WorldWideScience

Sample records for early quench development

  1. Minimum Quench Energy and Early Quench Development in NbTi Superconducting Strands

    CERN Document Server

    Breschi, M; Boselli, M; Bottura, Luca; Devred, Arnaud; Ribani, P L; Trillaud, F

    2007-01-01

    The stability of superconducting wires is a crucial task in the design of safe and reliable superconducting magnets. These magnets are prone to premature quenches due to local releases of energy. In order to simulate these energy disturbances, various heater technologies have been developed, such as coated tips, graphite pastes, and inductive coils. The experiments studied in the present work have been performed using a single-mode diode laser with an optical fiber to illuminate the superconducting strand surface. Minimum quench energies and voltage traces at different magnetic flux densities and transport currents have been measured on an LHC-type, Cu/NbTi wire bathed in pool boiling helium I. This paper deals with the numerical analysis of the experimental data. In particular, a coupled electromagnetic and thermal model has been developed to study quench development and propagation, focusing on the influence of heat exchange with liquid helium.

  2. Early structural development in melt-quenched polymer PTT from atomistic molecular dynamic simulations

    Science.gov (United States)

    Hsieh, Min-Kang; Lin, Shiang-Tai

    2009-12-01

    Molecular dynamics simulations are performed to study the initial structural development in poly(trimethylene terephthalate) (PTT) when quenched below its melting point. The development of local ordering has been observed in our simulations. The thermal properties, such as the glass transition temperature (Tg) and the melting temperature (Tm), determined from our simulations are in reasonable agreement with experimental values. It is found that, between these two temperatures, the number of local structures quickly increases during the thermal relaxation period soon after the system is quenched and starts to fluctuate afterwards. The formation and development of local structures is found to be driven mainly by the torsional and van der Waals forces and follows the classical nucleation-growth mechanism. The variation of local structures' fraction with temperature exhibits a maximum between Tg and Tm, resembling the temperature dependence of the crystallization rate for most polymers. In addition, the backbone torsion distribution for segments within the local structures preferentially reorganizes to the trans-gauche-gauche-trans (t-g-g-t) conformation, the same as that in the crystalline state. As a consequence, we believe that such local structural ordering could be the baby nuclei that have been suggested to form in the early stage of polymer crystallization.

  3. MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED

    International Nuclear Information System (INIS)

    Martig, Marie; Bournaud, Frederic; Teyssier, Romain; Dekel, Avishai

    2009-01-01

    We point out a natural mechanism for quenching of star formation in early-type galaxies (ETGs). It automatically links the color of a galaxy with its morphology and does not require gas consumption, removal or termination of gas supply. Given that star formation takes place in gravitationally unstable gas disks, it can be quenched when a disk becomes stable against fragmentation to bound clumps. This can result from the growth of a stellar spheroid, for instance by mergers. We present the concept of morphological quenching (MQ) using standard disk instability analysis, and demonstrate its natural occurrence in a cosmological simulation using an efficient zoom-in technique. We show that the transition from a stellar disk to a spheroid can be sufficient to stabilize the gas disk, quench star formation, and turn an ETG red and dead while gas accretion continues. The turbulence necessary for disk stability can be stirred up by sheared perturbations within the disk in the absence of bound star-forming clumps. While other quenching mechanisms, such as gas stripping, active galactic nucleus feedback, virial shock heating, and gravitational heating are limited to massive halos, MQ can explain the appearance of red ETGs also in halos less massive than ∼10 12 M sun . The dense gas disks observed in some of today's red ellipticals may be the relics of this mechanism, whereas red galaxies with quenched gas disks could be more frequent at high redshift.

  4. Thermal-hydraulic behaviour of the ITER TF system during a quench development

    International Nuclear Information System (INIS)

    Nicollet, S.; Lacroix, B.; Bessette, D.; Copetti, R.; Duchateau, J.L.; Coatanea-Gouachet, M.; Rodriguez-Mateos, F.

    2011-01-01

    In order to ensure the safety of the ITER TF magnets, a primary quench detection system has been foreseen, based on voltage detection. In addition, a secondary quench detection could rely on signals of thermo-hydraulic nature. As a matter of fact, the development of a quench in a CICC leads to significant variations of pressure and mass flow at the quenched pancake extremities. Analyses of the quench development have thus been performed using the coupled GANDALF and FLOWER codes. This tool allows to simulate the thermo-hydraulic behaviour of one CICC with a model of the external cryogenic circuit. The study has focused on the first seconds of the quench development, supposing that the quench has not been detected earlier by the primary detector. It is shown that signals regarding pressure, mass flow and temperature reach significant high values especially in the connecting feeder associated with the helium inlet. More detailed studies will be needed to select a secondary detector in this region.

  5. Quench propagation and quench detection in the TF system of JT-60SA

    International Nuclear Information System (INIS)

    Lacroix, Benoit; Duchateau, Jean-Luc; Meuris, Chantal; Ciazynski, Daniel; Nicollet, Sylvie; Zani, Louis; Polli, Gian-Mario

    2013-01-01

    Highlights: • The JT-60SA primary quench detection system will be based on voltage measurements. • The early quench propagation was studied in the JT-60SA TF conductor. • The impact of the conductor jacket on the hot spot criterion was quantified. • The detection parameters were investigated for different quench initiations. -- Abstract: In the framework of the JT-60SA project, France and Italy will provide to JAEA 18 Toroidal Field (TF) coils including NbTi cable-in-conduit conductors. During the tokamak operation, these coils could experience a quench, an incidental event corresponding to the irreversible transition from superconducting state to normal resistive state. Starting from a localized disturbance, the normal zone propagates along the conductor and dissipates a large energy due to Joule heating, which can cause irreversible damages. The detection has to be fast enough (a few seconds) to trigger the current discharge, so as to dump the stored magnetic energy into an external resistor. The JT-60SA primary quench detection system will be based on voltage measurements, which are the most rapid technology. The features of the detection system must be adjusted so as to detect the most probable quenches, while avoiding inopportune fast safety discharges. This requires a reliable simulation of the early quench propagation, performed in this study with the Gandalf code. The conductor temperature reached during the current discharge must be kept under a maximal value, according to the hot spot criterion. In the present study, a hot spot criterion temperature of 150 K was taken into account and the role of each conductor component (strands, helium and conduit) was analyzed. The detection parameters were then investigated for different hypotheses regarding the quench initiation

  6. The LHC quench protection system

    CERN Multimedia

    2009-01-01

    The new quench protection system (QPS) has the crucial roles of providing an early warning for any part of the superconducting coils and busbars that develop high resistance, as well as triggering the switch-off of the machine. Over 2000 new detectors will be installed around the LHC to make sure every busbar segment between magnets is monitored and protected. One of the major consolidation activities for the LHC is the addition of two new detectors to the quench protection system. A magnet quench occurs when part of the superconducting cable becomes normally-conducting. When the protection system detects an increased resistance the huge amount of energy stored in the magnet chains is safely extracted and ‘dumped’ into specially designed resistors. In the case of the main dipole chain, the stored energy in a single LHC sector is roughly the same as the kinetic energy of a passenger jet at cruising speed. The first new detector is designed to monitor the superconducting...

  7. Development of quench protection system for HTS coils by active power method

    International Nuclear Information System (INIS)

    Nanato, N.; Tsumiyama, Y.; Kim, S.B.; Murase, S.; Seong, K.-C.; Kim, H.-J.

    2007-01-01

    Recently, HTS coils have been developed for electric power apparatuses. In superconducting coils, local and excessive joule heating may give damage to the superconducting windings when a quench occurs and therefore it is essential that the quench is detected quickly and precisely so that the coils can be safely discharged. Resistive voltage measurement method is universally used for the quench detection, however, it is vulnerable to an electromagnetic noise which causes insufficient quench detection and at least needs a central voltage tap in windings. In a large superconducting coil, a lead-wire from the central voltage tap may cause a short-circuit when high voltage will be applied. In this paper, we present a quench protection system based on the active power method which detects a quench by measuring the instantaneous active power generated in a superconducting coil. The protection system based on this method is very strong against to the noise and no more needs a central voltage tap. The performance of system developed by us is confirmed by using test coil wound with Bi-2223 HTS tapes

  8. Characterizing Water Quenching Systems with a Quench Probe

    Science.gov (United States)

    Ferguson, B. Lynn; Li, Zhichao; Freborg, Andrew M.

    2014-12-01

    Quench probes have been used effectively to characterize the quality of quenchants for many years. For this purpose, a variety of commercial probes, as well as the necessary data acquisition system for determining the time-temperature data for a set of standardized test conditions, are available for purchase. The type of information obtained from such probes provides a good basis for comparing media, characterizing general cooling capabilities, and checking media condition over time. However, these data do not adequately characterize the actual production quenching process in terms of heat transfer behavior in many cases, especially when high temperature gradients are present. Faced with the need to characterize water quenching practices, including conventional and intensive practices, a quench probe was developed. This paper describes that probe, the data collection system, the data gathered for both intensive quenching and conventional water quenching, and the heat transfer coefficients determined for these processes. Process sensitivities are investigated and highlight some intricacies of quenching.

  9. Quench limits

    International Nuclear Information System (INIS)

    Sapinski, M.

    2012-01-01

    With thirteen beam induced quenches and numerous Machine Development tests, the current knowledge of LHC magnets quench limits still contains a lot of unknowns. Various approaches to determine the quench limits are reviewed and results of the tests are presented. Attempt to reconstruct a coherent picture emerging from these results is taken. The available methods of computation of the quench levels are presented together with dedicated particle shower simulations which are necessary to understand the tests. The future experiments, needed to reach better understanding of quench limits as well as limits for the machine operation are investigated. The possible strategies to set BLM (Beam Loss Monitor) thresholds are discussed. (author)

  10. Porous debris behavior modeling of QUENCH-02, QUENCH-03 and QUENCH-09 experiments

    International Nuclear Information System (INIS)

    Kisselev, A.E.; Kobelev, G.V.; Strizhov, V.F.; Vasiliev, A.D.

    2006-01-01

    The heat-up, melting, relocation, hydrogen generation phenomena, relevant for high-temperature stages both in a reactor case and small-scale integral tests like QUENCH, are governed in particular by heat and mass transfer in porous debris and molten pools which are formed in the core region. Porous debris formation and behavior in QUENCH experiments (QUENCH-02, QUENCH-03, QUENCH-09) plays a considerable role and its adequate modeling is important for thermal analysis. In particular, the analysis of QUENCH experiments shows that the major hydrogen release takes place in debris and melt regions formed in the upper part of the fuel assembly. The porous debris model was implemented in the Russian best estimate numerical code RATEG/SVECHA/HEFEST developed for modelling thermal hydraulics and severe accident phenomena in a reactor. The original approach for debris evolution is developed in the model from classical principles using a set of parameters including debris porosity; average particle diameter; temperatures and mass fractions of solid, liquid and gas phases; specific interface areas between different phases; effective thermal conductivity of each phase, including radiative heat conductivity; mass and energy fluxes through the interfaces. The debris model is based on the system of continuity, momentum and energy conservation equations, which consider the dynamics of volume-averaged velocities and temperatures of fluid, solid and gaseous phases of porous debris. The model is used for calculation of QUENCH experiments. The results obtained by the model are compared to experimental data concerning different aspects of thermal behavior: thermal hydraulics of porous debris, radiative heat transfer in a porous medium, the generalized melting and refreezing behavior of materials, hydrogen production. (author)

  11. Increasing the Useful Life of Quench Reliefs with Inconel Bellows

    Energy Technology Data Exchange (ETDEWEB)

    Soyars, W. M. [Fermilab

    1999-01-01

    Reliable quench relief valves are an important part of superconducting magnet systems. Fermilab developed bellows-actuated cryogenic quench reliefs which have been in use since the early l 980's. The original design uses a stainless steel bellows. A high frequency, low amplitude vibration during relieving events has resulted in fatigue failures in the original design. To take advantage of the improved resistance to fatigue of Inconel, a nickel-chromium alloy, reliefs using Inconel 625 bellows were made. Design, development, and testing of the new version reliefs will be discussed. Tests show that relief valve lifetimes using Inconel bellows are more than five times greater than when using the original stainless steel bellows. Inconel bellows show great promise in increasing the lifetime of quench relief valves, and thus the reliability of accelerator cryogenic systems.

  12. effects of various effects of various quenching media on quenching

    African Journals Online (AJOL)

    eobe

    ABSTRACT. Evaluation of palm kernel oil, cotton seed oil and olive oil as quenching media of 0.509Wt%C medium carbon steel ... Quenching is an essential element in developing the .... machine, heat treatment furnace, Avery Denison Izod.

  13. Quenches in the superconducting magnet CELLO

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1979-01-01

    The superconducting magnet CELLO was tested with currents up to 3200 A at Saclay and has been installed at DESY in Hamburg where it will be used for particle physics experiments requiring colliding beams of electrons and positrons. The testing of this unique, large, one-layer solenoid provides an excellent opportunity to evaluate the theory of quench propagation under adiabatic conditions, that is, in a coil in which the conductors are not in direct contact with helium. In an early test of this coil, quenches that occurred, gives the details of the damaged conductor, and includes an analysis of the quenches. Observed axial quench velocities are compared to the calculated values based on both measurements and calculations of the thermal conductivity of the fabricated coil

  14. Ferrous arrowheads and their oil quench hardening: Some early Indian evidence

    Science.gov (United States)

    Dube, R. K.

    2008-05-01

    A wide variety of ferrous arrowheads were in use in ancient India. Several typical chemical analyses of arrowheads found from archaeological excavation carried out at Kaushambi are reported in this paper. The average carbon content of these arrowheads varied from as low as 0.1 wt.% to approximately 0.9 wt.%. Literary evidence for oil quench hardening of ferrous arrowheads, as reported in famous Sanskrit epics—the Rāmāyana and the Mahābhārata—have been discussed in this paper. This type of quench hardening was intentionally adopted as it helped in preventing distortion and formation of quench cracks in arrowheads. The oil quench-hardened arrowheads were rubbed on stones to sharpen them, which also brought about tempering of martensite due to frictional heat.

  15. Characterization of plasma current quench at JET

    International Nuclear Information System (INIS)

    Riccardo, V; Barabaschi, P; Sugihara, M

    2005-01-01

    Eddy currents generated during the fastest disruption current decays represent the most severe design condition for medium and small size in-vessel components of most tokamaks. Best-fit linear and instantaneous plasma current quench rates have been extracted for a set of recent JET disruptions. Contrary to expectations, the current quench rate spectrum of high and low thermal energy disruptions is not substantially different. For most of the disruptions with the highest instantaneous current quench rate an exponential fit of the early phase of the current decay provides a more accurate estimate of the maximum current decay velocity. However, this fit is only suitable to model the fastest events, for which the current quench is dominated by radiation losses rather than the plasma motion

  16. Fuel rod quenching with oxidation and precursory cooling

    International Nuclear Information System (INIS)

    Davidi, A.; Elias, E.; Olek, S.

    1999-01-01

    During a loss-of-coolant-accident in LWR fuel rods may be temporarily exposed thus reaching high temperature levels. The injection of cold water into the core, while providing the necessary cooling to prevent melting may also generate steam inducing exothermal oxidation of the cladding. A number of high temperature quenching experiments [I] have demonstrated that during the early phase of the quenching process, the rate of hydrogen generation increased markedly and the surface temperatures rose rapidly. These effects are believed to result from thermal stresses breaking up the oxide layer on the zircalloy cladding, thus exposing the inner surface to oxidizing atmosphere. Steam reacts exothermally with the metallic components of the newly formed surface causing temporarily local temperature escalation. The main objective of this study is to develop and assess a one-dimensional time-dependent rewetting model to address the problem of quenching of hot surfaces undergoing exothermic oxidation reactions. Addressing a time-dependent problem is an important aspect of the work since it is believed that the progression of a quench-front along a hot oxidizing surface is an unsteady process. Several studies dealing with time-dependent rewetting problems have been published, e.g. [2]-[5], but none considers oxidation reactions downstream of the quench-front. The main difficulty in solving time-dependent rewetting problems stems from the fact that either the quench-front velocity or the quench-front positions constitute a time-dependent eigenvalue of the problem. The model is applied to describe the interrelated processes of cooling and exothermic steam-metal reactions at the vapor zirconium-cladding interface during quenching of degraded fuel rods. A constant heat transfer coefficient is assumed upstream of the quenching front whereas the combined effect of oxidation and post dry-out cooling is described by prescribing a heat flux distribution of general form downstream. The

  17. A Conceptual Development of Quench Prediction App build on LSTM and ELQA framework

    OpenAIRE

    Mertik, Matej; Wielgosz, Maciej; Skoczeń, Andrzej

    2016-01-01

    This article presents a development of web application for quench prediction in \\gls{te-mpe-ee} at CERN. The authors describe an ELectrical Quality Assurance (ELQA) framework, a platform which was designed for rapid development of web integrated data analysis applications for different analysis needed during the hardware commissioning of the Large Hadron Collider (LHC). In second part the article describes a research carried out with the data collected from Quench Detection System by means of...

  18. The η' signal from partially quenched Wilson fermions

    International Nuclear Information System (INIS)

    Neff, Harmut; Lippert, Th.; Negelec, J.; Schilling, K.

    2003-01-01

    We present new results from our ongoing study of flavor singlet pseudoscalar mesons in QCD. Our approach is based on (a) performing truncated eigenmode expansions for the hairpin diagram and (b) incorporating the ground state contribution for the connected meson propagator. First, we explain how the computations can be substantially improved by even-odd preconditioning. We extend previous results on early mass plateauing in the η' channel of two-flavor full QCD with degenerate sea and valence quarks to the partially quenched situation. We find that early mass plateau formation persists in the partially quenched situation

  19. Application of Best Estimate Approach for Modelling of QUENCH-03 and QUENCH-06 Experiments

    Directory of Open Access Journals (Sweden)

    Tadas Kaliatka

    2016-04-01

    In this article, the QUENCH-03 and QUENCH-06 experiments are modelled using ASTEC and RELAP/SCDAPSIM codes. For the uncertainty and sensitivity analysis, SUSA3.5 and SUNSET tools were used. The article demonstrates that applying the best estimate approach, it is possible to develop basic QUENCH input deck and to develop the two sets of input parameters, covering maximal and minimal ranges of uncertainties. These allow simulating different (but with the same nature tests, receiving calculation results with the evaluated range of uncertainties.

  20. Architecture of a software quench management system

    International Nuclear Information System (INIS)

    Jerzy M. Nogiec et al.

    2001-01-01

    Testing superconducting accelerator magnets is inherently coupled with the proper handling of quenches; i.e., protecting the magnet and characterizing the quench process. Therefore, software implementations must include elements of both data acquisition and real-time controls. The architecture of the quench management software developed at Fermilab's Magnet Test Facility is described. This system consists of quench detection, quench protection, and quench characterization components that execute concurrently in a distributed system. Collaboration between the elements of quench detection, quench characterization and current control are discussed, together with a schema of distributed saving of various quench-related data. Solutions to synchronization and reliability in such a distributed quench system are also presented

  1. Quenches in large superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Alston-Garnjost, M.; Green, M.A.; Lecomte, P.; Smits, R.G.; Taylor, J.D.; Vuillemin, V.

    1977-08-01

    The development of large high current density superconducting magnets requires an understanding of the quench process by which the magnet goes normal. A theory which describes the quench process in large superconducting magnets is presented and compared with experimental measurements. The use of a quench theory to improve the design of large high current density superconducting magnets is discussed

  2. Quench Tests of LHC Magnets with Beam: Studies on Beam Loss development and determination of Quench levels

    CERN Document Server

    Priebe, A; Sapinski, M

    The application of superconducting materials in the field of high energy accelerator physics not only opens the doors to the generation of the magnetic fields unattainable to normal conductors but also demands facing new challenges. A transition fromthe superconducting state, which is characterized by a resistance-free flow of the electric current, to the normal conducting state is called quenching. This process might be extremely dangerous and even lead to destruction of amagnet superconducting coil if no protecting actions are taken. Therefore, the knowledge of a magnet quench level, i.e. amount of energy which causes the transition to the resistive state, is crucial for the safety and operational efficiency of the accelerator. Regarding that, specific thresholds are incorporated to dedicated quench prevention systems in order to suppress the origin of detected energy perturbation, for example beam losses, or mitigate the consequences of the quenching process by dissipating the energy stored in the magnetic...

  3. Quench detection and behaviour in case of quench in the ITER magnet systems

    International Nuclear Information System (INIS)

    Coatanea-Gouachet, M.

    2012-02-01

    The quench of one of the ITER magnet system is an irreversible transition from superconducting to normal resistive state, of a conductor. This normal zone propagates along the cable in conduit conductor dissipating a large power. The detection has to be fast enough to dump out the magnetic energy and avoid irreversible damage of the systems. The primary quench detection in ITER is based on voltage detection, which is the most rapid detection. The very magnetically disturbed environment during the plasma scenario makes the voltage detection particularly difficult, inducing large inductive components in the coils and voltage compensations have to be designed to discriminate the resistive voltage associated with the quench. A conceptual design of the quench detection based on voltage measurements is proposed for the three majors magnet systems of ITER. For this, a clear methodology was developed. It includes the classical hot spot criterion, the quench propagation study using the commercial code Gandalf and the careful estimation of the inductive disturbances by developing the TrapsAV code. Specific solutions have been proposed for the compensation in the three ITER magnet systems and for the quench detection parameters, which are the voltage threshold (in the range of 0.1 V - 0.55 V) and the holding time (in the range of 1-1.4 s). The selected values, in particular the holding time, are sufficiently high to ensure the reliability of the system and avoid fast safety discharges not induced by a quench, which is a classical problem. (author)

  4. Quench origins

    International Nuclear Information System (INIS)

    Devred, A.

    1990-03-01

    Quenches can be divided into two categories; conductor-limited and energy-deposited quenches. A conductor-limited quench occurs when the current in the magnet exceeds the capacity of the superconductor; it is characterized by a strong correlation with temperature. An energy-deposited quench occurs when a disturbance releases enough energy to trigger a quench; the main disturbances during magnet energization are frictional movements of the conductor due to increasing Lorentz forces. The current level of the conductor-limited quenches defines the limit of the magnet performance, and can only be surpassed by lowering the operating temperature; the occurrence of a constant current at quench during the magnetic testing is called a plateau. Usually it takes a few energy-deposited quenches of increasing currents to reach the plateau; these first few steps are called the magnet's training. The goal in designing a magnet is to be able to energize it and to reliably operate it at the design current without training. This can be achieved by optimizing the magnet's operating margin, that is, by designing and building the magnet in such a way that the sizes of the mechanical disturbances needed to trigger a quench are much larger than the achievable mechanical tolerances. (N.K.) 112 refs

  5. Quantum quenches with integrable pre-quench dynamics

    OpenAIRE

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t=0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench.

  6. Quantum quenches with integrable pre-quench dynamics

    International Nuclear Information System (INIS)

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t = 0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench. (fast track communication)

  7. Simulation of the Quench-06 experiment with Scdapsim; Simulacion del experimento Quench-06 con Scdapsim

    Energy Technology Data Exchange (ETDEWEB)

    Angel M, E. del; Nunez C, A.; Amador G, R. [CNSNS, Dr. Barragan No. 779, 03020 Mexico D.F. (Mexico)]. e-mail: edangelm@cnsns.gob.mx

    2003-07-01

    The present work describes the pattern of the called Quench installation developed and used by the National Commission of Nuclear Security and Safeguards (CNSNS) for their participation in the International Standard Problem 45 (ISP), organized by the Nuclear Energy Agency (NEA). The exercise consisted on the simulation of the denominated experiment Quench-06 carried out in the experimental installation Quench located in the Forschungszentrum laboratory in Karlsruhe, Germany. The experiment Quench-06 consisted on simulating the sudden and late injection of water in a fuel assemble for a pressurized reactor (PWR). The CNSNS uses the version bd of the SCDAPSIM code developed by the company Innovative Software Systems (ISS) to simulate this experiment. The obtained results showed that the code is able to predict the experiment partially when overestimating the hydrogen production and of the partial fused of some fuel pellets, but predicting correctly the damage in the shroud. (Author)

  8. Post CHF heat transfer and quenching

    International Nuclear Information System (INIS)

    Nelson, R.A.; Condie, K.G.

    1980-01-01

    This paper describes quantitatively new mechanisms in the post-CHF regime which provide understanding and predictive capability for several current two-phase forced convective heat transfer problems. These mechanisms are important in predicting rod temperature turnaround and quenching during the reflood phase of either a hypothetical loss-of-coolant accident (LOCA) or the FLECHT and Semiscale experiments. The mechanisms are also important to the blowdown phase of a LOCA or the recent Loss-of-Fluid Test (LOFT) experiments L2-2 and L2-3, which were 200% cold leg break transients. These LOFT experiments experienced total core quenching in the early part of the blowdown phase at high (1000 psia) pressures. The mechanisms are also important to certain pressurized water reactor (PWR) operational transients where the reactor may operate in the post-CHF regime for short periods of time. Accurate prediction of the post-CHF heat transfer including core quench during these transients is of prime importance to limit maximum cladding temperatures and prevent cladding deformation

  9. Computational quench model applicable to the SMES/CICC

    Science.gov (United States)

    Luongo, Cesar A.; Chang, Chih-Lien; Partain, Kenneth D.

    1994-07-01

    A computational quench model accounting for the hydraulic peculiarities of the 200 kA SMES cable-in-conduit conductor has been developed. The model is presented and used to simulate the quench on the SMES-ETM. Conclusions are drawn concerning quench detection and protection. A plan for quench model validation is presented.

  10. Quench Simulation Studies: Program documentation of SPQR

    CERN Document Server

    Sonnemann, F

    2001-01-01

    Quench experiments are being performed on prototypes of the superconducting magnets and busbars to determine the adequate design and protection. Many tests can only be understood correctly with the help of quench simulations that model the thermo-hydraulic and electrodynamic processes during a quench. In some cases simulations are the only method to scale the experimental results of prototype measurements to match the situation of quenching superconducting elements in the LHC. This note introduces the theoretical quench model and the use of the simulation program SPQR (Simulation Program for Quench Research), which has been developed to compute the quench process in superconducting magnets and busbars. The model approximates the heat balance equation with the finite difference method including the temperature dependence of the material parameters. SPQR allows the simulation of longitudinal quench propagation along a superconducting cable, the transverse propagation between adjacent conductors, heat transfer i...

  11. Rapid Quench in an Electrostatic Levitator

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.

  12. Quench origins

    International Nuclear Information System (INIS)

    Devred, A.

    1990-03-01

    In this paper, I shall discuss the quench origins. I shall first establish a method of classification and introduce the notions of conductor-limited and energy-deposited quenches. Next the paper will be devoted to the study of conductor-limited quenches, and I shall introduce the notions of plateau and of fraction of short sample. Also the paper will be devoted to the study of energy-deposited quenches, and I shall introduce the notions of training and of minimum energy deposit; I shall then review the possible causes of energy release. Lastly, I shall introduce the notion of operating margin, and I shall indicate how to optimize the operating margin in order to limit the risk of premature quenching. 112 refs., 14 figs

  13. Passive quench arrest by a chimney induced deluge at every quench front

    International Nuclear Information System (INIS)

    Sydoriak, S.G.

    1984-01-01

    This chapter describes a magnet in which a growing quench stops itself spontaneously within a fraction of one winding turn because vapor in quench-heated channels generates a progressively increasing downflow of liquid in advance of each of the quench fronts. The downflow eventually becomes a deluge as the quench grows. The design of the multiple arrested quench magnet is discussed. It is shown how to construct a magnet so that if an arrested quench arises when it is at its highest operating current, peak nucleate boiling will exist in all quenching channels

  14. Heat transfer to a dispersed two-phase flow and detailed quench front velocity research

    International Nuclear Information System (INIS)

    Boer, T.C. de; Molen, S.B. van der

    1985-01-01

    A programme to obtain a data base for 'Boildown and Reflood' computer code development and to obtain information on the influence of non-uniform temperature and/or power profile on the quench front velocity and prequench heat transfer, including unheated wall and grid effects, has been undertaken. It is in two parts. In the first (for the tube, annulus and a 4-rod bundle) an early wetting of the unheated shroud is shown. This leads to an increase in quench front velocity and in liquid transport downstream from the quench front. For the inverted annular flow regime the extended Bromley correlation gives good agreement with the experimental data. In the second part (36-rod bundle reflood test programme) the wall-temperature differences in the radial direction gives rise to heat transfer processes which are described and explained. (U.K.)

  15. Smooth and fast versus instantaneous quenches in quantum field theory

    Science.gov (United States)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-08-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δ t, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies [1, 2] highlighted that the two protocols remain distinct in the limit δ t → 0 because of the relation of the quench rate to the UV cut-off, i.e., 1 /δ t ≪ Λ always holds in the fast smooth quenches while 1 /δ t ˜ Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δ t, the correlator scales universally with δ t, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δ t drops out. The excess energy density is finite (for finite mδ t) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδ t → 0 for d ≥ 4, just as in an instantaneous quench, where it is UV divergent for d ≥ 4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ > d/2.

  16. Development of Quench Detection System for W7-X

    International Nuclear Information System (INIS)

    Birus, Dietrich; Rummel, Thomas; Fricke, Marko; Petry, Klaus; Demattio, Horst

    2007-01-01

    The Quench Detection System of W7-X will consist of nearly 400 Quench Detection Units (QDU) for the fast and reliable supervision of the 70 superconducting coils and the 120 superconducting bus bar sections. There will be five control racks with about 80 QDU, a data acquisition unit, an ac-dc power supply with integrated dc UPS unit in each of the racks and a PC based data management system as an overlay structure. Each QDU will have a special analogue input circuit realised as a programmable half bridge front end with different polarity-sensing and limiting functions for suppressing high dynamic voltages. Special filter design is included for noise-suppression and over voltage protection. A reconfigurable control/arithmetic unit offers possibilities of future expansions (e.g. all digital evaluation). The QDU acquires and checks the differential voltages of the superconductors permanently. In case of a quench it triggers the fast discharge of the coils and the storage of the voltage signals on the memory unit. The quench signals are in the mV range and have to be clearly identified within a noisy and a high-voltage background within a few milliseconds. Each QDU transfers the stored signal dates via a high-speed RS485 serial interface with 20 kV optical isolation barrier to an industrial type data acquisition unit. A second optically isolated RS485-network enables interconnection of each QDU in the control rack (Compound-Mode of QDU). The QDU are designed with an internal failsafe, programmable self-test and redundancy feature, broken wire check of the quench detection cables and connectors inside and outside of the cryostat of W7-X. All QDU will be fed via an UPS supported 24 V dc bus through a high voltage isolated dc-dc transformer on each unit. The design of the Quench Detection System allows operation under high voltage levels of up to 8 kV and under magnetic stray field levels up to 30 mT. The front end is very well isolated and the outputs of the QDU are

  17. Improved rapidly-quenched hydrogen-absorbing alloys for development of improved-capacity nickel metal hydride batteries

    Science.gov (United States)

    Ise, Tadashi; Hamamatsu, Takeo; Imoto, Teruhiko; Nogami, Mitsuzo; Nakahori, Shinsuke

    The effects of annealing a rapidly-quenched hydrogen-absorbing alloy with a stoichiometric ratio of 4.76 were investigated concerning its hydrogen-absorbing properties, crystal structure and electrochemical characteristics. Annealing at 1073 K homogenized the alloy microstructure and flattened its plateau slope in the P-C isotherms. However, annealing at 1273 K segregated a second phase rich in rare earth elements, increased the hydrogen-absorbing pressure and decreased the hydrogen-absorbing capacity. As the number of charge-discharge cycles increases, the particle size distribution of the rapidly-quenched alloy became broad due to partial pulverization. However, particle size distribution of the rapidly-quenched, annealed, alloy was sharp, since the annealing homogenized the microstructure, thereby improving the cycle characteristics. A high-capacity rectangular nickel metal hydride battery using a rapidly-quenched, annealed, surface-treated alloy for the negative electrode and an active material coated with cobalt compound containing sodium for the positive electrode was developed. The capacity of the resulting battery was 30% greater than that of a conventional battery.

  18. The quench detector on magnetic modulator for the UNK quench protection system

    International Nuclear Information System (INIS)

    Bolotin, I.M.; Enbaev, A.V.; Erokhin, A.N.; Gridasov, V.I.; Priyma, M.V.; Sychev, V.A.; Vasiliev, L.M.

    1992-01-01

    When designing and constructing superconducting high energy accelerators, the development of the Quench Detection System (QDS) for superconducting (SC) magnets becomes an important and critical problem. At present there is experience in developing such systems for the Tevatron (FNAL, USA) and HERA (Hamburg, Germany). The machines for more than 3 TeV-the UNK (Russia) and SSC (USA), which are presently under construction, have very large circumferences, 21 and 87 km, respectively. The QDS's, similar to those of the Tevatron, require a larger part of the active components of the electronic equipment be placed in the machine tunnel close to the magnets, and protected from irradiation or additional surface buildings will have to be constructed. In either case the cost of such a QDS increases. In addition the former ones reliability decreases and maintenance becomes more difficult. For such machines, a QDS in which the quench signal, in each superconducting magnet (SCM) or groups of SCM'S, is extracted with the help of a bridge circuit (BC) appears to be more suitable. The half coils of SCM's are connected as two arms of the bridge and the resistors placed in the vacuum vessels of the magnet cryostats are connected to the other two. The off-balance signal of each BC is enhanced with the help of magnetic amplifiers. This note describes the experimental prototype of a bridge-type Quench Detector (QD) based on a magnetic amplifier Magnetic Modulator (MM) type, allowing one not only to detect a quench in a SCM, but also making feasible a wider system capability, namely: to record the signals from all SC elements during a quench for further analysis of its causes; to check the presence of short circuits of the ring electromagnet bus relative to the cryostats and to localize their position

  19. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1995-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  20. Quench observation using quench antennas on RHIC IR quadrupole magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Terashima, A.; Tsuchiya, K.; Ganetis, G.; Muratore, J.; Wanderer, P.

    1996-01-01

    Quench observation using quench antennas is now being performed routinely on RHIC dipole and quadrupole magnets. Recently, a quench antenna was used on a RHIC IR magnet which is heavily instrumented with voltage taps. It was confirmed that the signals detected in the antenna coils do not contradict the voltage tap signals. The antenna also detects a sign of mechanical disturbance which could be related to a training quench. This paper summarizes signals detected in the antenna and discusses possible causes of these signals

  1. Quenches after LS1

    International Nuclear Information System (INIS)

    Verweij, A.P.

    2012-01-01

    In this paper I will give an overview of the different types of quenches that occur in the LHC, followed by an estimate of the number of quenches that we can expect after LS1. Beam-induced quenches and false triggering of the QPS will be the main cause of those quenches that cause a beam dump. Possibly in total up to 10-20 per year. After consolidation of the 13 kA joints, the approach for the BLM settings can be less conservative than in 2010-2012 in order to maximize beam time. This will cause some quenches but, anyhow, a beam.induced quench is not more risky than a quench provoked by false triggering. It is not easy to predict the number of BLM triggered beam dumps, needed to avoid magnet quenches, because it is not sure how to scale beam losses and UFO's from 3.5 TeV to 6.5 TeV, and it is not sure if the thresholds at 3.5 TeV are correct. Quench events will be much more massive (ex: RB quench at 6 kA → 2 MJ, RB quench at 11 kA → 6-20 MJ), and as a result cryo recuperation much longer. There will also be more ramp induced quenches after a FPA in other circuits due to higher ramp rates and smaller temperature margins (mutual coupling)

  2. Smooth and fast versus instantaneous quenches in quantum field theory

    International Nuclear Information System (INIS)

    Das, Sumit R.; Galante, Damián A.; Myers, Robert C.

    2015-01-01

    We examine in detail the relationship between smooth fast quantum quenches, characterized by a time scale δt, and instantaneous quenches, within the framework of exactly solvable mass quenches in free scalar field theory. Our earlier studies http://dx.doi.org/10.1103/PhysRevLett.112.171601 and http://dx.doi.org/10.1007/JHEP02(2015)167 highlighted that the two protocols remain distinct in the limit δt→0 because of the relation of the quench rate to the UV cut-off, i.e., 1/δt≪Λ always holds in the fast smooth quenches while 1/δt∼Λ for instantaneous quenches. Here we study UV finite quantities like correlators at finite spatial distances and the excess energy produced above the final ground state energy. We show that at late times and large distances (compared to the quench time scale) the smooth quench correlator approaches that for the instantaneous quench. At early times, we find that for small spatial separation and small δt, the correlator scales universally with δt, exactly as in the scaling of renormalized one point functions found in earlier work. At larger separation, the dependence on δt drops out. The excess energy density is finite (for finite mδt) and scales in a universal fashion for all d. However, the scaling behaviour produces a divergent result in the limit mδt→0 for d≥4, just as in an instantaneous quench, where it is UV divergent for d≥4. We argue that similar results hold for arbitrary interacting theories: the excess energy density produced is expected to diverge for scaling dimensions Δ>d/2.

  3. Development of radiation-tolerant components for the quench detection system at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Bitterling, Oliver

    2017-01-01

    This works describes the results of a three year project to improve the radiation tolerance of the Quench Protection System of the CERN Large Hadron Collider. Radiation-induced premature beam aborts have been a limiting factor for accelerator availability in the recent years. Furthermore, the future upgrade of the Large Hadron Collider to its High Luminosity phase will further increase the radiation load and has higher requirements for the overall machine availability. Therefore equipment groups like the Quench protection groups have used the last years to redesign many of their systems to fulfill those requirements. In support of the development of radiation-tolerant systems, several proton beam irradiation campaigns were conducted to determine the inherent radiation tolerance of a selection of varied electronic components. Using components from this selection a new Quench Protection System for the 600 A corrector magnets was developed. The radiation tolerance of this system was further improved by developing a filter and error correction system for all discovered failure modes. Furthermore, compliance of the new system with the specification was shown by simulating the behavior of the system using data taken from the irradiation campaigns. The resulting system is operational since the beginning of 2016 and has in the first 9 months of operation not shown a single radiation-induced failure. Using results from simulations and irradiation campaigns the predicted failure cross section for the full new 600 A Quench Protection System is 4.358±0.564.10 -10 cm 2 which is one order of magnitude lower than the target set during the development of this system.

  4. Quark contributions to baryon magnetic moments in full, quenched, and partially quenched QCD

    International Nuclear Information System (INIS)

    Leinweber, Derek B.

    2004-01-01

    The chiral nonanalytic behavior of quark-flavor contributions to the magnetic moments of octet baryons is determined in full, quenched and partially quenched QCD, using an intuitive and efficient diagrammatic formulation of quenched and partially quenched chiral perturbation theory. The technique provides a separation of quark-sector magnetic-moment contributions into direct sea-quark loop, valence-quark, indirect sea-quark loop and quenched valence contributions, the latter being the conventional view of the quenched approximation. Both meson and baryon mass violations of SU(3)-flavor symmetry are accounted for. Following a comprehensive examination of the individual quark-sector contributions to octet baryon magnetic moments, numerous opportunities to observe and test the underlying structure of baryons and the nature of chiral nonanalytic behavior in QCD and its quenched variants are discussed. In particular, the valence u-quark contribution to the proton magnetic moment provides the optimal opportunity to directly view nonanalytic behavior associated with the meson cloud of full QCD and the quenched meson cloud of quenched QCD. The u quark in Σ + provides the best opportunity to display the artifacts of the quenched approximation

  5. Quenched chiral logarithms

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1992-04-01

    I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions

  6. Spectral analysis of colour-quenched and chemically quenched C 14 samples

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Scott Guillearrd, P.E.

    1987-01-01

    Pairs of pulse height distribution curves, of C-14 samples, colour quenched and chemically quenched were obtained. The possibility to choose a counting window in order to obtain the counting efficiency curves, for both type of quenching was studied. (author). 7 figs., 7 refs

  7. Spectral analysis of colour-quenched and chemically quenched C-14 samples

    International Nuclear Information System (INIS)

    Scott, P. E.; Grau, A.

    1987-01-01

    In this paper pairs of pulse height distribution curves, of C-14 samples, colour-quenched and chemically quenched was obtained. The possibility to choose a counting window in order to obtain the counting efficiency curves, for both type of quenching was studied. (Author) 7 refs

  8. Development of radiation-tolerant components for the quench detection system at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bitterling, Oliver

    2017-04-03

    This works describes the results of a three year project to improve the radiation tolerance of the Quench Protection System of the CERN Large Hadron Collider. Radiation-induced premature beam aborts have been a limiting factor for accelerator availability in the recent years. Furthermore, the future upgrade of the Large Hadron Collider to its High Luminosity phase will further increase the radiation load and has higher requirements for the overall machine availability. Therefore equipment groups like the Quench protection groups have used the last years to redesign many of their systems to fulfill those requirements. In support of the development of radiation-tolerant systems, several proton beam irradiation campaigns were conducted to determine the inherent radiation tolerance of a selection of varied electronic components. Using components from this selection a new Quench Protection System for the 600 A corrector magnets was developed. The radiation tolerance of this system was further improved by developing a filter and error correction system for all discovered failure modes. Furthermore, compliance of the new system with the specification was shown by simulating the behavior of the system using data taken from the irradiation campaigns. The resulting system is operational since the beginning of 2016 and has in the first 9 months of operation not shown a single radiation-induced failure. Using results from simulations and irradiation campaigns the predicted failure cross section for the full new 600 A Quench Protection System is 4.358±0.564.10{sup -10} cm{sup 2} which is one order of magnitude lower than the target set during the development of this system.

  9. Quench simulation of SMES consisting of some superconducting coils

    International Nuclear Information System (INIS)

    Noguchi, S.; Oga, Y.; Igarashi, H.

    2011-01-01

    A chain of quenches may be caused by a quench of one element coil when SMES is consists of many element coils. To avoid the chain of quenches, the energy stored in element coil has to be quickly discharged. The cause of the chain of the quenches is the short time constant of the decreasing current of the quenched coil. In recent years, many HTS superconducting magnetic energy storage (HTS-SMES) systems are investigated and designed. They usually consist of some superconducting element coils due to storing excessively high energy. If one of them was quenched, the storage energy of the superconducting element coil quenched has to be immediately dispersed to protect the HTS-SMES system. As the result, the current of the other element coils, which do not reach to quench, increases since the magnetic coupling between the quenched element coil and the others are excessively strong. The increase of the current may cause the quench of the other element coils. If the energy dispersion of the element coil quenched was failed, the other superconducting element coil would be quenched in series. Therefore, it is necessary to investigate the behavior of the HTS-SMES after quenching one or more element coils. To protect a chain of quenches, it is also important to investigate the time constant of the coils. We have developed a simulation code to investigate the behavior of the HTS-SMES. By the quench simulation, it is indicated that a chain of quenches is caused by a quench of one element coil.

  10. Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Santofimia, M.J., E-mail: m.j.santofimianavarro@tudelft.nl [Materials Innovation Institute (M2i), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Zhao, L. [Materials Innovation Institute (M2i), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Petrov, R. [Department of Metallurgy and Materials Science, Ghent University, Technologiepark 903, 9052 Ghent (Belgium); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Kwakernaak, C.; Sloof, W.G.; Sietsma, J. [Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands)

    2011-09-15

    This paper presents a detailed characterization of the microstructural development of a new quenching and partitioning (Q and P) steel. Q and P treatments, starting from full austenitization, were applied to the developed steel, leading to microstructures containing volume fractions of retained austenite of up to 0.15. The austenite was distributed as films in between the martensite laths. Analysis demonstrates that, in this material, stabilization of austenite can be achieved at significantly shorter time scales via the Q and P route than is possible via a bainitic isothermal holding. The results showed that the thermal stabilization of austenite during the partitioning step is not necessarily accompanied by a significant expansion of the material. This implies that the process of carbon partitioning from martensite to austenite occurs across low-mobility martensite-austenite interfaces. The amount of martensite formed during the first quench has been quantified. Unlike martensite formed in the final quench, this martensite was found to be tempered during partitioning. Measured volume fractions of retained austenite after different treatments were compared with simulations using model descriptions for carbon partitioning from martensite to austenite. Simulation results confirmed that the carbon partitioning takes place at low-mobility martensite-austenite interfaces.

  11. Quench antenna for superconducting particle accelerator magnets

    International Nuclear Information System (INIS)

    Ogitsu, T.; Devred, A.; Kim, K.

    1993-10-01

    We report on the design, fabrication, and test of an assembly of stationary pickup coils which can be used to localize quench origins. After describing the pickup coils configuration, we develop a simple model of current redistribution which allows interpretation of the measured voltages and determination of the turn of the magnet coil in which the quench started. The technique is illustrated by analyzing the data from a quench of a 5-cm-aperture, 15-m-long SSC dipole magnet prototype

  12. Development of Quench Detection Units for W7-X

    International Nuclear Information System (INIS)

    Birus, D.; Rummel, T.; Fricke, M.; Petry, K.; Demattio, H.

    2006-01-01

    The Quench Detection System of W7-X will consist of nearly 400 Quench Detection Units (QDU) for the fast and reliable supervision of the 70 superconducting coils and the 120 superconducting bus bar sections. There will be five control racks with about 80 QDU, a data acquisition unit, an AC-DC power supply with integrated DC-UPS unit in each of the racks and a PC based data management system as an overlay structure. Each QDU will have a special analogue input circuit realised as a programmable half bridge front end with different polarity-sensing and limiting functions for suppressing high dynamic voltages. Special filter design is included for noise-suppression and over voltage protection. A reconfigurable control/arithmetic unit offers possibilities of future expansions (e.g. all digital evaluation). The QDU acquires and checks the differential voltages of the superconductors permanently. In case of a quench it triggers the fast discharge of the coils and the storage of the voltage signals on the memory unit. The quench signals are in the mV range and have to be clearly identified within a noisy and a high-voltage background within a few milliseconds. Each QDU transfers the stored signal dates via a high-speed RS-485 serial interface with 20 KV optical isolation barrier to the data acquisition unit, an industrial system. A second optically isolated RS-485-network enables interconnection of each QDU in the control rack (Compound-Mode of QDU). The QDU are designed with an internal failsafe, programmable self test and redundancy feature, broken wire check of the quench detection cables and connectors inside and outside of the cryostat of W7-X. All QDU will be fed via an UPS supported 24 V DC bus through a high voltage isolated DC-DC transformer on each unit. The design of the QDU allows operation under high voltage levels of up to 8 kV and under magnetic stray field levels up to 30 mT. The front end is very well isolated and the outputs of the QDU are strictly

  13. NASA MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.

    2014-01-01

    Electrostatic levitation, a form of containerless processing, is an important tool in materials research. Levitated specimens are free from contact with a container; therefore, heterogeneous nucleation on container walls is not possible. This allows studies of deeply undercooled melts. Furthermore, studies of high-temperature, highly reactive materials are also possible. Studies of the solidification and crystallization of undercooled melts is vital to the understanding of microstructure development, particularly the formation of alloys with unique properties by rapid solidification. The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) lab has recently been upgraded to allow for rapid quenching of levitated materials. The ESL Rapid Quench System uses a small crucible-like vessel that can be partially filled with a low melting point material, such as a Gallium alloy, as a quench medium. An undercooled sample can be dropped into the vessel to rapidly quench the sample. A carousel with nine vessels sits below the bottom electrode assembly. This system allows up to nine rapid quenches before having to break vacuum and remove the vessels. This new Rapid Quench System will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and initial results are presented.

  14. Studies of quench propagation in a superconducting window frame magnet

    International Nuclear Information System (INIS)

    Allinger, J.; Carroll, A.; Danby, G.; DeVito, B.; Jackson, J.; Leonhardt, M.; Prodell, A.; Stoehr, R.

    1981-01-01

    During the testing of a meter long, superconducting window frame magnet, information from many spontaneously generated quenches have been recorded by an on-line computer system. Nearly every layer in an eleven layer dipole had a voltage tap and for some layers this subdivided into two halves. This allowed us to study development of the quenches in some detail. Knowledge of the resistances throughout the magnet also allowed the temperature distributions in the superconducting windings to be determined. A qualitative picture of the quench was developed and quantitative values of quench propagation velocities were compared to heat transfer calculations

  15. Modelling of QUENCH-03 and QUENCH-06 Experiments Using RELAP/SCDAPSIM and ASTEC Codes

    Directory of Open Access Journals (Sweden)

    Tadas Kaliatka

    2014-01-01

    Full Text Available To prevent total meltdown of the uncovered and overheated core, the reflooding with water is a necessary accident management measure. Because these actions lead to the generation of hydrogen, which can cause further problems, the related phenomena are investigated performing experiments and computer simulations. In this paper, for the experiments of loss of coolant accidents, performed in Forschungszentrum Karlsruhe, QUENCH-03 and QUENCH-06 are modelled using RELAP5/SCDAPSIM and ASTEC codes. The performed benchmark allowed analysing different modelling features. The recommendations for the model development are presented.

  16. Transient quenching of superheated debris beds during bottom reflood

    International Nuclear Information System (INIS)

    Tutu, N.K.; Ginsberg, T.; Klein, J.; Schwarz, C.E.; Klages, J.

    1984-01-01

    The experimental data suggest that for small liquid supply rate and low initial particle temperature, the bed quench process is a one-dimensional frontal phenomenon. The bed heat flux is constant during most of the duration of the quench period. The range of conditions which display one-dimensional frontal cooling characteristics is identified as the deep bed regime of bed quenching, and a limiting mathematical model was developed to describe the observed behavior. For large liquid supply rate and high initial bed temperature, the bed quench process is a complex phenomenon. Under these conditions, the bed heat flux displays a nonuniform time dependence. In order to characterize this shallow bed regime, it was necessary to develop a detailed transient model of the coolant-debris interaction. This model, while developed for the shallow bed regime, also applies to the deep bed regime. Numerical computations clearly demonstrate the importance of developing a general reliable model for the solid-fluid heat transfer coefficients

  17. Doubler system quench detection threshold

    International Nuclear Information System (INIS)

    Kuepke, K.; Kuchnir, M.; Martin, P.

    1983-01-01

    The experimental study leading to the determination of the sensitivity needed for protecting the Fermilab Doubler from damage during quenches is presented. The quench voltage thresholds involved were obtained from measurements made on Doubler cable of resistance x temperature and voltage x time during quenches under several currents and from data collected during operation of the Doubler Quench Protection System as implemented in the B-12 string of 20 magnets. At 4kA, a quench voltage threshold in excess of 5.OV will limit the peak Doubler cable temperature to 452K for quenches originating in the magnet coils whereas a threshold of 0.5V is required for quenches originating outside of coils

  18. On the rapid melt quenching

    International Nuclear Information System (INIS)

    Usatyuk, I.I.; Novokhatskij, I.A.; Kaverin, Yu.F.

    1994-01-01

    Specific features of instrumentation of traditionally employed method of melt spinning (rapid quenching), its disadvantages being discussed, were analyzed. The necessity of the method upgrading as applied to the problems of studying fine structure of molten metals and glasses was substantiated. The principle flowsheet of experimental facility for extremely rapid quenching of the melts of metals is described, specificity of its original functional units being considered. The sequence and character of all the principal stages of the method developed were discussed. 18 refs.; 3 figs

  19. Calculating Quench Propagation with ANSYS(regsign)

    International Nuclear Information System (INIS)

    Caspi, S.; Chiesa, L.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.; Hinkins, R.; Lietzke, A.F.; Prestemon, S.

    2002-01-01

    A commercial Finite-Element-Analysis program, ANSYS(reg s ign), is widely used in structural and thermal analysis. With the program's ability to include non-linear material properties and import complex CAD files, one can generate coil geometries and simulate quench propagation in superconducting magnets. A 'proof-of-principle' finite element model was developed assuming a resistivity that increases linearly from zero to its normal value at a temperature consistent with the assumed B magnetic field. More sophisticated models could easily include finer-grained coil, cable, structural, and circuit details. A quench is provoked by raising the temperature of an arbitrary superconducting element above its T c . The time response to this perturbation is calculated using small time-steps to allow convergence between steps. Snapshots of the temperature and voltage distributions allow examination of longitudinal and turn-to-turn quench propagation, quench-front annihilation, and cryo-stability. Modeling details are discussed, and a computed voltage history was compared with measurements from a recent magnet test.

  20. A fluorescence quenching test for the detection of flavonoid transformation.

    Science.gov (United States)

    Schoefer, L; Braune, A; Blaut, M

    2001-11-13

    A novel fluorescence quenching test for the detection of flavonoid degradation by microorganisms was developed. The test is based on the ability of the flavonoids to quench the fluorescence of 1,6-diphenyl-1,3,5-hexatriene (DPH). Several members of the anthocyanidins, flavones, isoflavones, flavonols, flavanones, dihydroflavanones, chalcones, dihydrochalcones and catechins were tested with regard to their quenching properties. The anthocyanidins were the most potent quenchers of DPH fluorescence, while the flavanones, dihydroflavanones and dihydrochalcones, quenched the fluorescence only weakly. The catechins had no visible impact on DPH fluorescence. The developed test allows a quick and easy differentiation between flavonoid-degrading and flavonoid-non-degrading bacteria. The investigation of individual reactions of flavonoid transformation with the developed test system is also possible.

