilat-Lohinger, Elke

    2015-01-01

    As part of the national scientific network 'Pathways to Habitable Worlds' the delivery of water onto terrestrial planets is a key question since water is essential for the development of life as we know it. After summarizing the state of the art we show some first results of the transport of water in the early Solar System for scattered main belt objects. Hereby we investigate the questions whether planetesimals and planetesimal fragments which have gained considerable inclination due to the strong dynamical interactions in the main belt region around 2 AU can be efficient water transporting vessels. The Hungaria asteroid group is the best example that such scenarios are realistic. Assuming that the gas giants and the terrestrial planets are already formed, we monitor the collisions of scattered small bodies containing water (in the order of a few percent) with the terrestrial planets. Thus we are able to give a first estimate concerning the respective contribution of such bodies to the actual water content i...

  3. Aluminum-26 in the early solar system - Fossil or fuel

    Science.gov (United States)

    Lee, T.; Papanastassiou, D. A.; Wasserburg, G. J.

    1977-01-01

    The isotopic composition of Mg was measured in different phases of a Ca-Al-rich inclusion in the Allende meteorite. Large excesses of Mg-26 of up to 10% were found. These excesses correlate strictly with the Al-27/Mg-24 ratio for four coexisting phases with distinctive chemical compositions. Models of in situ decay of Al-26 within the solar system and of mixing of interstellar dust grains containing fossil Al-26 with normal solar system material are presented. The observed correlation provides definitive evidence for the presence of Al-26 in the early solar system. This requires either injection of freshly synthesized nucleosynthetic material into the solar system immediately before condensation and planet formation, or local production within the solar system by intense activity of the early sun. Planets promptly produced from material with the inferred Al-26/Al-27 would melt within about 300,000 years.

  4. Aluminum-26 in the early solar system - Fossil or fuel

    Science.gov (United States)

    Lee, T.; Papanastassiou, D. A.; Wasserburg, G. J.

    1977-01-01

    The isotopic composition of Mg was measured in different phases of a Ca-Al-rich inclusion in the Allende meteorite. Large excesses of Mg-26 of up to 10% were found. These excesses correlate strictly with the Al-27/Mg-24 ratio for four coexisting phases with distinctive chemical compositions. Models of in situ decay of Al-26 within the solar system and of mixing of interstellar dust grains containing fossil Al-26 with normal solar system material are presented. The observed correlation provides definitive evidence for the presence of Al-26 in the early solar system. This requires either injection of freshly synthesized nucleosynthetic material into the solar system immediately before condensation and planet formation, or local production within the solar system by intense activity of the early sun. Planets promptly produced from material with the inferred Al-26/Al-27 would melt within about 300,000 years.

  5. Analogs of the early solar system.

    Science.gov (United States)

    Koerner, D W

    1997-06-01

    Within the last few decades, the existence of protoplanetary disks has been inferred on the basis of emission from T Tauri stars that does not arise from a stellar photosphere. More recently, high-resolution interferometric techniques have resolved the dust continuum emission, and millimeter arrays have imaged circumstellar molecular gas. These measurements corroborate the disk interpretation; many T Tauri stars are surrounded by centrifugally supported circumstellar disks with radial sizes of order 100 AU. Further proof issues from Hubble Space Telescope images of disks that are illuminated externally. The morphology of circumstellar dust is revealed in striking detail and affirms the prevalence and dimensions of disks imaged at longer wavelengths. The fate of circumstellar material around young stars must be understood in order to discern the degree to which these disks are proto-planetary. Observational studies of circumstellar disks which are in the beginning of a dispersal phase are challenging and place great demands on astronomical techniques. Nevertheless, the connection between disks and the formation of extra-solar planets is supported by increasing circumstantial evidence. Optically thin dust continuum emission persists in T Tauri stars and is detected around some young main sequence stars. Since the dust is subject to rapid dispersal by radiation pressure and Poynting-Robertson drag, some mechanism of replenishment is required. Disks around nearby young main sequence stars show evidence for inner voids and disk asymmetries that should also disappear on short timescales. The presence of large orbiting bodies which collide and interact with the resulting debris can explain both the persistence of optically thin dust and the maintenance of otherwise-ephemeral dynamical features. Together with recent detections of extra-solar planets, these observations lend some support to the hypothesis that circumstellar disks commonly give birth to planetary systems.

  6. Pb-Pb chronometry and the early Solar System

    Science.gov (United States)

    Connelly, J. N.; Bollard, J.; Bizzarro, M.

    2017-03-01

    Of the long-lived chronometric systems, only the dual decay of 238U and 235U to 206Pb and 207Pb, respectively, have appropriate half-lives to resolve the ages of meteorites and their components formed in the first 5 Myr of the Solar System. This paper reviews the theory and methods behind this chronometer, offers criteria to critically evaluate Pb-Pb ages and presents a summary of the current state and immediate future of the chronometry of the early Solar System. We recognize that there is some debate over the age of the Solar System, but conclude that an age of 4567.30 ± 0.16 Ma based on four CAIs dated individually by the same method in two different laboratories is presently the best constrained published value. We further conclude that nebular chondrules dated by the Pb-Pb method require that they formed contemporaneously with CAIs and continued to form for at least ∼4 Myr, a conclusion that implies heterogeneous distribution of the short-lived 26Al nuclide in the protoplanetary disk. Planetesimals were already forming by ∼1 Myr after CAI formation, consistent with their growth predominantly through the accretion of chondrules. Nebular chondrule formation was completed by ∼5 Myr after CAI formation when the impact-generated Cba chondrules formed after the disk was cleared of gas and dust. We note that the absolute age of the Solar System or any single early Solar System object is not fundamental to any significant scientific question and that it is important only to know the correct relative ages of objects being used to piece together the formation history of the Solar System. As such, we point out the risks inherent in comparing Pb-Pb ages produced by different approaches in different laboratories at the level of the internal errors of individual ages. Until a cross-calibration exercise using synthetic and natural standards establishes the reproducibility between laboratories, only ages from a single laboratory, or between laboratories having

  7. Early solar system. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source.

    Science.gov (United States)

    Sarafian, Adam R; Nielsen, Sune G; Marschall, Horst R; McCubbin, Francis M; Monteleone, Brian D

    2014-10-31

    Determining the origin of water and the timing of its accretion within the inner solar system is important for understanding the dynamics of planet formation. The timing of water accretion to the inner solar system also has implications for how and when life emerged on Earth. We report in situ measurements of the hydrogen isotopic composition of the mineral apatite in eucrite meteorites, whose parent body is the main-belt asteroid 4 Vesta. These measurements sample one of the oldest hydrogen reservoirs in the solar system and show that Vesta contains the same hydrogen isotopic composition as that of carbonaceous chondrites. Taking into account the old ages of eucrite meteorites and their similarity to Earth's isotopic ratios of hydrogen, carbon, and nitrogen, we demonstrate that these volatiles could have been added early to Earth, rather than gained during a late accretion event.

  8. Jupiter's Role in Sculpting the Early Solar System

    Science.gov (United States)

    Naoz, Smadar

    2015-03-01

    Recent observations made by the Kepler space mission, combined with statistical analysis of existing ground and space-based data, have shown that planets somewhat bigger than the Earth - but substantially smaller than Jupiter - ;are extremely common in our Galaxy (1-4). These systems are typically found to be tightly packed, nearly coplanar, and have nearly circular orbits. Furthermore, these planets tend to have very short-period orbits, ranging from days to months. In contrast, our innermost planet, Mercury, orbits the Sun once every 88 d. Thus, taken at face value, these observations imply that the architecture of our Solar System is unique compared with the galactic population. In other words, why are there no short-period planets in our Solar System? In PNAS, Batygin and Laughlin (5) demonstrate that Jupiter is to blame. In particular, Jupiter's inward-followed-by-outward migration during the Solar System's early evolution could have driven a collisional cascade that would grind planetesimals to smaller size. Gas drag, which dominates these small planetesimals, may then have driven preexisting short-period planets into the Sun. Thus, Batygin and Laughlin (5) suggest that the terrestrial planets in our Solar System are in fact "second-generation planets," which formed after the first short-period planets were destroyed, in mass-dispersed, gas-depleted conditions (see Fig. 1 for the description of the scenario). The developed model suggests that systems with short-period Earth and super-Earth planets are anticorrelated with the existence of giant planets within the same system.

  9. Stable Chlorine Isotope Study: Application to Early Solar System Materials

    Science.gov (United States)

    Mala,ira. M/; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.

    2010-01-01

    A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the Cl-37/Cl-35 ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For example, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each

  10. Live iron-60 in the early solar system.

    Science.gov (United States)

    Shukolyukov, A; Lugmair, G W

    1993-02-19

    Isotopic analyses of nickel in samples from the differentiated meteorite Chervony Kut revealed the presence of relative excesses of (60)Ni ranging from 2.4 up to 50 parts per 10(4). These isotopic excesses are from the decay of the now extinct short-lived nuclide (60)Fe and provide clear evidence for the existence of (60)Fe over large scales in the early solar system. Not only was (60)Fe present at the time of melting and differentiation (that is, Fe-Ni fractionation) of the parent body of Chervony Kut but also later at the time when basaltic magma solidified at or near the surface of the planetesimal. The inferred abundance of (60)Fe suggests that its decay alone could have provided sufficient heat to melt small (diameters of several hundred kilometers) planetary bodies shortly after their accretion.

  11. Shock wave fractionated noble gases in the early solar system

    Science.gov (United States)

    Ustinova, G. K.

    2001-08-01

    Many processes in the active star-forming regions are accompanied by strong shock waves, in acceleration by which the nuclear-active particles form the power-law energy spectrum of high rigidity: F(> E0) ˜ Eγ , with the spectral index γ ≤ 1.5-2. It must affect the production rates of spallogenic components of the isotopes, whose excitation functions depend on the shape of the energy spectrum of radiation. Thus, the isotopic signatures formed in the conditions of the strong shock wave propagation must be different from those formed in the calm environment. The early solar system incorporated all the presumed processes of the starforming stage, so that its matter had to conserve such isotopic anomalies. In previous works [1] the shock wave effects in generation of extinct radionu-clides and light elements Li, Be and B were considered. In the report some results for their evidence in the noble gas signatures are presented. Modelling the Kr isotope generation in spallation of Rb, Sr, Y and Zr with the nuclear-active particles, the energy spectrum of which was variable in the range of γ= 1.1-6.0, shows the different pace of growth of abundances of the dif-ferent Kr isotopes with decreasing . It leads to the quite diverse behaviour of the various Kr isotope ratios: the 78,80 Kr/83 Kr ratios increase, and the 82,84,86 Kr/83 Kr ratios decrease for the smaller γ. According to such criteria, for instance, the isotopically heavier SEP-Kr in the lunar ilmenites was pro-duced with the accelerated particles of the more rigid energy spectrum (γ ˜ 2) in comparison with the SW-Kr. Another important feature of the shock wave acceleration of particles is the enrichment of their specrtum with heavier ions in proportion to A/Z. Clearly, the shock wave fractionation of the noble gases, favouring the heavier isotopes, had to be inevitable. Such a fractionation depends on timing episodes of shock wave acceleration: after the n-th act of the ion acceleration their fractionation is

  12. Bayes’ Theorem and Early Solar Short-lived Radionuclides: The Case for an Unexceptional Origin for the Solar System

    Science.gov (United States)

    Young, Edward D.

    2016-08-01

    The presence of excesses of short-lived radionuclides in the early solar system evidenced in meteorites has been taken as testament to close encounters with exotic nucleosynthetic sources, including supernovae or AGB stars. An analysis of the likelihoods associated with different sources of these extinct nuclides in the early solar system indicates that, rather than being exotic, their abundances were typical of star-forming regions like those observed today in the Galaxy. The radiochemistry of the early solar system is therefore unexceptional, being the consequence of extensive averaging of solids from molecular clouds.

  13. Bayes' theorem and early solar short-lived radionuclides: the case for an unexceptional origin for the solar system

    CERN Document Server

    Young, Edward D

    2016-01-01

    The presence of excesses of short-lived radionuclides in the early solar system evidenced in meteorites has been taken as testament to close encounters with exotic nucleosynthetic sources, including supernovae or AGB stars. An analysis of the likelihoods associated with different sources of these extinct nuclides in the early solar system indicates that rather than being exotic, their abundances were typical of star-forming regions like those observed today in the Galaxy. The radiochemistry of the early solar system is therefore unexceptional, being the consequence of extensive averaging of molecular cloud solids.

  14. Pre-mare cratering and early solar system history

    Science.gov (United States)

    Wetherill, G. W.

    1977-01-01

    An evaluation of the application of the high extralunar flux in pre-mare times to more general problems of early solar system history is attempted by combining the results of dynamic studies with lunar chronological data. There is a twofold to fourfold contrast in the integral impact flux between the Apollo 14 and 16 sites and the older mare surfaces. This is judged insufficient to account for the contrasting lithology between these two sites: basalts and soil breccias in the maria, annealed breccias and impact melts in the highlands. Therefore, these rocks and their ages (3.9-4.0 b.y.) are thought to predate the surfaces in which they are found. Estimation of the flux needed to produce these lithologies, and difficulties associated with extrapolating this further back in lunar history give support to the "cataclysm" hypothesis of Tera, Papanastassiou, and Wasserburg. Dynamical studies permit separate evaluation of the possible sources for both the "normal" flux during the first 600 million years of lunar history and the "peak" that apparently occurred 4.0 billion years ago. The most likely sources for the normal flux are comets from the vicinity of Uranus and Neptune. The most promising source for the peak is tidal disruption by Earth or Venus of a Ceres-size asteroid initially in a Mars-crossing orbit. Alternative possibilities are suggested.

  15. Giant convecting mud balls of the early solar system.

    Science.gov (United States)

    Bland, Philip A; Travis, Bryan J

    2017-07-01

    Carbonaceous asteroids may have been the precursors to the terrestrial planets, yet despite their importance, numerous attempts to model their early solar system geological history have not converged on a solution. The assumption has been that hydrothermal alteration was occurring in rocky asteroids with material properties similar to meteorites. However, these bodies would have accreted as a high-porosity aggregate of igneous clasts (chondrules) and fine-grained primordial dust, with ice filling much of the pore space. Short-lived radionuclides melted the ice, and aqueous alteration of anhydrous minerals followed. However, at the moment when the ice melted, no geological process had acted to lithify this material. It would have been a mud, rather than a rock. We tested the effect of removing the assumption of lithification. We find that if the body accretes unsorted chondrules, then large-scale mud convection is capable of producing a size-sorted chondrule population (if the body accretes an aerodynamically sorted chondrule population, then no further sorting occurs). Mud convection both moderates internal temperature and reduces variation in temperature throughout the object. As the system is thoroughly mixed, soluble elements are not fractionated, preserving primitive chemistry. Isotopic and redox heterogeneity in secondary phases over short length scales is expected, as individual particles experience a range of temperature and water-rock histories until they are brought together in their final configuration at the end of convection. These results are consistent with observations from aqueously altered meteorites (CI and CM chondrites) and spectra of primitive asteroids. The "mudball" model appears to be a general solution: Bodies spanning a ×1000 mass range show similar behavior.

  16. Meteorites and cosmic dust: Interstellar heritage and nebular processes in the early solar system

    Directory of Open Access Journals (Sweden)

    Engrand C.

    2012-01-01

    Full Text Available Small solar system bodies like asteroids and comets have escaped planetary accretion. They are the oldest and best preserved witnesses of the formation of the solar system. Samples of these celestial bodies fall on Earth as meteorites and interplanetary dust. The STARDUST mission also recently returned to Earth cometary dust from comet 81P/Wild 2, a Jupiter Family Comet (JFC. These samples provide unique insights on the physico-chemical conditions and early processes of the solar system. They also contain some minute amount of materials inherited from the local interstellar medium that have survived the accretion processes in the solar system.

  17. Precondensed matter - Key to the early solar system

    Science.gov (United States)

    Clayton, D. D.

    1978-01-01

    Explicit astrophysical details are developed for the hypothesis that chemical and isotopic anomalies in primitive solar-system samples reflect routine initial chemical conditions within precondensed matter. The central feature of this theory concerns the chemical state of presolar dust, which is regarded as never having been vaporized in the region where the most chemically primitive samples (carbonaceous meteorites) accumulated. It is suggested that the initial chemical state of heavy atoms during meteorite and planetary accumulation was distributed between a refractory-mineral component from high-temperature condensation and a volatile component resulting from cold matter adhering to preexisting grains. Thermal conditions in the solar nebula are considered along with the existence of supernova condensates and other thermal condensates in the interstellar dust. Fractionation into volatile and refractory elements is idealized in terms of four distinct interstellar components, and the fractionated precondensed matter is described.

  18. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites

    Science.gov (United States)

    Sarafian, Adam R.; Hauri, Erik H.; McCubbin, Francis M.; Lapen, Thomas J.; Berger, Eve L.; Nielsen, Sune G.; Marschall, Horst R.; Gaetani, Glenn A.; Righter, Kevin; Sarafian, Emily

    2017-04-01

    Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207Pb-206Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

  19. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites.

    Science.gov (United States)

    Sarafian, Adam R; Hauri, Erik H; McCubbin, Francis M; Lapen, Thomas J; Berger, Eve L; Nielsen, Sune G; Marschall, Horst R; Gaetani, Glenn A; Righter, Kevin; Sarafian, Emily

    2017-05-28

    Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the (207)Pb-(206)Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  20. Early solar physics

    CERN Document Server

    Meadows, A J

    1970-01-01

    Early Solar Physics reviews developments in solar physics, particularly the advent of solar spectroscopy and the discovery of relationships between the various layers of the solar atmosphere and between the different forms of solar activity. Topics covered include solar observations during 1843; chemical analysis of the solar atmosphere; the spectrum of a solar prominence; and the solar eclipse of December 12, 1871. Spectroscopic observations of the sun are also presented. This book is comprised of 30 chapters and begins with an overview of ideas about the sun in the mid-nineteenth century, fo

  1. Trojans' Odyssey: Unveiling the early history of the Solar System

    Science.gov (United States)

    Lamy, Philippe; Vernazza, Pierre; Poncy, Joel; Martinot, Vincent; Hinglais, Emmanuel; Canalias, Elisabet; Bell, Jim; Cruikshank, Dale; Groussin, Olivier; Helbert, Joern; Marzari, Francesco; Morbidelli, Alessandro; Rosenblatt, Pascal; Sierks, Holger

    2012-04-01

    In our present understanding of the Solar System, small bodies (asteroids, Jupiter Trojans, comets and TNOs) are the most direct remnants of the original building blocks that formed the planets. Jupiter Trojan and Hilda asteroids are small primitive bodies located beyond the `snow line', around respectively the L4 and L5 Lagrange points of Jupiter at ˜5.2 AU (Trojans) and in the 2:3 mean-motion resonance with Jupiter near 3.9 AU (Hildas). They are at the crux of several outstanding and still conflicting issues regarding the formation and evolution of the Solar System. They hold the potential to unlock the answers to fundamental questions about planetary migration, the late heavy bombardment, the formation of the Jovian system, the origin and evolution of trans-neptunian objects, and the delivery of water and organics to the inner planets. The proposed Trojans' Odyssey mission is envisioned as a reconnaissance, multiple flyby mission aimed at visiting several objects, typically five Trojans and one Hilda. It will attempt exploring both large and small objects and sampling those with any known differences in photometric properties. The orbital strategy consists in a direct trajectory to one of the Trojan swarms. By carefully choosing the aphelion of the orbit (typically 5.3 AU), the trajectory will offer a long arc in the swarm thus maximizing the number of flybys. Initial gravity assists from Venus and Earth will help reducing the cruise time as well as the ΔV needed for injection thus offering enough capacity to navigate among Trojans. This solution further opens the unique possibility to flyby a Hilda asteroid when leaving the Trojan swarm. During the cruise phase, a Main Belt Asteroid could be targeted if requiring a modest ΔV. The specific science objectives of the mission will be best achieved with a payload that will perform high-resolution panchromatic and multispectral imaging, thermal-infrared imaging/ radiometry, near- and mid-infrared spectroscopy, and

  2. The Violent Early Solar System, as Told by Sample Geochronology

    Science.gov (United States)

    Cohen, Barbara

    2013-01-01

    One of the legacies of the samples collected by the Apollo and Luna missions is the link forged between radiometric ages of rocks and relative ages according to stratigraphic relationships and impact crater size-frequency distributions. Our current understanding of the history of the inner solar system is based on the relative chronology of individual planets, tied to the absolute geochronology of the Moon via these important samples. Sample ages have enabled us to infer that impact-melt breccias from Apollo 14 and 15 record the formation of the Imbrium Basin, those from the highland massifs at Apollo 17 record the age of Serenitatis, those from the KREEP-poor Apollo 16 site record the age of Nectaris, and materials from Luna 24 record the age of Crisium. Ejecta from smaller and younger craters Copernicus and Tycho were sampled at Apollo 12 and 17, respectively, and local craters such as Cone at Apollo 14, and North Ray and South Ray at Apollo 16 were also sampled and ages determined for those events. Much of what we understand about the lunar impact flux is based on these ages. Samples from these nearside locations reveal a preponderance of impact-disturbed or recrystallized ages between 3.75 and 3.95 billion years. Argon and lead loss (and correlated disturbances in the Rb-Sr system) have been attributed to metamorphism of the lunar crust by an enormous number of impacts in a brief pulse of time, called the Lunar Cataclysm or Late Heavy Bombardment. Subsequent high-precision geochronometric analyses of Apollo samples and lunar highlands meteorites show a wider range of ages, but very few older than 4 Ga. The paucity of ancient impact melt rocks has been interpreted to mean that either that most impact basins formed at this time, or that ejecta from the large, near-side, young basins dominates the Apollo samples.

  3. The search for and analysis of direct samples of early Solar System aqueous fluids.

    Science.gov (United States)

    Zolensky, Michael E; Bodnar, Robert J; Yurimoto, Hisayoshi; Itoh, Shoichi; Fries, Marc; Steele, Andrew; Chan, Queenie H-S; Tsuchiyama, Akira; Kebukawa, Yoko; Ito, Motoo

    2017-05-28

    We describe the current state of the search for direct, surviving samples of early, inner Solar System fluids-fluid inclusions in meteorites. Meteoritic aqueous fluid inclusions are not rare, but they are very tiny and their characterization is at the state of the art for most analytical techniques. Meteoritic fluid inclusions offer us a unique opportunity to study early Solar System brines in the laboratory. Inclusion-by-inclusion analyses of the trapped fluids in carefully selected samples will, in the immediate future, provide us detailed information on the evolution of fluids as they interacted with anhydrous solid materials. Thus, real data can replace calculated fluid compositions in thermochemical calculations of the evolution of water and aqueous reactions in comets, asteroids, moons and the terrestrial planets.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  4. Analysis of Direct Samples of Early Solar System Aqueous Fluids

    Science.gov (United States)

    Zolensky, Michael E.; Bodnar, R J.; Fedele, L.; Yurimoto,H.; Itoh, S.; Fries, M.; Steele, A.

    2012-01-01

    Over the past three decades we have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. Some carbonaceous and ordinary chondrites have been altered by interactions with liquid water within the first 10 million years after formation of their parent asteroids. Millimeter to centimeter-sized aggregates of purple halite containing aqueous fluid inclusions were found in the matrix of two freshly-fallen brecciated H chondrite falls, Monahans (1998, hereafter simply "Monahans") (H5) and Zag (H3-6) (Zolensky et al., 1999; Whitby et al., 2000; Bogard et al., 2001) In order to understand origin and evolution of the aqueous fluids inside these inclusions we much measure the actual fluid composition, and also learn the O and H isotopic composition of the water. It has taken a decade for laboratory analytical techniques to catch up to these particular nanomole-sized aqueous samples. We have recently been successful in (1) measuring the isotopic composition of H and O in the water in a few fluid inclusions from the Zag and Monahans halite, (2) mineralogical characterization of the solid mineral phases associated with the aqueous fluids within the halite, and (3) the first minor element analyses of the fluid itself. A Cameca ims-1270 equipped with a cryo-sample-stage of Hokkaido University was specially prepared for the O and H isotopic measurements. The cryo-sample-stage (Techno. I. S. Corp.) was cooled down to c.a. -190 C using liquid nitrogen at which the aqueous fluid in inclusions was frozen. We excavated the salt crystal surfaces to expose the frozen fluids using a 15 keV Cs+ beam and measured negative secondary ions. The secondary ions from deep craters of approximately 10 m in depth emitted stably but the intensities changed gradually during measurement cycles because of shifting states of charge compensation, resulting in rather poor reproducibility of multiple measurements of standard fluid

  5. Astrobiology and the Chemistry of the Early Solar System

    Science.gov (United States)

    Cook, Jamie Elsila

    2011-01-01

    The field of astrochemistry investigates the origin of the chemicals necessary for the formation of life. Astrochemists use remote observations, laboratory simulations, and analysis of extraterrestrial samples to understand the inventory of pre biotic chemicals present on the early Earth. Among the problems investigated by astrochemists is the origin of homo chirality in terrestrial life. Analysis of meteorites shows that they may have delivered an excess of L-amino acids to the Earth's surface, perhaps leading to homochirality.

  6. Short-lived radioactivity in the early Solar System: the Super-AGB star hypothesis

    OpenAIRE

    Lugaro, Maria; Doherty, Carolyn; Karakas, A. I.; Maddison, S. T.; Liffman, K.; Garc'ia-Hernández, D.A.; Siess, Lionel; Lattanzio, J. C.

    2012-01-01

    The composition of the most primitive solar system condensates, such as calcium-aluminum-rich inclusions (CAIs) and micron-sized corundum grains, show that short-lived radionuclides (SLR), e.g. 26Al, were present in the early solar system. Their abundances require a local or stellar origin, which, however, is far from being understood. We present for the first time the abundances of several SLR up to 60Fe predicted from stars with initial mass in the range approximately 7-11M⊙. These stars ev...

  7. /sup 182/Hf: a new stopwatch for the early solar system

    Energy Technology Data Exchange (ETDEWEB)

    Norman, E.B.; Schramm, D.N.

    1983-01-01

    It is now well established that live /sup 26/Al (t/sub 1/2/ = 7.2 x 10/sup 5/ yr) and /sup 107/Pd (t/sub 1/2/ = 6.5 x 10/sup 6/ yr) were present in the early solar system. Thus, the nucleosynthetic vent (supernova) responsible for the production of these nuclei must have occurred no more than a few million years prior to the formation of solid bodies. It is possible that this event also produced the /sup 129/I known to be present in the early solar system. However, the last event to contribute /sup 244/Pu to the solar system occurred approx. 10/sup 8/ yr prior to the time of solidification. This latter time scale is also consistent with the lack of evidence for a /sup 247/Cm chronometer. In this letter, we propose that /sup 182/Hf (t/sub 1/2/ = 9 x 10/sup 6/ yr) can resolve the question of whether heavy-element non-actinide nucleosynthesis occurred during the /sup 26/Al-producing event. The answer to this question will help to clarify the chronology of the formation of the solar system and will help to determine the astrophysical sites of heavy-element nucleosynthesis.

  8. Remnants of the early solar system water enriched in heavy oxygen isotopes.

    Science.gov (United States)

    Sakamoto, Naoya; Seto, Yusuke; Itoh, Shoichi; Kuramoto, Kiyoshi; Fujino, Kiyoshi; Nagashima, Kazuhide; Krot, Alexander N; Yurimoto, Hisayoshi

    2007-07-13

    Oxygen isotopic composition of our solar system is believed to have resulted from mixing of two isotopically distinct nebular reservoirs, 16O-rich and (17,18)O-rich relative to Earth. The nature and composition of the (17,18)O-rich reservoir are poorly constrained. We report an in situ discovery of a chemically and isotopically unique material distributed ubiquitously in fine-grained matrix of a primitive carbonaceous chondrite Acfer 094. This material formed by oxidation of Fe,Ni-metal and sulfides by water either in the solar nebula or on a planetesimal. Oxygen isotopic composition of this material indicates that the water was highly enriched in 17O and 18O (delta(17,18)O(SMOW) = +180 per thousand per mil), providing the first evidence for an extremely (17,18)O-rich reservoir in the early solar system.

  9. Mass-independent isotope effects in planetary atmospheres and the early solar system.

    Science.gov (United States)

    Thiemens, M H

    1999-01-15

    A class of isotope effects that alters isotope ratios on a mass-independent basis provides a tool for studying a wide range of processes in atmospheres of Earth and other planets as well as early processes in the solar nebula. The mechanism for the effect remains uncertain. Mass-independent isotopic compositions have been observed in O3, CO2, N2O, and CO in Earth's atmosphere and in carbonate from a martian meteorite, which suggests a role for mass-independent processes in the atmosphere of Mars. Observed mass-independent meteoritic oxygen and sulfur isotopic compositions may derive from chemical processes in the presolar nebula, and their distributions could provide insight into early solar system evolution.

  10. Progress in the Early Solar System Chronology: A Sketch of an Ever-Changing Landscape

    Science.gov (United States)

    Amelin, Yuri; Yin, Q.-Z.; Krot, A. N.; Bouvier, A.; Wadhwa, M.; Kleine, T.; Nyquist, L. E.

    2011-01-01

    The years since the Workshop on the Chronology of Meteorites and the Early Solar System, are marked with ongoing progress in cosmochronology. Rapid improvements in techniques, discovery of new meteorites unlike any previously known, and findings that what was deemed well established constants are actually variables, will be reflected in an updated review of the solar system chronology we are currently preparing. Along with updating the database of meteorite ages, it will involve development of a set of criteria for evaluation of accuracy and consistency of isotopic dates across the entire range of meteorite classes and isotope chronometer systems. Here we present some ideas on what we think is important in meteorite chronology, and invite the cosmochemistry community to discuss them.

  11. Early Solar System irradiation quantified by linked vanadium and beryllium isotope variations in meteorites

    Science.gov (United States)

    Sossi, Paolo A.; Moynier, Frédéric; Chaussidon, Marc; Villeneuve, Johan; Kato, Chizu; Gounelle, Matthieu

    2017-03-01

    X-ray emission in young stellar objects (YSOs) is orders of magnitude more intense than in main sequence stars1,2, suggestive of cosmic ray irradiation of surrounding accretion disks. Protoplanetary disk irradiation has been detected around YSOs by the Herschel Space Observatory3. In our Solar System, short-lived 10Be (with a half-life of 1.39 Myr)4, which cannot be produced by stellar nucleosynthesis, was discovered in the oldest Solar System solids, the calcium-aluminium-rich inclusions (CAIs)5. The high 10Be abundance, as well as the detection of other tracers6,7, suggest 10Be likely originates from cosmic ray irradiation caused by solar flares8-10. Nevertheless, the nature of these flares (gradual or impulsive), the target (gas or dust), and the duration and location of irradiation remain unknown. Here we use the vanadium isotopic composition, together with the initial 10Be abundance to quantify irradiation conditions in the early Solar System11. For the initial 10Be abundances recorded in most CAIs, 50V excesses of a few per mil (‰) relative to chondrites have been predicted8,9. We report 50V excesses in CAIs up to 4.4‰ that co-vary with 10Be abundance. Their co-variation dictates that excess 50V and 10Be were synthesized through irradiation of refractory dust. Modelling of the production rate of 50V and 10Be demonstrates that the dust was exposed to solar cosmic rays produced by gradual flares for less than 300 years at ≈0.1 au from the protosun.

  12. Laser Induced Breakdown Spectroscopy of meteorites as a probe of the early solar system

    Energy Technology Data Exchange (ETDEWEB)

    Dell' Aglio, M., E-mail: marcella.dellaglio@ba.imip.cnr.it [CNR-IMIP, Via Amendola 122/D, 70126 Bari (Italy); De Giacomo, A. [CNR-IMIP, Via Amendola 122/D, 70126 Bari (Italy); Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari (Italy); Gaudiuso, R.; De Pascale, O. [CNR-IMIP, Via Amendola 122/D, 70126 Bari (Italy); Longo, S. [Chemistry Department, University of Bari, Via Orabona 4, 70126 Bari (Italy); INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, Firenze (Italy)

    2014-11-01

    This paper presents an evaluation of Laser Induced Breakdown Spectroscopy (LIBS) as a technique for gathering data relevant to Solar System geophysics. Two test cases were demonstrated: elemental analysis of chondrules in a chondrite meteorite, and space- resolved analysis of the interface between kamacite and taenite crystals in an octahedrite iron meteorite. In particular most major and minor elements (Fe, Mg, Si, Ti, Al, Cr, Mn, Ca, Fe, Ni, Co) in Sahara 98222 (chondrite) and its chondrules, as well as the profile of Ni content in Toluca (iron meteorite), were determined with the Calibration Free (CF) method. A special attention was devoted to exploring the possibilities offered by variants of the basic technique, such as the use of Fe I Boltzmann distribution as an intensity calibration method of the spectroscopic system, and the use of spatially resolved analysis. - Highlights: • LIBS of meteorites can supply data relevant to the early evolution of solar system. • CF-LIBS was applied to two different test cases. • Chemical identification of chondrules embedded in a chondrite meteorite • Experimental and theoretical profiles of Ni content in an iron meteorite.

  13. Short-lived radioactivity in the early Solar System: the Super-AGB star hypothesis

    CERN Document Server

    Lugaro, Maria; Karakas, Amanda I; Maddison, Sarah T; Liffman, Kurt; García-Hernández, D A; Siess, Lionel; Lattanzio, John C

    2012-01-01

    The composition of the most primitive Solar System condensates, such as calcium-aluminum-rich inclusions (CAI) and micron-sized corundum grains, show that short-lived radionuclides (SLR), e.g., 26Al, were present in the early Solar System. Their abundances require a local origin, which however is far from being understood. We present for the first time the abundances of several SLR up to 60Fe predicted from stars with initial mass in the range roughly 7-11 Msun. These stars evolve through core H, He, and C burning. After core C burning they go through a "Super"-asymptotic giant branch (Super-AGB) phase, with the H and He shells activated alternately, episodic thermal pulses in the He shell, a very hot temperature at the base of the convective envelope (~ 10^8 K), and strong stellar winds driving the H-rich envelope into the surrounding interstellar medium. The final remnants of the evolution of Super-AGB stars are mostly O-Ne white dwarfs. Our Super-AGB models produce 26Al/27Al yield ratios ~ 0.02 - 0.26. The...

  14. EVIDENCE FOR MULTIPLE SOURCES OF {sup 10}Be IN THE EARLY SOLAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wielandt, Daniel; Krot, Alexander N.; Bizzarro, Martin [Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Copenhagen DK-1350 (Denmark); Nagashima, Kazuhide; Huss, Gary R. [Hawai' i Institute of Geophysics and Planetology, University of Hawai' i at Manoa, HI 96822 (United States); Ivanova, Marina A. [Vernadsky Institute of Geochemistry and Analytical Chemistry, Moscow 119991 (Russian Federation)

    2012-04-01

    Beryllium-10 is a short-lived radionuclide (t{sub 1/2} = 1.4 Myr) uniquely synthesized by spallation reactions and inferred to have been present when the solar system's oldest solids (calcium-aluminum-rich inclusions, CAIs) formed. Yet, the astrophysical site of {sup 10}Be nucleosynthesis is uncertain. We report Li-Be-B isotope measurements of CAIs from CV chondrites, including CAIs that formed with the canonical {sup 26}Al/{sup 27}Al ratio of {approx}5 Multiplication-Sign 10{sup -5} (canonical CAIs) and CAIs with Fractionation and Unidentified Nuclear isotope effects (FUN-CAIs) characterized by {sup 26}Al/{sup 27}Al ratios much lower than the canonical value. Our measurements demonstrate the presence of four distinct fossil {sup 10}Be/{sup 9}Be isochrons, lower in the FUN-CAIs than in the canonical CAIs, and variable within these classes. Given that FUN-CAI precursors escaped evaporation-recondensation prior to evaporative melting, we suggest that the {sup 10}Be/{sup 9}Be ratio recorded by FUN-CAIs represents a baseline level present in presolar material inherited from the protosolar molecular cloud, generated via enhanced trapping of galactic cosmic rays. The higher and possibly variable apparent {sup 10}Be/{sup 9}Be ratios of canonical CAIs reflect additional spallogenesis, either in the gaseous CAI-forming reservoir, or in the inclusions themselves: this indicates at least two nucleosynthetic sources of {sup 10}Be in the early solar system. The most promising locale for {sup 10}Be synthesis is close to the proto-Sun during its early mass-accreting stages, as these are thought to coincide with periods of intense particle irradiation occurring on timescales significantly shorter than the formation interval of canonical CAIs.

  15. Shooting stars: Our guide to the early solar system`s formation

    Energy Technology Data Exchange (ETDEWEB)

    O`Reilly, J.

    1995-11-01

    Plagioclase grains were studied from the Allende meteorite, sample 916, to determine a chronology of events that occurred within the first ten million years of the solar system`s formation. Radiometric dating of the {sup 26}-Al-{sup 26}Mg system was accomplished on the ion microprobe mass spectromer. The excess {sup 26}-Mg in core plagioclase grains of calcium-aluminum rich inclusions (CAIs) provided a time of original condensation for {sup 26}-Al of {approximately}4.55 million years ago, a hundred million years prior to the formation of the planets. This data has been found to correlate with other excess {sup 26}-Mg samples. Measurements of plagioclase in the CAI`s periphery dated 1.52 million years later, suggesting an interesting history of collision and melting.

  16. Redox History of Early Solar System Planetismals Recorded in the D;Orbigny Angrite

    Energy Technology Data Exchange (ETDEWEB)

    King, P.L.; Sutton, S.R.; Spilde, M.N.; Wirick, S.; Lanzirotti, A.; Agee, C.B. (UNM); (UC); (BNL)

    2012-04-02

    Angrites are ancient basaltic meteorites ({approx}4.56 Ga) that preserve evidence of some of the solar system's earliest melting events. The volcanic-textured angrites such as D'Orbigny were rapidly crystallized and are relatively pristine; lacking shock, brecciation, and parent-body weathering textures. Thus, these angrites provide a unique 'window' into the petrogenesis of planetary bodies in the early solar system. Angrites may be formed by partial melting of CV chondrites under relatively oxidized sources compared to the eucrites, and therefore may document variations in fO{sub 2} conditions on carbonaceous chondrite parent bodies. Thus, understanding the intrinsic fO{sub 2} conditions of the angrites is needed to determine how different early Solar System basalts form, to model separation of the core, mantle and crust, and to understand magnetic fields on planetary bodies. The D'Orbigny angrite contains a range of textures: (a) crystalline texture containing interlocking crystals of fassaite (pyroxene) with Ti-rich rims, anorthite, and Mg-olivine with Fe-rich rims; (b) cavities with protruding needle-like pyroxene and anorthite dusted by Ca-(Mg)-carbonate; (c) mesostasis with kirschsteinite, ilmenite, troilite, phosphates (e.g., merrilite, whitlockite and Casilicophosphate), rhonite and minor glass; (d) glasses ({approx} angrite composition) in vesicles, as inclusions and as beads, and also cross-cutting crystal-rich portions of the rock; (e) vesicles (e.g., {approx}1.4 vol. %, 0.0219-87.7 mm{sup 3}). Analysis of the textures and Fe{sup 3+}/Fetotal of the cavity pyroxene suggests that the oxygen fugacity (fO{sub 2}) increased in the D'Orbigny angrite perhaps due to introduction of a gas phase. Here we examine the detailed fO{sub 2} history using micro-analyses that allow us to avoid inclusions that may cause spurious results. We present analyses of both S- and V- oxidation states to complement other work using Fe-oxidation state

  17. A Low Abundance of 135Cs in the Early Solar System from Barium Isotopic Signatures of Volatile-depleted Meteorites

    Science.gov (United States)

    Brennecka, Gregory A.; Kleine, Thorsten

    2017-03-01

    Precise knowledge of the abundances of short-lived radionuclides at the start of the solar system leads to fundamental information about the stellar environment of solar system formation. Previous investigations of the short-lived {}135{Cs} \\to {}135{Ba} system (t 1/2 = 2.3 Ma) have resulted in a range of calculated initial amounts of 135Cs, with most estimates elevated to a level that requires extraneous input of material to the protoplanetary disk. Such an array of proposed 135Cs/133Cs initial solar system values has severely restricted the system’s use as both a possible chronometer and as an informant about supernovae input. However, if 135Cs was as abundant in the early solar system as previously proposed, the resulting deficits in its daughter product 135Ba would be easily detectable in volatile-depleted parent bodies (i.e., having sub-chondritic Cs/Ba) from the very early solar system. In this work, we show that angrites and eucrites, which were volatile-depleted within ∼1 million years of the start of the solar system, do not possess deficits in 135Ba compared to other planetary bodies. From this, we calculate an upper limit for the initial 135Cs/133Cs of 2.8 × 10‑6, well below previous estimates. This significantly lower initial 135Cs/133Cs ratio now suggests that all of the 135Cs present in the early solar system was inherited simply from galactic chemical evolution and no longer requires an addition from an external stellar source such as an asymptotic giant branch star or SN II, corroborating evidence from several other short-lived radionuclides.

  18. Early solar system. Stellar origin of the ¹⁸²Hf cosmochronometer and the presolar history of solar system matter.

    Science.gov (United States)

    Lugaro, Maria; Heger, Alexander; Osrin, Dean; Goriely, Stephane; Zuber, Kai; Karakas, Amanda I; Gibson, Brad K; Doherty, Carolyn L; Lattanzio, John C; Ott, Ulrich

    2014-08-08

    Among the short-lived radioactive nuclei inferred to be present in the early solar system via meteoritic analyses, there are several heavier than iron whose stellar origin has been poorly understood. In particular, the abundances inferred for (182)Hf (half-life = 8.9 million years) and (129)I (half-life = 15.7 million years) are in disagreement with each other if both nuclei are produced by the rapid neutron-capture process. Here, we demonstrate that contrary to previous assumption, the slow neutron-capture process in asymptotic giant branch stars produces (182)Hf. This has allowed us to date the last rapid and slow neutron-capture events that contaminated the solar system material at ~100 million years and ~30 million years, respectively, before the formation of the Sun.

  19. Extinct 129I in Halite from a Primitive Meteorite: Evidence for Evaporite Formation in the Early Solar System

    Science.gov (United States)

    Whitby, James; Burgess, Ray; Turner, Grenville; Gilmour, Jamie; Bridges, John

    2000-06-01

    Halite crystals from the Zag H3-6 chondrite contain essentially pure (monoisotopic) xenon-129 (129Xe) produced in the early history of the solar system by the decay of short-lived iodine-129 (129I) (half-life = 15.7 million years). Correlated release of 129Xe and 128Xe, produced artificially from 127I by neutron irradiation, corresponds to an initial (129I/127I) ratio of (1.35 +/- 0.05) × 10-4, close to the most primitive early solar system value. If the 129Xe was produced by in situ decay, then the halite formed from an aqueous fluid within 2 million years of the oldest known solar system minerals.

  20. The Violent Early Solar System, as Told by Lunar Sample Geochronology

    Science.gov (United States)

    Cohen, B. A.

    2012-12-01

    the lunar surface was resurfaced; on Earth, this would scale to ~23,000 large impacts in a brief time. Impact ages in ordinary chondrites, HED meteorites, and the Martian meteorite ALH 84001 suggest that this early bombardment event affected the entire inner solar system. If true, the late heavy bombardment may have directly affected the evolution of life on Earth and our understanding of "habitable" planets. Lunar sample ages have also been used to drive large-scale dynamical modeling of solar system formation. These new models of planetary dynamics show a violent beginning to our solar system, where the late formation or outward migration of the gas giant planets destabilizes the Kuiper belt and main-belt asteroids, sending a cascade of impactors into the Moon and all the inner planets. The existence of an early bombardment has even been postulated in extrasolar planetary systems. Even after 40+ years of study, the provenance of returned lunar samples and ages of key events continue to be a focus of research and a topic of debate. One of the most important lessons learned from Apollo missions is that small samples yield a wealth of information and are gifts that keep on giving. The legacy of Apollo samples serves as a model and impetus for future sample return missions from the Moon, Mars, and asteroids.

  1. PLANETARY-SCALE STRONTIUM ISOTOPIC HETEROGENEITY AND THE AGE OF VOLATILE DEPLETION OF EARLY SOLAR SYSTEM MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Moynier, Frederic; Podosek, Frank A. [Department of Earth and Planetary Science and McDonnell Center for Space Sciences, Washington University, St. Louis, MO 63130 (United States); Day, James M. D. [Geosciences Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0244 (United States); Okui, Wataru; Yokoyama, Tetsuya [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Bouvier, Audrey [Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455-0231 (United States); Walker, Richard J., E-mail: moynier@levee.wustl.edu, E-mail: fap@levee.wustl.edu, E-mail: jmdday@ucsd.edu, E-mail: rjwalker@umd.edu, E-mail: okui.w.aa@m.titech.ac.jp, E-mail: tetsuya.yoko@geo.titech.ac.jp, E-mail: abouvier@umn.edu [Department of Geology, University of Maryland, College Park, MD 20742 (United States)

    2012-10-10

    Isotopic anomalies in planetary materials reflect both early solar nebular heterogeneity inherited from presolar stellar sources and processes that generated non-mass-dependent isotopic fractionations. The characterization of isotopic variations in heavy elements among early solar system materials yields important insight into the stellar environment and formation of the solar system, and about initial isotopic ratios relevant to long-term chronological applications. One such heavy element, strontium, is a central element in the geosciences due to wide application of the long-lived {sup 87}Rb-{sup 87}Sr radioactive as a chronometer. We show that the stable isotopes of Sr were heterogeneously distributed at both the mineral scale and the planetary scale in the early solar system, and also that the Sr isotopic heterogeneities correlate with mass-independent oxygen isotope variations, with only CI chondrites plotting outside of this correlation. The correlation implies that most solar system material formed by mixing of at least two isotopically distinct components: a CV-chondrite-like component and an O-chondrite-like component, and possibly a distinct CI-chondrite-like component. The heterogeneous distribution of Sr isotopes may indicate that variations in initial {sup 87}Sr/{sup 86}Sr of early solar system materials reflect isotopic heterogeneity instead of having chronological significance, as interpreted previously. For example, given the differences in {sup 84}Sr/{sup 86}Sr between calcium aluminum inclusions and eucrites ({epsilon}{sup 84}Sr > 2), the difference in age between these materials would be {approx}6 Ma shorter than previously interpreted, placing the Sr chronology in agreement with other long- and short-lived isotope systems, such as U-Pb and Mn-Cr.

  2. Solar system

    CERN Document Server

    Homer, Charlene

    2007-01-01

    Thrill young astronomers with a journey through our Solar System. Find out all about the Inner and Outer Planets, the Moon, Stars, Constellations, Asteroids, Meteors and Comets. Using simplified language and vocabulary, concepts such as planetary orbits, the asteroid belt, the lunar cycle and phases of the moon, and shooting stars are all explored.

  3. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  4. The Search for Surviving Direct Samples of Early Solar System Water

    Science.gov (United States)

    Zolensky, Michael

    2016-01-01

    We have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. All classes of astromaterials studied show some degree of interaction with aqueous fluids. Nevertheless, we are still lacking fundamental information such as the location and timing of the aqueous alteration and the detailed nature of the aqueous fluids. Halite crystals in two meteorite regolith breccias were found to contain aqueous fluid inclusions (brines) trapped approx. 4.5 BYBP. Heating/freezing studies of the aqueous fluid inclusions in these halites demonstrated that they were trapped near 25 C. The initial results of our O and H isotopic measurements on these brine inclusions can be explained by a simple model mixing asteroidal and cometary water. We have been analyzing solids and organics trapped alongside the brines in the halites by FTIR, C-XANES, SXRD and Raman, as clues to the origin of the water. The organics show thermal effects that span the entire range witnessed by organics in all chondrite types. Since we identified water-soluble aromatics, including partially halogenated methanol, in some of the halite, we suspected amino acids were also present, but have thus far found that levels of amino acids were undetectable (which is very interesting). We have also been locating aqueous fluid inclusions in other astromaterials, principally carbonates in CI and CM chondrites. Although we have advanced slowly towards detailed analysis of these ancient brines, since they require techniques right at or just beyond current analytical capabilities, their eventual full characterization will completely open the window onto the origin and activity of early solar system water.

  5. Early inner solar system origin for anomalous sulfur isotopes in differentiated protoplanets.

    Science.gov (United States)

    Antonelli, Michael A; Kim, Sang-Tae; Peters, Marc; Labidi, Jabrane; Cartigny, Pierre; Walker, Richard J; Lyons, James R; Hoek, Joost; Farquhar, James

    2014-12-16

    Achondrite meteorites have anomalous enrichments in (33)S, relative to chondrites, which have been attributed to photochemistry in the solar nebula. However, the putative photochemical reactions remain elusive, and predicted accompanying (33)S depletions have not previously been found, which could indicate an erroneous assumption regarding the origins of the (33)S anomalies, or of the bulk solar system S-isotope composition. Here, we report well-resolved anomalous (33)S depletions in IIIF iron meteorites (solar system (solar system S-isotope composition was chondritic (consistent with IAB iron meteorites, Earth, Moon, and Mars). The range of mass-independent sulfur isotope compositions may reflect spatial or temporal changes influenced by photochemical processes. A tentative correlation between S isotopes and Hf-W core segregation ages suggests that the two systems may be influenced by common factors, such as nebular location and volatile content.

  6. Early Solar System Alkali Fractionation Events Recorded by K-Ca Isotopes in the Yamato-74442 LL-Chondritic Breccia

    Science.gov (United States)

    Tatsunori, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simon, J. I.; Tappa, M. J.; Yoneda, S.

    2015-01-01

    Radiogenic ingrowth of Ca-40 due to decay of K-40 occurred early in the solar system history causing the Ca-40 abundance to vary within different early-former reservoirs. Marshall and DePaolo ] demonstrated that the K-40/Ca-40 decay system could be a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [3,4] determined 40K/40Ca ages of lunar granitic rock fragments and discussed the chemical characteristics of their source materials. Recently, Yokoyama et al. [5] showed the application of the K-40/Ca-40 chronometer for high K/Ca materials in ordinary chondrites (OCs). High-precision calcium isotopic data are needed to constrain mixing processes among early solar system materials and the time of planetesimal formation. To better constrain the solar system calcium isotopic compositions among astromaterials, we have determined the calcium isotopic compositions of OCs and an angrite. We further estimated a source K/Ca ratio for alkali-rich fragments in a chondritic breccia using the estimated solar system initial Ca-40/Ca-44.

  7. Lunar composition as a clue to the early history of the solar system.

    Science.gov (United States)

    Singer, S. F.

    1972-01-01

    The apparent conflict of the low iron content of the moon with the hypothesis of lunar capture is shown to be reconcilable if, in the inner solar system, iron condensations are assumed to conglomerate into planetary cores before the silicates condense to form a number of iron-poor moons. In the outer solar system, there would be no such fractionation, and, in the asteroid belt, the situation should be intermediate and quite complex. A crucial parameter is the ratio of coalescence time to cooling time, which depends on the density of the solar nebula. Also of importance are nonuniform cooling and condensation, as well as the outward transport of volatiles and their dissipation from the solar system. The model can explain also other features of the planets and asteroids.

  8. A LOWER INITIAL ABUNDANCE OF SHORT-LIVED {sup 41}Ca IN THE EARLY SOLAR SYSTEM AND ITS IMPLICATIONS FOR SOLAR SYSTEM FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ming-Chang [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan (China); Chaussidon, Marc [Centre de Recherches Petrographiques et Geochimiques, CNRS, Nancy (France); Srinivasan, Gopalan [Center for Earth Science, Indian Institute of Science, Bangalore (India); McKeegan, Kevin D., E-mail: mcliu@asiaa.sinica.edu.tw [Department of Earth and Space Sciences, UCLA, Los Angeles, CA (United States)

    2012-12-20

    The short-lived radionuclide {sup 41}Ca plays an important role in constraining the immediate astrophysical environment and the formation timescale of the nascent solar system due to its extremely short half-life (0.1 Myr). Nearly 20 years ago, the initial ratio of {sup 41}Ca/{sup 40}Ca in the solar system was determined to be (1.41 {+-} 0.14) Multiplication-Sign 10{sup -8}, primarily based on two Ca-Al-rich Inclusions (CAIs) from the CV chondrite Efremovka. With an advanced analytical technique for isotopic measurements, we reanalyzed the potassium isotopic compositions of the two Efremovka CAIs and inferred the initial ratios of {sup 41}Ca/{sup 40}Ca to be (2.6 {+-} 0.9) Multiplication-Sign 10{sup -9} and (1.4 {+-} 0.6) Multiplication-Sign 10{sup -9} (2{sigma}), a factor of 7-10 lower than the previously inferred value. Considering possible thermal processing that led to lower {sup 26}Al/{sup 27}Al ratios in the two CAIs, we propose that the true solar system initial value of {sup 41}Ca/{sup 40}Ca should have been {approx}4.2 Multiplication-Sign 10{sup -9}. Synchronicity could have existed between {sup 26}Al and {sup 41}Ca, indicating a uniform distribution of the two radionuclides at the time of CAI formation. The new initial {sup 41}Ca abundance is 4-16 times lower than the calculated value for steady-state galactic nucleosynthesis. Therefore, {sup 41}Ca could have originated as part of molecular cloud materials with a free decay time of 0.2-0.4 Myr. Alternative possibilities, such as a last-minute input from a stellar source and early solar system irradiation, could not be definitively ruled out. This underscores the need for more data from diverse CAIs to determine the true astrophysical origin of {sup 41}Ca.

  9. Corundum-hibonite inclusions and the environments of high temperature processing in the early Solar System

    Science.gov (United States)

    Needham, Andrew W.; Messenger, Scott; Han, Jangmi; Keller, Lindsay P.

    2017-01-01

    resolvable excess 26Mg while ALH-61 has a well-resolved initial 26Al/27Al ratio of 4.2 ± 0.4 × 10-5. The presence or absence of live 26Al at the time of CAI formation may record distinct chronology if 26Al was initially homogeneously distributed in the early Solar System. Alternatively, variations in 26Al/27Al ratios may reflect late injection and/or heterogeneous distribution of 26Al. Regardless of which model for 26Al distribution is correct, the data presented here indicate that formation of corundum-bearing CAIs was repeated during multiple heating and non-equilibrium condensation events throughout early Solar System history and within a single oxygen isotopic reservoir.

  10. REDISTRIBUTION OF ALKALINE ELEMENTS IN ASSOCIATION WITH AQUEOUS ACTIVITY IN THE EARLY SOLAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, Hiroshi; Higuchi, Takuya [Department of Earth and Planetary Systems Science, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Yoneda, Shigekazu, E-mail: hidaka@hiroshima-u.ac.jp, E-mail: s-yoneda@kahaku.go.jp [Department of Science and Engineering, National Museum of Nature and Science, Tsukuba 305-0005 (Japan)

    2015-12-10

    It is known that the Sayama meteorite (CM2) shows an extensive signature for aqueous alteration on the meteorite parent body, and that most of the primary minerals in the chondrules are replaced with phyllosilicates as the result of the aqueous alteration. In this paper, it is confirmed from the observation of two-dimensional Raman spectra that a part of olivine in a chondrule collected from the Sayama chondrite is serperntinized. Ion microprobe analysis of the chondrule showed that alkaline elements such as Rb and Cs are heterogeneously redistributed in the chondrule. The result of higher Rb and Cs contents in serpentinized phases in the chondrule rather than in other parts suggested the selective adsorption of alkaline elements into the serpentine in association with early aqueous activity on the meteorite parent body. Furthermore Ba isotopic analysis provided variations of {sup 135}Ba/{sup 138}Ba and {sup 137}Ba/{sup 138}Ba in the chondrule. This result was consistent with our previous isotopic data suggesting isotopic evidence for the existence of the presently extinct nuclide {sup 135}Cs in the Sayama meteorite, but the abundance of {sup 135}Cs in the solar system remains unclear because of large analytical uncertainties.

  11. Impactor flux and cratering on Ceres and Vesta: Implications for the early Solar System

    CERN Document Server

    de Elía, G C

    2011-01-01

    We study the impactor flux and cratering on Ceres and Vesta caused by the collisional and dynamical evolution of the asteroid Main Belt. We develop a statistical code based on a well-tested model for the simultaneous evolution of the Main Belt and NEA size distributions. This code includes catastrophic collisions and noncollisional removal processes such as the Yarkovsky effect and the orbital resonances. The model assumes that the dynamical depletion of the early Main Belt was very strong, and owing to that, most Main Belt comminution occurred when its dynamical structure was similar to the present one. Our results indicate that the number of D > 1 km Main Belt asteroids striking Ceres and Vesta over the Solar System history are approximately 4 600 and 1 100 respectively. The largest Main Belt asteroids expected to have impacted Ceres and Vesta had diameters of 71.7 km and 21.1 km. The number of D > 0.1 km craters on Ceres is \\sim 3.4 \\times 10^8 and 6.2 \\times 10^7 on Vesta. The number of craters with D > 1...

  12. The Asteroid Belt as a Relic From a Chaotic Early Solar System

    CERN Document Server

    Izidoro, Andre; Pierens, Arnaud; Morbidelli, Alessandro; Winter, Othon C; Nesvorny, David

    2016-01-01

    The orbital structure of the asteroid belt holds a record of the Solar System's dynamical history. The current belt only contains ${\\rm \\sim 10^{-3}}$ Earth masses yet the asteroids' orbits are dynamically excited, with a large spread in eccentricity and inclination. In the context of models of terrestrial planet formation, the belt may have been excited by Jupiter's orbital migration. The terrestrial planets can also be reproduced without invoking a migrating Jupiter; however, as it requires a severe mass deficit beyond Earth's orbit, this model systematically under-excites the asteroid belt. Here we show that the orbits of the asteroids may have been excited to their current state if Jupiter and Saturn's early orbits were chaotic. Stochastic variations in the gas giants' orbits cause resonances to continually jump across the main belt and excite the asteroids' orbits on a timescale of tens of millions of years. While hydrodynamical simulations show that the gas giants were likely in mean motion resonance at...

  13. Impact-induced shock and the formation of natural quasicrystals in the early solar system.

    Science.gov (United States)

    Hollister, Lincoln S; Bindi, Luca; Yao, Nan; Poirier, Gerald R; Andronicos, Christopher L; MacPherson, Glenn J; Lin, Chaney; Distler, Vadim V; Eddy, Michael P; Kostin, Alexander; Kryachko, Valery; Steinhardt, William M; Yudovskaya, Marina; Eiler, John M; Guan, Yunbin; Clarke, Jamil J; Steinhardt, Paul J

    2014-06-13

    The discovery of a natural quasicrystal, icosahedrite (Al63Cu24Fe13), accompanied by khatyrkite (CuAl2) and cupalite (CuAl) in the CV3 carbonaceous chondrite Khatyrka has posed a mystery as to what extraterrestrial processes led to the formation and preservation of these metal alloys. Here we present a range of evidence, including the discovery of high-pressure phases never observed before in a CV3 chondrite, indicating that an impact shock generated a heterogeneous distribution of pressures and temperatures in which some portions reached at least 5 GPa and 1,200 °C. The conditions were sufficient to melt Al-Cu-bearing minerals, which then rapidly solidified into icosahedrite and other Al-Cu metal phases. The meteorite also contains heretofore unobserved phases of iron-nickel and iron sulphide with substantial amounts of Al and Cu. The presence of these phases in Khatyrka provides further proof that the Al-Cu alloys are natural products of unusual processes that occurred in the early solar system.

  14. Short-lived nuclei in the early Solar System: Possible AGB sources

    Energy Technology Data Exchange (ETDEWEB)

    Wasserburg, G.J. [Lunatic Asylum, Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)]. E-mail: gjw@gps.caltech.edu; Busso, M. [Department of Physics, University of Perugia, via Pascoli, Perugia 06123 (Italy)]. E-mail: maurizio.busso@fisica.unipg.it; Gallino, R. [Department of General Physics and Sezione INFN, University of Torino, via P. Giuria 1, Turin 10125 (Italy) and Centre for Stellar and Planetary Astrophysics, School of Mathematical Sciences, Monash University, 3800 Victoria (Australia)]. E-mail: gallino@ph.unito.it; Nollett, K.M. [Physics Division, Argonne National Laboratory, Argonne, IL 60439-4843 (United States)]. E-mail: nollett@anl.gov

    2006-10-17

    The abundances of short-lived radionuclides in the early Solar System (ESS) are reviewed, as well as the methodology used in determining them. These results are compared with the inventory estimated for a uniform galactic production model. It is shown that, to within a factor of two, the observed abundances of {sup 238}U, {sup 235}U, {sup 232}Th, {sup 244}Pu, {sup 182}Hf, {sup 146}Sm, and {sup 53}Mn are roughly compatible with long-term galactic nucleosynthesis. {sup 129}I is an exception, with an ESS inventory much lower than expected from uniform production. The isotopes {sup 107}Pd, {sup 60}Fe, {sup 41}Ca, {sup 36}Cl, {sup 26}Al, and {sup 10}Be require late addition to the protosolar nebula. {sup 10}Be is the product of energetic particle irradiation of the Solar System as most probably is {sup 36}Cl. Both of these nuclei appear to be present when {sup 26}Al is absent. A late injection by a supernova (SN) cannot be responsible for most of the short-lived nuclei without excessively producing {sup 53}Mn; it can however be the source of {sup 53}Mn itself and possibly of {sup 60}Fe. If a late SN injection is responsible for these two nuclei, then there remains the problem of the origin of {sup 107}Pd and several other isotopes. Emphasis is given to an AGB star as a source of many of the nuclei, including {sup 60}Fe; this possibility is explored with a new generation of stellar models. It is shown that if the dilution factor (i.e. the ratio of the contaminating mass to the solar parental cloud mass) is f{sub 0}{approx}4x10{sup -3}, a reasonable representation for many nuclei is obtained; this requires that ({sup 60}Fe/{sup 56}Fe){sub ESS}{approx}10{sup -7} to 2x10{sup -6}. The nuclei produced by an AGB source do not include {sup 53}Mn, {sup 10}Be or {sup 36}Cl if it is very abundant. The role of irradiation is discussed with regard to {sup 26}Al, {sup 36}Cl and {sup 41}Ca, and the estimates of bulk solar abundances of these isotopes are commented on. The conflict

  15. Solar Energy: Solar System Economics.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  16. Early Solar System Bombardment: Exploring the Echos of Planetary Migration and Lost Ice Giants

    Science.gov (United States)

    Bottke, William

    2017-01-01

    Heavily cratered surfaces on the Moon, Mars, Mercury show the terrestrial planets were battered by an intense bombardment during their first billion years or more, but the timing, sources, and dynamical implications of these impacts are controversial. The Late Heavy Bombardment refers to impact events that occurred after stabilization of planetary lithospheres such that they could be preserved as craters. Lunar melt rocks and meteorite shock ages point toward a discrete episode of elevated impact flux between ~3.5 to ~4.2 Ga and a relative quiescence between ~4.0-4.2 to ~4.4 Ga. Evidence from Precambrian impact spherule layers suggest a long-lived tail of terrestrial impactors lasted to ~2.0-2.5 Ga.Dynamical models that include populations residual from primary accretion and destabilized by giant planet migration can potentially account for observations, although all have pros and cons. The most parsimonious solution to match constraints is a hybrid model with discrete early, post-accretion and later, planetary instability-driven impactor populations.For the latter, giant planet instability models can successfully reproduce the orbits of the giant planets, the origin/properties of Jupiter/Neptune Trojans, irregular satellites, the structure of the main asteroid and Kuiper belts, and the presence of comet-like bodies in the main belt, Hilda, and Trojan asteroid populations. The best solutions, however, postulate there were once five giant planets: Jupiter, Saturn, and three ice giants, one that was eventually ejected out of the Solar System by a Jupiter encounter. Intriguing evidence for this “lost” ice giant planet can be found in the orbital properties of bodies captured in the main asteroid belt.The applicability of giant planet instabilities to exoplanet systems seems likely, with the initial configuration of giant planet orbits a byproduct of their early migration and subsequent capture into mutual mean motion resonances. The question is how long can a

  17. The reconnaissance and early-warning optical system design for dual field of space-based "solar blind ultraviolet"

    Science.gov (United States)

    Wang, Wen-cong; Jin, Dong-dong; Shao, Fei; Hu, Hui-jun; Shi, Yu-feng; Song, Juan; Zhang, Yu-tu; Yong, Liu

    2016-07-01

    With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes a reconnaissance and early-warning optical system, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure takes advantage of a narrow field of view and long focal length optical system to achieve the target object detection, uses wide-field and short focal length optical system to achieve early warning of the target object. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm. A single pixel energy concentration is greater than 80%.

  18. An emerging chemical classifications of comets: implications for the early Solar System

    Science.gov (United States)

    Mumma, M. J.

    Cometary nuclei are messengers from the early solar system; they contain key information from the time when planets were forming, and even earlier - some contain material from the natal interstellar cloud. During the first 500 million years of Earth's existence, comets likely delivered vast quantities of pre-biotic organic material along with water for its oceans. The most easily modified forms of matter -the ices, low-temperature-refractory organics, and refractory minerals - hold special significance for understanding these processes. More than two dozen parent volatile species can be characterized directly from Earth-based observatories. Hyakutake and Hale-Bopp were the first bright comets to be studied with powerful new astronomical facilities. A wealth of new information on cometary organic composition was obtained, including the discovery of symmetric hydrocarbons (methane, ethane, acetylene) by infrared spectroscopy and the detection of six new parent volatiles at radio wavelengths. Since then, larger telescopes and even more powerful instruments have become available, permitting in-depth investigation of much fainter comets. With the powerful cross-dispersed cryogenic infrared echelle spectrometer (NIRSPEC, at the 10-m Keck-2 telescope), ten parent volatile species can be characterized in about two hours, eliminating many sources of systematic error. Six Oort cloud comets have been studied with it since 1999. The apparition of two bright comets in spring 2004 doubled the number of comets in which more than a dozen parent volatiles were quantified. The compositions of eleven Oort-cloud comets (including comet Halley and the deceased comet C/1999 S4 LINEAR) and two Jupiter-family comets (Encke, G-Z) will be compared and discussed in the context of chemical diversity in the giant-planets' nebular region. Implications for the delivery of water and pre-biotic organics to the early Earth will be mentioned. Mumma, M. J. et al. (2001), Ap. J. 546, 1183-1193. Mumma

  19. Identification and Characterization of Early Solar system Organic Matter Preserved in Chondritic Porous Interplanetary Dust Particles

    Science.gov (United States)

    Flynn, George; Wirick, Sue; Keller, Lindsay

    2015-04-01

    alternate model where carbon-bearing ices condense on the surfaces of grains, the ices are irradiated by ionizing radiation, and subsequent heating removes the ices leaving more refractory organic matter on the grain surfaces, as described by Bernstein et al. [4]. In one case we obtained C-, N-, and O-XANES spectra on the rim material. The O-XANES confirmed the presence of C=O. We found high N:C and O:C ratios that plot on the extension of the N:C vs. O:C correlation line, found in analysis of meteoritic organic matter [5], towards even more primitive organic matter than found in any meteorite. The organic rims are too thin for μ-FTIR spectroscopy, which is diffraction limited to about the wavelength/2, or ~2 μm for the aliphatic C-H stretching features. However, mid-infrared spectra obtained on CP IDPs show the presence of aliphatic C-H, C=O, C-C, and O-H, as well as crystalline and amorphous silicates [6]. Aromatic C-H is rarely detected in CP IDPs. Neither the organic rims nor the bulk organic matter in CP IDPs show the graphite exciton feature, whose strength in meteorite organic matter correlates with increasing parent body thermal metamorphism [7], indicating the organic matter in CP IDPs experienced minimal metamorphism after it formed. The spectra show variation in the aliphatic -C-H2- to -C-H3 and C=O to aliphatic C-H ratios from spot to spot on the same particle. C-XANES of ultramicrotome sections of CP IDPs also show significant variability, particularly in the C=O to C=C ratio. Variability in the C-XANES and the mid-infrared spectra indicates the organic matter in primitive CP IDPs consists of several compositionally distinct components. Our C-XANES and μ-FTIR results indicate the organic matter in CP IDPs is extremely primitive and that much of the pre-biotic organic matter of our Solar System formed early in the evolution of the Solar Nebula, by a process that preceded parent body aqueous processing. References: [1] Ishii, H. A. et al. (2008) Science, 319

  20. Probing the Solar System

    Science.gov (United States)

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  1. Probing the Solar System

    Science.gov (United States)

    Wilkinson, John

    2013-01-01

    Humans have always had the vision to one day live on other planets. This vision existed even before the first person was put into orbit. Since the early space missions of putting humans into orbit around Earth, many advances have been made in space technology. We have now sent many space probes deep into the Solar system to explore the planets and…

  2. Trojan Tour and Rendezvous (TTR): A New Frontiers Mission to Explore the Origin and Evolution of the Early Solar System

    Science.gov (United States)

    Bell, J. F., III; Olkin, C.; Castillo, J. C.

    2015-12-01

    The orbital properties, compositions, and physical properties of the diverse populations of small outer solar system bodies provide a forensic map of how our solar system formed and evolved. Perhaps the most potentially diagnostic, but least explored, of those populations are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. More than 6200 Jupiter Trojans are presently known, but these are predicted to be only a small fraction of the 500,000 to 1 million Trojans >1 km in size. The Trojans are hypothesized to be either former Kuiper Belt Objects (KBOs) that were scattered into the inner solar system by early giant planet migration and then trapped in the 1:1 Jupiter mean motion resonance, or bodies formed near 5 AU in a much more quiescent early solar system, and then trapped at L4 and L5. The 2011 Planetary Science Decadal Survey identified important questions about the origin and evolution of the solar system that can be addressed by studying of the Trojan asteroids, including: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft? The Trojan Tour and Rendezvous (TTR) is a New Frontiers-class mission designed to answer these questions, and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of a large number of these objects,, and orbital characterization of at least one large Trojan, TTR will enable the first-time exploration of this population. Our primary mission goals are to characterize the overall surface geology

  3. Studies of Constraints from the Terrestrial Planets, Asteroid Belt and Giant Planet Obliquities on the Early Solar System Instability

    Science.gov (United States)

    Nesvorny, David

    The planetary instability has been invoked as a convenient way to explain several observables in the present Solar System. This theory, frequently referred to under a broad and somewhat ill-defined umbrella as the ‘Nice model’, postulates that at least one of the ice giants suffered scattering encounters with Jupiter and Saturn. This could explain several things, including the excitation of the proper eccentric mode in Jupiter's orbit, survival of the terrestrial planets during giant planet migration, and, if the instability was conveniently delayed, also the Late Heavy Bombardment of the Moon. These properties/events would be unexpected if the migration histories of the outer planets were ideally smooth (at least no comprehensive model has yet been fully developed to collectively explain them). Additional support for the planetary instability comes from the dynamical properties of the asteroid and Kuiper belts, Trojans, and planetary satellites. We created a large database of dynamical evolutions of the outer planets through and 100 Myr past the instability (Nesvorny and Morbidelli 2012. Many of these dynamical histories have been found to match constraints from the orbits of the outer planets themselves. We now propose to test these different scenarios using constraints from the terrestrial planets, asteroid belt and giant planet obliquities. As we explain in the proposal narrative, we will bring all these constraints together in an attempt to develop a comprehensive model of early Solar System's evolution. This will be a significant improvement over the past work, where different constraints were considered piecewise and in various approximations. Our work has the potential to generate support for the Nice-type instability, or to rule it out, which could help in sparking interest in developing better models. RELEVANCE The proposed research is fundamental to understanding the formation and early evolution of the Solar System. This is a central theme of NASA

  4. Presolar grains from meteorites: Remnants from the early times of the solar system

    CERN Document Server

    Lodders, K; Lodders, Katharina; Amari, Sachiko

    2005-01-01

    This review provides an introduction to presolar grains - preserved stardust from the interstellar molecular cloud from which our solar system formed - found in primitive meteorites. We describe the search for the presolar components, the currently known presolar mineral populations, and the chemical and isotopic characteristics of the grains and dust-forming stars to identify the grains' most probable stellar sources. Keywords: presolar grains, interstellar dust, asymptotic giant branch (AGB) stars, novae, supernovae, nucleosynthesis, isotopic ratios, meteorites

  5. Aftermath of early Hit-and-Run collisions in the Inner Solar System

    Science.gov (United States)

    Sarid, Gal; Stewart, Sarah T.; Leinhardt, zoe M.

    2015-08-01

    Planet formation epoch, in the terrestrial planet region and the asteroid belt, was characterized by a vigorous dynamical environment that was conducive to giant impacts among planetary embryos and asteroidal parent bodies, leading to diverse outcomes. Among these the greatest potential for producing diverse end-members lies is the erosive Hit-and-Run regime (small mass ratios, off-axis oblique impacts and non-negligible ejected mass), which is also more probable in terms of the early dynamical encounter configuration in the inner solar system. This collision regime has been invoked to explain outstanding issues, such as planetary volatile loss records, origin of the Moon and mantle stripping from Mercury and some of the larger asteroids (Vesta, Psyche).We performed and analyzed a set of simulations of Hit-and-Run events, covering a large range of mass ratios (1-20), impact parameters (0.25-0.96, for near head-on to barely grazing) and impact velocities (~1.5-5 times the mutual escape velocity, as dependent on the mass ratio). We used an SPH code with tabulated EOS and a nominal simlated time >1 day, to track the collisional shock processing and the provenance of material components. of collision debris. Prior to impact runs, all bodies were allowed to initially settle to negligible particle velocities in isolation, within ~20 simulated hrs. The total number of particles involved in each of our collision simulations was between (1-3 x 105). Resulting configurations include stripped mantles, melting/vaporization of rock and/or iron cores and strong variations of asteroid parent bodies fromcanonical chondritic composition.In the context of large planetary formation simulations, velocity and impact angle distributions are necessary to asses impact probabilities. The mass distribution and interaction within planetary embryo and asteroid swarms depends both on gravitational dynamics and the applied fragmentation mechanism. We will present results pertaining to general

  6. Utilizing Stable Isotopes and Isotopic Anomalies to Study Early Solar System Formation Processes

    Science.gov (United States)

    Simon, Justin

    2017-01-01

    Chondritic meteorites contain a diversity of particle components, i.e., chondrules and calcium-, aluminum-rich refractory inclusions (CAIs), that have survived since the formation of the Solar System. The chemical and isotopic compositions of these materials provide a record of the conditions present in the protoplanetary disk where they formed and can aid our understanding of the processes and reservoirs in which solids formed in the solar nebula, an important step leading to the accretion of planetesimals. Isotopic anomalies associated with nucleosynthetic processes are observed in these discrete materials, and can be compared to astronomical observations and astrophysical formation models of stars and more recently proplyds. The existence and size of these isotopic anomalies are typically thought to reflect a significant state of isotopic heterogeneity in the earliest Solar System, likely left over from molecular cloud heterogeneities on the grain scale, but some could also be due to late stellar injection. The homogenization of these isotopic anomalies towards planetary values can be used to track the efficiency and timescales of disk wide mixing,

  7. The Moon as a recorder of organic evolution in the early solar system: a lunar regolith analog study.

    Science.gov (United States)

    Matthewman, Richard; Court, Richard W; Crawford, Ian A; Jones, Adrian P; Joy, Katherine H; Sephton, Mark A

    2015-02-01

    The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.

  8. Measurement of the 33S(\\alpha,p)36Cl cross section: Implications for production of 36Cl in the early Solar System

    OpenAIRE

    Bowers, Matthew; Kashiv, Yoav; Bauder, William; Beard, Mary; Collon, Philippe; Lu, Wenting; Ostdiek, Karen; Robertson, Daniel

    2013-01-01

    Short-lived radionuclides (SLRs) with lifetimes \\tau < 100 Ma are known to have been extant when the Solar System formed over 4.5 billion years ago. Identifying the sources of SLRs is important for understanding the timescales of Solar System formation and processes that occurred early in its history. Extinct 36Cl (t_1/2 = 0.301 Ma) is thought to have been produced by interaction of solar energetic particles (SEPs), emitted by the young Sun, with gas and dust in the nascent Solar System. Howe...

  9. The outer solar system

    Directory of Open Access Journals (Sweden)

    Encrenaz T.

    2009-02-01

    Full Text Available The outer solar system extends beyond a heliocentric distance of 5 AU. It contains the giant planets and their systems (rings and satellites, the Kuiper belt, the comets (except those which approach episodically the inner solar system and, at its outer edge, the Oort cloud. The outer solar system physically corresponds to the region located outside the « snow line » which corresponded to the distance of ice condensation in the protodolar disk, and thus made the frontier between the terrestrial and the giant planets at the time of the planets’ formation. The outer solar system is charaterized by a very large variety of ob jects, even within a given class of ob jects. Each of the giant planet has its own properties, as well as each of the outer satellites and the ring systems ; all are the products of specific conditions which determined their formation and evolution processes. The existence of the Kuiper belt, suspected on theoretical bases since the 1940s, has been confirmed since 1992 with the observation of over 1200 trans-neptunian ob jects. Thanks to the the developments of more and more performing groundbased instrumentation and the use of large telescopes, these ob jects are now studies in a statistical way, both dynamically and physically, and these studies are precious for constraining the early formation models of the solar system.

  10. Early Giant Planet Migration in the Solar System: Geochemical and Cosmochemical Implications for Terrestrial Planet Formation

    Science.gov (United States)

    O'Brien, David P.; Walsh, K. J.; Morbidelli, A.; Raymond, S. N.; Mandell, A. M.; Bond, J. C.

    2010-10-01

    A new terrestrial planet formation model (Walsh et al., this meeting) explores the effects of a two-stage, inward-then-outward migration of Jupiter and Saturn, as found in numerous hydrodynamical simulations of giant planet formation (Masset & Snellgrove 2001, Morbidelli & Crida 2007, Pierens & Nelson 2008). Walsh et al. show that the inward migration of Jupiter truncates the disk of planetesimals and embryos in the terrestrial planet region. Subsequent accretion in that region then forms a realistic system of terrestrial planets, in particular giving a low-mass Mars, which has been difficult to reproduce in simulations with a self-consistent set of initial conditions (see, eg. Raymond et al. 2009). Additionally, the outward migration of the giant planets populates the asteroid belt with distinct populations of bodies, with the inner belt filled by bodies originating inside of 3 AU, and the outer belt filled with bodies originating from beyond the giant planets. From a geochemical and cosmochemical point of view, this scenario differs significantly from the "standard model" in which essentially all of the material in the inner Solar System initially formed there. Specifically, the assumption that the current radial distribution of material in the inner Solar System is reflective of the primordial distribution of material in that region is no longer necessary. This is important for understanding the chemical and isotopic diversity of the inner Solar System as inferred from studies of the terrestrial planets, asteroids, and meteorites, as well as for understanding the origin of Earth's water. We will discuss the geochemical and cosmochemical implications of this model in relation to available constraints, as well as to previous models of terrestrial planet formation. Masset & Snellgrove (2001), MNRAS 320, L55. Morbidelli & Crida (2007), Icarus 191, 158. Pierens & Nelson (2008), A&A 482, 333. Raymond et al. (2009), Icarus 203, 644.

  11. Assemblage of Presolar Materials and Early Solar System Condensates in Chondritic Porous Interplanetary Dust Particles

    Science.gov (United States)

    Nguyen, A. N.; Nakamura-Messenger, K.; Messenger, S.; Keller, L. P.; Kloeck, W.

    2015-01-01

    Anhydrous chondritic porous inter-planetary dust particles (CP IDPs) contain an assortment of highly primitive solar system components, molecular cloud matter, and presolar grains. These IDPs have largely escaped parent body processing that has affected meteorites, advocating cometary origins. Though the stardust abundance in CP IDPs is generally greater than in primitive meteorites, it can vary widely among individual CP IDPs. The average abundance of silicate stardust among isotopically primitive IDPs is approx. 375 ppm while some have extreme abundances up to approx. 1.5%. H and N isotopic anomalies are common in CP IDPs and the carrier of these anomalies has been traced to organic matter that has experienced chemical reactions in cold molecular clouds or the outer protosolar disk. Significant variations in these anomalies may reflect different degrees of nebular processing. Refractory inclusions are commonly observed in carbonaceous chondrites. These inclusions are among the first solar system condensates and display 16O-rich isotopic compositions. Refractory grains have also been observed in the comet 81P/Wild-2 samples re-turned from the Stardust Mission and in CP IDPs, but they occur with much less frequency. Here we conduct coordinated mineralogical and isotopic analyses of CP IDPs that were characterized for their bulk chemistry by to study the distribution of primitive components and the degree of nebular alteration incurred.

  12. Re-measurement of the 33S(α ,p )36Cl cross section for early solar system nuclide enrichment

    Science.gov (United States)

    Anderson, Tyler; Skulski, Michael; Clark, Adam; Nelson, Austin; Ostdiek, Karen; Collon, Philippe; Chmiel, Greg; Woodruff, Tom; Caffee, Marc

    2017-07-01

    Short-lived radionuclides (SLRs) with half-lives less than 100 Myr are known to have existed around the time of the formation of the solar system around 4.5 billion years ago. Understanding the production sources for SLRs is important for improving our understanding of processes taking place just after solar system formation as well as their timescales. Early solar system models rely heavily on calculations from nuclear theory due to a lack of experimental data for the nuclear reactions taking place. In 2013, Bowers et al. measured 36Cl production cross sections via the 33S(α ,p ) reaction and reported cross sections that were systematically higher than predicted by Hauser-Feshbach codes. Soon after, a paper by Peter Mohr highlighted the challenges the new data would pose to current nuclear theory if verified. The 33S(α ,p )36Cl reaction was re-measured at five energies between 0.78 MeV/nucleon and 1.52 MeV/nucleon, in the same range as measured by Bowers et al., and found systematically lower cross sections than originally reported, with the new results in good agreement with the Hauser-Feshbach code talys. Loss of Cl carrier in chemical extraction and errors in determination of reaction energy ranges are both possible explanations for artificially inflated cross sections measured in the previous work.

  13. Laser Induced Breakdown Spectroscopy of meteorites as a probe of the early solar system

    Science.gov (United States)

    Dell'Aglio, M.; De Giacomo, A.; Gaudiuso, R.; De Pascale, O.; Longo, S.

    2014-11-01

    This paper presents an evaluation of Laser Induced Breakdown Spectroscopy (LIBS) as a technique for gathering data relevant to Solar System geophysics. Two test cases were demonstrated: elemental analysis of chondrules in a chondrite meteorite, and space- resolved analysis of the interface between kamacite and taenite crystals in an octahedrite iron meteorite. In particular most major and minor elements (Fe, Mg, Si, Ti, Al, Cr, Mn, Ca, Fe, Ni, Co) in Sahara 98222 (chondrite) and its chondrules, as well as the profile of Ni content in Toluca (iron meteorite), were determined with the Calibration Free (CF) method. A special attention was devoted to exploring the possibilities offered by variants of the basic technique, such as the use of Fe I Boltzmann distribution as an intensity calibration method of the spectroscopic system, and the use of spatially resolved analysis.

  14. The Violent Early Solar System, as Told by Lunar Sample Geochronology

    Science.gov (United States)

    Cohen, Barbara

    2012-01-01

    One of the legacies of the samples collected by the Apollo and Luna missions is the link forged between radiometric ages of rocks and relative ages according to stratigraphic relationships and impact crater size-frequency distributions. Our current understanding of the history of the inner solar system is based on the relative chronology of individual planets, tied to the absolute geochronology of the Moon via these important samples. Samples from these nearside locations reveal a preponderance of impact-disturbed or recrystallized ages between 3.75 and 3.95 billion years. Argon and lead loss (and correlated disturbances in the Rb-Sr system) have been attributed to metamorphism of the lunar crust by an enormous number of impacts in a brief pulse of time, called the Lunar Cataclysm or Late Heavy Bombardment. Subsequent high-precision geochronometric analyses of Apollo samples and lunar highlands meteorites show a wider range of ages, but very few older than 4 Ga. The paucity of ancient impact melt rocks has been interpreted to mean that either that most impact basins formed at this time, or that ejecta from the large, near-side, young basins dominates the Apollo samples. Selenochronology is getting more complicated: new results question meaning of sample ages, crater counts, crater production functions, and the solar system itself. Improved geological mapping of lunar geologic units and boundaries using multiple remote sensing datasets. High-resolution image-based crater counting of discrete geologic units and relating them to location. Improved understanding of the regolith thickness and its global variation (GRAIL). Tying the sampling of impact-melt rocks to the lunar impact flux. Using improved techniques (magnetic fields, diffusion studies, isotopic analysis) on existing samples. New sample return from benchmark craters, particularly SPA, which appears in 2013 Decadal Survey.

  15. The meteoritic record of presolar and early solar system organic chemistry. [Abstract only

    Science.gov (United States)

    Cronin, John R.; Pizzarello, Sandra

    1994-01-01

    Carbon, hydrogen, and nitrogen isotopic analyses of various classes of organic compounds done in collaboration with Epstein and Krishnamurthy (Caltech) have shown these compounds to be enriched to varying degrees in the heavier isotopes. These results, in particular the large deuterium enrichments, have been interpreted as indicating an interstellar origin for the meteorite compounds or their precursors. Such isotopic fractionations, of hydrogen especially, are characteristic of low temperature ion-molecule reactions in cold interstellar clouds. There is also evidence from the large corresponding suites of alpha-amino and alpha-hydroxy acids found in meteorites suggesting that aqueous phase chemistry on the meteorite parent body played an important role in the formation of these compounds. These data support the hypothesis that interstellar compounds survived in the solar nebula at a radial distance corresponding to the asteroid belt, were incorporated into the parent body in icy, volatile-rich, planetesinals, and underwent further reactions during a period of aqueous activity within the early parent body to give the present suite of meteorite compounds. This formation hypothesis will be discussed and the results of recent isotopic and molecular analyses bearing on it will be presented.

  16. Laboratory drop towers for the experimental simulation of dust-aggregate collisions in the early solar system.

    Science.gov (United States)

    Blum, Jürgen; Beitz, Eike; Bukhari, Mohtashim; Gundlach, Bastian; Hagemann, Jan-Hendrik; Heißelmann, Daniel; Kothe, Stefan; Schräpler, Rainer; von Borstel, Ingo; Weidling, René

    2014-06-05

    For the purpose of investigating the evolution of dust aggregates in the early Solar System, we developed two vacuum drop towers in which fragile dust aggregates with sizes up to ~10 cm and porosities up to 70% can be collided. One of the drop towers is primarily used for very low impact speeds down to below 0.01 m/sec and makes use of a double release mechanism. Collisions are recorded in stereo-view by two high-speed cameras, which fall along the glass vacuum tube in the center-of-mass frame of the two dust aggregates. The other free-fall tower makes use of an electromagnetic accelerator that is capable of gently accelerating dust aggregates to up to 5 m/sec. In combination with the release of another dust aggregate to free fall, collision speeds up to ~10 m/sec can be achieved. Here, two fixed high-speed cameras record the collision events. In both drop towers, the dust aggregates are in free fall during the collision so that they are weightless and match the conditions in the early Solar System.

  17. STATISTICAL STUDY OF THE EARLY SOLAR SYSTEM'S INSTABILITY WITH FOUR, FIVE, AND SIX GIANT PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Nesvorny, David [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States); Morbidelli, Alessandro [Departement Cassiopee, University of Nice, CNRS, Observatoire de la Cote d' Azur, F-06304 Nice (France)

    2012-10-01

    Several properties of the solar system, including the wide radial spacing and orbital eccentricities of giant planets, can be explained if the early solar system evolved through a dynamical instability followed by migration of planets in the planetesimal disk. Here we report the results of a statistical study, in which we performed nearly 10{sup 4} numerical simulations of planetary instability starting from hundreds of different initial conditions. We found that the dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, leading to ejection of at least one ice giant from the solar system. Planet ejection can be avoided if the mass of the transplanetary disk of planetesimals was large (M{sub disk} {approx}> 50 M{sub Earth}), but we found that a massive disk would lead to excessive dynamical damping (e.g., final e{sub 55} {approx}< 0.01 compared to present e{sub 55} = 0.044, where e{sub 55} is the amplitude of the fifth eccentric mode in the Jupiter's orbit), and to smooth migration that violates constraints from the survival of the terrestrial planets. Better results were obtained when the solar system was assumed to have five giant planets initially, and one ice giant, with mass comparable to that of Uranus and Neptune, was ejected into interstellar space by Jupiter. The best results were obtained when the ejected planet was placed into the external 3:2 or 4:3 resonance with Saturn and M{sub disk} {approx_equal} 20 M{sub Earth}. The range of possible outcomes is rather broad in this case, indicating that the present solar system is neither a typical nor expected result for a given initial state, and occurs, in best cases, with only a {approx_equal}5% probability (as defined by the success criteria described in the main text). The case with six giant planets shows interesting dynamics but does offer significant advantages relative to the five-planet case.

  18. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System.

    Science.gov (United States)

    Brennecka, Gregory A; Wadhwa, Meenakshi

    2012-06-12

    Events occurring within the first 10 million years of the Solar System's approximately 4.5 billion-year history, such as formation of the first solids, accretion, and differentiation of protoplanetary bodies, have determined the evolutionary course of our Solar System and the planetary bodies within it. The application of high-resolution chronometers based on short-lived radionuclides is critical to our understanding of the temporal sequence of these critical events. However, to map the relative ages from such chronometers onto the absolute time scale, they must be "anchored" to absolute ages of appropriate meteoritic materials using the high-precision lead-lead (Pb-Pb) chronometer. Previously reported Pb-Pb dates of the basaltic angrite meteorites, some of which have been used extensively as time anchors, assumed a constant (238)U/(235)U ratio (= 137.88). In this work, we report measurements of (238)U/(235)U ratios in several angrites that are distinct from the previously assumed value, resulting in corrections to the Pb-Pb ages of ≥ 1 million years. There is no resolvable variation in the (238)U/(235)U ratio among the angrite bulk samples or mineral separates, suggesting homogeneity in the U isotopic composition of the angrite parent body. Based on these measurements, we recalculated the Pb-Pb age for the commonly used anchor, the D'Orbigny angrite, to be 4563.37 ± 0.25 Ma. An adjustment to the Pb-Pb age of a time anchor (such as D'Orbigny) requires a corresponding correction to the "model ages" of all materials dated using that anchor and a short-lived chronometer. This, in turn, has consequences for accurately defining the absolute timeline of early Solar System events.

  19. Solar Energy Systems

    Science.gov (United States)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  20. Towards a Measurement of the Half-Life of {sup 60}Fe for Stellar and Early Solar System Models

    Energy Technology Data Exchange (ETDEWEB)

    Ostdiek, K.; Anderson, T.; Bauder, W.; Bowers, M.; Collon, P.; Dressler, R.; Greene, J.; Kutschera, W.; Lu, W.; Paul, M.

    2015-10-15

    Radioisotopes, produced in stars and ejected into the Interstellar Medium, are important for constraining stellar and early Solar System (ESS) models. In particular, the half-life of the radioisotope, Fe-60, can have an impact on calculations for the timing for ESS events, the distance to nearby Supernovae, and the brightness of individual, non-steady-state Fe gamma ray sources in the Galaxy. A half-life measurement has been undertaken at the University of Notre Dame and measurements of the Fe-60/Fe-56 concentration of our samples using Accelerator Mass Spectrometry has begun. This result will be coupled with an activity measurement of the isomeric decay in Co-60, which is the decay product of Fe. Preliminary half-life estimates of (2.53 +/- 0.24) x 10(6) years seem to confirm the recent measurement by Rugel et al. (2009). (C) 2015 Elsevier B.V. All rights reserved.

  1. Towards a measurement of the half-life of {sup 60}Fe for stellar and early Solar System models

    Energy Technology Data Exchange (ETDEWEB)

    Ostdiek, K.; Anderson, T. [University of Notre Dame, Notre Dame, IN 46556 (United States); Bauder, W. [University of Notre Dame, Notre Dame, IN 46556 (United States); Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Bowers, M.; Collon, P. [University of Notre Dame, Notre Dame, IN 46556 (United States); Dressler, R. [Paul Scherrer Institute – Laboratory for Radiochemistry and Environmental Chemistry, 5232 Villigen (Switzerland); Greene, J. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Kutschera, W. [Vienna Environmental Research Accelerator Laboratory, Waehringer Strasse 17, 1090 Vienna (Austria); Lu, W. [University of Notre Dame, Notre Dame, IN 46556 (United States); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Robertson, D. [University of Notre Dame, Notre Dame, IN 46556 (United States); Schumann, D. [Paul Scherrer Institute – Laboratory for Radiochemistry and Environmental Chemistry, 5232 Villigen (Switzerland); Skulski, M. [University of Notre Dame, Notre Dame, IN 46556 (United States); Wallner, A. [The Australian National University, Canberra, ACT 0200 (Australia)

    2015-10-15

    Radioisotopes, produced in stars and ejected into the Interstellar Medium, are important for constraining stellar and early Solar System (ESS) models. In particular, the half-life of the radioisotope, {sup 60}Fe, can have an impact on calculations for the timing for ESS events, the distance to nearby Supernovae, and the brightness of individual, non-steady-state {sup 60}Fe gamma ray sources in the Galaxy. A half-life measurement has been undertaken at the University of Notre Dame and measurements of the {sup 60}Fe/{sup 56}Fe concentration of our samples using Accelerator Mass Spectrometry has begun. This result will be coupled with an activity measurement of the isomeric decay in {sup 60}Co, which is the decay product of {sup 60}Fe. Preliminary half-life estimates of (2.53 ± 0.24) × 10{sup 6} years seem to confirm the recent measurement by Rugel et al. (2009).

  2. Solar tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  3. Investigations of solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2005-01-01

    ). However, it is still too early to draw conclusions on the design of solar combi systems. Among others, the following questions needs to be answered: Is an external domestic hot water preparation more desirable than an internal domestic hot water preparation? Is a stratification manifold always more...... desirable than a fixed inlet position? This paper presents experimental investigations of an advanced solar combi system with thermal stratification manifold inlets both in the solar collector loop and in the space heating system and with an external domestic hot water preparation. Theoretical...... investigations are carried out for different solar combi system types by means of the simulation program Trnsys (Klein et al., 1996) and the multiport store model (Drück, 2000) with input to the models determined by the experiments. The work is carried out within the Solar Heating and Cooling Programme...

  4. Extreme early solar system chemical fractionation recorded by alkali-rich clasts contained in ordinary chondrite breccias

    Science.gov (United States)

    Yokoyama, Tatsunori; Misawa, Keiji; Okano, Osamu; Shih, Chi-Yu; Nyquist, Laurence E.; Simon, Justin I.; Tappa, Michael J.; Yoneda, Shigekazu

    2017-01-01

    New K-Ca and Rb-Sr isotopic analyses have been performed on alkali-rich igneous rock fragments in the Yamato (Y)-74442 and Bhola LL-chondritic breccias to better understand the extent and timing of alkali enrichments in the early solar system. The Y-74442 fragments yield a K-Ca age of 4.41 ± 0.28 Ga for λ(40K) = 0.5543 Ga-1 with an initial 40Ca/44Ca ratio of 47.1618 ± 0.0032. Studying the same fragments with the Rb-Sr isotope system yields an age of 4.420 ± 0.031 Ga for λ(87Rb) = 0.01402 Ga-1 with an initial ratio of 87Sr/86Sr = 0.7203 ± 0.0044. An igneous rock fragment contained in Bhola shows a similar alkali fractionation pattern to those of Y-74442 fragments but does not plot on the K-Ca or Rb-Sr isochron of the Y-74442 fragments. Calcium isotopic compositions of whole-rock samples of angrite and chondrites are primordial, indistinguishable from mantle-derived terrestrial rocks, and here considered to represent the initial composition of bulk silicate Earth. The initial ε40Ca value determined for the source of the alkali clasts in Y-74442 that is ∼0.5 ε-units higher than the solar system value implies an early alkali enrichment. Multi-isotopic studies on these alkali-rich fragments reveal that the source material of Y-74442 fragments had elemental ratios of K/Ca = 0.43 ± 0.18, Rb/Sr = 3.45 ± 0.66 and K/Rb ∼ 170, that may have formed from mixtures of an alkali-rich component (possibly an alkali-enriched gaseous reservoir produced by fractionation of early nebular condensates) and chondritic components that were flash-heated during an impact event on the LL-chondrite parent body ∼4.42 Ga ago. Further enrichments of potassium and rubidium relative to calcium and strontium as well as a mutual alkali-fractionation (K/Rb ∼ 50 and heavier alkali-enrichment) would have likely occurred during subsequent cooling and differentiation of this melt. Alkali fragments in Bhola might have undergone similar solid-vapor fractionation processes to those of Y

  5. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  6. Measurement of the 33S(\\alpha,p)36Cl cross section: Implications for production of 36Cl in the early Solar System

    CERN Document Server

    Bowers, Matthew; Bauder, William; Beard, Mary; Collon, Philippe; Lu, Wenting; Ostdiek, Karen; Robertson, Daniel

    2013-01-01

    Short-lived radionuclides (SLRs) with lifetimes \\tau < 100 Ma are known to have been extant when the Solar System formed over 4.5 billion years ago. Identifying the sources of SLRs is important for understanding the timescales of Solar System formation and processes that occurred early in its history. Extinct 36Cl (t_1/2 = 0.301 Ma) is thought to have been produced by interaction of solar energetic particles (SEPs), emitted by the young Sun, with gas and dust in the nascent Solar System. However, models that calculate SLR production in the early Solar System (ESS) lack experimental data for the 36Cl production reactions. We present here the first measurement of the cross section of one of the main 36Cl production reactions, 33S(\\alpha,p)36Cl, in the energy range 0.70 - 2.42 MeV/A. The cross section measurement was performed by bombarding a target and collecting the recoiled 36Cl atoms produced in the reaction, chemically processing the samples, and measuring the 36Cl/Cl ratio of the activated samples with ...

  7. Views of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.

    1995-02-01

    Views of the Solar System has been created as an educational tour of the solar system. It contains images and information about the Sun, planets, moons, asteroids and comets found within the solar system. The image processing for many of the images was done by the author. This tour uses hypertext to allow space travel by simply clicking on a desired planet. This causes information and images about the planet to appear on screen. While on a planet page, hyperlinks travel to pages about the moons and other relevant available resources. Unusual terms are linked to and defined in the Glossary page. Statistical information of the planets and satellites can be browsed through lists sorted by name, radius and distance. History of Space Exploration contains information about rocket history, early astronauts, space missions, spacecraft and detailed chronology tables of space exploration. The Table of Contents page has links to all of the various pages within Views Of the Solar System.

  8. Solar Power Systems Web Monitoring

    CERN Document Server

    Kumar, Bimal Aklesh

    2011-01-01

    All over the world the peak demand load is increasing and the load factor is decreasing year-by-year. The fossil fuel is considered insufficient thus solar energy systems are becoming more and more useful, not only in terms of installation but monitoring of these systems is very crucial. Monitoring becomes very important when there are a large number of solar panels. Monitoring would allow early detection if the output falls below required level or one of the solar panel out of 1000 goes down. In this study the target is to monitor and control a developed solar panel by using available internet foundation. This web-enabled software will provide more flexibility over the system such as transmitting data from panel to the host computer and disseminating information to relevant stake holders barring any geographical barrier. The software would be built around web server with dynamic HTML and JAVA, this paper presents the preliminary design of the proposed system.