  1. Simulation of the Quench-06 experiment with Scdapsim

    International Nuclear Information System (INIS)

    Angel M, E. del; Nunez C, A.; Amador G, R.

    2003-01-01

    The present work describes the pattern of the called Quench installation developed and used by the National Commission of Nuclear Security and Safeguards (CNSNS) for their participation in the International Standard Problem 45 (ISP), organized by the Nuclear Energy Agency (NEA). The exercise consisted on the simulation of the denominated experiment Quench-06 carried out in the experimental installation Quench located in the Forschungszentrum laboratory in Karlsruhe, Germany. The experiment Quench-06 consisted on simulating the sudden and late injection of water in a fuel assemble for a pressurized reactor (PWR). The CNSNS uses the version bd of the SCDAPSIM code developed by the company Innovative Software Systems (ISS) to simulate this experiment. The obtained results showed that the code is able to predict the experiment partially when overestimating the hydrogen production and of the partial fused of some fuel pellets, but predicting correctly the damage in the shroud. (Author)

  2. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting

    International Nuclear Information System (INIS)

    Cassette, Philippe

    2016-01-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ"2 minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. - Highlights: • The program “QUENCH” is devoted to the interpolation of quenching curves in LSC. • Functions are fitted to experimental data with uncertainties in both quenching and efficiency. • The parameters of the fitting function and the associated covariance matrix are evaluated. • The detection efficiency and uncertainty corresponding to a given quenching index is calculated.

  3. Quench simulations for superconducting elements in the LHC accelerator

    CERN Document Server

    Sonnemann, F

    2000-01-01

    The design of he protection system for he superconducting elements in an accel- erator such as the Large Hadron Collider (LHC),now under construction at CERN, requires a detailed understanding of the hermo-hydraulic and electrodynamic pro- cesses during a quench.A numerical program (SPQR -Simulation Program for Quench Research)has been developed o evaluate temperature and voltage dis ri- butions during a quench as a func ion of space and ime.The quench process is simulated by approximating the heat balance equation with the finite di fference method in presence of variable cooling and powering conditions.The simulation predicts quench propagation along a superconducting cable,forced quenching with heaters,impact of eddy curren s induced by a magnetic field change,and heat trans- fer hrough an insulation layer in o helium,an adjacen conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequ...

  4. Selection of a quench detection system for the ITER CS magnet

    International Nuclear Information System (INIS)

    Coatanea, Marc; Duchateau, Jean-Luc; Lacroix, Benoit; Nicollet, Sylvie; Rodriguez-Mateos, Felix; Topin, Frederic

    2011-01-01

    At variance with most of the existing superconducting systems operating in the world, the ITER central solenoid (CS) magnet is a fast pulsed system. This peculiarity creates a specific situation regarding the quench detection system, as a small resistive signal associated with a quench has to be discriminated from the high inductive signals imposed by the plasma scenario. The quench detection is based on an inductive compensation built from three adjacent double pancakes. The ITER protection rules for a superconducting magnet impose to respect the so-called maximum hot spot temperature criterion of 250 K in the quenched cable at the end of the fast discharge. A careful analysis of the residual inductive signals in the detection voltage shows that a blanking of the quench detection cannot be avoided during the early times of the plasma discharge (i.e. during 3.5 s). It is demonstrated that this blanking is, however, acceptable while fulfilling the hot spot criterion because the plasma initiation phase (PIP) is very similar to a fast safety discharge and corresponds to a fast decrease of the modules currents, which is favourable for the magnet protection.

  5. Quench start localization in full-length SSC R ampersand D dipoles

    International Nuclear Information System (INIS)

    Devred, A.; Chapman, M.; Cortella, J.; Desportes, A.; Kaugerts, J.; Kirk, T.; Mirk, K.; Schermer, R.; Tompkins, J.C.; Turner, J.; Bleadon, M.; Brown, B.C.; Hanft, R.; Kuchnir, M.; Lamm, M.; Mantsch, P.; Mazur, P.O.; Orris, D.; Peoples, J.; Strait, J.; Tool, G.; Caspi, S.; Gilbert, W.; Meuser, R.; Peters, C.; Rechen, J.; Royet, J.; Scanlan, R.; Taylor, C.; Zbasnik, J.

    1989-04-01

    Full-length SSC R ampersand D dipole magnets instrumented with four voltage taps on each turn of the inner quarter coils have been tested. These voltage taps enable accurate location of the point at which the quenches start and detailed studies of quench development in the coil. Attention here is focused on localizing the quench source. After recalling the basic mechanism of a quench (why it occurs and how it propagates), the method of quench origin analysis is described: the quench propagation velocity on the turn where the quench occurs is calculated, and the quench location is then verified by reiterating the analysis on the adjacent turns. Last, the velocity value, which appears to be higher than previously measured, is discussed

  6. Quorum Quenching Revisited—From Signal Decays to Signalling Confusion

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-04-01

    Full Text Available In a polymicrobial community, while some bacteria are communicating with neighboring cells (quorum sensing, others are interrupting the communication (quorum quenching, thus creating a constant arms race between intercellular communication. In the past decade, numerous quorum quenching enzymes have been found and initially thought to inactivate the signalling molecules. Though this is widely accepted, the actual roles of these quorum quenching enzymes are now being uncovered. Recent evidence extends the role of quorum quenching to detoxification or metabolism of signalling molecules as food and energy source; this includes “signalling confusion”, a term coined in this paper to refer to the phenomenon of non-destructive modification of signalling molecules. While quorum quenching has been explored as a novel anti-infective therapy targeting, quorum sensing evidence begins to show the development of resistance against quorum quenching.

  7. Quench dynamics in SRF cavities: can we locate the quench origin with 2nd sound?

    International Nuclear Information System (INIS)

    Maximenko, Yulia; Segatskov, Dmitri A.

    2011-01-01

    A newly developed method of locating quenches in SRF cavities by detecting second-sound waves has been gaining popularity in SRF laboratories. The technique is based on measurements of time delays between the quench as determined by the RF system and arrival of the second-sound wave to the multiple detectors placed around the cavity in superfluid helium. Unlike multi-channel temperature mapping, this approach requires only a few sensors and simple readout electronics; it can be used with SRF cavities of almost arbitrary shape. One of its drawbacks is that being an indirect method it requires one to solve an inverse problem to find the location of a quench. We tried to solve this inverse problem by using a parametric forward model. By analyzing the data we found that the approximation where the second-sound emitter is a near-singular source does not describe the physical system well enough. A time-dependent analysis of the quench process can help us to put forward a more adequate model. We present here our current algorithm to solve the inverse problem and discuss the experimental results.

  8. Quench simulations for superconducting elements in the LHC accelerator

    Science.gov (United States)

    Sonnemann, F.; Schmidt, R.

    2000-08-01

    The design of the protection system for the superconducting elements in an accelerator such as the large Hadron collider (LHC), now under construction at CERN, requires a detailed understanding of the thermo-hydraulic and electrodynamic processes during a quench. A numerical program (SPQR - simulation program for quench research) has been developed to evaluate temperature and voltage distributions during a quench as a function of space and time. The quench process is simulated by approximating the heat balance equation with the finite difference method in presence of variable cooling and powering conditions. The simulation predicts quench propagation along a superconducting cable, forced quenching with heaters, impact of eddy currents induced by a magnetic field change, and heat transfer through an insulation layer into helium, an adjacent conductor or other material. The simulation studies allowed a better understanding of experimental quench data and were used for determining the adequate dimensioning and protection of the highly stabilised superconducting cables for connecting magnets (busbars), optimising the quench heater strip layout for the main magnets, and studying quench back by induced eddy currents in the superconductor. After the introduction of the theoretical approach, some applications of the simulation model for the LHC dipole and corrector magnets are presented and the outcome of the studies is compared with experimental data.

  9. The quench detection system of Wendelstein 7-X

    International Nuclear Information System (INIS)

    Birus, Dietrich; Schneider, Matthias; Rummel, Thomas; Fricke, Marko

    2011-01-01

    The Quench Detection System of Wendelstein W7-X has been developed, pretested and manufactured during the last four years. This safety subsystem of the superconducting magnet power supply will guarantee the safe operating of the whole magnet system. The main targets of the Quench Detection System are the complete data acquisition of all the voltages along the superconducting components, i.e. non planar and planar coils, and bus bars, the evaluation of this data and the control of the magnet system safety discharges. The Quench Detection System is generating control commands for the magnet power supply control system and the electrical status of the superconducting components of W7-X. The Quench Detection System consists of nearly 580 Quench Detection Units (QDU) located in 10 QD-subsystems, 8 racks in each, one host system and two special interfaces for evaluation of the quench control commands and the failure signals. The operating software suite of the QD System allows the configuration, the operation and the maintenance of the whole system.

  10. Magnet Quench 101

    OpenAIRE

    Bottura, L.

    2014-01-01

    This paper gives a broad summary of the physical phenomena associated with the quench of a superconducting magnet. This paper gives a broad summary of the physical phenomena associated with the quench of a superconducting magnet.

  11. Quenching experiments on niobium

    International Nuclear Information System (INIS)

    Schwirtlich, I.A.; Schultz, H.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1980-01-01

    High-purity niobium wire specimens have been quenched in superfluid helium from near the melting point in order to obtain information on vacancies in this material. The quenched-in resistivity Δsub(pQ) for a quench from 2600 K was very small (approximately 0.3 x 10 -12 Ω m) and near the limit of detection. It is assumed that large quenching losses are responsible for the small quenched-in resistance. From the experimental cooling curve estimates have been made for the formation and migration enthalpies (Hsub(1V)sup(F), Hsub(1V)sup(M)), where Hsub(1V)sup(M)+Hsub(1V)sup(F)=Qsub(1V)sup(SD)=3.62 ev. For Ssub(1V)sup(F), the formation entropy, two different values were assumed. (author)

  12. Simulation of quenches in SSC magnets with passive quench protection

    International Nuclear Information System (INIS)

    Koepke, K.

    1985-06-01

    The relative ease of protecting an SSC magnet following a quench and the implications of quench protection on magnet reliability and operation are necessary inputs in a rational magnet selection process. As it appears likely that the magnet selection will be made prior to full scale prototype testing, an alternative means is required to ascertain the surviveability of contending magnet types. This paper attempts to provide a basis for magnet selection by calculating the peak expected quench temperatures in the 3 T Design C magnet and the 6 T Design D magnet as a function of magnet length. A passive, ''cold diode'' protection system has been assumed. The relative merits of passive versus active protection systems have been discussed in a previous report. It is therefore assumed that - given the experience gained from the Tevatron system - that an active quench protection system can be employed to protect the magnets in the eventuality of unreliable cold diode function

  13. LHC magnet quench protection system

    Science.gov (United States)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-07-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called 'cold diode' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements - so called 'cold diodes'. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a 'natural' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages.

  14. LHC magnet quench protection system

    International Nuclear Information System (INIS)

    Coull, L.; Hagedorn, D.; Remondino, V.; Rodriguez-Mateos, F.

    1994-01-01

    The quench protection system for the superconducting magnets of the CERN Large Hadron Collider (LHC) is described. The system is based on the so called ''cold diode'' concept. In a group of series connected magnets if one magnet quenches then the magnetic energy of all the magnets will be dissipated in the quenched magnet so destroying it. This is avoided by by-passing the quenched magnet and then rapidly de-exciting the unquenched magnets. For the LHC machine it is foreseen to use silicon diodes situated inside the cryostat as by-pass elements--so called ''cold diodes''. The diodes are exposed to some 50 kGray of radiation during a 10 year operation life-time. The high energy density of the LHC magnets (500 kJ/m) coupled with the relatively slow propagation speed of a ''natural'' quench (10 to 20 m/s) can lead to excessive heating of the zone where the quench started and to high internal voltages. It is therefore necessary to detect quickly the incipient quench and fire strip heaters which spread the quench out more quickly over a large volume of the magnet. After a quench the magnet chain must be de-excited rapidly to avoid spreading the quench to other magnets and over-heating the by-pass diode. This is done by switching high-power energy-dump resistors in series with the magnets. The LHC main ring magnet will be divided into 16 electrically separated units which has important advantages

  15. QUENCH: A software package for the determination of quenching curves in Liquid Scintillation counting.

    Science.gov (United States)

    Cassette, Philippe

    2016-03-01

    In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ(2) minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The role of quench rate in colloidal gels.

    Science.gov (United States)

    Royall, C Patrick; Malins, Alex

    2012-01-01

    Interactions between colloidal particles have hitherto usually been fixed by the suspension composition. Recent experimental developments now enable the control of interactions in situ. Here we use Brownian dynamics simulations to investigate the effect of controlling interactions upon gelation, by "quenching" the system from an equilibrium fluid to a gel. We find that, contrary to the normal case of an instantaneous quench, where the local structure of the gel is highly disordered, controlled quenching results in a gel with a much higher degree of local order. Under sufficiently slow quenching, local crystallisation is found, which is strongly enhanced when a monodisperse system is used. The higher the degree of local order, the smaller the mean squared displacement, indicating an enhancement of gel stability.

  17. Quench detection of superconducting magnet by dual-core optical fiber

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Kawai, K.; Kokubun, Y.; Takao, T.

    1988-01-01

    A quench-detecting technique using two single-mode optical cores in one fiber has been developed. The technique can detect quench from a temperature rise of 1.0 K at 4.2 K. An electromagnetic force-stress to the fiber did not deteriorate quench detection sensitivity. A quench detector using this method was immune from electromagnetic noise and free from troubles caused by high voltage tension. Problems arising when applying this method to a large scale magnet and possible improvements in the instrumentation are discussed

  18. Quench detection, protection and simulation studies on SST-1 magnets

    International Nuclear Information System (INIS)

    Sharma, Aashoo N.; Khristi, Yohan; Pradhan, Subrata; Doshi, Kalpesh; Prasad, Upendra; Banaudha, Moni; Varmora, Pankaj; Praghi, Bhadresh R.

    2015-01-01

    Steady-state Superconducting Tokamak-1 (SST-1) is India's first tokamak with superconducting toroidal field (TF) and Poloidal Field (PF) magnets. These magnets are made with NbTi based Cable-In-Conduit-Conductors. The quench characteristic of SST-1 CICC has been extensively studied both analytically and using simulation codes. Dedicated experiments like model coil test program, TF coil test program and laboratory experiments were conducted to fully characterize the performance of the CICC and the magnets made using this CICC. Results of quench experiments performed during these tests have been used to design the SST-1 quench detection and protection system. Simulation results of TF coil quenches and slow propagation quench of TF busbars have been used to further optimize these systems during the SST-1 tokamak operation. Redundant hydraulic based quench detection is also proposed for the TF coil quench detection. This paper will give the overview of these development and simulation activities. (author)

  19. Development of Industrially Produced Composite Quench Heaters for the LHC Superconducting Lattice Magnets

    CERN Document Server

    Szeless, Balázs; Calvone, F

    1996-01-01

    The quench heaters are vital elements for the protection of the LHC superconducting lattice magnets in the case of resistive transitions of the conductor. The basic concept of magnet protection and technical solutions are briefly presented. The quench heater consists of partially copper clad stainless steel strips sandwiched in between electric insulating carrier foils with electrical and mechanical properties such as to withstand high voltages, low temperatures, pressures and ionizing radiation. Testing of some commercial available electric insulation foils, polyimide (PI), polyetheretherketon (PEEK) and polyarylate (PA) and combinations of adhesive systems which are suitable for industrial processing are described. Possible industrial methods for series production for some 80 km of these composite quench heaters are indicated.

  20. The Role of Quench-back in the Passive Quench Protection of Long Solenoids with Coil Sub-division

    International Nuclear Information System (INIS)

    Green, Michael A.; Guo, XingLong; Wang, Li; Pan, Heng; Wu, Hong

    2009-01-01

    This paper describes how a passive quench protection system can be applied to long superconducting solenoid magnets. When a solenoid coil is long compared to its thickness, the magnet quench process will be dominated by the time needed for uench propagation along the magnet length. Quench-back will permit a long magnet to quench more rapidly in a passive way. Quenchback from a conductive (low resistivity) mandrel is essential for spreading the quench along the length of a magnet. The andrel must be inductively coupled to the magnet circuit that is being quenched. Current induced in the mandrel by di/dt in the magnet produces heat in the mandrel, which in turn causes the superconducting coil wound on the mandrel to quench. Sub-divisions often employed to reduce the voltages to ground within the coil. This paper explores when it is possible for quench-back to be employed for passive quench protection. The role of sub-division of the coil is discussed for long magnets.

  1. Effects of quenching and partial quenching on QCD penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2002-01-01

    We point out that chiral transformation properties of penguin operators change in the transition from unquenched to (partially) quenched QCD. The way in which this affects the lattice determination of weak matrix elements can be understood in the framework of (partially) quenched chiral perturbation

  2. ITER Side Correction Coil Quench model and analysis

    Science.gov (United States)

    Nicollet, S.; Bessette, D.; Ciazynski, D.; Duchateau, J. L.; Gauthier, F.; Lacroix, B.

    2016-12-01

    Previous thermohydraulic studies performed for the ITER TF, CS and PF magnet systems have brought some important information on the detection and consequences of a quench as a function of the initial conditions (deposited energy, heated length). Even if the temperature margin of the Correction Coils is high, their behavior during a quench should also be studied since a quench is likely to be triggered by potential anomalies in joints, ground fault on the instrumentation wires, etc. A model has been developed with the SuperMagnet Code (Bagnasco et al., 2010) for a Side Correction Coil (SCC2) with four pancakes cooled in parallel, each of them represented by a Thea module (with the proper Cable In Conduit Conductor characteristics). All the other coils of the PF cooling loop are hydraulically connected in parallel (top/bottom correction coils and six Poloidal Field Coils) are modeled by Flower modules with equivalent hydraulics properties. The model and the analysis results are presented for five quench initiation cases with/without fast discharge: two quenches initiated by a heat input to the innermost turn of one pancake (case 1 and case 2) and two other quenches initiated at the innermost turns of four pancakes (case 3 and case 4). In the 5th case, the quench is initiated at the middle turn of one pancake. The impact on the cooling circuit, e.g. the exceedance of the opening pressure of the quench relief valves, is detailed in case of an undetected quench (i.e. no discharge of the magnet). Particular attention is also paid to a possible secondary quench detection system based on measured thermohydraulic signals (pressure, temperature and/or helium mass flow rate). The maximum cable temperature achieved in case of a fast current discharge (primary detection by voltage) is compared to the design hot spot criterion of 150 K, which includes the contribution of helium and jacket.

  3. Quench in a conduction-cooled Nb3Sn SMES magnet

    Science.gov (United States)

    Korpela, Aki; Lehtonen, Jorma; Mikkonen, Risto; Perälä, Raine

    2003-11-01

    Due to the rapid development of cryocoolers, conduction-cooled Nb3Sn devices are nowadays enabled. A 0.2 MJ conduction-cooled Nb3Sn SMES system has been designed and constructed. The nominal current of the coil was 275 A at 10 K. The quench tests have been performed and in this paper the experimental data are compared to the computational one. Due to a slow normal zone propagation, Nb3Sn magnets are not necessarily self-protective. In conduction-cooled coils, a thermal interface provides a protection method known as a quench back. The temperature rise in the coil during a quench was measured with a sensor located on the inner radius of the coil. The current decay was also monitored. The measured temperature increased for approximately 15 s after the current had already decayed. This temperature rise is due to the heat conduction from the hot spot. Thus, the measured temperature does not represent the hot-spot temperature. A computational quench model which takes into account quench back and heat conduction after the current decay was developed in order to understand the measured temperatures. According to the results, a quench back due to the eddy current induced heating of the thermal interface of an LTS coil was an adequate protection method.

  4. Temperature Profiles During Quenches in LHC Superconducting Dipole Magnets Protected by Quench Heaters

    OpenAIRE

    Maroussov, V; Sanfilippo, S; Siemko, A

    1999-01-01

    The efficiency of the magnet protection by quench heaters was studied using a novel method which derives the temperature profile in a superconducting magnet during a quench from measured voltage signals. In several Large Hadron Collider single aperture dipole models, temperature profiles and temperature gradients in the magnet coil have been evaluated in the case of protection by different sets of quench heaters and different powering and protection parameters. The influence of the insulation...

  5. Deciphering jet quenching with JEWEL

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    In heavy ion collisions jets arising from the fragmentation of hard quarks and gluons experience strong modifications due to final state re-scattering. This so-called jet quenching is related to the emergence of collectivity and equilibration in QCD. I will give an introduction to jet quenching and its modeling in JEWEL, a Monte Carlo implementation of a dynamical model for jet quenching. I will then discuss examples highlighting how JEWEL can be used to elucidate the physical mechanisms relevant for jet quenching.  

  6. Analysis of stability and quench in HTS devices-New approaches

    International Nuclear Information System (INIS)

    Vysotsky, V.S.; Sytnikov, V.E.; Rakhmanov, A.L.; Ilyin, Y.

    2006-01-01

    R and D of HTS devices are in their full steam-more magnets and devices are developed with larger sizes. But analysis of their stability and quench was still old fashioned, based on normal zone determination, analysis of its appearance and propagation. Some peculiarities of HTS make this traditional, quite impractical and inconvenient approach to consideration of HTS devices stability and quench development using normal zone origination and propagation analysis. The novel approaches were developed that consider the HTS device as a cooled medium with non-linear parameters with no mentioning of 'superconductivity' in the analysis. The approach showed its effectiveness and convenience to analyze the stability and quench development in HTS devices. In this paper the analysis of difference between HTS and LTS quench, dependent on index n and specific heat comparison, is followed by the short approach descriptions and by the consequences from it for the HTS devices design. The further development of the method is presented for the analysis of long HTS objects where 'blow-up' regimes may happen. This is important for design and analysis of HTS power cables operations under overloading conditions

  7. TASK 2: QUENCH ZONE SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Fusselman, Steve

    2015-09-30

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from the outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual

  8. Quench tank in-leakage diagnosis at St. Lucie

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.E.; Au-Yang, M.K.; Beckner, D.A.; Vickery, A.N.

    1996-12-01

    In February 1995, leakage into the quench tank of the St. Lucie Nuclear Station Unit 1 was becoming an operational concern. This internal leak resulted in measurable increases in both the temperature and level of the quench tank water, and was so severe that, if the trend continued, plant shut down would be necessary. Preliminary diagnosis based on in-plant instrumentation indicated that any one of 11 valves might be leaking into the quench tank. This paper describes the joint effort by two teams of engineers--one from Florida Power & Light, the other from Framatome Technologies--to identify the sources of the leak, using the latest technology developed for valve diagnosis.

  9. First experience with the new Coupling Loss Induced Quench system

    CERN Document Server

    Ravaioli, E; Dudarev, A V; Kirby, G; Sperin, K A; ten Kate, H H J; Verweij, A P

    2014-01-01

    New-generation high-field superconducting magnets pose a challenge relating to the protection of the coil winding pack in the case of a quench. The high stored energy per unit volume calls for a very efficient quench detection and fast quench propagation in order to avoid damage due to overheating. A new protection system called Coupling-Loss Induced Quench (CLIQ) was recently, developed and tested at CERN. This method provokes a fast change in the magnet transport current by means of a capacitive discharge. The resulting change in the local magnetic field induces inter-filament and inter-strand coupling losses which heat up the superconductor and eventually initiate a quench in a large fraction of the coil winding pack. The method is extensively tested on a Nb-Ti single-wire test solenoid magnet in the CERN Cryogenic Laboratory in order to assess its performance, optimize its operating parameters, and study new electrical configurations. Each parameter is thoroughly analyzed and its impact on the quench effi...

  10. Quench propagation in coated conductors for fault current limiters

    International Nuclear Information System (INIS)

    Roy, F.; Perez, S.; Therasse, M.; Dutoit, B.; Sirois, F.; Decroux, M.; Antognazza, L.

    2009-01-01

    A fundamental understanding of the quench phenomenon is crucial in the future design and operation of high temperature superconductors based fault current limiters. The key parameter that quantifies the quenching process in superconductors is the normal zone propagation (NZP) velocity, which is defined as the speed at which the normal zone expands into the superconducting volume. In the present paper, we used numerical models developed in our group recently to investigate the quench propagation in coated conductors. With our models, we have shown that the NZP in these tapes depends strongly on the substrate properties.

  11. AgInCd control rod failure in the QUENCH-13 bundle test

    International Nuclear Information System (INIS)

    Sepold, L.; Lind, T.; Csordas, A. Pinter; Stegmaier, U.; Steinbrueck, M.; Stuckert, J.

    2009-01-01

    The QUENCH off-pile experiments performed at the Karlsruhe Research Center are to investigate the high-temperature behavior of Light Water Reactor (LWR) core materials under transient conditions and in particular the hydrogen source term resulting from the water injection into an uncovered LWR core. The typical LWR-type QUENCH test bundle, which is electrically heated, consists of 21 fuel rod simulators with a total length of approximately 2.5 m. The Zircaloy-4 rod claddings and the grid spacers are identical to those used in Pressurized Water Reactors (PWR) whereas the fuel is represented by ZrO 2 pellets. In the QUENCH-13 experiment the single unheated fuel rod simulator in the center of the test bundle was replaced by a PWR-type control rod. The QUENCH-13 experiment consisting of pre-oxidation, transient, and quench water injection at the bottom of the test section investigated the effect of an AgInCd/stainless steel/Zircaloy-4 control rod assembly on early-phase bundle degradation and on reflood behavior. Furthermore, in the frame of the EU 6th Framework Network of Excellence SARNET, release and transport of aerosols of a failed absorber rod were to be studied in QUENCH-13, which was accomplished with help of aerosol measurements performed by PSI-Switzerland and AEKI-Hungary. Control rod failure was initiated by eutectic interaction of steel cladding and Zircaloy-4 guide tube and was indicated at about 1415 K by axial peak absorber and bundle temperature responses and additionally by the on-line aerosol monitoring system. Significant releases of aerosols and melt relocation from the control rod were observed at an axial peak bundle temperature of 1650 K. At a maximum bundle temperature of 1820 K reflood from the bottom was initiated with cold water at a flooding rate of 52 g/s. There was no noticeable temperature escalation during quenching. This corresponds to the small amount of about 1 g in hydrogen production during the quench phase (compared to 42 g of H 2

  12. The origin of ultra diffuse galaxies: stellar feedback and quenching

    Science.gov (United States)

    Chan, T. K.; Kereš, D.; Wetzel, A.; Hopkins, P. F.; Faucher-Giguère, C.-A.; El-Badry, K.; Garrison-Kimmel, S.; Boylan-Kolchin, M.

    2018-05-01

    We test if the cosmological zoom-in simulations of isolated galaxies from the FIRE project reproduce the properties of ultra diffuse galaxies (UDGs). We show that outflows that dynamically heat galactic stars, together with a passively aging stellar population after imposed quenching, naturally reproduce the observed population of red UDGs, without the need for high spin halos, or dynamical influence from their host cluster. We reproduce the range of surface brightness, radius and absolute magnitude of the observed red UDGs by quenching simulated galaxies at a range of different times. They represent a mostly uniform population of dark matter-dominated dwarf galaxies with M* ˜ 108 M⊙, low metallicity and a broad range of ages; the more massive the UDGs, the older they are. The most massive red UDG in our sample (M* ˜ 3 × 108M⊙) requires quenching at z ˜ 3 when its halo reached Mh ˜ 1011 M⊙. Our simulated UDGs form with normal stellar-to-halo ratios and match the central enclosed masses and the velocity dispersions of the observed UDGs. Enclosed masses remain largely fixed across a broad range of quenching times because the central regions of their dark matter halos complete their growth early. If our simulated dwarfs are not quenched, they evolve into bluer low-surface brightness galaxies with M/L similar to observed field dwarfs. While our simulation sample covers a limited range of formation histories and halo masses, we predict that UDG is a common, and perhaps even dominant, galaxy type around M* ˜ 108 M⊙, both in the field and in clusters.

  13. Submersion Quenching of Undercooled Liquid Metals in an Electrostatic Levitator

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.

    2016-01-01

    The NASA Marshall Space Flight Center (MSFC) electrostatic levitation (ESL) laboratory has a long history of providing materials research and thermophysical property data. The laboratory has recently added a new capability, a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals and alloys. This is the first submersion quench system inside an electrostatic levitator. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and silicon-cobalt alloys. This rapid quench system will allow materials science studies of undercooled materials and new materials development, including studies of metastable phases and transient microstructures. In this presentation, the system is described and some initial results are presented.

  14. Discharge quenching circuit for counters

    International Nuclear Information System (INIS)

    Karasik, A.S.

    1982-01-01

    A circuit for quenching discharges in gas-discharge detectors with working voltage of 3-5 kV based on transistors operating in the avalanche mode is described. The quenching circuit consists of a coordinating emitter follower, amplifier-shaper for avalanche key cascade control which changes potential on the counter electrodes and a shaper of discharge quenching duration. The emitter follower is assembled according to a widely used flowsheet with two transistors. The circuit permits to obtain a rectangular quenching pulse with front of 100 ns and an amplitude of up to 3.2 kV at duration of 500 μm-8 ms. Application of the quenching circuit described permits to obtain countering characteristics with the slope less than or equal to 0.02%/V and plateau extent greater than or equal to 300 V [ru

  15. Quench tank in-leakage diagnosis at St. Lucie

    International Nuclear Information System (INIS)

    Price, J.E.; Au-Yang, M.K.; Beckner, D.A.; Vickery, A.N.

    1996-01-01

    In February 1995, leakage into the quench tank of the St. Lucie Nuclear Station Unit 1 was becoming an operational concern. This internal leak resulted in measurable increases in both the temperature and level of the quench tank water, and was so severe that, if the trend continued, plant shut down would be necessary. Preliminary diagnosis based on in-plant instrumentation indicated that any one of 11 valves might be leaking into the quench tank. This paper describes the joint effort by two teams of engineers--one from Florida Power ampersand Light, the other from Framatome Technologies--to identify the sources of the leak, using the latest technology developed for valve diagnosis

  16. Quench detection/protection of an HTS coil by AE signals

    International Nuclear Information System (INIS)

    Yoneda, M.; Nanato, N.; Aoki, D.; Kato, T.; Murase, S.

    2011-01-01

    A quench detection/protection system based on measuring AE signals was developed. The system was tested for a Bi2223 coil. Temperature rise after a quench occurrence was restrained at very low value. The normal zone propagation velocities in high T c superconductors are slow at high operation temperature and therefore local and excessive temperature rise generates at quench occurrence, and then the superconductors are degraded or burned. Therefore it is essential to detect the temperature rise in high T c superconducting (HTS) coils as soon as possible and protect them. The authors have presented a quench detection method for HTS coils by time-frequency visualization of AE signals and have shown its usefulness for a HTS coil with height and outer diameter of 40-50 mm. In this paper, the authors present a quench detection/protection system based on superior method in quench detection time to the previous method and show its usefulness for a larger HTS coil (height and outer diameter: 160-190 mm) than the previous coil.

  17. Quench evolution and hot spot temperature in the ATLAS B0 model coil

    CERN Document Server

    Dudarev, A; Boxman, H; Broggi, F; Dolgetta, N; Juster, F P; Tetteroo, M; ten Kate, H H J

    2004-01-01

    The 9-m long superconducting model coil B0 was built to verify design parameters and exercise the construction of the Barrel Toroid magnet of ATLAS Detector. The model coil has been successfully tested at CERN. An intensive test program to study quench propagation through the coil windings as well as the temperature distribution has been carried out. The coil is well equipped with pickup coils, voltage taps, superconducting quench detectors and temperature sensors. The current is applied up to 24 kA and about forty quenches have been induced by firing internal heaters. Characteristic numbers at full current of 24 kA are a normal zone propagation of 15 m/s in the conductor leading to a turn-to-turn propagation of 0.1 m/s, the entire coil in normal state within 5.5 s and a safe peak temperature in the windings of 85 K. The paper summarizes the quench performance of the B0 coil. Based on this experience the full-size coils are now under construction and first test results are awaited by early 2004. 7 Refs.

  18. The Quench Action

    Science.gov (United States)

    Caux, Jean-Sébastien

    2016-06-01

    We give a pedagogical introduction to the methodology of the Quench Action, which is an effective representation for the calculation of time-dependent expectation values of physical operators following a generic out-of-equilibrium state preparation protocol (for example a quantum quench). The representation, originally introduced in Caux and Essler (2013 Phys. Rev. Lett. 110 257203), is founded on a mixture of exact data for overlaps together with variational reasonings. It is argued to be quite generally valid and thermodynamically exact for arbitrary times after the quench (from short times all the way up to the steady state), and applicable to a wide class of physically relevant observables. Here, we introduce the method and its language, give an overview of some recent results, suggest a roadmap and offer some perspectives on possible future research directions.

  19. Quenching behaviour of hot zircaloy tube

    International Nuclear Information System (INIS)

    Chinchole, A.S.; Kulkarni, P.P.; Nayak, A.K.; Vijayan, P.K.

    2015-01-01

    The quenching process plays a very important role in case of safety of nuclear reactors. During large break Loss of Coolant Accident in a nuclear reactor, the cooling water from the system is lost. Under this condition, cold water is injected from emergency core cooling system. Quenching behaviour of such heated rod bundle is really complex. It is well known that nanofluids have better heat removal capability and high heat transfer coefficient owing to enhanced thermal properties. Alumina nano-particles result in better cooling abilities compared with the traditionally used quenching media. In this paper, the authors have carried out experiments on quenching behaviour of hot zircaloy tube with demineralized water and nanofluids. It was observed that, the tube got quenched within few seconds even with the presence of decay heat and shows slightly reduced quenching time compared with DM water. (author)

  20. Development of quench detection/protection system based on active power method for superconducting magnet by using capacitor circuit

    International Nuclear Information System (INIS)

    Nanato, N.; Otsuka, T.; Hesaka, S.; Murase, S.

    2013-01-01

    Highlights: ► The authors have presented an active power method for quench detection. ► A method for improving its characteristics using a capacitor circuit was proposed. ► Quench detection/protection test for a Bi2223 superconducting coil was carried out. ► The proposed method was more useful than the conventional one. -- Abstract: When a quench occurs in a superconducting magnet, excessive joule heating in normal region may damage the magnet. It is necessary to detect the quench as soon as possible and discharge magnetic energy stored in the magnet. The authors have presented a quench detection/protection system based on an active power method which detects the quench regardless of a self-inductive and mutual-inductive voltages and electromagnetic noise. In the conventional active power method, the inductive voltages are removed by cancel coils. In this paper, the authors propose a method to cancel an inductive voltage using a capacitor circuit. The quench detection/protection system becomes more precise and smaller than the conventional system through the capacitor circuit

  1. Classical vs. evolved quenching parameters and procedures in scintillation measurements: The importance of ionization quenching

    International Nuclear Information System (INIS)

    Bagan, H.; Tarancon, A.; Rauret, G.; Garcia, J.F.

    2008-01-01

    The quenching parameters used to model detection efficiency variations in scintillation measurements have not evolved since the decade of 1970s. Meanwhile, computer capabilities have increased enormously and ionization quenching has appeared in practical measurements using plastic scintillation. This study compares the results obtained in activity quantification by plastic scintillation of 14 C samples that contain colour and ionization quenchers, using classical (SIS, SCR-limited, SCR-non-limited, SIS(ext), SQP(E)) and evolved (MWA-SCR and WDW) parameters and following three calibration approaches: single step, which does not take into account the quenching mechanism; two steps, which takes into account the quenching phenomena; and multivariate calibration. Two-step calibration (ionization followed by colour) yielded the lowest relative errors, which means that each quenching phenomenon must be specifically modelled. In addition, the sample activity was quantified more accurately when the evolved parameters were used. Multivariate calibration-PLS also yielded better results than those obtained using classical parameters, which confirms that the quenching phenomena must be taken into account. The detection limits for each calibration method and each parameter were close to those obtained theoretically using the Currie approach

  2. MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.

  3. Concentration quenching in Nd-doped glasses

    International Nuclear Information System (INIS)

    Stokowski, S.E.; Cook, L.; Mueller, H.; Weber, M.J.

    1984-01-01

    Fluorescence from trivalent Nd in solids is unfortunately quenched by interactions between Nd ions. Thus, laser materials with high Nd concentrations have reduced efficiencies because of this self-quenching, also known as concentration quenching. Nd self-quenching in different crystals and glasses varies considerably. We are therefore investigating this effect in a large number of materials in an effort to: (1) find those materials with long Nd fluorescent lifetimes at high Nd concentrations; and (2) elucidate the basic mechanisms of quenching and how the material structure controls its magnitude. We have concentrated on Nd-doped glasses because they provide a rich variety of structures, albeit complicated by Nd site inhomogeneities, and are easily and quickly made

  4. Quench detection system of the EURATOM coil for the Large Coil Task

    International Nuclear Information System (INIS)

    Noether, G.; Gauss, S.; Maurer, W.; Siewerdt, L.; Ulbricht, A.; Wuechner, F.

    1989-01-01

    A special quench detection system has been developed for the EURATOM Large Coil Task (LCT) coil. The system is based on a bridge circuit which uses a special 'two in hand' winding technique for the pancakes of the EURATOM LCT coil. The electronic circuit was designed in a fail safe way to prevent failure of the quench detector due to failure of one of its components. A method for quick balancing of the quench detection system in a large toroidal magnet system was applied. The quench detection system worked very reliably during the experimental phase of the LCT and was within the quench detection level setting of 50 mV, i.e. the system was not sensitive to poloidal field transients at or below this level. Non-electrical methods for quench detection were also investigated. (author)

  5. Big Data in the SHELA Field: Investigating Galaxy Quenching at High Redshifts

    Science.gov (United States)

    Stevans, Matthew L.; Finkelstein, Steven L.; Wold, Isak; Kawinwanichakij, Lalitwadee; Sherman, Sydney; Gebhardt, Karl; Jogee, Shardha; Papovich, Casey J.; Ciardullo, Robin; Gronwall, Caryl; Gawiser, Eric J.; Acquaviva, Viviana; Casey, Caitlin; Florez, Jonathan; HETDEX Team

    2017-06-01

    We present a measurement of the z ~ 4 Lyman break galaxy (LBG) rest-frame UV luminosity function to investigate the onset of quenching in the early universe. The bright-end of the galaxy luminosity function typically shows an exponential decline far steeper than that of the underlying halo mass function. This is typically attributed to negative feedback from past active galactic nuclei (AGN) activity as well as dust attenuation. Constraining the abundance of bright galaxies at early times (z > 3) can provide a key insight into the mechanisms regulating star formation in galaxies. However, existing studies suffer from low number statistics and/or the inability to robustly remove stellar and AGN contaminants. In this study we take advantage of the unprecedentedly large (24 deg^2) Spitzer/HETDEX Exploratory Large Area (SHELA) field and its deep multi-wavelength photometry, which includes DECam ugriz, NEWFIRM K-band, Spitzer/IRAC, Herschel/SPIRE, and X-ray from XMM-Newton and Chandra. With SHELA’s deep imaging over a large area we are uniquely positioned to study statistically significant samples of massive galaxies at high redshifts (z > 3) when the first massive galaxies began quenching. We select our sample using photometric redshifts from the EAZY software package (Brammer et al. 2008) based on the optical and far-infrared imaging. We directly identify and remove stellar contaminants and AGN with IRAC colors and X-ray detections, respectively. By pinning down the exact shape of the bright-end of the z ~ 4 LBG luminosity function, we provide the deepest probe yet into the baryonic physics dominating star formation and quenching in the early universe.

  6. Quenching and recovery experiments on molybdenum

    International Nuclear Information System (INIS)

    Schwirtlich, I.A.; Schultz, H.; Max-Planck-Institut fuer Metallforschung, Stuttgart

    1980-01-01

    Quenching experiments in superfluid helium have been performed on high-purity wire specimens obtained from a Mo single crystal with a residual resistance ratio of 40 000. Quenching from various temperatures near the melting point to 1.5 K resulted in quenched-in resistivities which are interpreted in terms of quenched-in vacancies. The following parameters were derived: Hsub(1V)sup(F) = 3.2 eV (formation enthalpy of monovacancies) and Ssub(1V)sup(F) = 1.5 k (formation entropy). The recovery of the quenched-in resistivity showed a recovery stage at 520 K, which is compatible with a migration enthalpy of Hsub(1V)sup(M) = 1.35 eV. The results are compared with recently published positron annihilation data. (author)

  7. Environmental Quenching of Low-Mass Field Galaxies

    Science.gov (United States)

    Fillingham, Sean P.; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Garrison-Kimmel, Shea; Wheeler, Coral

    2018-04-01

    In the local Universe, there is a strong division in the star-forming properties of low-mass galaxies, with star formation largely ubiquitous amongst the field population while satellite systems are predominantly quenched. This dichotomy implies that environmental processes play the dominant role in suppressing star formation within this low-mass regime (M⋆ ˜ 105.5 - 8 M⊙). As shown by observations of the Local Volume, however, there is a non-negligible population of passive systems in the field, which challenges our understanding of quenching at low masses. By applying the satellite quenching models of Fillingham et al. (2015) to subhalo populations in the Exploring the Local Volume In Simulations (ELVIS) suite, we investigate the role of environmental processes in quenching star formation within the nearby field. Using model parameters that reproduce the satellite quenched fraction in the Local Group, we predict a quenched fraction - due solely to environmental effects - of ˜0.52 ± 0.26 within 1 systems observed at these distances are quenched via environmental mechanisms. Beyond 2 Rvir, however, dwarf galaxy quenching becomes difficult to explain through an interaction with either the Milky Way or M31, such that more isolated, field dwarfs may be self-quenched as a result of star-formation feedback.

  8. Quantitative proteomic assessment of very early cellular signaling events

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Olsen, Jesper V

    2007-01-01

    Technical limitations have prevented proteomic analyses of events occurring less than 30 s after signal initiation. We developed an automated, continuous quench-flow system allowing quantitative proteomic assessment of very early cellular signaling events (qPACE) with a time resolution of 1 s...

  9. Dust emission from wet, low-emission coke quenching process

    Science.gov (United States)

    Komosiński, Bogusław; Bobik, Bartłomiej; Konieczny, Tomasz; Cieślik, Ewelina

    2018-01-01

    Coke plants, which produce various types of coke (metallurgical, foundry or heating), at temperatures between 600 and 1200°C, with limited access to oxygen, are major emitters of particulates and gaseous pollutants to air, water and soils. Primarily, the process of wet quenching should be mentioned, as one of the most cumbersome. Atmospheric pollutants include particulates, tar substances, organic pollutants including B(a)P and many others. Pollutants are also formed from the decomposition of water used to quench coke (CO, phenol, HCN, H2S, NH3, cresol) and decomposition of hot coke in the first phase of quenching (CO, H2S, SO2) [1]. The development of the coke oven technology has resulted in the changes made to different types of technological installations, such as the use of baffles in quench towers, the removal of nitrogen oxides by selective NOx reduction, and the introduction of fabric filters for particulates removal. The BAT conclusions for coke plants [2] provide a methodology for the measurement of particulate emission from a wet, low-emission technology using Mohrhauer probes. The conclusions define the emission level for wet quenching process as 25 g/Mgcoke. The conducted research was aimed at verification of the presented method. For two of three quench towers (A and C) the requirements included in the BAT conclusions are not met and emissions amount to 87.34 and 61.35 g/Mgcoke respectively. The lowest particulates emission was recorded on the quench tower B and amounted to 22.5 g/Mgcoke, therefore not exceeding the requirements.

  10. Quench detection by fluid dynamic means in cable-in-conduit superconductors

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    The tight confinement of the helium in cable-in-conduit superconductors creates protection problems because of the pressure rise that can occur during a quench. But the same pressure rise offers the possibility of a non-electrical means of detecting incipient quenches by monitoring the outflow from the various hydraulic paths of the magnet. If the method is to work, the signal must be large enough to be detected unambiguously at an early time, and must not depend too strongly on the length, Joule power density, or rate of growth of the initial normal zone. This paper explores by calculation the degree to which these conditions can be met. The Westinghouse Large Coil Task coil is used as an example

  11. Quench Protection Studies of 11T Nb$_3$Sn Dipole Models for LHC Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, Alexander [Fermilab; Chlachidze, Guram [Fermilab; Nobrega, Alfred [Fermilab; Novitski, Igor [Fermilab; Karppinen, Mikko [CERN

    2014-07-01

    CERN and FNAL are developing 11 T Nb3Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb3Sn dipole coil tested in a magnetic mirror configuration.

  12. Controlled beta-quench treatment of fuel channels

    International Nuclear Information System (INIS)

    Moeckel, Andreas; Cremer, Ingo; Kratzer, Anton; Walter, Dirk; Perkins, Richard A.

    2007-01-01

    The trend towards higher fuel assembly discharge burnups poses new challenges for fuel channels in terms of their dimensional behavior and corrosion resistance. Beta-quenching of fuel channels has been applied by the nuclear industry to improve the dimensional stability of this component. This led AREVA NP to develop a new technique for beta quenching of fuel channels that combines the effect of beta-quenching with the optimization of the microstructure in order to improve the dimensional behavior of fuel channels by randomizing the crystallographic texture, while maintaining the excellent corrosion behavior of the fuel channels by providing intermetallic phase particles of optimum average size. The first fuel channels with these optimized material properties have been placed in the core of a German boiling water reactor (BWR) nuclear power plant in spring of 2004. Some more channels will follow in 2007 to broaden in-pile experience and to receive irradiation feedback from two other nuclear power plants. (authors)

  13. The mass dependence of dwarf satellite galaxy quenching

    International Nuclear Information System (INIS)

    Slater, Colin T.; Bell, Eric F.

    2014-01-01

    We combine observations of the Local Group with data from the NASA-Sloan Atlas to show the variation in the quenched fraction of satellite galaxies from low-mass dwarf spheroidals and dwarf irregulars to more massive dwarfs similar to the Magellanic Clouds. While almost all of the low-mass (M * ≲ 10 7 M ☉ ) dwarfs are quenched, at higher masses the quenched fraction decreases to approximately 40%-50%. This change in the quenched fraction is large and suggests a sudden change in the effectiveness of quenching that correlates with satellite mass. We combine this observation with models of satellite infall and ram pressure stripping to show that the low-mass satellites must quench within 1-2 Gyr of pericenter passage to maintain a high quenched fraction, but that many more massive dwarfs must continue to form stars today even though they likely fell into their host >5 Gyr ago. We also characterize how the susceptibility of dwarfs to ram pressure must vary as a function of mass if it is to account for the change in quenched fractions. Though neither model predicts the quenching effectiveness a priori, this modeling illustrates the physical requirements that the observed quenched fractions place on possible quenching mechanisms.

  14. Quenching reactions of electronically excited atoms

    International Nuclear Information System (INIS)

    Setser, D.W.

    2001-01-01

    The two-body, thermal quenching reactions of electronically excited atoms are reviewed using excited states of Ar, Kr, and Xe atoms as examples. State-specific interstate relaxation and excitation-transfer reactions with atomic colliders are discussed first. These results then are used to discuss quenching reactions of excited-state atoms with diatomic and polyatomic molecules, the latter have large cross sections, and the reactions can proceed by excitation transfer and by reactive quenching. Excited states of molecules are not considered; however, a table of quenching rate constants is given for six excited-state molecules in an appendix

  15. Reliability analysis for the quench detection in the LHC machine

    CERN Document Server

    Denz, R; Vergara-Fernández, A

    2002-01-01

    The Large Hadron Collider (LHC) will incorporate a large amount of superconducting elements that require protection in case of a quench. Key elements in the quench protection system are the electronic quench detectors. Their reliability will have an important impact on the down time as well as on the operational cost of the collider. The expected rates of both false and missed quenches have been computed for several redundant detection schemes. The developed model takes account of the maintainability of the system to optimise the frequency of foreseen checks, and evaluate their influence on the performance of different detection topologies. Seen the uncertainty of the failure rate of the components combined with the LHC tunnel environment, the study has been completed with a sensitivity analysis of the results. The chosen detection scheme and the maintainability strategy for each detector family are given.

  16. Quench/reflood modeling in MELCOR

    International Nuclear Information System (INIS)

    Gauntt, R.O.

    2001-01-01

    The authors describe the reactor accident simulation model MELCOR. It comprises hydrodynamic investigations on reactor core quenching, hydrogen generation in the reactor core vessel, quench front advances. Preliminary comparisons to data are reasonable but need further validation. (uke)

  17. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    Science.gov (United States)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  18. Design and operation of the quench protection system for the Fermilab tevatron

    International Nuclear Information System (INIS)

    Martin, P.S.

    1989-01-01

    The operation of a superconducting accelerator, in addition to cryogenic requirements, introduces a new complexity not present in a conventional accelerator. A method is required for protecting the magnets from possible overheating or overvoltage conditions in the event that some magnets quench, that is, are elevated in temperature so that they are no longer superconducting. The development of that system is the topic of this chapter. Any quench protection system has two very important ingredients. First, it must be designed with sufficient integrity to remain functional even under abnormal circumstances. The magnets must be protected during power failures, for example. Quenches involving a large number of components can also be hazardous because of the redistribution of voltages during the quench. Some of the system integrity can be achieved through redundancy. Frequent testing of critical elements of the system also assures the overall integrity. Second, the quench protection system must protect against damage from quenches regardless of their location or the excitation current at the time. It is not sufficient to protect just the magnet coils; either the leads between magnets must be fully stabilized or the quench protection system must protect them. The next section presents a brief discussion of the basic properties of superconductors and the phenomenon of quench propagation. 10 references, 13 figures

  19. Numerical Analysis of Heat Transfer During Quenching Process

    Science.gov (United States)

    Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana

    2018-04-01

    A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.

  20. 40 CFR 1065.675 - CLD quench verification calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false CLD quench verification calculations... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.675 CLD quench verification calculations. Perform CLD quench-check calculations as follows: (a) Perform a CLD analyzer quench...

  1. Lessons learned from the quench-11 training exercise

    International Nuclear Information System (INIS)

    Hohorst, J.K.; Allison, C.M.

    2007-01-01

    16 organizations in 12 countries are participating in a RELAP/SCDAPSIM training exercise based on the Quench 11 experiment performed at Karlsruhe (Germany) in 2005. This exercise is being conducted in parallel to an International Standard Problem (ISP). Both the ISP and the RELAP/SCDAPSIM training exercise included a 'semi-blind' portion that was completed in the fall of 2006 and an 'open' portion that is to be completed in the summer of 2007. The RELAP/SCDAPSIM training exercise is coordinated by Innovative Systems Software with support by the International SCDAP Development and Training Program (SDTP). The Quench-11 experiment is based on an electrically heated fuel rod bundle representative of a PWR design. The bundle was subjected to a boil down transient, heat-up, and quenching with peak temperatures exceeding the melting point of the Zircaloy cladding. This experiment was chosen by the European Union as an International Benchmark exercise to compare the effectiveness of quenching models in the severe accident computer codes used today for accident analysis. This paper briefly describes (a) RELAP/SCDAPSIM/MOD3.4, (b) the Quench facility and experiments used in the training exercise, and (c) the training guidelines provided to the participants followed by a more detailed description of the lessons learned from the initial 'semi-blind' portion. The representative results demonstrate that good analysts can still have a difficult time predicting the thermal hydraulic response of a relative simple transient in a complex system

  2. Single photon detection with self-quenching multiplication

    Science.gov (United States)

    Zheng, Xinyu (Inventor); Cunningham, Thomas J. (Inventor); Pain, Bedabrata (Inventor)

    2011-01-01

    A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.

  3. On the O2(a1Δ) quenching by vibrationally excited ozone

    Science.gov (United States)

    Azyazov, V. N.; Mikheyev, P. A.; Heaven, M. C.

    2010-09-01

    The development of a discharge oxygen iodine laser (DOIL) requires efficient production of singlet delta oxygen (O2(a)) in electric discharge. It is important to understand the mechanisms by which O2(a) is quenched in these devices. To gain understanding of this mechanisms quenching of O2(a) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a) quenching were followed by observing the 1268 nm fluorescence of the O2 a --> X transition. Fast quenching of O2(a) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  4. Quench propagation in the SSC dipole magnets

    International Nuclear Information System (INIS)

    Lopez, G.; Snitchler, G.