  9. AMMONIA IN THE EARLY SOLAR SYSTEM: AN ACCOUNT FROM CARBONACEOUS METEORITES

    Energy Technology Data Exchange (ETDEWEB)

    Pizzarello, S. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604 (United States); Williams, L. B., E-mail: pizzar@asu.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States)

    2012-04-20

    This study presents a survey of abundance distribution and isotopic composition of the ammonia found incorporated in the kerogen-like insoluble material of selected carbonaceous chondrite meteorites; the ammonia was released upon hydrothermal treatment at 300 Degree-Sign C and 100 MPa. With the exception of Allende, a metamorphosed and highly altered stone, all the insoluble organic materials (IOM) of the meteorites analyzed released significant amounts of ammonia, which varied from over 4 {mu}g mg{sup -1} for the Orgueil IOM to 0.5 {mu}g mg{sup -1} for that of Tagish Lake; the IOM of the pristine Antarctica find GRA95229 remains the most rich in freeable ammonia with 10 {mu}g mg{sup -1}. While the amounts of IOM bound ammonia do not appear to vary between meteorites with a recognizable trend, a possible consequence of long terrestrial exposure of some of the stones, we found that the {delta}{sup 15}N composition of the ammonia-carrying materials is clearly distinctive of meteorite types and may reflect a preservation of the original {sup 15}N distribution of pre- and proto-solar materials.

  10. Corundum-Hibonite Inclusions and the Environments of High Temperature Processing in the Early Solar System

    Science.gov (United States)

    Needham, A. W.; Messenger, S.

    2013-01-01

    Calcium, Aluminum-rich inclusions (CAIs) are composed of the suite of minerals predicted to be the first to condense from a cooling gas of solar composition [1]. Yet, the first phase to condense, corundum, is rare in CAIs, having mostly reacted to form hibonite followed by other phases at lower temperatures. Many CAIs show evidence of complex post-formational histories, including condensation, evaporation, and melting [e.g. 2, 3]. However, the nature of these thermal events and the nebular environments in which they took place are poorly constrained. Some corundum and corundum-hibonite grains appear to have survived or avoided these complex CAI reprocessing events. Such ultra-refractory CAIs may provide a clearer record of the O isotopic composition of the Sun and the evolution of the O isotopic composition of the planet-forming region [4-6]. Here we present in situ O and Mg isotopic analyses of two corundum/hibonite inclusions that record differing formation histories.

  11. Determination of rare earth and refractory trace element abundances in early solar system objects by ion microprobe

    Indian Academy of Sciences (India)

    S Sahijpal; K K Marhas; J N Goswami

    2003-12-01

    Experimental and analytical procedures devised for measurement of rare earth element (REE) abundances using a secondary ion mass spectrometer (ion microprobe) are described. This approach is more versatile than the conventional techniques such as neutron activation analysis and isotope dilution mass spectrometry by virtue of its high spatial resolution that allows determination of REE abundances in small domains (10-20 micron) within individual mineral phases. The ion microprobe measurements are performed at a low mass-resolving power adopting the energy-filltering technique (Zinner and Crozaz 1986) for removal and suppression of unresolved complex molecular interferences in the REE masses of interest. Synthetic standards are used for determining various instrument specific parameters needed in the data deconvolution procedure adopted for obtaining REE abundances. Results obtained from analysis of standards show that our ion microprobe may be used for determining REE abundances down to ppm range with uncertainties of ∼10 to 15%. Abundances of rare earth and several other refractory trace elements in a set of early solar system objects isolated from two primitive carbonaceous chondrites were determined using the procedures devised by us. The results suggest that some of these objects could be high temperature nebular condensates, while others are products of melting and recrystallization of precursor nebular solids in a high temperature environment.

  12. Heat, Aromatic Units, and Iron-Rich Phyllosilicates: A Mechanism for Making Macromolecules in the Early Solar System.

    Science.gov (United States)

    Watson, Jonathan S; Sephton, Mark A

    2015-10-01

    The major organic component in carbonaceous chondrites is a highly aromatic macromolecular material. Aromatic organic matter and phyllosilicates are colocated in these meteorites, and it is possible that the physical association represents a synthetic chemical relationship. To explore the potential reactions that could take place to produce the aromatic macromolecular material, we heated various simple aromatic units in the presence of montmorillonite with different exchanged cations. The majority of cation-exchanged montmorillonites tested, sodium-, aluminum-, iron-, nickel-, and cobalt-rich montmorillonites, do not produce polymerization products. By contrast, Fe(3+) cation-exchanged montmorillonite readily facilitates addition reactions between aromatic hydrocarbons. A feasible mechanism for the process is oxidative coupling, which involves a corresponding reduction of the Fe(3+) cation to its Fe(2+) counterpart. A similar reduction process for the other metal cations does not take place, highlighting the importance of iron. This simple process is one feasible mechanism for the construction of aromatic macromolecules such as those found in carbonaceous chondrites. The search for a relationship between Fe(3+)-rich phyllosilicates and aromatic organic structures (particularly dimers, trimers, and more polymerized forms) in carbonaceous chondrites would represent an effective test for constraining the role of clay catalysis in the early Solar System.

  13. {sup 57}Fe Moessbauer Spectroscopy Studies of Meteorites: Implications for Weathering Rates, Meteorite Flux, and Early Solar System Processes

    Energy Technology Data Exchange (ETDEWEB)

    Bland, P. A. [Open University, Planetary Science Research Institute (United Kingdom); Berry, F. J. [Open University, Department of Chemistry (United Kingdom); Jull, A. J. T. [University of Arizona, NSF Accelerator Facility for Radioisotope Analyses (United States); Smith, T. B. [Open University, Department of Physics and Astronomy (United Kingdom); Bevan, A. W. R. [Western Australian Museum, Department of Earth and Planetary Sciences (Australia); Cadogan, J. M. [University of New South Wales, School of Physics (Australia); Sexton, A. S.; Franchi, L. A.; Pillinger, C. T. [Open University, Planetary Science Research Institute (United Kingdom)

    2002-09-15

    Ordinary chondrite finds, terrestrial age dated using {sup 14}C analyses, from different meteorite accumulation sites, have been examined by Moessbauer spectroscopy to quantitatively determine terrestrial oxidation. We observe differences in weathering rates between sites, and also between different chondrite groups. A comparison of weathering over time, and its effect in 'eroding' meteorites, together with the number and mass distribution of meteorites in each region, enables us to derive estimates of the number of meteorite falls over a given mass per year. Studies of how the oxygen isotopic composition of samples varies with weathering indicate that incipient alteration may occur without a pronounced isotopic effect, possibly due to weathering of silicates to topotactically oriented smectite confined spaces where the water volume is limited. This finding has profound implications for the use of oxygen isotopes as a tool in understanding water-rock interaction. It also may reconcile previously contradictory data regarding the nebular or asteroidal location of pre-terrestrial aqueous alteration. Finally, Moessbauer spectroscopy is also found to be a useful tool in determining mineral abundance in carbonaceous chondrites, where a fine-grained matrix makes traditional approaches inapplicable. Again, the results have implications for the modification of chondritic materials in the early solar system.

  14. The iodine-xenon system in clasts and chondrules from ordinary chondrites: Implications for early solar system chronology

    Science.gov (United States)

    Gilmour, J. D.; Whitby, J. A.; Turner, G.; Bridges, J. C.; Hutchison, R.

    2000-05-01

    We have studied the iodine-xenon system in chondrules and clasts from ordinary chondrites. Cristobalite bearing clasts from Parnallee (LL3.6) closed to xenon loss 1-4 Ma after Bjurböle. Feline (a feldspar and nepheline rich clast also from Parnallee) closed at 7.04 +/- 0.15 Ma. 2 out of 3 chondrules from Parnallee that yielded well defined initial iodine ratios gave ages identical to Bjurböle's within error. A clast from Barwell (L5) has a well-defined initial iodine ratio corresponding to closure 3.62 +/- 0.60 Ma before Bjurböle. Partial disturbance and complete obliteration of the I-Xe system by shock are revealed in clasts from Julesburg (L3.6) and Quenggouk (H4) respectively. Partial disturbance by shock is capable of generating anomalously high initial iodine ratios. In some cases these could be misinterpreted, yielding erroneous ages. A macrochondrule from Isoulane-n-Amahar contains concentrations of iodine similar to 'ordinary' chondrules but, unlike most ordinary chondrules, contains no radiogenic 129Xe. This requires resetting 50 Ma or more later than most chondrules. The earliest chondrule ages in the I-Xe, Mn-Cr and Al-Mg systems are in reasonable agreement. This, and the frequent lack of evidence for metamorphism capable of resetting the I-Xe chronometer, leads us to conclude that (at least) the earliest chondrule I-Xe ages represent formation. If so, chondrule formation took place at a time when sizeable parent bodies were present in the solar system.

  15. Solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2007-01-01

    The focus in the present Ph.D. thesis is on the active use of solar energy for domestic hot water and space heating in so-called solar combi systems. Most efforts have been put into detailed investigations on the design of solar combi systems and on devices used for building up thermal stratifica...... Image Velocimetry measurement method. The theoretical investigations are based on the transient simulation program TrnSys and Computational Fluid Dynamics. The Ph.D. thesis demonstrates the influence on the thermal performance of solar combi systems of a number of different parameters...

  16. Origin of organic matter in the early solar system. VII - The organic polymer in carbonaceous chondrites

    Science.gov (United States)

    Hayatsu, R.; Matsuoka, S.; Anders, E.; Scott, R. G.; Studier, M. H.

    1977-01-01

    Degradation techniques, including pyrolysis, depolymerization, and oxidation, were used to study the insoluble polymer from the Murchison C2 chondrite. Oxidation with Cr2O7(2-) or O2/UV led to the identification of 15 aromatic ring systems. Of 11 aliphatic acids identified, three dicarboxylic acids presumably came from hydroaromatic portions of the polymer, whereas eight monocarboxylic acids probably derive from bridging groups or ring substituents. Depolymerization with CF3COO4 yielded some of the same ring systems, as well as alkanes (C1 through C8) and alkenes (C2 through C8), alkyl (C1 through C5) benzenes and naphthalenes, and methyl- or dimethyl -indene, -indane, -phenol, -pyrrole, and -pyridine. All these compounds were detected below 200 C, and are therefore probably indigenous constituents. The properties of the meteoritic polymer were compared with the properties of a synthetic polymer produced by the Fischer-Tropsch reaction. It is suggested that the meteoritic polymer was also produced by surface catalysis.

  17. Solar Tracking System

    OpenAIRE

    Nguyen, Nam

    2016-01-01

    The goal of this thesis was to develop a laboratory prototype of a solar tracking system, which is able to enhance the performance of the photovoltaic modules in a solar energy system. The operating principle of the device is to keep the photovoltaic modules constantly aligned with the sunbeams, which maximises the exposure of solar panel to the Sun’s radiation. As a result, more output power can be produced by the solar panel. The work of the project included hardware design and implemen...

  18. Solar Tracking System

    OpenAIRE

    Nguyen, Nam

    2016-01-01

    The goal of this thesis was to develop a laboratory prototype of a solar tracking system, which is able to enhance the performance of the photovoltaic modules in a solar energy system. The operating principle of the device is to keep the photovoltaic modules constantly aligned with the sunbeams, which maximises the exposure of solar panel to the Sun’s radiation. As a result, more output power can be produced by the solar panel. The work of the project included hardware design and implemen...

  19. Comets as Messengers from the Early Solar System - Emerging Insights on Delivery of Water, Nitriles, and Organics to Earth

    Science.gov (United States)

    Mumma, Michael J.; Charnley, Steven B.

    2012-01-01

    The question of exogenous delivery of water and organics to Earth and other young planets is of critical importance for understanding the origin of Earth's volatiles, and for assessing the possible existence of exo-planets similar to Earth. Viewed from a cosmic perspective, Earth is a dry planet, yet its oceans are enriched in deuterium by a large factor relative to nebular hydrogen and analogous isotopic enrichments in atmospheric nitrogen and noble gases are also seen. Why is this so? What are the implications for Mars? For icy Worlds in our Planetary System? For the existence of Earth-like exoplanets? An exogenous (vs. outgassed) origin for Earth's atmosphere is implied, and intense debate on the relative contributions of comets and asteroids continues - renewed by fresh models for dynamical transport in the protoplanetary disk, by revelations on the nature and diversity of volatile and rocky material within comets, and by the discovery of ocean-like water in a comet from the Kuiper Belt (cf., Mumma & Charnley 2011). Assessing the creation of conditions favorable to the emergence and sustenance of life depends critically on knowledge of the nature of the impacting bodies. Active comets have long been grouped according to their orbital properties, and this has proven useful for identifying the reservoir from which a given comet emerged (OC, KB) (Levison 1996). However, it is now clear that icy bodies were scattered into each reservoir from a range of nebular distances, and the comet populations in today's reservoirs thus share origins that are (in part) common. Comets from the Oort Cloud and Kuiper Disk reservoirs should have diverse composition, resulting from strong gradients in temperature and chemistry in the proto-planetary disk, coupled with dynamical models of early radial transport and mixing with later dispersion of the final cometary nuclei into the long-term storage reservoirs. The inclusion of material from the natal interstellar cloud is probable

  20. Diffusive fractionation of carbon isotopes in γ-Fe: Experiment, models and implications for early solar system processes

    Science.gov (United States)

    Mueller, Thomas; Watson, E. Bruce; Trail, Dustin; Wiedenbeck, Michael; Van Orman, James; Hauri, Erik H.

    2014-02-01

    Carbon is an abundant element of planets and meteorites whose isotopes provide unique insights into both organic and inorganic geochemical processes. The identities of carbonaceous phases and their textural and isotopic characters shed light on dynamical processes in modern Earth systems and the evolution of the early solar system. In meteorites and their parent bodies, reduced carbon is often associated with Fe-Ni alloys, so knowledge of the mechanisms that fractionate C isotopes in such phases is crucial for deciphering the isotopic record of planetary materials. Here we present the results of a diffusion-couple experiment in which cylinders of polycrystalline Fe containing 11,500 and 150 μg/g of C were juxtaposed at 1273 K and 1.5 GPa for a duration of 36 min. Diffusion profiles of total C concentration and 13C/12C were measured by secondary ion mass spectrometry (SIMS). The elemental diffusivity extracted from the data is ˜3.0 × 10-11 m2 s-1, where 13C/12C was observed to change significantly along the diffusion profile, reflecting a higher diffusivity of 12C relative to 13C. The maximum isotopic fractionation along the diffusion profile is ˜30-40‰. The relative diffusivities (D) of the carbon isotopes can be related to their masses (M) by D/D=(C/M)β; the exponent β calculated from our data has a value of 0.225 ± 0.025. Similarly high β values for diffusion of other elements in metals have been taken as an indication of interstitial diffusion, so our results are consistent with C diffusion in Fe by an interstitial mechanism. The high β-value reported here means that significant fractionation of carbon isotopes in nature may arise via diffusion in Fe(-Ni) metal, which is an abundant component of planetary interiors and meteorites.

  1. Exploring the solar system

    CERN Document Server

    Bond, Peter

    2012-01-01

    The exploration of our solar system is one of humanity's greatest scientific achievements. The last fifty years in particular have seen huge steps forward in our understanding of the planets, the sun, and other objects in the solar system. Whilst planetary science is now a mature discipline - involving geoscientists, astronomers, physicists, and others - many profound mysteries remain, and there is indeed still the tantalizing possibility that we may find evidence of life on another planet in our system.Drawing upon the latest results from the second golden age of Solar System exploration, aut

  2. Investigations of medium sized solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2006-01-01

    A large variety of solar combi systems are on the market, but it is still too early to draw conclusions on optimum design of solar combi systems. Among others, the following questions need to be answered: Is an external domestic hot water preparation more desirable than an internal? What...... is the advantage by using inlet stratifiers? To answer the questions, theoretical investigations are carried out for differently designed solar combi systems. The work is carried out within the Solar Heating and Cooling Programme of the International Energy Agency (IEA SHC), Task 32 Advanced storage concepts...... for solar houses and low energy buildings....

  3. Solar Index prediction methodology for early delivery

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.

    1980-01-01

    Since the beginning of the Solar Index project in 1978, it has been one of the primary objectives to deliver the Indices in mid-afternoon local standard time. This was desirable because it would make it possible to have the numbers broadcast in the early evening news. A short description of the current project is presented and then a summary of the work that led to the early delivery of the Solar Index is given.

  4. Origin of the p-process radionuclides 92Nb and 146Sm in the early solar system and inferences on the birth of the Sun.

    Science.gov (United States)

    Lugaro, Maria; Pignatari, Marco; Ott, Ulrich; Zuber, Kai; Travaglio, Claudia; Gyürky, György; Fülöp, Zsolt

    2016-01-26

    The abundances of (92)Nb and (146)Sm in the early solar system are determined from meteoritic analysis, and their stellar production is attributed to the p process. We investigate if their origin from thermonuclear supernovae deriving from the explosion of white dwarfs with mass above the Chandrasekhar limit is in agreement with the abundance of (53)Mn, another radionuclide present in the early solar system and produced in the same events. A consistent solution for (92)Nb and (53)Mn cannot be found within the current uncertainties and requires the (92)Nb/(92)Mo ratio in the early solar system to be at least 50% lower than the current nominal value, which is outside its present error bars. A different solution is to invoke another production site for (92)Nb, which we find in the α-rich freezeout during core-collapse supernovae from massive stars. Whichever scenario we consider, we find that a relatively long time interval of at least ∼ 10 My must have elapsed from when the star-forming region where the Sun was born was isolated from the interstellar medium and the birth of the Sun. This is in agreement with results obtained from radionuclides heavier than iron produced by neutron captures and lends further support to the idea that the Sun was born in a massive star-forming region together with many thousands of stellar siblings.

  5. Origin of the p-process radionuclides 92Nb and 146Sm in the early Solar System and inferences on the birth of the Sun

    CERN Document Server

    Lugaro, Maria; Ott, Ulrich; Zuber, Kai; Travaglio, Claudia; Gyurky, Gyorgy; Fulop, Zsolt

    2016-01-01

    The abundances of 92Nb and 146Sm in the early Solar System are determined from meteoritic analysis and their stellar production is attributed to the p process. We investigate if their origin from thermonuclear supernovae deriving from the explosion of white dwarfs with mass above the Chandrasekhar limit is in agreement with the abundance of 53Mn, another radionuclide present in the early Solar System and produced in the same events. A consistent solution for 92Nb and 53Mn cannot be found within the current uncertainties and requires that the 92Nb/92Mo ratio in the early Solar System is at least 50% lower than the current nominal value, which is outside its present error bars. A different solution is to invoke another production site for 92Nb, which we find in the alpha-rich freezeout during core-collapse supernovae from massive stars. Whichever scenario we consider, we find that a relatively long time interval of at least ~10 Myr must have elapsed from when the star-forming region where the Sun was born was i...

  6. Solar Energy: Solar System Design Fundamentals.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  7. Investigations of medium sized solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2006-01-01

    A large variety of solar combi systems are on the market, but it is still too early to draw conclusions on optimum design of solar combi systems. Among others, the following questions need to be answered: Is an external domestic hot water preparation more desirable than an internal? What is the a...

  8. Evaluation of Anorthite Glass Standards for High Precision SIMS Al-Mg Dating of Early Solar System Materials

    Science.gov (United States)

    Kita, N.; Fournelle, J.; Mendybaev, R.; Knight, K.; Davis, A. M.; Richter, F. M.; Ushikubo, T.

    2009-12-01

    The decay of extinct nuclide 26Al to daughter nuclide 26Mg (half life of 7.3×105y) is considered to be a useful chronometer for the early solar system. The initial 26Al/26Al ratio of the solar system is estimated to be ~5×10-5 from the analyses of Ca, Al-rich refractory inclusions (CAIs) in primitive meteorites by the linear regression of multiple data on 26Al/26Mg vs. 26Mg/26Mg isochron diagram. Anorthite grains in CAIs show high 26Al/26Mg ratios (~400) with an excess of 26Mg/26Mg ratios as high as 100‰. By using the WiscSIMS IMS-1280, the Mg isotope ratio of anorthite can be obtained with a precision of better than 1‰, from which we can resolve time differences of only 10 ky among formation of individual CAIs. In order to obtain highly precise 26Al-26Mg isochrons, it is important to determine an accurate SIMS relative sensitivity factor (RSF) of 26Al/26Mg ratios from the analyses of plagioclase standard. However, uncertainties of Mg concentration in plagioclase standards are typically ~10% due to low concentrations of MgO (≤0.1wt.%) in naturally occurring plagioclase crystals. In order to obtain accurate initial 26Al/26Al ratios of CAIs, anorthite glass standards were prepared at the University of Chicago with MgO contents of 0.1%, 0.5% and 1.0 wt.% by melting Mg-, Ca-, Al-, and Si-oxides at 1620°C in N2 for 22 to 35 hours. Major and minor element concentrations (including MgO) of the glasses were analyzed precisely by EPMA (Cameca SX51 at University of Wisconsin). Operating conditions were 15 kV, 10 nA, 10 μm wide beam; for Mg, both peak and background were measured for 30 seconds each, and differential PHA was used. A synthetic akermanite standard was used, and a blank correction (0.01 wt% Mg) in Probe for EPMA software was applied. By obtaining ~30 EPMA point analyses for esch glass, MgO concentrations in these glasses were determined with precision of 1-3%. The homogeneity of Mg concentrations in the individual glass were examined by using SIMS and

  9. Solar system. Das Sonnensystem

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.

    1981-01-01

    A comprehensive review is given of the most recent findings on the solar system. The physical processes in the sun are presented, their interactions in the interplanetary space, and the planets and moons of the solar system. The sun and the moon are discussed in great detail. The text is supplemented by excellent satellite pictures, including the latest pictures of Jupiter, Saturn, and their moons.

  10. Solar technology applications: a survey of solar powered irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Newkirk, H.W.

    1978-04-17

    Published information on solar powered irrigation systems is presented. Thermal solar systems, thermoelectric solar systems, and photovoltaic solar systems are included. A bibliography and survey of on-going work is presented. (WHK)

  11. Discovering the Solar System

    Science.gov (United States)

    Jones, Barrie W.

    1999-04-01

    Discovering the Solar System Barrie W. Jones The Open University, Milton Keynes, UK Discovering the Solar System is a comprehensive, up-to-date account of the Solar System and of the ways in which the various bodies have been investigated and modelled. The approach is thematic, with sequences of chapters on the interiors of planetary bodies, on their surfaces, and on their atmospheres. Within each sequence there is a chapter on general principles and processes followed by one or two chapters on specific bodies. There is also an introductory chapter, a chapter on the origin of the Solar System, and a chapter on asteroids, comets and meteorites. Liberally illustrated with diagrams, black and white photographs and colour plates, Discovering the Solar System also features: * tables of essential data * question and answers within the text * end of section review questions with answers and comments Discovering the Solar System is essential reading for all undergraduate students for whom astronomy or planetary science are components of their degrees, and for those at a more advanced level approaching the subject for the first time. It will also be of great interest to non-specialists with a keen interest in astronomy. A small amount of scientific knowledge is assumed plus familiarity with basic algebra and graphs. There is no calculus. Praise for this book includes: ".certainly qualifies as an authoritative text. The author clearly has an encyclopedic knowledge of the subject." Meteorics and Planetary Science ".liberally doused with relevant graphs, tables, and black and white figures of good quality." EOS, Transactions of the American Geophysical Union ".one of the best books on the Solar System I have seen. The general accuracy and quality of the content is excellent." Journal of the British Astronomical Association

  12. Solar Thermal Storage System

    Directory of Open Access Journals (Sweden)

    Arjun A. Abhyankar

    2012-06-01

    Full Text Available Increasing energy consumption, shrinking resources and rising energy costs will have significant impact on our standard of living for future generations. In this situation, the development of alternative, cost effective sources of energy has to be a priority. This project presents the advanced technology and some of the unique features of a novel solar system that utilizes solar energy for space heating and water heating purpose in residential housing and commercial buildings. The improvements in solar technology offers a significant cost reduction, to a level where the solar system can compete with the energy costs from existing sources. The main goal of the project is to investigate new or advanced solutions for storing heat in systems providing heating. which can be achieved using phase change material(PCM.A phase change material with a melting/solidification temperature of 50ºC to 60ºC is used for solar heat storage. When the PCM undergoes the phase change, it can absorb or release a large amount of energy as latent heat. This heat can be used for further applications like water heating and space heating purposes. Thus solar thermal energy is widely use

  13. A renewed search for short-lived 126Sn in the early Solar System: Hydride generation MC-ICPMS for high sensitivity Te isotopic analysis

    Science.gov (United States)

    Brennecka, Gregory A.; Borg, Lars E.; Romaniello, Stephen J.; Souders, Amanda K.; Shollenberger, Quinn R.; Marks, Naomi E.; Wadhwa, Meenakshi

    2017-03-01

    Although there is limited direct evidence for supernova input into the nascent Solar System, many models suggest it formed by the gravitational collapse of a molecular cloud that was triggered by a nearby supernova. Existing lines of evidence, mostly in the form of short-lived radionuclides present in the early Solar System, are potentially consistent with this hypothesis, but still allow for alternative explanations. Since the natural production of 126Sn is thought to occur only in supernovae and this isotope has a short half-life (126Sn→126Te, t1/2 = 235 ky), the discovery of extant 126Sn would provide unequivocal proof of supernova input to the early Solar System. Previous attempts to quantify the initial abundance of 126Sn by examining Sn-Te systematics in early solids have been hampered by difficulties in precisely measuring Te isotope ratios in these materials. Thus, here we describe a novel technique that uses hydride generation to dramatically increase the ionization efficiency of Te-an approximately 30-fold increase over previous work. This introduction system, when coupled to a MC-ICPMS, enables high-precision Te isotopic analyses on samples with expected concentrations of Sn and Te, as well as the lack of nucleosynthetic anomalies in other isotopes of Te suggest that the bulk of the Sn and Te recovered from these particular refractory inclusions is not of primary origin and thus does not represent a primary signature of Sn-Te systematics of the protosolar nebula during condensation of CAIs or their precursors. Although no evidence of supernova input was found based on Sn-Te systematics in this sample set, hydride generation represents a powerful tool that can now be used to further explore Te isotope systematics in less altered materials.

  14. Solar System Educators Program

    Science.gov (United States)

    Knudsen, R.

    2004-11-01

    The Solar System Educators Program is a nationwide network of highly motivated teachers who lead workshops that show other teachers in their local communities how to successfully incorporate NASA materials and research into their classes. Currently there are 57 Solar System Educators in 37 states whose workshops are designed to assist their fellow teachers in understanding and including standards-based NASA materials into their classroom activities. Solar System Educators attend a training institute during their first year in the program and have the option of attending subsequent annual institutes. The volunteers in this program receive additional web-based mission-specific telecon trainings in conjunction with the Solar System Ambassadors. Resource and handout materials in the form of DVDs, posters, pamphlets, fact sheets, postcards and bookmarks are also provided. Scientists can get involved with this program by partnering with the Solar System Educators in their regions, presenting at their workshops and mentoring these outstanding volunteers. This formal education program helps optimize project funding set aside for education through the efforts of these volunteer master teachers. At the same time, teachers become familiar with NASA's educational materials with which to inspire students into pursuing careers in science, technology, engineering and math.

  15. Solar system sputtering

    Science.gov (United States)

    Tombrello, T. A.

    1982-01-01

    The sites and materials involved in solar system sputtering of planetary surfaces are reviewed, together with existing models for the processes of sputtering. Attention is given to the interaction of the solar wind with planetary atmospheres in terms of the role played by the solar wind in affecting the He-4 budget in the Venus atmosphere, and the erosion and differentiation of the Mars atmosphere by solar wind sputtering. The study is extended to the production of isotopic fractionation and anomalies in interplanetary grains by irradiation, and to erosion effects on planetary satellites with frozen volatile surfaces, such as with Io, Europa, and Ganymede. Further measurements are recommended of the molecular form of the ejected material, the yields and energy spectra of the sputtered products, the iosotopic fractionation sputtering causes, and the possibility of electronic sputtering enhancement with materials such as silicates.

  16. Solar-heating system

    Science.gov (United States)

    1979-01-01

    Report describes solar modular domestic-hot-water and space-heating system intended for use in small single family dwelling where roof-mounted collectors are not feasible. Contents include design, performance, and hardware specifications for assembly, installation, operation, and maintenance of system.

  17. Drainback solar thermal systems

    DEFF Research Database (Denmark)

    Botpaev, R.; Louvet, Y.; Perers, Bengt

    2016-01-01

    Although solar drainback systems have been used for a long time, they are still generating questions regarding smooth functioning. This paper summarises publications on drainback systems and compiles the current knowledge, experiences, and ideas on the technology. The collective research exhibits...... of this technology has been developed, with a brief description of each hydraulic typology. The operating modes have been split into three stages: filling, operation, and draining, which have been studied separately. A difference in the minimal filling velocities for a siphon development in the solar loop has been...

  18. Solar Stirling system development

    Science.gov (United States)

    Stearns, J. W., Jr.; Won, Y. S.; Poon, P. T.; Das, R.; Chow, E. Y.

    1979-01-01

    A low-cost, high-efficiency dish-Stirling solar thermal-electric power system is being developed for test in 1981. System components are the solar concentrator, receiver, fossil fuel combustor, thermal energy storage (TES), engine-generator, and power processing. System conceptualization is completed and design is in progress. Two receiver alternatives are being evaluated, a direct-coupled receiver-engine configuration with no TES and a heat pipe receiver with TES. System cost projections are being made. Goals for the system development task are (1) to develop an advanced dish-Stirling technology, utilizing a team of industrial contractors, (2) to demonstrate that technology at the system level, and (3) to determine how to achieve low production cost.

  19. SIMS analyses of Mg, Cr, and Ni isotopes in primitive meteorites and short-lived radionuclides in the early solar system

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Y.; Huss, G.R.; Leshin, L.A

    2004-06-15

    SIMS analyses of {sup 26}Al-{sup 26}Mg, {sup 60}Fe-{sup 60}Ni, and {sup 53}Mn-{sup 53}Cr systems in unequilibrated enstatite chondrites provide evidence for the former existence of {sup 26}Al, {sup 60}Fe, and {sup 53}Mn in this highly reduced meteorite group, suggesting the widespread of these short-lived radionuclides in the early solar system. Calcium-aluminum-rich inclusions and Al-rich chondrules in enstatite chondrites show {sup 26}Al-{sup 26}Mg characteristics similar to their counterparts in other types of chondrites. Assuming its homogenous distribution, fine-scale {sup 26}Al relative chronology can be obtained for different components in meteorites. Well-defined isochrons yield initial {sup 60}Fe/{sup 56}Fe ratios of (0.3-1)x10{sup -6} in sulfides from enstatite chondrites. The former presence of {sup 60}Fe suggests a stellar source and its possible high abundance points to a supernova origin. {sup 26}Al and {sup 60}Fe could be important heat sources for the early planetary processes. The large variations of initial {sup 60}Fe/{sup 56}Fe and {sup 53}Mn/{sup 55}Mn ratios and the discordance between {sup 60}Fe-{sup 60}Ni and {sup 53}Mn-{sup 53}Cr systems observed in sulfides indicate later disturbance of the two isotopic systems, and therefore, bear no strict chronological significance. SIMS isotopic analysis can be utilized to attain important information about the early evolution of the solar system.

  20. The New Solar System

    Science.gov (United States)

    Wilkinson, John

    2009-01-01

    Since 2006, the details of bodies making up our solar system have been revised. This was largely as a result of new discoveries of a number of planet-like objects beyond the orbit of Pluto. The International Astronomical Union redefined what constituted a planet and established two new classifications--dwarf planets and plutoids. As a result, the…

  1. The New Solar System

    Science.gov (United States)

    Wilkinson, John

    2009-01-01

    Since 2006, the details of bodies making up our solar system have been revised. This was largely as a result of new discoveries of a number of planet-like objects beyond the orbit of Pluto. The International Astronomical Union redefined what constituted a planet and established two new classifications--dwarf planets and plutoids. As a result, the…

  2. Deformation-aided segregation of Fe-S liquid from olivine under deep Earth conditions: Implications for core formation in the early solar system

    Science.gov (United States)

    Berg, Madeleine T. L.; Bromiley, Geoffrey D.; Butler, Ian B.; Frost, Mungo; Bradley, Robert; Carr, James; Le Godec, Yann; Montési, Laurent G. J.; Zhu, Wenlu; Miller, Kevin; Perrillat, Jean-Philippe; Mariani, Elisabetta; Tatham, Daniel; Redfern, Simon A. T.

    2017-02-01

    The planets and larger rocky bodies of the inner solar system are differentiated, and consist of metallic, iron-rich cores surrounded by thick shells of silicate. Core formation in these bodies, i.e. the segregation of metal from silicate, was a key process in the early solar system, and one which left a lasting geochemical signature. It is commonly assumed that extensive silicate melting and formation of deep magma oceans was required to initiate core formation, due to the inability of iron-rich melts to segregate from a solid silicate matrix. Here we assess the role of deformation in aiding segregation of core-forming melts from solid silicate under conditions of planetary deep interiors. Low-strain rate, high-pressure/temperature deformation experiments and high-resolution 2-D and 3-D textural analysis demonstrate that deformation fundamentally alters iron-rich melt geometry, promoting wetting of silicate grain boundaries and formation of extensive micron to sub-micron width Fe-rich melt bands. Deformation-aided Fe-S melt networks noted here contrast those observed in higher finite strain experiments conducted at lower pressure, and may reveal either an alternative mechanism for melt segregation at higher pressures, or an early stage process of melt segregation. Results suggest, however, that core-mantle chemical equilibration cannot be assumed in models of planetary formation, and that instead, the chemistry of rocky planets may record a complex, multi-stage process of core formation.

  3. Solar System Voyage

    Science.gov (United States)

    Brunier, Serge

    2002-11-01

    In the last few decades, the exploration of our solar system has revealed fascinating details about the worlds that lie beyond our Earth. This lavishly illustrated book invites the reader on a journey through the solar system. After locating our planetary system in the Universe, Brunier describes the Sun and its planets, the large satellites, asteroids, and comets. Photographs and information taken from the latest space missions allow readers to experience spectacular scenes: the lunar plains scarred by asteroid impacts, the frozen deserts of Mars and Europa, the continuously erupting volcanoes of Io and the giant geysers of Triton, the rings of Saturn and the clouds of Venus and Titan, and the powerful crash of the comet Shoemaker-Levy into Jupiter. Inspired by the extraordinary photographs and incisive text, readers of Solar System Voyage will gain a greater appreciation of the hospitable planet we call home. Serge Brunier is chief editor of the journal Ciel et Espace, a photojournalist, and the author of many nonfiction books aimed at both specialists and the general public. His previous books include Space Odyssey (Cambridge, 2002), Glorious Eclipses with Jean-Pierre Luminet (Cambridge, 2000), and Majestic Universe (Cambridge, 1999).

  4. Solar system plasma waves

    Science.gov (United States)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  5. 26Al- 26Mg deficit dating ultramafic meteorites and silicate planetesimal differentiation in the early Solar System?

    Science.gov (United States)

    Baker, Joel A.; Schiller, Martin; Bizzarro, Martin

    2012-01-01

    Meteorites with significantly sub-chondritic Al/Mg that formed in the first 2 million years of the Solar System should be characterised by deficits in the abundance of 26Mg (δ26Mg∗) due to the absence of in-growth of 26Mg from the decay of short-lived 26Al (t1/2 = 0.73 Myr). However, these 26Mg deficits will be small (δ26Mg∗ >-0.037‰) even for material that formed at the same time as the Solar System’s oldest solids - calcium-aluminium-rich inclusions - and thus measurement of these deficits is analytically challenging. Here, we report on a search for 26Mg deficits in three types of ultramafic meteorites (pallasites, ureilites and aubrites) by multiple-collector inductively coupled plasma mass spectrometry. A range of analytical tests were carried out including analysis of: (1) a range of synthetic Mg solution standards; (2) Mg gravimetrically doped with a high purity 26Mg spike; (3) Mg cuts collected sequentially from cation exchange separation columns with fractionated stable Mg isotope compositions; (4) Mg separated from samples that was bracketed by analyses of both DSM-3 and Mg separated from a natural olivine sample subjected to the same chemical processing as the samples. These tests confirm it is possible to resolve differences in δ26Mg∗ from the terrestrial materials that are ⩽0.005‰. However, if Mg yields from chemical separation are low or an inappropriate equilibrium-isotopically fractionated standard is used this will generate analytical artefacts on δ26Mg∗ when this is calculated with the kinetic/exponential mass fractionation law as is the case when correcting for instrumental mass bias during mass spectrometric analysis. Olivine from four different main group pallasites and four bulk ureilites have small deficits in the abundance of 26Mg with δ26MgDSM-3∗=-0.0120±0.0018‰ and δ26MgDSM-3∗=-0.0062±0.0023‰, respectively, relative to terrestrial olivine (δ26MgDSM-3∗=+0.0029±0.0028‰). Six aubrites have δ26MgDSM-3

  6. Short-lived radioactive nuclides in meteorites and early solar system processes; Radioactivites eteintes a courtes periodes dans les meteorites et evolution precoce du systeme solaire

    Energy Technology Data Exchange (ETDEWEB)

    Chaussidon, M. [Centre de Recherches Petrographiques et Geochimiques, CRPG-CNRS, 54 - Vandoeuvre-les-Nancy (France); Gounelle, M. [Museum National d' Histoire Naturelle, Lab. d' Etude de la Matiere Extra-Terrestre (LEME), 75 - Paris (France)

    2007-11-15

    Now extinct, short-lived radioactive nuclides, such as {sup 7}Be (T{sub 1/2} = 53 days), {sup 10}Be (T{sub 1/2} = 1.5 Ma), {sup 26}Al (T{sub 1/2} = 0.74 Ma), {sup 36}Cl (T{sub 1/2} = 0.3 Ma), {sup 41}Ca (T{sub 1/2} = 0.1 Ma), {sup 53}Mn (T{sub 1/2} = 3.7 Ma) and {sup 60}Fe (T{sub 1/2} = 1.5 Ma), were present in the proto-solar nebula when the various components of meteorites formed. The presence of these radioactive isotopes requires a 'last-minute' origin, either nucleosynthesis in a massive star dying close in space and time to the nascent solar system or production by local irradiation of part of the proto-solar disk by high-energy solar cosmic rays. In this review, we list: (i) the different observations indicating the existence of multiple origins for short-lived radioactive nuclides, namely {sup 7}Be, {sup 10}Be and {sup 36}Cl for irradiation scenario and {sup 60}Fe for injection scenario; (ii) the constraints that exist on their distribution (homogeneous or heterogeneous) in the accretion disk; (iii) the constraints they brought on the timescales of nebular processes (from Ca-Al-rich inclusions to chondrules) and of the accretion and differentiation of planetesimals. (authors)

  7. The solar system

    CERN Document Server

    Jones, B W

    2013-01-01

    Presents a contemporary picture of the solar system, including a description of the Earth, Mars, Venus, cratered worlds, exotic rocks and ices, and giant planets. It is pitched at an introductory level and assumes no previous knowledge of planetary astronomy. Little mathematics is used in the text and the numerous graphs and diagrams are kept as simple as possible. End of chapter exercises are provided. The book can be used as an end in itself, or as a preparation for more advanced study, for which references are given.

  8. Thermal and chemical evolution in the early solar system as recorded by FUN CAIs: Part I - Petrology, mineral chemistry, and isotopic composition of Allende FUN CAI CMS-1

    Science.gov (United States)

    Williams, C. D.; Ushikubo, T.; Bullock, E. S.; Janney, P. E.; Hines, R. R.; Kita, N. T.; Hervig, R. L.; MacPherson, G. J.; Mendybaev, R. A.; Richter, F. M.; Wadhwa, M.

    2017-03-01

    Detailed petrologic, geochemical and isotopic analyses of a new FUN CAI from the Allende CV3 meteorite (designated CMS-1) indicate that it formed by extensive melting and evaporation of primitive precursor material(s). The precursor material(s) condensed in a 16O-rich region (δ17O and δ18O ∼ -49‰) of the inner solar nebula dominated by gas of solar composition at total pressures of ∼10-3-10-6 bar. Subsequent melting of the precursor material(s) was accompanied by evaporative loss of magnesium, silicon and oxygen resulting in large mass-dependent isotope fractionations in these elements (δ25Mg = 30.71-39.26‰, δ29Si = 14.98-16.65‰, and δ18O = -41.57 to -15.50‰). This evaporative loss resulted in a bulk composition similar to that of compact Type A and Type B CAIs, but very distinct from the composition of the original precursor condensate(s). Kinetic fractionation factors and the measured mass-dependent fractionation of silicon and magnesium in CMS-1 suggest that ∼80% of the silicon and ∼85% of the magnesium were lost from its precursor material(s) through evaporative processes. These results suggest that the precursor material(s) of normal and FUN CAIs condensed in similar environments, but subsequently evolved under vastly different conditions such as total gas pressure. The chemical and isotopic differences between normal and FUN CAIs could be explained by sorting of early solar system materials into distinct physical and chemical regimes, in conjunction with discrete heating events, within the protoplanetary disk.

  9. Control of Solar Energy Systems

    CERN Document Server

    Camacho, Eduardo F; Rubio, Francisco R; Martínez, Diego

    2012-01-01

    Control of Solar Energy Systems details the main solar energy systems, problems involved with their control, and how control systems can help in increasing their efficiency.  After a brief introduction to the fundamental concepts associated with the use of solar energy in both photovoltaic and thermal plants, specific issues related to control of solar systems are embarked upon. Thermal energy systems are then explored in depth, as well as  other solar energy applications such as solar furnaces and solar refrigeration systems. Problems of variable generation profile and of the contribution of many solar plants to the same grid system are considered with the necessary integrated and supervisory control solutions being discussed. The text includes material on: ·         A comparison of basic and advanced control methods for parabolic troughs from PID to nonlinear model-based control; ·         solar towers and solar tracking; ·         heliostat calibration, characterization and off...

  10. Our Solar System's Cousin?

    Science.gov (United States)

    2007-01-01

    This artist's concept illustrates two planetary systems -- 55 Cancri (top) and our own. Blue lines show the orbits of planets, including the dwarf planet Pluto in our solar system. The 55 Cancri system is currently the closest known analogue to our solar system, yet there are some fundamental differences. The similarities begin with the stars themselves, which are about the same mass and age. Both stars also host big families of planets. Our solar system has eight planets, while 55 Cancri has five, making it the record-holder for having the most known exoplanets. In fact, 55 Cancri could have additional planets, possibly even rocky ones that are too small to be seen with current technologies. All of the planets in the two systems have nearly circular orbits. In addition, both planetary systems have giant planets in their outer regions. The giant located far away from 55 Cancri is four times the mass of our Jupiter, and completes one orbit every 14 years at a distance of five times that between Earth and the sun (about 868 million kilometers or 539 million miles). Our Jupiter completes one orbit around the sun every 11.9 years, also at about five times the Earth-sun distance (778 million kilometers or 483 million miles). Fifty-five Cancri is still the only known star besides ours with a planet in a distant Jupiter-like orbit. Both systems also contain inner planets that are less massive than their outer planets. The differences begin with the planets' masses. The planets orbiting 55 Cancri are all larger than Earth, and represent a 'souped-up' version of our own solar system. In fact, this is the first star that boasts more giant planets than our sun! The arrangement of the planetary systems is also different. The inner four planets of 55 Cancri are all closer to the star than Earth is to the sun. The closest, about the mass of Uranus, whips around the star in just under three days at a distance of approximately 5.6 million kilometers (3.5 million miles). The second

  11. Two different sources of water for the early solar nebula.

    Science.gov (United States)

    Kupper, Stefan; Tornow, Carmen; Gast, Philipp

    2012-06-01

    Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.

  12. Solar air systems - built examples

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, S.R. [ed.] [Solararchitektur, ETH-Hoenggerberg, Zurich (Switzerland)

    1999-07-01

    Active solar systems for air heating are a straightforward yet efficient way of using solar energy to heat spaces, ventilation air and even domestic hot water. They offer important advantages over solar water systems, improved comfort and fuller use of solar gains compared with many passive solar systems and are a natural fit with mechanically ventilated buildings. Solar air systems become more economical when they serve multiple functions such as providing a sound barrier, a weatherskin, sunshading, inducing cooling and even electricity supply (hybrid PV/air). Thirty-five different buildings with successfully installed exemplary solar air systems in climates ranging from Canada and Norway to Italy are described and documented. The building types cover single family houses, apartment buildings, schools, sports halls, and industrial commercial buildings with six different configurations of solar air systems used. Each building is described over several pages, with plans, performance details and illustrations provided. An accompanying product catalogue identifies suppliers of the necessary equipment and offers advice on product selection. As well as giving architects and designers invaluable advice based on the experience from these projects, this book also illustrates clearly the wide range of applications and the many benefits of solar air systems. (author)

  13. Solar system to scale

    Science.gov (United States)

    Gerwig López, Susanne

    2016-04-01

    One of the most important successes in astronomical observations has been to determine the limit of the Solar System. It is said that the first man able to measure the distance Earth-Sun with only a very slight mistake, in the second century BC, was the wise Greek man Aristarco de Samos. Thanks to Newtońs law of universal gravitation, it was possible to measure, with a little margin of error, the distances between the Sun and the planets. Twelve-year old students are very interested in everything related to the universe. However, it seems too difficult to imagine and understand the real distances among the different celestial bodies. To learn the differences among the inner and outer planets and how far away the outer ones are, I have considered to make my pupils work on the sizes and the distances in our solar system constructing it to scale. The purpose is to reproduce our solar system to scale on a cardboard. The procedure is very easy and simple. Students of first year of ESO (12 year-old) receive the instructions in a sheet of paper (things they need: a black cardboard, a pair of scissors, colored pencils, a ruler, adhesive tape, glue, the photocopies of the planets and satellites, the measurements they have to use). In another photocopy they get the pictures of the edge of the sun, the planets, dwarf planets and some satellites, which they have to color, cut and stick on the cardboard. This activity is planned for both Spanish and bilingual learning students as a science project. Depending on the group, they will receive these instructions in Spanish or in English. When the time is over, the students bring their works on their cardboard to the class. They obtain a final mark: passing, good or excellent, depending on the accuracy of the measurements, the position of all the celestial bodies, the asteroids belts, personal contributions, etc. If any of the students has not followed the instructions they get the chance to remake it again properly, in order not

  14. VARIABLE AND EXTREME IRRADIATION CONDITIONS IN THE EARLY SOLAR SYSTEM INFERRED FROM THE INITIAL ABUNDANCE OF {sup 10}Be IN ISHEYEVO CAIs

    Energy Technology Data Exchange (ETDEWEB)

    Gounelle, Matthieu [Laboratoire de Mineralogie et de Cosmochimie du Museum, CNRS and Museum National d' Histoire Naturelle, UMR 7202, CP52, 57 rue Cuvier, F-75005 Paris (France); Chaussidon, Marc; Rollion-Bard, Claire, E-mail: gounelle@mnhn.fr [Centre de Recherches Petrographiques et Geochimiques, CRPG-CNRS, BP 20, F-54501 Vandoeuvre-les-Nancy Cedex (France)

    2013-02-01

    A search for short-lived {sup 10}Be in 21 calcium-aluminum-rich inclusions (CAIs) from Isheyevo, a rare CB/CH chondrite, showed that only 5 CAIs had {sup 10}B/{sup 11}B ratios higher than chondritic correlating with the elemental ratio {sup 9}Be/{sup 11}B, suggestive of in situ decay of this key short-lived radionuclide. The initial ({sup 10}Be/{sup 9}Be){sub 0} ratios vary between {approx}10{sup -3} and {approx}10{sup -2} for CAI 411. The initial ratio of CAI 411 is one order of magnitude higher than the highest ratio found in CV3 CAIs, suggesting that the more likely origin of CAI 411 {sup 10}Be is early solar system irradiation. The low ({sup 26}Al/{sup 27}Al){sub 0} [{<=} 8.9 Multiplication-Sign 10{sup -7}] with which CAI 411 formed indicates that it was exposed to gradual flares with a proton fluence of a few 10{sup 19} protons cm{sup -2}, during the earliest phases of the solar system, possibly the infrared class 0. The irradiation conditions for other CAIs are less well constrained, with calculated fluences ranging between a few 10{sup 19} and 10{sup 20} protons cm{sup -2}. The variable and extreme value of the initial {sup 10}Be/{sup 9}Be ratios in carbonaceous chondrite CAIs is the reflection of the variable and extreme magnetic activity in young stars observed in the X-ray domain.

  15. Microcrystals and Amorphous Material in Comets and Primitive Meteorites: Keys to Understanding Processes in the Early Solar System

    Science.gov (United States)

    Nuth, J. A.; Brearley, A. J.; Scott, E. R. D.

    2004-01-01

    Comets, fine-grained matrices of chondrites, and chondritic interplanetary dust particles (IDPs) are each composed of both crystalline and amorphous silicates. The primitive solar nebula, in which comets and asteroids accreted, was formed from the collapsed core of a Giant Molecular Cloud, that, in turn, condensed from materials present in the interstellar medium (ISM). Despite observations that reveal the presence of crystalline magnesium silicate minerals in the shells of very high mass-loss-rate stars [1,2], typical silicate grains in the ISM are most likely to be amorphous, given their relatively long residence time in such a high radiation environment. An upper limit of 3% crystalline grains can be derived from their non-detection in spectra of ISM solids [3]. If the vast majority of grains that enter the primitive solar nebula are amorphous, then the observation of crystalline dust in comets and primitive chondrite matrices indicates the action of specific processes required to transform the amorphous starting materials into the crystals that are observed.

  16. Solar Heating Systems: Instructor's Guide.

    Science.gov (United States)

    Green, Joanne; And Others

    This Instructor's Guide for a Solar Heating System Curriculum is designed to accompany the Student Manual and the Progress Checks and Test Manual for the course (see note), in order to facilitate the instruction of classes on solar heating systems. The Instructor's Guide contains a variety of materials used in teaching the courses, including…

  17. Solar Heating Systems: Student Manual.

    Science.gov (United States)

    Green, Joanne; And Others

    This Student Manual for a Solar Heating System curriculum contains 22 units of instructional materials for students to use in a course or courses on solar heating systems (see note). For each unit (task), objectives, assignment sheets, laboratory assignments, information sheets, checkpoints (tests), and job sheets are provided. Materials are set…

  18. Wind in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might…

  19. Wind in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might motivate…

  20. Wind in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2010-01-01

    As an astronomy instructor I am always looking for commonly experienced Earthly phenomena to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote short "TPT" articles on frost and precipitation. The present article is on winds in the solar system. A windy day or storm might…

  1. Hf-182-W-182 age dating of a Al-26-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System

    DEFF Research Database (Denmark)

    Holst, Jesper Christian; Olsen, Mia Bjørg Stolberg; Paton, Chad

    2013-01-01

    Refractory inclusions [calcium–aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., 26Al, 41Ca, and 182Hf) synthesized...... in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed...... provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the 182Hf–182W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with 26Al/27Al...

  2. Solar system astrophysics background science and the inner solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics: A Text for the Science of Planetary Systems covers the field of solar system astrophysics beginning with basic tools of spherical astronomy, coordinate frames, and celestial mechanics. Historical introductions precede the development and discussion in most chapters. After a basic treatment of the two- and restricted three-body system motions in Background Science and the Inner Solar System, perturbations are discussed, followed by the Earth's gravitational potential field and its effect on satellite orbits. This is followed by analysis of the Earth-Moon system and the interior planets. In Planetary Atmospheres and the Outer Solar System, the atmospheres chapters include detailed discussions of circulation, applicable also to the subsequent discussion of the gas giants. The giant planets are discussed together, and the thermal excesses of three of them are highlighted. This is followed by chapters on moons and rings, mainly in the context of dynamical stability, comets and meteors, m...

  3. Solar system astrophysics background science and the inner solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Background Science and the Inner Solar System provides new insights into the burgeoning field of planetary astronomy. As in the first edition, this volume begins with a rigorous treatment of coordinate frames, basic positional astronomy, and the celestial mechanics of two and restricted three body system problems. Perturbations are treated in the same way, with clear step-by-step derivations. Then the Earth’s gravitational potential field and the Earth-Moon system are discussed, and the exposition turns to radiation properties with a chapter on the Sun. The exposition of the physical properties of the Moon and the terrestrial planets are greatly expanded, with much new information highlighted on the Moon, Mercury, Venus, and Mars. All of the material is presented within a framework of historical importance. This book and its sister volume, Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System, are pedagogically well written, providing cl...

  4. What does the fine-scale petrography of IDPs reveal about grain formation and evolution in the early solar system?

    Science.gov (United States)

    Bradley, John

    1994-01-01

    The 'pyroxene' interplanetary dust particles (IDP's) may be the best samples for investigation of primordial grain-forming reactions because they appear to have experienced negligible post-accretional alteration. They are likely to continue to yield information about gas-to-solid condensation and other grain-forming reactions that may have occurred either in the solar nebular or presolar interstellar environments. An immediate challenge lies in understanding the nanometer-scale petrography of the ultrafine-grained aggregates in 'pyroxene' IDP's. Whether these aggregates contain components from diverse grain-forming environments may ultimately be answered by systematic petrographic studies using electron microscopes capable of high spatial resolution microanalysis. It may be more difficult to decipher evidence of grain formation and evolution in 'olivine' and 'layer silicate' IDP's because they appear to have experienced post-accretional alteration. Most of the studied 'olivine' IDPs have been subjected to heating and equilibration, perhaps during atmospheric entry, while the 'layer silicate' IDP's have experienced aqueous alteration.

  5. Investigations of solar combi systems

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2005-01-01

    investigations are carried out for different solar combi system types by means of the simulation program Trnsys (Klein et al., 1996) and the multiport store model (Drück, 2000) with input to the models determined by the experiments. The work is carried out within the Solar Heating and Cooling Programme...

  6. Solar Thermal Electricity Generating System

    Science.gov (United States)

    Mishra, Sambeet; Tripathy, Pratyasha

    2012-08-01

    A Solar Thermal Electricity generating system also known as Solar Thermal Power plant is an emerging renewable energy technology, where we generate the thermal energy by concentrating and converting the direct solar radiationat medium/high temperature (300∫C ñ 800∫C). The resulting thermal energy is then used in a thermodynamic cycleto produce electricity, by running a heat engine, which turns a generator to make electricity. Solar thermal power is currently paving the way for the most cost-effective solar technology on a large scale and is heading to establish a cleaner, pollution free and secured future. Photovoltaic (PV) and solar thermal technologies are two main ways of generating energy from the sun, which is considered the inexhaustible source of energy. PV converts sunlight directly into electricity whereas in Solar thermal technology, heat from the sun's rays is concentrated to heat a fluid, whose steam powers a generator that produces electricity. It is similar to the way fossil fuel-burning power plants work except that the steam is produced by the collected heat rather than from the combustion of fossil fuels. In order to generate electricity, five major varieties of solar thermal technologies used are:* Parabolic Trough Solar Electric Generating System (SEGS).* Central Receiver Power Plant.* Solar Chimney Power Plant.* Dish Sterling System.* Solar Pond Power Plant.Most parts of India,Asia experiences a clear sunny weather for about 250 to 300 days a year, because of its location in the equatorial sun belt of the earth, receiving fairly large amount of radiation as compared to many parts of the world especially Japan, Europe and the US where development and deployment of solar technologies is maximum.Whether accompanied with this benefit or not, usually we have to concentrate the solar radiation in order to compensate for the attenuation of solar radiation in its way to earthís surface, which results in from 63,2 GW/m2 at the Sun to 1 kW/m2 at

  7. Eyes on the Solar System

    Data.gov (United States)

    National Aeronautics and Space Administration — Eyes on the Solar System is a software package developed by NASA Jet Propulsion Laboratory and the California Institute of Technology using data provided by NASA's...

  8. Solar System Observations with JWST

    Science.gov (United States)

    Norwood, James; Hammel, Heidi; Milam, Stefanie; Stansberry, John; Lunine, Jonathan; Chanover, Nancy; Hines, Dean; Sonneborn, George; Tiscareno, Matthew; Brown, Michael; Ferruit, Pierre

    2014-01-01

    The James Webb Space Telescope will enable a wealth of new scientific investigations in the near- and mid- infrared, with sensitivity and spatial-spectral resolution greatly surpassing its predecessors. In this paper, we focus upon Solar System science facilitated by JWST, discussing the most current information available concerning JWST instrument properties and observing techniques relevant to planetary science. We also present numerous example observing scenarios for a wide variety of Solar System targets to illustrate the potential of JWST science to the Solar System community. This paper updates and supersedes the Solar System white paper published by the JWST Project in 2010 (Lunine et al., 2010). It is based both on that paper and on a workshop held at the annual meeting of the Division for Planetary Sciences in Reno, NV in 2012.

  9. Comets. [and solar system evolution

    Science.gov (United States)

    Neugebauer, M.

    1986-01-01

    The nature, history, and evolution of comets are considered. Cometary ions, formed by photoionization and other processes, are forced into a highly structured ion tail by the interaction with the solar wind. The importance of comets to solar-system studies lies in the possibilities that they are well-preserved samples of either the interstellar cloud which collapsed to form the solar system or the planetesimals from which the outer planets accumulated, and that they provided either the prebiotic complex molecules from which life evolved or some volatiles necessary for the evolution of these molecules.

  10. Astrometric solar system anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, Michael Martin [Los Alamos National Laboratory; Anderson, John D [PROPULSION LABORATORY

    2009-01-01

    There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.

  11. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System provides a timely update of our knowledge of planetary atmospheres and the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full discussion of the gas and ice giants and their properties. From here, attention switches to the small bodies of the solar system, beginning with the natural satellites. Then comets, meteors, meteorites, and asteroids are discussed in order, and the volume concludes with the origin and evolution of our solar system. Finally, a fully revised section on extrasolar planetary systems puts the development of our system in a wider and increasingly well understood galactic context. All of the material is presented within a framework of historical importance. This book and its sist...

  12. The chlorine isotope composition of Martian meteorites 2. Implications for the early solar system and the formation of Mars

    Science.gov (United States)

    Sharp, Zachary; Williams, Jeffrey; Shearer, Charles; Agee, Carl; McKeegan, Kevin

    2016-11-01

    We determined the chlorine isotope composition of 16 Martian meteorites using gas source mass spectrometry on bulk samples and in situ secondary ion microprobe analysis on apatite grains. Measured δ37Cl values range from -3.8 to +8.6‰. The olivine-phyric shergottites are the isotopically lightest samples, with δ37Cl mostly ranging from -4 to -2‰. Samples with evidence for a crustal component have positive δ37Cl values, with an extreme value of 8.6‰. Most of the basaltic shergottites have intermediate δ37Cl values of -1 to 0‰, except for Shergotty, which is similar to the olivine-phyric shergottites. We interpret these data as due to mixing of a two-component system. The first component is the mantle value of -4 to -3‰. This most likely represents the original bulk Martian Cl isotope value. The other endmember is a 37Cl-enriched crustal component. We speculate that preferential loss of 35Cl to space has resulted in a high δ37Cl value for the Martian surface, similar to what is seen in other volatile systems. The basaltic shergottites are a mixture of the other two endmembers. The low δ37Cl value of primitive Mars is different from Earth and most chondrites, both of which are close to 0‰. We are not aware of any parent-body process that could lower the δ37Cl value of the Martian mantle to -4 to -3‰. Instead, we propose that this low δ37Cl value represents the primordial bulk composition of Mars inherited during accretion. The higher δ37Cl values seen in many chondrites are explained by later incorporation of 37Cl-enriched HCl-hydrate.

  13. Solar home systems in Nepal

    Energy Technology Data Exchange (ETDEWEB)

    Henryson, Jessica; Haakansson, Teresa

    1999-04-01

    Photovoltaic (PV) technology is a clean and environmentally friendly technology that does not require any fuels. The high reliability of operation and little need for maintenance makes it ideally suited for rural areas. Today PV systems are used in Nepal to power telecommunications centres, navigational aids, in pumping systems for irrigation and drinking water, and for household electrification. A solar home system consists of a PV module, a battery, a charge controller and 3-4 fluorescent light bulbs with fixture. The system provides power for lighting and operation of household appliances for several hours. The success of donor supported programs have shown that solar home systems can be a practical solution for many rural households. In 1996 the Government of Nepal launched a subsidy program for solar home systems, which dramatically has increased the demand for solar home systems among rural customers. This report includes a survey of 52 households with solar home systems in two villages. The field-study shows that the villagers are very happy with their systems and the technical performance of the systems in both villages is satisfactory. The study also shows the positive impact electricity has on education, health, income generation and quality of life. The beneficiaries of introducing electricity in remote areas are the children and the women 39 refs, 18 tabs. Examination paper

  14. K2 & Solar System Science

    Science.gov (United States)

    Lissauer, Jack

    2015-01-01

    All of the fields that K2 observes are near the ecliptic plane in order to minimize the spin-up of the spacecraft in response to the effects of solar irradiation. The fields observed by K2 are thus rich in Solar System objects including planets, asteroids and trans-Neptunian objects (TNOs). K2 has already performed observations of Neptune and its large moon Triton, 68 Trojan and Hilda asteroids, 5 TNOs (including Pluto) and Comet C/2013 A1 (Siding Springs). About 10,000 main-belt asteroids that fell into the pixel masks of stars have been serendipitously observed. Observations of small bodies are especially useful for determining rotation periods. Uranus will be observed in a future campaign (C8), as will many more small Solar System bodies. The status of various K2 Solar System studies will be reviewed and placed within the context of our current knowledge of the objects being observed.

  15. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  16. New views of the solar system

    CERN Document Server

    2009-01-01

    Is your library up to date on the Solar System? When the International Astronomical Union redefined the term "planet," Pluto was stripped of its designation as the solar system''s ninth planet. New Views of the Solar System looks at scientists'' changing perspectives on the solar system, with articles on Pluto, the eight chief planets, and dwarf planets. Brilliant photos and drawings showcase the planets, asteroids, comets, and more, providing a stunning collection of vivid and detailed images of the solar system.

  17. Solar Radiation Alert System

    Science.gov (United States)

    2009-03-01

    18 December 2007). 19. HAARP , The Hgh Frequency Actve Auroral Research Program. Glossary of Solar and Geophysical Terms. Avalable at...www.haarp.alaska.edu/ haarp /glos.html (accessed: 4 September 2007). 13 20. IZMIRAN. Pushkov Insttute of Terrestral Mag- netsm, Ionosphere and Radowave

  18. Solar System Update

    CERN Document Server

    Blondel, Philippe

    2006-01-01

    This book, the first in a series of forthcoming volumes, consists of topical and timely reviews of a number of carefully selected topics in solar systemn science. Contributions, in form of up-to-date reviews, are mainly aimed at professional astronomers and planetary scientists wishing to inform themselves about progress in fields closely related to their own field of expertise.

  19. Origins of Inner Solar Systems

    Science.gov (United States)

    Dawson, Rebekah Ilene

    2017-06-01

    Over the past couple decades, thousands of extra-solar planetshave been discovered orbiting other stars. The exoplanets discovered to date exhibit a wide variety of orbital and compositional properties; most are dramatically different from the planets in our own Solar System. Our classical theories for the origins of planetary systems were crafted to account for the Solar System and fail to account for the diversity of planets now known. We are working to establish a new blueprint for the origin of planetary systems and identify the key parameters of planet formation and evolution that establish the distribution of planetary properties observed today. The new blueprint must account for the properties of planets in inner solar systems, regions of planetary systems closer to their star than Earth’s separation from the Sun and home to most exoplanets detected to data. I present work combining simulations and theory with data analysis and statistics of observed planets to test theories of the origins of inner solars, including hot Jupiters, warm Jupiters, and tightly-packed systems of super-Earths. Ultimately a comprehensive blueprint for planetary systems will allow us to better situate discovered planets in the context of their system’s formation and evolution, important factors in whether the planets may harbor life.

  20. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics opens with coverage of the atmospheres, ionospheres and magnetospheres of the Earth, Venus and Mars and the magnetosphere of Mercury. The book then provides an introduction to meteorology and treating the physics and chemistry of these areas in considerable detail. What follows are the structure, composition, particle environments, satellites, and rings of Jupiter, Saturn, Uranus and Neptune, making abundant use of results from space probes. Solar System Astrophysics follows the history, orbits, structure, origin and demise of comets and the physics of meteors and provides a thorough treatment of meteorites, the asteroids and, in the outer solar system, the Kuiper Belt objects. The methods and results of extrasolar planet searches, the distinctions between stars, brown dwarfs, and planets, and the origins of planetary systems are examined. Historical introductions precede the development and discussion in most chapters. A series of challenges, useful as homework assignments or as foc...

  1. Magnetotails in the solar system

    CERN Document Server

    Keiling, Andreas; Delamere, Peter

    2014-01-01

    All magnetized planets in our solar system (Mercury, Earth, Jupiter, Saturn, Uranus, and Neptune) interact strongly with the solar wind and possess well developed magnetotails. It is not only the strongly magnetized planets that have magnetotails. Mars and Venus have no global intrinsic magnetic field, yet they possess induced magnetotails. Comets have magnetotails that are formed by the draping of the interplanetary magnetic field. In the case of planetary  satellites (moons), the magnetotail refers to the wake region behind the satellite in the flow of either the solar wind or the magnetosp

  2. Distribution of p-process 174Hf in early solar system materials and the origin of nucleosynthetic Hf and W isotope anomalies in Ca-Al rich inclusions

    Science.gov (United States)

    Peters, Stefan T. M.; Münker, Carsten; Pfeifer, Markus; Elfers, Bo-Magnus; Sprung, Peter

    2017-02-01

    Some nuclides that were produced in supernovae are heterogeneously distributed between different meteoritic materials. In some cases these heterogeneities have been interpreted as the result of interaction between ejecta from a nearby supernova and the nascent solar system. Particularly in the case of the oldest objects that formed in the solar system - Ca-Al rich inclusions (CAIs) - this view is confirm the hypothesis that a nearby supernova event facilitated or even triggered solar system formation. We present Hf isotope data for bulk meteorites, terrestrial materials and CAIs, for the first time including the low-abundance isotope 174Hf (∼0.16%). This rare isotope was likely produced during explosive O/Ne shell burning in massive stars (i.e., the classical "p-process"), and therefore its abundance potentially provides a sensitive tracer for putative heterogeneities within the solar system that were introduced by supernova ejecta. For CAIs and one LL chondrite, also complementary W isotope data are reported for the same sample cuts. Once corrected for small neutron capture effects, different chondrite groups, eucrites, a silicate inclusion of a IAB iron meteorite, and terrestrial materials display homogeneous Hf isotope compositions including 174Hf. Hafnium-174 was thus uniformly distributed in the inner solar system when planetesimals formed at the system composition, and also variable r-process (or s-process) Hf and W contributions. Based on combined Hf and W isotope compositions, we show that CAIs sampled at least one component in which the proportion of r- and s-process derived Hf and W deviates from that of supernova ejecta. The Hf and W isotope anomalies in CAIs are therefore best explained by selective processing of presolar carrier phases prior to CAI formation, and not by a late injection of supernova materials. Likewise, other isotope anomalies in additional elements in CAIs relative to the bulk solar system may reflect the same process. The isotopic

  3. Integrated solar energy system optimization

    Science.gov (United States)

    Young, S. K.

    1982-11-01

    The computer program SYSOPT, intended as a tool for optimizing the subsystem sizing, performance, and economics of integrated wind and solar energy systems, is presented. The modular structure of the methodology additionally allows simulations when the solar subsystems are combined with conventional technologies, e.g., a utility grid. Hourly energy/mass flow balances are computed for interconnection points, yielding optimized sizing and time-dependent operation of various subsystems. The program requires meteorological data, such as insolation, diurnal and seasonal variations, and wind speed at the hub height of a wind turbine, all of which can be taken from simulations like the TRNSYS program. Examples are provided for optimization of a solar-powered (wind turbine and parabolic trough-Rankine generator) desalinization plant, and a design analysis for a solar powered greenhouse.

  4. Solar pannels tracking systems

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, P.; Maire, J.; Chollet, C.; Rohee, S.; Vialettes, J.M.

    1984-11-23

    This patent is concerned with a steering device for solar photo-pannels laid in row in order to minimize the cast shadow of each pannel on the others, while maintaining a required land use (the pannels are disposed according to a centered hexagonal lattice). The device is designed to set a whole row of pannels according to the azimuthal orientation of the sun. It is composed of a set of (at least) two side rod drives situated at each side of the row and coupled to the pannel. The pannels are moved by the action of two (or more) traction ropes.

  5. Residential solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete residential solar-heating and hot-water system, when installed in highly-insulated energy-saver home, can supply large percentage of total energy demand for space heating and domestic hot water. System which uses water-heating energy storage can be scaled to meet requirements of building in which it is installed.

  6. Solar-powered cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C

    2013-12-24

    A solar-powered adsorption-desorption refrigeration and air conditioning system uses nanostructural materials made of high specific surface area adsorption aerogel as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material. A circulation system circulates refrigerant from the nanostructural material to a cooling unit.

  7. The Advanced Technology Solar Telescope: design and early construction

    Science.gov (United States)

    McMullin, Joseph P.; Rimmele, Thomas R.; Keil, Stephen L.; Warner, Mark; Barden, Samuel; Bulau, Scott; Craig, Simon; Goodrich, Bret; Hansen, Eric; Hegwer, Steve; Hubbard, Robert; McBride, William; Shimko, Steve; Wöger, Friedrich; Ditsler, Jennifer

    2012-09-01

    The National Solar Observatory’s (NSO) Advanced Technology Solar Telescope (ATST) is the first large U.S. solar telescope accessible to the worldwide solar physics community to be constructed in more than 30 years. The 4-meter diameter facility will operate over a broad wavelength range (0.35 to 28 μm ), employing adaptive optics systems to achieve diffraction limited imaging and resolve features approximately 20 km on the Sun; the key observational parameters (collecting area, spatial resolution, spectral coverage, polarization accuracy, low scattered light) enable resolution of the theoretically-predicted, fine-scale magnetic features and their dynamics which modulate the radiative output of the sun and drive the release of magnetic energy from the Sun’s atmosphere in the form of flares and coronal mass ejections. In 2010, the ATST received a significant fraction of its funding for construction. In the subsequent two years, the project has hired staff and opened an office on Maui. A number of large industrial contracts have been placed throughout the world to complete the detailed designs and begin constructing the major telescope subsystems. These contracts have included the site development, AandE designs, mirrors, polishing, optic support assemblies, telescope mount and coudé rotator structures, enclosure, thermal and mechanical systems, and high-level software and controls. In addition, design development work on the instrument suite has undergone significant progress; this has included the completion of preliminary design reviews (PDR) for all five facility instruments. Permitting required for physically starting construction on the mountaintop of Haleakalā, Maui has also progressed. This paper will review the ATST goals and specifications, describe each of the major subsystems under construction, and review the contracts and lessons learned during the contracting and early construction phases. Schedules for site construction, key factory testing of

  8. Solar thermophotovoltaic system using nanostructures.

    Science.gov (United States)

    Ungaro, Craig; Gray, Stephen K; Gupta, Mool C

    2015-09-21

    This paper presents results on a highly efficient experimental solar thermophotovoltaic (STPV) system using simulated solar energy. An overall power conversion efficiency of 6.2% was recorded under solar simulation. This was matched with a thermodynamic model, and the losses within the system, as well as a path forward to mitigate these losses, have been investigated. The system consists of a planar, tungsten absorbing/emitting structure with an anti-reflection layer coated laser-microtextured absorbing surface and single-layer dielectric coated emitting surface. A GaSb PV cell was used to capture the emitted radiation and convert it into electrical energy. This simple structure is both easy to fabricate and temperature stable, and contains no moving parts or heat exchange fluids.

  9. Decentalized solar photovoltaic energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, M. C.

    1980-09-01

    Environmental data for decentralized solar photovoltaic systems have been generated in support of the Technology Assessment of Solar Energy Systems program (TASE). Emphasis has been placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ, utilizing a unique solar cell array-roof shingle combination. Silicon solar cells, rated at 13.5% efficiency at 28/sup 0/C and 100 mW/cm/sup 2/ (AMI) insolation are used to generate approx. 10 kW (peak). An all-electric home is considered with lead-acid battery storage, dc-ac inversion and utility backup. The reference home is compared to others in regions of different insolation. Major material requirements, scaled to quad levels of end-use energy include significant quantities of silicon, copper, lead, antimony, sulfuric acid and plastics. Operating residuals generated are negligible with the exception of those from the storage battery due to a short (10-year) lifetime. A brief general discussion of other environmental, health, and safety and resource availability impacts is presented. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.

  10. Automatic solar lamp intensity control system

    Science.gov (United States)

    Leverone, H.; Mandell, N.

    1968-01-01

    System that substitutes solar cells directly in the path of the radiation incident on the test volume and uses a dc bridge-null system was developed. The solar cell is affixed to a heat sink mounted on each of three arms for each solar lamp. Control of the radiation from the solar lamps is automatic.

  11. Encyclopedia of the solar system

    CERN Document Server

    Spohn, Tilman; Johnson, Torrence

    2014-01-01

    The Encyclopedia of the Solar System, Third Edition-winner of the 2015 PROSE Award in Cosmology & Astronomy from the Association of American Publishers-provides a framework for understanding the origin and evolution of the solar system, historical discoveries, and details about planetary bodies and how they interact-with an astounding breadth of content and breathtaking visual impact. The encyclopedia includes the latest explorations and observations, hundreds of color digital images and illustrations, and over 1,000 pages. It stands alone as the definitive work in this field, and will serve

  12. Our Solar System. Our Solar System Topic Set

    Science.gov (United States)

    Phelan, Glen

    2006-01-01

    This book examines the planets and other objects in space that make up the solar system. It also shows how technology helps students learn about our neighbors in space. The suggested age range for this book is 3-8 with a guided reading level of Q-R. The Fry level is 3.2.

  13. Our Solar System. Our Solar System Topic Set

    Science.gov (United States)

    Phelan, Glen

    2006-01-01

    This book examines the planets and other objects in space that make up the solar system. It also shows how technology helps students learn about our neighbors in space. The suggested age range for this book is 3-8 with a guided reading level of Q-R. The Fry level is 3.2.

  14. Advances in Solar Heating and Cooling Systems

    Science.gov (United States)

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  15. Encyclopedia of the solar system

    CERN Document Server

    Weissman, Paul; Johnson, Torrence

    1998-01-01

    The Encyclopedia of the Solar System provides a series of comprehensive and authoritative articles written by more than 50 eminent planetary and space scientists. Each chapter is self-contained yet linked by cross-references to other related chapters. This beautifully designed book is a must for the library of professional astronomers and amateur star-gazers alike, in fact for anyone who wishes to understand the nature of our solar system.Key Features* Cross-referenced throughout for easy comprehension* Superbly illustrated with over 700 photos, drawings, and diagrams, including 36 color plates* Provides 40 thematically organized chapters by more than 50 eminent contributors* Convenient glossaries of technical terms introduce each chapter* Academic Press maintains a web site for the Encyclopedia at www.academicpress.com/solar; Author-recommended web resources for additional information, images, and research developments related to each chapter of this volume, are available here

  16. Solar-geothermal hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Alvaro; Almanza, Rafael [Instituto de Ingenieria, UNAM, Ciudad Universitaria, Edificio 12, 04510 Mexico DF (Mexico)

    2006-10-15

    The Cerro Prieto Geothermal Power Plant is located in the northwest of Mexico, lat. 32{sup o}39', long. 115{sup o}21' in the northern hemisphere. A solar-geothermal hybrid system is proposed in order to increase the steam flow during the present geothermal cycle, adding a solar field of parabolic trough concentrators. Energy is supplied to the geothermal flow from wells in order to increase the steam generation rate. This configuration will increase the capacity factor of the system by generating additional steam during the peak demand hours. The parabolic trough solar field is evaluated in North-South and East-West orientation collector alignments. A proposal to obtain an increase of 10% in steam flow is evaluated, as the increase in flow is limited by the content of dissolved salts, so as to avoid a liquid phase with high salt concentrations. The size of the parabolic troughs field was obtained. (author)

  17. 182Hf-182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System.

    Science.gov (United States)

    Holst, Jesper C; Olsen, Mia B; Paton, Chad; Nagashima, Kazuhide; Schiller, Martin; Wielandt, Daniel; Larsen, Kirsten K; Connelly, James N; Jørgensen, Jes K; Krot, Alexander N; Nordlund, Ake; Bizzarro, Martin

    2013-05-28

    Refractory inclusions [calcium-aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., (26)Al, (41)Ca, and (182)Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of (26)Al corresponding to (26)Al/(27)Al of ∼5 × 10(-5), rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and (26)Al/(27)Al of Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the (182)Hf-(182)W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with (26)Al/(27)Al of ∼3 × 10(-6). The decoupling between (182)Hf and (26)Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for (182)Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for (26)Al. Admixing of stellar-derived (26)Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the (26)Al-(26)Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support (182)Hf homogeneity and chronological significance of the (182)Hf-(182)W clock.

  18. Physics and chemistry of the solar system

    CERN Document Server

    Lewis, John S

    2013-01-01

    Physics and Chemistry of the Solar System is a broad survey of the Solar System. The book discusses the general properties and environment of our planetary system, including the astronomical perspective, the general description of the solar system and of the sun and the solar nebula). The text also describes the solar system beyond mars, including the major planets; pluto and the icy satellites of the outer planets; the comets and meteors; and the meteorites and asteroids. The inner solar system, including the airless rocky bodies; mars, venus, and earth; and planets and life about other stars

  19. The Solar System as an Exoplanetary System

    CERN Document Server

    Martin, Rebecca G

    2015-01-01

    With the availability of considerably more data, we revisit the question of how special our Solar System is, compared to observed exoplanetary systems. To this goal, we employ a mathematical transformation that allows for a meaningful, statistical comparison. We find that the masses and densities of the giant planets in our Solar System are very typical, as is the age of the Solar System. While the orbital location of Jupiter is somewhat of an outlier, this is most likely due to strong selection effects towards short-period planets. The eccentricities of the planets in our Solar System are relatively small compared to those in observed exosolar systems, but still consistent with the expectations for an 8-planet system (and could, in addition, reflect a selection bias towards high-eccentricity planets). The two characteristics of the Solar System that we find to be most special are the lack of super-Earths with orbital periods of days to months and the general lack of planets inside of the orbital radius of Me...

  20. Were Chondrite Parent Bodies Magnetized by the Early Solar Wind?

    Science.gov (United States)

    Oran, R.; Weiss, B. P.

    2016-12-01

    Chondrites are traditionally thought to be samples of undifferentiated bodies that never experienced large-scale melting. However, Allende and several other CV carbonaceous chondrites (Carporzen et al. 2011, Gattacceca et al., submitted) and the H chondrite Portales Valley (Bryson et al., this meeting) contain remanent magnetization acquired well after accretion. The strong intensities (tens of micro Tesla), temporal stability (lasting for several My), and late ages ( 10-100 My after solar system formation) of the magnetizations suggest they are a record of dynamos formed by a molten metallic core. This would imply that the parent bodies of these meteorites were partially differentiated, containing both melted regions and a relic chondritic crust (Abraham et al., this meeting). However, it has alternatively been proposed that CV chondrites may have been magnetized by the Interplanetary Magnetic Field (IMF) carried by the early solar wind (Tarduno et al. 2016), and which was hypothesized to be amplified at the nose of the body due to solar wind pile-up. Here we demonstrate that this scenario is unlikely, due to four main factors: 1) the magnitude of the IMF is estimated to be only 0.005 - 0.05 micro T at 1 AU for the young Sun, 2) the lack of an ionosphere and the resistivity of the crust would limit the magnetic field pile-up, 3) the time variability of the IMF in both magnitude and direction [Fig. 1A] would cuase only a fraction of the IMF to diffuse into the body [Fig. 1B], and 4) even the weak field that manages to diffuse in changes over timescales much shorter than the My timescale of magnetization acquisition and thus cannot impart a unidirectional magnetization. We demonstrate these effects quantitatively using analytical arguments, numerical simulations and analysis of solar wind in-situ measurements.

  1. The Solar System primordial lead

    Science.gov (United States)

    Blichert-Toft, Janne; Zanda, Brigitte; Ebel, Denton S.; Albarède, Francis

    2010-11-01

    Knowledge of the primordial isotope composition of Pb in the Solar System is critical to the understanding of the early evolution of Earth and other planetary bodies. Here we present new Pb isotopic data on troilite (FeS) nodules from a number of different iron meteorites: Canyon Diablo, Mundrabilla, Nantan, Seeläsgen, Toluca (IAB-IIICD), Cape York (IIIA), Mt Edith (IIIB), and Seymchan (pallasite). Lead abundances and isotopic compositions typically vary from one troilite inclusion to another, even within the same meteorite. The most primitive Pb was found in three leach fractions of two exceptionally Pb-rich Nantan troilite nodules. Its 204Pb/ 206Pb is identical to that of Canyon Diablo troilite as measured by Tatsumoto et al. [M. Tatsumoto, R.J. Knight, C.J. Allègre, Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206, Science 180(1973) 1279-1283]. However, our measurements of 207Pb/ 206Pb and 208Pb/ 206Pb are significantly higher than theirs, as well as other older literature data obtained by TIMS, while consistent with the recent data of Connelly et al. [J.N. Connelly, M. Bizzarro, K. Thrane, J.A. Baker, The Pb-Pb age of Angrite SAH99555 revisited, Geochim. Cosmochim. Acta 72(2008) 4813-4824], a result we ascribe to instrumental mass fractionation having biased the older data. Our current best estimate of the Solar System primordial Pb is that of Nantan troilite, which has the following isotopic composition: 204Pb/ 206Pb = 0.107459(16), 207Pb/ 206Pb = 1.10759(10), and 208Pb/ 206Pb = 3.17347(28). This is slightly less radiogenic than the intercept of the bundle of isotopic arrays formed in 207Pb/ 206Pb- 204Pb/ 206Pb space by our measurements of Canyon Diablo, Nantan, Seeläsgen, Cape York, and Mundrabilla, as well as literature data, which, in spite of rather large uncertainties, suggests a common primordial Pb component for all of these meteorites. The radiogenic Pb present in most of these irons is dominantly

  2. Chaos in the Solar System

    CERN Document Server

    Lecar, M; Holman, M; Murray, N

    2002-01-01

    The physical basis of chaos in the solar system is now better understood: in all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its Kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new ``short-period'' comet is discovered each year. They are believed to come from the ``Kuiper Belt'' (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury, in 10^{12} years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 10^9 times the age of the solar ...

  3. Precipitation in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  4. Precipitation in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  5. Sizing up the Solar System

    Science.gov (United States)

    Wiebke, Heidi; Rogers, Meredith Park; Nargund-Joshi, Vanashri

    2011-01-01

    The American Association for the Advancement of Science (AAAS 1993) states that by the end of fifth grade, students should understand that a model, such as those depicting the solar system, is a smaller version of the real product, making it easier to physically work with and therefore learn from. However, for students and even adults,…

  6. Exploration of the Solar System.

    Science.gov (United States)

    Henderson, Arthur, Jr., Ed.; Grey, Jerry, Ed.

    This review is one of a series of assessments and reviews prepared in the public interest by the American Institute of Aeronautics and Astronautics (AIAA). The purpose of this review is to outline the potential achievements of solar system exploration and suggest a course of action which will maximize the rewards to mankind. A secondary purpose is…

  7. Sizing up the Solar System

    Science.gov (United States)

    Wiebke, Heidi; Rogers, Meredith Park; Nargund-Joshi, Vanashri

    2011-01-01

    The American Association for the Advancement of Science (AAAS 1993) states that by the end of fifth grade, students should understand that a model, such as those depicting the solar system, is a smaller version of the real product, making it easier to physically work with and therefore learn from. However, for students and even adults,…

  8. Search for Primitive Matter in the Solar System

    Science.gov (United States)

    Libourel, G.; Michel, P.; Delbo, M.; Ganino, C.; Recio-Blanco, A.; de Laverny, P.; Zolensky, M. E.; Krot, A. N.

    2017-01-01

    Recent astronomical observations and theoretical modeling led to a consensus regarding the global scenario of the formation of young stellar objects (YSO) from a cold molecular cloud of interstellar dust (organics and minerals) and gas that, in some cases, leads to the formation of a planetary system. In the case of our Solar System, which has already evolved for approximately 4567 Ma, the quest is to access, through the investigation of planets, moons, cometary and asteroidal bodies, meteorites, micrometeorites, and interplanetary dust particles, the primitive material that contains the key information about the early Solar System processes and its evolution. However, laboratory analyses of extraterrestrial samples, astronomical observations and dynamical models of the Solar System evolution have not brought yet any conclusive evidence on the nature and location of primitive matter in the Solar System, preventing a clear understanding of its early stages.

  9. Presence of 60Fe in eucrite Piplia Kalan: A new perspective to the initial 60Fe/ 56Fe in the early solar system

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; Sahijpal, S.; Bhandari, N.

    - formed on Fe-rich silicate phases of chondrule and troilite from unequilibrated ordinary chondrites (UOCs) 4,8–10 provided an initial 60 Fe/ 56 Fe from (1–10) × 10 –7 . The wide range does not allow us to constrain the initial 60 Fe/ 56 Fe values... metamorphic grade did have a widespread distribution of initial 60 Fe/ 56 Fe. In fact, the spread in the initial 60 Fe/ 56 Fe does seem to gain support for the heterogeneous distribution in the solar system, unlike that of 26 Al. Whether 60 Fe...

  10. Solar Cooling System Using Solar-Driven Hybrid Chiller

    OpenAIRE

    Hirai, Akira

    2012-01-01

    We developed an appropriate Absorption chiller to "Solar cooling system" in 2010. In addition, we added the improvement to the machine. "Solar cooling system" can be easily constructed with the machine. and, we constructed the demonstration plant, and verified the utility

  11. High performance solar Stirling system

    Science.gov (United States)

    Stearns, J. W.; Haglund, R.

    1981-01-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  12. High performance solar Stirling system

    Science.gov (United States)

    Stearns, J. W.; Haglund, R.

    1981-12-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  13. Development of Solar Biomass Drying System

    OpenAIRE

    Atnaw Samson Mekbib; Bin Che Ku Yahya Che Ku Mohammad Faizal; Jama Oumer Abduaziz

    2017-01-01

    The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the ...

  14. Water in the Solar System

    Science.gov (United States)

    Encrenaz, Thérèse

    2008-09-01

    Water is ubiquitous in the Universe, and also in the Solar System. By setting the snow line at its condensation level in the protosolar disk, water was responsible for separating the planets into the terrestrial and the giant ones. Water ice is a major constituent of the comets and the small bodies of the outer Solar System, and water vapor is found in the giant planets, both in their interiors and in the stratospheres. Water is a trace element in the atmospheres of Venus and Mars today. It is very abundant on Earth, mostly in liquid form, but it was probably also abundant in the primitive atmospheres of Venus and Mars. Water is found in different states on the three planets, as vapor on Venus and ice (or permafrost) on Mars. Most likely, this difference has played a major role in the diverging destinies of the three planets.

  15. Solar-powered cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  16. Chemical evolution of primitive solar system bodies

    Science.gov (United States)

    Oro, J.; Mills, T.

    1989-01-01

    Observations on organic molecules and compounds containing biogenic elements in the interstellar medium and in the primitive bodies of the solar system are reviewed. The discovery of phosphorus molecular species in dense interstellar clouds, the existence of organic ions in the dust and gas phase of the comas of Comet Halley, and the presence of presolar, deuterium-hydrogen ratios in the amino acids of carbonaceous chondrites are discussed. The relationships between comets, dark asteroids, and carbonaceous chondrites are examined. Also, consideration is given to the chemical evolution of Titan, the primitive earth, and early Mars.

  17. Analysis of hybrid solar systems

    Science.gov (United States)

    Swisher, J.

    1980-10-01

    The TRNSYS simulation program was used to evaluate the performance of active charge/passive discharge solar systems with water as the working fluid. TRNSYS simulations are used to evaluate the heating performance and cooling augmentation provided by systems in several climates. The results of the simulations are used to develop a simplified analysis tool similar to the F-chart and Phi-bar procedures used for active systems. This tool, currently in a preliminary stage, should provide the designer with quantitative performance estimates for comparison with other passive, active, and nonsolar heating and cooling designs.

  18. Wonders of the solar system

    CERN Document Server

    Cox, Brian

    2011-01-01

    The Sunday Times Bestseller In Wonders of the Solar System - the book of the acclaimed BBC TV series - Professor Brian Cox will take us on a journey of discovery where alien worlds from your imagination become places we can see, feel and visit. The Wonders of the Solar System - from the giant ice fountains of Enceladus to the liquid methane seas of Titan and from storms twice the size of the Earth to the tortured moon of Io with its giant super-volcanoes - is the Solar System as you have never seen it before. In this series, Professor Brian Cox will introduce us to the planets and moons beyond our world, finding the biggest, most bizarre, most powerful natural phenomena. Using the latest scientific imagery along with cutting edge CGI and some of the most spectacular and extreme locations on Earth, Brian will show us Wonders never thought possible. Employing his trademark clear, authoritative, yet down-to-earth approach, Brian will explore how these previously unseen phenomena have dramatically expanded our ho...

  19. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  20. Hybrid solar lighting distribution systems and components

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  1. Hybrid solar lighting systems and components

    Science.gov (United States)

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  2. Deployable Propulsion and Power Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John

    2017-01-01

    to the NEA Scout solar sail, the LISA-T array is designed to fit into a very small volume and provide abundant power and omnidirectional communications in just about any deployment configuration. The technology is being proposed for flight validation as early as 2019 in a low earth orbit demonstration using a 3U cubesat, of which less than 1U will be devoted to the LISA-T power and propulsion system. By leveraging recent advancements in thin films, photovoltaics and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions.

  3. Solar/hydrogen systems for the 1985-2000 time frame - A review and assessment

    Science.gov (United States)

    Hanson, J. A.; Foster, R. W.; Escher, W. J. D.; Tison, R. R.

    1982-01-01

    A comprehensive state-of-the-art review of solar/hydrogen technologies has been conducted. From this, solar/hydrogen production systems which could be commercialized by the year 2000 have been characterized technically and economically. Incentives and disincentives for the early commercialization of four solar/hydrogen systems have been explored, conclusions drawn and recommendations made.

  4. Solar based hydrogen production systems

    CERN Document Server

    Dincer, Ibrahim

    2013-01-01

    This book provides a comprehensive analysis of various solar based hydrogen production systems. The book covers first-law (energy based) and second-law (exergy based) efficiencies and provides a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book gives a clear understanding of the sustainability and environmental impact analysis of the above systems. The book will be particularly useful for a clear understanding

  5. The Solar Eclipse Predictions of Chiljeongsam-Oepyeon in Early Choseon

    Science.gov (United States)

    Ahn, Young Sook; Lee, Yong Sam

    2004-12-01

    The history books of East Asia about astronomical phenomena have the more records of the solar eclipse frequently than any other ones. It is because traditionally, the solar eclipse meaned the fate of dynasty and the king's rule. The Sun, the biggest thing in the heaven symbolized the king, and the solar eclipse foresaw that the king had the problem in private including the body, and the country might suffer from difficulties in a great scale. So the king and all of the ministers used to gather to hold a ceremony named Gusikrye which solar eclipse may pass safely. Consequently, kings always had concernments on collecting informations of solar eclipse. Inspite of importance of solar eclipse predictions, but at the beginning of the Choseon, the predictions of the solar eclipse didn't fit. King Sejong compiled the Chiljeongsan-naepion and the Chiljeongsan-oepyeon to calculate the celestial phenomena including the solar eclipse. By the publications of these two books, the calendar making system of Choseon was firmly established. The Chiljeongsan-oepyeon adopted Huihui calendar of Arabia. The Solar eclipse predictions of Chiljeongsan-oepyeon were relative correct compared to modern method in early Choseon dynasty.

  6. Meteorites and the physico-chemical conditions in the early solar nebula

    CERN Document Server

    Aleon, Jerome

    2008-01-01

    Chondritic meteorites constitute the most ancient rock record available in the laboratory to study the formation of the solar system and its planets. Detailed investigations of their mineralogy, petrography, chemistry and isotopic composition and comparison with other primitive solar system samples such as cometary dust particles have allowed through the years to decipher the conditions of formation of their individual components thought to have once been free-floating pieces of dust and rocks in the early solar nebula. When put in the context of astrophysical models of young stellar objects, chondritic meteorites and cometary dust bring essential insights on the astrophysical conditions prevailing in the very first stages of the solar system. Several exemples are shown in this chapter, which include (1) high temperature processes and the formation of chondrules and refractory inclusions, (2) oxygen isotopes and their bearing on photochemistry and large scale geochemical reservoirs in the nebula, (3) organosy...

  7. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both....... In Denmark and Norway the focus is on solar heating/natural gas systems, and in Sweden and Latvia the focus is on solar heating/pellet systems. Additionally, Lund Institute of Technology and University of Oslo are studying solar collectors of various types being integrated into the roof and facade......, are the universities: Technical University of Denmark, Dalarna University, University of Oslo, Riga Technical University and Lund Institute of Technology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S (Denmark), Solentek AB (Sweden) and SolarNor (Norway). The project consists of a number of Ph...

  8. Future hybrid systems: solar and hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States); Broussard, K. [National Renewable Energy Lab., Golden, CO (United States)]|[NREL MURA Intern from Southern Univ., Baton Rouge, LA (United States)

    2003-07-01

    Future solar and hydrogen hybrid systems are discussed in terms of the evolving hydrogen economy. The focus is on distributed hydrogen, relying on the same distributed-energy strengths of solar-photovoltaic electricity in the built environment. Solar-hydrogen residences, as well as solar parks, are presented. Landarea issues are evaluated, and the economics and potential of these approaches are examined in terms of roadmap predictions on PV and hydrogen pathways. (orig.)

  9. Solar-energy storage-systems analysis

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, R W

    1981-04-01

    Systems analysis activities at Brookhaven National Laboratory (BNL) related to energy storage in solar applications are described, and the purpose, methods and, where available, the results of each study are summarized. Areas of investigation include storage of electrical and thermal energy in solar total energy systems, a theoretical investigation of the value of storage, and the national fuel displacement potential of semi-passive solar storage walls. Investigations of the cost effectiveness of a spectrum of passive solar storage devices and the value of several possible improvements in these devices constitutes BNL's contribution to the Solar Applications Analysis for Energy Storage (SAAES) project.

  10. Economical analysis of a solar desalination system

    DEFF Research Database (Denmark)

    Chen, Ziqian; Wang, Tie-Zhu; He, Xiao-Rong

    2012-01-01

    Based on the calculation of the single-factor impact values of the parameters of a triple stage tower-type of solar desalination unit by utilizing a single-factor analyzing method, the influences of the cost of solar heating system, the cost of hot water tank, the costs of desalination unit...... and yearly electrical power, the life time of solar desalination unit and the yearly yield of fresh water, on the cost of the fresh water production of the solar desalination unit are studied. It is helpful to do the further investigation on solar desalination systems for reducing the cost of fresh water...

  11. Data Assimilation and Uncertainties in Early Solar Cycle Predictions

    Science.gov (United States)

    Kitiashvili, Irina

    2017-08-01

    Stochastic nature of solar activity variations together with our limited knowledge of the dynamo mechanism and subsurface dynamics causes uncertainty in predictions of the solar cycle. For improving the physics-based predictions we can take advantage of the mathematical data assimilation approach that allows us to take into account both, observational errors and model uncertainties, and provide estimates of the next solar cycle along with prediction uncertainties. In this study we use the Parker's migratory dynamo model together with the equation of magnetic helicity balance, which reproduces main properties of the sunspot cycles and allow us to minimize discrepancies between the observed global activity variations and the model solution. The test simulation runs show that a reliable prediction can be obtained for two phases of preceding solar cycle: 1) if the polar field reversals shortly after the solar maxima (strong toroidal field and weak poloidal field), and 2) during the solar minima (strongest poloidal and weak toroidal fields). The early estimate of Cycle 25 obtained by this method shows that this cycle will start in 2019 - 2020, reach the maximum in 2023 - 2024, and that the mean sunspot number at the maximum will be about 90 (for the v2.0 sunspot number series).

  12. Solar thermal power systems. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The work accomplished by the Aerospace Corporation from April 1973 through November 1979 in the mission analysis of solar thermal power systems is summarized. Sponsorship of this effort was initiated by the National Science Foundation, continued by the Energy Research and Development Administration, and most recently directed by the United States Department of Energy, Division of Solar Thermal Systems. Major findings and conclusions are sumarized for large power systems, small power systems, solar total energy systems, and solar irrigation systems, as well as special studies in the areas of energy storage, industrial process heat, and solar fuels and chemicals. The various data bases and computer programs utilized in these studies are described, and tables are provided listing financial and solar cost assumptions for each study. An extensive bibliography is included to facilitate review of specific study results and methodology.

  13. Wind-solar Hybrid Power System

    OpenAIRE

    Jin, Fei

    2014-01-01

    In the development and utilization of new energy sources, the solar energy and wind energy are paid more attention by various countries, and have become a new field of energy development and utilization of the highest level, the most mature technology, the most widely used and commercial development conditions for new energy. But both the traditional wind power system and solar power system have the characteristic of energy instability. Therefore, wind-solar hybrid power system was proposed i...

  14. Data Systems in Early Intervention.

    Science.gov (United States)

    Hebbeler, Kathleen

    This study compiled descriptive information about what states are doing or planning to do with early intervention data systems, a component of early intervention systems as specified in Part H of the Individuals with Disabilities Education Act. The study examined the uses of data systems in eight states: Colorado, Maine, Maryland, Massachusetts,…

  15. Solar System Exploration with LUVOIR

    Science.gov (United States)

    Harris, Walter M.; Villanueva, Geronimo Luis; Schmidt, Britney E.

    2016-10-01

    The Large UV/Optical/IR (LUVOIR) Surveyor is one of four mission concepts under study as a next-generation space observatory in the post Webb Telescope era. LUVOIR is envisioned as a large, 10 m class, remotely serviceable observatory with a suite of advanced-technology instruments designed to leap beyond the current generation of space-based telescopes to explore fundamental astrophysical phenomena on all scales. A 24-member science and technology definition team (STDT) represents all sectors of the astronomy and technologist communities, and it is charged with identifying the observational challenges best addressed with LUVOIR and the instrumental innovations that are required to achieve them.This presentation describes the developing science case for LUVOIR as a Solar System observatory for the study of Sun-planet interactions, thick and sublimation based atmospheres, the small body populations in the inner and outer solar system, surface volatility, and planet/satellite surfaces. We will provide an overview of several key science and technical drivers for each scientific target and how they can be addressed with a LUVOIR facility. We also solicit community input to refine these individual programs and to identify additional areas of emphasis in the development of a final report to NASA.