    1990-09-01

    The effects of quench propagation are modeled in 40mm and 50mm diameter collider dipole magnet designs. A comparative study of the cold diode (passive) and quench heater (active) protection schemes will be presented. The SSCQ modeling program accurately simulates the axial quench velocity and uses phenomenological time delays for turn-to-turn transverse propagation. The axial quench velocity is field dependent and consequently, each conductor's quench profile is tracked separately. No symmetry constraints are employed and the distribution of the temperatures along the conductor differs from the adiabatic approximation. A single magnet has a wide margin of self protection which suggests that passive protection schemes must be considered. 6 refs., 3 figs., 1 tab

  5. In-pile behavior of controlled beta-quenched fuel channels

    Energy Technology Data Exchange (ETDEWEB)

    Moeckel, Andreas; Pflaum, Wolfgang; Cremer, Ingo [AREVA NP GmbH, Erlangen (Germany); Zbib, Ali A. [AREVA NP Inc., Richland, WA (United States)

    2011-07-01

    Dimensional stability during in-reactor service is the major requirement that is put on fuel channels to provide good moderation and power distribution, and to guarantee unrestricted movement of the control blades during operation. High corrosion resistance and low hydrogen pick-up are required as well. The latter are usually not considered to be life limiting, but may contribute to channel deformation since increased oxide layers due to shadow corrosion on the control blade sides of a channel result in differential oxide thickness and differential volume expansion due to hydride formation. This would be in addition to the well known effects of irradiation induced channel deformation, especially channel growth and bow. In order to meet the trend toward increased fuel assembly discharge burnup levels and the industry wide need for improved dimensional stability of fuel channels, AREVA NP has developed the Controlled Beta-Quenching of fuel channels. The process combines the positive effect of randomization of the crystallographic texture by beta-quenching with the optimization of the microstructure for good corrosion resistance by providing intermetallic phase particles in the optimum size range. The Controlled Beta-Quenching is a continuous heat treatment operation. Its key features are the two-step induction heating to uniformly reach the target temperature, the tight control of the quench rate by cooling the fuel channel from the outer surface using a controlled argon mass flow for quenching, and the protection of the inner surface from oxidation by providing an argon atmosphere. Due to the utilization of argon, the surfaces of the channels remain metal bright after beta-quenching. All in all, the Controlled Beta-Quenching provides an overall 'clean' and environment friendly operation without the need of additional surface conditioning. The first set of beta-quenched fuel channels, exhibiting these optimized material properties, were inserted in the core

  6. Experimental methods for quenching structures in lunar-analog silicate melts - Variations as a function of quench media and composition

    International Nuclear Information System (INIS)

    Dyar, M.D.

    1984-01-01

    Compositions analogous to lunar green, orange, and brown glasses were synthesized under consistent conditions, then quenched into a variety of different media when the samples were removed from the furnace. Iron valence and coordination are a direct function of quench media used, spanning the range from brine/ice (most effective quench), water, butyl phthalate, silicone oil, liquid nitrogen, highly reducing CO-CO2 gas, to air (least efficient quench). In the green and brown glasses, Fe(3+) in four-fold and six-fold coordination is observed in the slowest-quenched samples Fe(2+) coordination varies directly with quench efficiency. Less pronounced changes were observed in the Ti-rich orange glass. Therefore the remote-sensed spectrum of a glass-bearing regolith on the moon may be influenced by the process by which the glass cooled, and extreme caution must be used when comparing spectra of synthetic glass analogs with real lunar glasses

  7. QUENCH-LOCA program at KIT and results of the QUENCH-L0 bundle test

    International Nuclear Information System (INIS)

    Stuckert, J.; Grosse, M.; Roessger, C.; Steinbrueck, M.; Walter, M.

    2012-01-01

    The current LOCA criteria and their safety goals are applied worldwide with minor modifications since the USNRC release in 1973. The criteria are given as limits on peak cladding temperature (T PCT ≤ 1200 C) and on oxidation level ECR (equivalent cladding reacted) calculated as a percentage of cladding oxidized (ECR ≤ 17% calculated using Baker-Just oxidation correlation). These two rules constitute the criterion of cladding embrittlement due to oxygen uptake. The results elaborated worldwide in the 1980s and 1990s on Zircaloy-4 (Zry-4) cladding tubes behavior (oxidation, deformation and bundle coolability) under LOCA conditions constitute a detailed data base and an important input for the safety assessment of LWRs. In-pile test data (with burn-up up to 35 MWd/kgU) were consistent with the out-of-pile data and did not indicate an influence of the nuclear environment on cladding deformation. At high burn-up, fuel rods fabricated from conventional Zry-4 often exhibit significant oxidation, hydriding, and oxide spallation. Thus, many fuel vendors have proposed the use of recently developed cladding alloys, such as M5 registered , ZIRLO trademark and other. Therefore, it is important to verify the safety margins for high burn-up fuel and fuel claddings with new alloys. Due to long cladding hydriding period for the high fuel burn-up, post-quench ductility is strongly influenced not only by oxidation but also hydrogen uptake. The 17% ECR limit is inadequate to ensure post-quench ductility at hydrogen concentrations higher than ∼500 wppm. Due to so called secondary hydriding (during oxidation of inner cladding surface after burst), which was firstly observed in JAEA, the hydrogen content can reach 4000 wppm in Zircaloy cladding regions around burst. To investigate the influence of these phenomena on the applicability of the embrittlement criteria for the German nuclear reactors it was decided to perform the QUENCH-LOCA bundle test series at the Karlsruhe Institute

  8. QUENCH-LOCA program at KIT and results of the QUENCH-L0 bundle test

    Energy Technology Data Exchange (ETDEWEB)

    Stuckert, J.; Grosse, M.; Roessger, C.; Steinbrueck, M.; Walter, M. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany)

    2012-11-01

    The current LOCA criteria and their safety goals are applied worldwide with minor modifications since the USNRC release in 1973. The criteria are given as limits on peak cladding temperature (T{sub PCT} {<=} 1200 C) and on oxidation level ECR (equivalent cladding reacted) calculated as a percentage of cladding oxidized (ECR {<=} 17% calculated using Baker-Just oxidation correlation). These two rules constitute the criterion of cladding embrittlement due to oxygen uptake. The results elaborated worldwide in the 1980s and 1990s on Zircaloy-4 (Zry-4) cladding tubes behavior (oxidation, deformation and bundle coolability) under LOCA conditions constitute a detailed data base and an important input for the safety assessment of LWRs. In-pile test data (with burn-up up to 35 MWd/kgU) were consistent with the out-of-pile data and did not indicate an influence of the nuclear environment on cladding deformation. At high burn-up, fuel rods fabricated from conventional Zry-4 often exhibit significant oxidation, hydriding, and oxide spallation. Thus, many fuel vendors have proposed the use of recently developed cladding alloys, such as M5 {sup registered}, ZIRLO trademark and other. Therefore, it is important to verify the safety margins for high burn-up fuel and fuel claddings with new alloys. Due to long cladding hydriding period for the high fuel burn-up, post-quench ductility is strongly influenced not only by oxidation but also hydrogen uptake. The 17% ECR limit is inadequate to ensure post-quench ductility at hydrogen concentrations higher than {approx}500 wppm. Due to so called secondary hydriding (during oxidation of inner cladding surface after burst), which was firstly observed in JAEA, the hydrogen content can reach 4000 wppm in Zircaloy cladding regions around burst. To investigate the influence of these phenomena on the applicability of the embrittlement criteria for the German nuclear reactors it was decided to perform the QUENCH-LOCA bundle test series at the

  9. Quench protection analysis of the Mu2e production solenoid

    International Nuclear Information System (INIS)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions

  10. Quench protection analysis of the Mu2e production solenoid

    Science.gov (United States)

    Kashikhin, Vadim; Ambrosio, Giorgio; Andreev, Nikolai; Lamm, Michael; Nicol, Thomas; Orris, Darryl; Page, Thomas

    2014-01-01

    The Muon-to-Electron conversion experiment (Mu2e), under development at Fermilab, seeks to detect direct muon to electron conversion to provide evidence for a process violating muon and electron lepton number conservation that cannot be explained by the Standard Model of particle physics. The Mu2e magnet system consists of three large superconducting solenoids. In case of a quench, the stored magnetic energy is extracted to an external dump circuit. However, because of the fast current decay, a significant fraction of the energy dissipates inside of the cryostat in the coil support shells made of structural aluminum, and in the radiation shield. A 3D finite-element model of the complete cold-mass was created in order to simulate the quench development and understand the role of the quench-back. The simulation results are reported at the normal and non-standard operating conditions.

  11. Wave form of current quench during disruptions in tokamaks

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Gribov, Yuri; Shimada, Michiya; Lukash, Victor; Kawano, Yasunori; Yoshino, Ryuji; Miki, Nobuharu; Ohmori, Junji; Khayrutdinov, Rustam

    2003-01-01

    The time dependence of the current decay during the current quench phase of disruptions, which can significantly influence the electro-magnetic force on the in-vessel components due to the induced eddy currents, is investigated using data obtained in JT-60U experiments in order to derive a relevant physics guideline for the predictive simulations of disruptions in ITER. It is shown that an exponential decay can fit the time dependence of current quench for discharges with large quench rate (fast current quench). On the other hand, for discharges with smaller quench rate (slow current quench), a linear decay can fit the time dependence of current quench better than exponential. (author)

  12. Introduction of fuzzy logic theorem for quench detection in the superconducting coil system of a Large Helical Device

    International Nuclear Information System (INIS)

    Adachi, Yamato; Ninomiya, Akira; Uriu, Yoshihisa; Ishigohka, Takeshi; Mito, Toshiyuki; Imagawa, Shinsaku; Yanagi, Nagato; Sekiguchi, Haruo; Yamada, Shuichi

    2005-01-01

    We have analyzed the state of the superconducting coil system in a LHD at NIFS (National Institute of Fusion Science) using a fuzzy logic theorem to detect quenching at an early stage. In this method, the 'warning coefficient' of the coil system is calculated. As for the fuzzy variables, 'effective stored heat' in the coil is introduced in addition to the voltage signal in order to improve quench detection and state estimation. The 'effective stored heat' is an integrated value of the heat generated in the coil on the assumption that instantaneous heat in the conductor is continuously cooled by liquid helium. Experiments conducted using the LHD coils confirmed that quench alarm signals can be issued with sufficient lead time before quenching. On the other hand, in the case of small local disturbances, the system shows only a small increase in the caution level. (author)

  13. Defect production in simulated cascades: Cascade quenching and short-term annealing

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1983-01-01

    Defect production in displacement cascades in copper has been modeled using the MARLOWE code to generate cascades and the stochastic annealing code ALSOME to simulate cascade quenching and short-term annealing of isolated cascades. Quenching is accomplished by using exaggerated values for defect mobilities and for critical reaction distances in ALSOME for a very short time. The quenched cascades are then short-term annealed with normal parameter values. The quenching parameter values were empirically determined by comparison with results of resistivity measurements. Throughout the collisional, quenching and short-term annealing phases of cascade development, the high energy cascades continue to behave as a collection of independent lower energy lobes. For recoils above about 30 keV the total number of defects and the numbers of free defects scale with the damage energy. As the energy decreases from 30 keV, defect production varies with the changing nature of the cascade configuration, resulting in more defects per unit damage energy. The simulated annealing of a low fluence of interacting cascades revealed an interstitial shielding effect on depleted zones during Stage I recovery. (orig.)

  14. Quench simulation results for a 12-T twin-aperture dipole magnet

    Science.gov (United States)

    Cheng, Da; Salmi, Tiina; Xu, Qingjin; Peng, Quanling; Wang, Chengtao; Wang, Yingzhe; Kong, Ershuai; Zhang, Kai

    2018-06-01

    A 12-T twin-aperture subscale dipole magnet is being developed for SPPC pre-study at the Institute of High Energy Physics (IHEP). The magnet is comprised of 6 double-pancake coils which include 2 Nb3Sn coils and 4 NbTi coils. As the stored energy of the magnet is 0.452 MJ and the operation margin is only about 20% at 4.2 K, a quick and effective quench protection system is necessary during the test of this high field magnet. For the design of the quench protection system, attention was not only paid to the hotspot temperature and terminal voltage, but also the temperature gradient during the quench process due to the poor mechanical characteristics of the Nb3Sn cables. With the adiabatic analysis, numerical simulation and the finite element simulation, an optimized protection method is adopted, which contains a dump resistor and quench heaters. In this paper, the results of adiabatic analysis and quench simulation, such as current decay, hot-spot temperature and terminal voltage are presented in details.

  15. Studies on halogen quenching through the Stern-Volmer plot

    International Nuclear Information System (INIS)

    Takiue, Makoto; Ishikawa, Hiroaki.

    1978-01-01

    The quenching effect for halogenated benzenes, methanes and ethanes have been investigated. The halogen quenching was accurately measured using the internal conversion electrons emitted from 113 Sn-sup(113m)In. From the quenching constants determined by the Stern-Volmer plots with respect to various halogen quenchers, the following results have been obtained. (1) The quenching constants increase with the number of halogen substituents, so as linearly in halogenated benzenes and exponentially in halogenated methanes and ethanes. Even the isomers of halogenides have different quenching constants. (2) There is a linearity between logarithm of the quenching constant and a polarographic half-wave reduction potential. (3) Electron excitation provides larger quenching constants than UV excitation for halogenated methanes. Based on these results, the mechanism of halogen quenching have been discussed in connection with the exciplex formation. (auth.)

  16. Quenching behaviour for a singular predator–prey model

    International Nuclear Information System (INIS)

    Ducrot, Arnaud; Guo, Jong-Shenq

    2012-01-01

    In this paper, we study the quenching behaviour for a system of two reaction–diffusion equations arising in the modelling of the spatio-temporal interaction of prey and predator populations in fragile environment. We first provide some sufficient conditions on the initial data to have finite time quenching. Then we classify the initial data to distinguish type I quenching and type II quenching, by introducing a delicate energy functional along with the help of some a priori estimates. Finally, we present some results on the quenching set. It can be a singleton, the whole domain, or a compact subset of the domain

  17. Heater induced quenches in SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1986-10-01

    A 1-m long SSC dipole constructed at the Lawrence Berkeley laboratory was subjected to a series of heater induced quenches to determine: axial quench propagation velocities, transverse quench propagation, and conductor temperature rise. Quenches were produced by 3 heaters at different locations in the magnet and at several currents. The results of these studies are described and are compared to previously published theoretical studies of quenches on the SSC dipoles. These results are shown to be in agreement with the calculations of the program ''QUENCH'', which includes an increase of the quench velocity during the first few milliseconds of the quench

  18. A quench detection/logging system for the SSCL Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Kim, K.; Coles, M.; Dryer, J.; Lambert, D.

    1993-05-01

    The quench in a magnet describes a process which occurs while the superconductivity state goes to the normal resistive state. The consequence of a quench is the conversion of the stored electromagnetic energy into heat. During this process the initiating point will reach a high temperature, which will char the insulation or melt the conductor and thereby destroy the magnet. To prevent the magnet from being lost, it is standard practice to observe several resistance and/or inductance voltages across the magnet as quench signatures -- detection. When a quench symptom is detected, protection operations are initiated: proper shutdown of the magnet excitation systems and treatment to dilute the heat energy at a spot -- protection. The temperature rise is diluted by firing heaters along the length of the magnet to insure that the dissipated energy is spread. To develop a reliable quench detection system, two distinct approaches have been tried in the past: (i) Understanding of the Noise Mechanism and Sub-system Optimization, and (ii) Escaping from the Known Electromagnetic Noises by Observing Optical Waves or Acoustic Waves. The MTL of SSCL confronts a mass-measurement of about 10,000 production magnets. To meet the testing schedule, the false quench detection rate needs to be further optimized while the true quench detection rate remains secure for the magnet measurement safety. To meet these requirements, we followed an iterative top-down approach. First we defined the signal and noise characteristics of the quench phenomena by using existing software tools to build a rapid prototype system incorporating all proven functionality of the existing system. Then we further optimize the system through iterative upgrading based on our signal and noise character findings

  19. Strain-based quench detection for a solenoid superconducting magnet

    International Nuclear Information System (INIS)

    Wang Xingzhe; Guan Mingzhi; Ma Lizhen

    2012-01-01

    In this paper, we present a non-electric quench detection method based on the strain gauge measurement of a superconducting solenoid magnet at cryogenic temperature under an intense magnetic field. Unlike the traditional voltage measurement of quench detection, the strain-based detection method utilizes low-temperature strain gauges, which evidently reduce electromagnetic noise and breakdown, to measure the magneto/thermo-mechanical behavior of the superconducting magnet during excitation. The magnet excitation, quench tests and trainings were performed on a prototype 5 T superconducting solenoid magnet. The transient strains and their abrupt changes were compared with the current, magnetic field and temperature signals collected during excitation and quench tests to indicate that the strain gauge measurements can detect the quench feature of the superconducting magnet. The proposed method is expected to be able to detect the quench of a superconducting coil independently or utilized together with other electrical methods. In addition, the axial quench propagation velocity of the solenoid is evaluated by the quench time lags among different localized strains. The propagation velocity is enhanced after repeated quench trainings. (paper)

  20. Numerical simulation of the laminar hydrogen flame in the presence of a quenching mesh

    International Nuclear Information System (INIS)

    Kudriakov, S.; Studer, E.; Bin, C.

    2011-01-01

    Recent studies of J.H. Song et al., and S.Y. Yang et al. have been concentrated on mitigation measures against hydrogen risk. The authors have proposed installation of quenching meshes between compartments or around the essential equipment in order to contain hydrogen flames. Preliminary tests were conducted which demonstrated the possibility of flame extinction using metallic meshes of specific size. Considerable amount of numerical and theoretical work on flame quenching phenomenon has been performed in the second half of the last century and several techniques and models have been proposed to predict the quenching phenomenon of the laminar flame system. Most of these models appreciated the importance of heat loss to the surroundings as a primary cause of extinguishment, in particular, the heat transfer by conduction to the containing wall. The supporting simulations predict flame-quenching structure either between parallel plates (quenching distance) or inside a tube of a certain diameter (quenching diameter). In the present study the flame quenching is investigated assuming the laminar hydrogen flame propagating towards a quenching mesh using two-dimensional configuration and the earlier developed models. It is shown that due to a heat loss to a metallic grid the flame can be quenched numerically. (authors)

  1. Quench Modeling in High-field Nb3Sn Accelerator Magnets

    Science.gov (United States)

    Bermudez, S. Izquierdo; Bajas, H.; Bottura, L.

    The development of high-field magnets is on-going in the framework of the LHC luminosity upgrade. The resulting peak field, in the range of 12 T to 13 T, requires the use Nb3Sn as superconductor. Due to the high stored energy density (compact winding for cost reduction) and the low stabilizer fraction (to achieve the desired margins), quench protection becomes a challenging problem. Accurate simulation of quench transientsin these magnets is hence crucial to the design choices, the definition of priority R&D and to prove that the magnets are fit for operation. In this paper we focus on the modelling of quench initiation and propagation, we describe approaches that are suitable for magnet simulation, and we compare numerical results with available experimental data.

  2. SDSS-IV MaNGA: faint quenched galaxies - I. Sample selection and evidence for environmental quenching

    Science.gov (United States)

    Penny, Samantha J.; Masters, Karen L.; Weijmans, Anne-Marie; Westfall, Kyle B.; Bershady, Matthew A.; Bundy, Kevin; Drory, Niv; Falcón-Barroso, Jesús; Law, David; Nichol, Robert C.; Thomas, Daniel; Bizyaev, Dmitry; Brownstein, Joel R.; Freischlad, Gordon; Gaulme, Patrick; Grabowski, Katie; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Roman-Lopes, Alexandre; Pan, Kaike; Simmons, Audrey; Wake, David A.

    2016-11-01

    Using kinematic maps from the Sloan Digital Sky Survey (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, we reveal that the majority of low-mass quenched galaxies exhibit coherent rotation in their stellar kinematics. Our sample includes all 39 quenched low-mass galaxies observed in the first year of MaNGA. The galaxies are selected with Mr > -19.1, stellar masses 109 M⊙ 1.9. They lie on the size-magnitude and σ-luminosity relations for previously studied dwarf galaxies. Just six (15 ± 5.7 per cent) are found to have rotation speeds ve, rot 5 × 1010 M⊙), supporting the hypothesis that galaxy-galaxy or galaxy-group interactions quench star formation in low-mass galaxies. The local bright galaxy density for our sample is ρproj = 8.2 ± 2.0 Mpc-2, compared to ρproj = 2.1 ± 0.4 Mpc-2 for a star-forming comparison sample, confirming that the quenched low-mass galaxies are preferentially found in higher density environments.

  3. Quenching of p-Cyanophenylalanine Fluorescence by Various Anions.

    Science.gov (United States)

    Pazos, Ileana M; Roesch, Rachel M; Gai, Feng

    2013-03-20

    To expand the spectroscopic utility of the non-natural amino acid p -cyanophenylalanine (Phe CN ), we examine the quenching efficiencies of a series of commonly encountered anions toward its fluorescence. We find that iodide exhibits an unusually large Stern-Volmer quenching constant, making it a convenient choice in Phe CN fluorescence quenching studies. Indeed, using the villin headpiece subdomain as a testbed we demonstrate that iodide quenching of Phe CN fluorescence offers a convenient means to reveal protein conformational heterogeneity. Furthermore, we show that the amino group of Phe CN strongly quenches its fluorescence, suggesting that Phe CN could be used as a local pH sensor.

  4. Quench simulation in the thin superconducting solenoid

    International Nuclear Information System (INIS)

    Tominaka, T.; Takasaki, M.; Wake, M.; Yamada, R.

    1983-07-01

    The propagation velocities of a normal zone were calculated for a 1 mdiameter x 1 m superconducting solenoid and for a 3 mdiameter x 5 m thin solenoid based on a simple model using the one-dimensional thermal equation. The quench back effect can be observed in certain conditions. The quench of the large thin solenoid was also simulated by using the computer program 'QUENCH'. (author)

  5. The hydrogen generated as a gas and storage in Zircaloy during water quenching

    International Nuclear Information System (INIS)

    Garcia, Eduardo A.

    1999-01-01

    A simple one-dimensional diffusion model has been developed for the complex process of Zircaloy oxidation during water quenching, calculating the hydrogen liberated as a gas and the hydrogen stored in the metal. The model was developed on the basis of small-scale separate-effects quench experiments performed at Forschungszentrum Karlsruhe. The new oxide surface and the new metallic surface produced by cracking of the oxide during quenching are calculated for each experiment performed at 1200 , 1400 and 1600 C degrees using as-received Zircaloy-4 (no pre oxidation) and with Zircaloy specimens pre oxidised to give oxide thicknesses of 100μm and 300μm. The results are relevant to accident management in light water reactors. (author)

  6. Quench protection studies of 11T 2-in-1 Nb$_{3}$Sn dipole models for LHC upgrades

    OpenAIRE

    Zlobin, AV; Chlachidze, G; Nobrega, F; Novitski, I; Karppinen, M

    2014-01-01

    CERN and FNAL are developing 11 T Nb3Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb3Sn dipole coil ...

  7. Variation of Quench Propagation Velocities in YBCO Cables

    CERN Document Server

    Härö, E.; Stenvall, A.; 10.1007/s10948-015-2976-y

    2015-01-01

    changes during the quench. Due to the large temperature margin between the operation and the current sharing temperatures, the normal zone does not propagate with the temperature front. This means that the temperature will rise in a considerably larger volume when compared to the quenched volume. Thus, the evolution of the temperature distribution below current sharing temperature Tcs after the quench onset affects the normal zone propagation velocity in HTS more than in LTS coils. This can be seen as an acceleration of the quench propagation velocities while the quench evolves when margin to Tcs is high. In this paper we scrutinize quench propagation in a stack of YBCO cables with an in-house finite element method software which solves the heat diffusion equation. We compute the longitudinal and transverse normal zone propagation velocities at various distances from the hot spot to demonstrate the distance-variation...

  8. A dichotomy in satellite quenching around L* galaxies

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Boylan-Kolchin, Michael; Bullock, James S.; Cooper, Michael C.; Tollerud, Erik J.

    2014-01-01

    We examine the star formation properties of bright (˜0.1 L*) satellites around isolated ˜L* hosts in the local Universe using spectroscopically confirmed systems in the Sloan Digital Sky Survey Data Release 7. Our selection method is carefully designed with the aid of N-body simulations to avoid groups and clusters. We find that satellites are significantly more likely to be quenched than a stellar mass-matched sample of isolated galaxies. Remarkably, this quenching occurs only for satellites of hosts that are themselves quenched: while star formation is unaffected in the satellites of star-forming hosts, satellites around quiescent hosts are more than twice as likely to be quenched than stellar-mass-matched field samples. One implication of this is that whatever shuts down star formation in isolated, passive L* galaxies also play at least an indirect role in quenching star formation in their bright satellites. The previously reported tendency for `galactic conformity' in colour/morphology may be a by-product of this host-specific quenching dichotomy. The Sérsic indices of quenched satellites are statistically identical to those of field galaxies with the same specific star formation rates, suggesting that environmental and secular quenching give rise to the same morphological structure. By studying the distribution of pairwise velocities between the hosts and satellites, we find dynamical evidence that passive host galaxies reside in dark matter haloes that are ˜45 per cent more massive than those of star-forming host galaxies of the same stellar mass. We emphasize that even around passive hosts, the mere fact that galaxies become satellites does not typically result in star formation quenching: we find that only ˜30 per cent of ˜0.1L* galaxies that fall in from the field are quenched around passive hosts, compared with ˜0 per cent around star-forming hosts.

  9. Oil quenched malleable iron, the strength of an old material in a “green cast” development and a new future

    Directory of Open Access Journals (Sweden)

    Cornelis J. van Ettinger

    2010-11-01

    Full Text Available Malleable iron lost the interest and the development stopped in the turbulent seventies of tremendous developments of new technologies. The personal computer, emission spectrometer, thermal analysis, cold-box core system and automatic vertical moulding were introduced into the foundry industry. Experience shows that these new technologies do not always match up with malleable iron. Solidification and mould filling simulation programs are not always capable to handle a low carbon equivalent iron like malleable iron. Recent developments show however by using these new technologies and combined with practical experience, it is possible to increase the casting yield of malleable iron to the same level as ductile iron. The mechanical properties, especially the yield strength of malleable iron according to the standard are equivalent to those of ductile iron, however the yield strength of oil quenched malleable iron is significantly higher than that of ductile iron. An extensive investigation is made between ductile iron, air quenched and oil quenched malleable irons based on the properties of more than 350 test bars produced under the same conditions. The results are compared with the existing international standards and discussed. Other properties like fatigue strength and response to surface treatments as induction hardening are also discussed. The costs of malleable iron are reviewed and compared with other ferro alloys. These recent developments in increasing the casting yield, the understanding of the strength, makes malleable iron competitive with ductile iron and cheaper than the first grade of ausferritic ductile iron, or steel qualities. It is possible to design lighter and save weight which is essential in the automotive industry. An example of “green cast” development for typical applications, used in automotive transmissions and engines are shown.

  10. Quantum Quenches in a Spinor Condensate

    International Nuclear Information System (INIS)

    Lamacraft, Austen

    2007-01-01

    We discuss the ordering of a spin-1 condensate when quenched from its paramagnetic phase to its ferromagnetic phase by reducing the magnetic field. We first elucidate the nature of the equilibrium quantum phase transition. Quenching rapidly through this transition reveals XY ordering either at a specific wave vector, or the ''light-cone'' correlations familiar from relativistic theories, depending on the end point of the quench. For a quench proceeding at a finite rate the ordering scale is governed by the Kibble-Zurek mechanism. The creation of vortices through growth of the magnetization fluctuations is also discussed. The long-time dynamics again depends on the end point, conserving the order parameter in a zero field, but not at a finite field, with differing exponents for the coarsening of magnetic order. The results are discussed in the light of a recent experiment by Sadler et al

  11. Superconducting synchrotron power supply and quench protection scheme

    International Nuclear Information System (INIS)

    Stiening, R.; Flora, R.; Lauckner, R.; Tool, G.

    1978-01-01

    The power supply and quench protection scheme for the proposed Fermilab 6 km circumference superconducting synchrotron is described. Specifically, the following points are discussed: (1) the 46 MW thyristor power supply; (2) the 3 x 10 8 J emergency energy dump; (3) the distributed microprocessing system for the detection of quenches; (4) the thyristor network for shunting current around quenched magnets; and (5) the heaters internal to the magnets which cause rapid propagation of quenches. Test results on prototype systems are given

  12. New, Coupling Loss Induced, Quench Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Ravaioli, E; Giloux, C; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    Email Print Request Permissions Save to Project A new and promising method for the protection of superconducting high-field magnets is developed and tested on the so-called MQXC quadrupole magnet at the CERN magnet test facility. The method relies on a capacitive discharge system inducing, during a few periods, an oscillation of the transport current in the superconducting cable of the coil. The corresponding fast change of the local magnetic field introduces a high coupling-current loss, which, in turn, causes a fast quench of a large fraction of the coil due to enhanced temperature. Results of measured discharges at various levels of transport current are presented and compared to discharges by quenching the coils using conventional quench heaters and an energy extraction system. The hot-spot temperature in the quenching coil is deduced from the coil voltage and current. The results are compared to simulations carried out using a lumped-element dynamic electro-thermal model of the so-called MQX...

  13. Quench studies of YBCO insulated and non-insulated pancake coils

    OpenAIRE

    Glowa Natalia; Wesche Rainer; Bruzzone Pierluigi

    2014-01-01

    As a result of extremely high upper critical fields Bc2 high temperature superconductors (HTSs) have the potential to be used as high field insert coils in magnet systems where the background field is provided by low temperature superconductors (LTS). However due to low quench propagation velocity in HTS as compared to LTS the issue of developing a fast and reliable quench detection and protection scheme for such magnet systems remains a serious challenge. In order to provide a stable operati...

  14. Quench protection studies of 11T 2-in-1 Nb$_{3}$Sn dipole models for LHC upgrades

    CERN Document Server

    Zlobin, AV; Nobrega, F; Novitski, I; Karppinen, M

    2014-01-01

    CERN and FNAL are developing 11 T Nb$_{3}$Sn dipole magnets for the LHC collimation system upgrade. Due to the large stored energy, protection of these magnets during a quench is a challenging problem. This paper reports the results of experimental studies of key quench protection parameters including longitudinal and radial quench propagation in the coil, coil heating due to a quench, and energy extraction and quench-back effect. The studies were performed using a 1 m long 11 T Nb$_{3}$Sn dipole coil tested in a magnetic mirror configuration.

  15. Influence of temperature to quenching on liquid scintillation measurement

    CERN Document Server

    Kato, T

    2003-01-01

    The amount of quench is measured with liquid scintillation spectrometer changing the temperature of the sample. The range of the changed temperature is between 0 deg C and 35 deg C. The measurement is carried out for three kinds of unquenched standard, two quenched standards and fifteen kinds of scintillation cocktail and the mixed sample. It is confirmed that the amount of quench increases for all samples as the temperature rises. The influence of the changed amount of quench to the quench correction is examined. (author)

  16. Xanthophyll cycle-dependent quenching of photosystem II chlorophyll a fluorescence: Formation of a quenching complex with a short fluorescence lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, A.M.; Hazlett, T.L.; Govindjee [Univ. of Illinois, Urbana, IL (United States)

    1995-03-14

    Excess light triggers protective nonradiative dissipation of excitation energy in photosystem II through the formation of a trans-thylakoid pH gradient that in turn stimulates formation of zeaxanthin and antheraxanthin. These xanthophylls when combined with protonation of antenna pigment-protein complexes may increase nonradiative dissipation and, thus, quench chlorophyll a fluorescence. Here we measured, in parallel, the chlorophyll a fluorescence lifetime and intensity to understand the mechanism of this process. Increasing the xanthophyll concentration in the presence of a pH gradient (quenched conditions) decreases the fractional intensity of a fluorescence lifetime component centered at {approx}2 ns and increases a component at {approx}0.4 ns. Uncoupling the pH gradient (unquenched conditions) eliminates the 0.4-ns component. Changes in the xanthophyll concentration do not significantly affect the fluorescence lifetimes in either the quenched or unquenched sample conditions. However, there are differences in fluorescence lifetimes between the quenched and unquenched states that are due to pH-related, but nonxanthophyll-related, processes. Quenching of the maximal fluorescence intensity correlates with both the xanthophyll concentration and the fractional intensity of the 0.4-ns component. The unchanged fluorescence lifetimes and the proportional quenching of the maximal and dark-level fluorescence intensities indicate that the xanthophyllact on antenna, not reaction center processes. Further, the fluorescence quenching is interpreted as the combined effect of the pH gradient and xanthophyll concentration, resulting in the formation of a quenching complex with a short ({approx}0.4 ns) fluorescence lifetime. 33 refs., 6 figs., 2 tabs.

  17. Quenching of the He/sub μ/ +(2s) atom

    International Nuclear Information System (INIS)

    Russell, J.E.

    1986-01-01

    Quenching of the metastable 2s state of the He/sub μ/ + atom in helium gas is discussed. The first part of the discussion, which is devoted entirely to processes occurring after the He/sub μ/ + has become bound to one or more ordinary helium atoms, is based partly on Cohen's calculations of rates of vibrational quenching and partly on estimates obtained in the present paper of rates of Burbidge--de Borde quenching and Ruderman quenching. It is concluded that Burbidge--de Borde quenching or Ruderman quenching, or both, are likely to be more effective than Cohen quenching if the vibrational level of the bound system is low. A recent experiment by von Arb et al. is then analyzed in the light of this conclusion. The analysis is based on the reported absence, or near absence, of Auger electrons accompanying 2s quenching. While it is agreed that the Cohen mechanism occurring in the molecular ion HeHe/sub μ/ + remains the most likely explanation of the experiment, it is concluded that the quenching occurs in comparatively high levels. It is then argued that this conclusion is in accord with some theoretical investigations of three-body association reactions and also with some elementary considerations regarding the relaxation of highly excited diatomic molecules, and it is further concluded that the quenching is most likely to occur in states with very low rotational quantum number and vibrational quantum number 8≤v≤14

  18. Quench protection challenges in long nb3sn accelerator magnets

    Science.gov (United States)

    Salmi, Tiina-Mari; Ambrosio, G.; Caspi, S.; Chlachidze, Guram; Dhallé, Marc; Felice, Helene; Ferracin, Paolo; Marchevsky, M.; Sabbi, G. L.; ten Kate, H. H. J.

    2012-06-01

    The quench protection of the several meter long, large aperture high-field Nb3Sn quadrupoles that the LARP collaboration is developing for the LHC interaction region upgrade, requires efficient protection heaters to quickly generate large resistive segments across the windings. To support the protection design, experiments in the recently tested LARP R&D magnets are aimed to characterize the coil response to different protection schemes. In particular, the delay to quench and the final hotspot temperatures are evaluated after firing the heaters at different powering regimes and coverage. Also, the contribution of external energy extraction is investigated. Based on the performed studies and computer simulations, it seems that if the same protection efficiency per unit length that is measured in a 1 m long model magnet can be scaled to a 3.6 m long magnet, and the heater coverage can be improved, about 1 MJ/m of stored energy can be absorbed in the magnet after a quench. However, significant technology developments are needed to scale the protection heater efficiency to longer magnets and to increase the coverage.

  19. Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    Directory of Open Access Journals (Sweden)

    D.X. Horváth

    2016-01-01

    Full Text Available We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.

  20. Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Horváth, D.X., E-mail: esoxluciuslinne@gmail.com [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary); Sotiriadis, S., E-mail: sotiriad@sissa.it [SISSA and INFN, Via Bonomea 265, 34136 Trieste (Italy); Takács, G., E-mail: takacsg@eik.bme.hu [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary)

    2016-01-15

    We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.

  1. Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching.

    Science.gov (United States)

    Zhang, Yanan; Ning, Xinping; Mao, Guobin; Ji, Xinghu; He, Zhike

    2018-05-01

    We have developed a new enzyme-free method for target sequence DNA detection based on the dynamic quenching of fluorescent silicon nanodots (SiNDs) toward Cy5-tagged DNA probe. Fascinatingly, the water-soluble SiNDs can quench the fluorescence of cyanine (Cy5) in Cy5-tagged DNA probe in homogeneous solution, and the fluorescence of Cy5-tagged DNA probe can be restored in the presence of target sequence DNA (the synthetic target miRNA-27a). Based on this phenomenon, a SiND-featured fluorescent sensor has been constructed for "turn-on" detection of the synthetic target miRNA-27a for the first time. This newly developed approach possesses the merits of low cost, simple design, and convenient operation since no enzymatic reaction, toxic reagents, or separation procedures are involved. The established method achieves a detection limit of 0.16 nM, and the relative standard deviation of this method is 9% (1 nM, n = 5). The linear range is 0.5-20 nM, and the recoveries in spiked human fluids are in the range of 90-122%. This protocol provides a new tactic in the development of the nonenzymic miRNA biosensors and opens a promising avenue for early diagnosis of miRNA-associated disease. Graphical abstract The SiND-based fluorescent sensor for detection of S-miR-27a.

  2. lessons learned from the QUENCH program at FZK

    International Nuclear Information System (INIS)

    Steinbrueck, M.; Grosse, M.; Sepold, L.; Stuckert, J.

    2011-01-01

    The paper gives an overview on the main outcome of the QUENCH program at FZK, including complementary bundle experiments and separate-effects tests. The major objective of the program is to deliver experimental and analytical data to support development and validation of quench and quench-related models as used in code systems. So far, 15 integral bundle QUENCH experiments with 21-31 electrically heated fuel rod simulators of 2.5 m length have been conducted. The following parameters and their influence on bundle degradation and reflood have been investigated: degree of pre-oxidation, temperature at initiation of reflood, flooding rate, influence of neutron absorber materials (B 4 C, AgInCd), air ingress, and the influence of the type of cladding alloy. In six tests reflood of the bundle caused a temporary temperature excursion connected with the release of a significant amount of hydrogen, typically 2 orders of magnitude greater than in those tests with 'successful' quenching in which cool-down was immediately achieved. Comprehensive formation, relocation, and oxidation of melt were observed in all tests with escalation. The temperature boundary between rapid cooldown and temperature escalation was typically 2100-2200 K in the 'normal' quench tests, i.e. tests without absorber and/or steam starvation. Tests with absorber and/or steam starvation were found to lead to temperature escalations at lower temperatures. All phenomena occurring in the bundle tests have been additionally investigated in parametric and more systematic separate-effects tests. Oxidation kinetics of various cladding alloys, including advanced ones, have been determined over a wide temperature range (873-1773 K) in different atmospheres (steam, oxygen, air, and their mixtures). Hydrogen absorption by different zirconium alloys was investigated in detail, recently also using neutron radiography as non-destructive method for determination of hydrogen distribution in claddings

  3. System and method for quench protection of a superconductor

    Science.gov (United States)

    Huang, Xianrui; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas

    2008-03-11

    A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.

  4. The hydrogen generated as a gas and storage in Zircaloy during steam quenching

    International Nuclear Information System (INIS)

    Garcia, Eduardo A.

    2000-01-01

    A simple one-dimensional diffusion model has been developed for the complex process of Zircaloy oxidation during steam quenching, calculating the hydrogen liberated as a gas and the hydrogen stored in the metal. The model was developed on the basis of small-scale separate-effects quench experiments performed at Forschungszentrum Karlsruhe. The new oxide surface and the new metallic surface produced by cracking of the oxide during quenching are calculated for each experiment performed at 1200 centigrade, 1400 centigrade and 1600 centigrade using as-received Zircaloy-4 (no pre-oxidation) and with Zircaloy specimens pre-oxidized to give oxide thickness of 100μm and 300μm. The results are relevant to accident management in nuclear power plants. (author)

  5. Bar quenching in gas-rich galaxies

    Science.gov (United States)

    Khoperskov, S.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.

    2018-01-01

    Galaxy surveys have suggested that rapid and sustained decrease in the star-formation rate (SFR), "quenching", in massive disk galaxies is frequently related to the presence of a bar. Optical and near-IR observations reveal that nearly 60% of disk galaxies in the local universe are barred, thus it is important to understand the relationship between bars and star formation in disk galaxies. Recent observational results imply that the Milky Way quenched about 9-10 Gyr ago, at the transition between the cessation of the growth of the kinematically hot, old, metal-poor thick disk and the kinematically colder, younger, and more metal-rich thin disk. Although perhaps coincidental, the quenching episode could also be related to the formation of the bar. Indeed the transfer of energy from the large-scale shear induced by the bar to increasing turbulent energy could stabilize the gaseous disk against wide-spread star formation and quench the galaxy. To explore the relation between bar formation and star formation in gas rich galaxies quantitatively, we simulated gas-rich disk isolated galaxies. Our simulations include prescriptions for star formation, stellar feedback, and for regulating the multi-phase interstellar medium. We find that the action of stellar bar efficiently quenches star formation, reducing the star-formation rate by a factor of ten in less than 1 Gyr. Analytical and self-consistent galaxy simulations with bars suggest that the action of the stellar bar increases the gas random motions within the co-rotation radius of the bar. Indeed, we detect an increase in the gas velocity dispersion up to 20-35 km s-1 at the end of the bar formation phase. The star-formation efficiency decreases rapidly, and in all of our models, the bar quenches the star formation in the galaxy. The star-formation efficiency is much lower in simulated barred compared to unbarred galaxies and more rapid bar formation implies more rapid quenching.

  6. Heat transfer coefficients during quenching of steels

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, H.S.; Jalil, J.M. [University of Technology, Department of Electromechanical Engineering, Baghdad (Iraq); Peet, M.J.; Bhadeshia, H.K.D.H. [University of Cambridge, Department of Materials Science and Metallurgy, Cambridge (United Kingdom)

    2011-03-15

    Heat transfer coefficients for quenching in water have been measured as a function of temperature using steel probes for a variety of iron alloys. The coefficients were derived from measured cooling curves combined with calculated heat-capacities. The resulting data were then used to calculate cooling curves using the finite volume method for a large steel sample and these curves have been demonstrated to be consistent with measured values for the large sample. Furthermore, by combining the estimated cooling curves with time-temperature-transformation (TTT) diagrams it has been possible to predict the variation of hardness as a function of distance via the quench factor analysis. The work should prove useful in the heat treatment of the steels studied, some of which are in the development stage. (orig.)

  7. Optimization of a quench detection system for superconducting magnets

    International Nuclear Information System (INIS)

    Borlein, M.

    2004-12-01

    Subject of this report is the detection of a quench in a superconducting magnet. For the safe operation of superconducting magnets one of the most important issues is the quench detection system which controls the superconducting state of the magnet and triggers a safety discharge if necessary. If it comes to a breakdown of the superconductivity (quench), the magnet has to be discharged very quickly to avoid any damage or danger for the magnet or its environment. First an introducing overview is given. Next different methods of quench detection will be presented, partially on the basis of existing quench detection systems and the applicability of these methods in different states of the magnet operation will be shown. The different quench detection methods are compared and evaluated partially by using test experiments described in the appendix. As an application example this report contains a proposal for the quench detection system for the Wendelstein 7-X facility, actually built by the Institute for Plasma Physics, Garching [de

  8. Quench behavior of a superconducting accelerator magnet

    International Nuclear Information System (INIS)

    McInturff, A.D.; Sampson, W.B.; Garber, M.; Dahl, P.F.

    1980-01-01

    Data are presented on the minimum energy required to cause quenches to propagate in an accelerator dipole magnet. The amount of stored energy dissipated into the magnet was measured as a function of dipole excitation current. This in turn determines the maximum coil temperature reached in a given magnet. Quench velocities in the longitudinal direction of the conductor were as high as 11m/sec. The azimuthal velocities or turn to turn velocities were found to be a function of the number of fiberglass layers of insulation that the quench had to cross and were on the order of a few tens of centimeters/sec. The field shape of a given magnet was found to be unchanged for more than 100 quenches. The coil to coil connection and inter-coil splice resistances were found to be less than a namo-ohm and therefore of litle consequence in the cryogenic load considerations. No definitive answers were found on how to decrease the rate of training (130 Gauss/Quench average) required from 4.OT to 5.1T

  9. Analysis of the quench propagation along Nb$_{3}$Sn Rutherford cables with the THELMA code. Part II: application to the quench longitudinal propagation

    CERN Document Server

    Manfreda, G.; Bajas, H.; Perez, J.C.

    2016-01-01

    To improve the technology of the new generation of accelerator magnets, prototypes are being manufactured and tested in several laboratories. In parallel, many numerical analyses are being carried out to predict the magnets behaviour and interpret the experimental results. This paper focuses on the quench propagation velocity, which is a crucial parameter as regards the energy dissipation along the magnet conductor. The THELMA code, originally developed for cable-in-conduit conductors for fusion magnets, has been used to study such quench propagation. To this purpose, new code modules have been added to describe the Rutherford cable geometry, the material non-linear thermal properties and to describe the thermal conduction problem in transient regime. THELMA can describe the Rutherford cable at the strand level, modelling both the electrical and thermal contact resistances between strands and enabling the analysis of the effects of local hot spots and quench heaters. This paper describes the model application...

  10. Quenching phenomena in natural circulation loop

    International Nuclear Information System (INIS)

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-01-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity

  11. Quenching phenomena in natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Umekawa, Hisashi; Ozawa, Mamoru [Kansai Univ., Osaka (Japan); Ishida, Naoki [Daihatsu Motor Company, Osaka (Japan)

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  12. (Talk) Investigating The Star Formation Quenching Across Cosmic Time - A Methodology To Select Galaxies Just After The Quenching Of Star Formation

    Science.gov (United States)

    Citro, Annalisa; Pozzetti, Lucia; Quai, Salvatore; Moresco, Michele; Vallini, Livia; Cimatti, Andrea

    2017-06-01

    We propose a method aimed at identifing galaxies in the short evolutionary phase in which they quench their star-formation (SF). We rely on high- to low-ionization emission line ratios, which rapidly disappear after the SF halt due to the softening of the UV ionizing radiation. In particular, we focus on [O III] 5007/Halpha and [Ne III] 3869/[O II] 3727, simulating their time evolution by means of the CLOUDY photoionization code. We find that these two emission line ratios are able to trace the quenching on very short time-scales (i.e. 10-80 Myr), depending on if a sharp or a smoother SF quenching is assumed. We adopt the [N II] 6584/[O II] 3727 ratio as metallicity diagnostic to mitigate the metallicity degeneracy which affects our method. Using a Sloan Digital Sky Survey galaxy sample, we identify 11 examples of extreme quenching candidates within the [O III] 5007/Halpha vs. [N II] 6584/[O II] 3727 plane, characterized by faint [Ne III] 3869, blue dust-corrected spectra and blue (u-r) colours, as expected if the quenching occurred in the recent past. Our results also suggest that the observed fractions of quenching candidates can be used to constrain the quenching mechanism at work and its time-scales.

  13. Novel water-air circulation quenching process for AISI 4140 steel

    Science.gov (United States)

    Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai

    2013-11-01

    AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.

  14. Quenching and recovery experiments on tungsten

    International Nuclear Information System (INIS)

    Rasch, K.D.; Siegel, R.W.; Schultz, H.

    1976-01-01

    A short summary is given of new results concerning transmission electron microscopy and resistivity measurements on quenched tungsten. These results give evidence for the first time that the quenching and annealing of high purity tungsten leads to vacancy--defect clustering resulting in small voids observable in the electron microscope. 21 references

  15. High-Field Quench Behavior and Protection of $Bi_2 Sr_2 Ca Cu_2 O_x$ Coils: Minimum and Maximum Quench Detection Voltages

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming [Fermilab; Ye, Liyang [NCSU, Raleigh; Turrioni, Daniele [Fermilab; Li, Pei [Fermilab

    2015-01-01

    Small insert coils have been built using a multifilamentary Bi2Sr2CaCu2Ox round wire, and characterized in background fields to explore the quench behaviors and limits of Bi2Sr2CaCu2Ox superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltage shall be greater than 50 mV to not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increases from ~40 K to ~80 K with increasing the operating wire current density Jo from 89 A/mm2 to 354 A/mm2 whereas for the voltage to reach 1 V, it increases from ~60 K to ~140 K, showing the increasing negative impact of slow normal zone propagation on quench detection with increasing Jo and the need to limit the quench detection voltage to < 1 V. These measurements, coupled with an analytical quench model, were used to access the impact of the maximum allowable voltage and temperature upon quench detection on the quench protection, assuming to limit the hot spot temperature to <300 K.

  16. Galaxies in the act of quenching star formation

    Science.gov (United States)

    Quai, Salvatore; Pozzetti, Lucia; Citro, Annalisa; Moresco, Michele; Cimatti, Andrea

    2018-04-01

    Detecting galaxies when their star-formation is being quenched is crucial to understand the mechanisms driving their evolution. We identify for the first time a sample of quenching galaxies selected just after the interruption of their star formation by exploiting the [O III] λ5007/Hα ratio and searching for galaxies with undetected [O III]. Using a sample of ˜174000 star-forming galaxies extracted from the SDSS-DR8 at 0.04 ≤ z growth of the quiescent population at these redshifts. Their main properties (i.e. star-formation rate, colours and metallicities) are comparable to those of the star-forming population, coherently with the hypothesis of recent quenching, but preferably reside in higher-density environments.Most candidates have morphologies similar to star-forming galaxies, suggesting that no morphological transformation has occurred yet. From a survival analysis we find a low fraction of candidates (˜ 0.58% of the star-forming population), leading to a short quenching timescale of tQ ˜ 50 Myr and an e-folding time for the quenching history of τQ ˜ 90 Myr, and their upper limits of tQ < 0.76 Gyr and τQ <1.5 Gyr, assuming as quenching galaxies 50% of objects without [O III] (˜7.5%).Our results are compatible with a 'rapid' quenching scenario of satellites galaxies due to the final phase of strangulation or ram-pressure stripping. This approach represents a robust alternative to methods used so far to select quenched galaxies (e.g. colours, specific star-formation rate, or post-starburst spectra).

  17. Numerical Study of Quench Protection for Fast-Ramping Accelerator Magnets

    CERN Document Server

    Schwerg, N; Mess, K-N; Russenschuck, S

    2009-01-01

    The quench module of the ROXIE field computation program has been presented at previous conferences. In this paper we discuss recently implemented features that allow quench simulation of fast-ramping superconducting magnets. As the reliability of quench detection during the ramps depends on the signal to noise ratio, we simulate the influence of detection thresholds and the propagation of undetected quenches during the ramps. We also study the effect of an increased copper content and the feasibility of a self-protected magnet surviving a powering cycle with an undetected quench and without quench heater firing or energy-extraction system.

  18. [Interference for Various Quench Agents of Chemical Disinfectants on Detection of Endotoxin Activities in Water].

    Science.gov (United States)

    Zhang, Can; Liu, Wen-jun; Shi, Yun; An, Dai-zhi; Bai, Miao; Xu, Wen

    2015-05-01

    The quenching agents such as histidine, glycine, ascorbic acid, Tween-80, sodium sulfite and sodium hyposulfite are commonly used for quenching the residual disinfectant in water. In this paper, in order to select the optimal type and concentration range of quenching agents prior to the Limulus assays, the interference effects of each quenching agent at different concentrations on endotoxin detection were investigated by the Limulus assays of kinetic-turbidity. Our results identified that, as for 0-1.0% concentration of histidine, ascorbic acid, Tween-80, sodium sulfite (pH unadjusted and pH neutral), interference on the Limulus assays was existed. Hence, these quenching agents could not be applied as neutralizers prior to Limulus assays. Although, there was no interference on endotoxin detection for the glycine, a yellow color, developed by the quenching products of glycine and glutaric dialdehyde, contributed to false positive results. Hence, glycine should not be used as quenching agents in Limulus assays for samples containing glutaric dialdehyde. Compared with other quenching agents as histidine, glycine, ascorbic acid, Tween-80, sodium sulfite, 0-1.0% concentration of sodium hyposulfite elicited no obvious interference, while 1.0%-5.0% concentration of sodium hyposulfite illustrated exhibition effect for endotoxin detection. All in all, compared with other quenching agents as histidine, glycine, ascorbic acid, Tween-80 and sodium sulfite, sodium hyposulfite is suitable for quenching chemicals prior to endotoxin detection and less than 0.5% of concentration is allowable.

  19. Fluorescence quenching of fluorescein by Merocyanine 540 in liposomes

    International Nuclear Information System (INIS)

    Toprak, Mahmut; Meryem Aydin, Burcu; Arik, Mustafa; Onganer, Yavuz

    2011-01-01

    The fluorescence quenching of fluorescein (FL) by merociyanine 540 (MC540) was examined in L-egg lecithin phosphatidycholine (PC) liposomes using spectroscopic methods. The type of quenching mechanism (dynamic or static) was evaluated using the Stern-Volmer plots. Findings were also supported by the temperature studies and florescence decay measurements. The Stern-Volmer equation was utilized to calculate bimolecular quenching constants (K q ). Furthermore, the bimolecular quenching constant of the quencher in the liposomes (K SV ), partition coefficient (K p ), binding constant (K), and corresponding thermodynamic parameters ΔH, ΔS, and ΔG were calculated. The quenching property was also used in determining quantitatively (K p ) the partition coefficient of Merociyanini 540 in PC liposome.The obtained data indicated that static quenching occurred in the system and the K SV values decreased with increasing lipid concentration. In addition, thermodynamic analysis suggested that van der Waals interactions and hydrogen bonding were the main acting forces between fluorescein and merociyanine 540 molecules in the medium. - Highlights: → Fluorescence quenching of FL by MC540 in liposome system was analyzed. → Fluorescence quenching mechanism of FL by MC540 was consistent with the static model. → Binding FL to MC540 was spontaneous and carried out by hydrogen bond and van der Waals forces.