  16. Fast Imaging Solar Spectrograph System in New Solar Telescope

    Science.gov (United States)

    Park, Y.-D.; Kim, Y. H.; Chae, J.; Goode, P. R.; Cho, K. S.; Park, H. M.; Nah, J. K.; Jang, B. H.

    2010-12-01

    In 2004, Big Bear Solar Observatory in California, USA launched a project for construction of the world's largest aperture solar telescope (D = 1.6m) called New Solar Telescope(NST). University of Hawaii (UH) and Korea Astronomy and Space Science Institute(KASI) partly collaborate on the project. NST is a designed off-axis parabolic Gregorian reflector with very high spatial resolution(0.07 arcsec at 5000A) and is equipped with several scientific instruments such as Visible Imaging Magnetograph (VIM), InfraRed Imaging Magnetograph IRIM), and so on. Since these scientific instruments are focused on studies of the solar photosphere, we need a post-focus instrument for the NST to study the fine structures and dynamic patterns of the solar chromosphere and low Transition Region (TR) layer, including filaments/prominences, spicules, jets, micro flares, etc. For this reason, we developed and installed a fast imaging solar spectrograph(FISS) system on the NST withadvantages of achieving compact design with high spectral resolution and small aberration as well as recording many solar spectral lines in a single and/or dual band mode. FISS was installed in May, 2010 and now we carry out a test observation. In this talk, we introduce the FISS system and the results of the test observation after FISS installation.

  17. Utilization of solar energy. Solar thermal heating systems; Die Waerme vom Himmel holen. Solarthermische Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2012-07-01

    Solar thermal power plants collect solar heat by means of collectors. Thus, solar thermal power plants support the heating and supply warm water for the showers. The implementation of solar thermal power plants is interesting especially for the exchange of the heating system as well as in the new house.

  18. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    Science.gov (United States)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  19. Dust Measurements in the Outer Solar System

    CERN Document Server

    Grün, E; Landgraf, M; Grün, Eberhard; Krüger, Harald; Landgraf, Markus

    1999-01-01

    Dust measurements in the outer solar system are reviewed. Only the plasma wave instrument on board Voyagers 1 and 2 recorded impacts in the Edgeworth-Kuiper belt (EKB). Pioneers 10 and 11 measured a constant dust flux of 10-micron-sized particles out to 20 AU. Dust detectors on board Ulysses and Galileo uniquely identified micron-sized interstellar grains passing through the planetary system. Impacts of interstellar dust grains onto big EKB objects generate at least about a ton per second of micron-sized secondaries that are dispersed by Poynting-Robertson effect and Lorentz force. We conclude that impacts of interstellar particles are also responsible for the loss of dust grains at the inner edge of the EKB. While new dust measurements in the EKB are in an early planning stage, several missions (Cassini and STARDUST) are en route to analyze interstellar dust in much more detail.

  20. Solar Heating Systems with Evacuated Tubular Solar Collector

    DEFF Research Database (Denmark)

    Qin, Lin; Furbo, Simon

    1998-01-01

    , as well as with normal flat-plate collectors was calculated under Danish weather conditions. It is found that, for small SDHW systems with a combi tank design, an increase of 25% -55% net utilized solar energy can be achieved by using these evacuated tubular collectors instead of normal flat......-plate collectors. For solar heating plants, the yearly energy output from these evacuated tubular collectors is about 40%-90% higher than the output from typical flat-plate collectors at an operation temperature of about 50°C.......Recently different designed evacuated tubular solar collectors were introduced on the market by different Chinese companies. In the present study, investigations on the performance of four different Chinese evacuated tubular collectors and of solar heating systems using these collectors were...

  1. Solar thermal system engineering guidebook

    Science.gov (United States)

    Selcuk, M. K.; Bluhm, S. A.

    1983-05-01

    This report presents a graphical methodology for the preliminary evaluation of solar thermal energy plants by Air Force base civil engineers. The report is organized as a Guidebook with worksheets and nomograms provided for rapid estimation of solar collector area, land area, energy output, and thermal power output of a solar thermal plant. Flat plate, evacuated tube, parabolic trough, and parabolic dish solar thermal technologies are considered.

  2. Short review on solar energy systems

    Science.gov (United States)

    Herez, Amal; Ramadan, Mohamad; Abdulhay, Bakri; Khaled, Mahmoud

    2016-07-01

    Solar energy can be utilized mainly in heat generation and electricity production. International energy agency (IEA) shows, in a comparative study on the world energy consumption that in 2050 solar arrays installation will provide about 45% of world energy demand. Solar energy is one of the most important renewable energy source which plays a great role in providing energy solutions. As known there is wide variety of types of collectors and applications of solar energy. This paper aimed to make a short review on solar energy systems, according to types of collectors and applications used.

  3. Design of a Traditional Solar Tracking System

    Science.gov (United States)

    Barsoum, Nader; Vasant, Pandian

    2010-06-01

    Solar energy is rapidly advancing as an important means of renewable energy resource. More energy is produced by tracking the solar panel to remain aligned to the sun at a right angle to the rays of light. This paper describes in detail the design and construction of a prototype for solar tracking system with two degrees of freedom, which detects the sunlight using photocells. The control circuit for the solar tracker is based on a PIC16F84A microcontroller (MCU). This is programmed to detect the sunlight through the photocells and then actuate the motor to position the solar panel where it can receive maximum sunlight.

  4. Energy Savings for Solar Heating Systems

    DEFF Research Database (Denmark)

    Thür, Alexander; Furbo, Simon; Shah, Louise Jivan

    2006-01-01

    showed a good degree of similarity. With the boiler model, various simulations of solar domestic hot water heating systems were done for different hot water demands and collector sizes. The result shows that the potential of fuel reduction can be much higher than the solar gain of the solar thermal...... system. For some conditions the fuel reduction can be up to the double of the solar gain due to a strong increase of the system efficiency. As the monitored boilers were not older than 3 years, it can be assumed that the saving potential with older boilers could be even higher than calculated...

  5. Installation package for a solar heating system

    Science.gov (United States)

    1978-01-01

    Installation information is given for a solar heating system installed in Concho Indian School at El Reno, Oklahoma. This package includes a system Operation and Maintenance Manual, hardware brochures, schematics, system operating modes and drawings.

  6. Prototype solar-heating system design package

    Science.gov (United States)

    1979-01-01

    Design package for complete residential solar-heating system is given. Includes documents and drawings describing performance design, verification standards, and analysis of system with sufficient information to assemble working system.

  7. Prototype solar-heating system design package

    Science.gov (United States)

    1979-01-01

    Design package for complete residential solar-heating system is given. Includes documents and drawings describing performance design, verification standards, and analysis of system with sufficient information to assemble working system.

  8. Consumer Attitudes Towards Domestic Solar Power Systems

    OpenAIRE

    Faiers, Adam; Neame, Charles

    2006-01-01

    The success of the UK policy to reduce carbon emissions is partly dependent on the ability to persuade householders to become more energy efficient, and to encourage installation of domestic solar systems. Solar power is an innovation in the UK but the current policy of stimulating the market with grants is not resulting in widespread adoption. This case study, using householders in central England, investigates householder attitudes towards characteristics of solar systems and identifies som...

  9. Web based Measurement System for Solar Radiation

    Directory of Open Access Journals (Sweden)

    Shachi Awasthi

    2012-06-01

    Full Text Available We present in this paper, the principles of the measurement system for solar radiation, and our implementation using Web based data logging concept. The photocurrent produced by Silicon PN junction is used as a solar radiation transducer, to make it more viable we have used commercially available solar panels as our transducers. Using a silicon solar cell as sensor, a low cost solar radiometer can be constructed. The photocurrent produced by solar cell is electronically tailored to be measured and stored by our web based data acquisition and monitoring system. Measurement using real solar cell array gives a good measure of actual producible energy by solar arrays. Our portable instrument can be used in remote sites and substitutes the solar monitor and integrator, Current data of solar radiation can be monitored using Ethernet interface available in all PC, Laptops. We store the data into a secure digital card which can be retrieved to plot and analyse the data. We have developed system hardware and software based on ATmega32 AVR Microcontrollers and ENC28J60 Ethernet PHY and MAC network interface chip by Microchip. So the global irradiance data are obtained after correction using the instantaneous measurement of ambient temperature which allows us to calculate the junction temperature and consequently improve the precision of measurement of our data acquisition system.

  10. Gravitational Anomalies in the Solar System?

    CERN Document Server

    Iorio, Lorenzo

    2014-01-01

    Mindful of the anomalous perihelion precession of Mercury discovered by U. Le Verrier in the second half of the nineteenth century and its successful explanation by A. Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known bodies have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the Universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gra...

  11. Solar Storage Tank Insulation Influence on the Solar Systems Efficiency

    Directory of Open Access Journals (Sweden)

    Negoitescu Arina

    2012-09-01

    Full Text Available For the storage tank of a solar system for domestic hot water production was analyzed the insulation thickness and material influence. To this end, it was considered a private house, occupied by 3 persons, located in zone I of thermal radiation, for which has been simulated the domestic hot water production process. The tank outlet hot water temperature was considered of 45°C. For simulation purposes, as insulation materials for the storage tank were taking into account glass wool and polyurethane with various thicknesses. Finally, was carried out the comparative analysis of two types of tanks, in terms of the insulation thickness influence on the solar fraction, annual solar contribution and solar annual productivity. It resulted that polyurethane is the most advantageous from all points of view.

  12. Mega-Impacts on Mars: Implications for the Late Heavy Bombardment in the Inner Solar System, and the Early Evolution of the Earth and Mars

    Science.gov (United States)

    Frey, Herbert

    2012-01-01

    There are about 30 very large impact basins on Mars, > 1000 km in diameter, most of which are revealed by their topographic and/or crustal thickness signatures. Crater retention ages and model absolute ages suggest these all formed in a relatively short time (100-200 million years?), perhaps during a "Late Heavy Bombardment" (LHB) caused by the evolution of the orbits of the giant planets. This so-called "Nice Model" of planetary formation may explain the LHB on the Moon at about 3.9 billion years ago and would have produced a similar bombardment throughout the inner solar system. The formation of 30 very large impact basins would have had catastrophic environmental consequences for Mars, which were further complicated by the demise of the global magnetic field at about the same time. If there are no very large basins on Mars older than the 30 we see and the LHB really lasted everywhere only a short time, there may have been a relatively longer time (400 million years?) during which Mars and the Earth suffered no major impact trauma and during which conditions on both worlds may have been far more habitable than during the LHB. However, if the formation of the Mars crustal dichotomy was due to an even larger giant impact that predated the very large basins, all record of this earlier and possibly more clement time on Mars may have been erased. Ages of the smaller but still very large basins can be used to approximately date the giant impact (if it occurred). Even the very large basins appear to have reset the crater retention ages of the entire crust of Mars and may have by themselves erased any record of an earlier time.

  13. The Solar System Origin Revisited

    Science.gov (United States)

    Johnson, Fred M.

    2016-10-01

    A novel theory will be presented based in part on astronomical observations, plasma physics experiments, principles of physics and forensic techniques. The new theory correctly predicts planetary distances with a 1% precision. It accounts for energy production mechanism inside all of the planets including our Earth. A log-log mass-luminosity plot of G2 class stars and solar system planets results in a straight line plot, whose slope implies that a fission rather than a proton-proton fusion energy production is operating. Furthermore, it is a confirmation that all our planets had originated from within our Sun. Other still-born planets continue to appear on the Sun's surface, they are mislabeled as sunspots.

  14. Small solar system bodies as granular systems

    Science.gov (United States)

    Hestroffer, Daniel; Campo Bagatín, Adriano; Losert, Wolfgang; Opsomer, Eric; Sánchez, Paul; Scheeres, Daniel J.; Staron, Lydie; Taberlet, Nicolas; Yano, Hajime; Eggl, Siegfried; Lecomte, Charles-Edouard; Murdoch, Naomi; Radjai, Fahrang; Richardson, Derek C.; Salazar, Marcos; Schwartz, Stephen R.; Tanga, Paolo

    2017-06-01

    Asteroids and other Small Solar System Bodies (SSSBs) are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining). In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.

  15. Small solar system bodies as granular systems

    Directory of Open Access Journals (Sweden)

    Hestroffer Daniel

    2017-01-01

    Full Text Available Asteroids and other Small Solar System Bodies (SSSBs are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining. In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.

  16. Origin of uranium isotope variations in early solar nebula condensates.

    Science.gov (United States)

    Tissot, François L H; Dauphas, Nicolas; Grossman, Lawrence

    2016-03-01

    High-temperature condensates found in meteorites display uranium isotopic variations ((235)U/(238)U), which complicate dating the solar system's formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide (247)Cm (t 1/2 = 15.6 My) into (235)U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of (235)U reaching ~+6% relative to average solar system composition, which can only be due to the decay of (247)Cm. This allows us to constrain the (247)Cm/(235)U ratio at solar system formation to (1.1 ± 0.3) × 10(-4). This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture.

  17. Origin of uranium isotope variations in early solar nebula condensates

    CERN Document Server

    Tissot, Francois L H; Grossman, Lawrence

    2016-01-01

    High temperature condensates found in meteorites display uranium isotopic variations (235U/238U) that complicate dating of the formation of the Solar System and whose origin remains mysterious. It is possible that these variations are due to decay of the short-lived radionuclide 247Cm (t1/2=15.6 Myr) into 235U but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of 235U reaching ~+6 % relative to average solar system composition, which can only be due to decay of 247Cm. This allows us to constrain the 247Cm/235U ratio at Solar System formation to (1.1 +- 0.3) x 10-4. This value provides new clues on the universality of nucleosynthetic r-process of rapid neutron capture.

  18. Wind loads on solar energy systems

    NARCIS (Netherlands)

    Kampen, B.J.M. van; Geurts, C.P.W.; Borsboom, W.A.; Blackmore, P.

    2005-01-01

    Wind loads on solar energy systems are not covered by current wind loading standards. This paper describes results of a parametric study into the wind loads 0on solar energy systems,. which are placed on flat roofs. Wind tunnel measurements have been carried out on a number of configurations. The

  19. Solar-heating system design package

    Science.gov (United States)

    1980-01-01

    Report describes solar heating system composed of warm-air solar collector, logic control unit, and switching and transport unit, that meets government standards for installation in residential dwellings. Text describes system operation and performance specifications complemented by comprehensive set of subcomponent design drawings.

  20. Pumps for medium sized solar systems

    DEFF Research Database (Denmark)

    Furbo, Simon

    1996-01-01

    The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated.......The suitability of the electronically controlled circulation pump type UPE 2000 from Grundfos for large solar heating systems was elucidated....

  1. New views of the solar system

    CERN Document Server

    2007-01-01

    Suitable for ages 10-17, this work takes a look at the developments in research about the solar system, including articles on Pluto, the eight chief planets, and dwarf planets. It includes photos and drawings that showcase the planets, asteroids, comets, and also a collection of images of the solar system.

  2. Wind loads on solar energy systems

    NARCIS (Netherlands)

    Kampen, B.J.M. van; Geurts, C.P.W.; Borsboom, W.A.; Blackmore, P.

    2005-01-01

    Wind loads on solar energy systems are not covered by current wind loading standards. This paper describes results of a parametric study into the wind loads 0on solar energy systems,. which are placed on flat roofs. Wind tunnel measurements have been carried out on a number of configurations. The re

  3. Gamma ray observations of the solar system

    Science.gov (United States)

    1981-01-01

    Two general categories are discussed concerning the evolution of the solar system: the dualistic view, the planetesimal approach; and the monistic view, the nebular hypothesis. The major points of each view are given and the models that are developed from these views are described. Possible applications of gamma ray astronomical observations to the question of the dynamic evolution of the solar system are discussed.

  4. Wind loads on solar energy systems

    NARCIS (Netherlands)

    Kampen, B.J.M. van; Geurts, C.P.W.; Borsboom, W.A.; Blackmore, P.

    2005-01-01

    Wind loads on solar energy systems are not covered by current wind loading standards. This paper describes results of a parametric study into the wind loads 0on solar energy systems,. which are placed on flat roofs. Wind tunnel measurements have been carried out on a number of configurations. The re

  5. Solar-heating system design package

    Science.gov (United States)

    1980-01-01

    Report describes solar heating system composed of warm-air solar collector, logic control unit, and switching and transport unit, that meets government standards for installation in residential dwellings. Text describes system operation and performance specifications complemented by comprehensive set of subcomponent design drawings.

  6. Dormitory Solar-Energy-System Economics

    Science.gov (United States)

    1982-01-01

    102-page report analyzes long-term economic performance of a prepackaged solar energy assembly system at a dormitory installation and extrapolates to four additional sites about the U.S. Method of evaluation is f-chart procedure for solar-heating and domestic hotwater systems.

  7. The impact of solar UV radiation on the early biosphere

    Science.gov (United States)

    Horneck, G.

    2007-08-01

    Stratospheric ozone, photochemically produced from atmospheric oxygen, is a protective filter of the Earth's atmosphere by absorbing most of the biologically harmful UV radiation of our sun in the UV-C (190-280 nm) and short wavelength-region of the UV-B (280-315 nm). Numerous lines of isotopic and geologic evidence suggest that the Archean atmosphere was essentially anoxic. As a result the column abundance of ozone would have been insufficient to affect the surface UV radiation environment. Thus, as well as UV-B radiation, UV-C radiation would have penetrated to the Earth's surface with its associated biological consequences. The history of this ultraviolet stress for the early Earth has been determined from theoretical data and data obtained in Earth orbit on the inactivation of Bacillus subtilis spores under a simulated ozone layer of different thicknesses. Although the UV-C and UV-B regions contribute only 2 % of the entire solar extraterrestrial irradiance, photobiological experiments in space have demonstrated a high mutagenicity and lethality of this UV range to living organisms. The reason for these severe effects of extraterrestrial solar UV radiation - compared to conditions on present-day Earth - lies in the absorption characteristics of the DNA, which is the decisive target for inactivation and mutation induction at this UV range. Being a strong mutagen, UV-radiation is considered as a powerful promoter of biological evolution on the one hand, one the other hand, it may have deleterious consequences to individual cells and organisms, e.g. by causing inactivation, mutations or cancer induction. In response to potential harmful effects of environmental UV radiation, life on Earth has developed several strategies of survival, either avoiding exposure to UV radiation or restoring UV damage. Mechanisms of avoidance of exposure to UV radiation include (i) moving away from the UV radiation into shadowed areas, which requires the development of UV radiation

  8. Solar thermal systems successful planning and construction

    CERN Document Server

    Peuser, Dr Felix A; Schnauss, Martin

    2013-01-01

    Solar Thermal Systems summarizes the theoretical and practical knowledge gained from over 20 years of research, implementation and operation of thermal solar installations. This work provides answers to a variety of key questions by examining current solar installations, drawing upon past experiences and making proposals for future planning.- how do system components and materials behave under continuous operation?- which components have proven themselves and how are they used properly?- what are the causes of defects and how can they be avoided?- how long is the service life of modern solar i

  9. Grid-connected distributed solar power systems

    Science.gov (United States)

    Moyle, R.; Chernoff, H.; Schweizer, T.

    This paper discusses some important, though often ignored, technical and economic issues of distributed solar power systems: protection of the utility system and nonsolar customers requires suitable interfaced equipment. Purchase criteria must mirror reality; most analyses use life-cycle costing with low discount rates - most buyers use short payback periods. Distributing, installing, and marketing small, distributed solar systems is more costly than most analyses estimate. Results show that certain local conditions and uncommon purchase considerations can combine to make small, distributed solar power attractive, but lower interconnect costs (per kW), lower marketing and product distribution costs, and more favorable purchase criteria make large, centralized solar energy more attractive. Specifically, the value of dispersed solar systems to investors and utilities can be higher than $2000/kw. However, typical residential owners place a value of well under $1000 on the installed system.

  10. Web based Measurement System for Solar Radiation

    Directory of Open Access Journals (Sweden)

    Shachi Awasthi

    2012-06-01

    Full Text Available We present in this paper, the principles of themeasurement system for solar radiation, and ourimplementation using Web based data loggingconcept.The photocurrent produced by Silicon PNjunction is used as a solar radiation transducer, tomake it more viable we have used commerciallyavailable solar panels as our transducers. Using asilicon solar cell as sensor, a low cost solarradiometer can be constructed. The photocurrentproduced by solar cell is electronically tailored to bemeasured and stored by our web based dataacquisition and monitoring system. Measurementusing real solar cell array gives a good measure ofactual producible energy by solar arrays. Ourportable instrument can be used in remote sites andsubstitutes the solar monitor and integrator,Current data of solar radiation can be monitoredusing Ethernet interface available in all PC,Laptops. We store the data into a secure digital cardwhich can be retrieved to plot and analyse the data.We have developed system hardware andsoftware based on ATmega32 AVR Microcontrollersand ENC28J60 Ethernet PHY and MAC networkinterface chip by Microchip.So the global irradiance data are obtained aftercorrection using the instantaneous measurement ofambient temperature which allows us to calculatethe junction temperature and consequently improvethe precision of measurement of our dataacquisition system

  11. Solar powered desalination system using Fresnel lens

    Science.gov (United States)

    Sales, M. T. B. F.

    2016-11-01

    The Philippines is surrounded by coastal areas and these areas can be a potential source for potable water. This study aims to design and construct a solar powered desalination system using Fresnel lens. The experimental study was conducted using polluted salt water for the sample and desalination was carried out using the designed system. The desalination system was composed of the solar concentrator, solar still and the condenser system. The Fresnel lens was made of acrylic plastic and was an effective solar concentrator. Solar stills made of dark colored glass bottles were effective in absorbing the solar energy. The condenser system made of polybutylene and polystyrene were effective in condensing the vapor at ambient temperature. The shortest time of vaporization of the salt water was at 293 sec and the optimum angle of position of the lens was 36.42°. The amount of condensate collected was directly proportional to the amount of salt water in the solar still. The highest mean efficiency of the designed set-up was 34.82%. The water produced by the solar powered desalination system using Fresnel lens passed the standards set by WHO (World Health Organization) for drinking water.

  12. Lunar Surface Solar Electric Power System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a concentrated photovoltaic electric power system for lunar operations called C-Lite Lunar. The novel technology produces a near-term solar array system...

  13. Air leakage in residential solar heating systems

    Science.gov (United States)

    Shingleton, J. G.; Cassel, D. E.; Overton, R. L.

    1981-02-01

    A series of computer simulations was performed to evaluate the effects of component air leakage on system thermal performance for a typical residential solar heating system, located in Madison, Wisconsin. Auxiliary energy required to supplement solar energy for space heating was determined using the TRNSYS computer program, for a range of air leakage rates at the solar collector and pebble bed storage unit. The effects of heat transfer and mass transfer between the solar equipment room and the heated building were investigated. The effect of reduced air infiltration into the building due to pressurized by the solar air heating system were determined. A simple method of estimating the effect of collector array air leakage on system thermal performance was evaluated, using the f CHART method.

  14. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  15. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  16. The Solar Radiation and Climate Experiment (SORCE) Mission Description and Early Results

    CERN Document Server

    Rottman, G; George, V

    2005-01-01

    This book describes the state-of-the art instruments for measuring the solar irradiance from soft x-ray to the near infrared and the total solar irradiance. Furthermore, the SORCE mission and early results on solar variability are presented along with papers that provide an overview of solar influences on Earth.

  17. Solar heating system installed at Stamford, Connecticut

    Science.gov (United States)

    1979-01-01

    The solar heating system installed at the Lutz-Sotire Partnership Executive East Office Building, Stamford, Connecticut is described. The Executive East Office Building is of moderate size with 25,000 sq ft of heated space in 2 1/2 stories. The solar system was designed to provide approximately 50 percent of the heating requirements. The system components are described. Appended data includes: the system design acceptance test, the operation and maintenance manual, and as-built drawings and photographs.

  18. Marketable solar chimney passive solar system components: research and development

    Energy Technology Data Exchange (ETDEWEB)

    De Pascali, P.; Andreotti, P.; Scudo, G.; Silingardi, A.; Gabbi, L.; Grasselli, C.; Cattivelli, F.; Farruggia, S.; Giannotti, A.M. (Ist. Cooperativo per l' Innovazione, Rome (Italy); Milan Politecnico (Italy); Coopsette scrl, Castelnovo Sotto (Italy))

    1989-02-01

    The report describes research to develop a marketable passive solar system incorporating a solar chimney in which heated air rises and produces a natural convection air flow within a double envelope construction. The equipment consists of a heat capturing element, another element to distribute and accumulate heat and a control system. Research activities involved: the study of feasible configurations and performance requirements; the design of a selected configuration; a computerized simulation of the system; and the development of two prototype modules to be lab tested at a facility equipped with real time data acquisition systems. The coordinated effort strove to obtain a multi-use system capable of providing summer cooling, as well as, winter heating and a system which would be accepted by both the construction industry and potential home buyers.

  19. Was Venus the first Habitable World of our Solar System?

    Science.gov (United States)

    Way, Michael; Del Genio, Anthony; Kiang, Nancy; Sohl, Linda; Grinspoon, David; Aleinov, Igor; Kelley, Maxwell; Clune, Thomas

    2016-10-01

    Recent simulations have been completed with the Goddard Institute for Space Studies 3-D General Circulation Model of paleo Venus for a range of early solar system ages from 3Gya to 0.7Gya when the sun was less luminous than today. We use this and Magellan topography to provide Venus an ocean of average depth 310m and an atmosphere similar to present day Earth. A combination of a less luminous Sun and a slow rotation rate reveal that Venus could have had conditions on its surface amenable to surface liquid water in its early history. It is possible that fewer assumptions have to be made to make Venus an early habitable world of our solar system than have to be made for Mars or Earth, even though Venus is a much tougher world on which to confirm this hypothesis. These results could have implications in the search for planets within the habitable zones of stars.

  20. solaR: Solar Radiation and Photovoltaic Systems with R

    Directory of Open Access Journals (Sweden)

    Oscar Perpiñan Lamigueiro

    2012-08-01

    Full Text Available The solaR package allows for reproducible research both for photovoltaics (PV systems performance and solar radiation. It includes a set of classes, methods and functions to calculate the sun geometry and the solar radiation incident on a photovoltaic generator and to simulate the performance of several applications of the photovoltaic energy. This package performs the whole calculation procedure from both daily and intradaily global horizontal irradiation to the final productivity of grid-connected PV systems and water pumping PV systems.It is designed using a set of S4 classes whose core is a group of slots with multivariate time series. The classes share a variety of methods to access the information and several visualization methods. In addition, the package provides a tool for the visual statistical analysis of the performance of a large PV plant composed of several systems.Although solaR is primarily designed for time series associated to a location defined by its latitude/longitude values and the temperature and irradiation conditions, it can be easily combined with spatial packages for space-time analysis.

  1. Developing a solar panel testing system

    Directory of Open Access Journals (Sweden)

    Árpád Rácz

    2009-10-01

    Full Text Available Solar energy is increasingly used togenerate electricity for individual households. There isa wide variety of solar panel technologies, whichshould be tested at an individual level during theirlifetime. In this paper, the development of a testingstation at the University of Debrecen is presented. Thetesting system can be used for research andeducational purposes and for in field applicationsequally well.

  2. Combined solar collector and energy storage system

    Science.gov (United States)

    Jensen, R. N. (Inventor)

    1980-01-01

    A combined solar energy collector, fluid chiller and energy storage system is disclosed. A movable interior insulated panel in a storage tank is positionable flush against the storage tank wall to insulate the tank for energy storage. The movable interior insulated panel is alternately positionable to form a solar collector or fluid chiller through which the fluid flows by natural circulation.

  3. Economical analysis of a solar desalination system

    DEFF Research Database (Denmark)

    Chen, Ziqian; Wang, Tie-Zhu; He, Xiao-Rong

    2012-01-01

    Based on the calculation of the single-factor impact values of the parameters of a triple stage tower-type of solar desalination unit by utilizing a single-factor analyzing method, the influences of the cost of solar heating system, the cost of hot water tank, the costs of desalination unit and y...

  4. Astrometric Solar-System Anomalies

    CERN Document Server

    Anderson, John D

    2009-01-01

    There are at least four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. Next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr$^{-1}$. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction ...

  5. Development of Solar Powered Irrigation System

    Science.gov (United States)

    Abdelkerim, A. I.; Sami Eusuf, M. M. R.; Salami, M. J. E.; Aibinu, A.; Eusuf, M. A.

    2013-12-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors.

  6. Environmental benefits of domestic solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Kalogirou, Soteris A. [Higher Technical Inst., Dept. of Mechanical Engineering, Nicosia (Cyprus)

    2004-11-01

    All nations of the world depend on fossil fuels for their energy needs. However the obligation to reduce CO{sub 2} and other gaseous emissions in order to be in conformity with the Kyoto agreement is the reason behind which countries turn to non-polluting renewable energy sources. In this paper the pollution caused by the burning of fossil fuels is initially presented followed by a study on the environmental protection offered by the two most widely used renewable energy systems, i.e. solar water heating and solar space heating. The results presented in this paper show that by using solar energy, considerable amounts of greenhouse polluting gases are avoided. For the case of a domestic water heating system, the saving, compared to a conventional system, is about 80% with electricity or Diesel backup and is about 75% with both electricity and Diesel backup. In the case of space heating and hot water systems the saving is about 40%. It should be noted, however, that in the latter, much greater quantities of pollutant gases are avoided. Additionally, all systems investigated give positive and very promising financial characteristics. With respect to life cycle assessment of the systems, the energy spent for manufacture and installation of the solar systems is recouped in about 1.2 years, whereas the payback time with respect to emissions produced from the embodied energy required for the manufacture and installation of the systems varies from a few months to 9.5 years according to the fuel and the particular pollutant considered. Moreover, due to the higher solar contribution, solar water heating systems have much shorter payback times than solar space heating systems. It can, therefore, be concluded that solar energy systems offer significant protection to the environment and should be employed whenever possible in order to achieve a sustainable future. (Author)

  7. Macro finance early warning system

    Institute of Scientific and Technical Information of China (English)

    Guihuan ZHENG; Xun ZHANG; Wei SHANG; Shanying XU

    2009-01-01

    In this paper, a financial early warning informa-tion system is developed based on the multi-dimensional cli-mate approach that is featured with a multi-dimensional in-dex construction and the relevant multi-dimensional analy-sis. Requirement analysis and design issues of building an information system supporting this multi-dimensional cli-mate approach are discussed in detail. And a case using this system to study the macro financial issues is presented to illustrate how the proposed multi-dimensional approach works in the information system we design. This research is an interdisciplinary work of economic theories, macro finan-cial empirical studies, and software engineering. With ad-vanced macro financial early warning theories implemented in a web application, the Macro Financial Early Warning System (FEWS) developed in this research has been proved to be effective in a trial running in the Forecasting research institute of the Chinese Academy of Sciences.

  8. Solar Energy Systems for Ohioan Residential Homeowners

    Science.gov (United States)

    Luckett, Rickey D.

    Dwindling nonrenewable energy resources and rising energy costs have forced the United States to develop alternative renewable energy sources. The United States' solar energy industry has seen an upsurge in recent years, and photovoltaic holds considerable promise as a renewable energy technology. The purpose of this case study was to explore homeowner's awareness of the benefits of solar energy. Disruptive-innovation theory was used to explore marketing strategies for conveying information to homeowners about access to new solar energy products and services. Twenty residential homeowners were interviewed face-to-face to explore (a) perceived benefits of solar energy in their county in Ohio, and (b) perceptions on the rationale behind the marketing strategy of solar energy systems sold for residential use. The study findings used inductive analyses and coding interpretation to explore the participants' responses that revealed 3 themes: the existence of environmental benefits for using solar energy systems, the expensive cost of equipment associated with government incentives, and the lack of marketing information that is available for consumer use. The implications for positive social change include the potential to enable corporate leaders, small business owners, and entrepreneurs to develop marketing strategies for renewable energy systems. These strategies may promote use of solar energy systems as a clean, renewable, and affordable alternative electricity energy source for the 21st century.

  9. Prototype solar-heating system - installation manual

    Science.gov (United States)

    1978-01-01

    Manual for prototype solar-heating system gives detailed installation procedures for each of seven subsystems. Procedures for operation and maintenance are also included. It discusses architectural considerations, building construction considerations, and checkout-test procedures.

  10. Modular solar-heating system - design package

    Science.gov (United States)

    Sinton, D. S.

    1979-01-01

    Compilation contains design, performance, and hardware specifications in sufficient detail to fabricate or procure materials and install, operate, and maintain complete modular solar heating and hot water system for single family size dwellings.

  11. Solar Heating System at a Racquetball Club

    Science.gov (United States)

    1982-01-01

    Detailed 93-page report describes Arlington, Virginia racquetball club which obtains heat and hot water for its support area from solar collectors. Report explains modes of operation of system and details of acceptance-test plan.

  12. Design information for solar-heating systems

    Science.gov (United States)

    1979-01-01

    Report contains preliminary design information for two solar-heating and hot water systems presently under development. Information includes quality control data, special tooling specifications, hazard analysis, and preliminary training program for installation contractors.

  13. Modular solar-heating system - design package

    Science.gov (United States)

    Sinton, D. S.

    1979-01-01

    Compilation contains design, performance, and hardware specifications in sufficient detail to fabricate or procure materials and install, operate, and maintain complete modular solar heating and hot water system for single family size dwellings.

  14. Solar energy control system. [temperature measurement

    Science.gov (United States)

    Currie, J. R. (Inventor)

    1981-01-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  15. New views of the solar system

    CERN Document Server

    2010-01-01

    Are you up to date on the solar system? When the International Astronomical Union redefined the term ""planet,"" Pluto was downgraded to a lower status. New Views of the Solar System looks at scientists' changing perspectives, with articles on Pluto, the eight chief planets, and dwarf planets. Brilliant photos and drawings showcase the planets, asteroids, comets, and more, providing a stunning collection of vivid images.

  16. What is a solar air system?

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, S.R. [Solararchitektur, ETH-Hoenggerberg, Zurich (Switzerland)

    1999-07-01

    An introduction is given by the editor of the book ''Solar Air Systems - Built Examples'' describing all the examples of buildings in the volume. It outlines all the different types of collectors together with diagrams, and maps showing the location of some of buildings throughout Europe and North America. An explanation is given of the solar air system and its applications. (UK)

  17. New views of the solar system

    CERN Document Server

    2013-01-01

    Are you up to date on the solar system?  When the International Astronomical Union redefined the term ""planet,"" Pluto was downgraded to a lower status. New Views of the Solar System 2013 looks at scientists' changing perspectives, with articles on Pluto, the eight chief planets, and dwarf planets, new missions, updates for ongoing missions, newly-discovered moons, and updated tables. Brilliant photos and drawings showcase the planets, asteroids, comets, and more, providing a stunning collection of vivid images.

  18. The formation of the solar system

    CERN Document Server

    Pfalzner, S; Gounelle, M; Johansen, A; Muenker, C; Lacerda, P; Zwart, S Portegies; Testi, L; Trieloff, M; Veras, D

    2015-01-01

    The solar system started to form about 4.56 Gyr ago and despite the long intervening time span, there still exist several clues about its formation. The three major sources for this information are meteorites, the present solar system structure and the planet-forming systems around young stars. In this introduction we give an overview of the current understanding of the solar system formation from all these different research fields. This includes the question of the lifetime of the solar protoplanetary disc, the different stages of planet formation, their duration, and their relative importance. We consider whether meteorite evidence and observations of protoplanetary discs point in the same direction. This will tell us whether our solar system had a typical formation history or an exceptional one. There are also many indications that the solar system formed as part of a star cluster. Here we examine the types of cluster the Sun could have formed in, especially whether its stellar density was at any stage hi...

  19. Solar-heating system performance tests

    Science.gov (United States)

    1979-01-01

    Report contains results of performance tests on complete system for solar space and hot-water heating system that uses commercially available components. Results were used to determine system suitability for field installation and to generate performance data base for comparison with future tests on field installed systems.

  20. Passive solar systems performance in West Germany

    Energy Technology Data Exchange (ETDEWEB)

    Habenicht, G.

    1986-01-01

    This paper discusses the influence of the two main climatic features (solar radiation and temperature) on the performance of passive solar systems in West Germany. Evaluations were made for the four climatic zones - German Lowlands, German Highlands, Alp Foreland, Alps. These zones differ in solar radiation, temperature and diurnal temperature swings. To evaluate different passive solar systems (direct gain, Trombe wall, water wall) a prototypical dwelling was designed which responded to the environmental conditions. The calculations of the ''Solar Savings Fraction'' (SSF) of each systems were made with a program based on the 'LCR-method'. The paper concludes that although the heating requirements decrease with decreasing latitude and altitude, the SSF is nearly the same for all parts of Germany. They are in a range of +- 5%. This is due to the fact that two main climatic features solar radiation and temperature balance each other. In northern Germany the man solar radiation level is low and so is the number of heating degree days. The conditions in southern Germany are reverse.

  1. Concentrators Enhance Solar Power Systems

    Science.gov (United States)

    2013-01-01

    "Right now, solar electric propulsion is being looked at very seriously," says Michael Piszczor, chief of the photovoltaic and power technologies branch at Glen Research Center. The reason, he explains, originates with a unique NASA mission from the late 1990s. In 1998, the Deep Space 1 spacecraft launched from Kennedy Space Center to test a dozen different space technologies, including SCARLET, or the Solar Concentrator Array with Refractive Linear Element Technology. As a solar array that focused sunlight on a smaller solar cell to generate electric power, SCARLET not only powered Deep Space 1 s instruments but also powered its ion engine, which propelled the spacecraft throughout its journey. Deep Space 1 was the first spacecraft powered by a refractive concentrator design like SCARLET, and also utilized multi-junction solar cells, or cells made of multiple layers of different materials. For the duration of its 38-month mission, SCARLET performed flawlessly, even as Deep Space 1 flew by Comet Borrelly and Asteroid Braille. "Everyone remembers the ion engine on Deep Space 1, but they tend to forget that the SCARLET array powered it," says Piszczor. "Not only did both technologies work as designed, but the synergy between the two, solar power and propulsion together, is really the important aspect of this technology demonstration mission. It was the first successful use of solar electric propulsion for primary propulsion." More than a decade later, NASA is keenly interested in using solar electric propulsion (SEP) for future space missions. A key issue is cost, and SEP has the potential to substantially reduce cost compared to conventional chemical propulsion technology. "SEP allows you to use spacecraft that are smaller, lighter, and less costly," says Piszczor. "Even though it might take longer to get somewhere using SEP, if you are willing to trade time for cost and smaller vehicles, it s a good trade." Potentially, SEP could be used on future science missions

  2. Solar system dynamics in general relativity

    CERN Document Server

    Battista, Emmanuele; Esposito, Giampiero; Di Fiore, Luciano; Simo, Jules; Grado, Aniello

    2016-01-01

    Recent work in the literature has advocated using the Earth-Moon-planetoid Lagrangian points as observables, in order to test general relativity and effective field theories of gravity in the solar system. However, since the three-body problem of classical celestial mechanics is just an approximation of a much more complicated setting, where all celestial bodies in the solar system are subject to their mutual gravitational interactions, while solar radiation pressure and other sources of nongravitational perturbations also affect the dynamics, it is conceptually desirable to improve the current understanding of solar system dynamics in general relativity, as a first step towards a more accurate theoretical study of orbital motion in the weak-gravity regime. For this purpose, starting from the Einstein equations in the de Donder-Lanczos gauge, this paper arrives first at the Levi-Civita Lagrangian for the geodesic motion of celestial bodies, showing in detail under which conditions the effects of internal stru...

  3. Early scattering of the solar protoplanetary disk recorded in meteoritic chondrules.

    Science.gov (United States)

    Marrocchi, Yves; Chaussidon, Marc; Piani, Laurette; Libourel, Guy

    2016-07-01

    Meteoritic chondrules are submillimeter spherules representing the major constituent of nondifferentiated planetesimals formed in the solar protoplanetary disk. The link between the dynamics of the disk and the origin of chondrules remains enigmatic. Collisions between planetesimals formed at different heliocentric distances were frequent early in the evolution of the disk. We show that the presence, in some chondrules, of previously unrecognized magnetites of magmatic origin implies the formation of these chondrules under impact-generated oxidizing conditions. The three oxygen isotopes systematic of magmatic magnetites and silicates can only be explained by invoking an impact between silicate-rich and ice-rich planetesimals. This suggests that these peculiar chondrules are by-products of the early mixing in the disk of populations of planetesimals from the inner and outer solar system.

  4. Solar Powered Automatic Shrimp Feeding System

    Directory of Open Access Journals (Sweden)

    Dindo T. Ani

    2015-12-01

    Full Text Available - Automatic system has brought many revolutions in the existing technologies. One among the technologies, which has greater developments, is the solar powered automatic shrimp feeding system. For instance, the solar power which is a renewable energy can be an alternative solution to energy crisis and basically reducing man power by using it in an automatic manner. The researchers believe an automatic shrimp feeding system may help solve problems on manual feeding operations. The project study aimed to design and develop a solar powered automatic shrimp feeding system. It specifically sought to prepare the design specifications of the project, to determine the methods of fabrication and assembly, and to test the response time of the automatic shrimp feeding system. The researchers designed and developed an automatic system which utilizes a 10 hour timer to be set in intervals preferred by the user and will undergo a continuous process. The magnetic contactor acts as a switch connected to the 10 hour timer which controls the activation or termination of electrical loads and powered by means of a solar panel outputting electrical power, and a rechargeable battery in electrical communication with the solar panel for storing the power. By undergoing through series of testing, the components of the modified system were proven functional and were operating within the desired output. It was recommended that the timer to be used should be tested to avoid malfunction and achieve the fully automatic system and that the system may be improved to handle changes in scope of the project.

  5. Design of Early Warning System for Low Temperature and Sparse Sunlight Disaster in Solar Greenhouse%日光温室低温寡照灾害监测预警系统设计

    Institute of Scientific and Technical Information of China (English)

    关福来; 杜克明; 魏瑞江; 孙忠富

    2009-01-01

    根据多年日光温室气象生态观测资料,总结了温室黄瓜和番茄低温寡照灾害指标,结合远程环境监控技术,建立了日光温室低温寡照灾害的监测预警系统,并在河北日光温室蔬菜生产中进行了测试和初步应用.结果表明,该系统可对低温寡照所发生的范围及强度等进行动态监测预警,并可通过自动生成word文档形式提供信息服务,在灾害诊断预警中具有较好的应用前景.%According to the eco-meteorological data observed for many years in Chinese solar greenhouses, the disaster index and grades of low temperature and sparse sunlight for cucumber and tomato in the greenhouse were summarized. The weather disaster early warning system integrated with remote monitoring technology was established for low temperature and sparse sunlight in the greenhouse, and preliminarily validated and applied in greenhouse vegetable production in Hebei Province. The results showed that this system could provide dynamically early prediction for warning the range and intensity of low temperature and sparse sunlight occurring in the greenhouse. At the same time, automatically created MS word document format for information service could proved wide applicable perspective in disaster diagnosis and forecast.

  6. An early attempt at an integrated home energy system including solar thermal, ground source heat pump, radiant floor heating, reflective and dynamic insulation and ground-tempered makeup air

    Energy Technology Data Exchange (ETDEWEB)

    White, T.

    2005-07-01

    This paper described an attempt to design and build a comfortable and energy efficient home that integrates solar thermal panels with active and passive features. The exterior walls of the 1700 square foot house were interlocking concrete blocks with radiant floor heating pipes fastened to the outside, which was later covered with rigid insulation and stucco. The active heating system included 4 solar panels and a ground source heat pump with supply lines buried horizontally 5 feet below the surface of the back yard on the south side of the building. The solar panels were used for different purposes in different seasons. The system was monitored for the first winter only. For 4 hours a day in January, 10 per cent more solar energy was measured on the vertical collectors than is available from direct solar insolation at summer solstice. With an outside temperature of -33 degrees C, the solar collectors were capable of maintaining an almost constant core wall temperature of 12 degrees C. The total electricity bill for this all-electric house averaged $60 month during for an entire year, with a single occupant. Despite these results, funding to optimize the control system was not granted. The house was sold at a loss and the heat pump was eventually replaced by a natural gas boiler, which reduced the energy efficiency of the house, but which satisfied the bank who wanted a conventional heating system before approving a mortgage. 2 figs.

  7. 24 CFR 203.18a - Solar energy system.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Solar energy system. 203.18a... § 203.18a Solar energy system. (a) The dollar limitation provided in § 203.18(a) may be increased by up... to the installation of a solar energy system. (b) Solar energy system is defined as any...

  8. Photovoltaics: solar electric power systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-02-01

    The operation and uses of solar cells and the National Photovoltaic Program are briefly described. Eleven DOE photovoltaic application projects are described including forest lookout towers; Wilcox Memorial Hospital in Hawaii; WBNO daytime AM radio station; Schuchuli Indian Village; Meade, Nebraska, agricultural experiment; Mt. Laguna Air Force Station; public schools and colleges; residential applications; and Sea World of Florida. (WHK)

  9. The Birth Environment of the Solar System

    CERN Document Server

    Adams, Fred C

    2010-01-01

    This paper reviews our current understanding of the possible birth environments of our Solar System. Since most stars form within groups and clusters, the question becomes one of determining the nature of the birth aggregate of the Sun. This discussion starts by reviewing Solar System properties that provide constraints on our environmental history. We then outline the range of star-forming environments that are available in the Galaxy, and discuss how they affect star and planet formation. The nature of the solar birth cluster is constrained by many physical considerations, including radiation fields provided by the background environment, dynamical scattering interactions, and by the necessity of producing the short-lived radioactive nuclear species inferred from meteoritic measurements. Working scenarios for the solar birth aggregate can be constructed, as discussed herein, although significant uncertainties remain.

  10. Theory and Simulations of Solar System Plasmas

    Science.gov (United States)

    Goldstein, Melvyn L.

    2011-01-01

    "Theory and simulations of solar system plasmas" aims to highlight results from microscopic to global scales, achieved by theoretical investigations and numerical simulations of the plasma dynamics in the solar system. The theoretical approach must allow evidencing the universality of the phenomena being considered, whatever the region is where their role is studied; at the Sun, in the solar corona, in the interplanetary space or in planetary magnetospheres. All possible theoretical issues concerning plasma dynamics are welcome, especially those using numerical models and simulations, since these tools are mandatory whenever analytical treatments fail, in particular when complex nonlinear phenomena are at work. Comparative studies for ongoing missions like Cassini, Cluster, Demeter, Stereo, Wind, SDO, Hinode, as well as those preparing future missions and proposals, like, e.g., MMS and Solar Orbiter, are especially encouraged.

  11. Life in the solar system.

    Science.gov (United States)

    Brack, A

    1999-01-01

    Life, defined as a chemical system capable of transferring its molecular information via self-replication and also capable of evolving, must develop within a liquid to take advantage of the diffusion of complex molecules. On Earth, life probably originated from the evolution of reduced organic molecules in liquid water. Organic matter might have been formed in the primitive Earth's atmosphere or near hydrothermal vents. A large fraction of prebiotic organic molecules might have been brought by extraterrestrial-meteoritic and cometary dust grains decelerated by the atmosphere. Any celestial body harboring permanent liquid water may therefore accumulate the ingredients that generated life on the primitive Earth. The possibility that life might have evolved on early Mars when water existed on the surface marks it as a prime candidate in a search for bacterial life beyond the Earth. Europa has an icy carapace. However, cryovolcanic flows at the surface point to a possible water subsurface region which might harbor a basic life form. The atmosphere and surface components of Titan are also of interest to exobiology for insight into a hydrocarbon-rich chemically evolving world. One-handed complex molecules and preferential isotopic fractionation of carbon, common to all terrestrial life forms, can be used as basic indicators when searching for life beyond the Earth.

  12. An orientable solar panel system for nanospacecraft

    Science.gov (United States)

    Santoni, Fabio; Piergentili, Fabrizio; Candini, Gian Paolo; Perelli, Massimo; Negri, Andrea; Marino, Michele

    2014-08-01

    An orientable deployed solar array system for 1-5 kg weight nanospacecraft is described, enhancing the achievable performance of these typically power-limited systems. The system is based on a deployable solar panel system, previously developed with cooperation between Laboratorio di Sistemi Aerospaziali of University of Roma “la Sapienza” and the company IMT (Ingegneria Marketing Tecnologia). The system proposed is a modular one, and suitable in principle for the 1U, 2U and 3U standard Cubesat bus, even if the need for three axis attitude stabilization makes it typically preferred for 3U Cubesats. The size of each solar panel is the size of a lateral Cubesat surface. A single degree of freedom maneuvering capability is given to the deployed solar array, in order to follow the apparent motion of the sun as close as possible, given the mission requirements on the spacecraft attitude. Considerable effort has been devoted to design the system compatible with the Cubesat standard, being mounted outside on the external spacecraft structure, without requiring modifications on the standard prescriptions. The small available volume is the major constraint, which forces to use miniaturized electric motor technology. The system design trade-off is discussed, leading to the selection of an architecture based on two independently steerable solar array wings.

  13. Residential solar-heating system - design brochure

    Science.gov (United States)

    1978-01-01

    Design brochure for commercially-available solar-heating system is valuable to architects, engineers, and designers. It contains information on system configuration, system sizing, and mechanical layout. Drawings and specifications of all components and typical installation details are included in appendix.

  14. Prototype solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    A collection of quarterly reports from the AiResearch Manufacturing Company covering the period July 12, 1976, through December 31, 1977, is presented. AiResearch Manufacturing Company is developing eight prototype solar heating and cooling systems. This effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3, 25 and 75-ton size units.

  15. Thermal and chemical evolution in the early Solar System as recorded by FUN CAIs: Part II - Laboratory evaporation of potential CMS-1 precursor material

    Science.gov (United States)

    Mendybaev, Ruslan A.; Williams, Curtis D.; Spicuzza, Michael J.; Richter, Frank M.; Valley, John W.; Fedkin, Alexei V.; Wadhwa, Meenakshi

    2017-03-01

    We present the results of laboratory experiments in which a forsterite-rich melt estimated to be a potential precursor of Allende CMS-1 FUN CAI was evaporated into vacuum for different lengths of time at 1900 °C. The evaporation of this melt resulted in residues that define trajectories in chemical as well as magnesium, silicon and oxygen isotopic composition space and come very close to the measured properties of CMS-1. The isotopic composition of the evaporation residues was also used to determine the kinetic isotopic fractionation factors [α2,1 (vapor-melt) defined as the ratio of isotopes 2 and 1 of a given element in the evaporating gas divided by their ratio in the evaporating source] for evaporation of magnesium (α25,24 for 25Mg/24Mg), silicon (α29,28 for 29Si/28Si) and oxygen (α18,16 for 18O/16O) from the forsterite-rich melt at 1900 °C. The values of α25,24 = 0.98383 ± 0.00033 and α29,28 = 0.99010 ± 0.00038 are essentially independent of change in the melt composition as evaporation proceeds. In contrast, α18,16 changes from 0.9815 ± 0.0016 to ∼0.9911 when the residual melt composition changes from forsteritic to melilitic. Using the determined values of α25,24 and α29,28 and present-day bulk chemical composition of the CMS-1, the composition of the precursor of the inclusion was estimated to be close to the clinopyroxene + spinel + forsterite assemblage condensed from a solar composition gas. The correspondence between the chemical composition and isotopic fractionation of experimental evaporation residues and the present-day bulk chemical and isotopic compositions of CMS-1 is evidence that evaporation played a major role in the chemical evolution of CMS-1.

  16. Solar System evolution from compositional mapping of the asteroid belt.

    Science.gov (United States)

    DeMeo, F E; Carry, B

    2014-01-30

    Advances in the discovery and characterization of asteroids over the past decade have revealed an unanticipated underlying structure that points to a dramatic early history of the inner Solar System. The asteroids in the main asteroid belt have been discovered to be more compositionally diverse with size and distance from the Sun than had previously been known. This implies substantial mixing through processes such as planetary migration and the subsequent dynamical processes.

  17. The Search for Life in the Solar System

    Science.gov (United States)

    Ehrenfreund, Pascale

    2016-07-01

    To unravel the origins of life on Earth and possibly elsewhere remains one of mankind's most important discoveries. Basic building blocks of life are widespread in planetary systems in our Milky Way and other galaxies. Extraterrestrial material delivered to young terrestrial planetary surfaces in the early history of our solar system through asteroids, comets and meteorites may have provided significant raw material for the emergence of life on Earth. Since August 2014 the comet rendezvous mission Rosetta has monitored the evolution of comet 67P/Churyumov-Gerasimenko during its approach to the Sun and observed numerous volatiles and complex organic compounds on the comet surface. Several asteroid sample return missions as well as the improved analyses of key meteorites increase our knowledge about the organic inventory that seeded the young planets. Prokaryotic, anaerobic bacteria, which are approximately 3.5 billion years old, represent the first evidence for life on Earth. Since then, life has evolved to high complexity and adapted to nearly every explored environment on our planet. Extreme life on Earth has expanded the list of potentially habitable solar system environments. However, our neighbor planet Mars is the most promising target to search for life within our solar system. Data from the Curiosity rover show regions that were habitable in the past, traces of organic carbon and active CH_4 in the Martian atmosphere at present. Recent discoveries such as the plumes from the southern polar region of Enceladus and plume activity on Europa strengthen the long-standing hypothesis that moons in our solar system contain substantial bodies of water and are probably habitable. Since decades, a fleet of robotic space missions target planets, moons and small bodies to reveal clues on the origin of our solar system and life beyond Earth. This lecture will review and discuss past, current and future space missions investigating habitability and biosignatures in our

  18. An Automated Solar Synoptic Analysis Software System

    Science.gov (United States)

    Hong, S.; Lee, S.; Oh, S.; Kim, J.; Lee, J.; Kim, Y.; Lee, J.; Moon, Y.; Lee, D.

    2012-12-01

    We have developed an automated software system of identifying solar active regions, filament channels, and coronal holes, those are three major solar sources causing the space weather. Space weather forecasters of NOAA Space Weather Prediction Center produce the solar synoptic drawings as a daily basis to predict solar activities, i.e., solar flares, filament eruptions, high speed solar wind streams, and co-rotating interaction regions as well as their possible effects to the Earth. As an attempt to emulate this process with a fully automated and consistent way, we developed a software system named ASSA(Automated Solar Synoptic Analysis). When identifying solar active regions, ASSA uses high-resolution SDO HMI intensitygram and magnetogram as inputs and providing McIntosh classification and Mt. Wilson magnetic classification of each active region by applying appropriate image processing techniques such as thresholding, morphology extraction, and region growing. At the same time, it also extracts morphological and physical properties of active regions in a quantitative way for the short-term prediction of flares and CMEs. When identifying filament channels and coronal holes, images of global H-alpha network and SDO AIA 193 are used for morphological identification and also SDO HMI magnetograms for quantitative verification. The output results of ASSA are routinely checked and validated against NOAA's daily SRS(Solar Region Summary) and UCOHO(URSIgram code for coronal hole information). A couple of preliminary scientific results are to be presented using available output results. ASSA will be deployed at the Korean Space Weather Center and serve its customers in an operational status by the end of 2012.

  19. Solar energy system with wind vane

    Energy Technology Data Exchange (ETDEWEB)

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  20. The solar system in close-up

    CERN Document Server

    Wilkinson, John

    2016-01-01

    In response to the new information gained about the Solar System from recent space probes and space telescopes, the experienced science author Dr. John Wilkinson presents the state-of-the art knowledge on the Sun, solar system planets and small solar system objects like comets and asteroids. He also describes space missions like the New Horizon’s space probe that provided never seen before pictures of the Pluto system; the Dawn space probe, having just visited the asteroid Vesta, and the dwarf planet Ceres; and the Rosetta probe inorbit around comet 67P/Churyumov–Gerasimenko that has sent extraordinary and most exciting pictures. Those and a number of other probes are also changing our understanding of the solar system and providing a wealth of new up close photos. This book will cover all these missions and discuss observed surface features of planets and moons like their compositions, geisers, aurorae, lightning phenomena etc. Presenting the fascinating aspects of solar system astronomy this book is a c...

  1. Solar thermionic power systems for terrestrial applications

    Science.gov (United States)

    Shimada, K.; Swerdling, M.

    1977-01-01

    The results of a feasibility study which showed that a low-temperature, high-efficient thermionic power system can efficiently convert solar energy to electrical energy without heat transport, as required by most solar thermal systems are described. A 3-dimensional (2-axis tracking) 93 sq m parabolic solar concentrator, consisting of mirrors on a foam glass substrate and designed to a concentration ratio (mirror area/aperture area) of 2000 is considered for producing a design temperature of 1100 C at an efficiency of 74%. A tracking subsystem must track the sun at an accuracy of a nominal plus or minus 1.0 degree for maximum use of the sun's energy. Each complete solar thermionic power system unit rated at about 20 kWe peak can generate approximately 48,000 kWh/yr. In addition, a thermal energy conversion system can be cascaded within the thermionic power system so that the high quality waste heat can be further utilized to increase the net electrical output. Potential applications of a solar thermionic power generation system are remote sites, apartment house complexes, heating and cooling, hydrogen production and large power stations.

  2. Development of a Conceptual Structure for Architectural Solar Energy Systems.

    Science.gov (United States)

    Ringel, Robert F.

    Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…

  3. Open cycle cooling systems using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Sovrano, M.

    Open cycle cooling systems are particularly suitable for utilizing solar energy. In all these systems the adsorption and absorption phenomena are very important, hence they are described separately. The cycles used are essentially two: the Baum-Kakabaev cycle using liquid absorbers and the dehumidification/humidification cycle where also adsorbent substances can be utilized. Solar energy is used in the regeneration process of dehumidifying substances. Reactivation modes can be various: suitability of one mode or the other can depend on the climate of the site where the system is installed.

  4. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  5. Early Mission Power Assessment of the Dawn Solar Array

    Science.gov (United States)

    Stella, Paul M.; DiStefano, Salvatore; Rayman, Marc D.; Ulloa-Severino, Antonio

    2009-01-01

    NASA's Discovery Mission Dawn was launched in September 2007. Dawn will be the first to orbit two asteroids on a single voyage. The solar array for the Dawn mission will provide power under greatly varying illumination and temperature conditions. Dawn's ion propulsion system (IPS) will provide the spacecraft with enough thrust to reach Vesta and Ceres and orbit both. The demanding mission would be impossible without ion propulsion -- a mission only to the asteroid Vesta (and not including Ceres) would require a much more massive spacecraft and, a much larger launch vehicle.

  6. Early Mission Power Assessment of the Dawn Solar Array

    Science.gov (United States)

    Stella, Paul M.; DiStefano, Salvatore; Rayman, Marc D.; Ulloa-Severino, Antonio

    2009-01-01

    NASA's Discovery Mission Dawn was launched in September 2007. Dawn will be the first to orbit two asteroids on a single voyage. The solar array for the Dawn mission will provide power under greatly varying illumination and temperature conditions. Dawn's ion propulsion system (IPS) will provide the spacecraft with enough thrust to reach Vesta and Ceres and orbit both. The demanding mission would be impossible without ion propulsion -- a mission only to the asteroid Vesta (and not including Ceres) would require a much more massive spacecraft and, a much larger launch vehicle.

  7. The Changing Perception of the Solar System

    CERN Document Server

    Nesvorny, D

    2015-01-01

    The solar system has changed dramatically since its birth, and so did our understanding of it. A considerable research effort has been invested in the past decade in an attempt to reconstruct the solar system history, including the earliest stages some 4.5 billion years ago. The results indicate how several processes, such as planetary migration and dynamical instabilities, acted to relax the orbital spacing of the outer planets, and provided the needed perturbation to explain the present planetary orbits that are not precisely circular and coplanar. Here we highlight this work and illustrate the key results in a computer simulation that unifies several recently developed theories. The emerging view represents another step away from the initial perception of the solar system as part of unchanging heavens.

  8. Cryovolcanism in the outer solar system

    Science.gov (United States)

    Geissler, Paul E.

    2015-01-01

    Cryovolcanism is defined as the extrusion of liquids and vapors of materials that would be frozen solid at the planetary surface temperatures of the icy bodies of the outer solar system. Active cryovolcanism is now known to occur on Saturn's moon Enceladus and on Neptune's moon Triton and is suspected on Jupiter's moon Europa, while evidence for past cryovolcanic activity is widespread throughout the outer solar system. This chapter examines the mechanisms and manifestations of cryovolcanism, beginning with a review of the materials that make up these unusual ‘‘magmas’’ and the means by which they might erupt and concluding with a volcanologist's tour of the farthest reaches of the solar system.

  9. Competitive solar heating systems for residential buildings

    DEFF Research Database (Denmark)

    Furbo, Simon; Thür, Alexander; Fiedler, Frank;

    2005-01-01

    The paper describes the ongoing research project “Competitive solar heating systems for residential buildings”. The aim of the project is to develop competitive solar combisystems which are attractive to buyers. The solar combisystems must be attractive compared to traditional energy systems, both...... from an economical and architectural point of view. The project includes education, research, development and demonstration. The project started in 2003 and will be finished by the end of 2006. The participants of the project, which is financed by Nordic Energy Research and the participants themselves.......D. studies in Denmark, Sweden and Latvia, and a post-doc. study in Norway. Close cooperation between the researchers and the industry partners ensures that the results of the project can be utilized. By the end of the project the industry partners will be able to bring the developed systems onto the market...

  10. Matrix effects on the relative sensitivity factors for manganese and chromium during ion microprobe analysis of carbonate: Implications for early Solar System chronology

    Science.gov (United States)

    Steele, Robert C. J.; Heber, Veronika S.; McKeegan, Kevin D.

    2017-03-01

    The short-lived radionuclide 53 Mn decays to 53 Cr providing a relative chronometer for dating the formation of Mn-rich minerals in meteorites. Secondary ion mass spectrometry (SIMS) has been extensively used for in situ dating of meteoritic olivine and carbonate by the 53 Mn-53 Cr system, however a significant analytical challenge has been realising accurate measurements of the Mn/Cr ratio in individual minerals of differing chemical compositions. During SIMS analysis, elements are ionised with differing efficiencies and standard materials are required to calibrate measured ion intensities in terms of relative elemental concentrations. The carbonate system presents a particular analytical difficulty since such standards are not naturally available due to low and variable Cr contents. Here, we utilise ion implantation of Cr into carbonate and other phases to accurately determine the relative sensitivity factors of Mn/Cr during SIMS analysis. We find significant variations in Mn/Cr RSF values among different carbonate minerals that depend systematically on chemical composition and we propose an empirical correction scheme that quantitatively yields an accurate RSF for carbonates of diverse chemical compositions. Correction of SIMS carbonate data for this strong matrix effect may help to reconcile some outstanding problems regarding the timescales of aqueous alteration processes in carbonaceous chondrites. Mn-Cr ages, revised based our new understanding of the matrix effect, are, in general, earlier than previously thought and the duration of carbonate formation is shorter.

  11. The chaotic "sculpting" of the Solar System

    Science.gov (United States)

    Tsiganis, K.

    2006-01-01

    The orbits of the large celestial bodies in our Solar System are stable for very long times, as can be shown by numerical simulation. This gives the erroneous impression of perpetual stability of the system. It is only when we study the orbital distribution of the numerous minor bodies in the Solar System that we discover the rich variety of complex dynamical processes that have in fact shaped our system. During the last decade, enormous progress has been made, in understanding the evolution of the system over the last ~3.9 Gy. However, it also became clear that, in order to unveil its behaviour during the first ~700 million years of its lifetime, we have to find convincing explanations for observations that appear as details of its dynamical architecture. In the following we are going to show how the two best known - and up to now unexplained - observations in the Solar System, namely (i) the heavily cratered surface of the Moon and (ii) the elliptic (and not circular) motion of the planets, lead us to the discovery of the chaotic sculpting of the Solar System [1]-[3].

  12. Small Solar Electric Propulsion Spacecraft Concept for Near Earth Object and Inner Solar System Missions

    Science.gov (United States)

    Lang, Jared J.; Randolph, Thomas M.; McElrath, Timothy P.; Baker, John D.; Strange, Nathan J.; Landau, Damon; Wallace, Mark S.; Snyder, J. Steve; Piacentine, Jamie S.; Malone, Shane; Bury, Kristen M.; Tracy, William H.

    2011-01-01

    Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.

  13. On the Solar System-Debris Disk Connecction

    OpenAIRE

    Moro-Martin, Amaya

    2007-01-01

    This paper emphasizes the connection between solar and extra-solar debris disks: how models and observations of the Solar System are helping us understand the debris disk phenomenon, and vice versa, how debris disks are helping us place our Solar System into context.

  14. Solar system planets observed with Suzaku

    Science.gov (United States)

    Ezoe, Yuichiro; Ishikawa, Kumi; Ohashi, Takaya; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Fujimoto, Ryuichi; Miyoshi, Yoshizumi; Terada, Naoki; Uchiyama, Yasunobu; Futaana, Yoshifumi

    2011-02-01

    Recent results of solar system planets observed with the Japanese X-ray astronomy satellite Suzaku are reviewed. Thanks to the low instrumental background and good energy resolution, X-ray CCDs onboard Suzaku are one of the best probes to study diffuse X-ray emission. An overview of the Suzaku data of Jupiter and Earth is presented, along with preliminary results of Mars. Firstly, diffuse hard X-ray emission is discovered in 1-5 keV at Jovian radiation belts. Its spectrum is represented by a power-law continuum with a photon index of ˜1.4. This emission could originate from inverse-Compton scattering of solar photons by tens MeV electrons. Secondly, variable diffuse soft X-rays are serendipitously found during observations in the directions of the north ecliptic pole and galactic ridge. Good time correlations with the solar wind and emission lines found in the X-ray spectra are firm evidences of a solar wind charge exchange emission with Earth’s exosphere. Thirdly, diffuse X-ray emission from Martian exosphere via the solar wind charge exchange is investigated for the first time at solar minimum. A stringent upper limit on the density of the Martian exosphere is placed from the Suzaku data.

  15. Testing relativity with solar system dynamics

    Science.gov (United States)

    Hellings, R. W.

    1984-01-01

    A major breakthrough is described in the accuracy of Solar System dynamical tests of relativistic gravity. The breakthrough was achieved by factoring in ranging data from Viking Landers 1 and 2 from the surface of Mars. Other key data sources included optical transit circle observations, lunar laser ranging, planetary radar, and spacecraft (Mariner 9 to Mars and Mariner 10 to Mercury). The Solar System model which is used to fit the data and the process by which such fits are performed are explained and results are discussed. The results are fully consistent with the predictions of General Relativity.

  16. Testing relativity with solar system dynamics

    Science.gov (United States)

    Hellings, R. W.

    1984-01-01

    A major breakthrough is described in the accuracy of Solar System dynamical tests of relativistic gravity. The breakthrough was achieved by factoring in ranging data from Viking Landers 1 and 2 from the surface of Mars. Other key data sources included optical transit circle observations, lunar laser ranging, planetary radar, and spacecraft (Mariner 9 to Mars and Mariner 10 to Mercury). The Solar System model which is used to fit the data and the process by which such fits are performed are explained and results are discussed. The results are fully consistent with the predictions of General Relativity.

  17. Adaptive control of solar energy collector systems

    CERN Document Server

    Lemos, João M; Igreja, José M

    2014-01-01

    This book describes methods for adaptive control of distributed-collector solar fields: plants that collect solar energy and deliver it in thermal form. Controller design methods are presented that can overcome difficulties found in these type of plants:they are distributed-parameter systems, i.e., systems with dynamics that depend on space as well as time;their dynamics is nonlinear, with a bilinear structure;there is a significant level of uncertainty in plant knowledge.Adaptive methods form the focus of the text because of the degree of uncertainty in the knowledge of plant dynamics. Parts

  18. Solar dynamic power system definition study

    Science.gov (United States)

    Wallin, Wayne E.; Friefeld, Jerry M.

    1988-01-01

    The solar dynamic power system design and analysis study compared Brayton, alkali-metal Rankine, and free-piston Stirling cycles with silicon planar and GaAs concentrator photovoltaic power systems for application to missions beyond the Phase 2 Space Station level of technology for all power systems. Conceptual designs for Brayton and Stirling power systems were developed for 35 kWe and 7 kWe power levels. All power systems were designed for 7-year end-of-life conditions in low Earth orbit. LiF was selected for thermal energy storage for the solar dynamic systems. Results indicate that the Stirling cycle systems have the highest performance (lowest weight and area) followed by the Brayton cycle, with photovoltaic systems considerably lower in performance. For example, based on the performance assumptions used, the planar silicon power system weight was 55 to 75 percent higher than for the Stirling system. A technology program was developed to address areas wherein significant performance improvements could be realized relative to the current state-of-the-art as represented by Space Station. In addition, a preliminary evaluation of hardenability potential found that solar dynamic systems can be hardened beyond the hardness inherent in the conceptual designs of this study.

  19. Robust Solar Position Sensor for Tracking Systems

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  20. Solar heating system final design package

    Science.gov (United States)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  1. Solar heating system installed at Troy, Ohio

    Science.gov (United States)

    1980-01-01

    The completed system was composed of three basic subsystems: the collector system consisting of 3,264 square feet of Owens Illinois evacuated glass tube collectors; the storage system which included a 5,000 gallon insulated steel tank; and the distribution and control system which included piping, pumping and heat transfer components as well as the solemoid activated valves and control logic for the efficient and safe operation of the entire system. This solar heating system was installed in an existing facility and was, therefore, a retrofit system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  2. First solar system solids to proto-planets: A Rapid growth in a few million years

    Science.gov (United States)

    Goswami, Jitendranath

    2016-07-01

    First solar system solids to proto-planets: A Rapid growth in a few million years J. N. Goswami Physical Research Laboratory Ahmedabad-380009, India Collapse of a dense molecular cloud led to the formation of the proto-Sun surrounded by a high temperature gaseous nebula. The nebula settled down to the mid-plane and formation of the first solar system solids, refractory oxides and silicates, such as Corundum, Perovskite, Melilite took place, that was followed by formation of more common silicate minerals. Laboratory studies of primitive meteorites support this scenario and also provide evidence for correlated presence of several now-extinct short-lived nuclides (e.g. 41Ca, 26Al, 60Fe) at the time of formation of the first solar system solids. Presence of 60Fe in early solar system solids suggests injection of freshly synthesized nuclides from a stellar source (a supernova) into the proto-solar cloud that also triggered its collapse and led to formation of our solar system. Presence of 41Ca (half-life: 0.1Ma) in early solar system solids suggest a time scale of less than a million years for the collapse of the proto-solar cloud and formation of proto-Sun and the first solar system solids. The gradual evolution of larger solar system objects, up to planetesimals (represented by the asteroids), took place at a rapid pace within a time scale of a few million years. Some of the asteroids retain their pristine nature (e.g. parent bodies of carbonaceous chondrite), while others, underwent melting and differentiation due to internal heating. Harold Urey proposed radioactive 26Al as a possible heat source that was confirmed by experiment only in 1999. Irons and stony iron meteorites are fragments from core regions of differentiated asteroids. Extensive computer simulation studies suggest that an explosive stellar event (e.g. supernova) can indeed trigger the collapse of the proto-solar cloud and also inject freshly synthesized short-lived nuclides into it within a relatively

  3. Statement of work for solar thermal power systems and photovoltaic solar-energy systems technical support services

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    Work is broken down in the following areas: solar thermal central receiver systems analysis; advanced solar thermal systems analysis and engineering; thermal power systems support; total energy systems mission analysis; irrigation and small community mission analysis; photovoltaics mission analysis; Solar Thermal Test Facility and Central Receiver Pilot Plant systems engineering. (LEW)

  4. Robotic exploration of the solar system

    CERN Document Server

    Ulivi, Paolo

    2008-01-01

    Presents a history of unmanned missions of exploration of our Solar System. This book provides technical descriptions of the spacecraft, of their mission designs and of instrumentations. It discusses scientific results together with details of mission management. It covers missions from the 1950s and some of the other missions and their results.

  5. The Dimensions of the Solar System

    Science.gov (United States)

    Schneider, Stephen E.; Davis, Kathleen S.

    2007-01-01

    A few new wrinkles have been added to the popular activity of building a scale model of the solar system. Students can learn about maps and scaling using easily accessible online resources that include satellite images. This is accomplished by taking advantage of some of the special features of Google Earth. This activity gives students a much…

  6. Solar electric power generation photovoltaic energy systems

    CERN Document Server

    Krauter, Stefan CW

    2007-01-01

    Solar electricity is a viable, environmentally sustainable alternative to the world's energy supplies. In support, this work examines the various technical parameters of photovoltaic systems. It analyzes the study of performance and yield (including optical, thermal, and electrical parameters and interfaces).

  7. Embodying Earth's Place in the Solar System

    Science.gov (United States)

    Plummer, Julia

    2015-01-01

    Elementary students find it difficult to connect the apparent motion of objects in the sky with how celestial objects actually move in the solar system. As a university astronomy education researcher, the author has been investigating methods to help children learn astronomy through workshops and summer camps at science museums and planetariums.…

  8. The Dimensions of the Solar System

    Science.gov (United States)

    Schneider, Stephen E.; Davis, Kathleen S.

    2007-01-01

    A few new wrinkles have been added to the popular activity of building a scale model of the solar system. Students can learn about maps and scaling using easily accessible online resources that include satellite images. This is accomplished by taking advantage of some of the special features of Google Earth. This activity gives students a much…

  9. Assessment of a Solar System Walk

    Science.gov (United States)

    LoPresto, Michael C.; Murrell, Steven R.; Kirchner, Brian

    2010-01-01

    The idea of sending students and the general public on a walk through a scale model of the solar system in an attempt to instill an appreciation of the relative scales of the sizes of the objects compared to the immense distances between them is certainly not new. A good number of such models exist, including one on the National Mall in…

  10. Space-Based Solar Power System Architecture

    Science.gov (United States)

    2012-12-01

    Panel 100,000,000 kg Power Storage 176,000 kg Diode- pumped Laser Transmitter 5,000,000 kg TOTAL SYSTEM WEIGHT 105,181,400 kg 73 deployed...64 a. Power Storage Requirements .................................................65 b. Energy Transfer...alternatives to fossil fuels: nuclear fission reactors, hydroelectric power, wind turbines and solar power to name just a few. Each has advantages

  11. Embodying Earth's Place in the Solar System

    Science.gov (United States)

    Plummer, Julia

    2015-01-01

    Elementary students find it difficult to connect the apparent motion of objects in the sky with how celestial objects actually move in the solar system. As a university astronomy education researcher, the author has been investigating methods to help children learn astronomy through workshops and summer camps at science museums and planetariums.…

  12. Assessment of a Solar System Walk

    Science.gov (United States)

    LoPresto, Michael C.; Murrell, Steven R.; Kirchner, Brian

    2010-01-01

    The idea of sending students and the general public on a walk through a scale model of the solar system in an attempt to instill an appreciation of the relative scales of the sizes of the objects compared to the immense distances between them is certainly not new. A good number of such models exist, including one on the National Mall in…

  13. Solar-powered hot-air system

    Science.gov (United States)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  14. Solar Energy Forecast System Development and Implementation

    Science.gov (United States)

    Jascourt, S. D.; Kirk-Davidoff, D. B.; Cassidy, C.

    2012-12-01

    Forecast systems for predicting real-time solar energy generation are being developed along similar lines to those of more established wind forecast systems, but the challenges and constraints are different. Clouds and aerosols play a large role, and for tilted photovoltaic panels and solar concentrating plants, the direct beam irradiance, which typically has much larger forecast errors than global horizontal irradiance, must be utilized. At MDA Information Systems, we are developing a forecast system based on first principles, with the well-validated REST2 clear sky model (Gueymard, 2008) at its backbone. In tuning the model and addressing aerosol scattering and surface albedo, etc., we relied upon the wealth of public data sources including AERONET (aerosol optical depth at different wavelengths), Suominet (GPS integrated water vapor), NREL MIDC solar monitoring stations, SURFRAD (includes upwelling shortwave), and MODIS (albedo in different wavelength bands), among others. The forecast itself utilizes a blend of NWP model output, which must be brought down to finer time resolution based on the diurnal cycle rather than simple interpolation. Many models currently do not output the direct beam irradiance, and one that does appears to have a bias relative to its global horizontal irradiance, with equally good performance attained by utilizing REST2 and the model global radiation to estimate the direct component. We will present a detailed assessment of various NWP solar energy products, evaluating forecast skill at a range of photovoltaic installations.

  15. Drain Back, Low Flow Solar Combi Systems

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Fan, Jianhua

    2014-01-01

    Drain Back systems with ETC collectors are tested and analyzed in a Danish - Chinese cooperation project. Experiences from early work at DTU, with drain back, low flow systems, was used to design two systems: 1) One laboratory system at DTU and 2) One demonstration system in a single family house...

  16. Early Solar System Cryovolcanics in the Laboratory

    Science.gov (United States)

    Zolensky, M.; Fries, M.; Bodnar, R.; Yurimoto, H.; Itoh, S.; Steele, A.; Mikouchi, T.; Hagiya, K.; Ohsumi, K.; Le, L.; Rahman, Z.

    2013-01-01

    Two thermally-metamorphosed ordinary chondrite regolith breccias, Monahans 1998 (H5) and Zag (H3-6) contain fluid inclusion-bearing halite (NaCl) crystals, dated by K-Ar, Rb-Sr and I-Xe systematics to be approx. 4.5 billion years old. Heating/freezing studies of the aqueous fluid inclusions demonstrated that they were trapped near 25 C, and their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid was post metamorphism.

  17. Solar recharging system for hearing aid cells.

    Science.gov (United States)

    Gòmez Estancona, N; Tena, A G; Torca, J; Urruticoechea, L; Muñiz, L; Aristimuño, D; Unanue, J M; Torca, J; Urruticoechea, A

    1994-09-01

    We present a solar recharging system for nickel-cadmium cells of interest in areas where batteries for hearing aids are difficult to obtain. The charger has sun cells at the top. Luminous energy is converted into electrical energy, during the day and also at night if there is moonlight. The cost of the charger and hearing aid is very low at 35 US$. The use of solar recharging for hearing aids would be useful in alleviating the problems of deafness in parts of developing countries where there is no electricity.

  18. New Low Cost Structure for Dual Axis Mount Solar Tracking System Using Adaptive Solar Sensor

    DEFF Research Database (Denmark)

    Argeseanu, Alin; Ritchie, Ewen; Leban, Krisztina Monika

    2010-01-01

    A solar tracking system is designed to optimize the operation of solar energy receivers. The objective of this paper is proposing a new tracking system structure with two axis. The success strategy of this new project focuses on the economical analysis of solar energy. Therefore it is important...... to determine the most cost effective design, to consider the costs of production and maintenance, and operating. The proposed tracking system uses a new solar sensor position with an adaptive feature....

  19. Solar heating system final design package

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    Contemporary Systems has taken its Series V Solar Heating System and developed it to a degree acceptable by local codes and regulatory agencies. The system is composed of the Series V warm air collector, the LCU-110 logic control unit and the USU-A universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The collector can be fabricated in any length from 12 to 24 feet. This provides maximum flexibility in design and installation. The LCU-110 control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic is designed so as to make maximum use of solar energy and minimize use of conventional energy. The USU-A transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit is designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  20. Large solar energy systems within IEA task 14

    NARCIS (Netherlands)

    Geus, A.C. de; Isakson, P.; Bokhoven, T.P.; Vanoli, K.; Tepe, R.

    1996-01-01

    Within IEA Task 14 (Advanced Solar Systems) a working group was established dealing with large advanced solar energy systems (the Large Systems Working group). The goal of this working group was to generate a common base of experiences for the design and construction of advanced large solar systems.

  1. Large solar energy systems within IEA task 14

    NARCIS (Netherlands)

    Geus, A.C. de; Isakson, P.; Bokhoven, T.P.; Vanoli, K.; Tepe, R.

    1996-01-01

    Within IEA Task 14 (Advanced Solar Systems) a working group was established dealing with large advanced solar energy systems (the Large Systems Working group). The goal of this working group was to generate a common base of experiences for the design and construction of advanced large solar systems.

  2. THE AGE OF THE SOLAR SYSTEM REVISITED

    Science.gov (United States)

    Wadhwa, M.; Bouvier, A.

    2009-12-01

    the age of the Solar System, it is as yet unclear why the Pb-Pb ages recorded by CAIs analyzed thus far from Allende and Efremovka are resolvably younger. Recent work on high precision U isotope analyses of CAIs has shown that the 238U/235U ratio can vary up to ~3.5 ‰ in Allende CAIs [12], and this could potentially result in an uncertainty of as much as ~5 Ma in the previously determined Pb-Pb ages of CAIs. We are currently evaluating whether variations in U isotope compositions of CAIs may result in the range of CAI ages reported thus far. [1] C. M. Gray et al. (1973) The identification of early condensates from the solar nebula. Icarus v. 20, p 213-239. [2] Y. Amelin et al. (2006) 37th LPSC, abstr. #1970. [3] A. Bouvier et al. (2007) GCA, 71, 1583-1604. [4] E. Young et al. (2005) Science, 308, 223-227. [5] K. Thrane et al. (2006) ApJ, 646, L159-L162. [6] A. Bouvier et al. (2008) Meteorit. Planet. Sci., 41, abstr. #5299. [7] A. Bouvier and M. Wadhwa (2009) 40th LPSC, abstr. #2184. [8] A. Bouvier and M. Wadhwa (2009) Meteorit. Planet. Sci., 42, abstr. #5408. [9] Y. Amelin (2008) GCA, 72, 221-232. [10] L. Spivak-Birndorf et al. (2009) GCA, 73, 5202-5211. [11] A. Markowski et al. (2007) EPSL, 262, 214-229. [12] G. Brennecka et al. (2009) Meteorit. Planet. Sci., 42, abstr. #5303.

  3. Energy transfer in the solar system

    Science.gov (United States)

    Jelbring, H.

    2013-12-01

    Different types of energy transfer are presented from the literature and are approached and commented on. It follows from these articles that energy transfer in addition to solar irradiation is less well understood by contemporary scientist. The transformation of energy between kinetic and potential energy in planetary orbits might be of crucial importance for understanding energy transfer between celestial bodies and the development of commensurabilities. There is evidence pointing to interactions (friction) between space and satellites producing volcanism. The reversible transfer of energy between the orbit of Moon and Earth's rotational energy is crucial to the creation of the 13.6-day and 27.3-day periods in both solar variables and Earth bound climate variables. It is hypothesized that the Earth-Moon system is modulating the sunspot numbers and creating both these periods, and that the great planets are responsible for the 11 yr solar cycle.

  4. The Texas Instruments Solar Energy System development

    Science.gov (United States)

    Johnson, E. L.

    The system is described, showing that energy conversion and storage functions are combined in a novel way. Here, small silicon solar cells are immersed in an electrolyte and the current generated by the cells is used directly to electrolyze a halogen acid, for example, HBr. The hydrogen and bromine produced can be stored separately until needed and then recombined in a fuel cell to give electrical energy on demand. The fuel cell HBr product is returned to the solar chemical convertor, thus completing the closed loop energy cycle. In summarizing the achievements to date, it is noted that feasibility demonstration of a 13% array electrical efficiency prepared by a laboratory process and 10% array efficiencies have been obtained from potentially scalable solar cell and array processes.

  5. How Normal is Our Solar System?

    Science.gov (United States)

    Kohler, Susanna

    2015-10-01

    To date, weve discovered nearly 2000 confirmed exoplanets, as well as thousands of additional candidates. Amidst this vast sea of solar systems, how special is our own? A new study explores the answer to this question.Analyzing DistributionsKnowing whether our solar system is unique among exoplanetary systems can help us to better understand future observations of exoplanets. Furthermore, if our solar system is typical, this allows us to be optimistic about the possibility of life existing elsewhere in the universe.In a recent study, Rebecca Martin (University of Nevada, Las Vegas) and Mario Livio (Space Telescope Science Institute) examine how normal our solar system is, by comparing the properties of our planets to the averages obtained from known exoplanets.Comparing PropertiesSo how do we measure up?Densities of planets as a function of their mass. Exoplanets (N=287) are shown in blue, planets in our solar system are shown in red. [MartinLivio 2015]Planet masses and densitiesThose of the gas giants in our solar system are pretty typical. The terrestrial planets are on the low side for mass, but thats probably a selection effect: its very difficult to detect low-mass planets.Age of the solar systemRoughly half the stars in the disk of our galaxy are younger than the Sun, and half are older. Were definitely not special in age.Orbital locations of the planetsThis is actually a little strange: our solar system is lacking close-in planets. All of our planets, in fact, orbit at a distance that is larger than the mean distance observed in exoplanetary systems. Again, however, this might be a selection effect at work: its easier to detect large planets orbiting very close to their stars.Eccentricities of the planets orbitsOur planets are on very circular orbits and that actually makes us somewhat special too, compared to typical exoplanet systems. There is a possible explanation though: eccentricity of orbits tends to decrease with more planets in the system. Because

  6. A Solar System Perspective on Laboratory Astrophysics

    Science.gov (United States)

    Cruikshank, Dale P.

    2002-01-01

    Planetary science deals with a wide variety of natural materials in a wide variety of environments. These materials include metals, minerals, ices, gases, plasmas, and organic chemicals. In addition, the newly defined discipline of astrobiology introduces biological materials to planetary science. The environments range from the interiors of planets with megapascal pressures to planetary magnetospheres, encompassing planetary mantles, surfaces, atmospheres, and ionospheres. The interplanetary environment includes magnetic and electrical fields, plasma, and dust. In order to understand planetary processes over these vast ranges, the properties of materials must be known, and most of the necessary information comes from the laboratory. Observations of the bodies and materials in the Solar System are accomplished over the full range of the electromagnetic spectrum by remote sensing from Earth or spacecraft. Comets exemplify this; molecular and atomic identifications are made from the hard ultraviolet to radio wavelengths, while X-rays are emitted as comets interact with the solar wind. Gamma rays from the surfaces of the Moon and asteroids are diagnostic of the mineral and ice content of those bodies; eventually, gamma rays will also be observed by probes to comets. A number of planetary materials are available in the laboratory for extensive Study: rocks from the Moon, Mars, several asteroids, as well as dust from comets (and perhaps the Kuiper Belt) are closely studied at every level, including atomic (isotopic). Even pre-solar interstellar grains isolated from meteorites are scrutinized for composition and crystalline structure. Beyond the materials themselves, various agents and processes have altered them over the 4.6-Gy age of the Solar System. Solar radiation, solar wind particles, trapped magnetospheric particles, cosmic rays, and micrometeoroid impacts have produced chemical, physical, and morphological changes in the atmospheres and on the surfaces of all

  7. Solar Powered Automobile Interior Climate Control System

    Science.gov (United States)

    Howard, Richard T. (Inventor)

    2003-01-01

    There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.

  8. Interstellar Dust in the Solar System

    CERN Document Server

    Krueger, Harald; Altobelli, Nicolas; Gruen, Eberhard

    2007-01-01

    The Ulysses spacecraft has been orbiting the Sun on a highly inclined ellipse almost perpendicular to the ecliptic plane (inclination 79 deg, perihelion distance 1.3 AU, aphelion distance 5.4 AU) since it encountered Jupiter in 1992. The in-situ dust detector on board continuously measured interstellar dust grains with masses up to 10^-13 kg, penetrating deep into the solar system. The flow direction is close to the mean apex of the Sun's motion through the solar system and the grains act as tracers of the physical conditions in the local interstellar cloud (LIC). While Ulysses monitored the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in-situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged gr...

  9. Insurance of solar systems; Vorsicht statt Nachsicht

    Energy Technology Data Exchange (ETDEWEB)

    Seltmann, T.

    1998-07-01

    Some insurance companies (e.g. Fairsicherungsladen, Muenster, and Quickborner Versicherungsbuero fuer Umweltprojekte) are offering special insurance packages for solar systems. However, these are tailored for large-surface systems on roofs not owned by the insured party. Builder-owners with small roof-mounted solar systems will fare better by integrating the PV system in their existing building insurance. (orig.) [Deutsch] Aus den Erfahrungen im Bereich der Windkraftanlagen entwickelten u.a. Versicherungsbueros wie der Fairsicherungsladen in Muenster und das Quickborner Versicherungsbuero fuer Umweltprojekte spezielle Versicherungsangebote fuer die Betreiber von Solarstromanlagen. Waehrend sich diese ``Vollkaskoversicherungen`` fuer grosse Anlagen auf Fremddaechern optimal eignen, bietet es sich fuer die Betreiber kleiner Anlagen auf dem eigenen Hausdach zunaechst an, die PV-Anlage in die bestehenden Gebaeudeversicherungen einzubeziehen. (orig./AKF)

  10. Water Desalination Systems Powered by Solar Energy

    Science.gov (United States)

    Barseghyan, A.

    2015-12-01

    The supply of potable water from polluted rivers, lakes, unsafe wells, etc. is a problem of high priority. One of the most effective methods to obtain low cost drinking water is desalination. Advanced water treatment system powered by Solar Energy and based on electrodialysis for water desalination and purification, is suggested. Technological and economic evaluations and the benefits of the suggested system are discussed. The Advanced Water Treatment System proposed clears water not only from different salts, but also from some infections, thus decreasing the count of diseases which are caused by the usage of non-clear water. Using Solar Energy makes the system stand alone which is convenient to use in places where power supply is problem.

  11. Streaming of interstellar grains in the solar system

    Science.gov (United States)

    Gustafson, B. A. S.; Misconi, N. Y.

    1979-01-01

    Results of a theoretical study of the interactions between interstellar grains streaming through the solar system and the solar wind are presented. It is shown that although elongated core-mantle interstellar particles of a characteristic radius of about 0.12 microns are subject to a greater force due to radiation pressure than to gravitational attraction, they are still able to penetrate deep inside the solar system. Calculations of particle trajectories within the solar system indicate substantial effects of the solar activity cycle as reflected in the interplanetary magnetic field on the distribution of 0.12- and 0.0005-micron interstellar grains streaming through the solar system, leading to a 50-fold increase in interstellar grain densities 3 to 4 AU ahead of the sun during years 8 to 17 of the solar cycle. It is noted that during the Solar Polar Mission, concentrations are expected which will offer the opportunity of detecting interstellar grains in the solar system.

  12. Exploring the Inner Solar System During IPA

    Science.gov (United States)

    Weir, H. M.; Stockman, S. A.; Carter, B. L.; Bleacher, L. V.

    2008-12-01

    During 2009, the International Year of Astronomy, both the MESSENGER mission to Mercury and the Lunar Reconnaissance Orbiter (LRO) mission to orbit the Moon will use key mission milestones to engage the public. For the MESSENGER mission key millstones will be the release to the public of data from the Oct 6th 2008, flyby and the Sept 29th 2009 third and last Mercury flyby before MESSENGER orbits Mercury in 2011. IYA activities will include participating in 365 Days of Astronomy podcasts, making the second flyby data publicly available and exciting the public with images from the third flyby. The data from the first flyby can be seen in a variety of locations across the country on Science on a Sphere. During IYA, the MESSENGER mission will also be reaching a wide variety of audiences through social media networking such as Facebook and Twitter. Informal education communities will be able to include Mercury data in their IYA programming through the distribution of MESSENGER data through the NASA Museum Alliance. The LRO mission will return the public's attention to our nearest neighbor, the Moon, in 2009. As a result, the public will see high resolution images of the Moon never seen before. LRO will also engage the public in the lunar observation program. Starting in early 2009, LRO and Lunar CRater Observation and Sensing Satellite (LCROSS) will be launched, and will continue their science missions throughout IYA. The public will be encouraged to make observations of the Moon during critical maneuvers for the LRO and LCROSS missions, including the LCROSS encounter, impacting the Moon which will occur in 2009. These events will help shift the public's attention to the Moon, and highlight the role our nearest neighbor plays in helping scientists learn about the early history of our Solar System. In addition to viewing LRO images and observing the Moon, the public can learn about the Moon, LRO, LCROSS, and past lunar missions virtually via the "Return to the Moon Hall

  13. Solar heating system installed at Lynchburg, VA

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    A detailed design report for a retrofitted solar heating and cooling system for a 1780 square foot office building is presented. The system is composed of a 400 square foot flat plate collector, a 2,000 gallon storage tank, a gas auxiliary boiler, a duct distribution system utilizing a hot water duct coil and water-to-air heat pump, and a hot water preheater. The control system, data acquisition system, technical data, and maintenance procedure are discussed. Detailed specifications, circuits, and drawings for the components are included. (WHK)

  14. Protection of Communication System From Solar Flares

    OpenAIRE

    Karthik, K.(Department of Physics, New York University, New York, NY, United States of America); Shirvram, B.

    2008-01-01

    Solar flares are enormous explosions on the surface of the sun and they release energy of the order of billion megatons of TNThis energy is in the form of electromagnetic radiations such as alpha, gamma, and ultraviolet rays. When exposed to high doses of radiation like 2-15 kilorad (Si), silicon integrated circuits in satellite communication systems fail to operate properly, thus affecting the performance of communication systems. Therefore, the major issue that needs to be addressed is the ...

  15. Chaotic evolution of the solar system

    Science.gov (United States)

    Sussman, Gerald J.; Wisdom, Jack

    1992-01-01

    The evolution of the entire planetary system has been numerically integrated for a time span of nearly 100 million years. This calculation confirms that the evolution of the solar system as a whole is chaotic, with a time scale of exponential divergence of about 4 million years. Additional numerical experiments indicate that the Jovian planet subsystem is chaotic, although some small variations in the model can yield quasi-periodic motion. The motion of Pluto is independently and robustly chaotic.

  16. Commercial dissemination approaches for solar home systems

    Energy Technology Data Exchange (ETDEWEB)

    Terrado, E.

    1997-12-01

    The author discusses the issue of providing solar home systems to primarily rural areas from the perspective of how to commercialize the process. He considers two different approaches, one an open market approach and the other an exclusive market approach. He describes examples of the exclusive market approach which are in process in Argentina and Brazil. Coming from a banking background, the business aspects are discussed in detail. He points out the strengths and weaknesses of both approaches toward developing such systems.

  17. The origin of inner Solar System water.

    Science.gov (United States)

    Alexander, Conel M O'D

    2017-05-28

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  18. New Markets for Solar Photovoltaic Power Systems

    Science.gov (United States)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  19. Combined Solar and Wind Energy Systems

    Science.gov (United States)

    Tripanagnostopoulos, Y.; Souliotis, M.; Makris, Th.

    2010-01-01

    In this paper we present the new concept of combined solar and wind energy systems for buildings applications. Photovoltaics (PV) and small wind turbines (WTs) can be install on buildings, in case of sufficient wind potential, providing the building with electricity. PVs can be combined with thermal collectors to form the hybrid photovoltaic/thermal (PV/T) systems. The PVs (or the PV/Ts) and WT subsystems can supplement each other to cover building electrical load. In case of using PV/T collectors, the surplus of electricity, if not used or stored in batteries, can increase the temperature of the thermal storage tank of the solar thermal unit. The description of the experimental set-up of the suggested PV/T/WT system and experimental results are presented. In PV/T/WT systems the output from the solar part depends on the sunshine time and the output of the wind turbine part depends on the wind speed and is obtained any time of day or night. The use of the three subsystems can cover a great part of building energy load, contributing to conventional energy saving and environment protection. The PV/T/WT systems are considered suitable in rural and remote areas with electricity supply from stand-alone units or mini-grid connection. PV/T/WT systems can also be used in typical grid connected applications.

  20. MOND habitats within the solar system

    CERN Document Server

    Bekenstein, J; Bekenstein, Jacob; Magueijo, Joao

    2006-01-01

    MOdified Newtonian Dynamics (MOND) is an interesting alternative to dark matter in extragalactic systems. We here examine the possibility that mild or even strong MOND behavior may become evident well inside the solar system, in particular near saddle points of the total gravitational potential. Whereas in Newtonian theory tidal stresses are finite at saddle points, they are expected to diverge in MOND, and to remain distinctly large inside a sizeable oblate ellipsoid around the saddle point. We work out the MOND effects using the nonrelativistic limit of the T$e$V$e$S theory, both in the perturbative nearly Newtonian regime and in the deep MOND regime. While strong MOND behavior would be a spectacular ``backyard'' vindication of the theory, pinpointing the MOND-bubbles in the setting of the realistic solar system may be difficult. Space missions, such as the LISA Pathfinder, equipped with sensitive accelerometers, may be able to explore the larger perturbative region.

  1. Installation package for a sunspot cascade solar water heating system

    Science.gov (United States)

    1980-01-01

    Solar water heating systems installed at Tempe, Arizona and San Diego, California are described. The systems consist of the following: collector, collector-tank water loop, solar tank, conventional tank, and controls. General guidelines which may be utilized in development of detailed installation plans and specifications are provided along with instruction on operation, maintenance, and installation of solar hot water systems.

  2. Elementary Students' Mental Models of the Solar System

    Science.gov (United States)

    Calderon-Canales, Elena; Flores-Camacho, Fernando; Gallegos-Cazares, Leticia

    2013-01-01

    This research project aimed to identify and analyze Mexican primary school students' ideas about the components of the solar system. In particular, this study focused on conceptions of the solar system and representations of the dynamics of the solar system based on the functional and structural models that students make in school. Using a…

  3. Elementary Students' Mental Models of the Solar System

    Science.gov (United States)

    Calderon-Canales, Elena; Flores-Camacho, Fernando; Gallegos-Cazares, Leticia

    2013-01-01

    This research project aimed to identify and analyze Mexican primary school students' ideas about the components of the solar system. In particular, this study focused on conceptions of the solar system and representations of the dynamics of the solar system based on the functional and structural models that students make in school. Using a…

  4. Elementary Students' Mental Models of the Solar System

    Science.gov (United States)

    Calderon-Canales, Elena; Flores-Camacho, Fernando; Gallegos-Cazares, Leticia

    2013-01-01

    This research project aimed to identify and analyze Mexican primary school students' ideas about the components of the solar system. In particular, this study focused on conceptions of the solar system and representations of the dynamics of the solar system based on the functional and structural models that students make in school. Using a…

  5. Solar Energy Systems for Lunar Oxygen Generation

    Science.gov (United States)

    Colozza, Anthony J.; Heller, Richard S.; Wong, Wayne A.; Hepp, Aloysius F.

    2010-01-01

    An evaluation of several solar concentrator-based systems for producing oxygen from lunar regolith was performed. The systems utilize a solar concentrator mirror to provide thermal energy for the oxygen production process. Thermal energy to power a Stirling heat engine and photovoltaics are compared for the production of electricity. The electricity produced is utilized to operate the equipment needed in the oxygen production process. The initial oxygen production method utilized in the analysis is hydrogen reduction of ilmenite. Utilizing this method of oxygen production a baseline system design was produced. This baseline system had an oxygen production rate of 0.6 kg/hr with a concentrator mirror size of 5 m. Variations were performed on the baseline design to show how changes in the system size and process (rate) affected the oxygen production rate. An evaluation of the power requirements for a carbothermal lunar regolith reduction reactor has also been conducted. The reactor had a total power requirement between 8,320 to 9,961 W when producing 1000 kg/year of oxygen. The solar concentrator used to provide the thermal power (over 82 percent of the total energy requirement) would have a diameter of less than 4 m.