  20. FPGA-based quench detection system for super-FRS super-ferric dipole prototype

    International Nuclear Information System (INIS)

    Yang Tongjun; Wu Wei; Yao Qinggao; Yuan Ping; He Yuan; Han Shaofei; Ma Lizhen

    2011-01-01

    The quench detection system for Super-FRS super-ferric dipole prototype magnet of FAIR has been designed and built. The balance bridge was used to detect quench signal. In order to avoid blind zone of quench detection, two independent bridges were used. NI PXI-7830R FPGA was used to implement filter to quench signal and algorithm of quench decision and to produce quench trigger signal. Pre-sample technique was used in quench data acquisition. The data before and after quench could be recorded for analysis later. The test result indicated that the quench of the dipole's superconducting coil could be reliably detected by the quench detection module. (authors)

  1. Application of analytical capability to predict rapid cladding cooling and quench during the blowdown phase of a large break loss-of-coolant accident

    International Nuclear Information System (INIS)

    Aksan, S.N.; Tolman, E.L.; Nelson, R.A.

    1983-01-01

    Large-break Experiments L2-2 and L2-3 conducted in the Loss-of-Fluid Test (LOFT) facility experienced core-wide rapid quenches early in the blowdown transients. To further investigate rapid cladding quenches, separate effects experiments using Semiscale solid-type electric heater rods were conducted in the LOFT Test Support Facility (LTSF) over a wide range of inlet coolant conditions. The analytical capability to predict the cladding temperature response from selected LTSF experiments estimated to bound the hydraulic conditions causing the LOFT early blowdown quenches was investigated using the RELAP4 computer code and was shown to be acceptable over the film boiling cooldown phase. This analytical capability was then used to investigate the behavior of nuclear fuel rods under the same hydraulic conditions. The calculations show that, under rapid cooling conditions, the behaviors of nuclear and electrical heater rods are significantly different because the nuclear rods are conduction limited, while the electrical rods are convection limited

  2. Processing of the quench detection signals in W7-X

    International Nuclear Information System (INIS)

    Birus, Dietrich; Schneider, Matthias; Rummel, Thomas; Fricke, Marko; Petry, Klaus; Ebersoldt, Andreas

    2009-01-01

    The Wendelstein 7-X (W7-X) project uses superconductive coils for generation of the magnetic field to keep the plasma. One of the important safety systems is the protection against quench events. The quench detection system of W7-X protects the superconducting coils, the superconducting bus bar sections and the high temperature superconductor of the current leads against the damage because of a quench and against the high stress by a fast discharge of the magnet system. Therefore, the present design of the quench detection system (QDS) uses a two-stage safety concept for discharging the magnetic system. This paper describes the present design of the system assembly from the quench detection unit (QDU) for the detection of the quench to the quench detection interface (QDI) to implement the two-stage safety concept.

  3. Implicit time-dependent finite different algorithm for quench simulation

    International Nuclear Information System (INIS)

    Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi

    1994-12-01

    A magnet in a fusion machine has many difficulties in its application because of requirement of a large operating current, high operating field and high breakdown voltage. A cable-in-conduit (CIC) conductor is the best candidate to overcome these difficulties. However, there remained uncertainty in a quench event in the cable-in-conduit conductor because of a difficulty to analyze a fluid dynamics equation. Several scientists, then, developed the numerical code for the quench simulation. However, most of them were based on an explicit time-dependent finite difference scheme. In this scheme, a discrete time increment is strictly restricted by CFL (Courant-Friedrichs-Lewy) condition. Therefore, long CPU time was consumed for the quench simulation. Authors, then, developed a new quench simulation code, POCHI1, which is based on an implicit time dependent scheme. In POCHI1, the fluid dynamics equation is linearlized according to a procedure applied by Beam and Warming and then, a tridiagonal system can be offered. Therefore, no iteration is necessary to solve the fluid dynamics equation. This leads great reduction of the CPU time. Also, POCHI1 can cope with non-linear boundary condition. In this study, comparison with experimental results was carried out. The normal zone propagation behavior was investigated in two samples of CIC conductors which had different hydraulic diameters. The measured and simulated normal zone propagation length showed relatively good agreement. However, the behavior of the normal voltage shows a little disagreement. These results indicate necessity to improve the treatment of the heat transfer coefficient in the turbulent flow region and the electric resistivity of the copper stabilizer in high temperature and high field region. (author)

  4. Heating the quenched Eguchi-Kawai model

    Energy Technology Data Exchange (ETDEWEB)

    Klinkhamer, F.R. (Rijksuniversiteit Leiden (Netherlands). Sterrewacht)

    1983-05-30

    We consider the Eguchi-Kawaii reduction, in the momentum-quenched prescription, of the SU(N) lattice gauge theory for N -> infinite and address the problem of how finite temperature might be incorporated. This is of interest in order to establish quark deconfinement at high temperatures. We also show that different quenching procedures may be inequivalent.

  5. Exciplex formation accompanied with excitation quenching.

    Science.gov (United States)

    Fedorenko, Stanislav G; Burshtein, Anatoly I

    2010-04-08

    The competence of the reversible exciplex formation and parallel quenching of excitation (by electron or energy transfer) was considered using a non-Markovian pi-forms approach, identical to integral encounter theory (IET). General equations accounting for the reversible quenching and exciplex formation are derived in the contact approximation. Their general solution was obtained and adopted to the most common case when the ground state particles are in great excess. Particular cases of only photoionization or just exciplex formation separately studied earlier by means of IET are reproduced. In the case of the irreversible excitation quenching, the theory allows specifying the yields of the fluorescence and exciplex luminescence, as well as the long time kinetics of excitation and exciplex decays, in the absence of quenching. The theory distinguishes between the alternative regimes of (a) fast equilibration between excitations and exciplexes followed by their decay with a common average rate and (b) the fastest and deep excitation decay followed by the weaker and slower delayed fluorescence, backed by exciplex dissociation.

  6. Validation of Quench Simulation and Simulation of the TWIN Solenoid

    CERN Document Server

    Pots, Rosalinde Hendrika

    2015-01-01

    For the Future Circular Collider at CERN a multi-purpose detector is proposed. The 6T TWIN Solenoid, a very large magnet system with a stored energy of 53 GJ, is being designed. It is important to protect the magnet against quenches in the system. Therefore several existing quench protection systems are evaluated and simulations have be performed on quenches in the TWIN Solenoid. The simulations on quenches in the TWIN Solenoid have been performed with promising results; the hotspot temperatures do not exceed 120 K and layer to layer voltages stay below 500 V. Adding quench heaters to the system might improve the quench protection system further.

  7. 2D/3D quench simulation using ANSYS for epoxy impregnated Nb3Sn high field magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ryuji Yamada et al.

    2002-09-19

    A quench program using ANSYS is developed for the high field collider magnet for three-dimensional analysis. Its computational procedure is explained. The quench program is applied to a one meter Nb{sub 3}Sn high field model magnet, which is epoxy impregnated. The quench simulation program is used to estimate the temperature and mechanical stress inside the coil as well as over the whole magnet. It is concluded that for the one meter magnet with the presented cross section and configuration, the thermal effects due to the quench is tolerable. But we need much more quench study and improvements in the design for longer magnets.

  8. Investigation of an overheated PWR-type fuel rod simulator bundle cooled down by steam. Pt. 1: experimental and calculational results of the QUENCH-04 test. Pt. 2: application of the SVECHA/QUENCH code to the analysis of the QUENCH-01 and QUENCH-04 bundle tests

    International Nuclear Information System (INIS)

    Sepold, L.; Hofmann, P.; Homann, C.

    2002-04-01

    The QUENCH experiments are to investigate the hydrogen source term that results from the water injection into an uncovered core of a light-water reactor (LWR). The test bundle is made of 21 fuel rod simulators with a length of approximately 2.5 m. 20 fuel rod simulators are heated over a length of 1024 mm, the one unheated fuel rod simulator is located in the center of the test bundle. Heating is carried out electrically using 6-mm-diameter tungsten heating elements installed in the center of the rods and surrounded by annular ZrO 2 pellets. The rod cladding is identical to that used in LWRs: Zircaloy-4, 10.75 mm outside diameter, 0.725 mm wall thickness. The test bundle is instrumented with thermocouples attached to the cladding and the shroud at 17 different elevations with an axial distance between the thermocouples of 100 mm. During the entire test up to the cooldown phase, superheated steam together with the argon as carrier gas enters the test bundle at the bottom end and leaves the test section at the top together with the hydrogen that is produced in the zirconium-steam reaction. The hydrogen is analyzed by three different instruments: two mass spectrometers and a ''Caldos 7 G'' hydrogen measuring device (based on the principle of heat conductivity). Part I of this report describes the results of test QUENCH-04 performed in the QUENCH test facility at the Forschungszentrum Karlsruhe on June 30, 1999. The objective of the experiment QUENCH-04 was to investigate the reaction of the non-preoxidized rod cladding on cooldown by steam rather than quenching by water. Part II of the present report deals with the results of the SVECHA/QUENCH (S/Q) code application to the FZK QUENCH bundle tests. The adaptation of the S/Q code to such kind of calculations is described. The numerical procedure of the recalculation of the temperature test data, and the preparation for the S/Q code input is presented. In particular, the results of the QUENCH-01 and QUENCH-04 test

  9. Forced convective post CHF heat transfer and quenching

    International Nuclear Information System (INIS)

    Nelson, R.A.

    1980-01-01

    This paper discusses mechanisms in the post-CHF region which provide understanding and qualitative prediction capability for several current forced convective heat transfer problems. In the area of nuclear reactor safety, the mechanisms are important in the prediction of fuel rod quenches for the reflood phase, blowdown phase, and possibly some operational transients with dryout. Results using the mechanisms to investigate forced convective quenching are presented. Data reduction of quenching experiments is discussed, and the way in which the quenching transient may affect the results of different types of quenching experiments is investigated. This investigation provides an explanation of how minimum wall superheats greater than the homogeneous nucleation temperature result, as well as how these may appear to be either hydrodynamically or thermodynamically controlled. Finally, the results of a parametric study of the effects of the mechanisms upon the LOFT L2-3 hotpin calculation are presented

  10. Heating the quenched Eguchi-Kawai model

    International Nuclear Information System (INIS)

    Klinkhamer, F.R.

    1983-01-01

    We consider the Eguchi-Kawaii reduction, in the momentum-quenched prescription, of the SU(N) lattice gauge theory for N -> infinite and address the problem of how finite temperature might be incorporated. This is of interest in order to establish quark deconfinement at high temperatures. We also show that different quenching procedures may be inequivalent. (orig.)

  11. Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels

    KAUST Repository

    Mahuthannan, Ariff Magdoom; Lacoste, Deanna; Damazo, Jason; Kwon, Eddie; Roberts, William L.

    2017-01-01

    Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.

  12. Flame Quenching Dynamics of High Velocity Flames in Rectangular Cross-section Channels

    KAUST Repository

    Mahuthannan, Ariff Magdoom

    2017-01-05

    Understanding flame quenching for different conditions is necessary to develop safety devices like flame arrestors. In practical applications, the speed of a deflagration in the lab-fixed reference frame will be a strong function of the geometry through which the deflagration propagates. This study reports on the effect of the flame speed, at the entrance of a quenching section, on the quenching distance. A 2D rectangular channel joining two main spherical vessels is considered for studying this effect. Two different velocity regimes are investigated and referred to as configurations A, and B. For configuration A, the velocity of the flame is 20 m/s, while it is about 100 m/s for configuration B. Methane-air stoichiometric mixtures at 1 bar and 298 K are used. Simultaneous dynamic pressure measurements along with schlieren imaging are used to analyze the quenching of the flame. Risk assessment of re-ignition is also reported and analyzed.

  13. Superradiance Transition and Nonphotochemical Quenching in Photosynthetic Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady Petrovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nesterov, Alexander [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Lopez, Gustavo [Universidad de Guadalajara, Departamento de Fısica, Jalisco (Mexico); Sayre, Richard Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-23

    Photosynthetic organisms have evolved protective strategies to allow them to survive in cases of intense sunlight fluctuation with the development of nonphotochemical quenching (NPQ). This process allows light harvesting complexes to transfer the excess sunlight energy to non-damaging quenching channels. This report compares the NPQ process with the superradiance transition (ST). We demonstrated that the maximum of the NPQ efficiency is caused by the ST to the sink associated with the CTS. However, experimental verifications are required in order to determine whether or not the NPQ regime is associated with the ST transition for real photosynthetic complexes. Indeed, it can happen that, in the photosynthetic apparatus, the NPQ regime occurs in the “non-optimal” region of parameters, and it could be independent of the ST.

  14. Partially quenched gauge theories and an application to staggered fermions

    International Nuclear Information System (INIS)

    Bernard, C.W.; Golterman, M.F.L.

    1994-01-01

    We extend our Lagrangian technique for chiral perturbation theory for quenched QCD to include theories in which only some of the quarks are quenched. We discuss the relationship between the partially quenched theory and a theory in which only the unquenched quarks are present. We also investigate the peculiar infrared divergences associated with the η' in the quenched approximation, and find the conditions under which such divergences can appear in a partially quenched theory. We then apply our results to staggered fermion QCD in which the square root of the fermion determinant is taken, using the observation that this should correspond to a theory with four quarks, two of which are quenched

  15. Quenching of liquid scintillator fluorescence by chloroalkanes and chloroalkenes

    International Nuclear Information System (INIS)

    Hariharan, Chithra; Mishra, A.K.

    2000-01-01

    The fluorescence quenching of 2,5-diphenyloxazole (PPO) by a series of chloroalkanes and chloroalkenes including carbon tetrachloride, chloroform, dichloroethane, tetrachloroethane, dichloroethylene, trichloroethylene and tetrachloroethylene was studied in toluene as solvent at room temperature. CCl 4 was found to be the most efficient quencher in the series. The quenching was found to be appreciable and a positive deviation from linearity was observed in the Stern-Volmer (SV) plots for all the quenchers in the concentration range studied. From the studies of effect of temperature, solvent viscosity and excitation wavelength dependence for the PPO-CCl 4 system, it was inferred that non-linearity is due to the presence of a minor static quenching component in an overall dynamic quenching. The static (K S ) and the dynamic (K D ) quenching constants were calculated from the modified SV equation using quadratic least square fits. Fluorescence quenching experiments with CCl 4 were done for four other scintillators (POPOP, α-NPO, BBO and PBBO). The mechanism of quenching was established to be via charge-transfer, with the direction of transfer being from the scintillators to the chloroalkanes and chloroalkenes

  16. Investigation of thermal quenching and abnormal thermal quenching in mixed valence Eu co-doped LaAlO{sub 3} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingjing [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Zhao, Yang [China academy of civil aviation science and technology, Beijing 100028 (China); Mao, Zhiyong, E-mail: mzhy1984@163.com [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Wang, Dajian [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Bie, Lijian, E-mail: ljbie@tjut.edu.cn [Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2017-06-15

    Temperature dependent luminescence of mixed valence Eu co-doped LaAlO{sub 3} phosphors are deeply investigated in this work. Different temperature properties of Eu{sup 2+} and Eu{sup 3+} luminescence are observed as the phosphor excited by different incident light. Eu{sup 3+} luminescence shows normal thermal quenching when excited at 320 nm and abnormal thermal quenching as the excitation light changed into 365 nm, while Eu{sup 2+} luminescence exhibits a normal thermal quenching independent on the incident excitation lights. The origin of these novel normal/abnormal thermal quenching phenomena are analyzed and discussed by the excitation-emission processes in terms of the configuration coordinate model. The presented important experimental and analysis results give insights into the temperature properties of phosphors.

  17. Degraded Core Quench: Summary of Progress 1996-1999 - Executive Summary

    International Nuclear Information System (INIS)

    Haste, T.J.; Trambauer, K.

    2000-01-01

    necessarily occur. Turning to separate-effects tests, extension of the FZKA single rod series has again widened the scope of the database, to cover for example the effect of the cooling medium, in the temperature range 1273-1873 K. The effects of oxide cracking and oxidation of newly exposed metallic surfaces have been clearly demonstrated, also the role of hydrogen absorption and release, particularly at 1673 K and below. The database on hydrogen absorption/release has itself been extended to these higher temperatures. The relative lack of cracking and excess generation of hydrogen at 1873 K compares with similar results obtained in the bundle tests performed with preoxidized clad at similar temperatures. No separate-effects data are however available for temperatures above 1873 K, which is where most of the excess hydrogen generation which poses a potential threat to the containment occurs; this is an incentive to extend the range upwards if at all possible. French quench experiments from temperatures of 1573 K and below have addressed the issues of the effects of irradiated cladding, and also hydrogen absorption, showing some beneficial effects of irradiation. Concerning hydrogen absorption, this has been clearly observed in the FZKA and in earlier Hungarian experiments, and has been postulated as the cause of low temperature excursions seen in QUENCH-03 and in the earlier Phebus C3 test. A model for this process validated to 1723 K has been developed. However it is not clear that the conditions in the experiments which lead to such excursions are likely to occur in-reactor. The amounts absorbed in situ (5-10% of the total) appear small and within the error margins allowed on the hydrogen source term to the containment. However, use of the recently developed absorption/release model should allow this uncertainty to be reduced or eliminated. Concerning modelling, the most detailed work has been performed by IBRAE who have extended the SVECHA code to include mechanistic

  18. Modeling of Interfilament Coupling Currents and Their Effect on Magnet Quench Protection

    CERN Document Server

    Ravaioli, E; Chlachidze, G; Maciejewski, M; Sabbi, G; Stoynev, S E; Verweij, A

    2017-01-01

    Variations in the transport current of a superconducting magnet cause several types of transitory losses. Due to its relatively short time constant, usually of the order of a few tens of milliseconds, interfilament coupling loss can have a significant effect on the coil protection against overheating after a quench. This loss is deposited in the strands and can facilitate a more homogeneous transition to the normal state of the coil turns. Furthermore, the presence of local interfilament coupling currents reduces the magnet's differential inductance, which in turn provokes a faster discharge of the transport current. The lumped-element dynamic electrothermal model of a superconducting magnet has been developed to reproduce these effects. Simulations are compared to experimental electrical transients and found in good agreement. After its validation, the model can be used for predicting the performance of quench protection systems based on energy extraction, quench heaters, the newly developed coupling-loss-in...

  19. MD290: Q4 IP6 Quench Level

    CERN Document Server

    Bednarek, Mateusz Jakub; Lechner, Anton; CERN. Geneva. ATS Department

    2016-01-01

    The detailed program proposed for the LHC Machine Development concerning a quench induced by fast losses on the MQY.4L6 quadrupole is presented. The merit of the MD, the necessary modifications of the machine protection systems are presented together with a preliminary analysis of the MD results.

  20. Quench propagation across the copper wedges in SSC dipoles

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1986-01-01

    The effect of copper wedges on quench propagation in SSC windings has been studied. The results indicate that the turn-to-turn quench transit time for conductors separated by an insulated copper wedge can be predicted with reasonable accuracy from the bulk quench properties and the mean wedge thickness

  1. Effects of quenching and partial quenching on penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2001-01-01

    In the calculation of non-leptonic weak decay rates, a "mismatch" arises when the QCD evolution of the relevant weak hamiltonian down to hadronic scales is performed in unquenched QCD, but the hadronic matrix elements are then computed in (partially) quenched lattice QCD. This mismatch arises

  2. Quench protection and safety of the ATLAS central solenoid

    CERN Document Server

    Makida, Y; Haruyama, T; ten Kate, H H J; Kawai, M; Kobayashi, T; Kondo, T; Kondo, Y; Mizumaki, S; Olesen, G; Sbrissa, E; Yamamoto, A; Yamaoka, H

    2002-01-01

    Fabrication of the ATLAS central solenoid was completed and the performance test has been carried out. The solenoid was successfully charged up to 8.4 kA, which is 10% higher than the normal operational current of 7.6 kA. Two methods for quench protection, pure aluminum strips accelerating quench propagation and quench protection heaters distributing normal zones, are applied in order to safely dissipate the stored energy. In this paper, quench characteristics and protection methods of the ATLAS central solenoid are described. (14 refs).

  3. Quench protection system for 1 MJ superconducting magnet coil for SMES Project at VECC, Kolkata

    International Nuclear Information System (INIS)

    Thakur, S.K.; Bera, A.; Kumar, Y.; Bhunia, U.; Pradhan, J.; Saha, S.

    2012-01-01

    This paper describes the indigenous development of a system which is used for quench detection, protection and monitoring the parameters of superconducting coil of superconducting magnetic energy storage (SMES) system. Resistive voltage measurement method is used for detecting the quench. The voltage across each current lead is also monitored and over voltage across the current lead is detected by comparing it with a set voltage limit. By using isolation amplifier and timer circuit, false quench trigging due to noise and spikes are minimized. If quench is detected a relay operated to turn-off the SMES power supply followed by the release of stored energy of the magnet to the external dump resistance by closing a switch. (author)

  4. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    Science.gov (United States)

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  5. 40 CFR 86.327-79 - Quench checks; NOX analyzer.

    Science.gov (United States)

    2010-07-01

    ... any flow rate into the reaction chamber. This includes, but is not limited to, sample capillary, ozone... Quench checks; NOX analyzer. (a) Perform the reaction chamber quench check for each model of high vacuum reaction chamber analyzer prior to initial use. (b) Perform the reaction chamber quench check for each new...

  6. Short initial length quench on CICC of ITER TF coils

    Energy Technology Data Exchange (ETDEWEB)

    Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.; Lacroix, B. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Bessette, D.; Rodriguez-Mateos, F. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Coatanea-Gouachet, M. [ELC Engineering, 350 chemin du Verladet, F-13290 Les Milles (France); Gauthier, F. [Soditech Ingenierie, 4 bis allée des Gabians, ZI La Frayère, 06150 Cannes (France)

    2014-01-29

    Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of the voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed.

  7. Short initial length quench on CICC of ITER TF coils

    International Nuclear Information System (INIS)

    Nicollet, S.; Ciazynski, D.; Duchateau, J.-L.; Lacroix, B.; Bessette, D.; Rodriguez-Mateos, F.; Coatanea-Gouachet, M.; Gauthier, F.

    2014-01-01

    Previous quench studies performed for the International Thermonuclear Experimental Reactor (ITER) Toroidal Field (TF) Coils have led to identify two extreme families of quench: first 'severe' quenches over long initial lengths in high magnetic field, and second smooth quenches over short initial lengths in low field region. Detailed analyses and results on smooth quench propagation and detectability on one TF Cable In Conduit Conductor (CICC) with a lower propagation velocity are presented here. The influence of the initial quench energy is shown and results of computations with either a Fast Discharge (FD) of the magnet or without (failure of the voltage quench detection system) are reported. The influence of the central spiral of the conductor on the propagation velocity is also detailed. In the cases of a regularly triggered FD, the hot spot temperature criterion of 150 K (with helium and jacket) is fulfilled for an initial quench length of 1 m, whereas this criterion is exceed (Tmax ≈ 200 K) for an extremely short length of 5 cm. These analyses were carried out using both the Supermagnet(trade mark, serif) and Venecia codes and the comparisons of the results are also discussed

  8. Solvent refined coal reactor quench system

    Science.gov (United States)

    Thorogood, Robert M.

    1983-01-01

    There is described an improved SRC reactor quench system using a condensed product which is recycled to the reactor and provides cooling by evaporation. In the process, the second and subsequent reactors of a series of reactors are cooled by the addition of a light oil fraction which provides cooling by evaporation in the reactor. The vaporized quench liquid is recondensed from the reactor outlet vapor stream.

  9. History of Giant Resonances and Quenching

    CERN Document Server

    Arima, A

    1999-01-01

    The history of nuclear magnetic moments and Gamow-Teller transitions is reviewed. The importance of configuration mixing and core polarization to explain the quenching phenomena is shown, and discussed in the context of the recent measurement of the Gamow-Teller strength in sup 9 sup 0 Nb. It is confirmed that the contribution of the DELTA-hole excitation to the quenching of spin matrix elements is small.

  10. Characterization of plasma current quench during disruptions at HL-2A

    Science.gov (United States)

    Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team

    2017-05-01

    The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.

  11. RHIC beam permit and quench detection communications system

    International Nuclear Information System (INIS)

    Conkling, C.R. Jr.

    1997-01-01

    A beam permit module has been developed to concentrate RHIC, subsystem sensor outputs, permit beam, and initiate emergency shutdowns. The modules accept inputs from the vacuum, cryogenic, power supply, beam loss, and superconducting magnet quench detection systems. Modules are located at equipment locations around the RHIC ring. The modules are connected by three fiberoptic communications links; a beam permit link, and two magnet power supply interlock links. During operation, carrier presence allows beam. If a RHIC subsystem detects a fault, the beam permit carrier terminates - initiating a beam dump. If the fault was a superconducting magnet quench, a power supply interlock carrier terminates - initiating an emergency magnet power dump. In addition, the master module triggers an event to cause remote sensors to log and hold data at the time-of-failure

  12. Nano Precipitation and Hardening of Die-Quenched 6061 Aluminum Alloy.

    Science.gov (United States)

    Utsunomiya, Hiroshi; Tada, Koki; Matsumoto, Ryo; Watanabe, Katsumi; Matsuda, Kenji

    2018-03-01

    Die quenching is applied to an age-hardenable aluminium alloys to obtain super-saturated solid solution. The application is advantageous because it can reduce number of manufacturing processes, and may increase strength by strain aging. If die quenching is realized in forging as well as sheet forming, it may widen industrial applicability further. In this study, Al-Mg-Si alloy AA6061 8 mm-thick billets were reduced 50% in height without cracks by die-quench forging. Supersaturated solid solution was successfully obtained. The die-quenched specimen shows higher hardness with nano precipitates at shorter aging time than the conventional water-quenched specimen.

  13. Validation of ASTECV2.1 based on the QUENCH-08 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-García-Toraño, Ignacio, E-mail: ignacio.torano@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology (INR), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Sánchez-Espinoza, Víctor-Hugo; Stieglitz, Robert [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology (INR), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Stuckert, Juri [Karlsruhe Institute of Technology, Institute for Applied Materials-Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Laborde, Laurent; Belon, Sébastien [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Nuclear Safety Division/Safety Research/Severe Accident Department, Saint Paul Lez Durance 13115 (France)

    2017-04-01

    Highlights: • ASTECV2.1 can reproduce QUENCH-08 experimental trends e.g. hydrogen generation. • Radial temperature gradient and heat transfer through argon gap are underestimated. • Mesh sizes lower than 55 mm needed to capture the strong axial temperature gradient. • Minor variations of external electrical resistance strongly affect bundle heat-up. • Modelling of a bypass and inclusion of currents partially overcome discrepancies. - Abstract: The Fukushima accidents have shown that further improvements of Severe Accident Management Guidelines (SAMGs) are still necessary. Hence, the enhancement of severe accident codes and their validation based on integral experiments is pursued worldwide. In particular, the capabilities of the European integral severe accident ASTECV2.1 code are being extended within the CESAM project through the improvement of physical models, code numerics and an extensive code validation. Among the different strategies encompassed in the plant SAMGs, one of the most important ones to prevent core damage is the injection of water into the overheated core (reflooding). However, under certain conditions, reflooding may trigger a sharp hydrogen generation that may jeopardize the containment. Within this work, ASTECV2.1 models describing the early in-vessel phase of the severe accident and its termination by core reflooding are validated against data from the QUENCH test facility. The QUENCH-08, involving the injection of 15 g/s (about 0.6 g/s/rod) of saturated steam at a bundle temperature of 2073 K, has been selected for this comparison. Results show that ASTECV2.1 is able to reproduce the experimental temperatures and oxide thicknesses at representative bundle locations. The predicted total hydrogen generation (76 g) is similar to the experimental one (84 g). In addition, the choices of an axial mesh size lower than 55 mm and of an external electrical resistance of a 7 mΩ/rod have been justified with parametric analyses. Finally, new

  14. A study on quench phenomena during reflood phase, 1

    International Nuclear Information System (INIS)

    Murao, Yoshio; Sudoh, Takashi

    1977-03-01

    Based on the observation with an outside-heated quartz tube experiment of the reflood phase, three quench modes for bottom flooding are proposed : 1) liquid column type, 2) dryout type, 3) droplet-rewetting type. Using Blair's correlation for quench velocity, the approximate correlation for maximum liquid superheat, the assumption that the heat transfer upstream of the quench front is a function of the local liquid subcooling and the data of PWR-FLECHT experiments, the correlation for quench velocity of the liquid column type and of the dryout type are obtained. The quench temperature for the droplet-rewetting type is also derived. These relations are compared with the results of PWR-FLECHT Group 1 experiments and of Piggott and Porthouse's experiments. The agreements among them are fairly good. (auth.)

  15. Thermo-hydraulic Quench Propagation at the LHC Superconducting Magnet String

    CERN Document Server

    Rodríguez-Mateos, F; Serio, L

    1998-01-01

    The superconducting magnets of the LHC are protected by heaters and cold by-pass diodes. If a magnet quenches, the heaters on this magnet are fired and the magnet chain is de-excited in about two minu tes by opening dump switches in parallel to a resistor. During the time required for the discharge, adjacent magnets might quench due to thermo-hydraulic propagation in the helium bath and/or heat con duction via the bus bar. The number of quenching magnets depends on the mechanisms for the propagation. In this paper we report on quench propagation experiments from a dipole magnet to an adjacent ma gnet. The mechanism for the propagation is hot helium gas expelled from the first quenching magnet. The propagation changes with the pressure opening settings of the quench relief valves.

  16. Calculating Quenching Weights

    CERN Document Server

    Salgado, C A; Salgado, Carlos A.; Wiedemann, Urs Achim

    2003-01-01

    We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding medium, and it extends to the angular dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft scattering approximation (Baier-Dokshitzer-Mueller-Peign\\'e-Schiff--Zakharov ``BDMPS-Z''-formalism) and in the single hard scattering approximation (N=1 opacity approximation). By comparison, we establish a simple relation between transport coefficient, Debye screening mass and opacity, for which both approximations lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of hadronic transverse momentum spectra in nucleus-nucleus colli...

  17. Topological Rényi entropy after a quantum quench.

    Science.gov (United States)

    Halász, Gábor B; Hamma, Alioscia

    2013-04-26

    We present an analytical study on the resilience of topological order after a quantum quench. The system is initially prepared in the ground state of the toric-code model, and then quenched by switching on an external magnetic field. During the subsequent time evolution, the variation in topological order is detected via the topological Rényi entropy of order 2. We consider two different quenches: the first one has an exact solution, while the second one requires perturbation theory. In both cases, we find that the long-term time average of the topological Rényi entropy in the thermodynamic limit is the same as its initial value. Based on our results, we argue that topological order is resilient against a wide range of quenches.

  18. Quench Protection of SC Quadrupole Magnets

    Science.gov (United States)

    Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.

    1997-05-01

    The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.

  19. The mass dependence of satellite quenching in Milky Way-like haloes

    Science.gov (United States)

    Phillips, John I.; Wheeler, Coral; Cooper, Michael C.; Boylan-Kolchin, Michael; Bullock, James S.; Tollerud, Erik

    2015-02-01

    Using the Sloan Digital Sky Survey, we examine the quenching of satellite galaxies around isolated Milky Way-like hosts in the local Universe. We find that the efficiency of satellite quenching around isolated galaxies is low and roughly constant over two orders of magnitude in satellite stellar mass (M⋆ = 108.5-1010.5 M⊙), with only ˜20 per cent of systems quenched as a result of environmental processes. While largely independent of satellite stellar mass, satellite quenching does exhibit clear dependence on the properties of the host. We show that satellites of passive hosts are substantially more likely to be quenched than those of star-forming hosts, and we present evidence that more massive haloes quench their satellites more efficiently. These results extend trends seen previously in more massive host haloes and for higher satellite masses. Taken together, it appears that galaxies with stellar masses larger than about 108 M⊙ are uniformly resistant to environmental quenching, with the relative harshness of the host environment likely serving as the primary driver of satellite quenching. At lower stellar masses (<108 M⊙), however, observations of the Local Group suggest that the vast majority of satellite galaxies are quenched, potentially pointing towards a characteristic satellite mass scale below which quenching efficiency increases dramatically.

  20. A STELLAR MASS THRESHOLD FOR QUENCHING OF FIELD GALAXIES

    International Nuclear Information System (INIS)

    Geha, M.; Blanton, M. R.; Yan, R.; Tinker, J. L.

    2012-01-01

    We demonstrate that dwarf galaxies (10 7 stellar 9 M ☉ , –12 > M r > –18) with no active star formation are extremely rare ( Hα stellar 9 M ☉ below which quenched galaxies do not exist in the field. Below this threshold, we find that none of the 2951 field dwarf galaxies are quenched; all field dwarf galaxies show evidence for recent star formation. Correcting for volume effects, this corresponds to a 1σ upper limit on the quenched fraction of 0.06%. In more dense environments, quenched galaxies account for 23% of the dwarf population over the same stellar mass range. The majority of quenched dwarf galaxies (often classified as dwarf elliptical galaxies) are within 2 virial radii of a massive galaxy, and only a few percent of quenched dwarf galaxies exist beyond 4 virial radii. Thus, for galaxies with stellar mass less than 1.0 × 10 9 M ☉ , ending star formation requires the presence of a more massive neighbor, providing a stringent constraint on models of star formation feedback.

  1. New Fast Response Thin Film-Based Superconducting Quench Detectors

    CERN Document Server

    Dudarev, A; van de Camp, W; Ravaioli, E; Teixeira, A; ten Kate, H H J

    2014-01-01

    Quench detection on superconducting bus bars and other devices with a low normal zone propagation velocity and low voltage build-up is quite difficult with conventional quench detection techniques. Currently, on ATLAS superconducting bus bar sections, superconducting quench detectors (SQD) are mounted to detect quench events. A first version of the SQD essentially consists of an insulated superconducting wire glued to a superconducting bus line or windings, which in the case of a quench rapidly builds up a relatively high resistance that can be easily and quietly detected. We now introduce a new generation of drastically improved SQDs. The new version makes the detection of quenches simpler, more reliable, and much faster. Instead of a superconducting wire, now a superconducting thin film is used. The layout of the sensor shows a meander like pattern that is etched out of a copper coated 25 mu m thick film of Nb-Ti glued in between layers of Kapton. Since the sensor is now much smaller and thinner, it is easi...

  2. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral

  3. Temperature profile evolution in quenching high-Tc ...

    Indian Academy of Sciences (India)

    Abstract. Irreversible normal zones leading to quench is an important aspect of high-temperature superconductors (HTS) in all practical applications. As a consequence of quench, transport current gets diverted to the matrix stabilizer material of the high-Tc composite and causes Joule heating till the original conditions are ...

  4. Ultrafast quenching of metals to liquid-helium temperatures - investigation of the low-temperature mobility of hydrogen in niobium

    International Nuclear Information System (INIS)

    Blanz, M.; Blocher, R.; Carstanjen, H.D.; Messer, R.; Plachke, D.; Seeger, A.

    1989-01-01

    A novel technique for ultrafast quenching from 300 K to 4.2 K has been developed. It employs a fast jet of liquid helium with a speed of about 10 2 m/s and allows us to quench metal samples in about 6 ms. This corresponds to a quenching rate of about 4.5x10 4 K/s, which exceeds that achievable by conventional quenching in liquid helium by more than one order of magnitude. The technique has been used for a resistometric study of the behaviour of hydrogen in niobium quenched-in from the α-phase by means of isochronal and isothermal annealing. Even in the low-temperature region below 20 K a considerable recovery of the resistivity has been found, which cannot be seen in conventional quenching experiments. (orig.)

  5. Quench propagation in High Temperature Superconducting materials integrated in high current leads

    CERN Document Server

    Milani, D

    2001-01-01

    High temperature superconductors (HTS) have been integrated in the high current leads for the Large Hadron Collider (LHC), under construction at CERN, in order to reduce the heat leak into the liquid helium bath due to the joule effect. The use of the HTS technology in the lower part of the current leads allowed to significantly reduce the heat charge on the cryogenic system. Hybrid current leads have been designed to fulfill the LHC requirements with respect to thermal load; several tests have been performed to study the lead behavior especially during a quench transient. Quench experiments have been performed at CERN on 13 kA prototypes to determine the adequate design and protection. In all the tests it is possible to know the temperature profile of the HTS only with the help of quench simulations that model the thermo-hydraulic processes during quench. The development of a theoretical model for the simulation allows reducing the number of test to perform and to scale the experimental result to other curre...

  6. Fluorescence quenching of Rhodamine B base by two amines

    Science.gov (United States)

    Bakkialakshmi, S.; Selvarani, P.; Chenthamarai, S.

    2013-03-01

    Fluorescence quenching of Rhodamine B base (RhB) in DMF solution has been studied at different concentrations of the amine Triethyl amine (TEA) and n-butyl amine (NBA) at room temperature. It has been observed that the fluorescence intensity of RhB decrease with increase in the concentration of the TEA and NBA. It has been observed that the quenching due to amines proceeds via dynamic quenching process. The rate constants for the quenching process have been calculated using Stern-Volmer equation. Time resolved fluorescence study and 1H NMR spectral study have also been carried out and discussed.

  7. Criterion for the onset of quench for low-flow reflood

    International Nuclear Information System (INIS)

    Hsu, Y.Y.; Young, M.W.

    1982-07-01

    This study provides a criterion for the onset of quench for low flow reflood. The criterion is a combination of two conditions: T/sub clad/ < T/sub limiting quench/ where T = Temperature, and α < 0.95 where α = void fraction. This criterion was obtained by examining temperature data from tests simulating PWR reflood, such as FLECHT, THTF, PBF, CCTF, and FEBA tests, with void fraction data from CCTF, FEBA, and FLECHT low flood tests. The data show that quenching initiated at α = 0.95 and that the majority of quench occurred at void fractions near 0.85. The results show that rods can be completely quenched by entrained droplets even if the collapsed liquid level does not advance. A thorough discussion of the analysis which supports this quench criterion is given in the text of this report

  8. Characterization of oil based nanofluid for quench medium

    Science.gov (United States)

    Mahiswara, E. P.; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Kresnodrianto

    2018-01-01

    The choice of quench medium depends on the hardenability of the metal alloy, the thickness of the component, and the geometry of the component. Some of these will determine the cooling rate required to obtain the desired microstructure and material properties. Improper quench media will cause the material to become brittle, suffers from geometric distortion, or having a high undesirable residual stresses in the components. In heat treatment industries, oil and water are frequently used as the quench media. Recently, nanofluid as a quench medium has also been studied using several different fluids as the solvent. Examples of frequently used solvents include polymers, vegetable oils, and mineral oil. In this research, laboratory-grade carbon powder were used as nanoparticle. Oil was used as the fluid base in this research as the main observation focus. To obtain nanoscale carbon particles, planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. This method was used to lower the cost for nanoparticle synthesis. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which annealed at 1000°C. Hardness testing and metallography observation were then conducted to further examine the effect of different quench medium in steel samples.

  9. Convergent preparation and photophysical characterization of dimaleimide dansyl fluorogens: elucidation of the maleimide fluorescence quenching mechanism.

    Science.gov (United States)

    Guy, Julia; Caron, Karine; Dufresne, Stéphane; Michnick, Stephen W; Skene, W G; Keillor, Jeffrey W

    2007-10-03

    Dimaleimide fluorogens are being developed for application to fluorescent protein labeling. In this method, fluorophores bearing two maleimide quenching groups do not fluoresce until both maleimide groups have undergone thiol addition reactions with the Cys residues of the target protein sequence [J. Am. Chem. Soc. 2005, 127, 559-566]. In this work, a new convergent synthetic route was developed that would allow any fluorophore to be attached via a linker to a dimaleimide moiety in a modular fashion. Series of dimaleimide and dansyl derivatives were thus prepared conveniently and used to elucidate the mechanism of maleimide quenching. Intersystem crossing was ruled out as a potential quenching pathway, based on the absence of a detectable triplet intermediate by laser flash photolysis. Stern-Volmer rate constants were measured with exogenous dimaleimide quenchers and found to be close to the diffusion-controlled limits, consistent with electron transfer being thermodynamically favorable. The thermodynamic feasibility of the photoinduced electron transfer (PET) quenching mechanism was verified by cyclic voltammetry. The redox potentials measured for dansyl and maleimide confirm that electron transfer from the dansyl excited state to a pendant maleimide group is exergonic and is responsible for fluorescence quenching of the fluorogens studied herein. Taking this PET quenching mechanism into account, future fluorogenic protein labeling agents will be designed with spacers of variable length and rigidity to probe the structure-property PET efficiency relationship.

  10. Color quench correction for low level Cherenkov counting.

    Science.gov (United States)

    Tsroya, S; Pelled, O; German, U; Marco, R; Katorza, E; Alfassi, Z B

    2009-05-01

    The Cherenkov counting efficiency varies strongly with color quenching, thus correction curves must be used to obtain correct results. The external (152)Eu source of a Quantulus 1220 liquid scintillation counting (LSC) system was used to obtain a quench indicative parameter based on spectra area ratio. A color quench correction curve for aqueous samples containing (90)Sr/(90)Y was prepared. The main advantage of this method over the common spectra indicators is its usefulness also for low level Cherenkov counting.

  11. Characterization of water based nanofluid for quench medium

    Science.gov (United States)

    Kresnodrianto; Harjanto, S.; Putra, W. N.; Ramahdita, G.; Yahya, S. S.; Mahiswara, E. P.

    2018-04-01

    Quenching has been a valuable method in steel hardening method especially in industrial scale. The hardenability of the metal alloys, the thickness of the component, and the geometry is some factors that can affect the choice of quench medium. Improper quench media can cause the material to become too brittle, suffers some geometric distortion, and undesirable residual stress that will cause some effect on the mechanical property and fracture mechanism of a component. Recently, nanofluid as a quench medium has been used for better quenching performance and has been studied using several different fluids and nanoparticles. Some of frequently used solvents include polymers, vegetable oils, and mineral oil, and nanoparticles frequently used include CuO, ZnO, and Alumina. In this research, laboratory-grade carbon powder were used as nanoparticle. Water was used as the fluid base in this research as the main observation focus. Carbon particles were obtain using a top-down method, whereas planetary ball mill was used to ground laboratory grade carbon powder to decrease the particle size. Milling speed and duration were set at 500 rpm and 15 hours. Field Emission Scanning Electron Microscope (FE-SEM), and Energy Dispersive X-Ray (EDX) measurement were carried out to determine the particle size, material identification, particle morphology, and surface change of samples. Nanofluid was created by mixing percentage of carbon nanoparticles with water using ultrasonic vibration for 280s. The carbon nanoparticle content in nanofluid quench mediums for this research were varied at 0.1%, 0.2%, 0.3%, 0.4, and 0.5 % volume. Furthermore, these mediums were used to quench JIS S45C or AISI 1045 carbon steel samples which austenized at 1000°C. Hardness testing and metallography observation were then conducted to further check the effect of different quench medium in steel samples. Preliminary characterizations showed that carbon particles dimension after milling was still in sub

  12. Characteristics of current quenches during disruptions in the J-TEXT tokamak

    International Nuclear Information System (INIS)

    Zhang, Y; Chen, Z Y; Fang, D; Jin, W; Huang, Y H; Wang, Z J; Yang, Z J; Chen, Z P; Ding, Y H; Zhang, M; Zhuang, G

    2012-01-01

    Characteristics of tokamak current quenches are an important issue for the determination of electro-magnetic forces that act on the in-vessel components and vacuum vessel during major disruptions. The characteristics of current quenches in spontaneous disruptions in the J-TEXT tokamak have been investigated. It is shown that the waveforms for the fastest current quenches are more accurately fitted by linear current decays than exponential, although neither is a good fit in many slower cases. The minimum current quench time is about 2.4 ms for the J-TEXT tokamak. The maximum instantaneous current quench rate is more than seven times the average current quench rate in J-TEXT. (paper)

  13. Automatic quench compensation for liquid scintillation counting system

    International Nuclear Information System (INIS)

    Nather, R.E.

    1978-01-01

    A method of automatic quench compensation is provided, where a reference measure of quench is taken on a sample prior to taking a sample count. The measure of quench is then compared with a reference voltage source which has been established to vary in proportion to the variation of the measure of quench with the level of a system parameter required to restore at least one isotope spectral energy endpoint substantially to a selected counting window discriminator level in order to determine the amount of adjustment of the system parameter required to restore the endpoint. This is followed by the appropriate adjustment of the system parameter required to restore the relative position of the discriminator windows and the sample spectrum and is followed in turn by taking a sample count

  14. Multiple mechanisms quench passive spiral galaxies

    Science.gov (United States)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  15. Numerical Study of Quench Protection for Fast-Ramping Accelerator Magnets

    OpenAIRE

    Schwerg, N; Auchman, B; Mess, K-N; Russenschuck, S

    2009-01-01

    The quench module of the ROXIE field computation program has been presented at previous conferences. In this paper we discuss recently implemented features that allow quench simulation of fast-ramping superconducting magnets. As the reliability of quench detection during the ramps depends on the signal to noise ratio, we simulate the influence of detection thresholds and the propagation of undetected quenches during the ramps. We also study the effect of an increased copper content and the fe...

  16. Quench detection on a superconducting radio-frequency cavity

    OpenAIRE

    Lai, Ru-Yu; Spirn, Daniel

    2017-01-01

    We study quench detection in superconducting accelerator cavities cooled with He-II. A rigorous mathematical formula is derived to localize the quench position from dynamical data over a finite time interval at a second sound detector.

  17. Revisiting the Role of Xanthophylls in Nonphotochemical Quenching

    NARCIS (Netherlands)

    van Oort, Bart; Roy, Laura M; Xu, Pengqi; Lu, Yinghong; Karcher, Daniel; Bock, Ralph; Croce, Roberta

    2018-01-01

    Photoprotective nonphotochemical quenching (NPQ) of absorbed solar energy is vital for survival of photosynthetic organisms, and NPQ modifications significantly improve plant productivity. However, the exact NPQ quenching mechanism is obscured by discrepancies between reported mechanisms, involving

  18. Hotspot temperature calculation and quench analysis on ITER busbar

    International Nuclear Information System (INIS)

    Rong, J.; Huang, X.Y.; Song, Y.T.; Wu, S.T.

    2014-01-01

    Highlights: • The hotspot temperature is calculated in the case of different extra copper in this paper. • The MQE (minimum quench energy) is carried out as the external heating to trigger a quench in busbar. • The temperature changes after quench is analyzed by Gandalf code in the case of different extra copper and no helium. • The normal length is carried out in the case of different extra copper by Gandalf code. - Abstract: This paper describes the analysis of ITER feeder busbar, the hotspot temperature of busbar is calculated by classical method in the case of 0%, 50%, 75% and 100% extra copper (copper strands). The quench behavior of busbar is simulated by 1-D Gandalf code, and the MQE (minimum quench energy) is estimated in classical method as initial external heat in Gandalf input file. The temperature and the normal length of conductor are analyzed in the case of 0%, 50% and 100% extra copper and no helium. By hotspot temperature, conductor temperature and normal length are contrasted in different extra copper cases, it is shown that the extra copper play an important role in quench protecting

  19. Novel Spectrofluorimetric Method for the Determination of Perindopril Erbumine Based on Fluorescence Quenching of Rhodamine B.

    Science.gov (United States)

    Fael, Hanan; Sakur, Amir Al-Haj

    2015-11-01

    A novel, simple and specific spectrofluorimetric method was developed and validated for the determination of perindopril erbumine (PDE). The method is based on the fluorescence quenching of Rhodamine B upon adding perindopril erbumine. The quenched fluorescence was monitored at 578 nm after excitation at 500 nm. The optimization of the reaction conditions such as the solvent, reagent concentration, and reaction time were investigated. Under the optimum conditions, the fluorescence quenching was linear over a concentration range of 1.0-6.0 μg/mL. The proposed method was fully validated and successfully applied to the analysis of perindopril erbumine in pure form and tablets. Statistical comparison of the results obtained by the developed and reference methods revealed no significant differences between the methods compared in terms of accuracy and precision. The method was shown to be highly specific in the presence of indapamide, a diuretic that is commonly combined with perindopril erbumine. The mechanism of rhodamine B quenching was also discussed.

  20. Quench protection analysis integrated in the design of dipoles for the Future Circular Collider

    Directory of Open Access Journals (Sweden)

    Tiina Salmi

    2017-03-01

    Full Text Available The EuroCirCol collaboration is designing a 16 T Nb_{3}Sn dipole that can be used as the main bending magnet in a 100 km long 100 TeV hadron-hadron collider. For economic reasons, the magnets need to be as compact as possible, requiring optimization of the cable cross section in different magnetic field regions. This leads to very high stored energy density and poses serious challenges for the magnet protection in case of a quench, i.e., sudden loss of superconductivity in the winding. The magnet design therefore must account for the limitations set by quench protection from the earliest stages of the design. In this paper we describe how the aspect of quench protection has been accounted for in the process of developing different options for the 16 T dipole designs. We discuss the assumed safe values for hot spot temperatures and voltages, and the efficiency of the protection system. We describe the developed tools for the quench analysis, and how their usage in the magnet design will eventually ensure a secure magnet operation.

  1. Final Technical Report: Intensive Quenching Technology for Heat Treating and Forging Industries

    Energy Technology Data Exchange (ETDEWEB)

    Aronov, Michael A.

    2005-12-21

    Intensive quenching (IQ) process is an alternative way of hardening (quenching) steel parts through the use of highly agitated water and then still air. It was developed by IQ Technologies, Inc. (IQT) of Akron, Ohio. While conventional quenching is usually performed in environmentally unfriendly oil or water/polymer solutions, the IQ process uses highly agitated environmentally friendly water or low concentration water/mineral salt solutions. The IQ method is characterized by extremely high cooling rates of steel parts. In contrast to conventional quenching, where parts cool down to the quenchant temperature and usually have tensile or neutral residual surface stresses at the end of quenching. The IQ process is interrupted when the part core is still hot and when there are maximum compressive stresses deep into the parts, thereby providing hard, ductile, better wear resistant parts. The project goal was to advance the patented IQ process from feasibility to commercialization in the heat-treating and forging industries to reduce significantly energy consumption and environmental impact, to increase productivity and to enhance economic competitiveness of these industries as well as Steel, Metal Casting and Mining industries. To introduce successfully the IQ technology in the U.S. metal working industry, the project team has completed the following work over the course of this project: A total of 33 manufacturers of steel products provided steel parts for IQ trails. IQT conducted IQ demonstrations for 34 different steel parts. Our customers tested intensively quenched parts in actual field conditions to evaluate the product service life and performance improvement. The data obtained from the field showed the following: Service life (number of holes punched) of cold-work punches (provided by EHT customer and made of S5 shock-resisting steel) was improved by two to eight times. Aluminum extrusion dies provided by GAM and made of hot work H-13 steel outperformed the

  2. Severe fuel damage experiments performed in the QUENCH facility with 21-rod bundles of LWR-type

    International Nuclear Information System (INIS)

    Sepold, L.; Hering, W.; Schanz, G.; Scholtyssek, W.; Steinbrueck, M.; Stuckert, J.

    2006-01-01

    The objective of the QUENCH experimental program at the Karlsruhe Research Center is to investigate core degradation and the hydrogen source term that results from quenching/flooding an uncovered core, to examine the physical/chemical behavior of overheated fuel elements under different flooding conditions, and to create a data base for model development and improvement of severe fuel damage (SFD) code systems. The large-scale 21-rod bundle experiments conducted in the QUENCH out-of-pile facility are supported by an extensive separate-effects test program, by modeling activities as well as application and improvement of SFD code systems. International cooperations exist with institutions mainly within the European Union but e.g. also with the Russian Academy of Science (IBRAE, Moscow) and the CSARP program of the USNRC. So far, eleven experiments have been performed, two of them with B 4 C absorber material. Experimental parameters were: the temperature at initiation of reflood, the degree of peroxidation, the quench medium, i.e. water or steam, and its injection rate, the influence of a B 4 C absorber rod, the effect of steam-starved conditions before quench, the influence of air oxidation before quench, and boil-off behavior of a water-filled bundle with subsequent quenching. The paper gives an overview of the QUENCH program with its organizational structure, describes the test facility and the test matrix with selected experimental results. (author)

  3. Density of kinks just after a quench in an underdamped system

    OpenAIRE

    Dziarmaga, Jacek

    1998-01-01

    A quench in an underdamped one dimensional $\\phi^4$ model is studied by analytical methods. The density of kinks just after the transition is proportional to the square root of the rate of the quench for slow quenches. If the quench is shorter that the relaxation time, then the density scales like the third root of the rate.