  6. Solar energy system economic evaluation: IBM System 2, Togus, Maine

    Science.gov (United States)

    1980-01-01

    The economic analysis of the solar energy system, is developed for Torgus and four other sites typical of a wide range of environmental and economic conditions in the continental United States. This analysis is accomplished based on the technical and economic models in the f-chart design procedure with inputs taken on the characteristics of the installed system and local conditions. The results are expressed in terms of the economic parameters of present worth of system cost over a projected twenty year life, life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated. Results demonstrate that the solar energy system is economically viable at all of the five sites for which the analysis was conducted.

  7. Energy savings for solar heating systems; Solvarmeanlaegs energibesparelser

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Fan, J.

    2011-01-15

    Energy savings for a number of new solar heating systems in one family houses have been determined by means of information on the energy consumption of the houses before and after installation of the solar heating systems. The investigated solar heating systems are marketed by Velux Danmark A/S, Sonnnenkraft Scandinavia A/S and Batec Solvarme A/S. Solar domestic hot water systems as well as solar combi systems are included in the investigations The houses have different auxiliary energy supply systems: Natural gas boilers, oil fired burners, electrical heating and district heating. Some of the houses have a second auxiliary energy supply system. The collector areas vary from 1.83 m{sup 2} to 9.28 m{sup 2}. Some of the solar heating systems are based on energy units with a new integrated natural gas boiler and a heat storage for the solar heating system. The existing energy systems in the houses are for most of the houses used as the auxiliary energy systems for the solar heating systems. The yearly energy savings for the houses where the only change is the installation of the solar heating system vary from 300 kWh per m{sup 2} solar collector to 1300 kWh per m{sup 2} solar collector. The average yearly energy savings is about 670 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector are not influenced by the solar heating system type, the company marketing the system, the auxiliary energy supply system, the collector area, the collector tilt, the collector azimuth, the energy consumption of the house or the location of the house. The yearly energy savings for the houses with solar heating systems based on energy units including a new natural gas boiler vary from 790 kWh per m{sup 2} solar collector to 2090 kWh per m{sup 2} solar collector. The average yearly energy savings is about 1520 kWh per m{sup 2} solar collector for these solar heating systems. The energy savings per m{sup 2} solar collector for

  8. Prototype solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete air-collector system to meet needs of single-family dwelling is designed to operate in any region of United States except extreme north and south. Design can be scaled up or down to accomodate wide range of heating and hot-water requirements for single-family, multi-family, or commercial buildings without significantly changing design concept.

  9. Vesta and Ceres: crossing the history of the Solar System

    CERN Document Server

    Coradini, Angioletta; Federico, Costanzo; Magni, Gianfranco

    2011-01-01

    The evolution of the Solar System can be schematically divided into three different phases: the Solar Nebula, the Primordial Solar System and the Modern Solar System. These three periods were characterized by very different conditions, both from the point of view of the physical conditions and from that of the processes there were acting through them. Across the Solar Nebula phase, planetesimals and planetary embryos were forming and differentiating due to the decay of short-lived radionuclides. At the same time, giant planets formed their cores and accreted the nebular gas to reach their present masses. After the gas dispersal, the Primordial Solar System began its evolution. In the inner Solar System, planetary embryos formed the terrestrial planets and, in combination with the gravitational perturbations of the giant planets, depleted the residual population of planetesimals. In the outer Solar System, giant planets underwent a violent, chaotic phase of orbital rearrangement which caused the Late Heavy Bom...

  10. Design and Implementation of Dual Axis Solar Tracking system

    Directory of Open Access Journals (Sweden)

    Sirigauri N,

    2015-05-01

    Full Text Available Solar energy is a promising technology that can have huge long term benefits. Solar cells convert the solar energy into electrical energy. Solar tracking system is the most suited technology to improve the efficiency and enhance the performance by utilizing maximum solar energy through the solar cell. In hardware development we utilize LDR’s as sensors and two servomotors to direct the position of the solar panel. The software part is implemented on a code written using an Arduino Uno controller.

  11. Developing The Solar Tracking System for Trough Solar Concentrator

    Directory of Open Access Journals (Sweden)

    Nguyen Huy Bich

    2016-01-01

    Full Text Available The efficiency of the trough solar concentrator strongly depends on the position of its absorber surface with the sun.  Controlling the solar radiation concentrated collectors automatically tracking with the sun plays as the key factor to enhance the energy absorption. An automatic controlling device that can rotating the parabolic trough solar concentrator to the sun is calculated, designed, manufactured, and testing successfully. The experimental results show that the device tracks the sun during the day very well. The sensor has adjusted position of collector good when the intensity of solar radiation changes due to weather.

  12. The Solar Tracking System by Using Digital Solar Position Sensor

    Directory of Open Access Journals (Sweden)

    Singthong Pattanasethanon

    2010-01-01

    Full Text Available Problem statement: An optimal control on two axes and design for solar tracker which called altitude and azimuth is challenge. Approach: The phototransistor with the shade that blocks the screen was employed as a detector of solar beam radiation. The height of the screen determined the sensitivity operation or period of tracking in this solar tracker. The phototransistor is particularly designed to detect solar bean radiation thoroughly through the two axes with the operating time. The mechanism of this solar tracker is that it has a capacity of solar tracking in every 10 min, approximately, which respond in terms of time at about 37° sec-1 with and operating point at 0.3 sec. Results: Our solar tracker obtained an average deviation at about 2.5deg;h-1. In weak sunlight however, the value varies and fluctuates rapidly depending on sky condition. Conclusion: The accuracy of solar position tracking function satisfied our goal as well. There is only average of 2.5deg; error shown. The experiment also shows that the error rate diminishes as the solar radiance expand. However, we hope to develop this device to be more exact in the position.

  13. Life in the solar system and beyond

    CERN Document Server

    Jones, Barrie W

    2004-01-01

    In Life in the Solar System and Beyond, Professor Jones has written a broad introduction to the subject, addressing important topics such as, what is life?, the origins of life and where to look for extraterrestrial life The chapters are arranged as follows Chapter 1 is a broad introduction to the cosmos, with an emphasis on where we might find life In Chapters 2 and 3 Professor Jones discusses life on Earth, the one place we know to be inhabited Chapter 4 is a brief tour of the Solar system, leading us in Chapters 5 and 6 to two promising potential habitats, Mars and Europa In Chapter 7 the author discusses the fate of life in the Solar system, which gives us extra reason to consider life further afield Chapter 8 focuses on the types of stars that might host habitable planets, and where in the Galaxy these might be concentrated Chapters 9 and 10 describe the instruments and techniques being employed to discover planets around other stars (exoplanetary systems), and those that will be employed in the near fut...

  14. Program plan for reliability and maintainability in active solar heating and cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    This document presents a plan for the Department of Energy, Office of Solar Applications for Buildings program addressing reliability and maintainability (R and M) of active solar energy systems. The goal of the R and M program is to accelerate the removal of reliability and maintainability as major concerns impeding the widespread adoption of solar energy systems. Specific objectives that support that goal are as follows: (1) provide all groups that have solar R and M concerns with the information that is available to the program and that can assist in alleviating those concerns; (2) assist the solar energy industry in improving levels of R and M performance in state-of-the-art solar energy systems, components, and materials; (3) assist in the early development of a viable infrastructure for the design, manufacture, installation, and maintenance of reliable, maintainable, and durable solar energy systems; (4) assist in the development of appropriate standards, code provisions, and certification programs relating to the R and M performance of solar energy systems, components, and materials; and (5) develop the information required to support the other activities within the R and M program. These objectives correspond to five areas of action: regulations, research and development, technology transfer, solar industry infrastructure development, and data collection and analysis. (WHK)

  15. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2016-06-28

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  16. Physics and chemistry of the solar system

    CERN Document Server

    Lewis, John S

    2004-01-01

    Physics and Chemistry of the Solar System, 2nd Edition, is a comprehensive survey of the planetary physics and physical chemistry of our own solar system. It covers current research in these areas and the planetary sciences that have benefited from both earth-based and spacecraft-based experimentation. These experiments form the basis of this encyclopedic reference, which skillfully fuses synthesis and explanation. Detailed chapters review each of the major planetary bodies as well as asteroids, comets, and other small orbitals. Astronomers, physicists, and planetary scientists can use this state-of-the-art book for both research and teaching. This Second Edition features extensive new material, including expanded treatment of new meteorite classes, spacecraft findings from Mars Pathfinder through Mars Odyssey 2001, recent reflections on brown dwarfs, and descriptions of planned NASA, ESA, and Japanese planetary missions.* New edition features expanded treatment of new meteorite classes, the latest spacecraft...

  17. Solar panel truss mounting systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haddad, Tristan Farris; Cavieres, Andres; Gentry, Russell; Goodman, Joseph; Nolan, Wade; Pitelka, Taylor; Rahimzadeh, Keyan; Brooks, Bradley; Lohr, Joshua; Crooks, Ryan; Porges, Jamie; Rubin, Daniel

    2015-10-20

    An exemplary embodiment of the present invention provides a solar panel truss mounting system comprising a base and a truss assembly coupled to the base. The truss assembly comprises a first panel rail mount, second panel rail mount parallel to the first panel rail mount, base rail mount parallel to the first and second panel rail mounts, and a plurality of support members. A first portion of the plurality of support members extends between the first and second panel rail mounts. A second portion of the plurality of support members extends between the first panel rail mount and the base rail mount. A third portion of the plurality of support members extends between the second panel rail mount and the base rail mount. The system can further comprise a plurality of connectors for coupling a plurality of photovoltaic solar panels to the truss assembly.

  18. Organic and volatile elements in the solar system

    Directory of Open Access Journals (Sweden)

    Remusat L.

    2012-01-01

    Full Text Available Chondrites and comets have accreted primitive materials from the early solar system. Those materials include organics, water and other volatile components. The most primitive chondrites and comets have undergone few modifications on their respective parent bodies and can deliver to laboratories components that were present at the origin of the protosolar nebula. Here I present a review of the organic material and volatile components that have been studied in the most primitive chondrites, and the last data from the stardust mission about the cometary record. This paper focuses on materials that can be studied in laboratories, by mass spectrometry, ion probes or organic chemistry techniques.

  19. Comets and the Young Solar System (David Bates Medal Lecture)

    Science.gov (United States)

    Rickman, H.

    2012-04-01

    I will focus my talk around four outstanding problems concerning comets and the early Solar System. How were comet nuclei formed, and what was their initial size distribution? In which way could suchicy planetesimals have delivered volatiles to the planetary embryos in the terrestrial planet region? How large was the Sun's birth cluster, and what implications does this have for the origin of the Oort Cloud? Finally, in the framework of the Nice Model, which consequences are likely to follow from alargely cometary bombardment of the Moon and terrestrial planets during the LHB?

  20. Solar/electric heating systems for the future energy system

    Energy Technology Data Exchange (ETDEWEB)

    Furbo, S.; Dannemand, M.; Perers, B. [and others

    2013-05-15

    The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating elements/heat pump, advanced heat storage tanks and advanced control systems. Heat is produced by solar collectors in sunny periods and by electrical heating elements/heat pump. The electrical heating elements/heat pump will be in operation in periods where the heat demand cannot be covered by solar energy. The aim is to use the auxiliary heating units when the electricity price is low, e.g. due to large electricity production by wind turbines. The unit is equipped with an advanced control system where the control of the auxiliary heating is based on forecasts of the electricity price, the heat demand and the solar energy production. Consequently, the control is based on weather forecasts. Three differently designed heating units are tested in a laboratory test facility. The systems are compared on the basis of: 1) energy consumption for the auxiliary heating; 2) energy cost for the auxiliary heating; 3) net utilized solar energy. Starting from a normal house a solar combi system (for hot water and house heating) can save 20-30% energy cost, alone, depending on sizing of collector area and storage volume. By replacing the heat storage with a smart tank based on electric heating elements and a smart control based on weather/load forecast and electricity price information 24 hours ahead, another 30-40% can be saved. That is: A solar heating system with a solar collector area of about 10 m{sup 2}, a smart tank based on electric heating element and a smart control system, can reduce the energy costs of the house by at least 50%. No increase of heat storage volume is needed to utilize the smart control. The savings in % are similar for different levels of building insulation. As expected a heat pump in the system can further reduce the auxiliary electricity

  1. Recent trends in solar thermal sorption cooling system technology

    Directory of Open Access Journals (Sweden)

    Khaled M Bataineh

    2015-05-01

    Full Text Available Solar thermal cooling is the best alternative solution to overcome the problems associated with using nonrenewable resources. There are several thermal cooling methods developed differing from each other according to the thermodynamic cycle and type of refrigerant used. Recent developments in absorption and adsorption solar cooling systems are presented. Summarized thermodynamic modeling for both absorption and adsorption solar cooling systems is given. Brief thermal analysis among the types of solar collectors is presented. System efficiencies and optimization analysis are presented. The influences of geometrical, system configurations, and physical parameters on the performance of solar thermal sorption cooling system are investigated. The basis for the design of absorption and adsorption solar cooling systems is provided. Several case studies in different climatic conditions are presented. Economic feasibility for both systems is discussed. Comparison between the absorption and adsorption solar cooling system is summarized.

  2. Solar thermal power systems. Program summary

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    Each of DOE's solar Thermal Power Systems projects funded and/or in existence during FY 1978 is described and the status as of September 30, 1978 is reflected. These projects are divided as follows: small thermal power applications, large thermal power applications, and advanced thermal technology. Also included are: 1978 project summary tables, bibliography, and an alphabetical index of contractors. (MHR)

  3. Multistep Methods for Integrating the Solar System

    Science.gov (United States)

    1988-07-01

    Technical Report 1055 [Multistep Methods for Integrating the Solar System 0 Panayotis A. Skordos’ MIT Artificial Intelligence Laboratory DTIC S D g8...RMA ELEENT. PROECT. TASK Artific ial Inteligence Laboratory ARE1A G WORK UNIT NUMBERS 545 Technology Square Cambridge, MA 02139 IL. CONTROLLING...describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology, supported by the Advanced Research Projects

  4. Solar simulator for concentrator photovoltaic systems.

    Science.gov (United States)

    Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2008-09-15

    A solar simulator for measuring performance of large area concentrator photovoltaic (CPV) modules is presented. Its illumination system is based on a Xenon flash light and a large area collimator mirror, which simulates natural sun light. Quality requirements imposed by the CPV systems have been characterized: irradiance level and uniformity at the receiver, light collimation and spectral distribution. The simulator allows indoor fast and cost-effective performance characterization and classification of CPV systems at the production line as well as module rating carried out by laboratories.

  5. The Price-Concentration Relationship in Early Residential Solar Third-Party Markets

    Energy Technology Data Exchange (ETDEWEB)

    Pless, Jacquelyn [Univ. of Oxford (United Kingdom); Langheim, Ria [Center for Sustainable Energy, San Francisco, CA (United States); Machak, Christina [Center for Sustainable Energy, San Francisco, CA (United States); Hellow, Henar [Center for Sustainable Energy, San Francisco, CA (United States); Sigrin, Ben [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    that firms charged higher prices in more competitive markets in our sample. The finding is robust across multiple definitions of firm concentration. There are at least two potential explanations for our findings. First, firms could be conducting entry deterrence strategies. It is possible that firms are acting in a non-competitive way and setting prices lower than they would be otherwise. Setting low prices that are below potential competitors' marginal costs could deter entrants and ensure a larger market share. Second, there could be a group of dominant firms (with a competitive fringe), and the dominant firms may occasionally engage in price wars. If this is true, prices should be lower in more concentrated markets during the price wars (Salinger, 1990). As the rooftop PV market continues to grow, market structure will remain a relevant policy issue in consideration of the potential for rooftop solar to contribute to de-carbonization efforts or other policy objectives. This paper adds to a growing emphasis on understanding supply-side factors in scaling up solar markets in the residential sector. Generally, solar markets have become more competitive over the same time period that solar technology costs decreased. While solar system hard costs have come down, our research suggests that total costs are more nuanced in early solar system TPO markets. Policymakers should consider these findings when designing markets, and have the data needed to make informed decisions.

  6. Exploring the Outer Solar System with the ESSENCE Supernova Survey

    Energy Technology Data Exchange (ETDEWEB)

    Becker, A.C.; /Washington U., Seattle, Astron. Dept.; Arraki, K.; /Washington U., Seattle, Astron. Dept.; Kaib, N.A.; /Washington U., Seattle, Astron. Dept.; Wood-Vasey, W.M.; /Harvard-Smithsonian Ctr. Astrophys.; Aguilera, C.; /Cerro-Tololo InterAmerican Obs.; Blackman, J.W.; /Australian Natl. U., Canberra; Blondin, S.; /Harvard-Smithsonian Ctr. Astrophys.; Challis, P.; /Harvard-Smithsonian Ctr. Astrophys.; Clocchiatti, A.; /Rio de Janeiro, Pont. U. Catol.; Covarrubias, R.; /Kyushu Sangyo U.; Damke, G.; /Cerro-Tololo InterAmerican Obs.; Davis, T.M.; /Bohr Inst. /Queensland U.; Filippenko, A.V.; /UC, Berkeley; Foley, R.J.; /UC, Berkeley; Garg, A.; /Harvard-Smithsonian Ctr. Astrophys. /Harvard U.; Garnavich, P.M.; /Notre Dame U.; Hicken, M.; /Harvard-Smithsonian Ctr. Astrophys. /Harvard U.; Jha, S.; /Harvard U. /SLAC; Kirshner, R.P.; /Harvard-Smithsonian Ctr. Astrophys.; Krisciunas, K.; /Notre Dame U. /Texas A-M; Leibundgut, B.; /Munich, Tech. U. /UC, Berkeley /NOAO, Tucson /Washington U., Seattle, Astron. Dept. /Fermilab /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /Chile U., Santiago /Ohio State U. /Cerro-Tololo InterAmerican Obs. /Harvard U. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Australian Natl. U., Canberra /Australian Natl. U., Canberra /Cerro-Tololo InterAmerican Obs. /Munich, Tech. U. /Harvard-Smithsonian Ctr. Astrophys. /Harvard U. /Cerro-Tololo InterAmerican Obs. /Texas A-M /Cerro-Tololo InterAmerican Obs.

    2011-11-10

    We report the discovery and orbital determination of 14 trans-Neptunian objects (TNOs) from the ESSENCE Supernova Survey difference imaging data set. Two additional objects discovered in a similar search of the SDSS-II Supernova Survey database were recovered in this effort. ESSENCE repeatedly observed fields far from the solar system ecliptic (-21{sup o} < {beta} < -5{sup o}), reaching limiting magnitudes per observation of I {approx} 23.1 and R {approx} 23.7. We examine several of the newly detected objects in detail, including 2003 UC{sub 414}, which orbits entirely between Uranus and Neptune and lies very close to a dynamical region that would make it stable for the lifetime of the solar system. 2003 SS{sub 422} and 2007 TA{sub 418} have high eccentricities and large perihelia, making them candidate members of an outer class of TNOs. We also report a new member of the 'extended' or 'detached' scattered disk, 2004 VN{sub 112}, and verify the stability of its orbit using numerical simulations. This object would have been visible to ESSENCE for only {approx}2% of its orbit, suggesting a vast number of similar objects across the sky. We emphasize that off-ecliptic surveys are optimal for uncovering the diversity of such objects, which in turn will constrain the history of gravitational influences that shaped our early solar system.

  7. X-rays from solar system objects

    CERN Document Server

    Bhardwaj, Anil; Gladstone, G Randall; Cravens, Thomas E; Lisse, Carey M; Dennerl, Konrad; Branduardi-Raymont, Graziella; Wargelin, Bradford J; Waite, J Hunter; Robertson, Ina; Ostgaard, Nikolai; Beiersdorfer, Peter; Snowden, Steven L; Kharchenko, Vasili; 10.1016/j.pss.2006.11.009

    2010-01-01

    During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies. At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-ray...

  8. OSIRIS-REx A NASA Mission to a Near Earth Asteroid!...and Other Recent Happenings in the Solar System

    Science.gov (United States)

    Moreau, Michael C.

    2015-01-01

    The OSIRIS-REx Mission launches in 2016 Arrives at Asteroid Bennu-2018 Returns a sample to Earth -2023 The mission, OSIRIS-REx, will visit an asteroid and return a sample from the early Solar System to help us understand how our Solar System formed.

  9. Model validation studies of solar systems, Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.; Winn, C.B.

    1978-12-01

    Results obtained from a validation study of the TRNSYS, SIMSHAC, and SOLCOST solar system simulation and design are presented. Also included are comparisons between the FCHART and SOLCOST solar system design programs and some changes that were made to the SOLCOST program. Finally, results obtained from the analysis of several solar radiation models are presented. Separate abstracts were prepared for ten papers.

  10. Solar PV Energy Conversion System and its Configurations

    OpenAIRE

    Ahteshamul Haque

    2016-01-01

    Solar PV based energy conversion system is now used in commercial and residential buildings. Advancements in Power electronics leads the researchers to enhance the use of solar application in various configurations. These configurations may be used to utilize the energy optimally. The main objective of this paper is to present an overview of the various configurations of solar PV energy conversion system

  11. Design package for a solar-heating system

    Science.gov (United States)

    1979-01-01

    Report contains sufficient information to assemble complete tested residential flat-plate solar heating system. Descriptive material provides design, performance, and hardware specifications for utilization by architectural engineers, and contractors in procurement, installation, operation, and maintenance of similar solar applications.

  12. Design package for a solar-heating system

    Science.gov (United States)

    1979-01-01

    Report contains sufficient information to assemble complete tested residential flat-plate solar heating system. Descriptive material provides design, performance, and hardware specifications for utilization by architectural engineers, and contractors in procurement, installation, operation, and maintenance of similar solar applications.

  13. Addressing firefighter safety around solar PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Harris, B. [Sustainable Energy Technologies, Calgary, AB (Canada)

    2010-11-15

    The article discussed new considerations for installing photovoltaic (PV) systems that address the needs of fire service personnel. The presence of a PV system presents a multitude of dangers for firefighters, including electrical shock, the inhalation of toxic gases from being unable to cut a hole through the roof, falling debris and flying glass, and dead loading on a compromised structure and tripping on conduits. Mapping systems should be modified so that buildings with PV systems are identified for first responders, including firefighters who should learn that solar modules present an electrical hazard during the day but not at night; covering PV modules with foam or salvage covers may not shut the system down to a safe level; it takes a few moments for the power in PV modules to reduce to zero; and PV modules or conduit should never be cut, broke, chopped, or walked upon. The California Department of Forestry and Fire Protection recommends creating pathways and allowing easier access to the roof by setting the modules back from roof edges, creating a structurally sound pathway for firefighters to walk on and space to cut ventilation holes. However, the setback rule makes the economics of solar installation less viable for residential applications. The technological innovations aimed at addressing system safety all focus on limiting firefighter contact with live electrical components to within the extra-low-voltage (ELV) band. Some of the inverters on the market that support ELV system architecture were described. 1 fig.

  14. Suprathermal Chemistry in the Solar System

    Science.gov (United States)

    Shematovich, Valery

    Many celestial bodies in the Solar System are surrounded by gaseous envelopes. Chemical evolution of the gaseous envelopes of icy astrophysical objects of different masses and sizes (dust particles with icy mantles, icy planetesimals, comets and KBOs, icy satellites in the Jovian and Saturnian systems, and etc.) is determined by the complex influence of a large number of interrelated processes including: - photolysis by the solar XUV (soft X-rays and extreme ultraviolet) radiation, - radiolysis by the solar wind/magnetospheric plasma, - catalysis on the icy surface, - chemical exchange between the surface and atmosphere, - chemical changes in the gas composition of the envelope. These physical and chemical processes are initiated by the solar forcing, and are characterized by strongly differing time scales and the degrees of non-equilibrium. Theoretical predictions of the composition and chemical evolution of near-surface atmospheres of the icy astrophysical objects are of great importance for assessing the biological potential of these objects (Herbst and van Dishoeck, 2009). The water vapour is usually the dominant parent species in such gaseous envelope because of the ejection from the object’s icy surface due to the thermal outgassing, non-thermal photolysis and radiolysis and other active processes at work on the surface (Shematovich 2008). The photochemistry of water vapour in the near-surface atmospheric layer (Shematovich, 2008, 2012) and the radiolysis of icy regolith result in the supply of the atmosphere by an admixture of H _{2}O, H _{2}, O _{2}, OH and O with thermal and suprathermal kinetic energies. Returning molecules have a species-dependent behaviour in the impact with icy surface and non-thermal energy distributions for the chemical radicals. The suprathermal radicals OH, H, and O entering the regolith can drive the radiolytic chemistry. Chemical complexity of the near-surface atmosphere of the icy astrophysical object arises due to both

  15. The Interstellar Cloud Surrounding the Solar System

    Science.gov (United States)

    Frisch, P. C.

    Ultraviolet spectral data of nearby stars indicate that the cloud surrounding the solar system has an average neutral density n(HI)~0.1 cm-3, temperature ~6800 K, and turbulence ~1.7 km/s. Comparisons between the anomalous cosmic ray data and ultraviolet data suggest that the electron density is in the range n(e-)~0.22 to 0.44 cm-3. This cloud is flowing past the Sun from a position centered in the Norma-Lupis region. The cloud properties are consistent with interstellar gas which originated as material evaporated from the surfaces of embedded clouds in the Scorpius-Centaurus Association, and which was then displaced towards the Sun by a supernova event about 4 Myrs ago. The Sun and surrounding cloud velocities are nearly perpendicular in space, and this cloud is sweeping past the Sun. The morphology of this cloud can be reconstructed by assuming that the cloud moves in a direction parallel to the surface normal. With this assumption, the Sun entered the surrounding cloud 2000 to 8000 years ago, and is now about 0.05 to 0.16 pc from the cloud surface. Prior to its recent entry into the surrounding cloud complex, the Sun was embedded in a region of space with average density lower than 0.0002 cm-3. If a denser cloud velocity component seen towards alpha Cen A,B is real, it will encounter the solar system within 50,000 yr. The nearby magnetic field seen upwind has a spatial orientation that is parallel to the cloud surface. The nearby star Sirius is viewed through the wake of the solar system, but this direction also samples the hypothetical cloud interface. Comparisons of anomalous cosmic ray and interstellar absorption line data suggest that trace elements in the surrounding cloud are in ionization equilibrium. Data towards nearby white dwarfs indicate partial helium ionization, N(N(HI)(/N(HeI)>~13.7, which is consistent with pickup ion data within the solar system if less than 40% hydrogen ionization occurs in the heliopause region. However, the white dwarfs may

  16. Astrometry of Solar System Objects with Gaia

    Science.gov (United States)

    Hestroffer, Daniel J.; Arenou, Frederic; Desmars, Josselin; Robert, Vincent; Thuillot, William; Arlot, Jean-Eudes; Carry, Benoit; David, Pedro; Eggl, Siegfried; Fabricius, Claus; Kudryashova, Maria; Lainey, Valery; Spoto, Federica; Tanga, Paolo; Gaia DPAC

    2016-10-01

    The Gaia ESA space mission will provide astrometric observations of a large number of celestial bodies, with unprecedented accuracy, and in an homogenous reference frame (to become the optical ICRF). The Gaia satellite is monitoring regularly the whole celestial sphere, with one complete scan in about 6month, down to approximately magnitude V≤20.7. It will provide after its nominal lifetime, (5 years, 2014-2019) about 70 astrometric points for several hundred thousands of solar system objects, asteroids from the Near-Earth region to Centaurs and bright TNOs, as well as planetary satellites and comets. The highly precise astrometric and photometric data is bound to lead to huge advances in the science of small Small Solar System Bodies (e.g. Tanga et al. 2016 P\\&SS, Hestroffer et al. 2014 COSPAR #40 ; Mignard et al. 2007 EMP).The first Gaia data release (GDR#1) is foreseen for Q3-2016 and will provide highly precise positions of selected stars down to mag V≈20. While solar system objets data is foreseen for the next data release (in 2017), science of Solar System will also highly benefit from the Gaia stellar catalogue. We will present the status of the satellite and Gaia mission, and details on the stellar data that will be published in this GDR#1. We discuss the catalogue content, number of stars, parameters and precisions, and the process of cross-matching and validation. We also touch upon the construction of combined Tycho-Gaia TGAS catalogue.A Gaia data daily processing is devoted to the identification of Solar System Objects. During this process the detection of new (or critical) objects arises and leads to the triggering of scientific alerts to be found on the web gaiafunsso.imcce.fr. We have also set up an international follow-up network called Gaia-FUN-SSO to validate the detection in space. For this goal, in case of detection the observational data must be sent to the MPC by the observers. Besides, Gaia should benefit for the classical astrometric

  17. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    Science.gov (United States)

    Harber, H.

    1981-01-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  18. Rituximab in early systemic sclerosis.

    Science.gov (United States)

    Boonstra, Maaike; Meijs, Jessica; Dorjée, Annemarie L; Marsan, Nina Ajmone; Schouffoer, Anne; Ninaber, Maarten K; Quint, Koen D; Bonte-Mineur, Femke; Huizinga, Tom W J; Scherer, Hans U; de Vries-Bouwstra, Jeska K

    2017-01-01

    (1) Hypothesis testing of the potency of rituximab (RTX) in preventing fibrotic complications and (2) assessing acceptability and feasibility of RTX in early systemic sclerosis (SSc). A small, 24-month, randomised, double-blind, placebo-controlled, single-centre trial in patients with SSc diagnosed <2 years was conducted. Patients received RTX or placebo infusions at t=0, t=15 days and t=6 months. Patients were clinically evaluated every 3 months, with lung function tests and high-resolution CT every other visit. Skin biopsies were taken at baseline and month 3. Immunophenotyping of peripheral blood mononuclear cells was performed at every visit, except at months 9 and 18. Adverse events, course of skin and pulmonary involvement and B cell populations in skin and peripheral blood were evaluated. In total 16, patients (rituximab n=8, placebo n=8) were included. Twelve patients had diffuse cutaneous SSc. Eighty-eight adverse events (RTX n=53, placebo n=35, p=0.22) and 11 serious adverse events (RTX n=7, placebo n=4, p=0.36) occurred. No unexpected RTX-related events were observed. Mean skin score over time did not differ between the groups. Over time, forced vital capacity and extent of lung involvement slightly improved with RTX, but this difference was insignificant. In peripheral blood B cells depletion was demonstrated. No unexpected safety issues were observed with RTX in early SSc. Although this small trial could not confirm or reject potential efficacy of RTX in these patients, future placebo-controlled trials are warranted, specifically in the subgroup of patients with pulmonary involvement. EudraCT 2008-07180-16; Results.

  19. Demonstrative study for the wind and solar hybrid power system. 2; Furyoku taiyoko hybrid hatsuden system ni kansuru jissho kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y.; Sakuma, H.; Ushiyama, I. [Ashikaga Institute of Technology, Tochigi (Japan)

    1996-10-27

    In order to verify the complementary relationship between wind and solar energy, the long-term field test of the hybrid power system was conducted at the natural energy square of Ashikaga Institute of Technology. The solar cell blade windmill composed of a Savonius windmill and flexible solar cells applied to swept buckets was also prepared. As a result, the wind power generation was promising mainly in the winter period including the late fall and early spring, while solar one was stable all the year through although it was slightly poor in winter. Stable power generation was thus achieved by combining wind energy with solar energy. As the whole data of other wind and solar power generation systems at the square were analyzed for every month, the same conclusion as the solar cell blade windmill was obtained as follows: the wind power generation in Ashikaga area is promising in Nov.-March from the field test result for 16 months, solar power generation is stable all the year through, the hybrid power system is effective in Nov.-April, and the solar cell blade windmill is equivalent to the hybrid power system. 3 refs., 5 figs.

  20. 15N Fractionation in Star-Forming Regions and Solar System Objects

    Science.gov (United States)

    Wirstrom, Eva; Milam, Stefanie; Adande, GIlles; Charnley, Steven; Cordiner, Martin

    2015-01-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristinemolecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N15N 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N15N 100.

  1. Solar Thermal System Evaluation in China

    Directory of Open Access Journals (Sweden)

    Xinyu Zhang

    2015-01-01

    Full Text Available More than 581 solar thermal systems (STSs, 98 counties, and 47 renewable application demonstration cites in China need to be inspected by the end of 2015. In this study, the baseline for performance and economic evaluation of STSs are presented based on the site test data and related references. An index used to evaluate STSs was selected, and methods to acquire the parameters used to calculate the related index were set. The requirements for sensors for testing were specified. The evaluation method was applied to three systems and the result shows that the evaluation method is suitable for the evaluation of STSs in China.

  2. Demonstration of Solar Heating and Cooling System using Sorption Integrated Solar Thermal Collectors

    OpenAIRE

    Blackman, Corey; Bales, Chris; Hallström, Olof

    2014-01-01

    Producing cost-competitive small and medium-sized solar cooling systems is currently a significant challenge. Due to system complexity, extensive engineering, design and equipment costs; the installation costs of solar thermal cooling systems are prohibitively high. In efforts to overcome these limitations, a novel sorption heat pump module has been developed and directly integrated into a solar thermal collector. The module comprises a fully encapsulated sorption tube containing hygroscopic ...

  3. Fast Solar Sailing for Solar System Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Practical spinning solar sail architectures will be needed to meet low areal densities and large areas required for the most challenging science and exploration...

  4. Design of solar cell lighting and sun tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Khaing, A.A. [Mandalay Technological Univ., Mandalay (Myanmar); Ministry of Science, Yangon (Myanmar)

    2008-07-01

    A solar cell lighting and sun tracking system was discussed and the characteristics of solar cells were studied. An SM50H solar module was analyzed with a maximum power rating of 50 W and a current rate of 3.15 A. The main components of the system include solar cells, charged controllers, and a sun tracking system. The solar tracker is an automatic control system designed to track the solar modules in relation to the sun's direction. A linear drive actuator was used to track the modules with an energy consumption rate between 24 and 36 DC voltages. Power output solar cell equations were presented along with a review of batteries used for stationary and portable solar energy equipment. Issues related to cost of tracking systems were discussed. System sizing recommendations were provided, and solar cell design requirements were reviewed. A comparison of tracking and fixed solar energy systems was presented for a day in Yangon, Myanmar. It was concluded that solar tracking systems can be used to provide energy in rural and remote areas. 18 refs., 4 tabs., 5 figs.

  5. Deployable Propulsion, Power and Communications Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, L.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.

  6. Relativistic Celestial Mechanics of the Solar System

    Science.gov (United States)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    allows us to to discover and eliminate spurious coordinate effects that have no physical meaning. The basic mathematical technique used in our theoretical treatment is based on matching of asymptotic post-Newtonian expansions of the solutions of the gravity field equations. In Chapter 6, we discuss the principles of relativistic celestial mechanics of massive bodies and particles. We focus on derivation of the post-Newtonian equations of orbital and rotational motion of an extended body possessing multipolar moments. These moments couple with the tidal gravitational fields of other bodies, making the motion of the body under consideration very complicated. Simplification is possible if the body can be assumed spherically symmetric. We discuss the conditions under which this simplification can be afforded, and derive the equations of motion of spherically-symmetric bodies. These equations are solved in the case of the two-body problem, and we demonstrate the rich nature of the possible coordinate presentations of such a solution. The relativistic celestial mechanics of light particles (photons) propagating in a time-dependent gravitational field of an N-body system is addressed in Chapter 7. This is a primary subject of relativistic astrometry which became especially important for the analysis of space observations from the Hipparcos satellite in the early 1990s. New astrometric space missions, orders of magnitude more accurate than Hipparcos, for example, Gaia, SIM, JASMINE, and so on, will require even more complete developments. Additionally, relativistic effects play an important role in other areas of modern astronomy, such as, pulsar timing, very long baseline radio interferometry, cosmological gravitational lensing, and so on. High-precision measurements of gravitational light bending in the solar system are among the most crucial experimental tests of the general theory of relativity. Einstein predicted that the amount of light bending by the Sun is twice that

  7. Passive solar systems performance under conditions in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, A B; Balcomb, J D

    1989-12-01

    This paper presents energy performance of 12 passive solar systems for three climatically different zones of Bulgaria. The results are compared with a base-case residential house that has a design typical for these areas. The different passive solar systems are compared on the basis of the percentage of solar savings and the yield, which is the annual net benefit of adding the passive solar system. The analyses are provided based on monthly meteorological data, and the method used for calculations is the Solar Load Ratio. Recommendations for Bulgarian conditions are given. 5 refs., 4 figs., 1 tab.

  8. Statistical Mechanics and Dynamics of the Outer Solar System.I. The Jupiter/Saturn Zone

    Science.gov (United States)

    Grazier, K. R.; Newman, W. I.; Kaula, W. M.; Hyman, J. M.

    1996-01-01

    We report on numerical simulations designed to understand how the solar system evolved through a winnowing of planetesimals accreeted from the early solar nebula. This sorting process is driven by the energy and angular momentum and continues to the present day. We reconsider the existence and importance of stable niches in the Jupiter/Saturn Zone using greatly improved numerical techniques based on high-order optimized multi-step integration schemes coupled to roundoff error minimizing methods.

  9. A possible mechanism of origin of heavy elements in the solar system

    OpenAIRE

    Tito, E. P.; V. I. Pavlov

    2013-01-01

    We advance a hypothesis that a collision of a neutron-rich compact object (NRCO) with a massive dense object of the early solar system was responsible for the heavy element enrichment of the system and for the formation of the terrestrial planets.

  10. Development of a solar thermal thruster system

    NARCIS (Netherlands)

    Leenders, H.C.M.; Zandbergen, B.T.C.

    2008-01-01

    At the Delft University of Technology the use of solar radiation to heat a propellant to a high temperature is investigated as an alternative to resistance heating. The latter only allows for a solar power to heat conversion efficiency of about 25%, depending on the solar cells, whereas for solar he

  11. Development of a solar thermal thruster system

    NARCIS (Netherlands)

    Leenders, H.C.M.; Zandbergen, B.T.C.

    2008-01-01

    At the Delft University of Technology the use of solar radiation to heat a propellant to a high temperature is investigated as an alternative to resistance heating. The latter only allows for a solar power to heat conversion efficiency of about 25%, depending on the solar cells, whereas for solar he

  12. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2013-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  13. Solar energy engineering processes and systems

    CERN Document Server

    Kalogirou, Soteris A

    2009-01-01

    As perhaps the most promising of all the renewable energy sources available today, solar energy is becoming increasingly important in the drive to achieve energy independence and climate balance. This new book is the masterwork from world-renowned expert Dr. Soteris Kalogirou, who has championed solar energy for decades. The book includes all areas of solar energy engineering, from the fundamentals to the highest level of current research. The author includes pivotal subjects such as solar collectors, solar water heating, solar space heating and cooling, industrial process heat, solar desalina

  14. Dynamic modeling of solar dynamic components and systems

    Science.gov (United States)

    Hochstein, John I.; Korakianitis, T.

    1992-09-01

    The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.

  15. Test and evaluation of a solar-heating system

    Science.gov (United States)

    1980-01-01

    Report documents results of evaluation tests performed on components of commerical solar heating and hot water system. Subsystems tested include flat plate solar collector, energy transport module, and control panel. Tests conducted include snow and wind loads, flame spread, and smoke classification as well as solar heating operation.

  16. Material cycling solar system modeled ecosystem; Seitaikei wo model to shita busshitsu junkangata solar system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M. [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-27

    It is proposed to establish an integrated system close to a natural ecosystem for an industrial complex, taking that in Hachinohe City, Aomori Pref. as the conceptual site. It is a system in which materials are recycled by solar energy and industrial waste heat for a complex food industry. The conceptual site, although blessed with various marine products, are sometimes attacked by cold weather. Waste heat from a 250,000kW power plant, if transported by EHD heat pipes to the site, could provide roughly 400 times the heat required for production of agricultural and marine products, such as cabbages and fish meat. The waste heat, coupled with solar energy, should solve the problems resulting from hot waste water, if they could be utilized for the industrial purposes. The food industrial site that produces agricultural and marine products is considered to be suited as the center of the solar industrial complex incorporating farms. 5 refs., 3 figs.

  17. Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    CERN Document Server

    Herndon, J M

    2006-01-01

    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound imp...

  18. Improving the efficiency of solar photovoltaic power system

    Science.gov (United States)

    Aribisala, Henry A.

    As the local and national clamor for foreign energy independent United States continues to grow unabated; renewable energy has been receiving increased focus and it's widely believed that it's not only the answer to ever increasing demand for energy in this country, but also the environmentally friendly means of meeting such demand. During the spring of 2010, I was involved with a 5KW solar power system design project; the project involved designing and building solar panels and associated accessories like the solar array mounts and Solar Inverter system. One of the key issues we ran into during the initial stage of the project was how to select efficient solar cells for panel building at a reasonable cost. While we were able to purchase good solar cells within our allocated budget, the issue of design for efficiency was not fully understood , not just in the contest of solar cells performance , but also in the overall system efficiency of the whole solar power system, hence the door was opened for this thesis. My thesis explored and expanded beyond the scope of the aforementioned project to research different avenues for improving the efficiency of solar photo-voltaic power system from the solar cell level to the solar array mounting, array tracking and DC-AC inversion system techniques.

  19. Prediction and warning system of SEP events and solar flares for risk estimation in space launch operations

    Science.gov (United States)

    García-Rigo, Alberto; Núñez, Marlon; Qahwaji, Rami; Ashamari, Omar; Jiggens, Piers; Pérez, Gustau; Hernández-Pajares, Manuel; Hilgers, Alain

    2016-07-01

    A web-based prototype system for predicting solar energetic particle (SEP) events and solar flares for use by space launch operators is presented. The system has been developed as a result of the European Space Agency (ESA) project SEPsFLAREs (Solar Events Prediction system For space LAunch Risk Estimation). The system consists of several modules covering the prediction of solar flares and early SEP Warnings (labeled Warning tool), the prediction of SEP event occurrence and onset, and the prediction of SEP event peak and duration. In addition, the system acquires data for solar flare nowcasting from Global Navigation Satellite Systems (GNSS)-based techniques (GNSS Solar Flare Detector, GSFLAD and the Sunlit Ionosphere Sudden Total Electron Content Enhancement Detector, SISTED) as additional independent products that may also prove useful for space launch operators.

  20. Conversion system overview assessment. Volume 1: solar thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Jayadev, T. S.; Henderson, J.; Finegold, J.; Benson, D.

    1979-08-01

    An assessment of thermoelectrics for solar energy conversion is given. There is significant potential for solar thermoelectrics in solar technologies where collector costs are low; e.g., Ocean Thermal Energy Conversion (OTEC) and solar ponds. Reports of two studies by manufacturers assessing the cost of thermoelectric generators in large scale production are included in the appendix and several new concepts thermoelectric systems are presented. (WHK)

  1. Description of an Immersed Photovoltaic Concentrating Solar Power System

    OpenAIRE

    Falbel, Gerald

    1998-01-01

    Recent advancements in photovoltaic solar cells made from Gallium Arsenide (GaAs) have shown that with concentration ratios greater than one solar constant, overall efficiencies up to 23% can be achieved. A second issue applicable to solar power systems for spacecraft is the cost driver, which requires that the efficiency/weight ratio be improved so that solar panels with high output, weighing less, will reduce payload weights, which, in turn, reduces launch costs. This has resulted in a "Fig...

  2. Nonlocal Gravity in the Solar System

    CERN Document Server

    Chicone, C

    2015-01-01

    The implications of the recent classical nonlocal generalization of Einstein's theory of gravitation for gravitational physics in the Solar System are investigated. In this theory, the nonlocal character of gravity simulates dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a_0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a_0 is determined.

  3. Nonlocal gravity in the solar system

    Science.gov (United States)

    Chicone, C.; Mashhoon, B.

    2016-04-01

    The implications of the recent classical nonlocal generalization of Einstein’s theory of gravitation for gravitational physics in the solar system are investigated. In this theory, the nonlocal character of gravity appears to simulate dark matter. Nonlocal gravity in the Newtonian regime involves a reciprocal kernel with three spatial parameters, of which two have already been determined from the rotation curves of spiral galaxies and the internal dynamics of clusters of galaxies. However, the short-range parameter a 0 remains to be determined. In this connection, the nonlocal contribution to the perihelion precession of a planetary orbit is estimated and a preliminary lower limit on a 0 is determined.

  4. Solar System Moons Discovery and Mythology

    CERN Document Server

    Blunck, Jürgen

    2010-01-01

    Starting from Mars outward this concise handbook provides thorough information on the satellites of the planets in the solar system. Each chapter begins with a section on the discovery and the naming of the planet's satellites or rings. This is followed by a section presenting the historic sources of those names. The book contains tables with the orbital and physical parameters of all satellites and is illustrated throughout with modern photos of the planets and their moons as well as historical and mythological drawings. The Cyrillic transcriptions of the satellite names are provided in a register. Readers interested in the history of astronomy and its mythological backgrounds will enjoy this beautiful volume.

  5. An innovative deployable solar panel system for Cubesats

    Science.gov (United States)

    Santoni, Fabio; Piergentili, Fabrizio; Donati, Serena; Perelli, Massimo; Negri, Andrea; Marino, Michele

    2014-02-01

    One of the main Cubesat bus limitations is the available on-board power. The maximum power obtained using body mounted solar panels and advanced triple junction solar cells on a triple unit Cubesat is typically less than 10 W. The Cubesat performance and the mission scenario opened to these small satellite systems could be greatly enhanced by an increase of the available power. This paper describes the design and realization of a modular deployable solar panel system for Cubesats, consisting of a modular hinge and spring system that can be potentially used on-board single (1U), double(2U), triple (3U) and six units (6U) Cubesats. The size of each solar panels is the size of a lateral Cubesat surface. The system developed is the basis for a SADA (Solar Array Drive Assembly), in which a maneuvering capability is added to the deployed solar array in order to follow the apparent motion of the sun. The system design trade-off is discussed, comparing different deployment concepts and architectures, leading to the final selection for the modular design. A prototype of the system has been realized for a 3U Cubesat, consisting of two deployable solar panel systems, made of three solar panels each, for a total of six deployed solar panels. The deployment system is based on a plastic fiber wire and thermal cutters, guaranteeing a suitable level of reliability. A test-bed for the solar panel deployment testing has been developed, supporting the solar array during deployment reproducing the dynamical situation in orbit. The results of the deployment system testing are discussed, including the design and realization of the test-bed, the mechanical stress given to the solar cells by the deployment accelerations and the overall system performance. The maximum power delivered by the system is about 50.4 W BOL, greatly enhancing the present Cubesat solar array performance.

  6. Cratering Rates in the Outer Solar System

    Science.gov (United States)

    Zahnle, K.; Levison, H.; Dones, L.; Schenk, P.

    1999-09-01

    We use numerical simulations of the orbital evolution of stray Kuiper Belt objects to relate the number of comets striking the planets to the number of Jupiter-family comets observed in the inner solar system. Cratering rates are obtained by accounting for gravitational focusing, cratering efficiency, and an intuitive average of the various available calibrations of cometary mass. The most telling craters are those of Triton, a retrograde moon in a prograde system. It is well-known that much of Triton's surface is relatively young. Less well-known is that Triton features the most startling hemispheric cratering asymmetry in the solar system: fresh impact craters are almost exclusively limited to the leading hemisphere. It would seem that Triton has been colliding almost exclusively with planetocentric debris. If so, then we conclude that Triton's trailing hemisphere is less than 10 million years old. Recent too must be the event that cratered the leading hemisphere. Once admitted we must consider planetocentric cratering of other, prograde satellites. In particular, the lack of a strong apex-antapex asymmetry on Ganymede is not as good an argument for nonsynchronous rotation as we once thought. Rather, many or most of Ganymede's craters might prove to be secondaries, most likely made by ejecta launched into orbit about Jupiter, only to return not too much later, like the insatiable shards of Texas in Armageddon II: The New Millenium.

  7. Solar heating and cooling system design and development

    Science.gov (United States)

    1979-01-01

    The design and development of marketable solar heating and cooling systems for single family and commercial applications is described. The delivery, installation, and monitoring of the prototype systems are discussed. Seven operational test sites are discussed in terms of system performance. Problems encountered with equipment and installation were usually due to lack of skills required for solar system installation.

  8. Design and installation package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains the design and installation procedure for the Solar Engineering and Manufacturing Company's solar hot water system. Included are the system performance specifications, system design drawings, hazard analysis and other information necessary to evaluate the design and instal the system.

  9. Transition regions in solar system and astrophysical plasmas

    Science.gov (United States)

    Eastman, Timothy E.

    1990-01-01

    A brief review is presented of basic particle and field characteristics of plasmas observed within the solar system, especially near transition regions, and their parameter ranges are compared with those inferred for stellar winds and the interstellar medium. Parameter ranges for solar system and astrophysical plasmas are found to have considerable overlap. In addition, astrophysics provides unique, global perspectives of large-scale systems, whereas solar-system space physics provides for direct quantitative testing of physical processes. Astrophysics and solar-system space physics studies thus have complementary and synergistic roles.

  10. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  11. The Submillimeter Wave Astronomy Satellite (SWAS) solar array system

    Science.gov (United States)

    Sneiderman, Gary

    1993-01-01

    The SWAS (Submillimeter Wave Astronomy Satellite) solar array system is described. It is an innovative approach to meet the missions requirements. The SWAS satellite provides a three axis stabilized platform to survey a variety of galactic cloud structures. This system includes highly reliable, lightweight launch latch, deployment, and lock mechanisms, and solar array panels that provide the maximum solar cell area. The design of the solar arrays are the result of system trades that included instrument and spacecraft thermal constraints, attitude control system maneuvering rates and pointing accuracies, the power system, and the spacecraft structure.