  4. Numerical simulation for quenching meshes with TONUS platform

    International Nuclear Information System (INIS)

    Bin, Chen; Hongxing, Yu

    2009-01-01

    For mitigation of hydrogen risks during severe accidents to protect the integrity of containment, PAR and ignitors are used in current advanced nuclear power plants. But multiple combustions induced by ignitors and consequent DDT phenomena are not practically eliminated. An innovative design call 'quenching meshes' is considered to confine hydrogen flame within one compartment by metallic meshes, so that hazardous flame propagation can be prevented. The numerical simulation results based on discretization of the full Navier-Stokes equations with global one-step reaction represented by Arrhenius laminar combustion model have shown the possibility of flame quenching 'numerically'. This is achieved via multiplication of the combustion rate expression by a Heaviside function having an ignition temperature as a parameter. Qualitative behavior of the computed flow shows that the flame velocity diminishes while passing through a quenching mesh, while qualitative analysis based on the energy balance reveals the mechanism of flame quenching. All the above analysis has been performed for a stoichiometric mixture and normal initial pressure and temperature for initial conditions. For further research we would like to suggest the investigation of the influence of the mixture composition, initial pressure and/or temperature on the quenching criteria

  5. Self-quenching streamer discharge in a wire chamber

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Kruglov, V.V.; Khazins, D.M.

    1982-01-01

    A summary is given of the investigation of a new mode of operation of a wire chamber involving a self-quenching streamer discharge. The history of the question is briefly discussed. The main characteristics of the self-quenching mode and the influence of the composition and pressure of the gas mixture and the geometrical parameters of the chamber on the characteristics are described. The mechanism of a self-quenching streamer discharge is analyzed. Detectors working in this mode are described, and the prospects for its future use are discussed

  6. Simulation of jet quenching at RHIC and LHC

    International Nuclear Information System (INIS)

    Lokhtin, I P; Snigirev, A M

    2007-01-01

    A model to simulate the jet quenching effect in ultrarelativistic heavy ion collisions is presented. The model is the fast Monte Carlo tool implemented to modify a standard PYTHIA jet event. The model has been generalized to the case of the 'full' heavy ion event (the superposition of soft, hydro-type state and hard multi-jets) using a simple and fast simulation procedure for soft particle production. The model is capable of reproducing the main features of the jet quenching pattern at RHIC and is applied to analyse novel jet quenching features at LHC

  7. Quench Protection Studies of the 11-T $Nb_3Sn$ Dipole for LHC Upgrades

    CERN Document Server

    Izquierdo Bermudez, Susana; BAJAS, Hugues; Bajko, Marta; Bordini, Bernardo; Bottura, Luca; Chlachidze, Guram; Karppinen, Mikko; Rysti, Juho; Savary, Frederic; Willering, Gerard; Zlobin, Alexander

    2016-01-01

    The planned upgrade of the LHC collimation system foresees additional collimators to be installed in the dispersion suppressor areas. Fermilab and CERN are developing an 11 T Nb$_{3}$Sn dipole to replace some 8.33 T-15-m-long Nb-Ti LHC main dipoles providing longitudinal space for the collimators. In case of a quench, the large stored energy and the low copper stabilizer fraction make the protection of the 11 T Nb$_{3}$Sn dipoles challenging. This paper presents the results of quench protection analysis, including quench protection heater design and efficiency, quench propagation and coil heating. The numerical results are compared with the experimental data from the 2-m-long Nb$_{3}$Sn dipole models. The validated model is used to predict the current decay and hot spot temperature under operating conditions in the LHC and the presently foreseen magnet protection scheme is discussed.

  8. Observations of environmental quenching in groups in the 11 Gyr since z = 2.5: Different quenching for central and satellite galaxies

    International Nuclear Information System (INIS)

    Tal, Tomer; Illingworth, Garth D.; Magee, Daniel; Dekel, Avishai; Oesch, Pascal; Van Dokkum, Pieter G.; Leja, Joel; Momcheva, Ivelina; Nelson, Erica J.; Muzzin, Adam; Franx, Marijn; Brammer, Gabriel B.; Marchesini, Danilo; Patel, Shannon G.; Quadri, Ryan F.; Rix, Hans-Walter; Skelton, Rosalind E.; Wake, David A.; Whitaker, Katherine E.

    2014-01-01

    We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 < z < 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z ∼ 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M * /M ☉ = 6.5 × 10 10 ) to nearby massive ellipticals (M * /M ☉ = 1.5 × 10 11 ). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M * /M ☉ = 6.5 × 10 9 ). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10 12 and 10 13 M ☉ , consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.

  9. Observations of environmental quenching in groups in the 11 Gyr since z = 2.5: Different quenching for central and satellite galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Tal, Tomer; Illingworth, Garth D.; Magee, Daniel [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Oesch, Pascal; Van Dokkum, Pieter G.; Leja, Joel; Momcheva, Ivelina; Nelson, Erica J. [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Muzzin, Adam; Franx, Marijn [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Brammer, Gabriel B. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Patel, Shannon G.; Quadri, Ryan F. [Carnegie Observatories, Pasadena, CA 91101 (United States); Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Skelton, Rosalind E. [South African Astronomical Observatory, Observatory Road, Cape Town (South Africa); Wake, David A. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Whitaker, Katherine E., E-mail: tal@ucolick.org [Astrophysics Science Division, Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-07-10

    We present direct observational evidence for star formation quenching in galaxy groups in the redshift range 0 < z < 2.5. We utilize a large sample of nearly 6000 groups, selected by fixed cumulative number density from three photometric catalogs, to follow the evolving quiescent fractions of central and satellite galaxies over roughly 11 Gyr. At z ∼ 0, central galaxies in our sample range in stellar mass from Milky Way/M31 analogs (M{sub *}/M{sub ☉} = 6.5 × 10{sup 10}) to nearby massive ellipticals (M{sub *}/M{sub ☉} = 1.5 × 10{sup 11}). Satellite galaxies in the same groups reach masses as low as twice that of the Large Magellanic Cloud (M{sub *}/M{sub ☉} = 6.5 × 10{sup 9}). Using statistical background subtraction, we measure the average rest-frame colors of galaxies in our groups and calculate the evolving quiescent fractions of centrals and satellites over seven redshift bins. Our analysis shows clear evidence for star formation quenching in group halos, with a different quenching onset for centrals and their satellite galaxies. Using halo mass estimates for our central galaxies, we find that star formation shuts off in centrals when typical halo masses reach between 10{sup 12} and 10{sup 13} M{sub ☉}, consistent with predictions from the halo quenching model. In contrast, satellite galaxies in the same groups most likely undergo quenching by environmental processes, whose onset is delayed with respect to their central galaxy. Although star formation is suppressed in all galaxies over time, the processes that govern quenching are different for centrals and satellites. While mass plays an important role in determining the star formation activity of central galaxies, quenching in satellite galaxies is dominated by the environment in which they reside.

  10. Study on quench effects in liquid scintillation counting during tritium measurements

    International Nuclear Information System (INIS)

    Ivana Jakonic; Jovana Nikolov; Natasa Todorovic; Miroslav Veskovic; Branislava Tenjovic

    2014-01-01

    Quench effects can cause a serious reduction in counting efficiency for a given sample/cocktail mixture in liquid scintillation counting (LSC) experiments. This paper presents a simple experiment performed in order to test the influence of quenching on the LSC efficiency of 3 H. The aim of this study was to investigate the behavior of several quench agents with different quench strengths (nitromethane, nitric acid, acetone, dimethyl-sulfoxide) added in different amounts to tritiated water in order to obtain standard sets for quench calibration curves. The OptiPhase HiSafe 2 and OptiPhase HiSafe 3 scintillation cocktails were used in this study in order to compare their quench resistance. Measurements were performed using a low-level LS counter (Wallac, Quantulus 1220). (author)

  11. Environmental quenching and galactic conformity in the galaxy cross-correlation signal

    Science.gov (United States)

    Hatfield, P. W.; Jarvis, M. J.

    2017-12-01

    It has long been known that environment has a large effect on star formation in galaxies. There are several known plausible mechanisms to remove the cool gas needed for star formation, such as strangulation, harassment and ram-pressure stripping. It is unclear which process is dominant, and over what range of stellar mass. In this paper, we find evidence for suppression of the cross-correlation function between massive galaxies and less massive star-forming galaxies, giving a measure of how less likely a galaxy is to be star forming in the vicinity of a more massive galaxy. We develop a formalism for modelling environmental quenching mechanisms within the halo occupation distribution scheme. We find that at z ∼ 2 environment is not a significant factor in determining quenching of star-forming galaxies, and that galaxies are quenched with similar probabilities when they are satellites in sub-group environments, as they are globally. However, by z ∼ 0.5 galaxies are much less likely to be star forming when in a high-density (group or low-mass cluster) environment than when not. This increased probability of being quenched does not appear to have significant radial dependence within the halo at lower redshifts, supportive of the quenching being caused by the halting of fresh inflows of pristine gas, as opposed to by tidal stripping. Furthermore, by separating the massive sample into passive and star forming, we see that this effect is further enhanced when the central galaxy is passive, a manifestation of galactic conformity.

  12. High-field quench behavior and dependence of hot spot temperature on quench detection voltage threshold in a Bi2Sr2CaCu2Ox coil

    International Nuclear Information System (INIS)

    Shen, Tengming; Ye, Liyang; Turrioni, Daniele; Li, Pei

    2015-01-01

    Small insert solenoids have been built using a multifilamentary Ag/Bi 2 Sr 2 CaCu 2 O x round wire insulated with a mullite sleeve (∼100 μm in thickness) and characterized in background fields to explore the quench behaviors and limits of Bi 2 Sr 2 CaCu 2 O x superconducting magnets, with an emphasis on assessing the impact of slow normal zone propagation on quench detection. Using heaters of various lengths to initiate a small normal zone, a coil was quenched safely more than 70 times without degradation, with the maximum coil temperature reaching 280 K. Coils withstood a resistive voltage of tens of mV for seconds without quenching, showing the high stability of these coils and suggesting that the quench detection voltage should be greater than 50 mV in order not to falsely trigger protection. The hot spot temperature for the resistive voltage of the normal zone to reach 100 mV increased from ∼40–∼80 K while increasing the operating wire current density J o from 89 A mm −2 to 354 A mm −2 , whereas for the voltage to reach 1 V, it increased from ∼60–∼140 K. This shows the increasing negative impact of slow normal zone propagation on quench detection with increasing J o and the need to limit the quench detection voltage to <1 V. These measurements, coupled with an analytical quench model, were used to assess the impact of the maximum allowable detection voltage and temperature upon quench detection on the quench protection, assuming a limit of the hot spot temperature to <300 K. (paper)

  13. CLIQ – Coupling-Loss Induced Quench System for Protecting Superconducting Magnets

    CERN Multimedia

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The recently developed Coupling-Loss-Induced Quench (CLIQ) protection system is a new method for initiating a fast and voluminous transition to the normal state for protecting high energy density superconducting magnets. Upon quench detection, CLIQ is triggered to generate an oscillating current in the magnet coil by means of a capacitive discharge. This in turn introduces a high coupling loss in the superconductor which provokes a quick transition to the normal state of the coil windings. The system is now implemented for the protection of a two meter long superconducting quadrupole magnet and characterized in the CERN magnet test facility. Various CLIQ configurations with different current injection points are tested and the results compared to similar transients lately measured with a not optimized configuration. Test results convincingly show that the newly tested design allows for a more global quench initiation and thus a faster discharge of the magnet energy. Moreover, the performance of CLIQ for reduc...

  14. Thermal simulation of quenching uranium-0.75% titanium alloy in water

    International Nuclear Information System (INIS)

    Siman-Tov, M.; Llewellyn, G.H.; Childs, K.W.; Ludtka, G.M.; Aramayo, G.A.

    1985-01-01

    A computer model, The Quench Simulator, has been developed to simulate and predict in detail the behavior of U-0.75 Ti alloy when quenched at high temperature (about 850 0 C) in cold water. The code allows one to determine the time- and space-dependent distributions of temperature, residual stress, distortion, and microstructure that evolve during the quenching process. The nonlinear temperature- and microstructure-dependent properties, as well as the cooling rate-dependent heats of transformation, are incorporated into the model. The complex boiling heat transfer with its various regimes and other thermal boundary conditions are simulated. Experiments have been performed and incorporated into the model. Both sudden submersion and gradual controlled immersion can be applied. A parametric and sensitivity study has been performed demonstrating the importance of the thermal boundary conditions applied for achieving certain product characteristics. The thermal aspects of the model and its applications are discussed and demonstrated

  15. A study of point defects in quenched stainless steels

    International Nuclear Information System (INIS)

    Kheloufi, Khelifa.

    1977-07-01

    Thin foils of stainless steels (18%Cr, 14%Ni) containing boron (50x10 -6 ) and stabilised with titanium have been quenched at different rates in order to observe secondary defects by transmission electron microscopy. A rapid quenching in gallium has not given any secondary defects either before or after annealing. But samples quenched from temperatures greater than 800 0 C-900 0 C exhibit a dislocation density approximately 10 9 cm/cm 3 . A vacancy concentration less than 10 -6 has been observed by positron annihilation technique. After a moderate quenching, any secondary defects has been observed. It is thus clear that boron does not favour the secondary defects formation as does phosphorus [fr

  16. Comparison of the quench experiments CORA-12, CORA-13, CORA-17

    International Nuclear Information System (INIS)

    Hagen, S.; Hofmann, P.; Noack, V.; Sepold, L.; Schanz, G.; Schumacher, G.

    1996-08-01

    The CORA quench experiments 12, 13 (PWR) und 17 (BWR) are in agreement with the inpile tests LOFT LP-FP-2 and PBF SFD-ST and the TMI accident: Flooding of hot Zircaloy clad fuel rods does not result in an immediate cooldown of the bundle, but produces a remarkable temporary temperature increase connected to a strong peak in hydrogen production. For the preparation of new quench bundle tests, necessary for the understanding of the mechanisms governing the quench process and support for validation of future quench models in SFD codes the three tests are compared to each other and to the relevant non-quench tests CORA-29 (PWR) and CORA-16 (BWR). The PWR tests CORA-12 and CORA-13 are of the same geometrical arrangement and test conduct. An exception is the shorter time between power shutdown and quench initiation for CORA 13, resulting in a higher temperature of the bundle at start of quenching. The BWR test CORA-17 used B 4 C absorber and Zircaloy channel box walls, but was in respect to the delay time between power shutdown and start of quenching similar to test CORA-12. (orig./GL) [de

  17. Analysis of quench in the NHMFL REBCO prototype coils for the 32 T Magnet Project

    International Nuclear Information System (INIS)

    Breschi, M; Cavallucci, L; Ribani, P L; Gavrilin, A V; Weijers, H W

    2016-01-01

    A 32 T all-superconductive magnet with high field REBCO inner coils is under development at the National High Magnetic Field Laboratory, Tallahassee, Florida, USA. As part of the development activity, two prototype coils with full scale radial dimensions and final design features, but with reduced axial length were constructed. The prototype coils consist of six dry-wound double pancakes modules with uninsulated conductor and insulated stainless steel cowind. Quench studies on one of the prototype coils at 4.2 K in self-field and in a background magnetic field of 15 T were performed by activating a set of quench protection heaters. In this paper, we present a numerical analysis of the experimental results of the quench tests of one of the prototype coils. The numerical analysis was carried out through a coupled electro-thermal FEM model developed at the University of Bologna. The model is based on the coupling with distributed contact resistances of the coil pancakes described as 2D elements. A homogenization procedure of the REBCO tape and other coil materials is presented, which allows reducing the number of degrees of freedom and the computational effort. The model is applied to the analysis of the current and voltage evolutions during the experimental quench tests on the prototype coil. (paper)

  18. Quench detection electronics testing protocol for SST-1 magnets

    International Nuclear Information System (INIS)

    Banaudha, Moni; Varmora, Pankaj; Parghi, Bhadresh; Prasad, Upendra

    2017-01-01

    Quench Detection (QD) system consisting 204 signal channels has been successfully installed and working well during plasma experiment of SST-1 Tokamak. QD system requires testing, validation and maintenance in every SST-1 campaign for better reliability and maintainability of the system. Standalone test of each channel of the system is essential for hard-ware validation. The standard Testing Protocol follow in every campaign which validate each section of QD electronics as well as voltage tap signal cables which are routed inside the cryostat and then extended outside of the SST-1 machine up-to the magnet control room. Fiber link for Quench signal transmission to the SST-1 magnet power supply is also test and validate before every plasma campaign. Precise instrument used as a dummy source of quench signal and for manual quench generation to test the each channel and Master Quench Logic. Each signal Integrated with the magnet DAQ system, signal observed at 1Hz and 50Hz configuration to validate the logging data, compare with actual and previous test data. This paper describes the testing protocol follow in every campaign to validate functionality of QD electronics, limitation of testing, test results and overall integration of the quench detection system for SST-1 magnet. (author)

  19. Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations

    Science.gov (United States)

    Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki

    2018-03-01

    We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2}). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3}) and the level sets of the Gaussian free field ({d≥ 3}). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.

  20. Event-by-event jet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.; Rodriguez, R.; Ramirez, E.

    2010-08-14

    High momentum jets and hadrons can be used as probes for the quark gluon plasma (QGP) formed in nuclear collisions at high energies. We investigate the influence of fluctuations in the fireball on jet quenching observables by comparing propagation of light quarks and gluons through averaged, smooth QGP fireballs with event-by-event jet quenching using realistic inhomogeneous fireballs. We find that the transverse momentum and impact parameter dependence of the nuclear modification factor R{sub AA} can be fit well in an event-by-event quenching scenario within experimental errors. However the transport coefficient {cflx q} extracted from fits to the measured nuclear modification factor R{sub AA} in averaged fireballs underestimates the value from event-by-event calculations by up to 50%. On the other hand, after adjusting {cflx q} to fit R{sub AA} in the event-by-event analysis we find residual deviations in the azimuthal asymmetry v{sub 2} and in two-particle correlations, that provide a possible faint signature for a spatial tomography of the fireball. We discuss a correlation function that is a measure for spatial inhomogeneities in a collision and can be constrained from data.

  1. Event-by-event jet quenching

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, R. [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843 (United States); Fries, R.J., E-mail: rjfries@comp.tamu.ed [Cyclotron Institute and Physics Department, Texas A and M University, College Station, TX 77843 (United States); RIKEN/BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ramirez, E. [Physics Department, University of Texas El Paso, El Paso, TX 79968 (United States)

    2010-09-27

    High momentum jets and hadrons can be used as probes for the quark gluon plasma (QGP) formed in nuclear collisions at high energies. We investigate the influence of fluctuations in the fireball on jet quenching observables by comparing propagation of light quarks and gluons through averaged, smooth QGP fireballs with event-by-event jet quenching using realistic inhomogeneous fireballs. We find that the transverse momentum and impact parameter dependence of the nuclear modification factor R{sub AA} can be fit well in an event-by-event quenching scenario within experimental errors. However the transport coefficient q extracted from fits to the measured nuclear modification factor R{sub AA} in averaged fireballs underestimates the value from event-by-event calculations by up to 50%. On the other hand, after adjusting q to fit R{sub AA} in the event-by-event analysis we find residual deviations in the azimuthal asymmetry v{sub 2} and in two-particle correlations, that provide a possible faint signature for a spatial tomography of the fireball. We discuss a correlation function that is a measure for spatial inhomogeneities in a collision and can be constrained from data.

  2. Hot forming and quenching pilot process development for low cost and low environmental impact manufacturing.

    Science.gov (United States)

    Hall, Roger W.; Foster, Alistair; Herrmann Praturlon, Anja

    2017-09-01

    The Hot Forming and in-tool Quenching (HFQ®) process is a proven technique to enable complex shaped stampings to be manufactured from high strength aluminium. Its widespread uptake for high volume production will be maximised if it is able to wholly amortise the additional investment cost of this process compared to conventional deep drawing techniques. This paper discusses the use of three techniques to guide some of the development decisions taken during upscaling of the HFQ® process. Modelling of Process timing, Cost and Life-cycle impact were found to be effective tools to identify where development budget could be focused in order to be able to manufacture low cost panels of different sizes from many different alloys in a sustainable way. The results confirm that raw material cost, panel trimming, and artificial ageing were some of the highest contributing factors to final component cost. Additionally, heat treatment and lubricant removal stages played a significant role in the overall life-cycle assessment of the final products. These findings confirmed development priorities as novel furnace design, fast artificial ageing and low-cost alloy development.

  3. Quenching of spin-flip quadrupole transitions

    International Nuclear Information System (INIS)

    Castel, B.; Blunden, P.; Okuhara, Y.

    1985-01-01

    An increasing amount of experimental data indicates that spin-flip quadrupole transitions exhibit quenching effects similar to those reported earlier in (p,n) reactions involving l = 0 and l = 1 transitions. We present here two model calculations suggesting that the E2 spin-flip transitions are more affected than their M1 and M3 counterparts by the tensor and spin-orbit components of the nuclear force and should exhibit the largest quenching. We also review the experimental evidence corroborating our observations

  4. Ultrafast quenching of tryptophan fluorescence in proteins: Interresidue and intrahelical electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Weihong; Li Tanping; Zhang Luyuan; Yang Yi; Kao Yating; Wang Lijuan [Department of Physics, Chemistry, and Biochemistry, Program of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, Columbus, OH 43210 (United States); Zhong Dongping [Department of Physics, Chemistry, and Biochemistry, Program of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, Columbus, OH 43210 (United States)], E-mail: dongping@mps.ohio-state.edu

    2008-06-23

    Quenching of tryptophan fluorescence in proteins has been critical to the understanding of protein dynamics and enzyme reactions using tryptophan as a molecular optical probe. We report here our systematic examinations of potential quenching residues with more than 40 proteins. With site-directed mutation, we placed tryptophan to desired positions or altered its neighboring residues to screen quenching groups among 20 amino acid residues and of peptide backbones. With femtosecond resolution, we observed the ultrafast quenching dynamics within 100 ps and identified two ultrafast quenching groups, the carbonyl- and sulfur-containing residues. The former is glutamine and glutamate residues and the later is disulfide bond and cysteine residue. The quenching by the peptide-bond carbonyl group as well as other potential residues mostly occurs in longer than 100 ps. These ultrafast quenching dynamics occur at van der Waals distances through intraprotein electron transfer with high directionality. Following optimal molecular orbital overlap, electron jumps from the benzene ring of the indole moiety in a vertical orientation to the LUMO of acceptor quenching residues. Molecular dynamics simulations were invoked to elucidate various correlations of quenching dynamics with separation distances, relative orientations, local fluctuations and reaction heterogeneity. These unique ultrafast quenching pairs, as recently found to extensively occur in high-resolution protein structures, may have significant biological implications.

  5. First experience with the new coupling loss induced quench system

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Datskov, V.I.; Dudarev, A.V.; Kirby, G.; Sperin, K.A.; ten Kate, Herman H.J.; Verweij, A.P.

    2014-01-01

    New-generation high-field superconducting magnets pose a challenge relating to the protection of the coil winding pack in the case of a quench. The high stored energy per unit volume calls for a very efficient quench detection and fast quench propagation in order to avoid damage due to overheating. A

  6. Quench Detection and Protection for High Temperature Superconducting Transformers by Using the Active Power Method

    Science.gov (United States)

    Nanato, N.; Kobayashi, Y.

    AC high temperature superconducting (HTS) coils have been developed for transformers, motors and so on. Quench detection and protection system are essential for safety operations of the AC HTS facilities. The balance voltage method is universally used for the quench detection and protection, however especially for AC operations, the method has risks in terms of high voltage sparks. Because the method needs a voltage tap soldered to a midpoint of the coil winding and the AC HTS facilities generally operate at high voltages and therefore high voltage sparks may occur at the midpoint with no insulation. We have proposed the active power method for the quench detection and protection. The method requires no voltage tap on the midpoint of the coil winding and therefore it has in-built effectiveness for the AC HTS facilities. In this paper, we show that the method can detect the quench in an HTS transformer and moreover our proposed quench protection circuits which consist of thyristors are simple and useful for the AC HTS facilities.

  7. Experiments on the margin of beam induced quenches a superconducting quadrupole magnet in the LHC

    CERN Document Server

    Bracco, C; Bednarek, M J; Nebot Del Busto, E; Goddard, B; Holzer, E B; Nordt, A; Sapinski, M; Schmidt, R; Solfaroli Camillocci, M; Zerlauth, M

    2012-01-01

    Protection of LHC equipment relies on a complex system of collimators to capture injected and circulating beam in case of LHC kicker magnet failures. However, for specific failures of the injection kickers, the beam can graze the injection protection collimators and induce quenches of downstream superconducting magnets. This occurred twice during 2011 operation and cannot be excluded during future operation. Tests were performed during Machine Development periods of the LHC to assess the quench margin of the quadrupole located just downstream of the last injection protection collimator in point 8. In addition to the existing Quench Protection System, a special monitoring instrumentation was installed at this magnet to detect any resistance increase below the quench limit. The correlation between the magnet and Beam Loss Monitor signals was analysed for different beam intensities and magnet currents. The results of the experiments are presented.

  8. Enhanced Turbulence During the Energy Quench of Disruptions

    NARCIS (Netherlands)

    Remkes, G. J. J.; Schüller, F. C.

    1991-01-01

    Enhanced electron density fluctuation levels with frequencies in the megahertz range have been observed during the energy quench phase of minor disruptions in the TORTUR Tokamak. The high frequencies of the phenomena indicate that the enhanced transport during the energy quench is caused by

  9. Quenched Approximation to ΔS = 1 K Decay

    International Nuclear Information System (INIS)

    Christ, Norman H.

    2005-01-01

    The importance of explicit quark loops in the amplitudes contributing to ΔS = 1, K meson decays raises potential ambiguities when these amplitudes are evaluated in the quenched approximation. Using the factorization of these amplitudes into short- and long-distance parts provided by the standard low-energy effective weak Hamiltonian, we argue that the quenched approximation can be conventionally justified if it is applied to the long-distance portion of each amplitude. The result is a reasonably well-motivated definition of the quenched approximation that is close to that employed in the RBC and CP-PACS calculations of these quantities

  10. Quench Protection and Magnet Powe Supply Requirements for the MICE Focusing and Coupling Magnets

    International Nuclear Information System (INIS)

    Green, Michael A.; Witte, Holger

    2005-01-01

    This report discusses the quench protection and power supply requirements of the MICE superconducting magnets. A section of the report discusses the quench process and how to calculate the peak voltages and hotspot temperature that result from a magnet quench. A section of the report discusses conventional quench protection methods. Thermal quench back from the magnet mandrel is also discussed. Selected quench protection methods that result in safe quenching of the MICE focusing and coupling magnets are discussed. The coupling of the MICE magnets with the other magnets in the MICE is described. The consequences of this coupling on magnet charging and quenching are discussed. Calculations of the quenching of a magnet due quench back from circulating currents induced in the magnet mandrel due to quenching of an adjacent magnet are discussed. The conclusion of this report describes how the MICE magnet channel will react when one or magnets in that channel are quenched

  11. Comparison of quenching and extraction methodologies for metabolome analysis of Lactobacillus plantarum

    Directory of Open Access Journals (Sweden)

    Faijes Magda

    2007-08-01

    Full Text Available Abstract Background A reliable quenching and metabolite extraction method has been developed for Lactobacillus plantarum. The energy charge value was used as a critical indicator for fixation of metabolism. Results Four different aqueous quenching solutions, all containing 60% of methanol, were compared for their efficiency. Only the solutions containing either 70 mM HEPES or 0.85% (w/v ammonium carbonate (pH 5.5 caused less than 10% cell leakage and the energy charge of the quenched cells was high, indicating rapid inactivation of the metabolism. The efficiency of extraction of intracellular metabolites from cell cultures depends on the extraction methods, and is expected to vary between micro-organisms. For L. plantarum, we have compared five different extraction methodologies based on (i cold methanol, (ii perchloric acid, (iii boiling ethanol, (iv chloroform/methanol (1:1 and (v chloroform/water (1:1. Quantification of representative intracellular metabolites showed that the best extraction efficiencies were achieved with cold methanol, boiling ethanol and perchloric acid. Conclusion The ammonium carbonate solution was selected as the most suitable quenching buffer for metabolomics studies in L. plantarum because (i leakage is minimal, (ii the energy charge indicates good fixation of metabolism, and (iii all components are easily removed during freeze-drying. A modified procedure based on cold methanol extraction combined good extractability with mild extraction conditions and high enzymatic inactivation. These features make the combination of these quenching and extraction protocols very suitable for metabolomics studies with L. plantarum.

  12. Quench protection test results and comparative simulations on the first 10 meter prototype dipoles for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Rodriguez-Mateos, F.; Gerin, G.; Marquis, A.

    1996-01-01

    The first 10 meter long dipole prototypes made by European Industry within the framework of the R and D program for the Large Hadron Collider (LHC) have been tested at CERN. As a part of the test program, a series of quench protection tests have been carried out in order to qualify the basic protection scheme foreseen for the LHC dipoles (quench heaters and cold diodes). Results are presented on the quench heater performance, and on the maximum temperatures and voltages observed during quenches under the so-called machine conditions. Moreover, an update of the quench simulation package specially developed at CERN (QUABER 2) has been recently made. Details on this new version of QUABER are given. Simulation runs have been made specifically to validate the model with the results from the measurements on quench protection mentioned above

  13. Fiber optic quench detection via optimized Rayleigh Scattering in high-field YBCO accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [North Carolina State Univ., Raleigh, NC (United States)

    2016-02-17

    Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber optic sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh

  14. A novel approach to quench detection for high temperature superconducting coils

    International Nuclear Information System (INIS)

    Song, W.J.; Fang, X.Y.; Fang, J.; Wei, B.; Hou, J.Z.; Liu, L.F.; Lu, K.K.; Li, Shuo

    2015-01-01

    Highlights: • We proposed a novel quench detection method mainly based on phase for HTS coil. • We showed theory model and numerical simulation system by LabVIEW. • Experiment results are showed and analyzed. • Little quench voltage will cause obvious change on phase. • The approach can accurately detect quench resistance voltage in real-time. - Abstract: A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  15. A novel approach to quench detection for high temperature superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Song, W.J., E-mail: songwenjuan@bjtu.edu.cn [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); China Electric Power Research Institute, Beijing (China); Fang, X.Y. [Department of Electrical and Computer Engineering, University of Victoria, PO Box 1700, STN CSC, Victoria, BC V8W 2Y2 (Canada); Fang, J., E-mail: fangseer@sina.com [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Wei, B.; Hou, J.Z. [China Electric Power Research Institute, Beijing (China); Liu, L.F. [Guangzhou Metro Design & Research Institute Co., Ltd, Guangdong (China); Lu, K.K. [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Li, Shuo [College of Information Science and Engineering, Northeastern University, Shenyang (China)

    2015-11-15

    Highlights: • We proposed a novel quench detection method mainly based on phase for HTS coil. • We showed theory model and numerical simulation system by LabVIEW. • Experiment results are showed and analyzed. • Little quench voltage will cause obvious change on phase. • The approach can accurately detect quench resistance voltage in real-time. - Abstract: A novel approach to quench detection for high temperature superconducting (HTS) coils is proposed, which is mainly based on phase angle between voltage and current of two coils to detect the quench resistance voltage. The approach is analyzed theoretically, verified experimentally and analytically by MATLAB Simulink and LabVIEW. An analog quench circuit is built on Simulink and a quench alarm system program is written in LabVIEW. Experiment of quench detection is further conducted. The sinusoidal AC currents ranging from 19.9 A to 96 A are transported to the HTS coils, whose critical current is 90 A at 77 K. The results of analog simulation and experiment are analyzed and they show good consistency. It is shown that with the increase of current, the phase undergoes apparent growth, and it is up to 60° and 15° when the current reaches critical value experimentally and analytically, respectively. It is concluded that the approach proposed in this paper can meet the need of precision and quench resistance voltage can be detected in time.

  16. Quench propagation and protection analysis of the ATLAS Toroids

    OpenAIRE

    Dudarev, A; Gavrilin, A V; ten Kate, H H J; Baynham, D Elwyn; Courthold, M J D; Lesmond, C

    2000-01-01

    The ATLAS superconducting magnet system consists of the Barrel Toroid, two End Cap Toroids and the Central Solenoid. However, the Toroids of eight coils each are magnetically separate systems to the Central Solenoid. The Toroids are electrically connected in series and energized by a single power supply. The quench protection system is based on the use of relatively small external dump resistances in combination with quench-heaters activated after a quench event detection to initiate the inte...

  17. Generalized thermalization for integrable system under quantum quench.

    Science.gov (United States)

    Muralidharan, Sushruth; Lochan, Kinjalk; Shankaranarayanan, S

    2018-01-01

    We investigate equilibration and generalized thermalization of the quantum Harmonic chain under local quantum quench. The quench action we consider is connecting two disjoint harmonic chains of different sizes and the system jumps between two integrable settings. We verify the validity of the generalized Gibbs ensemble description for this infinite-dimensional Hilbert space system and also identify equilibration between the subsystems as in classical systems. Using Bogoliubov transformations, we show that the eigenstates of the system prior to the quench evolve toward the Gibbs Generalized Ensemble description. Eigenstates that are more delocalized (in the sense of inverse participation ratio) prior to the quench, tend to equilibrate more rapidly. Further, through the phase space properties of a generalized Gibbs ensemble and the strength of stimulated emission, we identify the necessary criterion on the initial states for such relaxation at late times and also find out the states that would potentially not be described by the generalized Gibbs ensemble description.

  18. Anthracene Fluorescence Quenching by a Tetrakis (Ketocarboxamide Cavitand

    Directory of Open Access Journals (Sweden)

    Tibor Zoltan Janosi

    2014-01-01

    Full Text Available Quenching of both fluorescence lifetime and fluorescence intensity of anthracene was investigated in the presence of a newly derived tetrakis (ketocarboxamide cavitand at various concentrations. Time-correlated single photon counting method was applied for the lifetime measurements. A clear correlation between the fluorescence lifetime of anthracene as a function of cavitand concentration in dimethylformamide solution was observed. The bimolecular collisional quenching constant was derived from the decrease of lifetime. Fluorescence intensity was measured in the emission wavelength region around 400 nm as a result of excitation at 280 nm. Effective quenching was observed in the presence of the cavitand. The obtained Stern-Volmer plot displayed upward curvature. The results did not follow even extended Stern-Volmer behavior, often used to describe deviations from static bimolecular quenching. To explain our results we adopted the Smoluchowski model and obtained a reasonable estimate for the molecular radius of the cavitand in solution.

  19. Critical properties of Sudden Quench Dynamics in the anisotropic XY Model

    OpenAIRE

    Guo, Hongli; Liu, Zhao; Fan, Heng; Chen, Shu

    2010-01-01

    We study the zero temperature quantum dynamical critical behavior of the anisotropic XY chain under a sudden quench in a transverse field. We demonstrate theoretically that both quench magnetic susceptibility and two-particle quench correlation can be used to describe the dynamical quantum phase transition (QPT) properties. Either the quench magnetic susceptibility or the derivative of correlation functions as a function of initial magnetic field $a$ exhibits a divergence at the critical poin...

  20. Modelling of pressure tube Quench using PDETWO

    International Nuclear Information System (INIS)

    Parlatan, Y.; Lei, Q.M.; Kwee, M.

    2004-01-01

    Transient two-dimensional heat conduction calculations have been carried out to determine the time-dependent temperature distribution in an overheated pressure tube during quenching with water. The purpose of the calculations is to provide input for evaluation of thermal (secondary) stresses in the pressure tube due to quench. The quench phenomenon in pressure tubes could occur in several hypothetical accident scenarios, including incidents involving intermittent buoyancy-induced flow during outages. In these scenarios, there will be two (radial and axial) or three dimensional temperature gradients, resulting in thermal stresses in the pressure tube, as the water front reaches and starts to cool down the hot pressure tube. The transient, two-dimensional heat conduction equation in the pressure tube during quench is solved using a FORTRAN package called PDETWO, available in the open literature for solving time-dependent coupled systems of non-linear partial differential equations over a two-dimensional rectangular region. This routine is based on finite difference solution of coupled, non-linear partial differential equations. Temperature gradient in the circumferential gradient is neglected for conservatism and convenience. The advancing water front is not modelled explicitly, and assumed to be at a uniform temperature and moving at a constant velocity inferred from experimental data. For outer surface and both ends of the pressure tube in the axial direction, a zero-heat flux boundary condition is assumed, while for the inner surface a moving water-quench front is assumed by appropriately varying the fluid temperature and the heat transfer coefficient. The pressure tube is assumed to be at a uniform temperature of 400 o C initially, to represent conditions expected during an intermittent buoyancy-influenced flow scenario. The results confirm the expectations that axial temperature gradients and associated heat fluxes are small in comparison with those in the

  1. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment.

    Science.gov (United States)

    Ramesh, Gopalan; Prabhu, Narayan Kotekar

    2011-04-14

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  2. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    Directory of Open Access Journals (Sweden)

    Ramesh Gopalan

    2011-01-01

    Full Text Available Abstract The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.

  3. Effect of quenching rate on precipitation kinetics in AA2219 DC cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Elgallad, E.M., E-mail: eelgalla@uqac.ca; Zhang, Z.; Chen, X.-G.

    2017-06-01

    Slow quenching of direct chill (DC) cast aluminum ingot plates used in large mold applications is often used to decrease quench-induced residual stresses, which can deteriorate the machining performance of these plates. Slow quenching may negatively affect the mechanical properties of the cast plates when using highly quench-sensitive aluminum alloys because of its negative effect on the precipitation hardening behavior of such alloys. The effect of the quenching rate on precipitation kinetics in AA2219 DC cast alloy was systematically studied under water and air quenching conditions using differential scanning calorimetry (DSC) technique. Transmission electron microscopy (TEM) was also used to characterize the precipitate microstructure. The results showed that the precipitation kinetics of the θ′ phase in the air-quenched condition was mostly slower than that in the water-quenched one. Air quenching continuously increased the precipitation kinetics of the θ phase compared to water quenching. These results revealed the contributions of the inadequate precipitation of the strengthening θ′ phase and the increased precipitation of the equilibrium θ phase to the deterioration of the mechanical properties of air-quenched AA2219 DC cast plates. The preexisting GP zones and quenched-in dislocations affected the kinetics of the θ′ phase, whereas the preceding precipitation of the θ′ phase affected the kinetics of the θ phase by controlling its precipitation mechanism.

  4. Quench protection in superconducting magnets

    International Nuclear Information System (INIS)

    Shajii, A.; Freidberg, J.P.

    1993-01-01

    The purpose of this obviously non-plasma physics research is to demonstrate that many of the powerful and sophisticated theoretical techniques widely used by the plasma physics community can be applied to engineering problems of direct interest to the magnetic fusion program. Quench protection is such a problem. If a sudden pulse of energy is delivered (usually by accident) to a small section of a superconducting magnet, it may go normal. Under such conditions, the magnet current flows in the surrounding copper matrix, which is essentially in parallel with the superconductor. Although the copper is a good conductor, it still dissipates ohmic power, further adding to the energy input. It is important to detect the quench as early as possible in order to shut off the current, thereby preventing irreversible damage to the conductor. This a non-trivial problem since the cables comprising a coil can be as long as one kilometer. The theory presented here starts with a set of multi-dimensional Navier-Stokes and heat transport equations for the coupled system of helium coolant, superconducting/copper cable, and surrounding jacket. A combination of multiple time scale expansions and asymptotic analysis reduces the problem to a nonlinear fourth order system of 1-D plus time equations. A code has been written whose numerical results are in excellent agreement with more complex engineering codes. There is at least an order of magnitude savings in CPU over the existing codes where a typical run requires one hour Cray CPU. By investigating a number of different cases the authors have been able to introduce further analytic approximations which reduce the problem to quasi-analytic form, a set of three ODE's in time. The results here too are in excellent agreement with the engineering code and requires only several seconds of CPU time. More important, the critical dimensionless parameters have been identified, as well as practical scaling information for the magnet design

  5. Structure of partly quenched molten copper chloride

    International Nuclear Information System (INIS)

    Pastore, G.; Tosi, M.P.

    1995-09-01

    The structural modifications induced in a model of molten CuCl by quenching the chlorine component into a microporous disordered matrix are evaluated using the hypernetted-chain closure in Ornstein-Zernike relations for the pair distribution functions in random systems. Aside from obvious changes in the behaviour of long-wavelength density fluctuations, the main effect of partial quenching is an enhanced delocalization of the Cu + ions. The model suggests that the ionic mobility in a superionic glass is enhanced relative to the melt at the same temperature and density. Only very minor quantitative differences are found in the structural functions when the replica Ornstein-Zernike relations derived by Given and Stell for a partly quenched system are simplified to those given earlier by Madden and Glandt. (author). 19 refs, 6 figs

  6. Group quenching and galactic conformity at low redshift

    Science.gov (United States)

    Treyer, M.; Kraljic, K.; Arnouts, S.; de la Torre, S.; Pichon, C.; Dubois, Y.; Vibert, D.; Milliard, B.; Laigle, C.; Seibert, M.; Brown, M. J. I.; Grootes, M. W.; Wright, A. H.; Liske, J.; Lara-Lopez, M. A.; Bland-Hawthorn, J.

    2018-06-01

    We quantify the quenching impact of the group environment using the spectroscopic survey Galaxy and Mass Assembly to z ˜ 0.2. The fraction of red (quiescent) galaxies, whether in groups or isolated, increases with both stellar mass and large-scale (5 Mpc) density. At fixed stellar mass, the red fraction is on average higher for satellites of red centrals than of blue (star-forming) centrals, a galactic conformity effect that increases with density. Most of the signal originates from groups that have the highest stellar mass, reside in the densest environments, and have massive, red only centrals. Assuming a colour-dependent halo-to-stellar-mass ratio, whereby red central galaxies inhabit significantly more massive haloes than blue ones of the same stellar mass, two regimes emerge more distinctly: at log (Mhalo/M⊙) ≲ 13, central quenching is still ongoing, conformity is no longer existent, and satellites and group centrals exhibit the same quenching excess over field galaxies at all mass and density, in agreement with the concept of `group quenching'; at log (Mh/M⊙) ≳ 13, a cut-off that sets apart massive (log (M⋆/M⊙) > 11), fully quenched group centrals, conformity is meaningless, and satellites undergo significantly more quenching than their counterparts in smaller haloes. The latter effect strongly increases with density, giving rise to the density-dependent conformity signal when both regimes are mixed. The star formation of blue satellites in massive haloes is also suppressed compared to blue field galaxies, while blue group centrals and the majority of blue satellites, which reside in low-mass haloes, show no deviation from the colour-stellar mass relation of blue field galaxies.

  7. Group quenching and galactic conformity at low redshift

    Science.gov (United States)

    Treyer, M.; Kraljic, K.; Arnouts, S.; de la Torre, S.; Pichon, C.; Dubois, Y.; Vibert, D.; Milliard, B.; Laigle, C.; Seibert, M.; Brown, M. J. I.; Grootes, M. W.; Wright, A. H.; Liske, J.; Lara-Lopez, M. A.; Bland-Hawthorn, J.

    2018-03-01

    We quantify the quenching impact of the group environment using the spectroscopic survey Galaxy and Mass Assembly (GAMA) to z ˜ 0.2. The fraction of red (quiescent) galaxies, whether in groups or isolated, increases with both stellar mass and large-scale (5 Mpc) density. At fixed stellar mass, the red fraction is on average higher for satellites of red centrals than of blue (star-forming) centrals, a galactic conformity effect that increases with density. Most of the signal originates from groups that have the highest stellar mass, reside in the densest environments, and have massive, red only centrals. Assuming a color-dependent halo-to-stellar-mass ratio, whereby red central galaxies inhabit significantly more massive halos than blue ones of the same stellar mass, two regimes emerge more distinctly: at log (Mhalo/M⊙) ≲ 13, central quenching is still ongoing, conformity is no longer existent, and satellites and group centrals exhibit the same quenching excess over field galaxies at all mass and density, in agreement with the concept of "group quenching"; at log (Mh/M⊙) ≳ 13, a cutoff that sets apart massive (log (M⋆/M⊙) > 11), fully quenched group centrals, conformity is meaningless, and satellites undergo significantly more quenching than their counterparts in smaller halos. The latter effect strongly increases with density, giving rise to the density-dependent conformity signal when both regimes are mixed. The star-formation of blue satellites in massive halos is also suppressed compared to blue field galaxies, while blue group centrals and the majority of blue satellites, which reside in low mass halos, show no deviation from the color-stellar mass relation of blue field galaxies.

  8. Non-self-averaging nucleation rate due to quenched disorder

    International Nuclear Information System (INIS)

    Sear, Richard P

    2012-01-01

    We study the nucleation of a new thermodynamic phase in the presence of quenched disorder. The quenched disorder is a generic model of both impurities and disordered porous media; both are known to have large effects on nucleation. We find that the nucleation rate is non-self-averaging. This is in a simple Ising model with clusters of quenched spins. We also show that non-self-averaging behaviour is straightforward to detect in experiments, and may be rather common. (fast track communication)

  9. Thermalhydraulic phenomena governing the quenching of hot rods, and existing models

    International Nuclear Information System (INIS)

    Bestion, D.

    2001-01-01

    After a core dry-out and a period of rod clad overheating, which might occur in some postulated accidental sequences in a PWR, the actuation of safety injections allows to quench the hot rods. Both thermal and mechanical processes control the phenomenon of quenching. Quenching first requires that liquid water is present to release the heat stored in the rod. When water is present, a pre-cooling of the clad is also required before quenching. (author)

  10. Thermalhydraulic phenomena governing the quenching of hot rods, and existing models

    Energy Technology Data Exchange (ETDEWEB)

    Bestion, D. [CEA-Grenoble, DEN/DTP/SMTH (France)

    2001-07-01

    After a core dry-out and a period of rod clad overheating, which might occur in some postulated accidental sequences in a PWR, the actuation of safety injections allows to quench the hot rods. Both thermal and mechanical processes control the phenomenon of quenching. Quenching first requires that liquid water is present to release the heat stored in the rod. When water is present, a pre-cooling of the clad is also required before quenching. (author)

  11. The Inductive Coupling of the Magnets in MICE and its Effect on Quench Protection

    International Nuclear Information System (INIS)

    Green, Michael A.; Witte, Holger

    2005-01-01

    The inductive coupling between various MICE magnet circuits is described. The consequences of this coupling on magnet charging and quenching are discussed. Magnet quench protection is achieved through the use of quench-back. Calculations of the quenching of a magnet due to quench-back resulting from circulating currents induced in the magnet mandrel due to quenching of an adjacent magnet are discussed. This report describes how the MICE magnet channel will react when magnets in that channel are quenched

  12. Measurement of cell volume changes by fluorescence self-quenching

    DEFF Research Database (Denmark)

    Hamann, Steffen; Kiilgaard, J.F.; Litman, Thomas

    2002-01-01

    At high concentrations, certain fluorophores undergo self-quenching, i.e., fluorescence intensity decreases with increasing fluorophore concentration. Accordingly, the self-quenching properties can be used for measuring water volume changes in lipid vesicles. In cells, quantitative determination...... concentrations of the fluorophore calcein suitable for measurement of changes in cell water volume by self-quenching. The relationship between calcein fluorescence intensity, when excited at 490 nm (its excitation maximum), and calcein concentration was investigated in vitro and in various cultured cell types...... to a decrease in calcein fluorescence with high signal-to-noise ratio (>15). Similar results were obtained with the fluorophore BCECF when excited at its isosbestic wavelength (436 nm). The present results demonstrate the usefulness of fluorescence self-quenching to measure rapid changes in cell water volume....

  13. Experimental investigation of quench and re-wetting temperatures of hot horizontal tubes well above the limiting temperature for solid–liquid contact

    Energy Technology Data Exchange (ETDEWEB)

    Takrouri, Kifah, E-mail: takroukj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Luxat, John, E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Hamed, Mohamed [Thermal Processing Laboratory (TPL), Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada)

    2017-01-15

    Highlights: • Quench and re-wetting temperatures were measured upon jet quenching of hot cylindrical tubes. • Correlations have been developed and provided good fit of data. • Quench and re-wetting temperatures were found to greatly depend on water subcooling. • Stagnation point showed higher quench and re-wetting temperatures than other locations. • Quench temperature decreased by increasing surface curvature and tube conductivity. • Re-wetting temperature is a weak function of both variables. - Abstract: Quench cooling of a hot dry surface involves the rapid decrease in surface temperature resulting from bringing the hot surface into sudden contact with a coolant at a lower temperature. Quench temperature is the onset of the rapid decrease in surface temperature and corresponds to the onset of destabilization of a vapor film that exists between the hot surface and the coolant. Situations involving quench cooling are encountered in a number of postulated accidents in Canada Deuterium Uranium CANDU reactors, such as the quench of a hot calandria tube in certain Loss of Coolant Accidents LOCA. If the calandria tube temperature is not reduced by initiation of quench heat transfer, then this may lead to subsequent fuel channel failure and for this accident knowledge of quench heat transfer characteristics is of great importance. In this study, a Water Quench Facility WQF has been designed and built at the Thermal Processing Laboratory TPL at McMaster University and a series of experimental tests were carried out to investigate the quench of hot horizontal tubes using a vertical rectangular water multi-jet system. The tubes were heated to a temperature between 380 and 780 °C then cooled to the jet temperature. The temperature variation with time in tube circumferential and axial directions was measured. The two-phase flow behavior and the propagation of the re-wetting front around and along the tubes were simultaneously observed using a high-speed camera

  14. Quench Detection and Magnet Protection Study for MFTF. LLL final review

    International Nuclear Information System (INIS)

    1979-06-01

    The results of a Quench Detection and Magnet Protection Study for MFTF are summarized. The study was directed toward establishing requirements and guidelines for the electronic package used to protect the MFTF superconducting magnets. Two quench detection schemes were analyzed in detail, both of which require a programmable quench detector. Hardware and software recommendations for the quench detector were presented as well as criteria for dumping the magnet energy in the event of a quench. Overall magnet protection requirements were outlined in a detailed Failure Mode Effects and Criticality analysis, (FMECA). Hardware and software packages compatible with the FMECA were recommended, with the hardware consisting of flexible, dedicated intelligent modules specifically designed for magnet protection

  15. Performance of the MAGCOOL-subcooler cryogenic system after SSC quadrupole quenches

    International Nuclear Information System (INIS)

    Wu, K.C.

    1993-01-01

    The subcooler assembly installed in the MAGCOOL magnet test area at Brookhaven National Laboratory has been used for testing SSC dipoles, quadrupoles and a spool piece since 1989. A detailed description of the system, its steady state capacity and the performance after quenches of a 50 mm SSC dipole were given. Subsequent studies on low current quenches of the SSC dipoles and quenches of the RHIC dipoles were also carried out. In this paper, the performance of the subcooler after quenches of the SSC quadrupole QCC404 is presented. Pressures, temperatures and flow rates in the magnet cooling loop after magnet quenches are given as a function of time. The cooling rates and total energy removed by cooling during quench recovery have been calculated for quench currents between 2000 and 7952 amperes. Because the inductance of the quadrupole is about one tenth that of a SSC dipole, the stored energy released is small and the impact on the system is mild. The cooling loop pressure never exceeds 12 atmospheres and the cryogenic system recovers in less than 15 minutes. As in all past studies, the peak pressure and temperature in the magnet cooling loop are linearly proportional to the energy released during a quench and excellent agreement between the total cooling provided and the magnetic stored energy is found

  16. Review of quench simulations for the protection of LHC main dipole magnets

    CERN Document Server

    Sonnemann, F

    1999-01-01

    The simulation program QUABER [1] allows studying the quench process of superconducting magnets for the LHC. The performance of the protection system of the LHC main dipole magnets was simulated under various parameter dependencies at different magnet excitation currents. This simulation study was motivated to complement measurement results in order to help preparing and understanding experiments of the quench propagation and magnet protection. The influence of the quench propagation velocity and the time for a quench propagation between adjacent turns was studied. The different copper plating cycles of the quench heater strips were simulated. Experimental measurement results [2] were used to calibrate the input parameters. The performance of the protection system for various quench detection thresholds was investigated and different failure modes of the system were considered. The maximum voltages and values of the quench load are discussed. The values given are obtained using conservatively chosen parameter...

  17. Quench detection method for 2G HTS wire

    International Nuclear Information System (INIS)

    Marchevsky, M; Xie, Y-Y; Selvamanickam, V

    2010-01-01

    2G HTS conductors are increasingly used in various commercial applications and their thermal and electrical stability is an important reliability factor. Detection and prevention of quenches in 2G wire-based cables and solenoids has proven to be a difficult engineering task. This is largely due to a very slow normal zone propagation in coated conductors that leads to formation of localized hotspots while the rest of the conductor remains in the superconducting state. We propose an original method of quench and hotspot detection for 2G wires and coils that is based upon local magnetic sensing and takes advantage of 2G wire planar geometry. We demonstrate our technique experimentally and show that its sensitivity is superior to the known voltage detection scheme. A unique feature of the method is its capability to remotely detect instant degradation of the wire critical current even before a normal zone is developed within the conductor. Various modifications of the method applicable to practical device configurations are discussed.