  12. Solar energy system economic evaluation: IBM System 4, Clinton, Mississippi

    Science.gov (United States)

    1980-01-01

    An economic analysis of the solar energy system was developed for five sites, typical of a wide range of environmental and economic conditions in the continental United States. The analysis was based on the technical and economic models in the F-chart design procedure, with inputs based on the characteristic of the installed system and local conditions. The results are of the economic parameters of present worth of system cost over a 20 year time span: life cycle savings, year of positive savings and year of payback for the optimized solar energy system at each of the analysis sites. The sensitivity of the economic evaluation to uncertainties in constituent system and economic variables is also investigated.

  13. Lunar Solar Power System and Lunar Exploration

    Science.gov (United States)

    Criswell, D. R.

    2002-01-01

    Five of the six billion people on Earth produce less than 2,500 per year per person of Gross World Product (GWP). GWP growth is severely limited by the high cost, low availability and reliability, environmental damages, and political uncertainties of conventional fossil, nuclear, and terrestrial renewable power systems. In 2000 the World Energy Council challenged all decision makers to enable the equivalent of 6.7 kWt per person of thermal power within two generations. This implies 67 TWt, or approx.20 to 30 TWe, of sustainable electric power by 2050. Twenty-five power systems were reviewed to select which could: (1) sustainably provide 20 TWe to consumers; (2) profitably sell electricity for less than 0.01 per kWe-h; (3) be environmentally neutral, even nurturing; and (4) use understood technologies. The analyses indicated that only the Lunar Solar Power (LSP) System could meet these requirements within the 21st Century.

  14. Chaotic Disintegration of the Inner Solar System

    CERN Document Server

    Batygin, Konstantin; Holman, Mathew J

    2014-01-01

    On timescales that greatly exceed an orbital period, typical planetary orbits evolve in a stochastic yet stable fashion. On even longer timescales, however, planetary orbits can spontaneously transition from bounded to unbound chaotic states. Large-scale instabilities associated with such behavior appear to play a dominant role in shaping the architectures of planetary systems, including our own. Here we show how such transitions are possible, focusing on the specific case of the long-term evolution of Mercury. We develop a simple analytical model for Mercury's dynamics and elucidate the origins of its short term stochastic behavior as well as of its sudden progression to unbounded chaos. Our model allows us to estimate the timescale on which this transition is likely to be triggered, i.e. the dynamical lifetime of the Solar System as we know it. The formulated theory is consistent with the results of numerical simulations and is broadly applicable to extrasolar planetary systems dominated by secular interact...

  15. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  16. Simulation of solar system in a house; Simulacion de un sistema solar en una vivienda unifamiliar

    Energy Technology Data Exchange (ETDEWEB)

    Rey, F. J.; Velasco, E.; Herrero, R.; Varela, F.; Nunez, M. J.; Lopez, L. M.

    2004-07-01

    Building sustainable development make necessary the rational use of already existing Energy Resources and the use of the Renewable Energies as the Thermal Solar Energy. The technological advance of the last years has allowed the development and improvement of Solar Energy Systems. As today the Thermal Solar Energy is available technical and economically reducing the environmental impact. In the present work it has been developed a TRNSYS simulation of a thermal Solar System for Hot water consumption and Space Heating by radiant Flooring in a single house. The Thermal Solar installation Simulation allows the hour-by-hour system parameters treatment to determine the energy consumptions, yields, solar contribution etc. Also, it has been studied the Energy Qualification of the building by TRNSYS and the AEV methodology developed by the Termotecnia Department of Valladolid University ( UVA). (Author)

  17. Beam-Forming Concentrating Solar Thermal Array Power Systems

    Science.gov (United States)

    Cwik, Thomas A. (Inventor); Dimotakis, Paul E. (Inventor); Hoppe, Daniel J. (Inventor)

    2016-01-01

    The present invention relates to concentrating solar-power systems and, more particularly, beam-forming concentrating solar thermal array power systems. A solar thermal array power system is provided, including a plurality of solar concentrators arranged in pods. Each solar concentrator includes a solar collector, one or more beam-forming elements, and one or more beam-steering elements. The solar collector is dimensioned to collect and divert incoming rays of sunlight. The beam-forming elements intercept the diverted rays of sunlight, and are shaped to concentrate the rays of sunlight into a beam. The steering elements are shaped, dimensioned, positioned, and/or oriented to deflect the beam toward a beam output path. The beams from the concentrators are converted to heat at a receiver, and the heat may be temporarily stored or directly used to generate electricity.

  18. Infrared Images of an Infant Solar System

    Science.gov (United States)

    2002-05-01

    ESO Telescopes Detect a Strange-Looking Object Summary Using the ESO 3.5-m New Technology Telescope and the Very Large Telescope (VLT) , a team of astronomers [1] have discovered a dusty and opaque disk surrounding a young solar-type star in the outskirts of a dark cloud in the Milky Way. It was found by chance during an unrelated research programme and provides a striking portrait of what our Solar System must have looked like when it was in its early infancy. Because of its striking appearance, the astronomers have nicknamed it the "Flying Saucer" . The new object appears to be a perfect example of a very young star with a disk in which planets are forming or will soon form, and located far away from the usual perils of an active star-forming environment . Most other young stars, especially those that are born in dense regions, run a serious risk of having their natal dusty disks destroyed by the blazing radiation of their more massive and hotter siblings in these clusters. The star at the centre of the "Flying Saucer", seems destined to live a long and quiet life at the centre of a planetary system , very much like our own Sun. This contributes to making it a most interesting object for further studies with the VLT and other telescopes. The mass of the observed disk of gas and dust is at least twice that of the planet Jupiter and its radius measures about 45 billion km, or 5 times the size of the orbit of Neptune. PR Photo 12a/02 : The "Flying Saucer" object photographed with NTT/SOFI. PR Photo 12b/02 : VLT/ISAAC image of this object. PR Photo 12c/02 : Enlargement of VLT/ISAAC image . Circumstellar Disks and Planets Planets form in dust disks around young stars. This is a complex process of which not all stages are yet fully understood but it begins when small dust particles collide and stick to each other. For this reason, observations of such dust disks, in particular those that appear as extended structures (are "resolved"), are very important for our

  19. Dark matter, neutrinos, and our solar system

    CERN Document Server

    Prakash, Nirmala

    2013-01-01

    Dark Matter, Neutrinos, and Our Solar System is a unique enterprise that should be viewed as an important contribution to our understanding of dark matter, neutrinos and the solar system. It describes these issues in terms of links, between cosmology, particle and nuclear physics, as well as between cosmology, atmospheric and terrestrial physics. It studies the constituents of dark matter (classified as hot warm and cold) first in terms of their individual structures (baryonic and non-baryonic, massive and non-massive, interacting and non-interacting) and second, in terms of facilities available to detect these structures (large and small). Neutrinos (an important component of dark matter) are treated as a separate entity. A detailed study of these elusive (sub-atomic) particles is done, from the year 1913 when they were found as byproducts of beta decay -- until the discovery in 2007 which confirmed that neutrino flavors were not more than three (as speculated by some). The last chapter of the book details t...

  20. Solar-System Tests of Gravitational Theories

    Science.gov (United States)

    Shapiro, Irwin

    1997-01-01

    We are engaged in testing gravitational theory by means of observations of objects in the solar system. These tests include an examination of the Principle Of Equivalence (POE), the Shapiro delay, the advances of planetary perihelia, the possibility of a secular variation G in the "gravitational constant" G, and the rate of the de Sitter (geodetic) precession of the Earth-Moon system. These results are consistent with our preliminary results focusing on the contribution of Lunar Laser Ranging (LLR), which were presented at the seventh Marcel Grossmann meeting on general relativity. The largest improvement over previous results comes in the uncertainty for (eta): a factor of five better than our previous value. This improvement reflects the increasing strength of the LLR data. A similar analysis presented at the same meeting by a group at the Jet Propulsion Laboratory gave a similar result for (eta). Our value for (beta) represents our first such result determined simultaneously with the solar quadrupole moment from the dynamical data set. These results are being prepared for publication. We have shown how positions determined from different planetary ephemerides can be compared and how the combination of VLBI and pulse timing information can yield a direct tie between planetary and radio frames. We have continued to include new data in our analysis as they became available. Finally, we have made improvement in our analysis software (PEP) and ported it to a network of modern workstations from its former home on a "mainframe" computer.

  1. Origins Space Telescope: Solar System Science

    Science.gov (United States)

    Wright, Edward L.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.In the Solar System, OST will provide km/sec resolution on lines from planet, moons and comets. OST will measure molecular abundances and isotope ratios in planets and comets. OST will be able to do continuum surveys for faint moving sources such as Kuiper Belt Objects, enabling a census of smaller objects in the Kuiper Belt. If the putative Planet IX is massive enough to be self-luminous, then OST will be able to detect it out to thousands of AU from the Sun.

  2. A SOLAR SYSTEM EPHEMERIS FOR 1950 TO 2000.

    Science.gov (United States)

    SOLAR SYSTEM, CELESTIAL MECHANICS, COMPUTER PROGRAMMING, CELESTIAL MECHANICS, VELOCITY, PLANETS , MOON, MERCURY ( PLANET ), VENUS( PLANET ), MARS( PLANET ), JUPITER( PLANET ), SATURN( PLANET ), URANUS( PLANET ), PLUTO( PLANET ).

  3. Solar Distillation Practice For Water Desalination Systems

    OpenAIRE

    Mahian, Omid; Kianifar, Ali; Jumpholkul, Chaiwat; Thiangtham, Phubate; Wongwises, Somchai; Srisomba, Raviwat

    2015-01-01

    references, it is suggested to add a chapter concerning CFD simulations of solar stills. In addition, a part can be devoted to using novel technologies such as nanotechnology for productivity enhancement of solar stills

  4. Galileon Forces in the Solar System

    CERN Document Server

    Andrews, Melinda; Trodden, Mark

    2013-01-01

    We consider the challenging problem of obtaining an analytic understanding of realistic astrophysical dynamics in the presence of a Vainshtein screened fifth force arising from infrared modifications of General Relativity. In particular, we attempt to solve -- within the most general flat spacetime galileon model -- the scalar force law between well separated bodies located well within the Vainshtein radius of the Sun. To this end, we derive the exact static Green's function of the galileon wave equation linearized about the background field generated by the Sun, for the minimal cubic and maximally quartic galileon theories, and then introduce a method to compute the general leading order force law perturbatively away from these limits. We also show that the same nonlinearities which produce the Vainshtein screening effect present obstacles to an analytic calculation of the galileon forces between closely bound systems within the solar system, such as that of the Earth and Moon. Within the test mass approxima...

  5. Installation package for a solar heating and hot water system

    Science.gov (United States)

    1978-01-01

    Development and installation of two commercial solar heating and hot water systems are reported. The systems consist of the following subsystems: collector, storage, transport, hot water, auxiliary energy and controls. General guidelines are provided which may be utilized in development of detailed installation plans and specifications. In addition, operation, maintenance and repair of a solar heating and hot water system instructions are included.

  6. Progress in passive solar energy systems. Volume 8. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.; Andrejko, D.A.

    1983-01-01

    This book presents the papers given at a conference sponsored by the US DOE, the Solar Energy Research Institute, SolarVision, Inc., and the Southern California Solar Energy Society. The topics considered at the conference included sizing solar energy systems for agricultural applications, a farm scale ethanol production plant, the EEC wind energy RandD program, the passive solar performance assessment of an earth-sheltered house, the ARCO 1 MW photovoltaic power plant, the performance of a dendritic web photovoltaic module, second generation point focused concentrators, linear fresnel lens concentrating photovoltaic collectors, photovoltaic conversion efficiency, amorphous silicon thin film solar cells, a photovoltaic system for a shopping center, photovoltaic power generation for the utility industry, spectral solar radiation, and the analysis of insolation data.

  7. Implementation of optimum solar electricity generating system

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  8. Implementation of optimum solar electricity generating system

    Science.gov (United States)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  9. The Solar system.Stars and constellations

    Science.gov (United States)

    Horia Minda, Octavian

    2017-04-01

    It is important for students to understand what is in our Solar System. The Students need to know that there are other things besides the Earth, Sun and Moon in the solar sky. The students will learn about the other eight planets and a few other celestial objects like stars and constellations. Constellations are useful because they can help people to recognize stars in the sky. By looking for patterns, the stars and locations can be much easier to spot. The constellations had uses in ancient times. They were used to help keep track of the calendar. This was very important so that people knew when to plant and harvest crops. Another important use for constellations was navigation. By finding Ursa Minor it is fairly easy to spot the North Star (Polaris). Using the height of the North Star in the sky, navigators could figure out their latitude helping ships to travel across the oceans. Objective: 1. The students will be introduced to the origin of the stars they see at night. 2. They will learn that there are groups of stars called constellations. The students will individually create their own constellations. They will be given the chance to tell the class a small story explaining their constellation. Evaluation of Children: The children will be evaluated through the creation of their constellations and ability to work in groups on the computers.

  10. Combined solar-thermal/photovoltaic system

    Energy Technology Data Exchange (ETDEWEB)

    Krauter, Stefan; Schroer, Sandra [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. Fotovoltaico]. E-mail: krauter@coe.ufrj.br; Salhi, Mohammed J. [Solon AG fuer Solartechnik, Berlin (Germany)]. E-mail: solonag@solonag.com; Hanitsch, Rolf [Berlin Inst. of Tech. (Germany). Inst. for Electrical Energy Systems]. E-mail: rolf.hanitsch@iee.TU-Berlin.de

    2000-07-01

    Combination of photovoltaic (PV) and solar thermal elements allows to generate electricity and heat at reduced costs. The substitution of conventional facade elements (includes the thermal insulation of building) increases the benefit. Conventional photovoltaic are built as curtain facades in front of thermally insulated buildings with air ducts in between. This causes additional costs for support structures and installation, while heat dissipation from the solar cells is often not optimal. Measurements carried out are facing both concerns: integration of a thermal insulation layer (which meets the latest german heat preserving regulation WSW 95) into the P V facade allows a reduction of cell operating temperature of 18 K, resulting in a 8 % increase in electrical output at an air velocity of about 2 m/s. Cell temperatures increase by 20.7 K at thermal insulating P V facade elements (TIPVE) without cooling, which causes a 9.3 % loss of electrical yield, but installation costs can be reduced by 20 % (all related to a conventional P V curtain plus a heat insulating facade at a building). HYTIPVE, a hybrid thermal insulating P V facade element combined with a water cooling system, which could also serve for hot water heating, lowers operating cells temperature by 20 K and increases electrical yield by 9 % (referred to conventional curtain P V facades). Further economic investigations of each HYTIPVE including its operational costs and substitution effect related to the electrical and thermal yield are on the way. (author)

  11. A solar heating system with annual storage

    Science.gov (United States)

    Lazzari, F.; Raffellini, G.

    1981-07-01

    A solar heated house with long term storage capability, built in Trento, Italy, is described. The one story house was built from modular components and has a total heated volume of 1130 cu m. Flat plate solar collectors with a water-antifreeze medium are located beneath the lawn, and six cylindrical underground tanks holding 130 cu m of water heated by thermal energy from the collectors are situated under the garden. The house walls have an 8 cm cavity filled with 5 cm of formaldehyde foam, yielding a heat transmission (U) of 0.37 W/sq m/deg C. The roof and ceilings are insulated with fiberglass and concrete, producing U-values of 0.46 W/sq m/deg C and 0.57 W/sq m/deg C, respectively. Heat pumps using 6 kW move thermal energy between the house and the tanks. Direct hot water heating occurs in the summer, and direct home heating when the stored water temperature exceeds 32 C. A computer model was developed which traces the annual heat flow and it is shown that the system supplies all heating requirements for the house, with electrical requirements equal to 20 percent of the annual house needs.

  12. Cost Effective System Modeling of Active Micro- Module Solar Tracker

    Directory of Open Access Journals (Sweden)

    Md. Faisal Shuvo

    2014-01-01

    Full Text Available The increasing interests in using renewable energies are coming from solar thermal energy and solar photovoltaic systems to the micro production of electricity. Usually we already have considered the solar tracking topology in large scale applications like power plants and satellite but most of small scale applications don’t have any solar tracker system, mainly because of its high cost and complex circuit design. From that aspect, this paper confab microcontroller based one dimensional active micro-module solar tracking system, in which inexpensive LDR is used to generate reference voltage to operate microcontroller for functioning the tracking system. This system provides a fast response of tracking system to the parameters like change of light intensity as well as temperature variations. This micro-module model of tracking system can be used for small scale applications like portable electronic devices and running vehicles.

  13. Classifications of central solar domestic hot water systems

    Science.gov (United States)

    Guo, J. Y.; Hao, B.; Peng, C.; Wang, S. S.

    2016-08-01

    Currently, there are many means by which to classify solar domestic hot water systems, which are often categorized according to their scope of supply, solar collector positions, and type of heat storage tank. However, the lack of systematic and scientific classification as well as the general disregard of the thermal performance of the auxiliary heat source is important to DHW systems. Thus, the primary focus of this paper is to determine a classification system for solar domestic hot water systems based on the positions of the solar collector and auxiliary heating device, both respectively and in combination. Field-testing data regarding many central solar DHW systems demonstrates that the position of the auxiliary heat source clearly reflects the operational energy consumption. The consumption of collective auxiliary heating hot water system is much higher than individual auxiliary heating hot water system. In addition, costs are significantly reduced by the separation of the heat storage tank and the auxiliary heating device.

  14. Haverhill solar energy project: site data acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-16

    The diagrams and specifications are presented for the instrumentation for the solar industrial process heat system to provide 150 psi steam for polystyrene production. The data acquisition system and specific system sensors are included. (MHR)

  15. Prototype residential solar-energy system-design package

    Science.gov (United States)

    1979-01-01

    Compilation includes documents and drawings for complete solar-heating system. It discussed system installed in residential building at Veterns' Administration Hospital in Togus, Maine. System can be adapted to other buildings without changing design.

  16. Solar PV Energy Conversion System and its Configurations

    Directory of Open Access Journals (Sweden)

    Ahteshamul Haque

    2016-02-01

    Full Text Available Solar PV based energy conversion system is now used in commercial and residential buildings. Advancements in Power electronics leads the researchers to enhance the use of solar application in various configurations. These configurations may be used to utilize the energy optimally. The main objective of this paper is to present an overview of the various configurations of solar PV energy conversion system

  17. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  18. Primitive Liquid Water of the Solar System in an Aqueous Altered Carbonaceous Chondrite

    Science.gov (United States)

    Tsuchiyama, A.; Miyake, A.; Kitayama, A.; Matsuno, J.; Takeuchi, A.; Uesugi, K.; Suzuki, Y.; Nakano, T.; Zolensky, M. E.

    2016-01-01

    Non-destructive 3D observations of the aqueous altered CM chondrite Sutter's Mill using scanning imaging x-ray microscopy (SIXM) showed that some of calcite and enstatite grains contain two-phase inclusion, which is most probably composed of liquid water and bubbles. This water should be primitive water responsible for aqueous alteration in an asteroid in the early solar system.

  19. Deployable Propulsion, Power and Communication Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication. Like their name implies, solar sails 'sail' by reflecting sunlight from a large, lightweight reflective material that resembles the sails of 17th and 18th century ships and modern sloops. Instead of wind, the sail and the ship derive their thrust by reflecting solar photons. Solar sail technology has been discussed in the literature for quite some time, but it is only since 2010 that sails have been proven to work in space. Thin-film photovoltaics are revolutionizing the terrestrial power generation market and have been found to be suitable for medium-term use in the space environment. When mounted on the thin-film substrate, these photovoltaics can be packaged into very small volumes and used to generate significant power for small spacecraft. Finally, embedded antennas are being developed that can be adhered to thin-film substrates to provide lightweight, omnidirectional UHF and X-band coverage, increasing bandwidth or effective communication ranges for small spacecraft. Taken together, they may enable a host of new deep space destinations to be reached by a generation of spacecraft smaller and more capable than ever before.

  20. On the oxygen isotopic composition of the Solar System

    CERN Document Server

    Gaidos, Eric; Huss, Gary R

    2009-01-01

    The 18O/17O ratio of the Solar System is 5.2 while that of the interstellar medium (ISM) and young stellar objects is ~4. This difference cannot be explained by pollution of the Sun's natal molecular cloud by 18O-rich supernova ejecta because (1) the necessary B-star progenitors live longer than the duration of star formation in molecular clouds; (2) the delivery of ejecta gas is too inefficient and the amount of dust in supernova ejecta is too small compared to the required pollution (2% of total mass or ~20% of oxygen); and (3) the predicted amounts of concomitant short-lived radionuclides (SLRs) conflicts with the abundances of 26Al and 41Ca in the early Solar System. Proposals for the introduction of 18O-rich material must also be consistent with any explanation for the origin of the observed slope-one relationship between 17O/16O and 18O/16O in the high-temperature components of primitive meteorites. The difference in 18O/17O ratios can be explained by enrichment of the ISM by the 17O-rich winds of asymp...

  1. Robotic exploration of the solar system

    CERN Document Server

    Ulivi, Paolo

    In Robotic Exploration of the Solar System, Paolo Ulivi and David Harland provide a comprehensive account of the design and managment of deep-space missions, the spacecraft involved - some flown, others not - their instruments, and their scientific results. This third volume in the series covers launches in the period 1997 to 2003 and features: - a chapter entirely devoted to the Cassini-Huygens mission to Saturn; - coverage of planetary missions of the period, including the Deep Space 1 mission and the Stardust and Hayabusa sample returns from comets and asteroids; - extensive coverage of Mars exploration, the failed 1999 missions, Mars Odyssey, Mars Express, and the twin rovers Spirit and Opportunity. The story will continue in Part 4.

  2. Solar system tests of brane world models

    CERN Document Server

    Boehmer, Christian G; Lobo, Francisco S N

    2008-01-01

    The classical tests of general relativity (perihelion precession, deflection of light, and the radar echo delay) are considered for the Dadhich, Maartens, Papadopoulos and Rezania (DMPR) solution of the spherically symmetric static vacuum field equations in brane world models. For this solution the metric in the vacuum exterior to a brane world star is similar to the Reissner-Nordstrom form of classical general relativity, with the role of the charge played by the tidal effects arising from projections of the fifth dimension. The existing observational solar system data on the perihelion shift of Mercury, on the light bending around the Sun (obtained using long-baseline radio interferometry), and ranging to Mars using the Viking lander, constrain the numerical values of the bulk tidal parameter and of the brane tension.

  3. Composition of Solar System Small Bodies

    CERN Document Server

    Vernazza, Pierre

    2016-01-01

    The aim of the chapter is to summarize our understanding of the compositional distribution across the different reservoirs of small bodies (main belt asteroids, giant planet trojans, irregular satellites of the giant planets, TNOs, comets). We then use this information to i) discuss current dynamical models (Nice and Grand Tack models), ii) mention possible caveats in these models if any, and iii) draw a preliminary version of the primordial compositional gradient across the solar system before planetary migrations occured. Note that the composition of both planetary satellites (the regular ones) and that of the transient populations (NEOs, centaurs) is not discussed here. We strictly focus on the composition of the main reservoirs of small bodies. The manuscript's objective is to provide a global and synthetic view of small bodies' compositions rather than a very detailed one, for specific reviews regarding the composition of small bodies, see papers by Burbine (2014) for asteroids, Emery et al. (2015) for J...

  4. Solar system tests of brane world models

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Christian G [Department of Mathematics, University College London, Gower Street, London WC1E 6BT (United Kingdom); Harko, Tiberiu [Department of Physics and Center for Theoretical and Computational Physics, University of Hong Kong, Pok Fu Lam Road (Hong Kong); Lobo, Francisco S N [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 2EG (United Kingdom)], E-mail: c.boehmer@ucl.ac.uk, E-mail: harko@hkucc.hku.hk, E-mail: francisco.lobo@port.ac.uk

    2008-02-21

    The classical tests of general relativity (perihelion precession, deflection of light and the radar echo delay) are considered for the Dadhich, Maartens, Papadopoulos and Rezania (DMPR) solution of the spherically symmetric static vacuum field equations in brane world models. For this solution the metric in the vacuum exterior to a brane world star is similar to the Reissner-Nordstroem form of classical general relativity, with the role of the charge played by the tidal effects arising from projections of the fifth dimension. The existing observational solar system data on the perihelion shift of Mercury, on the light bending around the Sun (obtained using long-baseline radio interferometry), and ranging to Mars using the Viking lander, constrain the numerical values of the bulk tidal parameter and of the brane tension.

  5. Solar System tests in f (T ) gravity

    Science.gov (United States)

    Farrugia, Gabriel; Said, Jackson Levi; Ruggiero, Matteo Luca

    2016-05-01

    We investigate the four solar system tests of gravity—perihelion precession, light bending, Shapiro time delay, gravitational redshift—in f (T ) gravity. In particular, we investigate the solution derived by Ruggiero and Radicella53 , Phys. Rev. D 91, 104014 (2015). for a nondiagonal vierbein field for a polynomial f (T )=T +α Tn , where α is a constant and |n |≠1 . In this paper, we derive the solutions for each test, in which Weinberg's, Bodenner and Will's, Cattani et al., and Rindler and Ishak's methods are applied55 , Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972); 56 Am. J. Phys. 71 (2003); 57 Phys. Rev. D 87, 047503 (2013); 58 Phys. Rev. D 76, 043006 (2007). We set a constraint on α for n =2 , 3 by using data available from literature.

  6. Methane clathrates in the Solar System

    CERN Document Server

    Mousis, Olivier; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-01-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form in the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined.

  7. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  8. Easy Solar Photovoltaic Panel as Renewable Energy System Device

    Directory of Open Access Journals (Sweden)

    Kalaivani D/O Ramachandran

    2016-04-01

    Full Text Available Solar power is energy from the sun that is converted into electrical energy. Solar energy is the abundant renewable energy source available, and the Malaysia has some of the richest solar resources in the world. Electric energy is becoming one of the source energy which is required daily. However, electric power outages always happened. Easy Solar Photovoltaic Panel as Renewable Energy System Device isimplemented as an electric power source by using solar as a help and support. It is used by providing charge through solar panel from sunlight. Then, the charge is flowing through the solar controller to charges battery that will flow to the load. Since energy that obtained from the battery are shaped in direct current (DC, then the inverter used to change direct current (DC to alternating current (AC for purpose of using device or application that using alternating current (AC to operate.

  9. Spectral light management for solar energy conversion systems

    Directory of Open Access Journals (Sweden)

    Stanley Cameron

    2016-06-01

    Full Text Available Due to the inherent broadband nature of the solar radiation, combined with the narrow spectral sensitivity range of direct solar to electricity devices, there is a massive opportunity to manipulate the solar spectrum to increase the functionality and efficiency of solar energy conversion devices. Spectral splitting or manipulation facilitates the efficient combination of both high-temperature solar thermal systems, which can absorb over the entire solar spectrum to create heat, and photovoltaic cells, which only convert a range of wavelengths to electricity. It has only recently been possible, with the development of nanofabrication techniques, to integrate micro- and nano-photonic structures as spectrum splitters/manipulators into solar energy conversion devices. In this paper, we summarize the recent developments in beam splitting techniques, and highlight some relevant applications including combined PV-thermal collectors and efficient algae production, and suggest paths for future development in this field.

  10. Spectral light management for solar energy conversion systems

    Science.gov (United States)

    Stanley, Cameron; Mojiri, Ahmad; Rosengarten, Gary

    2016-06-01

    Due to the inherent broadband nature of the solar radiation, combined with the narrow spectral sensitivity range of direct solar to electricity devices, there is a massive opportunity to manipulate the solar spectrum to increase the functionality and efficiency of solar energy conversion devices. Spectral splitting or manipulation facilitates the efficient combination of both high-temperature solar thermal systems, which can absorb over the entire solar spectrum to create heat, and photovoltaic cells, which only convert a range of wavelengths to electricity. It has only recently been possible, with the development of nanofabrication techniques, to integrate micro- and nano-photonic structures as spectrum splitters/manipulators into solar energy conversion devices. In this paper, we summarize the recent developments in beam splitting techniques, and highlight some relevant applications including combined PV-thermal collectors and efficient algae production, and suggest paths for future development in this field.

  11. A Comparison Of A Solar Power Satellite Concept To A Concentrating Solar Power System

    Science.gov (United States)

    Smitherman, David V.

    2013-01-01

    A comparison is made of a Solar Power Satellite concept in geostationary Earth orbit to a Concentrating Solar Power system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the Solar Power Satellite concept has a higher end-to-end efficiency, that the combined space and ground collector infrastructure is still about the same size as a comparable Concentrating Solar Power system on the ground.

  12. The Gaia Investigation of the Solar System

    Science.gov (United States)

    Delbo, Marco; Tanga, Paolo; Mignard, Francois; Cellino, Alberto; Hestroffer, Daniel

    2015-08-01

    The space mission Gaia of the European Space Agency (ESA) has begun its scientific whole-sky survey of all astrophysical sources with Vspectroscopy of the observed sources, including solar system small bodies. Preliminary results show a good quality of the data, in general, in line with the expected pre-flight specifications. These data will consist a mine of information for a remote-sensing exploration of the small worlds of our Solar System. Indeed, ~250,000 asteroids will be observed by Gaia throughout its 5-years-long mission. After an update about the status of the mission and the on-going data analysis, including some preliminary results, we are going to present the plans for the data releases, the first foreseen at the end of 2016, and the general data treatment.We will show how Gaia spectroscopy will allow up to map the composition of about 100,000 asteroids throughout the Main Belt, with high signal to noise ratio. Given its advantage position outside the Earth's atmosphere, the blue part of the spectrum (roughly below 0.5 micron) will be observed for an unprecedented number of asteroids.Additionally, precise photometry and astrometry will also be important to reveal the physical nature of these small bodies. In particular, it is estimated that three-dimensional shapes, rotation, period and pole orientation will be derived for 10,000 asteroids. The masses of about 150 of the largest asteroids, will be determined from measurements of the orbital gravitational perturbations that these bodies will exert on small asteroids during mutual close approaches.Moreover, the combination of Gaia data (delivering masses and shapes) with infrared radiometric observations, e.g. from the NASA WISE mission (informing us about the size of the bodies), will allow precise asteroid bulk densities to be determined. The bulk density and the internal structure are among the most important characteristics of asteroids, that are currently some of the least constrained.

  13. Methane clathrates in the solar system.

    Science.gov (United States)

    Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-04-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate

  14. CHAOTIC DISINTEGRATION OF THE INNER SOLAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Morbidelli, Alessandro [Department Lagrange, Observatoire de la Côte d' Azur, F-06304 Nice (France); Holman, Mathew J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-02-01

    On timescales that greatly exceed an orbital period, typical planetary orbits evolve in a stochastic yet stable fashion. On even longer timescales, however, planetary orbits can spontaneously transition from bounded to unbound chaotic states. Large-scale instabilities associated with such behavior appear to play a dominant role in shaping the architectures of planetary systems, including our own. Here we show how such transitions are possible, focusing on the specific case of the long-term evolution of Mercury. We develop a simple analytical model for Mercury's dynamics and elucidate the origins of its short-term stochastic behavior as well as of its sudden progression to unbounded chaos. Our model allows us to estimate the timescale on which this transition is likely to be triggered, i.e., the dynamical lifetime of the solar system as we know it. The formulated theory is consistent with the results of numerical simulations and is broadly applicable to extrasolar planetary systems dominated by secular interactions. These results constitute a significant advancement in our understanding of the processes responsible for sculpting of the dynamical structures of generic planetary systems.

  15. Solar energy grid integration systems "SEGIS"

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-10-01

    The inevitable transformation of the electrical grid to a more distributed generation configuration requires solar system capabilities well beyond simple net-metered, grid-connected approaches. Time-of-use and peak-demand rate structures will require more sophisticated systems designs that integrate energy management and/or energy storage into the system architecture. Controlling power flow into and from the utility grid will be required to ensure grid reliability and power quality. Alternative protection strategies will also be required to accommodate large numbers of distributed energy sources. This document provides an overview of the R&D needs and describes some pathways to promising solutions. The solutions will, in many cases, require R&D of new components, innovative inverter/controllers, energy management systems, innovative energy storage and a suite of advanced control algorithms, technical methodologies, protocols and the associated communications. It is expected that these solutions will help to push the “advanced integrated system” and “smart grid” evolutionary processes forward in a faster but focused manner.

  16. Wind loads on solar energy systems, mounted on flat roofs

    NARCIS (Netherlands)

    Geurts, C.P.W.; Bentum, C.A. van; Blackmore, P.

    2005-01-01

    Wind loads on solar energy systems are not covered by current wind loading standards. This paper describes results of a parametric study into the wind loads on solar energy systems, which are placed on flat roofs. Wind tunnel measurements have been carried out on a number of configurations. The resu

  17. Wind loads on solar energy systems, mounted on flat roofs

    NARCIS (Netherlands)

    Geurts, C.P.W.; Bentum, C.A. van; Blackmore, P.

    2005-01-01

    Wind loads on solar energy systems are not covered by current wind loading standards. This paper describes results of a parametric study into the wind loads on solar energy systems, which are placed on flat roofs. Wind tunnel measurements have been carried out on a number of configurations. The resu

  18. Why Are So Many Things in the Solar System Round?

    Science.gov (United States)

    Heilig, Steven J.

    2010-01-01

    Several years ago a student asked why so many things in the solar system were round. He noted that many objects in the solar system, although not all, are round. The standard answer, which he knew, is that the mutual gravitational attraction of the molecules pulls them into the shape that gets them as close to each other as possible: a sphere.…

  19. Space Moves: Adding Movement to Solar System Lessons

    Science.gov (United States)

    Jenkins, Deborah Bainer; Heidorn, Brent

    2009-01-01

    Earth and space science figure prominently in the National Science Education Standards for levels 5-8 (NRC 1996). The Earth in the Solar System standard focuses on students' ability to understand (1) the composition of the solar system (Earth, Moon, Sun, planets with their moons, and smaller objects like asteroids and comets) and (2) that…

  20. Our Solar System at a Glance. Information Summaries.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The United States has explored the solar system with automated spacecraft and human-crewed expeditions that have produced a quantum leap in our knowledge and understanding of the solar system. Through the electronic sight and other "senses" of our automated spacecraft, color and complexion have been given to worlds that for centuries…

  1. Space Moves: Adding Movement to Solar System Lessons

    Science.gov (United States)

    Jenkins, Deborah Bainer; Heidorn, Brent

    2009-01-01

    Earth and space science figure prominently in the National Science Education Standards for levels 5-8 (NRC 1996). The Earth in the Solar System standard focuses on students' ability to understand (1) the composition of the solar system (Earth, Moon, Sun, planets with their moons, and smaller objects like asteroids and comets) and (2) that…

  2. Why Are So Many Things in the Solar System Round?

    Science.gov (United States)

    Heilig, Steven J.

    2010-01-01

    Several years ago a student asked why so many things in the solar system were round. He noted that many objects in the solar system, although not all, are round. The standard answer, which he knew, is that the mutual gravitational attraction of the molecules pulls them into the shape that gets them as close to each other as possible: a sphere.…

  3. Astronomical Resources. The Solar System: An Introductory Bibliography.

    Science.gov (United States)

    Fraknoi, Andrew

    This reference surveys resources of astronomical information including books and articles about the solar system, Mercury, Venus, Earth, the Moon, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto, Asteroids, Comets, and Meteors. Also included is a list of seven available slide sets about the solar system. (CW)

  4. Solar/electric heating systems for the future energy system

    DEFF Research Database (Denmark)

    Furbo, Simon; Dannemand, Mark; Perers, Bengt

    The project “Solar/electric heating systems in the future energy system” was carried out in the period 2008‐2013. The project partners were DTU Byg, DTU Informatics (now DTU Compute), DMI, ENFOR A/S and COWI A/S. The companies Ajva ApS, Ohmatex ApS and Innogie ApS worked together with the project...... partners in two connected projects in order to develop solar/electric heating systems for laboratory tests. The project was financed by the Danish Agency for Science, Technology and Innovation under the Danish Council for Strategic Research in the program Sustainable Energy and Environment. The DSF number...... of the project is 2104‐07‐0021/09‐063201/DSF. This report is the final report of the project. The aim of the project is to elucidate how individual heating units for single family houses are best designed in order to fit into the future energy system. The units are based on solar energy, electrical heating...

  5. Does crater 'saturation equilibrium' occur in the solar system?

    Science.gov (United States)

    Hartmann, W. K.

    1984-01-01

    The similarity in crater densities on the most heavily cratered surfaces throughout the solar system is statistically examined and discussed in terms of a 'saturation equilibrium' being achieved by cratering processes. This hypothesis accounts for (1) the similarity in maximum relative crater density, below certain theoretically predicted values, on all heavily cratered surfaces; (2) a levelling off at this same relative density among 100-m scale craters in populations on lunar maria and other sparsely cratered lunar surfaces; and (3) the approximate uniformity of maximum relative densities on Saturn satellites. The lunar frontside upland crater population, sometimes described as a well-preserved production function useful for interpreting other planetary surfaces, is found not to be a production function. It was modified by intercrater plains at least partly formed by early upland basaltic lava flooding.

  6. Mesoscale Modeling of Impact Compaction of Primitive Solar System Solids

    CERN Document Server

    Davison, Thomas M; Bland, Philip A

    2016-01-01

    We have developed a method for simulating the mesoscale compaction of early solar system solids in low velocity impact events, using the iSALE shock physics code. Chondrules are represented by nonporous disks, placed within a porous matrix. By simulating impacts into bimodal mixtures over a wide range of parameter space (including the chondrule-to-matrix ratio, the matrix porosity and composition and the impact velocity), we have shown how each of these parameters influences the shock processing of heterogeneous materials. The temperature after shock processing shows a strong dichotomy: matrix temperatures are elevated much higher than the chondrules, which remain largely cold. Chondrules can protect some matrix from shock compaction, with shadow regions in the lee side of chondrules exhibiting higher porosity that elsewhere in the matrix. Using the results from this mesoscale modelling, we show how the $\\varepsilon-\\alpha$ porous compaction model parameters depend on initial bulk porosity. We also show that ...

  7. Dust Hazard Management in the Outer Solar System

    Science.gov (United States)

    Seal, David A.

    2012-01-01

    Most robotic missions to the outer solar system must grapple with the hazards posed by the dusty rings of the gas giants. Early assessments of these hazards led simply to ring avoidance due to insufficient data and high uncertainties on the dust population present in such rings. Recent approaches, principal among them the Cassini dust hazard management strategy, provide useful results from detailed modeling of spacecraft vulnerabilities and dust hazard regions, which along with the range of mission trajectories are used to to assess the risks posed by each passage through a zone of potential hazard. This paper shows the general approach used to implement the analysis for Cassini, with recommendations for future outer planet missions.

  8. The Main Asteroid Belt: The Crossroads of the Solar System

    Science.gov (United States)

    Michel, Patrick

    2015-08-01

    Orbiting the Sun between Mars and Jupiter, main belt asteroids are leftover planetary building blocks that never accreted enough material to become planets. They are therefore keys to understanding how the Solar System formed and evolved. They may also provide clues to the origin of life, as similar bodies may have delivered organics and water to the early Earth.Strong associations between asteroids and meteorites emerged thanks to multi-technique observations, modeling, in situ and sample return analyses. Spacecraft images revolutionized our knowledge of these small worlds. Asteroids are stunning in their diversity in terms of physical properties. Their gravity varies by more orders of magnitude than its variation among the terrestrial planets, including the Moon. Each rendezvous with an asteroid thus turned our geological understanding on its head as each asteroid is affected in different ways by a variety of processes such as landslides, faulting, and impact cratering. Composition also varies, from ice-rich to lunar-like to chondritic.Nearly every asteroid we see today, whether of primitive or evolved compositions, is the product of a complex history involving accretion and one or more episodes of catastrophic disruption that sometimes resulted in families of smaller asteroids that have distinct and indicative petrogenic relationships. These families provide the best data to study the impact disruption process at scales far larger than those accessible in laboratory. Tens, perhaps hundreds, of early asteroids grew large enough to thermally differentiate. Their traces are scattered pieces of their metal-rich cores and, more rarely, their mantles and crusts.Asteroids represent stages on the rocky road to planet formation. They have great stories to tell about the formation and evolution of our Solar System as well as other planetary systems: asteroid belts seem common around Sun-like stars. We will review our current knowledge on their properties, their link to

  9. Origins of Water in the Solar System Leading to Habitable Worlds

    Science.gov (United States)

    Meech, Karen J.

    2015-08-01

    Life on Earth depends on an aqueous biochemistry, and water is a key component of habitability on Earth and for likely other habitable environments in the solar system. While water is ubiquitous in the interstellar medium, and plays a key role in protoplanetary disk chemistry, the inner solar system is relatively dry. We now have evidence for potentially thousands of extrasolar planets, dozens of which may be located in their host star’s habitable zones. Understanding how planets in the habitable zone accrete their water, is key to understanding the likelihood for habitability. Given that many disk models show that Earth formed inside the water-ice snow line of our solar system, understanding how the inner solar system received its water is important for understanding the potential for other planetary systems to host habitable worlds. Boundaries for the timing of the water delivery are constrained by cosmochemistry and geochemistry. Possible scenarios for the delivery of water to the inner solar system include adsorption on dust from protoplanetary disk gas, chemical reactions on the early earth, and delivery from planetesimals forming outside the water-ice snow line. This talk will set the stage for understanding the isotopic and geochemical markers along with the dynamical delivery mechanisms that will help uncover the origins of Earths water. This introduction will provide an overview for understanding the distribution of water in the solar system, in particular for the inner solar system and terrestrial planets—and the details will be developed in the subsequent talks. Additionally information will be presented regarding new inner solar system reservoirs of water that can shed light on origins (the main belt comets), and new research about water in the Earth.

  10. Field performance of photovoltaic solar water heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Fanney, A.H.; Dougherty, B.P.; Kramp, K.P. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Building Environment Div.

    1997-11-01

    Energy consumed for water heating accounts for approximately 17.9 EJ of the energy consumed by residential and commercial buildings. Although there are over 90 million water heaters currently in use within the United States, durability and installation issues as well as initial cost have limited the sales of solar water heaters to less than 1 million units. Durability issues have included freeze and fluid leakage problems, failure of pumps and their associated controllers, the loss of heat transfer fluids under stagnation conditions, and heat exchanger fouling. The installation of solar water heating systems has often proved difficult, requiring roof penetrations for the piping that transports fluid to and from the solar collectors. Fanney and Dougherty have recently proposed and patented a solar water heating system that eliminates the durability and installation problems associated with current solar water heating systems. The system employs photovoltaic modules to generate electrical energy which is dissipated in multiple electric heating elements. A microprocessor controller is used to match the electrical resistance of the load to the operating characteristics of the photovoltaic modules. Although currently more expensive than existing solar hot water systems, photovoltaic solar water heaters offer the promise of being less expensive than solar thermal systems within the next decade. To date, photovoltaic solar water heating systems have been installed at the National Institute of Standards and Technology in Gaithersburg, MD and the Florida Solar Energy Center in Cocoa, FL. This paper will review the technology employed, describe the two photovoltaic solar water heating systems, and present measured performance data.

  11. Daniel K. Inouye Solar Telescope system safety

    Science.gov (United States)

    Hubbard, Robert P.; Bulau, Scott E.; Shimko, Steve; Williams, Timothy R.

    2014-08-01

    System safety for the Daniel K. Inouye Solar Telescope (DKIST) is the joint responsibility of a Maui-based safety team and the Tucson-based systems engineering group. The DKIST project is committed to the philosophy of "Safety by Design". To that end the project has implemented an aggressive hazard analysis, risk assessment, and mitigation system. It was initially based on MIL-STD-882D, but has since been augmented in a way that lends itself to direct application to the design of our Global Interlock System (GIS). This was accomplished by adopting the American National Standard for Industrial Robots and Robot Systems (ANSI/RIA R15.06) for all identified hazards that involve potential injury to personnel. In this paper we describe the details of our augmented hazard analysis system and its use by the project. Since most of the major hardware for the DKIST (e.g., the enclosure, and telescope mount assembly) has been designed and is being constructed by external contractors, the DKIST project has required our contractors to perform a uniform hazard analysis of their designs using our methods. This paper also describes the review and follow-up process implemented by the project that is applied to both internal and external subsystem designs. Our own weekly hazard analysis team meetings have now largely turned to system-level hazards and hazards related to specific tasks that will be encountered during integration, test, and commissioning and maintenance operations. Finally we discuss a few lessons learned, describing things we might do differently if we were starting over today.

  12. Cloud Monitoring for Solar Plants with Support Vector Machine Based Fault Detection System

    Directory of Open Access Journals (Sweden)

    Hong-Chan Chang

    2014-01-01

    Full Text Available This study endeavors to develop a cloud monitoring system for solar plants. This system incorporates numerous subsystems, such as a geographic information system, an instantaneous power-consumption information system, a reporting system, and a failure diagnosis system. Visual C# was integrated with ASP.NET and SQL technologies for the proposed monitoring system. A user interface for database management system was developed to enable users to access solar power information and management systems. In addition, by using peer-to-peer (P2P streaming technology and audio/video encoding/decoding technology, real-time video data can be transmitted to the client end, providing instantaneous and direct information. Regarding smart failure diagnosis, the proposed system employs the support vector machine (SVM theory to train failure mathematical models. The solar power data are provided to the SVM for analysis in order to determine the failure types and subsequently eliminate failures at an early stage. The cloud energy-management platform developed in this study not only enhances the management and maintenance efficiency of solar power plants but also increases the market competitiveness of solar power generation and renewable energy.

  13. Methods and systems for concentrated solar power

    Science.gov (United States)

    Ma, Zhiwen

    2016-05-24

    Embodiments described herein relate to a method of producing energy from concentrated solar flux. The method includes dropping granular solid particles through a solar flux receiver configured to transfer energy from concentrated solar flux incident on the solar flux receiver to the granular solid particles as heat. The method also includes fluidizing the granular solid particles from the solar flux receiver to produce a gas-solid fluid. The gas-solid fluid is passed through a heat exchanger to transfer heat from the solid particles in the gas-solid fluid to a working fluid. The granular solid particles are extracted from the gas-solid fluid such that the granular solid particles can be dropped through the solar flux receiver again.

  14. Design package for solar domestic hot water system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  15. Design package for solar domestic hot water system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  16. New Thematic Solar System Exploration Products for Scientists and Educators

    Science.gov (United States)

    Lowes, Lesile; Wessen, Alice; Davis, Phil; Lindstrom, Marilyn

    2004-01-01

    The next several years are an exciting time in the exploration of the solar system. NASA and its international partners have a veritable armada of spaceships heading out to the far reaches of the solar system. We'll send the first spacecraft beyond our solar system into interstellar space. We'll launch our first mission to Pluto and the Kuiper Belt and just our second to Mercury (the first in 30 years). We'll continue our intensive exploration of Mars and begin our detailed study of Saturn and its moons. We'll visit asteroids and comets and bring home pieces of the Sun and a comet. This is truly an unprecedented period of exploration and discovery! To facilitate access to information and to provide the thematic context for these missions NASA s Solar System Exploration Program and Solar System Exploration Education Forum have developed several products.

  17. New Thematic Solar System Exploration Products for Scientists and Educators

    Science.gov (United States)

    Lowes, Lesile; Wessen, Alice; Davis, Phil; Lindstrom, Marilyn

    2004-01-01

    The next several years are an exciting time in the exploration of the solar system. NASA and its international partners have a veritable armada of spaceships heading out to the far reaches of the solar system. We'll send the first spacecraft beyond our solar system into interstellar space. We'll launch our first mission to Pluto and the Kuiper Belt and just our second to Mercury (the first in 30 years). We'll continue our intensive exploration of Mars and begin our detailed study of Saturn and its moons. We'll visit asteroids and comets and bring home pieces of the Sun and a comet. This is truly an unprecedented period of exploration and discovery! To facilitate access to information and to provide the thematic context for these missions NASA s Solar System Exploration Program and Solar System Exploration Education Forum have developed several products.

  18. Solar Wind Interaction with the Martian Upper Atmosphere at Early Mars/Extreme Solar Conditions

    Science.gov (United States)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Combi, M. R.

    2014-12-01

    The investigation of ion escape fluxes from Mars, resulting from the solar wind interaction with its upper atmosphere/ionosphere, is important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0 ~ 300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100 km ~ 5 RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model output fields into the 3-D BATS-R-US Mars multi-fluid MHD (MF-MHD) model (100 km ~ 20 RM) that can simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid MHD model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres. This feature allows us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model output fields are used as the input for the multi-fluid MHD model and the M-GITM is used as input into the AMPS exosphere model. In this study, we present M-GITM, AMPS, and MF-MHD calculations (1-way coupled) for 2.5 GYA conditions and/or extreme solar conditions for present day Mars (high solar wind velocities, high solar wind dynamic pressure, and high solar irradiance conditions, etc.). Present day extreme conditions may result in MF-MHD outputs that are similar to 2.5 GYA cases. The crustal field orientations are also considered in this study. By comparing estimates of past ion escape rates with the current ion loss rates to be returned by the MAVEN spacecraft (2013-2016), we can better constrain the

  19. Solar thermal repowering systems integration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.

    1979-08-01

    This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.

  20. The Redox Flow System for solar photovoltaic energy storage

    Science.gov (United States)

    Odonnell, P.; Gahn, R. F.; Pfeiffer, W.

    1976-01-01

    The interfacing of a Solar Photovoltaic System and a Redox Flow System for storage was workable. The Redox Flow System, which utilizes the oxidation-reduction capability of two redox couples, in this case iron and titanium, for its storage capacity, gave a relatively constant output regardless of solar activity so that a load could be run continually day and night utilizing the sun's energy. One portion of the system was connected to a bank of solar cells to electrochemically charge the solutions, while a separate part of the system was used to electrochemically discharge the stored energy.