  18. Quench detection method for 2G HTS wire

    Energy Technology Data Exchange (ETDEWEB)

    Marchevsky, M; Xie, Y-Y; Selvamanickam, V, E-mail: maxmarche@gmail.co, E-mail: yxie@superpower-inc.co [SuperPower, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States)

    2010-03-15

    2G HTS conductors are increasingly used in various commercial applications and their thermal and electrical stability is an important reliability factor. Detection and prevention of quenches in 2G wire-based cables and solenoids has proven to be a difficult engineering task. This is largely due to a very slow normal zone propagation in coated conductors that leads to formation of localized hotspots while the rest of the conductor remains in the superconducting state. We propose an original method of quench and hotspot detection for 2G wires and coils that is based upon local magnetic sensing and takes advantage of 2G wire planar geometry. We demonstrate our technique experimentally and show that its sensitivity is superior to the known voltage detection scheme. A unique feature of the method is its capability to remotely detect instant degradation of the wire critical current even before a normal zone is developed within the conductor. Various modifications of the method applicable to practical device configurations are discussed.

  19. O2(a1Δ) Quenching In The O/O2/O3 System

    Science.gov (United States)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-10-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O2(a1Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O2(a1Δ)+O+M→2O2+M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O2(a1Δ) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a1Δ) quenching were followed by observing the 1268 nm fluorescence of the O2a1Δ-X3∑ transition. Fast quenching of O2(a1Δ) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  20. O2(a1Δ) Quenching In The O/O2/O3 System

    International Nuclear Information System (INIS)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-01-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O 2 (a 1 Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O 2 (a 1 Δ)+O+M→2O 2 +M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O 2 (a 1 Δ) in O( 3 P)/O 2 /O 3 /CO 2 /He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O 2 (a 1 Δ) quenching were followed by observing the 1268 nm fluorescence of the O 2 a 1 Δ-X 3 Σ transition. Fast quenching of O 2 (a 1 Δ) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  1. Thermo hydraulic and quench propagation characteristics of SST-1 TF coil

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.N., E-mail: ansharma@ipr.res.in [Institute for Plasma Research, Gandhinagar (India); Pradhan, S. [Institute for Plasma Research, Gandhinagar (India); Duchateau, J.L. [CEA Cadarache, 13108 St Paul lez Durance Cedex (France); Khristi, Y.; Prasad, U.; Doshi, K.; Varmora, P.; Patel, D.; Tanna, V.L. [Institute for Plasma Research, Gandhinagar (India)

    2014-02-15

    Highlights: • Details of SST-1 TF coils, CICC. • Details of SST-1 TF coil cold test. • Quench analysis of TF magnet. • Flow changes following quench. • Predictive analysis of assembled magnet system. - Abstract: SST-1 toroidal field (TF) magnet system is comprising of sixteen superconducting modified ‘D’ shaped TF coils. During single coil test campaigns spanning from June 10, 2010 till January 24, 2011; the electromagnetic, thermal hydraulic and mechanical performances of each TF magnet have been qualified at its respective nominal operating current of 10,000 A in either two-phase or supercritical helium cooling conditions. During the current charging experiments, few quenches have initiated either as a consequence of irrecoverable normal zones or being induced in some of the TF magnets. Quench evolution in the TF coils have been analyzed in detail in order to understand the thermal hydraulic and quench propagation characteristics of the SST-1 TF magnets. The same were also simulated using 1D code Gandalf. This paper elaborates the details of the analyses and the quench simulation results. A predictive quench propagation analysis of 16 assembled TF magnets system has also been reported in this paper.

  2. Quench Heater Experiments on the LHC Main Superconducting Magnets

    OpenAIRE

    Rodríguez-Mateos, F; Pugnat, P; Sanfilippo, S; Schmidt, R; Siemko, A; Sonnemann, F

    2000-01-01

    In case of a quench in one of the main dipoles and quadrupoles of CERN's Large Hadron Collider (LHC), the magnet has to be protected against excessive temperatures and high voltages. In order to uniformly distribute the stored magnetic energy in the coils, heater strips installed in the magnet are fired after quench detection. Tests of different quench heater configurations were performed on various 1 m long model and 15 m long prototype dipole magnets, as well as on a 3 m long prototype quad...

  3. Detection of radioactively labeled proteins is quenched by silver staining methods: quenching is minimal for 14C and partially reversible for 3H with a photochemical stain

    International Nuclear Information System (INIS)

    Van Keuren, M.L.; Goldman, D.; Merril, C.R.

    1981-01-01

    Silver staining methods for protein detection in polyacrylamide gels have a quenching effect on autoradiography and fluorography. This effect was quantitated for proteins in two-dimensional gels by microdensitometry using a computer equipped with an image processor and by scintillation counting of proteins solubilized from the gels. The original histologically derived silver stain had a quenching effect that was severe and irreversible for 3 H detection and moderate for 14 C detection. A silver stain based on photochemical methods had minimal quenching of 14 C detection and less of a quenching effect than the histological stain for 3 H detection. The 3 H quenching effect was partially reversible for the photochemical stain

  4. Spectral analysis of colour-quenched and chemically quenched C-14 samples; Estudio espectral de muestras de C-14 con extincion quimica y por color en centelleo liquido

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P E; Grau, A

    1987-07-01

    In this paper pairs of pulse height distribution curves, of C-14 samples, colour-quenched and chemically quenched was obtained. The possibility to choose a counting window in order to obtain the counting efficiency curves, for both type of quenching was studied. (Author) 7 refs.

  5. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus.

    Science.gov (United States)

    Chen, Ming-ming; Li, Ai-li; Sun, Mao-cheng; Feng, Zhen; Meng, Xiang-chen; Wang, Ying

    2014-04-01

    This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage.

  6. Polyfluorophore Labels on DNA: Dramatic Sequence Dependence of Quenching

    Science.gov (United States)

    Teo, Yin Nah; Wilson, James N.

    2010-01-01

    We describe studies carried out in the DNA context to test how a common fluorescence quencher, dabcyl, interacts with oligodeoxynu-cleoside fluorophores (ODFs)—a system of stacked, electronically interacting fluorophores built on a DNA scaffold. We tested twenty different tetrameric ODF sequences containing varied combinations and orderings of pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and spacer (S) monomers conjugated to the 3′ end of a DNA oligomer. Hybridization of this probe sequence to a dabcyl-labeled complementary strand resulted in strong quenching of fluorescence in 85% of the twenty ODF sequences. The high efficiency of quenching was also established by their large Stern–Volmer constants (KSV) of between 2.1 × 104 and 4.3 × 105M−1, measured with a free dabcyl quencher. Interestingly, quenching of ODFs displayed strong sequence dependence. This was particularly evident in anagrams of ODF sequences; for example, the sequence BYDS had a KSV that was approximately two orders of magnitude greater than that of BSDY, which has the same dye composition. Other anagrams, for example EDSY and ESYD, also displayed different responses upon quenching by dabcyl. Analysis of spectra showed that apparent excimer and exciplex emission bands were quenched with much greater efficiency compared to monomer emission bands by at least an order of magnitude. This suggests an important role played by delocalized excited states of the π stack of fluorophores in the amplified quenching of fluorescence. PMID:19780115

  7. Successful magnet quench test for CAST.

    CERN Multimedia

    Brice Maximilien

    2002-01-01

    The CERN Axion Solar Telescope (CAST) consists of a prototype LHC dipole magnet with photon detectors at each end. It searches for very weakly interacting neutral particles called axions, which should originate in the core of the Sun. The telescope, located at Point 8, can move vertically within its wheeled platform, which travels horizontally along tracks in the floor. In this way, the telescope can view the Sun at sunrise through one end and at sunset through the other end. It has been cooled down to below 1.8 K and reached ~95% of its final magnetic field of 9 tesla before a quench was induced to test the whole cryogenic system under such conditions. The cryogenic system responded as expected to the magnet quench and CAST is now ready to start its three-year search for solar axions. Photos 01 & 02 : Members of the LHC cryogenics team pose in front of the axion telescope on the day of the first quench test, together with some of the CAST collaboration.

  8. Quench analysis of pancake wound REBCO coils with low resistance between turns

    International Nuclear Information System (INIS)

    Markiewicz, W Denis; Jaroszynski, Jan J; Abraimov, Dymtro V; Joyner, Rachel E; Khan, Amanatullah

    2016-01-01

    Quench in a pancake wound REBCO superconducting coil with low resistance (LR) between turns is examined by numerical analysis. In these calculations it is generally observed that once established, quench propagates rapidly in LR coils. Large transients are induced in the azimuthal solenoid current, allowed by the LR between turns, and become self-propagating. The transition from an initial state characterized by thermal diffusion to the dynamic inductive state of quench propagation is observed. The analysis is applied to the inner coil of a 30 T magnet where the quench performance is studied as a function of the value of resistance between turns. Rapid propagation of quench is seen in calculations for resistance between turns significantly greater than the resistance reported for no-insulation coils. The influence on quench of both steel co-wind and the amount of copper in the conductor is examined through calculation of the maximum temperature and the quench propagation velocity. (paper)

  9. ZnSe quantum dots based fluorescence quenching method for determination of paeoniflorin

    International Nuclear Information System (INIS)

    Chen, Zhi; Chen, Jiayi; Liang, Qiaowen; Wu, Dudu; Zeng, Yuaner; Jiang, Bin

    2014-01-01

    Water soluble ZnSe quantum dots (QDs) modified by mercaptoacetic acid (MAA) were used to determinate paeoniflorin in aqueous solutions by the fluorescence spectroscopic technique. The results showed that the fluorescence of the modified ZnSe QDs could be quenched by paeoniflorin effectively in physiological buffer solution. The optimum fluorescence intensity was found to be at incubation time 10 min, pH 7.0 and temperature 25 °C. Under the optimal conditions, the detection limit of paeoniflorin was 7.30×10 −7 mol L −1 . Moreover, the quenching mechanism was discussed to be a static quenching procedure, which was proved by quenching rate constant K q (1.02×10 13 L mol −1 s −1 ). -- Highlights: • The fluorescence intensity of ZnSe QDs could be quenched by paeoniflorin. • Foreign substance showed insignificant effect for determination of paeoniflorin. • The quenching mechanism was discussed to be a static quenching procedure

  10. ZnSe quantum dots based fluorescence quenching method for determination of paeoniflorin

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi [Center of Analysis, Guangdong Medical College, Dongguan 523808 (China); School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Chen, Jiayi; Liang, Qiaowen [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Wu, Dudu [Center of Analysis, Guangdong Medical College, Dongguan 523808 (China); Zeng, Yuaner, E-mail: zengyuaner@126.com [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Jiang, Bin, E-mail: gzjiangbin@hotmail.com [School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China)

    2014-01-15

    Water soluble ZnSe quantum dots (QDs) modified by mercaptoacetic acid (MAA) were used to determinate paeoniflorin in aqueous solutions by the fluorescence spectroscopic technique. The results showed that the fluorescence of the modified ZnSe QDs could be quenched by paeoniflorin effectively in physiological buffer solution. The optimum fluorescence intensity was found to be at incubation time 10 min, pH 7.0 and temperature 25 °C. Under the optimal conditions, the detection limit of paeoniflorin was 7.30×10{sup −7} mol L{sup −1}. Moreover, the quenching mechanism was discussed to be a static quenching procedure, which was proved by quenching rate constant K{sub q} (1.02×10{sup 13} L mol{sup −1} s{sup −1}). -- Highlights: • The fluorescence intensity of ZnSe QDs could be quenched by paeoniflorin. • Foreign substance showed insignificant effect for determination of paeoniflorin. • The quenching mechanism was discussed to be a static quenching procedure.

  11. SURFACE DENSITY EFFECTS IN QUENCHING: CAUSE OR EFFECT?

    Energy Technology Data Exchange (ETDEWEB)

    Lilly, Simon J.; Carollo, C. Marcella [Institute for Astronomy, Department of Physics, ETH Zurich, 8093 Zurich (Switzerland)

    2016-12-10

    There are very strong observed correlations between the specific star formation rates (sSFRs) of galaxies and their mean surface mass densities, Σ, as well as other aspects of their internal structure. These strong correlations have often been taken to argue that the internal structure of a galaxy must play a major physical role, directly or indirectly, in the control of star formation. In this paper we show by means of a very simple toy model that these correlations can arise naturally without any such physical role once the observed evolution of the size–mass relation for star-forming galaxies is taken into account. In particular, the model reproduces the sharp threshold in Σ between galaxies that are star-forming and those that are quenched and the evolution of this threshold with redshift. Similarly, it produces iso-quenched-fraction contours in the f {sub Q}( m , R {sub e}) plane that are almost exactly parallel to lines of constant Σ for centrals and shallower for satellites. It does so without any dependence on quenching on size or Σ and without invoking any differences between centrals and satellites, beyond the different mass dependences of their quenching laws. The toy model also reproduces several other observations, including the sSFR gradients within galaxies and the appearance of inside-out build-up of passive galaxies. Finally, it is shown that curvature in the main-sequence sSFR–mass relation can produce curvature in the apparent B / T ratios with mass. Our analysis therefore suggests that many of the strong correlations that are observed between galaxy structure and sSFR may well be a consequence of things unrelated to quenching and should not be taken as evidence of the physical processes that drive quenching.

  12. Computer simulation of quenching uranium-0.75 weight per cent titanium alloy

    International Nuclear Information System (INIS)

    Ludtka, G.M.; Llewellyn, G.H.; Aramayo, G.A.; Siman-Tov, M.; Childs, K.W.

    1986-01-01

    A ''QUENCH SIMULATOR'' has been developed which uses finite difference heat transfer and finite element stress analysis techniques to predict the behavior of a metal during quenching. The actual nonlinear temperature- and microstructure-dependent physical, thermophysical, and mechanical properties are incorporated as input into the computer model as well as the continuous cooling transformation (CCT) behavior and heats of transformation of the alloy. The final output provides the transient temperature distribution, details the final residual profile, predicts and shows where distortion occurs, and maps out the microstructure distribution throughout the entire sample. These data are available in tabulated form, contour plots, or color-coded graphics. This analysis has been demonstrated on simple shapes for unalloyed uranium and the uranium-0.75 weight per titanium alloy which undergoes a martensite transformation and is quench-rate sensitive. The results of this study are discussed in detail in addition to other applications of this analysis approach which is generic in nature

  13. Universality of fast quenches from the conformal perturbation theory

    Science.gov (United States)

    Dymarsky, Anatoly; Smolkin, Michael

    2018-01-01

    We consider global quantum quenches, a protocol when a continuous field theoretic system in the ground state is driven by a homogeneous time-dependent external interaction. When the typical inverse time scale of the interaction is much larger than all relevant scales except for the UV-cutoff the system's response exhibits universal scaling behavior. We provide both qualitative and quantitative explanations of this universality and argue that physics of the response during and shortly after the quench is governed by the conformal perturbation theory around the UV fixed point. We proceed to calculate the response of one and two-point correlation functions confirming and generalizing universal scalings found previously. Finally, we discuss late time behavior after the quench and argue that all local quantities will equilibrate to their thermal values specified by an excess energy acquired by the system during the quench.

  14. Luminescence quenching by reversible ionization or exciplex formation/dissociation.

    Science.gov (United States)

    Ivanov, Anatoly I; Burshtein, Anatoly I

    2008-11-20

    The kinetics of fluorescence quenching by both charge transfer and exciplex formation is investigated, with an emphasis on the reversibility and nonstationarity of the reactions. The Weller elementary kinetic scheme of bimolecular geminate ionization and the Markovian rate theory are shown to lead to identical results, provided the rates of the forward and backward reactions account for the numerous recontacts during the reaction encounter. For excitation quenching by the reversible exciplex formation, the Stern-Volmer constant is specified in the framework of the integral encounter theory. The bulk recombination affecting the Stern-Volmer quenching constant makes it different for pulse excited and stationary luminescence. The theory approves that the free energy gap laws for ionization and exciplex formation are different and only the latter fits properly the available data (for lumiflavin quenching by aliphatic amines and aromatic donors) in the endergonic region.

  15. Entanglement growth after a global quench in free scalar field theory

    Energy Technology Data Exchange (ETDEWEB)

    Cotler, Jordan S. [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305 (United States); Hertzberg, Mark P. [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Mezei, Márk [Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544 (United States); Mueller, Mark T. [Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-11-28

    We compute the entanglement and Rényi entropy growth after a global quench in various dimensions in free scalar field theory. We study two types of quenches: a boundary state quench and a global mass quench. Both of these quenches are investigated for a strip geometry in 1, 2, and 3 spatial dimensions, and for a spherical geometry in 2 and 3 spatial dimensions. We compare the numerical results for massless free scalars in these geometries with the predictions of the analytical quasiparticle model based on EPR pairs, and find excellent agreement in the limit of large region sizes. At subleading order in the region size, we observe an anomalous logarithmic growth of entanglement coming from the zero mode of the scalar.

  16. Asymmetries in the spectral density of an interaction-quenched Luttinger liquid

    Science.gov (United States)

    Calzona, A.; Gambetta, F. M.; Carrega, M.; Cavaliere, F.; Sassetti, M.

    2018-03-01

    The spectral density of an interaction-quenched one-dimensional system is investigated. Both direct and inverse quench protocols are considered and it is found that the former leads to stronger effects on the spectral density with respect to the latter. Such asymmetry is directly reflected on transport properties of the system, namely the charge and energy current flowing to the system from a tunnel coupled biased probe. In particular, the injection of particles from the probe to the right-moving channel of the system is considered. The resulting fractionalization phenomena are strongly affected by the quench protocol and display asymmetries in the case of direct and inverse quench. Transport properties therefore emerge as natural probes for the observation of this quench-induced behavior.

  17. Reliability of the quench protection system for the LHC superconducting elements

    International Nuclear Information System (INIS)

    Vergara Fernandez, A.; Rodriguez-Mateos, F.

    2004-01-01

    The Quench Protection System (QPS) is the sole system in the Large Hadron Collider machine monitoring the signals from the superconducting elements (bus bars, current leads, magnets) which form the cold part of the electrical circuits. The basic functions to be accomplished by the QPS during the machine operation will be briefly presented. With more than 4000 internal trigger channels (quench detectors and others), the final QPS design is the result of an optimised balance between on-demand availability and false quench reliability. The built-in redundancy for the different equipment will be presented, focusing on the calculated, expected number of missed quenches and false quenches. Maintenance strategies in order to improve the performance over the years of operation will be addressed

  18. Reliability of the quench protection system for the LHC superconducting elements

    Science.gov (United States)

    Vergara Fernández, A.; Rodríguez-Mateos, F.

    2004-06-01

    The Quench Protection System (QPS) is the sole system in the Large Hadron Collider machine monitoring the signals from the superconducting elements (bus bars, current leads, magnets) which form the cold part of the electrical circuits. The basic functions to be accomplished by the QPS during the machine operation will be briefly presented. With more than 4000 internal trigger channels (quench detectors and others), the final QPS design is the result of an optimised balance between on-demand availability and false quench reliability. The built-in redundancy for the different equipment will be presented, focusing on the calculated, expected number of missed quenches and false quenches. Maintenance strategies in order to improve the performance over the years of operation will be addressed.

  19. Modelling of the Quench Process for the Optimisation of the Design and Protection of Superconducting Busbars for the LHC

    OpenAIRE

    Schmidt, R; Sonnemann, F

    2000-01-01

    The superconducting busbars powering the LHC magnets are highly stabilised with copper to reduce the probability of a quench starting in a busbar and to avoid excessive temperatures after a quench during current discharge. In order to determine the required copper stabilisation and the parameters of the protection system a finite difference program has been developed. The program numerically approximates the heat balance equation and evaluates the temperature profile after a quench as a funct...

  20. Quantum quench in an atomic one-dimensional Ising chain.

    Science.gov (United States)

    Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C

    2013-08-02

    We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.

  1. Design of FPGA-based radiation tolerant quench detectors for LHC

    Science.gov (United States)

    Steckert, J.; Skoczen, A.

    2017-04-01

    The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.

  2. Design of FPGA-based radiation tolerant quench detectors for LHC

    International Nuclear Information System (INIS)

    Steckert, J.; Skoczen, A.

    2017-01-01

    The Large Hadron Collider (LHC) comprises many superconducting circuits. Most elements of these circuits require active protection. The functionality of the quench detectors was initially implemented as microcontroller based equipment. After the initial stage of the LHC operation with beams the introduction of a new type of quench detector began. This article presents briefly the main ideas and architectures applied to the design and the validation of FPGA-based quench detectors.

  3. Quench Protection and Powering in a String of Superconducting Magnets for the Large Hadron Collider

    CERN Document Server

    Krainz, G

    1997-01-01

    Practical experience has been attained on the LHC Test String (String~1), composed of one 3~m long superconducting twin-aperture prototype quadrupole and three 10~m long superconducting twin-aperture prototype dipoles. The protection diodes are housed in the cold mass of the short straight section. The quench protection system acts on the half-cell level. During the operation of the LHC Test String, magnet quenches have been provoked manually by firing the quench heaters or occured manually by exceeding the critical temperature or critical current density of the superconductor. Most of the data could be measured while some parameters (magnet current, diode current, average temperature, etc.) cannot be directly measured. A simulation progam has been developed to calculate the missing data. The validation of the model has been performed by comparing measured and simulated data. The modelling of the quench behaviour of the final version of the LHC magnets show that hot-spot temperatures and voltages to ground ca...

  4. High sensitive quench detection method using an integrated test wire

    International Nuclear Information System (INIS)

    Fevrier, A.; Tavergnier, J.P.; Nithart, H.; Kiblaire, M.; Duchateau, J.L.

    1981-01-01

    A high sensitive quench detection method which works even in the presence of an external perturbing magnetic field is reported. The quench signal is obtained from the difference in voltages at the superconducting winding terminals and at the terminals at a secondary winding strongly coupled to the primary. The secondary winding could consist of a ''zero-current strand'' of the superconducting cable not connected to one of the winding terminals or an integrated normal test wire inside the superconducting cable. Experimental results on quench detection obtained by this method are described. It is shown that the integrated test wire method leads to efficient and sensitive quench detection, especially in the presence of an external perturbing magnetic field

  5. Quenching of Einstein-coefficients by photons

    International Nuclear Information System (INIS)

    Aumayr, F.; Skinner, C.H.; Suckewer, S.; Princeton Univ., NJ; Lee, W.

    1991-02-01

    Experimental evidence is presented for the change of Einstein's A-coefficients for spontaneous transitions from the upper laser level of an argon ion laser discharge due to the presence of the high-intensity laser flux. To demonstrate that this quenching effect cannot be attributed to a reduction in self-absorption of the strong spontaneous emission line, absorption and line profile measurements have been performed. Computer modelling of the reduction of self absorption due to Rabi splitting also indicated that this effect is too small to explain the observed quenching of spontaneous line emissions. 13 refs., 11 figs

  6. Quenching of Einstein-coefficients by photons

    International Nuclear Information System (INIS)

    Aumayr, F.; Lee, W.; Skinner, C.H.; Suckewer, S.

    1991-03-01

    Experimental evidence is presented for the change of Einstein's A- coefficients for spontaneous transitions from the upper laser level of argon ion laser discharge due to the presence of the high- intensity laser flux. To demonstrate that this quenching effect cannot be attributed to a reduction in self-absorption of the strong spontaneous emission line, absorption and line profile measurements have been performed. Computer modelling of the reduction of self absorption due to Rabi splitting also indicated that this effect is too small to explain the observed quenching of spontaneous line emissions. 13 refs., 11 figs

  7. A quenched c = 1 critical matrix model

    International Nuclear Information System (INIS)

    Qiu, Zongan; Rey, Soo-Jong.

    1990-12-01

    We study a variant of the Penner-Distler-Vafa model, proposed as a c = 1 quantum gravity: 'quenched' matrix model with logarithmic potential. The model is exactly soluble, and exhibits a two-cut branching as observed in multicritical unitary matrix models and multicut Hermitian matrix models. Using analytic continuation of the power in the conventional polynomial potential, we also show that both the Penner-Distler-Vafa model and our 'quenched' matrix model satisfy Virasoro algebra constraints

  8. Thermal quench at finite 't Hooft coupling

    Directory of Open Access Journals (Sweden)

    H. Ebrahim

    2016-03-01

    Full Text Available Using holography we have studied thermal electric field quench for infinite and finite 't Hooft coupling constant. The set-up we consider here is D7-brane embedded in (α′ corrected AdS-black hole background. It is well-known that due to a time-dependent electric field on the probe brane, a time-dependent current will be produced and it will finally relax to its equilibrium value. We have studied the effect of different parameters of the system on equilibration time. As the most important results, for massless fundamental matter, we have observed a universal behaviour in the rescaled equilibration time in the very fast quench regime for different values of the temperature and α′ correction parameter. It seems that in the slow quench regime the system behaves adiabatically. We have also observed that the equilibration time decreases in finite 't Hooft coupling limit.

  9. Dynamical quenching of tunneling in molecular magnets

    International Nuclear Information System (INIS)

    José Santander, María; Nunez, Alvaro S.; Roldán-Molina, A.; Troncoso, Roberto E.

    2015-01-01

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation

  10. Dynamical quenching of tunneling in molecular magnets

    Energy Technology Data Exchange (ETDEWEB)

    José Santander, María, E-mail: maria.jose.noemi@gmail.com [Recursos Educativos Quántica, Santiago (Chile); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, Alvaro S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Roldán-Molina, A. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso (Chile); Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile)

    2015-12-15

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation.

  11. Evaluation of Enoyl-Acyl Carrier Protein Reductase Inhibitors as Pseudomonas aeruginosa Quorum-Quenching Reagents

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Sternberg, Claus

    2010-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen which is responsible for a wide range of infections. Production of virulence factors and biofilm formation by P. aeruginosa are partly regulated by cell-to-cell communication quorum-sensing systems. Identification of quorum-quenching reagents...... which block the quorum-sensing process can facilitate development of novel treatment strategies for P. aeruginosa infections. We have used molecular dynamics simulation and experimental studies to elucidate the efficiencies of two potential quorum-quenching reagents, triclosan and green tea...... epigallocatechin gallate (EGCG), which both function as inhibitors of the enoyl-acyl carrier protein (ACP) reductase (ENR) from the bacterial type II fatty acid synthesis pathway. Our studies suggest that EGCG has a higher binding affinity towards ENR of P. aeruginosa and is an efficient quorum-quenching reagent...

  12. Optimization of the quenching method for metabolomics analysis of Lactobacillus bulgaricus *

    Science.gov (United States)

    Chen, Ming-ming; Li, Ai-li; Sun, Mao-cheng; Feng, Zhen; Meng, Xiang-chen; Wang, Ying

    2014-01-01

    This study proposed a quenching protocol for metabolite analysis of Lactobacillus delbrueckii subsp. bulgaricus. Microbial cells were quenched with 60% methanol/water, 80% methanol/glycerol, or 80% methanol/water. The effect of the quenching process was assessed by the optical density (OD)-based method, flow cytometry, and gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were employed for metabolite identification. The results indicated that quenching with 80% methanol/water solution led to less damage to the L. bulgaricus cells, characterized by the lower relative fraction of prodium iodide (PI)-labeled cells and the higher OD recovery ratio. Through GC-MS analysis, higher levels of intracellular metabolites (including focal glutamic acid, aspartic acid, alanine, and AMP) and a lower leakage rate were detected in the sample quenched with 80% methanol/water compared with the others. In conclusion, we suggested a higher concentration of cold methanol quenching for L. bulgaricus metabolomics due to its decreasing metabolite leakage. PMID:24711354

  13. Is the Electron Avalanche Process in a Martian Dust Devil Self-Quenching?

    Science.gov (United States)

    Farrell, William M.; McLain, Jason L.; Collier, M. R.; Keller, J. W.; Jackson, T. J.; Delory, G. T.

    2015-01-01

    Viking era laboratory experiments show that mixing tribocharged grains in a low pressure CO2 gas can form a discharge that glows, indicating the presence of an excited electron population that persists over many seconds. Based on these early experiments, it has been predicted that martian dust devils and storms may also contain a plasma and new plasma chemical species as a result of dust grain tribo-charging. However, recent results from modeling suggest a contrasting result: that a sustained electron discharge may not be easily established since the increase in gas conductivity would act to short-out the local E-fields and quickly dissipate the charged grains driving the process. In essence, the system was thought to be self-quenching (i.e., turn itself off). In this work, we attempt to reconcile the difference between observation and model via new laboratory measurements. We conclude that in a Mars-like low pressure CO2 atmosphere and expected E-fields, the electron current remains (for the most part) below the expected driving tribo-electric dust currents (approx. 10 microA/m(exp. 2)), thereby making quenching unlikely.

  14. Results of heater induced quenches on a 1-m SSC model dipole

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.

    1985-10-01

    This report describes the results of a series of heater induced quenches on the 1-m long SSC model dipole D-12C-7 constructed at LBL. Test results of the following types are described: quench propagation velocities - axial; quench propagation velocities - transverse; and rate of temperature rise in the conductor. The primary purpose of these tests was to measure quench velocities at a variety of locations and for several currents/fields which can be used to refine the quench predictions for longer magnets. Because of limited data in the low field region of this magnet, it is recommended that it be retested with additional voltage taps. 20 figs., 6 tabs

  15. Chiral and continuum extrapolation of partially quenched lattice results

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Allton; W. Armour; D.B. Leinweber; A.W. Thomas; R.D. Young

    2005-04-01

    The vector meson mass is extracted from a large sample of partially quenched, two-flavor lattice QCD simulations. For the first time, discretization, finite-volume and partial quenching artifacts are treated in a unified chiral effective field theory analysis of the lattice simulation results.

  16. Beam-induced quench test of LHC main quadrupole

    CERN Document Server

    Priebe, A; Dehning, B; Effinger, E; Emery, J; Holzer, E B; Kurfuerst, C; Nebot Del Busto, E; Nordt, A; Sapinski, M; Steckert, J; Verweij, A; Zamantzas, C

    2011-01-01

    Unexpected beam loss might lead to a transition of the accelerator superconducting magnet to a normal conducting state. The LHC beam loss monitoring (BLM) system is designed to abort the beam before the energy deposited in the magnet coils reach a quench-provoking level. In order to verify the threshold settings generated by simulation, a series of beam-induced quench tests at various beam energies has been performed. The beam losses are generated by means of an orbital bump peaked in one of main quadrupole magnets (MQ). The analysis includes not only BLM data but also the quench protection system (QPS) and cryogenics data. The measurements are compared to Geant4 simulations of energy deposition inside the coils and corresponding BLM signal outside the cryostat.

  17. Effect of structural inheritance on effectiveness of 'intercritical quenching'

    International Nuclear Information System (INIS)

    Kut'in, A.B.; Polyakova, A.M.; Gerbikh, N.M.

    1989-01-01

    Effect of quenching from intercritical interval on tempering brittleness suppression by comparing structural changes under heating of steels which do not tend to structural inheritance and steels, additionally doped with elements increasing the tendency of preliminary quenching grain to reduction, is studied. Investigation was conducted using medium-carbon chromium nickel steels, melted in an open induction furnace. It is shown that effect of quenching from intercritical interval on the tempering brittleness attennuation is increased with the increase of steel tendency to structural inheritance. Intergranular embrittlement suppression at tempering is obviously caused by a uniform distribution of impurities on subboundaries in the grain volume

  18. Simulation of the QUENCH-06 experiment with MELCOR 1.8.5

    International Nuclear Information System (INIS)

    Stanojevic, M.; Leskovar, M.

    2001-01-01

    The MELCOR 1.8.5 code input model and simulation results of the OECD/NEA international standard problem No. 45 (ISP-45) are presented. ISP-45 was performed as QUENCH-06 experiment at Forschungszentrum Karlsruhe. The objectives of the QUENCH program are the analysis of the heat-up, oxidation and delayed reflood phases of a PWR type fuel rod bundle in the QUENCH facility and investigation of the thermal, mechanical, physical and chemical behavior of fuel rod claddings under transient cool-down conditions. The objectives of the OECD/NEA ISP program are the extension of the reflood database to identify key phenomena occurring during accident management measure procedures and code validation, i.e., reliability and accuracy of severe accident codes especially during the quench phase. The QUENCH test bundle is made up of 21 fuel rod simulators approximately 2.5 m long. The Zircaloy-4 rod cladding is identical to that used in pressurized water reactors with respect to material and dimensions. The bundle is heated electrically. The QUENCH-06 experiment had three phases: the pre-oxidation phase, the power transient phase and the reflood-quench phase. According to the ISP-45 specification, the MELCOR 1.8.5 simulation includes the events from the beginning of the pre-oxidation phase until the end of the reflood-quench phase and shut-off of electric power, steam and cooling water. Calculated results are discussed with respect to accuracy, plausibility and completeness. Shortcomings and limitations of the input model are described.(author)

  19. Singlet oxygen quenching by oxygen in tetraphenyl-porphyrin solutions

    International Nuclear Information System (INIS)

    Dedic, Roman; Korinek, Miloslav; Molnar, Alexander; Svoboda, Antonin; Hala, Jan

    2006-01-01

    Time-resolved measurement of singlet oxygen infrared phosphorescence is a powerful tool for determination of quantum yields and kinetics of its photosensitization. This technique was employed to investigate in detail the previously observed effect of singlet oxygen quenching by oxygen. The question whether the singlet oxygen is quenched by oxygen in ground or in excited state was addressed by study of two complementary dependencies of singlet oxygen lifetimes: on dissolved oxygen concentration and on excitation intensity. Oxygen concentration dependence study of meso-tetra(4-sulphonato)phenylporphyrin (TPPS 4 ) phosphorescence kinetics showed linearity of the dependence of TPPS 4 triplet state rate-constant. Corresponding bimolecular quenching constant of (1.5±0.1)x10 9 l/mol s was obtained. On the other hand, rate constants of singlet oxygen depopulation exhibit nonlinear dependence on oxygen concentration. Comparison of zero oxygen concentration-extrapolated value of singlet oxygen lifetime of (6.5±0.4) μs to (3.7±0.1) μs observed under air-saturated conditions indicates importance of the effect of quenching of singlet oxygen by oxygen. Upward-sloping dependencies of singlet oxygen depopulation rate-constant on excitation intensity evidence that singlet oxygen is predominantly quenched by oxygen in excited singlet state

  20. Testing beam-induced quench levels of LHC superconducting magnets

    Directory of Open Access Journals (Sweden)

    B. Auchmann

    2015-06-01

    Full Text Available In the years 2009–2013 the Large Hadron Collider (LHC has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012 instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  1. Testing beam-induced quench levels of LHC superconducting magnets

    Science.gov (United States)

    Auchmann, B.; Baer, T.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P. P.; Hofle, W.; Holzer, E. B.; Lechner, A.; Nebot Del Busto, E.; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-01

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam-induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy deposition in the coils is compared to the quench levels predicted by electrothermal models, thus allowing one to validate and improve the models which are used to set beam-dump thresholds on beam-loss monitors for run 2.

  2. Quenching Combustible Dust Mixtures Using Electric Particulate Suspensions (EPS): A New Testing Method For Microgravity

    Science.gov (United States)

    Colver, Gerald M.; Greene, Nathanael; Shoemaker, David; Xu, Hua

    2003-01-01

    The Electric Particulate Suspension (EPS) is a combustion ignition system being developed at Iowa State University for evaluating quenching effects of powders in microgravity (quenching distance, ignition energy, flammability limits). Because of the high cloud uniformity possible and its simplicity, the EPS method has potential for "benchmark" design of quenching flames that would provide NASA and the scientific community with a new fire standard. Microgravity is expected to increase suspension uniformity even further and extend combustion testing to higher concentrations (rich fuel limit) than is possible at normal gravity. Two new combustion parameters are being investigated with this new method: (1) the particle velocity distribution and (2) particle-oxidant slip velocity. Both walls and (inert) particles can be tested as quenching media. The EPS method supports combustion modeling by providing accurate measurement of flame-quenching distance as a parameter in laminar flame theory as it closely relates to characteristic flame thickness and flame structure. Because of its design simplicity, EPS is suitable for testing on the International Space Station (ISS). Laser scans showing stratification effects at 1-g have been studied for different materials, aluminum, glass, and copper. PTV/PIV and a leak hole sampling rig give particle velocity distribution with particle slip velocity evaluated using LDA. Sample quenching and ignition energy curves are given for aluminum powder. Testing is planned for the KC-135 and NASA s two second drop tower. Only 1-g ground-based data have been reported to date.

  3. Quenching points of dimeric single-molecule magnets: Exchange interaction effects

    International Nuclear Information System (INIS)

    Florez, J.M.; Nunez, Alvaro S.; Vargas, P.

    2010-01-01

    We study the quenched energy-splitting (Δ E ) of a single-molecule magnet (SMM) conformed by two exchange coupled giant-spins. An assessment of two nontrivial characteristics of this quenching is presented: (i) The quenching-points of a strongly exchange-coupled dimer differ from the ones of their respective giant-spin modeled SMM and such a difference can be well described by using the Solari-Kochetov extra phase; (ii) the dependence on the exchange coupling of the magnetic field values at the quenching-points when Δ E passes from monomeric to dimeric behavior. The physics behind these exchange-modified points, their relation with the Δ E -oscillations experimentally obtained by the Landau-Zener method and with the diabolical-plane of a SMM, is discussed.

  4. Quenching points of dimeric single-molecule magnets: Exchange interaction effects

    Energy Technology Data Exchange (ETDEWEB)

    Florez, J.M., E-mail: juanmanuel.florez@alumnos.usm.c [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, P.O. Box 110-V, Valparaiso (Chile); Nunez, Alvaro S., E-mail: alnunez@dfi.uchile.c [Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Vargas, P., E-mail: patricio.vargas@usm.c [Departamento de Fisica, Universidad Tecnica Federico Santa Maria, P.O. Box 110-V, Valparaiso (Chile)

    2010-11-15

    We study the quenched energy-splitting ({Delta}{sub E}) of a single-molecule magnet (SMM) conformed by two exchange coupled giant-spins. An assessment of two nontrivial characteristics of this quenching is presented: (i) The quenching-points of a strongly exchange-coupled dimer differ from the ones of their respective giant-spin modeled SMM and such a difference can be well described by using the Solari-Kochetov extra phase; (ii) the dependence on the exchange coupling of the magnetic field values at the quenching-points when {Delta}{sub E} passes from monomeric to dimeric behavior. The physics behind these exchange-modified points, their relation with the {Delta}{sub E}-oscillations experimentally obtained by the Landau-Zener method and with the diabolical-plane of a SMM, is discussed.

  5. Collimation quench test with 6.5 TeV proton beams

    CERN Document Server

    Salvachua Ferrando, Belen Maria; Bruce, Roderik; Hermes, Pascal Dominik; Holzer, Eva Barbara; Jacquet, Delphine; Kalliokoski, Matti; Mereghetti, Alessio; Mirarchi, Daniele; Redaelli, Stefano; Skordis, Eleftherios; Valentino, Gianluca; Valloni, Alessandra; Wollmann, Daniel; Zerlauth, Markus; CERN. Geneva. ATS Department

    2016-01-01

    We show here the analysis of the MD test that aimed to quench the superconducting magnets in the dispersion suppressor region downstream of the main betatron collimation system. In Run I there were several attempts to quench the magnets in the same region. This was done by exciting the Beam 2 in a controlled way using the transverse damper and generating losses leaking from the collimation cleaning. No quench was achieved in 2013 with a maximum of 1 MW of beam power loss absorbed by the collimation system at 4 TeV beam energy. In 2015 a new collimation quench test was done at 6.5 TeV aiming at similar power loss over longer period, 5-10 s. The main outcome of this test is reviewed.

  6. Simulation of the fuel rod bundle test QUENCH-03 using the system codes ASTEC and ATHLET-CD

    International Nuclear Information System (INIS)

    Kruse, P.; Koch, M.K.

    2011-01-01

    The QUENCH-03 test was performed on the 21. of January 1999 at FZK (Forschungszentrum Karlsruhe) to investigate the behaviour on reflood of PWR (Pressurized Water Reactor) fuel rods with little oxidation. This paper presents the results of the simulation of QUENCH-03 performed with the version V1.3 of the integral code ASTEC (Accident Source Term Evaluation Code) which is being developed by IRSN (France) in cooperation with GRS (Germany) and with the program version 2.1A of the mechanistic code ATHLET-CD (Analysis of Thermal-hydraulics of Leaks and Transients - Core Degradation) which is under development by GRS. At first the QUENCH test facility and the QUENCH test program in general are described. The test conduct of the test QUENCH-03 follows as well as a description of the used codes ASTEC and ATHLET-CD with the associated modeling of the test section. The results of this calculation show that during the heat-up and transient phase both codes can calculate bundle and shroud temperatures as well as the hydrogen production in good approximation to the experimental data. During the quench phase and up to the end of the test only the oxidation model PRATER of ASTEC simulates the hydrogen production very well, the other oxidation models of ASTEC cannot calculate to some extent the measured amount of hydrogen. ATHLET-CD underestimates the integral amount at the end of the test. In the ASTEC calculations the temperatures during the quench phase show qualitatively good results, only time delays on some elevations of the bundle could be noticed. ATHLET-CD reproduces the thermal behaviour up to the first temperature escalation very well, after that the temperatures are partly over-estimated. The time delay recognized in the ASTEC calculations are seen as well. The results of the integral code ASTEC emphasize that the calculation of QUENCH-03 is possible and leading to good results concerning hydrogen release and corresponding temperatures. Because the QUENCH-03 test was

  7. Quenching gases for limited-streamer operation

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, P

    1986-04-01

    Charge spectra and efficiencies of the limited-streamer mode are presented as a function of quencher fraction and high voltage for several gas mixes. The goal was to find a working gas of low hydrocarbon content in order to relieve safety concerns about the flammability of the large gas volume contained in the hadron calorimeter of the OPAL detector at LEP. No suitable low-hydrocarbon quenching mix is found. The charge spectra from these quenchers develop secondary peaks and long tails as full efficiency is approached, leading to catastrophic breakdown near the onset of full efficiency.

  8. Quenching gases for limited-streamer operation

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, P

    1986-04-01

    Charge spectra and efficiencies of the limited-streamer mode are presented as a function of quencher fraction and high voltage for several gas mixes. The goal was to find a working gas of low hydrocarbon content in order to relieve safety concerns about the flammability of the large gas volume contained in the hadron calorimeter of the OPAL detector at LEP. No suitable low-hydrocarbon quenching mix is found. The charge spectra from these quenchers develop secondary peaks and long tails as full efficiency is approached, leading to catastrophic breakdown near the onset of full efficiency. (orig.).

  9. Early Childhood Development and E-Learning in Africa: The Early Childhood Development Virtual University Programme

    Science.gov (United States)

    Pence, Alan

    2007-01-01

    This article explores the development and evaluation of the graduate-level Early Childhood Development Virtual University (ECDVU) programme in Sub-Saharan Africa from 2001 through to 2004. It outlines the history of the ECDVU and the establishing of a Sub-Saharan programme for future leaders in the early childhood field guided by the key principle…

  10. Thermal quenching of the yellow luminescence in GaN

    Science.gov (United States)

    Reshchikov, M. A.; Albarakati, N. M.; Monavarian, M.; Avrutin, V.; Morkoç, H.

    2018-04-01

    We observed varying thermal quenching behavior of the yellow luminescence band near 2.2 eV in different GaN samples. In spite of the different behavior, the yellow band in all the samples is caused by the same defect—the YL1 center. In conductive n-type GaN, the YL1 band quenches with exponential law, and the Arrhenius plot reveals an ionization energy of ˜0.9 eV for the YL1 center. In semi-insulating GaN, an abrupt and tunable quenching of the YL1 band is observed, where the apparent activation energy in the Arrhenius plot is not related to the ionization energy of the defect. In this case, the ionization energy can be found by analyzing the shift of the characteristic temperature of PL quenching with excitation intensity. We conclude that only one defect, namely, the YL1 center, is responsible for the yellow band in undoped and doped GaN samples grown by different techniques.

  11. New fast organic scintillators using intramolecular bromine quenching

    International Nuclear Information System (INIS)

    Berlman, I.B.; Lutz, S.S.; Flournoy, J.M.; Ashford, C.B.; Franks, L.A.

    1984-01-01

    Organic scintillator solutions with decay times as fast as 500 ps and with relatively high conversion efficiencies have been developed. The intramolecular quenching was achieved through the novel approach of adding a bromine atom to the 3- or 4-position of para-oligophenylenes, the fluorescent solutes in these binary solutions. The bromine serves to enhance singlet-to-triplet intersystem crossing in the chromophore, causing a reduction in the scintillation yield and a concomitant reduction in the decay time. The very fast value given above probably also involves some intermolecular self-quenching at high concentration. In addition, the bromine reduces the symmetry of the molecules, thereby increasing their solubility. Finally, an alkyl chain on the opposite para position further increases the solubility and also increases the immunity of the chromophore to quenching. The decay times for binary liquid solutions in toluene (at the indicated concentrations) were 0.51 ns for 4-BHTP (0.14 M), 0.75 ns for 3-BHTP (0.14 M), 0.57 ns for 3-BTP (0.14 M), and 1.3 ns for 4-BHQP (0.06 M). Binary plastics with 4-BHTP as the solute in concentrations up to 0.14 M were cast in polystyrene. The shortest decay time, 0.40 ns, was measured for the 0.14 M concentration. A plastic scintillator containing 3-BTP (0.11 M in polystyrene) had a decay time of 0.85 ns. These results compare favorably with the plastic scintillator BC-422 whose decay time is about 1.4 ns. (orig./HSI)

  12. Thermal quenching of thermoluminescence in quartz samples of various origin

    International Nuclear Information System (INIS)

    Subedi, B.; Oniya, E.; Polymeris, G.S.; Afouxenidis, D.; Tsirliganis, N.C.; Kitis, G.

    2011-01-01

    The effect of thermal quenching stands among the most important properties in the thermoluminescence (TL) of quartz on which many applications of TL are based. Since the quartz samples used in various applications are all of different origin it is useful to investigate whether the values of the thermal quenching parameters, i.e. the activation energy for thermal quenching W and a parameter C which describes the ratio of non-radiative to radiative luminescence transitions, evaluated mainly in specific quartz samples can be extrapolated to quartz samples of unknown origin as well as to quartz samples which are annealed at high temperatures. In the present work the TL glow curve of a series of un-annealed and annealed natural and synthetic quartz samples were studied as a function of the heating rate between 0.25 K/s and 16 K/s. Using an indirect fitting method it was found that the thermal quenching parameters W and C in most of the quartz samples are very similar to the values accepted in the literature. Furthermore, in some cases the thermal quenching parameters W and C are not the same for all TL glow-peaks in the same glow-curve. Finally, the strong external treatment of annealing the quartz samples at very high temperature can also influence at least one of the thermal quenching parameters.

  13. The influence of martensite, bainite and ferrite on the as-quenched constitutive response of simultaneously quenched and deformed boron steel – Experiments and model

    International Nuclear Information System (INIS)

    Bardelcik, Alexander; Worswick, Michael J.; Wells, Mary A.

    2014-01-01

    Highlights: • Gleeble tests were conducted to quench and simultaneously deform boron steel. • Different as-quenched vol. fractions of martensite, bainite and ferrite were observed. • Low to int. strain rate tensile tests were conducted on the as-quenched materials. • The presence of ferrite improved the uniform elongation, hardening rate and toughness. • A rate sensitive const. model was developed for varying vol fract. mart/bain/ferrite. - Abstract: This paper examines the relationship between as-formed microstructure and mechanical properties of a hot stamped boron steel used in automotive structural applications. Boron steel sheet metal blanks were austenized and quenched at cooling rates of 30 °C/s, 15 °C/s and 10 °C/s within a Gleeble thermal–mechanical simulator. For each cooling rate condition, the blanks were simultaneously deformed at temperatures of 600 °C and 800 °C. A strain of approximately 0.20 was imposed in the middle of the blanks, from which miniature tensile specimens were extracted. Depending on the cooling rate and deformation temperature imposed on the specimens, some of the as-quenched microstructures consisted of predominantly martensite and bainite, while others consisted of martensite, bainite and ferrite. Optical and SEM metallographraphic techniques were used to quantify the area fractions of the phases present and quasi-static (0.003 s −1 ) uniaxial tests were conducted on the miniature tensile specimens. The results revealed that an area fraction of ferrite greater than 6% led to an increased uniform elongation and an increase in n-value without affecting the strength of the material for equivalent hardness levels. This finding resulted in improved energy absorption due to the presence of ferrite and showed that a material with a predominantly bainitic microstructure containing 16% ferrite (with 257 HV) resulted in a 28% increase in energy absorption when compared to a material condition that was fully bainitic with

  14. Cherenkov radiation effects on counting efficiency in extremely quenched liquid scintillation samples

    International Nuclear Information System (INIS)

    Grau Carles, A.; Grau Malonda, A.; Rodriguez Barquero, L.

    1993-01-01

    The CIEMAT/NIST tracer method has successfully standardized nuclides with diverse quench values and decay schemes in liquid scintillation counting. However, the counting efficiency is computed inaccurately for extremely quenched samples. This article shows that when samples are extremely quenched, the counting efficiency in high-energy beta-ray nuclides depends principally on the Cherenkov effect. A new technique is described for quench determination, which makes the measurement of counting efficiency possible when scintillation counting approaches zero. A new efficiency computation model for pure beta-ray nuclides is also described. The results of the model are tested experimentally for 89 Sr, 90 Y, 36 Cl and 204 Tl nuclides with independence of the quench level. (orig.)

  15. A novel solid-state electrochemiluminescence quenching sensor for detection of aniline based on luminescent composite nanofibers

    International Nuclear Information System (INIS)

    Wang, Xiaoying; Yang, Yu; Gao, Huiwen

    2014-01-01

    A novel solid-state electrochemiluminescence (ECL) quenching sensor based on the luminescent composite nanofibers for detection of aniline has been developed. The gold nanoparticles (AuNPs) and Ruthenium (II) tris-(bipyridine) (Ru(bpy) 3 2+ ) doped nylon 6 (PA6) luminescent composite nanofibers (Ru–AuNPs–PA6) were successfully deposited to the bare glassy carbon (GC) electrode by a one-step electrospinning technique. The Ru–AuNPs–PA6 nanofibers maintained the photoelectric properties of the Ru(bpy) 3 2+ ions completely and exhibited excellent ECL behaviors. A high quenching effect on the ECL signal of the Ru–AuNPs–PA6/C 2 O 4 2− system was obtained with the presence of low concentration aniline compounds. The potential of analytical application was explored by use of the inhibited ECL. The quenching efficiencies of the five kinds of aniline compounds were compared by monitoring the aniline-dependent ECL intensity change. The magnitude of quenching depended linearly upon the concentration of aniline in the investigated concentration range of 10–10 µM. The detection limit for aniline is 5.0 nM, which is comparable or better than that in the reported assays. The solid-state ECL quenching sensor exhibited high sensitivity and good stability. This study may provide new insight into the design of advanced electrospun nanofibers-based ECL sensors for detection and analysis of a variety of active molecules. - Highlights: • The Ru–AuNPs–PA6 nanofibers were first prepared by one-step electrospinning technique. • The Ru–AuNPs–PA6 nanofibers exhibited excellent ECL behaviors on GC electrodes. • It is the first solid-state ECL sensor based on nanofibers for aniline detection. • The quenching efficiencies of the five kinds of aniline compounds were compared. • The strategy could be extended to develop various nanofibers-based ECL sensors

  16. intercritical heat treatments effects on low carbon steels quenched

    African Journals Online (AJOL)

    DR B. A. EZEKOYE

    Department of Physics and Astronomy, University of Nigeria, Nsukka. 2. E-mail: benjamin.ezekoye@unn.edu.ng; bezekoye@yahoo.com. ABSTRACT. Six low carbon steels containing carbon in the range 0.13-0.18wt%C were studied after intercritical quenching, intercritical quenching with low temperature tempering, ...

  17. The electronic quenching rates of NO(A2Σ+, v'=0-2)

    International Nuclear Information System (INIS)

    Nee, J.B.; Juan, C.Y.; Hsu, J.Y.; Yang, J.C.; Chen, W.J.

    2004-01-01

    The electronic quenching rates of NO(A 2 Σ + , v ' =0-2) are measured for the gases He, Ar, Xe, N 2 , O 2 , CO 2 , N 2 O, and SF 6 . The variations of the fluorescence intensity were measured for the (0,0), (1,0), and (2,0) bands of the γ band system when the quencher gases were added. The quenching rates were determined by using the Stern-Volmer plots with the known radiative lifetimes of the excited states. The electronic quenching rate constants are fast for the group of gases of O 2 , CO 2 , N 2 O, and SF 6 , whose quenching rate constants are in the order of 10 -10 cm 3 /s. The quenching rate constants are slow for the group of gases including He, Ar, Xe, and N 2 whose rate constants are in the order of 10 -14 cm 3 /s. For the slow group, the quenching rate constants increase rapidly for v ' =2 compared with those of v ' =0 and 1. The charge transfer model and collision complex model are used to understand the quenching mechanism. For the fast group which mainly consists of gases with positive electron affinities, the charge transfer model adequately describes the mechanism. For the slow quenching group, a theoretical background is provided by consider the coupling of initial and final states in the complex potential surfaces

  18. Effect of Quenching Media on Mechanical Properties of Medium Carbon Steel 1030

    Directory of Open Access Journals (Sweden)

    Khansaa Dawood Salman

    2018-01-01

    Full Text Available This investigation aims to study the effect of quenching media (water, oil, Poly Vinyl Chloride PVC on mechanical properties of 1030 steel. The applications of this steel include machinery parts where strength and hardness are requisites. The steel is heated to about 950  and soaked for 1hr in electrical furnace and then quenched in different quenching medium such as water, oil and poly vinyl chloride. After heat treatment by quenching, the specimens are tempered at 250  for 1hr and then cooling in air. The mechanical properties of the specimens are determined by using universal tensile testing machine for tensile test, Vickers hardness apparatus for hardness testing, measuring the grain size of the phases and examine the microstructure of the specimens before and after heat-treatment. The results of this work showed that improving the mechanical properties of medium carbon 1030 steel, which is quenching by water gives the preferred results as the following: Quenching by water leads to increase σy, σu.t.s, K and hardness, but at the same time quenching by water leads to decrease E and n. Also the quenching by water and followed by tempering leads to improve the microstructure and decreasing (refining of the grain size of ferrite and pearlite phases of the steel used in this work.

  19. Amorphous intergranular films in silicon nitride ceramics quenched from high temperatures

    International Nuclear Information System (INIS)

    Cinibulk, M.K.; Kleebe, H.; Schneider, G.A.; Ruehle, M.

    1993-01-01

    High-temperature microstructure of an MgO-hot-pressed Si 3 N 4 and a Yb 2 O 3 + Al 2 O 3 -sintered/annealed Si 3 N 4 were obtained by quenching thin specimens from temperatures between 1,350 and 1,550 C. Quenching materials from 1,350 C produced no observable exchanges in the secondary phases at triple-grain junctions or along grain boundaries. Although quenching from temperatures of ∼1,450 C also showed no significant changes in the general microstructure or morphology of the Si 3 N 4 grains, the amorphous intergranular film thickness increased substantially from an initial ∼1 nm in the slowly cooled material to 1.5--9 nm in the quenched materials. The variability of film thickness in a given material suggests a nonequilibrium state. Specimens quenched from 1,550 C revealed once again thin (1-nm) intergranular films at all high-angle grain boundaries, indicating an equilibrium condition. The changes observed in intergranular-film thickness by high-resolution electron microscopy can be related to the eutectic temperature of the system and to diffusional and viscous processes occurring in the amorphous intergranular film during the high-temperature anneal prior to quenching

  20. MD#1826: Measurement of Quench Heater vertical kick

    CERN Document Server

    Valette, Matthieu; Lindstrom, Bjorn Hans Filip; Bortot, Lorenzo; Fernandez Navarro, Alejandro; Schmidt, Rudiger; Verweij, Arjan

    2018-01-01

    Following the observation of vertical orbit oscillations of the LHC beam between the detection of a (beam induced) quench of an LHC main dipole and the beam dump, a study was started to verify that the orbit distortions are caused by the firing of the quench heaters (QH). Simulation of the magnetic field generated by the discharge of the QH and its effect on the beam confirmed it was the most likely cause. A dedicated experiment with 450 GeV proton beams was performed to validate the simulation results. The results are presented below and compared to the simulations. Furthermore, estimates on the effect of quench heater firing in superconducting magnets other than the studied LHC main dipoles on the circulating proton beams in LHC and the future HL-LHC are discussed.

  1. A summary of the quench behavior of B ampersand W 1 m collider quadrupole model magnets

    International Nuclear Information System (INIS)

    Rey, C.M.; Xu, M.F.; Hlasnicek, P.; Kelley, J.P.; Dixon, K.; Savignano, J.; Letterman, S.; Craig, P.; Maloney, J.; Boyes, D.

    1994-01-01

    In order to evaluate the quench performance of a B ampersand W-Siemens designed quadrupole magnet at the earliest possible stage, a model magnet program was developed at B ampersand W for the support of the Superconducting Super Collider. The authors report the quench performance, training behavior, and the ramp rate dependence for the QSH-801 through QSH-804 series of short (1.2 meter) quadrupole model magnets

  2. Correlation among Singlet-Oxygen Quenching, Free-Radical Scavenging, and Excited-State Intramolecular-Proton-Transfer Activities in Hydroxyflavones, Anthocyanidins, and 1-Hydroxyanthraquinones.

    Science.gov (United States)

    Nagaoka, Shin-Ichi; Bandoh, Yuki; Nagashima, Umpei; Ohara, Keishi

    2017-10-26

    Singlet-oxygen ( 1 O 2 ) quenching, free-radical scavenging, and excited-state intramolecular proton-transfer (ESIPT) activities of hydroxyflavones, anthocyanidins, and 1-hydroxyanthraquinones were studied by means of laser, stopped-flow, and steady-state spectroscopies. In hydroxyflavones and anthocyanidins, the 1 O 2 quenching activity positively correlates to the free-radical scavenging activity. The reason for this correlation can be understood by considering that an early step of each reaction involves electron transfer from the unfused phenyl ring (B-ring), which is singly bonded to the bicyclic chromen or chromenylium moiety (A- and C-rings). Substitution of an electron-donating OH group at B-ring enhances the electron transfer leading to activation of the 1 O 2 quenching and free-radical scavenging. In 3-hydroxyflavones, the OH substitution at B-ring reduces the activity of ESIPT within C-ring, which can be explained in terms of the nodal-plane model. As a result, the 1 O 2 quenching and free-radical scavenging activities negatively correlate to the ESIPT activity. A catechol structure at B-ring is another factor that enhances the free-radical scavenging in hydroxyflavones. In contrast to these hydroxyflavones, 1-hydroxyanthraquinones having an electron-donating OH substituent adjacent to the O-H---O═C moiety susceptible to ESIPT do not show a simple correlation between their 1 O 2 quenching and ESIPT activities, because the OH substitution modulates these reactions.

  3. The effect of composition, electron irradiation and quenching on ...

    Indian Academy of Sciences (India)

    The ionic conductivity at room temperature exhibits a characteristic double peak for the composition = 20 and 70. Both electron beam irradiation and quenching at low temperature have resulted in an increase in conductivity by 1–2 orders of magnitude. The enhancement of conductivity upon irradiation and quenching is ...

  4. Quench propagation in the superconducting 6 kA flexible busbars of the LHC

    International Nuclear Information System (INIS)

    Herzog, R.; Calvi, M.; Sonnemann, F.; Pelegrin-Carcelen, J.M.

    2002-01-01

    Flexible superconducting cables with currents up to 6 kA will be used to power magnets individually in the insertion regions of the LHC. In case of a quench, the currents in these circuits will decay very fast (with time constants of about 200 ms) such that relatively small copper cross sections are sufficient for these busbars. Quench propagation experiments on a prototype cable and corresponding simulations led to a detailed understanding of the quench behavior of these busbars and to recommendations for the design and application of the cable. Simulations of the quench process in a multi-strand conductor led to a detailed understanding of the way current crosses from superconducting to pure copper strands and how this affects the quench propagation velocity. At nominal current (6 kA), the quench propagation velocities are high (10 m/s) and the hot spot temperature increases rapidly. In this situation, timely quench detection and energy extraction (current reduction) are vital to prevent damage of circuit components

  5. Quench Propagation in the Superconducting 6 kA Flexible Busbars of the LHC

    CERN Document Server

    Calvi, M; Pelegrin-Carcelen, J M; Sonnemann, F

    2002-01-01

    Flexible superconducting cables with currents up to 6 kA will be used to power magnets individually in the insertion regions of the LHC. In case of a quench, the currents in these circuits will decay very fast (with time constants of about 200 ms) such that relatively small copper cross sections are sufficient for these busbars. Quench propagation experiments on a prototype cable and corresponding simulations led to a detailed understanding of the quench behavior of these busbars and to recommendations for the design and application of the cable. Simulations of the quench process in a multi-strand conductor led to a detailed understanding of the way current crosses from superconducting to pure copper strands and how this affects the quench propagation velocity. At nominal current (6 kA), the quench propagation velocities are high (10 m/s) and the hot spot temperature increases rapidly. In this situation, timely quench detection and energy extraction (current reduction) are vital to prevent damage of circuit c...

  6. Quench propagation in the superconducting 6 kA flexible busbars of the LHC

    Science.gov (United States)

    Herzog, R.; Calvi, M.; Sonnemann, F.; Pelegrin-Carcelen, J. M.

    2002-05-01

    Flexible superconducting cables with currents up to 6 kA will be used to power magnets individually in the insertion regions of the LHC. In case of a quench, the currents in these circuits will decay very fast (with time constants of about 200 ms) such that relatively small copper cross sections are sufficient for these busbars. Quench propagation experiments on a prototype cable and corresponding simulations led to a detailed understanding of the quench behavior of these busbars and to recommendations for the design and application of the cable. Simulations of the quench process in a multi-strand conductor led to a detailed understanding of the way current crosses from superconducting to pure copper strands and how this affects the quench propagation velocity. At nominal current (6 kA), the quench propagation velocities are high (10 m/s) and the hot spot temperature increases rapidly. In this situation, timely quench detection and energy extraction (current reduction) are vital to prevent damage of circuit components.

  7. Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching

    International Nuclear Information System (INIS)

    Meaney, Melissa S.; McGuffin, Victoria L.

    2008-01-01

    Previous studies have indicated that nitrated explosives may be detected by fluorescence quenching of pyrene and related compounds. The use of pyrene, however, invokes numerous health and waste disposal hazards. In the present study, ten safer fluorophores are identified for quenching detection of target nitrated compounds. Initially, Stern-Volmer constants are measured for each fluorophore with nitrobenzene and 4-nitrotoluene to determine the sensitivity of the quenching interaction. For quenching constants greater than 50 M -1 , sensitivity and selectivity are investigated further using an extended set of target quenchers. Nitromethane, nitrobenzene, 4-nitrotoluene, and 2,6-dinitrotoluene are chosen to represent nitrated explosives and their degradation products; aniline, benzoic acid, and phenol are chosen to represent potential interfering compounds. Among the fluorophores investigated, purpurin, malachite green, and phenol red demonstrate the greatest sensitivity and selectivity for nitrated compounds. Correlation of the quenching rate constants for these fluorophores to Rehm-Weller theory suggests an electron-transfer quenching mechanism. As a result of the large quenching constants, purpurin, malachite green, and phenol red are the most promising for future detection of nitrated explosives via fluorescence quenching

  8. Experimental and calculation results of the integral reflood test QUENCH-14 with M5 (registered) cladding tubes

    International Nuclear Information System (INIS)

    Stuckert, J.; Birchley, J.; Grosse, M.; Jaeckel, B.; Steinbrueck, M.

    2010-01-01

    The QUENCH-14 experiment investigated the effect of M5 (registered) cladding material on bundle oxidation and core reflood, in comparison with tests QUENCH-06 (ISP-45) that used standard Zircaloy-4 and QUENCH-12 that used VVER E110-claddings. The PWR bundle configuration of QUENCH-14 with a single unheated rod, 20 heated rods, and four corner rods was otherwise identical to QUENCH-06. The test was conducted in principle with the same protocol as QUENCH-06, so that the effects of the change of cladding material could be observed more easily. Pre-test calculations were performed by the Paul Scherrer Institut (Switzerland) using the SCDAPSIM, SCDAP/RELAP5 and MELCOR codes. Follow-on post-test analyses were performed using SCDAP/RELAP5 and MELCOR as part of an ongoing programme of model validation and code assessment. Alternative oxidation correlations were used to examine the possible influence of the M5 (registered) cladding material on hydrogen generation, in comparison with Zircaloy-4. The experiment started with a pre-oxidation phase in steam, lasting ∼3000 s at ∼1500 K peak bundle temperature. After a further temperature increase to maximum bundle temperature of 2073 K the bundle was flooded with 2 g/s/rod water from the bottom. The peak temperature of ∼2300 K was measured on the bundle shroud, shortly after quench initiation. The electrical power was reduced to average value of 2 W/cm during the reflood phase to simulate effective decay heat level. Complete bundle cooling was reached in 300 s after reflood initiation. The development of the oxide layer growth during the test was essentially defined by measurements performed on the three Zircaloy-4 corner rods withdrawn successively from the bundle. The withdrawal of Zircaloy-4 and E110 corner rods after the test allowed a comparison of the different alloys in one test. One heated rod with M5 cladding was withdrawn after the test for a detailed analysis of oxidation degree and measurement of absorbed

  9. Fate of Majorana fermions and Chern numbers after a quantum quench.

    Science.gov (United States)

    Sacramento, P D

    2014-09-01

    In the sequence of quenches to either nontopological phases or other topological phases, we study the stability of Majorana fermions at the edges of a two-dimensional topological superconductor with spin-orbit coupling and in the presence of a Zeeman term. Both instantaneous and slow quenches are considered. In the case of instantaneous quenches, the Majorana modes generally decay, but for a finite system there is a revival time that scales to infinity as the system size grows. Exceptions to this decaying behavior are found in some cases due to the presence of edge states with the same momentum in the final state. Quenches to a topological Z(2) phase reveal some robustness of the Majorana fermions in the sense that even though the survival probability of the Majorana state is small, it does not vanish. If the pairing is not aligned with the spin-orbit Rashba coupling, it is found that the Majorana fermions are fairly robust with a finite survival probability. It is also shown that the Chern number remains invariant after the quench, until the propagation of the mode along the transverse direction reaches the middle point, beyond which the Chern number fluctuates between increasing values. The effect of varying the rate of change in slow quenches is also analyzed. It is found that the defect production is nonuniversal and does not follow the Kibble-Zurek scaling with the quench rate, as obtained before for other systems with topological edge states.

  10. Test and Simulation Results for Quenches Induced by Fast Losses on a LHC Quadrupole

    CERN Document Server

    Bracco, Ch; Bartmann, W; Bednarek, M; Lechner, A; Sapinski, M; Vittal Shetty, N; Schmidt, R; Solfaroli Camillocci, M; Verweij, A

    2014-01-01

    A test program for beam induced quenches was started in the LHC in 2011 in order to reduce as much as possible BLM-triggered beam dumps, without jeopardising the safety of the superconducting magnets. A first measurement was performed to asses the quench level of a quadrupole located in the LHC injection region in case of fast (ns) losses. It consisted in dumping single bunches onto an injection protection collimator located right upstream of the quadrupole, varying the bunch intensity up to 3×1010 protons and ramping the quadrupole current up to 2200 A. No quench was recorded at that time. The test was repeated in 2013 with increased bunch intensity (6.5×1010 protons); a quench occurred when powering the magnet at 2500 A. The comparison between measurements during beam induced and quench heaters induced quenches is shown. Results of FLUKA simulations on energy deposition, calculations on quench behaviour using the QP3 code and the respective estimates of quench levels are also presented.

  11. Mechanical stress analysis during a quench in CLIQ protected 16 T dipole magnets designed for the future circular collider

    Science.gov (United States)

    Zhao, Junjie; Prioli, Marco; Stenvall, Antti; Salmi, Tiina; Gao, Yuanwen; Caiffi, Barbara; Lorin, Clement; Marinozzi, Vittorio; Farinon, Stefania; Sorbi, Massimo

    2018-07-01

    Protecting the magnets in case of a quench is a challenge for the 16 T superconducting dipole magnets presently designed for the 100 TeV: Future Circular Collider (FCC). These magnets are driven to the foreseen technological limits in terms of critical current, mechanical strength and quench protection. The magnets are protected with CLIQ (Coupling-Loss Induced Quench) system, which is a recently developed quench protection method based on discharging a capacitor bank across part of the winding. The oscillation of the magnet currents and the dissipation of the high stored energy into the windings cause electrodynamic forces and thermal stresses, which may need to be considered in the magnet mechanical design. This paper focuses on mechanical stress analysis during a quench of the 16 T cos-θ and block type dipole magnets. A finite element model allowed studying the stress due to the non-uniform temperature and current distribution in the superconducting coils. Two different CLIQ configurations were considered for the cos-θ design and one for the block type magnet. The analyses of the mechanical behavior of two magnets during a quench without or with hot spot turn were separately carried out. The simulation results show that the stress related to a quench should be considered when designing a high field magnet.

  12. A new method of quench monitoring in liquid scintillation counting

    International Nuclear Information System (INIS)

    Horrocks, D.L.

    1978-01-01

    The quench level of different liquid scintillation counting samples is measured by comparing the responses (pulse heights) produced by the same energy electrons in each sample. The electrons utilized in the measurements are those of the maximum energy (Esub(max)) which are produced by the single Compton scattering process for the same energy gamma-rays in each sample. The Esub(max) response produced in any sample is related to the Esub(max) response produced in an unquenched, sealed standard. The difference in response on a logarithm response scale is defined as the ''H Number''. The H number is related to the counting efficiency of the desired radionuclide by measurement of a set of standards of known amounts of the radionuclide and different amounts of quench (standard quench curve). The concept of the H number has been shown to be theoretically valid. Based upon this proof, the features of the H number concept as embodied in the Beckman LS-8000 Series Liquid Scintillation Systems have been demonstrated. It has been shown that one H number is unique; it provides a method of instrument calibration and wide dynamic quench range measurements. Further, it has been demonstrated that the H number concept provides a universal quench parameter. Counting efficiency vs. H number plots are repeatable within the statistical limits of +-1% counting efficiency. By the use of the H number concept a very accurate method of automatic quench compensation (A.Q.C.) is possible. (T.G.)

  13. Study on Recrystallization of Cold-worked and β-quenched zirconium alloys

    International Nuclear Information System (INIS)

    Goo, J. S.; Hong, S. I.; Kim, H. S.; Jeong, Y. H.

    1998-01-01

    The observation of microstructure and the hardness test of Zr-Sn binary and Zircaloy-4 alloys were performed to investigate the recrystallization of cold-worked and β-quenched Zr alloys. All specimens were heat-treated in vacuum condition at various temperatures. From the observation of microstructures of cold-worked and β-quenched Zr alloys, the cold-worked specimens were shown to keep the cold-worked micro- structure as annealing temperature increased up to 500 deg C and the recrystallization was completed at between 550 deg C and 700 deg C. Meanwhile, the recrystallization of β-quenched Zr alloys was started at about 700 deg C. In all specimens of cold-worked and β-quenched Zr alloys, the hardness value tended to be consistent with microstructure. Although the cold-worked and the β-quenched specimens had an equal initial hardness value, the recrystallization behavior was indicated to be different from each other, which means that recrystallization mechanism is different from each other

  14. Non-kinematic Flux-transport Dynamos Including the Effects of Diffusivity Quenching

    Energy Technology Data Exchange (ETDEWEB)

    Ichimura, Chiaki; Yokoyama, Takaaki [Department of Earth and Planetary Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-04-10

    Turbulent magnetic diffusivity is quenched when strong magnetic fields suppress turbulent motion in a phenomenon known as diffusivity quenching. Diffusivity quenching can provide a mechanism for amplifying magnetic field and influencing global velocity fields through Lorentz force feedback. To investigate this effect, we conducted mean field flux-transport dynamo simulations that included the effects of diffusivity quenching in a non-kinematic regime. We found that toroidal magnetic field strength is amplified by up to approximately 1.5 times in the convection zone as a result of diffusivity quenching. This amplification is much weaker than that in kinematic cases as a result of Lorentz force feedback on the system’s differential rotation. While amplified toroidal fields lead to the suppression of equatorward meridional flow locally near the base of the convection zone, large-scale equatorward transport of magnetic flux via meridional flow, which is the essential process of the flux-transport dynamo, is sustainable in our calculations.

  15. A quench detection/logging system for the SSCL Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Kim, K.; Coles, M.; Dryer, J.; Lambert, D.

    1994-01-01

    The quench in a magnet describes a process which occurs while the superconductivity state goes to the normal resistive state. The consequence of a quench is the conversion of the stored electromagnetic energy into heat. During this process the initiating point will reach a high temperature, which will char the insulation or melt the conductor and thereby destroy the magnet. To prevent the magnet from being lost, it is standard practice to observe several resistance and/or inductance voltages across the magnet as quench signatures - Detection. When a quench symptom is detected, protection operations are initiated: proper shutdown of the magnet excitation systems and treatment to dilute the heat energy at a spot - Protection. The temperature rise is diluted by firing heaters along the length of the magnet to ensure that the dissipated energy is spread. It is interesting that there is not a significant amount of published research on detection. To afford a more reliable quench detection system, two distinct approaches have been tried in the past: (i) Understanding of the Noise Mechanism and Sub-system Optimization, and (ii) Escaping from the Known Electromagnetic Noises by Observing Optical Waves or Acoustic Waves. The MTL of SSCL confronts a mass-measurement of about 10,000 production magnets. To meet the testing schedule, the false quench detection rate needs to be further optimized while the true quench detection rate remains secure for the magnet measurement safety. To meet these requirements, the authors followed an iterative top-down approach. First they defend the signal and noise characteristics of the quench phenomena by using existing software tools to build a rapid prototype system incorporating all proven functionality of the existing system. Then they further optimize the system through iterative upgrading based on their signal and noise character findings

  16. Theory and modelling of quench in cable-in-conduit superconducting magnets

    International Nuclear Information System (INIS)

    Shajii, A.

    1994-04-01

    A new simple, self consistent theoretical model is presented that describes the phenomena of quench propagation in Cable-In-Conduit superconducting magnets. The model (Quencher) circumvents many of the difficulties associated with obtaining numerical solutions in more general existing models. Specifically, a factor of 30-50 is gained in CPU time over the general, explicit time dependent codes used to study typical quench events. The corresponding numerical implementation of the new model is described and the numerical results are shown to agree very well with those of the more general models, as well as with experimental data. Further, well justified approximations lead to the MacQuench model that is shown to be very accurate and considerably more efficient than the Quencher model. The MacQuench code is suitable for performing quench studies on a personal computer, requiring only several minutes of CPU time. In order to perform parametric studies on new conductor designs it is required to utilize a model such as MacQuench because of the high computational efficiency of this model. Finally, a set of analytic solutions for the problem of quench propagation in Cable-In-Conduit Conductors is presented. These analytic solutions represent the first such results that remain valid for the long time scales of interest during a quench process. The assumptions and the resulting simplifications that lead to the analytic solutions are discussed, and the regimes of validity of the various approximations are specified. The predictions of the analytic results are shown to be in very good agreement with numerical as well as experimental results. Important analytic scaling relations are verified by such comparisons, and the consequences of some of these scalings on currently designed superconducting magnets are discussed

  17. A simple holographic scenario for gapped quenches

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Esperanza; Bosch, Guillermo Milans del [Instituto de Física Teórica IFT UAM/CSIC, Universidad Autónoma de Madrid,28049 Cantoblanco, Madrid (Spain)

    2017-02-24

    We construct gravitational backgrounds dual to a family of field theories parameterized by a relevant coupling. They combine a non-trivial scalar field profile with a naked singularity. The naked singularity is necessary to preserve Lorentz invariance along the boundary directions. The singularity is however excised by introducing an infrared cutoff in the geometry. The holographic dictionary associated to the infrared boundary is developed. We implement quenches between two different values of the coupling. This requires considering time dependent boundary conditions for the scalar field both at the AdS boundary and the infrared wall.

  18. Two-level quenching of photoluminescence in hexagonal boron nitride micropowder

    Energy Technology Data Exchange (ETDEWEB)

    Henaish, A. M. A. [Ural Federal University, NANOTECH Center, Mira Street, 19, Yekaterinburg, Russia, 620002 (Russian Federation); Tanta University, Physics Department, Tanta, Egypt, 31527 (Egypt); Vokhmintsev, A. S.; Weinstein, I. A., E-mail: i.a.weinstein@urfu.ru [Ural Federal University, NANOTECH Center, Mira Street, 19, Yekaterinburg, Russia, 620002 (Russian Federation)

    2016-03-29

    The processes of photoluminescence thermal quenching in the range RT – 800 K of h-BN micropowder in the 3.56 eV band were studied. It was found that two non-radiative channels of excitations relaxation with activation energies of 0.27 and 0.81 eV control the quenching for emission observed. It was assumed that emptying the shallow traps based on O{sub N}-centers characterized external quenching in RT – 530 K range and non-radiative mechanism of donor-acceptor recombination began to dominate at T > 530 K.

  19. Quantum quench in one dimension: coherent inhomogeneity amplification and "supersolitons".

    Science.gov (United States)

    Foster, Matthew S; Yuzbashyan, Emil A; Altshuler, Boris L

    2010-09-24

    We study a quantum quench in a 1D system possessing Luttinger liquid (LL) and Mott insulating ground states before and after the quench, respectively. We show that the quench induces power law amplification in time of any particle density inhomogeneity in the initial LL ground state. The scaling exponent is set by the fractionalization of the LL quasiparticle number relative to the insulator. As an illustration, we consider the traveling density waves launched from an initial localized density bump. While these waves exhibit a particular rigid shape, their amplitudes grow without bound.

  20. Two-level quenching of photoluminescence in hexagonal boron nitride micropowder

    International Nuclear Information System (INIS)

    Henaish, A. M. A.; Vokhmintsev, A. S.; Weinstein, I. A.

    2016-01-01

    The processes of photoluminescence thermal quenching in the range RT – 800 K of h-BN micropowder in the 3.56 eV band were studied. It was found that two non-radiative channels of excitations relaxation with activation energies of 0.27 and 0.81 eV control the quenching for emission observed. It was assumed that emptying the shallow traps based on O N -centers characterized external quenching in RT – 530 K range and non-radiative mechanism of donor-acceptor recombination began to dominate at T > 530 K.

  1. A fundamental self-generated quenching center for lanthanide-doped high-purity solids

    International Nuclear Information System (INIS)

    Auzel, F.

    2002-01-01

    An intrinsic self-generated quenching center for lanthanide-doped high-purity solids is presented for transitions, which cannot be quenched by cross-relaxation. This center, in fact a cluster-like pair of active centers, is shown to come from a particular multiphonon-assisted energy transfer between them. Being due to the vibronic properties of the host it cannot be suppressed. Its role in lanthanide first excited states self-quenching is analyzed and a simple mathematical expression is derived. This law is compared with experimental results for self-quenching in Er-doped fluorophosphate glasses

  2. Chiral analysis of quenched baryon masses

    International Nuclear Information System (INIS)

    Young, R.D.; Leinweber, D.B.; Thomas, A.W.; Wright, S. V.

    2002-01-01

    We extend to quenched QCD an earlier investigation of the chiral structure of the masses of the nucleon and the delta in lattice simulations of full QCD. Even after including the meson-loop self-energies which give rise to the leading and next-to-leading nonanalytic behavior (and hence the most rapid variation in the region of light quark mass), we find surprisingly little curvature in the quenched case. Replacing these meson-loop self-energies by the corresponding terms in full QCD yields a remarkable level of agreement with the results of the full QCD simulations. This comparison leads to a very good understanding of the origins of the mass splitting between these baryons

  3. An experimental study on quenching of a radially stratified heated porous bed

    International Nuclear Information System (INIS)

    Nayak, Arun K.; Sehgal, Bal Raj; Stepanyan, Armen V.

    2006-01-01

    The quenching characteristics of a volumetrically-heated particulate bed composed of radially stratified sand layers were investigated experimentally in the POMECO facility. The sand bed simulates the corium particulate debris bed which is formed when the molten corium released from the vessel fragments in water and deposits on the cavity floor during a postulated severe accident in a light water reactor (LWR). The electrically-heated bed was quenched by water from a water column established over top of it, and later also with water coming from its bottom, which was circulating from the water overlayer through downcomers. A series of experiments were conducted to reveal the effects of the size of downcomers, and their locations in the bed, on the quenching characteristics of the radially stratified debris beds. The downcomers were found to significantly increase the bed quenching rate. To simulate the non-condensable gases generated during the MCCI, air and argon were injected from the bottom of the bed at different flow rates. The effects of gas flow rate and its properties on the quenching behaviour were observed. The results indicate that the non-condensable gas flows reduce the quenching rate significantly. The gas properties also affect the quenching characteristics

  4. Testing beam-induced quench levels of LHC superconducting magnets

    CERN Document Server

    Auchmann, B.; Bednarek, M.; Bellodi, G.; Bracco, C.; Bruce, R.; Cerutti, F.; Chetvertkova, V.; Dehning, B.; Granieri, P.P.; Hofle, W.; Holzer, E.B.; Lechner, A.; Del Busto, E. Nebot; Priebe, A.; Redaelli, S.; Salvachua, B.; Sapinski, M.; Schmidt, R.; Shetty, N.; Skordis, E.; Solfaroli, M.; Steckert, J.; Valuch, D.; Verweij, A.; Wenninger, J.; Wollmann, D.; Zerlauth, M.

    2015-06-25

    In the years 2009-2013 the Large Hadron Collider (LHC) has been operated with the top beam energies of 3.5 TeV and 4 TeV per proton (from 2012) instead of the nominal 7 TeV. The currents in the superconducting magnets were reduced accordingly. To date only seventeen beam-induced quenches have occurred; eight of them during specially designed quench tests, the others during injection. There has not been a single beam- induced quench during normal collider operation with stored beam. The conditions, however, are expected to become much more challenging after the long LHC shutdown. The magnets will be operating at near nominal currents, and in the presence of high energy and high intensity beams with a stored energy of up to 362 MJ per beam. In this paper we summarize our efforts to understand the quench levels of LHC superconducting magnets. We describe beam-loss events and dedicated experiments with beam, as well as the simulation methods used to reproduce the observable signals. The simulated energy depositio...

  5. An FPGA-Based Quench Detection and Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Carcagno, Ruben H; Lamm, Michael J; Makulski, Andrzej; Nehring, Roger; Orris, Darryl; Pishchalnikov, Yu M; Tartaglia, M

    2005-01-01

    A new quench detection and protection system for superconducting accelerator magnets was developed at the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commerically available, integrated hardware and software components. It provides most of the functionality of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and has a more powerful user interface and analysis tools. First applications of the new system will be for testing corrector coil packages. In this paper we describe the new system and present results of testing LHC Interaction Region Quadrupole (IRQ) correctors.

  6. An FPGA-based quench detection and protection system for superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Feher, S.; Lamm, M.; Makulski, A.; Nehring, R.; Orris, D.F.; Pischalnikov, Y.; Tartaglia, M.; Fermilab

    2005-01-01

    A new quench detection and protection system for superconducting accelerator magnets was developed for the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commercially available, integrated hardware and software components. It provides all the functions of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and a more powerful user interface and analysis tools. The new system has been used successfully for testing LHC Interaction Region Quadrupoles correctors and High Field Magnet HFDM04. In this paper we describe the system and present results

  7. An FPGA-based quench detection and protection system for superconducting accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.H.; Feher, S.; Lamm, M.; Makulski, A.; Nehring, R.; Orris, D.F.; Pischalnikov, Y.; Tartaglia, M.; /Fermilab

    2005-05-01

    A new quench detection and protection system for superconducting accelerator magnets was developed for the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commercially available, integrated hardware and software components. It provides all the functions of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and a more powerful user interface and analysis tools. The new system has been used successfully for testing LHC Interaction Region Quadrupoles correctors and High Field Magnet HFDM04. In this paper we describe the system and present results.

  8. Quench detector and analyser for a UNK superconducting string

    International Nuclear Information System (INIS)

    Augueres, J.L.; Kircher, F.; Molinie, F.; Sellier, J.C.; Andriichine, A.; Prima, M.; Vassiliev, L.; Yerachin, A.

    1992-01-01

    In a close collaboration between physicists and engineers from IHEP and CEN Saclay, a system for quench detection on a UNK superconducting string (from 4 to 100 magnets) has been designed and is now under construction at Saclay; this system also enables the data analysis in normal conditions or in case of a quench. The paper describes the architectural design of the system, the hardware (microprocessors are used for the whole system) and the software. Emphasis will be put on the main problems of construction friability, quench detection at a low level and in a very short time, high voltages, data transmission on long distances and integration in the general system of the accelerator

  9. Quenching technology: a selected overview of the current state-of-the-art

    Directory of Open Access Journals (Sweden)

    Lauralice de Campos Franceschini Canale

    2005-12-01

    Full Text Available Many papers have been published on a wide range of aspects of the fundamental physics and chemistry of quenching such as: additive technology, surface rewetting, hardness distribution prediction, role of heat transfer and residual stresses, etc.1,2. However, relatively little information has been published on the application of these insightful research results for the solution of long standing quench tank production problems. This paper will address three areas where technical advancements have been, or may be, made. These include discussion of: 1 the application fundamental fluid dynamics to characterize quenching uniformity due to agitation; 2 the use of "waves" to provide uniform agitation during the quenching process; and 3 the use of pressure as a variable to mediate heat transfer throughout the quenching process.

  10. Experiments on the quench behavior of fuel rods

    International Nuclear Information System (INIS)

    Hofmann, P.; Noack, V.; Burbach, J.; Metzger, H.

    1995-01-01

    Because of the importance of the observed reflood phenomena for safety of current and future LWRs, the Forschungszentrum Karlsruhe (FZKA) started a program to investigate the mechanisms of quench-induced oxidation of Zircaloy. A small scale test-rig was designed and built in which it is possible to quench single Zircaloy rods by water and steam. The report describes the status of this work in May 1995. Some experimental results are presented. (orig./HP)

  11. Experiments on the quench behavior of fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, P.; Noack, V.; Burbach, J.; Metzger, H.

    1995-08-01

    Because of the importance of the observed reflood phenomena for safety of current and future LWRs, the Forschungszentrum Karlsruhe (FZKA) started a program to investigate the mechanisms of quench-induced oxidation of Zircaloy. A small scale test-rig was designed and built in which it is possible to quench single Zircaloy rods by water and steam. The report describes the status of this work in May 1995. Some experimental results are presented. (orig./HP)

  12. Numerical calculation of transient field effects in quenching superconducting magnets

    International Nuclear Information System (INIS)

    Schwerg, Juljan Nikolai

    2010-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  13. Numerical calculation of transient field effects in quenching superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Schwerg, Juljan Nikolai

    2010-07-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimization of the quench behavior is an integral part of the construction of any superconducting magnet. The dissertation is divided in three complementary parts, i.e. the thesis, the detailed treatment and the appendix. In the thesis the quench process in superconducting accelerator magnets is studied. At first, we give an overview over features of accelerator magnets and physical phenomena occurring during a quench. For all relevant effects numerical models are introduced and adapted. The different models are weakly coupled in the quench algorithm and solved by means of an adaptive time-stepping method. This allows to resolve the variation of material properties as well as time constants. The quench model is validated by means of measurement data from magnets of the Large Hadron Collider. In a second step, we show results of protection studies for future accelerator magnets. The thesis ends with a summary of the results and a critical outlook on aspects which could

  14. Variation of Optical Quenching of Photoconductivity with Resistivity in Unintentional Doped GaN

    International Nuclear Information System (INIS)

    Qi-Feng, Hou; Xiao-Liang, Wang; Hong-Ling, Xiao; Cui-Mei, Wang; Cui-Bai, Yang; Jin-Min, Li

    2010-01-01

    The optical quenching of photoconductivity under dual illumination in GaN samples with different resistivity is investigated to reveal the variation of deep levels. The samples are grown by metal organic chemical vapour deposition without intentional doping. Quenching bands centered at 1.35eV, 1.55eV, 1.98eV, and 2.60eV are observed. It is found that the 1.98eV quenching band is dominated in all the samples and the 2.60eV band is observed only in the high-resistivity samples. The possible defect levels responsible for the quenching bands and the origin of different quenching behaviour at 2.60eV are discussed. It is suggested that the defect level responsible for quenching at 2.60eV plays an important role for the enhancement of resistivity

  15. Physical pictures of symmetry breaking in quenched QED4

    International Nuclear Information System (INIS)

    Kogut, J.B.; Argonne National Lab., IL

    1989-01-01

    We discuss 'collapse of the wavefunction' as the phenomenon underlying chiral symmetry breaking in quenched QED4. The 1/r singularity in the 'collapsed' qanti q wavefunction causes 'catalyzed symmetry breaking' which is the field theoretic analog of 'monopole induced proton decay'. The evasion of mean field exponents by the quenched theory's chiral phase transition is emphasized. (orig.)

  16. Quenching of photoluminescence of colloidal ZnO nanocrystals by nitronyl nitroxide radicals

    Energy Technology Data Exchange (ETDEWEB)

    Stroyuk, Oleksandr L., E-mail: stroyuk@inphyschem-nas.kiev.ua [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky avenue, 03028 Kyiv (Ukraine); Yakovenko, Anastasiya V.; Raevskaya, Oleksandra E. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, 31 Nauky avenue, 03028 Kyiv (Ukraine); Plyusnin, Victor F. [Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-11-15

    Quenching of the photoluminescence of colloidal zinc oxide nanocrystals by a series of stable nitronyl nitroxide radicals was studied by means of stationary and time-resolved luminescence spectroscopy. Among the studied radicals the most efficient quenchers of the ZnO luminescence are the carboxyl-substituted species. The meta-substituted radical was found to be a more active quencher, than para-substituted one due to a closer proximity of the radical center to the nanocrystals surface. The PL quenching has a complex dynamic/static character. The dynamic quenching arises from photocatalytic radical reduction by ZnO conduction band electrons, while the static quenching is caused by adsorption of the photoreduction products on the nanocrystal surface. The non-substituted and OH-substituted radicals are inferior to the products of their photoreduction in capability of adsorption of the ZnO surface, and the quenching is dominated by interactions between the nanocrystals and photoreduced hydroxylamines. In case of COOH-substituted radicals, however, the radicals compete with the photoreduction products for the surface sites of ZnO nanocrystals resulting in a dynamic character of photoluminescence quenching.

  17. Development and validation of a new spectrofluorimetric method for the determination of some beta-blockers through fluorescence quenching of eosin Y. Application to content uniformity test

    Directory of Open Access Journals (Sweden)

    Derayea Sayed M

    2016-01-01

    Full Text Available A simple, rapid, sensitive and economic spectrofluorimetric method has been developed and validated for determination of some β-adrenergic blocking agents namely; betaxolol hydrochloride (BTX, carvedilol (CAR, labetalol hydrochloride (LBT, nebivolol hydrochloride (NEB and propranolol hydrochloride (PRO. The method is based on the quenching effect of the cited drugs on the fluorescence intensity of eosin Y at pH 3.4 (acetate buffer. The fluorescence quenching is due to the formation of an ion-pair complex and was measured without extraction at 545 nm (λex. 301.5 nm. The factors affecting the formation of the ion-pair complex were carefully studied and optimized. Under the optimal conditions, the linear ranges for the relationship between the fluorescence quenching value and the concentration of the investigated drugs were 100-2500, 150-2500 and 50-2250 ng mL-1 for (BTX, CAR, (LBT, NEB and (PRO respectively. The method was validated according to ICH guidelines and was applied for determination of the cited drugs in pharmaceutical dosage forms with excellent recoveries. In addition, content uniformity testing of some commercial dosage forms was checked by the proposed method.

  18. Defect production in nonlinear quench across a quantum critical point.

    Science.gov (United States)

    Sen, Diptiman; Sengupta, K; Mondal, Shreyoshi

    2008-07-04

    We show that the defect density n, for a slow nonlinear power-law quench with a rate tau(-1) and an exponent alpha>0, which takes the system through a critical point characterized by correlation length and dynamical critical exponents nu and z, scales as n approximately tau(-alphanud/(alphaznu+1)) [n approximately (alphag((alpha-1)/alpha)/tau)(nud/(znu+1))] if the quench takes the system across the critical point at time t=0 [t=t(0) not = 0], where g is a nonuniversal constant and d is the system dimension. These scaling laws constitute the first theoretical results for defect production in nonlinear quenches across quantum critical points and reproduce their well-known counterpart for a linear quench (alpha=1) as a special case. We supplement our results with numerical studies of well-known models and suggest experiments to test our theory.

  19. Nonequilibrium forces following quenches in active and thermal matter

    Science.gov (United States)

    Rohwer, Christian M.; Solon, Alexandre; Kardar, Mehran; Krüger, Matthias

    2018-03-01

    Nonequilibrium systems with conserved quantities like density or momentum are known to exhibit long-ranged correlations. This, in turn, leads to long-ranged fluctuation-induced (Casimir) forces, predicted to arise in a variety of nonequilibrium settings. Here, we study such forces, which arise transiently between parallel plates or compact inclusions in a gas of particles, following a change ("quench") in temperature or activity of the medium. Analytical calculations, as well as numerical simulations of passive or active Brownian particles, indicate two distinct forces: (i) The immediate effect of the quench is adsorption or desorption of particles of the medium to the immersed objects, which in turn initiates a front of relaxing (mean) density. This leads to time-dependent density-induced forces. (ii) A long-term effect of the quench is that density fluctuations are modified, manifested as transient (long-ranged) (pair-)correlations that relax diffusively to their (short-ranged) steady-state limit. As a result, transient fluctuation-induced forces emerge. We discuss the properties of fluctuation-induced and density-induced forces as regards universality, relaxation as a function of time, and scaling with distance between objects. Their distinct signatures allow us to distinguish the two types of forces in simulation data. Our simulations also show that a quench of the effective temperature of an active medium gives rise to qualitatively similar effects to a temperature quench in a passive medium. Based on this insight, we propose several scenarios for the experimental observation of the forces described here.

  20. Development of radiation tolerant components for the Quench Protection System at CERN

    Science.gov (United States)

    Bitterling, O.; Denz, R.; Steckert, J.; Uznanski, S.

    2016-01-01

    This paper describes the results of irradiation campaigns with the high resolution Analog to Digital Converter (ADC) ADS1281. This ADC will be used as part of a revised quench detection circuit for the 600 A corrector magnets at the CERN Large Hadron Collider (LHC) . To verify the radiation tolerance of the ADC an irradiation campaign using a proton beam, applying doses up to 3,4 kGy was conducted. The resulting data and an analysis of the found failure modes is discussed in this paper. Several mitigation measures are described that allow to reduce the error rate to levels acceptable for operation as part of the LHC QPS.

  1. Development of radiation tolerant components for the Quench Protection System at CERN

    International Nuclear Information System (INIS)

    Bitterling, O.; Denz, R.; Steckert, J.; Uznanski, S.

    2016-01-01

    This paper describes the results of irradiation campaigns with the high resolution Analog to Digital Converter (ADC) ADS1281. This ADC will be used as part of a revised quench detection circuit for the 600 A corrector magnets at the CERN Large Hadron Collider (LHC) . To verify the radiation tolerance of the ADC an irradiation campaign using a proton beam, applying doses up to 3,4 kGy was conducted. The resulting data and an analysis of the found failure modes is discussed in this paper. Several mitigation measures are described that allow to reduce the error rate to levels acceptable for operation as part of the LHC QPS

  2. Thermalization in 2D critical quench and UV/IR mixing

    Science.gov (United States)

    Mandal, Gautam; Paranjape, Shruti; Sorokhaibam, Nilakash

    2018-01-01

    We consider quantum quenches in models of free scalars and fermions with a generic time-dependent mass m( t) that goes from m 0 to zero. We prove that, as anticipated in MSS [1], the post-quench dynamics can be described in terms of a state of the generalized Calabrese-Cardy form | ψ〉 = exp[- κ 2 H - ∑ n >2 ∞ κ n W n ]|Bd〉. The W n ( n = 2, 3, . . ., W 2 = H) here represent the conserved W ∞ charges and |Bd〉 represents a conformal boundary state. Our result holds irrespective of whether the pre-quench state is a ground state or a squeezed state, and is proved without recourse to perturbation expansion in the κ n 's as in MSS. We compute exact time-dependent correlators for some specific quench protocols m( t). The correlators explicitly show thermalization to a generalized Gibbs ensemble (GGE), with inverse temperature β = 4 κ 2, and chemical potentials μ n = 4 κ n . In case the pre-quench state is a ground state, it is possible to retrieve the exact quench protocol m( t) from the final GGE, by an application of inverse scattering techniques. Another notable result, which we interpret as a UV/IR mixing, is that the long distance and long time (IR) behaviour of some correlators depends crucially on all κ n 's, although they are highly irrelevant couplings in the usual RG parlance. This indicates subtleties in RG arguments when applied to non-equilibrium dynamics.

  3. The location of the quench origin in a superconducting accelerator magnet

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Robins, K.E.; Sampson, W.B.

    1987-01-01

    A method of calculating the initial rate of rise of the resistive voltage in a quenching superconducting magnet is described. Comparison of such calculations with data from spontaneously occurring quenches gives the location of the quench origin since the normal state resistance of the conductor is determined by its position in the windings due to the magnetoresistance of the copper matrix. The characteristics of the voltage buildup is used to separate quenches occurring in low field regions, such as the magnet ends, from those starting in the two-dimensional straight section of the coil. The magnitude of V dot is a measure of performance and can be used to determine if the magnet is reaching the maximum current permitted by the conductor parameters

  4. Energy extraction system using dual-capacitor switching for quench protection of HTS magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yo Jong; Song, Seung Hyun; Jeon, Hae Ryong; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Lee, Woo Seung [JH ENGINEERING CO., LTD., Anyang (Korea, Republic of); Kang, Hyoung Ku [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-09-15

    The superconducting magnets have a large inductance as well as high operating current. Therefore, mega-joule scale energy can be stored in the magnet. The energy stored in the magnet is sufficient to damage the magnet when a quench occurs. Quench heater and dump resistor can be used to protect the magnet. However, using quench heater to create quench resistors through heat transfer can be slower than instantly switching resistors. Also, electrical short, overheating and breakdown can occur due to quench heater. Moreover, the number of dump resistor should be limited to avoid large terminal voltage. Therefore, in this paper, we propose a quench protection method for extracting the energy stored in a magnet by charging and discharging energy through a capacitor switching without increasing resistance. The simulation results show that the proposed system has a faster current decay within the allowable voltage level.

  5. Energy extraction system using dual-capacitor switching for quench protection of HTS magnet

    International Nuclear Information System (INIS)

    Chi, Yo Jong; Song, Seung Hyun; Jeon, Hae Ryong; Ko, Tae Kuk; Lee, Woo Seung; Kang, Hyoung Ku

    2017-01-01

    The superconducting magnets have a large inductance as well as high operating current. Therefore, mega-joule scale energy can be stored in the magnet. The energy stored in the magnet is sufficient to damage the magnet when a quench occurs. Quench heater and dump resistor can be used to protect the magnet. However, using quench heater to create quench resistors through heat transfer can be slower than instantly switching resistors. Also, electrical short, overheating and breakdown can occur due to quench heater. Moreover, the number of dump resistor should be limited to avoid large terminal voltage. Therefore, in this paper, we propose a quench protection method for extracting the energy stored in a magnet by charging and discharging energy through a capacitor switching without increasing resistance. The simulation results show that the proposed system has a faster current decay within the allowable voltage level

  6. Detection of Second Sound in He-II for Thermal Quench Mapping of Superconducting Radio Frequency Accelerating Cavities

    OpenAIRE

    Stegmaier, Tobias; Grohmann, Steffen; Kind, Matthias; Furci, Hernán; Koettig, Torsten; Peters, Benedikt

    2018-01-01

    The development of future particle accelerators requires intensive testing of superconducting radio frequency cavities with different sizes and geometries. Non-contact thermometry quench localisation techniques proved to be beneficial for the localisation of surface defects that can originate a quench (sudden loss of superconducting state). These techniques are based on the detection of second sound in helium II. Transition Edge Sensors (TES) are highly sensitive thin film thermometers with f...

  7. Fluorescent quenching-based quantitative detection of specific DNA/RNA using a BODIPY® FL-labeled probe or primer

    Science.gov (United States)

    Kurata, Shinya; Kanagawa, Takahiro; Yamada, Kazutaka; Torimura, Masaki; Yokomaku, Toyokazu; Kamagata, Yoichi; Kurane, Ryuichiro

    2001-01-01

    We have developed a simple method for the quantitative detection of specific DNA or RNA molecules based on the finding that BODIPY® FL fluorescence was quenched by its interaction with a uniquely positioned guanine. This approach makes use of an oligonucleotide probe or primer containing a BODIPY® FL-modified cytosine at its 5′-end. When such a probe was hybridized with a target DNA, its fluorescence was quenched by the guanine in the target, complementary to the modified cytosine, and the quench rate was proportional to the amount of target DNA. This widely applicable technique will be used directly with larger samples or in conjunction with the polymerase chain reaction to quantify small DNA samples. PMID:11239011

  8. Quenching the chemiluminescence of acridinium ester by graphene oxide for label-free and homogeneous DNA detection.

    Science.gov (United States)

    He, Yi; Huang, Guangming; Cui, Hua

    2013-11-13

    It was found that graphene oxide (GO) could effectively quench the chemiluminescence (CL) emission from a acridinium ester (AE)-hydrogen peroxide system. By taking advantage of this quenching effect, as a proof of concept, a label-free and homogeneous DNA assay was developed for the detection of Mycobacterium tuberculosis DNA. In the absence of target DNA, both probe DNA and AE were absorbed on the surface of GO, producing a weak CL emission owing to the CL quenching effect of GO. However, in the presence of target DNA, a double-stranded structure of DNA was generated, leading to the release of the oligonucleotide from the GO surface. AE favors binding with double-stranded DNA, which will be released from the GO surface; thus, the quenching effect of GO will be no longer effective and a strong CL signal can be observed. This assay can detect M. tuberculosis DNA with a detection limit of 0.65 nM. This sensitivity is lower than that of previously reported electrochemical detection.

  9. Effect of quench rate on the mechanical properties of U-6 wt % Nb

    International Nuclear Information System (INIS)

    Eckelmeyer, K.H.

    1980-03-01

    U-6 wt % Nb conventionally is water quenched from 800 0 C in order to obtain a niobium supersaturated α'' structure having good corrosion resistance and high ductility (125% tensile elongation). The high cooling rate associated with the water quench, however, produces undesirable distortion and residual stress. This study was conducted to determine the extent to which the quench rate could be reduced (in order to minimize the distortion and residual stress problems) without sacrificing properties. The results indicate that quench rate can be reduced by as much as a factor of 10 without any loss of ductility, and that a factor of 100 reduction in quench rate (as is produced by air cooling) still produces material with moderate ductility (> 12% tensile elongation). The results also indicate that supersaturated α'' structures are produced at all of these quench rates. This suggests that these reductions in quench rate should not have drastic adverse effects on corrosion resistance. Hence, it should not be possible to substantially reduce the magnitudes of the distortion and residual stress problems while retaining appreciable ductility and corrosion resistance in U-6 wt % Nb

  10. Jet Quenching in the Compact Muon Solenoid at the LHC

    CERN Document Server

    David Lopez Mateos

    In this thesis we perform analyses on simulated data that allow us to demonstrate thesensitivity of the CMS experiment to certain jet quenching observables. In particular,two theoretical scenarios which mimic RHIC data at low pT and which show eitherno quenching or BDMPS-based quenching at high pT are formulated. The differencebetween these two scenarios is analyzed for RAA , RCP at different centralities andjet-specific observables such as jet energy spectra, fragmentation functions and jetprofiles. We show how these analyses indicate that the large acceptance of the CMSdetector, combined with the high granularity in the energy resolution of the calorimeter will be essential tools in studying the phenomenon of jet quenching. Finally, wepropose extensions to this work in preparation to analyzing the data from P b-P b runsat the LHC.Disclaimer: The work on this thesis does not model the CMS detector geometrywith the accuracy required for official analyses, which are fully representative of theCMS detector ...

  11. Tryptophan and ATTO 590: mutual fluorescence quenching and exciplex formation.

    Science.gov (United States)

    Bhattacharjee, Ujjal; Beck, Christie; Winter, Arthur; Wells, Carson; Petrich, Jacob W

    2014-07-24

    Investigation of fluorescence quenching of probes, such as ATTO dyes, is becoming an increasingly important topic owing to the use of these dyes in super-resolution microscopies and in single-molecule studies. Photoinduced electron transfer is their most important nonradiative pathway. Because of the increasing frequency of the use of ATTO and related dyes to investigate biological systems, studies are presented for inter- and intramolecular quenching of ATTO 590 with tryptophan. In order to examine intramolecular quenching, an ATTO 590-tryptophan conjugate was synthesized. It was determined that tryptophan is efficiently quenching ATTO 590 fluorescence by excited-state charge transfer and two charge transfer complexes are forming. In addition, it was discovered that an exciplex (whose lifetime is 5.6 ns) can be formed between tryptophan and ATTO 590, and it is suggested that the possibility of such exciplex formation should be taken into account when protein fluorescence is monitored in a system tagged with ATTO dyes.

  12. Quenching of I(2P1/2) by O3 and O(3P).

    Science.gov (United States)

    Azyazov, Valeriy N; Antonov, Ivan O; Heaven, Michael C

    2007-04-26

    Oxygen-iodine lasers that utilize electrical or microwave discharges to produce singlet oxygen are currently being developed. The discharge generators differ from conventional chemical singlet oxygen generators in that they produce significant amounts of atomic oxygen. Post-discharge chemistry includes channels that lead to the formation of ozone. Consequently, removal of I(2P1/2) by O atoms and O3 may impact the efficiency of discharge driven iodine lasers. In the present study, we have measured the rate constants for quenching of I(2P1/2) by O(3P) atoms and O3 using pulsed laser photolysis techniques. The rate constant for quenching by O3, (1.8 +/- 0.4) x 10(-12) cm3 s-1, was found to be a factor of 5 smaller than the literature value. The rate constant for quenching by O(3P) was (1.2 +/- 0.2) x 10(-11) cm3 s-1.

  13. Three dimensional numeric quench simulation of Super-FRS dipole test coil for FAIR project

    International Nuclear Information System (INIS)

    Wu Wei; Ma Lizhen; He Yuan; Yuan Ping

    2013-01-01

    The prototype of superferric dipoles for Super-FRS of Facility for Antiprotons and Ion Research (FAIR) project was designed, fabricated, and tested in China. To investigate the performance of the superconducting coil, a so-called test coil was fabricated and tested in advance. A 3D model based on ANSYS and OPERA 3D was developed in parallel, not only to check if the design matches the numerical simulation, but also to study more details of quench phenomena. The model simplifies the epoxy impregnated coil into an anisotropic continuum medium. The simulation combines ANSYS solver routines for nonlinear transient thermal analysis, the OPERA 3D for magnetic field evaluation and the ANSYS script language for calculations of Joule heat and differential equations of the protection circuits. The time changes of temperature, voltage and current decay, and quench propagation during quench process were analyzed and illustrated. Finally, the test results of the test coil were demonstrated and compared with the results of simulation. (authors)

  14. Fluorescence quenching behaviour of uric acid interacting with water-soluble cationic porphyrin

    International Nuclear Information System (INIS)

    Makarska-Bialokoz, Magdalena; Borowski, Piotr

    2015-01-01

    The process of association between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H 2 TTMePP) and uric acid as well as its sodium salt has been studied in aqueous NaOH solution analysing its absorption and steady-state fluorescence spectra. The fluorescence quenching effect observed during interactions porphyrin-uric acid compounds points at the fractional accessibility of the fluorophore for the quencher. The association and fluorescence quenching constants are of the order of magnitude of 10 5 mol −1 . The fluorescence lifetimes and the quantum yields of the porphyrin anionic form were established. The results demonstrate that uric acid and its sodium salt can interact with H 2 TTMePP at basic pH and through formation of stacking complexes are able to quench its ability to emission. - Highlights: • Association study of water soluble cationic porphyrin with uric acid. • Porphyrin absorption spectra undergo the bathochromic and hypochromic effects. • Uric acid interacts with porphyrin in inhibiting manner, quenching its emission. • Fluorescence quenching effect testifies for the partial inactivation of a porphyrin. • The association and fluorescence quenching constants were calculated

  15. Fluorescence quenching behaviour of uric acid interacting with water-soluble cationic porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Makarska-Bialokoz, Magdalena, E-mail: makarska@hektor.umcs.lublin.pl [Department of Inorganic Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 2, 20-031 Lublin (Poland); Borowski, Piotr [Faculty of Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 3, 20-031 Lublin (Poland)

    2015-04-15

    The process of association between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H{sub 2}TTMePP) and uric acid as well as its sodium salt has been studied in aqueous NaOH solution analysing its absorption and steady-state fluorescence spectra. The fluorescence quenching effect observed during interactions porphyrin-uric acid compounds points at the fractional accessibility of the fluorophore for the quencher. The association and fluorescence quenching constants are of the order of magnitude of 10{sup 5} mol{sup −1}. The fluorescence lifetimes and the quantum yields of the porphyrin anionic form were established. The results demonstrate that uric acid and its sodium salt can interact with H{sub 2}TTMePP at basic pH and through formation of stacking complexes are able to quench its ability to emission. - Highlights: • Association study of water soluble cationic porphyrin with uric acid. • Porphyrin absorption spectra undergo the bathochromic and hypochromic effects. • Uric acid interacts with porphyrin in inhibiting manner, quenching its emission. • Fluorescence quenching effect testifies for the partial inactivation of a porphyrin. • The association and fluorescence quenching constants were calculated.

  16. 1.8K conditioning (non-quench training) of a model SSC dipole

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Hassenzahl, W.V.

    1986-09-01

    The accepted hypothesis is that training quenches are caused by heat generation when conductors move under Lorentz force. Afterwards no conductor motion will occur until a higher field and greater Lorentz force acts. If superior heat transfer and/or greater temperature margin is provided by operating at lower bath temperature, one might expect that the heat generated by conductor motion will not cause a runaway temperature increase, or quench. To test this hypothesis, the central dipole field in SSC model magnets was ramped at 1.8 K to 7.1 tesla without the magnets' quenching. The bath was then raised to 4.4 K and the magnets quenched at their short sample limits of 6.6 tesla or higher. Comparison with similar magnets trained in He I at 4.4 K is made and the significance of the non-quench training on system operation is discussed

  17. 1. 8K conditioning (non-quench training) of a model SSC dipole

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, W.S.; Hassenzahl, W.V.

    1986-09-01

    The accepted hypothesis is that training quenches are caused by heat generation when conductors move under Lorentz force. Afterwards no conductor motion will occur until a higher field and greater Lorentz force acts. If superior heat transfer and/or greater temperature margin is provided by operating at lower bath temperature, one might expect that the heat generated by conductor motion will not cause a runaway temperature increase, or quench. To test this hypothesis, the central dipole field in SSC model magnets was ramped at 1.8 K to 7.1 tesla without the magnets' quenching. The bath was then raised to 4.4 K and the magnets quenched at their short sample limits of 6.6 tesla or higher. Comparison with similar magnets trained in He I at 4.4 K is made and the significance of the non-quench training on system operation is discussed.

  18. Chemical and colour quenching in liquid scintillation counting

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Scott Guilleard, P.E.

    1986-01-01

    Chemical and colour quenching for H-3 and C-14 was studied. The method includes spectral analysis of colouring agents; methyl red (4'-dimethylamine-azobenzene 2-carboxilic acid) dimethyl yellow (4'-dimethylamine-azobenzene) and melachite green (metane, bis (4'-dimethyl aminophenyl)-(phenyl)). External standard channels ratio was applied for the liquid scintillation counting of samples. The introduction of an isolated external standard seems to be a strong tool for the correction of chemical and colour quenching curves. (author). 10 figs., 12 refs

  19. Chemical and colour quenching in liquid scintillation counting

    International Nuclear Information System (INIS)

    Scott G, P. E.; Grau M, A.

    1987-01-01

    Chemical and colour quenching for H-3 and C-14 was studied. The method includes spectral analysis of colouring agents; methyl red, (4'-dimethylamine-azobenzene 2-carboxylic acid) dimethyl yellow (4'-dimethylamine-azobenzene) and malachite green (methane, bis .(4-dimethyl aminophenyl) - (phenyl)). External standard channels ratio was applied for the liquid scintillation counting of samples. The introduction of an isolated external standard seems to be a strong tool for the correction of chemical and colour quenching curves. (Author) 12 refs

  20. Evolution of the Oxidation State of the Earth's Mantle: Challenges of High Pressure Quenching

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, R.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3+ at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. Experiments of more mafic compositions and at higher pressures commonly form a polyphase quench intergrowth composed primarily of pyroxenes, with interstitial glass which hosts nearly all of the more volatile minor elements. In our previous experiments on shergottite compositions, variable fO2, T, and P is less than 4 GPa, Fe3+/TotFe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3+/TotFe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3+. Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Experiments with Knippa basalt as the starting composition were conducted at 1-8 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products from 7-8 GPa quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal Fe3+/2+. A number of different approaches have been employed to produce glassy samples that can be measured by EELS and XANES. A more intermediate andesite was used in one experiment, and decompression during quenching was attempted after, but both resulted in a finer grained polyphase texture. Experiments are currently underway to test different capsule materials may affect quench texture. A preliminary experiment using liquid nitrogen to greatly enhance the rate of cooling of the assembly has also been attempted and this technique will be

  1. Electrical and Quench Performance of the First MICE Coupling Coil

    International Nuclear Information System (INIS)

    Tartaglia, M. A.; Carcagno, R.; Makulski, A.; Nogiec, Jerzy; Orris, D.; Pilipenko, R.; Sylvester, C.; Caspi, S.; Pan, H.; Prestemon, S.; Virostek, S.

    2014-01-01

    The first MICE Coupling Coil has been tested in a conduction-cooled environment in the new Solenoid Test Facility at Fermilab. We present an overview of the power and quench protection scheme, and report on the electrical and quench performance results obtained during cold power tests of the magnet

  2. Bioanalytical Applications of Fluorenscence Quenching.

    Science.gov (United States)

    1986-02-10

    fluorescence is observed. Thus, ’ the enzymes (in this case phosphorylase C) which can hydrolyze the lecithin , can be determined by measuring the released...encapsulated in lecithin liposomes. In this manner the fluorescence is self-quenched. When the liposomes are disrupted, the dye is released and

  3. Quenching effects in photon production

    International Nuclear Information System (INIS)

    Durand, M.

    1989-01-01

    Contraints on the photon production calculated by kinetic approaches are studied by means of sum-rules a finite temperature for simple quantum system. For the square-well potential the exact production rate is compared with its semi-classical limit in order to introduce the principle problem. For the scattering of hard spheres the photon production cross section is derived exactly by partial wave expansion. This serves to study the more realistic example of a gas of hard spheres. The corresponding kinetic photon production rates are found to violate the sum-rules, due to a singular behaviour at small gamma energies. Thus the hypothesis of incoherent free scattering is not valid in that range because of destructive interferences which quench the production rates significantly. For the application to nuclear collisions at intermediate energies these quenching effects are found to be important for gamma energies even up to a few hundred MeV. (orig.)

  4. Propriety check for quenching meshes for control of hydrogen combustion between two compartments

    International Nuclear Information System (INIS)

    Yang, S. Y.; Jeong, S. H.; Kim, H. Z.; Kim, H. D.; Hong, S. W.

    2001-01-01

    In our previous study, the quenching meshes have been proposed for the control of hydrogen combustion under nuclear severe accident. It has been investigated whether the method of installation of quenching mesh to prevent flame from propagating to the other compartment is proper or not. Schlieren photograph is used to visualize the propagation of flame between two compartments. Without the quenching mesh equipped between the compartments, it has been observed that the flame always propagates from a compartment to the other. The data on quencing distance of hydrogen premixed flames gotten in our previous study is alayzed to setup of optimum quenching mesh, too. Such experimental results establish that the quenching meshes proposed for the control of hydrogen combustion are resonably available

  5. Fluctuation-dissipation theorem in an isolated system of quantum dipolar bosons after a quench.

    Science.gov (United States)

    Khatami, Ehsan; Pupillo, Guido; Srednicki, Mark; Rigol, Marcos

    2013-08-02

    We examine the validity of fluctuation-dissipation relations in isolated quantum systems taken out of equilibrium by a sudden quench. We focus on the dynamics of trapped hard-core bosons in one-dimensional lattices with dipolar interactions whose strength is changed during the quench. We find indications that fluctuation-dissipation relations hold if the system is nonintegrable after the quench, as well as if it is integrable after the quench if the initial state is an equilibrium state of a nonintegrable Hamiltonian. On the other hand, we find indications that they fail if the system is integrable both before and after quenching.

  6. Numerical simulation of quench protection for a 1.5 T persistent mode MgB2 conduction-cooled MRI magnet

    Science.gov (United States)

    Deissler, Robert J.; Baig, Tanvir; Poole, Charles; Amin, Abdullah; Doll, David; Tomsic, Michael; Martens, Michael

    2017-02-01

    The active quench protection of a 1.5 T MgB2 conduction-cooled MRI magnet operating in persistent current mode is considered. An active quench protection system relies on the detection of the resistive voltage developed in the magnet, which is used to trigger the external energizing of quench heaters located on the surfaces of all ten coil bundles. A numerical integration of the heat equation is used to determine the development of the temperature profile and the maximum temperature in the coil at the origin, or ‘hot spot’, of the quench. Both n-value of the superconductor and magnetoresistance of the wire are included in the simulations. An MgB2 wire manufactured by Hyper Tech Research, Inc. was used as the basis to model the wire for the simulations. With the proposed active quench protection system, the maximum temperature was limited to 200 K or less, which is considered low enough to prevent damage to the magnet. By substituting Glidcop for the Monel in the wire sheath or by increasing the thermal conductivity of the insulation, the margin for safe operation was further increased, the maximum temperature decreasing by more than 40 K. The strain on the MgB2 filaments is calculated using ANSYS, verifying that the stress and strain limits in the MgB2 superconductor and epoxy insulation are not exceeded.

  7. Quantum quenches in a holographic Kondo model

    Science.gov (United States)

    Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.

    2017-04-01

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.

  8. Hot compressive deformation behavior of the as-quenched A357 aluminum alloy

    International Nuclear Information System (INIS)

    Yang, X.W.; Lai, Z.H.; Zhu, J.C.; Liu, Y.; He, D.

    2012-01-01

    Highlights: ► We create a thermal history curve which was applied to carry out compression tests. ► We make an analysis of deformation performance for as-quenched A357 alloy. ► We create a constitutive equation which has good accuracy. - Abstract: The objective of the present work was to establish an accurate thermal-stress mathematical model of the quenching operation for A357 (Al–7Si–0.6Mg) alloy and to investigate the deformation behavior of this alloy. Isothermal compression tests of as-quenched A357 alloy were performed in the temperature range of 350–500 °C and at the strain rate range of 0.001–1 s −1 . Experimental results show that the flow stress of as-quenched A357 alloy decreases with the increase of temperature and the decrease of strain rate. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched A357 alloy is 252.095 kJ/mol. Under the different small strains (≤0.01), the constitutive equation parameters of as-quenched A357 alloy were calculated. Values of flow stress calculated by constitutive equation were in a very good agreement with experimental results. Therefore, it can be used as an accurate thermal-stress model to solve the problems of quench distortion of parts.

  9. Influence of quench rates on the properties of rapidly solidified ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. FeNbCuSiB based materials were produced in the form of ribbons by rapid solidification techniques. The crystallization, magnetic, mechanical and corrosion behaviour were studied for the prepared materials as a function of quenching rate from liquid to the solid state. Higher quench rates produced a more ...

  10. Quench detection of superconducting magnets using ultrasonic wave

    International Nuclear Information System (INIS)

    Ninomiya, A.; Sakaniwa, K.; Kado, H.; Ishigohka, T.; Higo, Y.

    1989-01-01

    A method to detect a quench of a superconducting magnet using ultrasonic technique is presented. This method is a kind of non-destructive one which monitors a change of acoustic transfer function of a superconducting magnet induced by a local temperature rise or an epoxy crack etc.. Some experiments are carried out on a small epoxy impregnated magnet. The experimental results show that a local temperature rise of about 2-3K can be detected by this method. And, some leading symptoms before quench were detected

  11. Review of quench simulations for the protection of LHC main dipole magnets

    OpenAIRE

    Sonnemann, F; Danner, A

    1999-01-01

    The simulation program QUABER [1] allows studying the quench process of superconducting magnets for the LHC. The performance of the protection system of the LHC main dipole magnets was simulated under various parameter dependencies at different magnet excitation currents. This simulation study was motivated to complement measurement results in order to help preparing and understanding experiments of the quench propagation and magnet protection. The influence of the quench propagation velocity...

  12. Design and operation of the quench protection system for the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Martin, P.S.

    1986-05-01

    A method is required to protect the magnets of a superconducting accelerator from possible overheating or overvoltage conditions in the event that some magnets quench, that is, are elevated in temperature such that they are no longer superconducting. A brief discussion of the basic properties of superconductors and the phenomenon of quench propagation is given, followed by the configuration of a quench protection system for the Fermilab Tevatron

  13. Quench dynamics near a quantum critical point: Application to the sine-Gordon model

    International Nuclear Information System (INIS)

    De Grandi, C.; Polkovnikov, A.; Gritsev, V.

    2010-01-01

    We discuss the quench dynamics near a quantum critical point focusing on the sine-Gordon model as a primary example. We suggest a unified approach to sudden and slow quenches, where the tuning parameter λ(t) changes in time as λ(t)∼υt r , based on the adiabatic expansion of the excitation probability in powers of υ. We show that the universal scaling of the excitation probability can be understood through the singularity of the generalized adiabatic susceptibility χ 2r+2 (λ), which for sudden quenches (r=0) reduces to the fidelity susceptibility. In turn this class of susceptibilities is expressed through the moments of the connected correlation function of the quench operator. We analyze the excitations created after a sudden quench of the cosine potential using a combined approach of form-factors expansion and conformal perturbation theory for the low-energy and high-energy sector, respectively. We find the general scaling laws for the probability of exciting the system, the density of excited quasiparticles, the entropy and the heat generated after the quench. In the two limits where the sine-Gordon model maps to hard-core bosons and free massive fermions we provide the exact solutions for the quench dynamics and discuss the finite temperature generalizations.

  14. Modeling and Analysis of Deformation for Spiral Bevel Gear in Die Quenching Based on the Hardenability Variation

    Science.gov (United States)

    Zhang, Yingtao; Wang, Gang; Shi, Wankai; Yang, Lin; Li, Zhichao

    2017-07-01

    Spiral bevel gears are widely used to transmit energy between intersecting axes. The strength and fatigue life of the gears are improved by carburizing and quenching. A die quenching process is used to control the deformation of the gear. The deformation is determined by the variations in the hardenability for a certain die quenching process. The relationship between hardenability, phase transformation and deformation needs to be studied to minimize deformation during the adjustment of the die quenching process parameters. In this paper, material properties for 22CrMoH steel are determined by the results of Jominy tests, dilatometry experiments and static mechanical property tests. The material models were built based on testing results under the consideration of hardenability variation. An finite element analysis model was developed to couple the phase transformation and deformation history of the complete carburizing and die quenching process for the spiral bevel gears. The final microstructures in the gear were bainite for low hardenability steel and a mixture of bainite and ferrite for high hardenability steel. The largest buckling deformation at the gear bottom surface is 0.375 mm at the outer circle for the low hardenability gear and 0.091 mm at the inner circle for the high hardenability gear.

  15. O2(a1Δ) quenching in O/O2/O3/CO2/He/Ar mixtures

    Science.gov (United States)

    Azyazov, V. N.; Mikheyev, P. A.; Postell, D.; Heaven, M. C.

    2010-02-01

    The development of discharge singlet oxygen generators (DSOG's) that can operate at high pressures is required for the power scaling of the discharge oxygen iodine laser. In order to achieve efficient high-pressure DSOG operation it is important to understand the mechanisms by which singlet oxygen (O2(a1Δ)) is quenched in these devices. It has been proposed that three-body deactivation processes of the type O2(a1Δ))+O+M-->2O2+M provide significant energy loss channels. To further explore these reactions the physical and reactive quenching of O2(a1Δ)) in O(3P)/O2/O3/CO2/He/Ar mixtures has been investigated. Oxygen atoms and singlet oxygen molecules were produced by the 248 nm laser photolysis of ozone. The kinetics of O2(a1Δ)) quenching were followed by observing the 1268 nm fluorescence of the O2 a1Δ-X3Ε transition. Fast quenching of O2(a1Δ)) in the presence of oxygen atoms and molecules was observed. The mechanism of the process has been examined using kinetic models, which indicate that quenching by vibrationally excited ozone is the dominant reaction.

  16. Defect production in simulated cascades: cascade quenching and short-term annealing

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1982-01-01

    Defect production in high energy displacement cascades has been modeled using the computer code MARLOWE to generate the cascades and the stochastic computer code ALSOME to simulate the cascade quenching and short-term annealing of isolated cascades. The quenching is accomplished by using ALSOME with exaggerated values for defect mobilities and critical reaction distanes for recombination and clustering, which are in effect until the number of defect pairs is equal to the value determined from resistivity experiments at 4K. Then normal mobilities and reaction distances are used during short-term annealing to a point representative of Stage III recovery. Effects of cascade interactions at low fluences are also being investigated. The quenching parameter values were empirically determined for 30 keV cascades. The results agree well with experimental information throughout the range from 1 keV to 100 keV. Even after quenching and short-term annealing the high energy cascades behave as a collection of lower energy subcascades and lobes. Cascades generated in a crystal having thermal displacements were found to be in better agreement with experiments after quenching and annealing than those generated in a non-thermal crystal

  17. Control dynamics of interaction quenched ultracold bosons in periodically driven lattices

    Science.gov (United States)

    Mistakidis, Simeon; Schmelcher, Peter; Group of Fundamental Processes in Quantum Physics Team

    2016-05-01

    The out-of-equilibrium dynamics of ultracold bosons following an interaction quench upon a periodically driven optical lattice is investigated. It is shown that an interaction quench triggers the inter-well tunneling dynamics, while for the intra-well dynamics breathing and cradle-like processes can be generated. In particular, the occurrence of a resonance between the cradle and tunneling modes is revealed. On the other hand, the employed periodic driving enforces the bosons in the mirror wells to oscillate out-of-phase and to exhibit a dipole mode, while in the central well the cloud experiences a breathing mode. The dynamical behaviour of the system is investigated with respect to the driving frequency revealing a resonant behaviour of the intra-well dynamics. To drive the system in a highly non-equilibrium state an interaction quench upon the driving is performed giving rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result of the quench the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Deutsche Forschungsgemeinschaft, SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  18. Fluorescence enhancement and quenching of Eu(TTFA)3 by Ag nanoparticles at different excitations

    International Nuclear Information System (INIS)

    Wang, Qingru; Shi, Qiang; Li, Shuhong; Wang, Wenjun; Zheng, Shiling

    2015-01-01

    The luminescence properties of Eu(TTFA) 3 complex in presence of silver nanoparticles were investigated at three excitation wavelengths of 350 nm, 383 nm and 463 nm, respectively. Luminescence quenching and enhancement were both observed at three different excitation and emission wavelengths. Luminescence at 612 nm, 578 nm, 590 nm and 650 nm were enhanced at excitation wavelength of 350 nm, and quenched at excitation wavelength of 383 nm. The enhancement factor reached to 1.6 and the quench factor was about 0.65. For 463 nm excitation, the luminescence at 612 nm was quenched, and the quench factor reached to 0.85. Luminescence at other three emission wavelengths (578 nm, 590 nm, and 650 nm) was enhanced, with the greatest enhancement factor of ∼5. - Highlights: • The luminescence enhancement and quenching were both obtained by using the Ag nanoparticles. • The luminescence enhancement and quenching highly depends on the excitation and emission wavelengths. • The enhancement factor of luminescence also has a great relationship with the intrinsic quantum yield

  19. Phase diagram and quench dynamics of the cluster-XY spin chain.

    Science.gov (United States)

    Montes, Sebastián; Hamma, Alioscia

    2012-08-01

    We study the complete phase space and the quench dynamics of an exactly solvable spin chain, the cluster-XY model. In this chain, the cluster term and the XY couplings compete to give a rich phase diagram. The phase diagram is studied by means of the quantum geometric tensor. We study the time evolution of the system after a critical quantum quench using the Loschmidt echo. The structure of the revivals after critical quantum quenches presents a nontrivial behavior depending on the phase of the initial state and the critical point.

  20. Computer simulations of quench properties of thin, large superconducting solenoid magnets

    International Nuclear Information System (INIS)

    Kishimoto, Takeshi; Mori, Shigeki; Noguchi, Masaharu

    1983-01-01

    Measured quench data of a 1 m diameter x 1 m thin superconducting solenoid magnet with a single layer aluminum-stabilized NbTi/Cu superconductor of 269 turns were fitted by computer simulations using the one-dimensional approximation. Parameters obtained were used to study quench properties of a 3 m diameter x 5 m (1.5 Tesla) thin superconducting solenoid magnet with a stored magnetic energy of 30 x 10 6 J. Conductor dimensions with which the solenoid could be built substantially safe for the full field quench were optimized. (author)

  1. Rare-gas dependence of the self-quenching streamer

    International Nuclear Information System (INIS)

    Yoshioka, K.; Hashimoto, M.; Koori, N.; Kumabe, I.; Ohgaki, H.; Matoba, M.

    1989-01-01

    The self-quenching streamer (SQS) mode is understood these days as one of the basic modes of gas counter operation. In the present work, the SQS transition is clearly observed for Ar-, Kr- and Xe-mixtures with CH 4 , C 2 H 6 , C 3 H 8 , isoC 4 H 10 and CO 2 , and for He- and Ne-mixtures with C 2 H 6 , C 3 H 8 and isoC 4 H 10 . For He- and Ne-mixtures with CH 4 or CO 2 , the GM discharge is developed instead of the SQS transition. The avalanche size at the transition voltage decreases, in the order of He-, Ne-, Ar-, Kr- and Xe-mixtures, except for He-mixtures with CH 4 or CO 2 . The mechanisms of the SQS transition proposed by Atac et al. and Zhang have disadvantages in explaining all these results. If the photo-ionization is assumed as in Atac's mechanism, energetic photons whose yield is sufficiently large are needed for the SQS transition. The interaction between metastable states of rare gases proposed by Zhang may be energetically capable of producing electrons for the transition; effects of quenching gas in mixtures cannot be explained by this mechanism. Further investigation is necessary for microscopic processes occurring in the avalanche development. More detailed information is required on the atomic reaction cross sections of photo-ionization, radiative recombination, etc. (N.K.)

  2. Thermal and mechanical effects of quenches on Nb3Sn high field hadron collider magnets

    International Nuclear Information System (INIS)

    Ryuji, Yamada

    2001-01-01

    Thermal and its resulting mechanical stress due to quenches inside short and long epoxy impregnated Nb 3 Sn high field magnets are studied with a quench simulation program, Kuench, and ANSYS program. For the protection of a long high field magnet, we have to use heaters to dump the stored energy uniformly inside the magnet, after detection of a spontaneous quench. The time delay of starting a forced quench with heaters, is estimated using ANSYS. Using this information, the thermal distribution in two-dimensional magnet cross section is studied. First a one meter model magnet with a dump resistor is used to estimate the effects and then a 10 meter long magnet is studied. The two-dimensional temperature distributions in the magnet cross sections are recorded every 5 ms, and visually displayed. With this visual animation displays we can understand intuitively the thermal and quench propagation in 2-dimensional field. The quenching cables get heated locally much more than the surrounding material and non-quenching conductor cables. With a one meter magnet with a dump resistor of 30 mOmega, typically only the quench starting cables and its neighbor cables get heated up to 100 K without significant effects from the heaters. With a10 meter magnet, heaters cause the quenches to most of the conductor blocks. The quench initiating cables get up to 250 to 300 K in 100 ms, but the surrounding and wedges are not heated up significantly. This causes the excessive stress in the quenching conductors and in their insulation material locally. The stress and strain in the conductor as well as in the insulation become excessive, and they are studied using the ANSYS stress analysis, using Von Mises criterion. It is concluded that for the one meter magnet with the presented cross section and configuration, the thermal effects due to the quench is tolerable. But we need much more quench study and improvements in the design for the extended ten meter long magnet [1

  3. Development and characterisation of silicon photomultipliers with bulk-integrated quench resistors for future applications in particle and astroparticle physics

    International Nuclear Information System (INIS)

    Jendrysik, Christian

    2014-01-01

    This thesis deals with the development and characterisation of a novel silicon photomultiplier concept with bulk-integrated quench resistors. The approach allows the realisation of a free entrance window and high fill factors, which leads to an improvement of the detection efficiency. With first prototype productions a proof of concept was possible. A full characterisation provided promising results, in particular with respect to the photon detection efficiency. By customising the simulation tools, a reliable description of the devices was achieved. In addition, conceptual studies of the next device generation demonstrated the possibility of single cell readout, expanding the application range of those detectors to particle tracking.

  4. ECR-MAPK regulation in liver early development.

    Science.gov (United States)

    Zhao, Xiu-Ju; Zhuo, Hexian

    2014-01-01

    Early growth is connected to a key link between embryonic development and aging. In this paper, liver gene expression profiles were assayed at postnatal day 22 and week 16 of age. Meanwhile another independent animal experiment and cell culture were carried out for validation. Significance analysis of microarrays, qPCR verification, drug induction/inhibition assays, and metabonomics indicated that alpha-2u globulin (extracellular region)-socs2 (-SH2-containing signals/receptor tyrosine kinases)-ppp2r2a/pik3c3 (MAPK signaling)-hsd3b5/cav2 (metabolism/organization) plays a vital role in early development. Taken together, early development of male rats is ECR and MAPK-mediated coordination of cancer-like growth and negative regulations. Our data represent the first comprehensive description of early individual development, which could be a valuable basis for understanding the functioning of the gene interaction network of infant development.

  5. Quench-Induced Degradation of the Quality Factor in Superconducting Resonators

    Science.gov (United States)

    Checchin, M.; Martinello, M.; Romanenko, A.; Grassellino, A.; Sergatskov, D. A.; Posen, S.; Melnychuk, O.; Zasadzinski, J. F.

    2016-04-01

    Quench of superconducting radio-frequency cavities frequently leads to the lowered quality factor Q0 , which had been attributed to the additional trapped magnetic flux. Here we demonstrate that the origin of this magnetic flux is purely extrinsic to the cavity by showing no extra dissipation (unchanged Q0) after quenching in zero magnetic field, which allows us to rule out intrinsic mechanisms of flux trapping such as generation of thermal currents or trapping of the rf field. We also show the clear relation of dissipation introduced by quenching to the orientation of the applied magnetic field and the possibility to fully recover the quality factor by requenching in the compensated field. We discover that for larger values of the ambient field, the Q -factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during quench. Our findings are of special practical importance for accelerators based on low- and medium-β accelerating structures residing close to focusing magnets, as well as for all high-Q cavity-based accelerators.

  6. Zinc Oxide Nano crystals Synthesized by Quenching Technique

    International Nuclear Information System (INIS)

    Norhayati Abu Bakar; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahya

    2011-01-01

    This paper reports an attempt to synthesize non toxic zinc oxide (ZnO) nano crystals using a simple quenching technique. The hot zinc oxide powder was quenched in hexane solution to obtain ZnO nano crystals. As the result, diameter size of the synthesized ZnO is 200 nm. It was also exhibited a good crystalline with wurtzite phase. The nano crystals properties of ZnO were revealed from good absorbance and green luminescence under UV exposure. This may be related with oxygen vacancy ionization during the annealing process. (author)

  7. MD#1826: Measurement of Quench Heater vertical kick

    OpenAIRE

    Valette, Matthieu; Wollmann, Daniel; Lindstrom, Bjorn Hans Filip; Bortot, Lorenzo; Fernandez Navarro, Alejandro; Schmidt, Rudiger; Verweij, Arjan

    2018-01-01

    Following the observation of vertical orbit oscillations of the LHC beam between the detection of a (beam induced) quench of an LHC main dipole and the beam dump, a study was started to verify that the orbit distortions are caused by the firing of the quench heaters (QH). Simulation of the magnetic field generated by the discharge of the QH and its effect on the beam confirmed it was the most likely cause. A dedicated experiment with 450 GeV proton beams was performed to validate the simulati...

  8. Quantum quenches in the Luttinger model and its close relatives

    Science.gov (United States)

    Cazalilla, M. A.; Chung, Ming-Chiang

    2016-06-01

    A number of results on quantum quenches in the Luttinger and related models are surveyed with emphasis on post-quench correlations. For the Luttinger model and initial gaussian states, we discuss both sudden and smooth quenches of the interaction and the emergence of a steady state described by a generalized Gibbs ensemble. Comparisons between analytics and numerics, and the question of universality or lack thereof are also discussed. The relevance of the theoretical results to current and future experiments in the fields of ultracold atomic gases and mesoscopic systems of electrons is also briefly touched upon. Wherever possible, our approach is pedagogical and self-contained. This work is dedicated to the memory of our colleague Alejandro Muramatsu.

  9. Study of the Tokamak-15 Superconducting Toroidal Field Coil (STFC) heating under the quench

    International Nuclear Information System (INIS)

    Anashkin, I.O.; Kabanovsky, S.V.; Chudnovsky, A.N.; Khvostenko, P.P.; Vertiporokh, A.N.; Ivanov, D.P.; Posadsky, I.A.

    1994-01-01

    Experiments in Tokamak-15 were performed to study the STFC heating under the quench. The quench was specially caused by current introduction into STFC at the unchanged input helium temperature. The experimental results and simulation data on temperature heating and amount of heat realized in the pancakes under the quench are given. In the experiments was shown that quench occurs in the internal turns of pancakes and estimations of maximal temperature heating corresponds to calculated ones

  10. One-dimensional time-dependent conduction states and temperature distribution along a normal zone during a quench

    International Nuclear Information System (INIS)

    Lopez, G.

    1991-01-01

    The quench simulations of a superconducting (s.c.) magnet requires some assumptions about the evolution of the normal zone and its temperature profile. The axial evolution of the normal zone is considered through the longitudinal quench velocity. However, the transversal quench propagation may be considered through the transversal quench velocity or with the turn-to-turn time delay quench propagation. The temperature distribution has been assumed adiabatic-like or cosine-like in two different computer programs. Although both profiles are different, they bring about more or less the same qualitative quench results differing only in about 8%. Unfortunately, there are not experimental data for the temperature profile along the conductor in a quench event to have a realistic comparison. Little attention has received the temperature profile, mainly because it is not so critical parameter in the quench analysis. Nonetheless, a confident quench analysis requires that the temperature distribution along the normal zone be taken into account with good approximation. In this paper, an analytical study is made about the temperature profile

  11. Effects of (partial) quenching on penguin contributions to K→ππ

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2004-01-01

    Recently, we pointed out that chiral transformation properties of strong penguin operators change in the transition from unquenched to (partially) quenched QCD. As a consequence, new penguinlike operators appear in the (partially) quenched theory, along with new low-energy constants, which should be

  12. Influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites

    Energy Technology Data Exchange (ETDEWEB)

    He, Tianbing, E-mail: tianbing_1988@sina.com [Beijing Institute of Aeronautic Materials, Beijing 100095 (China); Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095 (China); Li, Huiqu; Tang, Pengjun; He, Xiaolei; Li, Peiyong [Beijing Institute of Aeronautic Materials, Beijing 100095 (China); Beijing Engineering Research Center of Advanced Aluminum Alloys and Application, Beijing 100095 (China)

    2016-08-15

    15% vol. SiC{sub p}/2009 composites prepared by powder metallurgy were quenched in room temperature water and 20% polyethylene glycol (PEG) solution respectively, then aged naturally. The influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites were investigated by means of scanning/transmission electron microscope, hardness and tensile test. The results showed that the number of precipitated phase in water quenched composites increased, with much finer in size and more homogeneous in distribution compared with 20% PEG quenched one. Meanwhile, the density of dislocation in composites by water quenching was also much higher. Intergranular corrosion did not occur with the two quenching agents. The 20% PEG quenched composites exhibited slight lower hardness and higher electrical conductivity than that of water quenched one. The two quenched composites showed same level in tensile strength, but the yield strength of water-quenched composites was higher (8 MPa, 3%). The usage of 20% PEG reduced thermal stress and minimized warping deformation of the parts, it is a more suitable quenching agent for SiC{sub p}/2009 composites in engineering application fields. - Highlights: •SiC{sub p}/2009 composites quenched by water and 20% PEG solution were investigated. •Aging precipitation behavior of SiC{sub p}/2009 composites is sensitive to quenchant. •Influence of quenching agent on properties of SiC{sub p}/2009 composites are minimal. •Quenching with 20% PEG reduces thermal stress of SiC{sub p}/2009 composites remarkably. •20% PEG is a more suitable quenching agent for SiC{sub p}/2009 composites than water.

  13. Quantum quenches in a holographic Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Erdmenger, Johanna [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,Am Hubland, 97074 Würzburg (Germany); Flory, Mario [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Institute of Physics, Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Newrzella, Max-Niklas; Strydom, Migael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805, Munich (Germany); Wu, Jackson M. S. [Department of Physics and Astronomy, University of Alabama,Tuscaloosa, AL 35487 (United States)

    2017-04-10

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/ gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU(N) spin. At large N, it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS{sub 2} and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν=1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ∼t{sup −a}sin (blog t). This indicates the emergence of a discrete scale invariance.

  14. Quench gases for xenon- (and krypton-)filled proportional counters

    International Nuclear Information System (INIS)

    Ramsey, B.D.; Agrawal, P.C.

    1988-01-01

    Xenon-filled proportional counters are used extensively in astronomy, particularly in the hard X-ray region. The choice of quench gas can have a significant effect on the operating characteristics of the instrument although the data necessary to make the choice are not easily obtainable. We present results which detail the performance obtained from both cylindrical and parallel field geometries for a wide variety of readily available, ultrahigh or research grade purity, quench gases. (orig.)

  15. Quenching effect on properties of Bi-Sr-Ca-Cu-O superconducting ceramics of various composition

    International Nuclear Information System (INIS)

    Amitin, E.B.; Gromilov, S.A.; Naumov, V.N.; Royak, A.Ya.; Starikov, M.A.

    1989-01-01

    Bismuth ceramics quenching effect on superconducting properties of samples of various composition is investigated. Two types of quenching effect on sample properties are detected: an increase of superconducting transition temperature T c by 15-20 K; broadening of temperature interval of the phase transition without anynatable T c displacement. X ray diffraction investigations have not detected sufficient differences in diffraction patterns of quenched and non-quenched samples. Within the limits of composition analysis by oxygen (±3%) no change of its content prior to and after quenching is detected. A correlation between the presence of an amorphous phase in a sample and the type of quenching effect is observed: T c increases in ceramics where an amorphous component is detected

  16. Relationship between locked modes and thermal quenches in DIII-D

    Science.gov (United States)

    Sweeney, R.; Choi, W.; Austin, M.; Brookman, M.; Izzo, V.; Knolker, M.; La Haye, R. J.; Leonard, A.; Strait, E.; Volpe, F. A.; The DIII-D Team

    2018-05-01

    Locked modes are known to be one of the major causes of disruptions, but the physical mechanisms by which locking leads to disruptions are not well understood. Here we analyze the evolution of the temperature profile in the presence of multiple coexisting locked modes during partial and full thermal quenches. Partial quenches are often observed to be an initial, distinct stage in the full thermal quench. Near the onset of partial quenches, locked island O-points are observed to align with each other on the midplane, and their widths are sufficient to overlap each other, as indicated by the Chirikov parameter. Energy conservation analysis of one partial thermal quench shows that the energy lost is both radiated in the divertor region, and conducted or convected to the divertor. Nonlinear resistive magnetohydrodynamic simulations support the interpretation of stochastic fields causing a partial axisymmetric collapse, though the simulated temperature profile exhibits less degradation than the experimental profiles. In discharges with minimum values of the safety factor above  ∼1.2, locked modes are observed to self-stabilize by inducing, possibly via double tearing modes, a minor disruption that removes their neoclassical drive. These high q min discharges often exhibit relatively low ratios of the plasma internal inductance to the safety factor at 95% of the poloidal flux, which might imply classical stability, in agreement with the decay of the mode when the neoclassical drive is removed.

  17. Reduction of thermal quenching of biotite mineral due to annealing

    International Nuclear Information System (INIS)

    Kalita, J.M.; Wary, G.

    2014-01-01

    Graphical abstract: - Highlights: • Thermoluminescence of X-ray irradiate biotite was studied at various heating rates. • Thermal quenching was found to decrease with increase in annealing temperature. • Due to annealing one trap level was vanished and a new shallow trap level generated. • The new trap level contributes low thermally quenched thermoluminescence signal. - Abstract: Thermoluminescence (TL) of X-ray irradiated natural biotite annealed at 473, 573, 673 and 773 K were studied within 290–480 K at various linear heating rates (2, 4, 6, 8 and 10 K/s). A Computerized Glow Curve Deconvolution technique was used to study various TL parameters. Thermal quenching was found to be very high for un-annealed sample, however it decreased significantly with increase in annealing temperature. For un-annealed sample thermal quenching activation energy (W) and pre-exponential frequency factor (C) were found to be W = (2.71 ± 0.05) eV and C = (2.38 ± 0.05) × 10 12 s −1 respectively. However for 773 K annealed sample, these parameters were found to be W = (0.63 ± 0.03) eV, C = (1.75 ± 0.27) × 10 14 s −1 . Due to annealing, the initially present trap level at depth 1.04 eV was vanished and a new shallow trap state was generated at depth of 0.78 eV which contributes very low thermally quenched TL signal

  18. ECR-MAPK Regulation in Liver Early Development

    Directory of Open Access Journals (Sweden)

    Xiu-Ju Zhao

    2014-01-01

    Full Text Available Early growth is connected to a key link between embryonic development and aging. In this paper, liver gene expression profiles were assayed at postnatal day 22 and week 16 of age. Meanwhile another independent animal experiment and cell culture were carried out for validation. Significance analysis of microarrays, qPCR verification, drug induction/inhibition assays, and metabonomics indicated that alpha-2u globulin (extracellular region-socs2 (-SH2-containing signals/receptor tyrosine kinases-ppp2r2a/pik3c3 (MAPK signaling-hsd3b5/cav2 (metabolism/organization plays a vital role in early development. Taken together, early development of male rats is ECR and MAPK-mediated coordination of cancer-like growth and negative regulations. Our data represent the first comprehensive description of early individual development, which could be a valuable basis for understanding the functioning of the gene interaction network of infant development.

  19. 40 CFR 1065.370 - CLD CO2 and H2O quench verification.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false CLD CO2 and H2O quench verification....370 CLD CO2 and H2O quench verification. (a) Scope and frequency. If you use a CLD analyzer to measure NOX, verify the amount of H2O and CO2 quench after installing the CLD analyzer and after major...

  20. The enhancement of rapidly quenched galaxies in distant clusters at 0.5 < z < 1.0

    Science.gov (United States)

    Socolovsky, Miguel; Almaini, Omar; Hatch, Nina A.; Wild, Vivienne; Maltby, David T.; Hartley, William G.; Simpson, Chris

    2018-05-01

    We investigate the relationship between environment and galaxy evolution in the redshift range 0.5 distributions, we conclude that young star-forming galaxies are rapidly quenched as they enter overdense environments, becoming post-starburst galaxies before joining the red sequence. Our results also point to the existence of two environmental quenching pathways operating in galaxy clusters, operating on different time-scales. Fast quenching acts on galaxies with high specific star formation rates, operating on time-scales shorter than the cluster dynamical time (<1 Gyr). In contrast, slow quenching affects galaxies with moderate specific star formation rates, regardless of their stellar mass, and acts on longer time-scales (≳ 1 Gyr). Of the cluster galaxies in the stellar mass range 9.0 < log (M/M⊙) < 10.5 quenched during this epoch, we find that 73 per cent were transformed through fast quenching, while the remaining 27 per cent followed the slow quenching route.

  1. THE ISLANDS PROJECT. I. ANDROMEDA XVI, AN EXTREMELY LOW MASS GALAXY NOT QUENCHED BY REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Monelli, Matteo; Martínez-Vázquez, Clara E.; Gallart, Carme; Hidalgo, Sebastian L.; Aparicio, Antonio [Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain); Bernard, Edouard J. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Skillman, Evan D.; McQuinn, Kristen B. W. [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street, SE Minneapolis, MN, 55455 (United States); Weisz, Daniel R. [Astronomy Department, Box 351580, University of Washington, Seattle, WA, 98195 (United States); Dolphin, Andrew E. [Raytheon, 1151 E. Hermans Road, Tucson, AZ 85706 (United States); Cole, Andrew A. [School of Physical Sciences, University of Tasmania, Private Bag 37, Hobart 7005, TAS (Australia); Martin, Nicolas F. [Observatoire astronomique de Strasbourg, Universite de Strasbourg, CNRS, UMR 7550, 11 rue de l’Universite, F-67000 Strasbourg (France); Cassisi, Santi [INAF-Osservatorio Astronomico di Collurania, Teramo (Italy); Boylan-Kolchin, Michael [INAF–Osservatorio Astronomico di Teramo, via M. Maggini, 64100 Teramo (Italy); Mayer, Lucio [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); McConnachie, Alan [Herzberg Astronomy and Astrophysics, National Research Council Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Navarro, Julio F., E-mail: monelli@iac.es [Department of Physics and Astronomy, University of Victoria, P.O. Box 1700, STN CSC, Victoria, BC V8W 3P6 (Canada)

    2016-03-10

    Based on data aquired in 13 orbits of Hubble Space Telescope time, we present a detailed evolutionary history of the M31 dSph satellite Andromeda XVI, including its lifetime star formation history (SFH), the spatial distribution of its stellar populations, and the properties of its variable stars. And XVI is characterized by prolonged star formation activity from the oldest epochs until star formation was quenched ∼6 Gyr ago, and, notably, only half of the mass in stars of And XVI was in place 10 Gyr ago. And XVI appears to be a low-mass galaxy for which the early quenching by either reionization or starburst feedback seems highly unlikely, and thus it is most likely due to an environmental effect (e.g., an interaction), possibly connected to a late infall in the densest regions of the Local Group. Studying the SFH as a function of galactocentric radius, we detect a mild gradient in the SFH: the star formation activity between 6 and 8 Gyr ago is significantly stronger in the central regions than in the external regions, although the quenching age appears to be the same, within 1 Gyr. We also report the discovery of nine RR Lyrae (RRL) stars, eight of which belong to And XVI. The RRL stars allow a new estimate of the distance, (m − M){sub 0} = 23.72 ± 0.09 mag, which is marginally larger than previous estimates based on the tip of the red giant branch.

  2. Measured Strain of Nb3Sn Coils During Excitation and Quench

    International Nuclear Information System (INIS)

    Caspi, S.; Bartlett, S.E.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hannaford, C.R.; Hafalia, A.R.; Lietzke, S.; Mattafirri, M.; Nyman, M.; Sabbi, G.

    2005-01-01

    The strain in a high field Nb 3 Sn coil was measured during magnet assembly, cool-down, excitation and spot heater quenches. Strain was measured with a full bridge strain gauge mounted directly over the turns and impregnated with the coil. Two such coils were placed in a ''common coil'' fashion capable of reaching 11T at 4.2K. The measured steady state strain in the coil is compared with results obtained using the FEM code ANSYS. During quenches, the transient strain (due to temperature rise) was also measured and compared with the calculated mechanical time response to a quench

  3. Quantum quenches to the attractive one-dimensional Bose gas: exact results

    Directory of Open Access Journals (Sweden)

    Lorenzo Piroli, Pasquale Calabrese, Fabian H. L. Essler

    2016-09-01

    Full Text Available We study quantum quenches to the one-dimensional Bose gas with attractive interactions in the case when the initial state is an ideal one-dimensional Bose condensate. We focus on properties of the stationary state reached at late times after the quench. This displays a finite density of multi-particle bound states, whose rapidity distribution is determined exactly by means of the quench action method. We discuss the relevance of the multi-particle bound states for the physical properties of the system, computing in particular the stationary value of the local pair correlation function $g_2$.

  4. Photon-tagged measurements of jet quenching with ATLAS

    CERN Document Server

    Perepelitsa, Dennis; The ATLAS collaboration

    2018-01-01

    Events containing a high transverse momentum (pT) prompt photon offer a useful tool to study the dynamics of the hot, dense medium produced in heavy ion collisions. Because photons do not carry color charge, they are unaffected by the medium, and thus provide information about the momentum, direction, and flavor (quark or gluon) of the associated hard-scattered parton before it begins to shower and become quenched. In particular, the presence of a high-pT photon can be used to select pp and Pb+Pb events with the same configuration before quenching, limiting the effects of selection biases present in other jet measurements. The large statistics pp and Pb+Pb data delivered by the LHC in 2015 thus allow for a detailed study of photon-tagged jet quenching effects, such as the overall parton energy loss and modified structure of the component of the shower which remains correlated with the initial parton direction (e.g. in cone). These can be explored as a function of photon pT, centrality, and reaction plane. In ...

  5. Martensitic microstructural transformations from the hot stamping, quenching and partitioning process

    International Nuclear Information System (INIS)

    Liu Heping; Jin Xuejun; Dong Han; Shi Jie

    2011-01-01

    Hot stamping, which combines forming and quenching in one process, produces high strength steels with limited ductility because the quenching is uncontrolled. A new processing technique has been proposed in which the hot stamping step is followed by a controlled quenching and partitioning process, producing a microstructure containing retained austenite and martensite. To investigate this microstructure, specimens were heated at a rate of 10 deg. C/s to the austenitizing temperature of 900 deg. C, held for 5 min to eliminate thermal gradients, and cooled at a rate of 50 deg. C/s to a quenching temperature of 300 deg. C, which is between the martensite start temperature and the martensite finish temperatures. The resulting microstructure was examined using optical microscope, scanning electron microscopy and transmission electron microscopy. The material produced contains irregular, fragmented martensite plates, a result of the improved strength of the austenite phase and the constraints imposed by a high dislocation density. - Research Highlights: → A novel heat treatment of advanced high strength steels is proposed. → The processing technique is hot stamping plus quenching and partitioning process. → The material produced contains irregular, fragmented martensite plates. → The reason is strength of austenite phase and constraint of dislocation density.

  6. Exact solution for the quench dynamics of a nested integrable system

    Science.gov (United States)

    Mestyán, Márton; Bertini, Bruno; Piroli, Lorenzo; Calabrese, Pasquale

    2017-08-01

    Integrable models provide an exact description for a wide variety of physical phenomena. For example nested integrable systems contain different species of interacting particles with a rich phenomenology in their collective behavior, which is the origin of the unconventional phenomenon of spin-charge separation. So far, however, most of the theoretical work in the study of non-equilibrium dynamics of integrable systems has focussed on models with an elementary (i.e. not nested) Bethe ansatz. In this work we explicitly investigate quantum quenches in nested integrable systems, by generalizing the application of the quench action approach. Specifically, we consider the spin-1 Lai-Sutherland model, described, in the thermodynamic limit, by the theory of two different species of Bethe-ansatz particles, each one forming an infinite number of bound states. We focus on the situation where the quench dynamics starts from a simple matrix product state for which the overlaps with the eigenstates of the Hamiltonian are known. We fully characterize the post-quench steady state and perform several consistency checks for the validity of our results. Finally, we provide predictions for the propagation of entanglement and mutual information after the quench, which can be used as signature of the quasi-particle content of the model.

  7. From starburst to quiescence: testing active galactic nucleus feedback in rapidly quenching post-starburst galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.; Koo, David C.; Fang, Jerome J.; Liu, F. S. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Wild, Vivienne [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS (United Kingdom); Hayward, Christopher C. [Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany)

    2014-09-10

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M {sub ☉}) = 10.3-10.7, and identifies 'transiting' post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ∼0.3% of galaxies are starbursts, ∼0.1% are QPSBs, and ∼0.5% are the transiting types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (≳ 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of ≳ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as 'dust-obscured galaxies' (DOGs), with a near-UV-to-mid-IR flux ratio of ≳ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during

  8. Structure observation of single solidified droplet by in situ controllable quenching based on nanocalorimetry

    International Nuclear Information System (INIS)

    Zhao, Bingge; Li, Linfang; Yang, Bin; Yan, Ming; Zhai, Qijie; Gao, Yulai

    2013-01-01

    Highlights: •Controllable quenching rate up to 15,000 K/s was realized by FSC. •FSC sample was novelly characterized by FIB and HRTEM. •Solidification structure with undercooling of 110.9 K was investigated. •This study opens a new approach in rapid solidification and FSC measurement. -- Abstract: Fast scanning calorimetry (FSC) based on nanocalorimetry and thin film technique is a newly developed attractive tool to investigate the solidification behavior of single droplet by in situ controllable ultrafast cooling. In this paper, we introduced this novel technique to in situ control the quenching of single Sn3.5Ag metallic droplet at cooling rate up to 15,000 K/s with corresponding undercooling of 110.9 K. In particular, the solidification structure of this real time quenched single droplet was observed and analyzed with focused ion beam (FIB), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). This research proposed a new approach to research the solidification structure of single droplet with precisely controlled size and extreme cooling rate

  9. SU-F-T-164: Investigation of PRESAGE Formulation On Signal Quenching in a Proton Beam

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, M; Alqathami, M; Ibbott, G [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: The radiochromic polyurethane PRESAGE by Heuris Pharma has had limited applications with protons because of a dose response dependence on LET resulting in signal quenching in the Bragg peak. This is due to the radical initiator, a halocarbon, radically recombining in high-LET irradiations. This study investigated the use of alternative halocarbons at various chemical concentrations to determine their significance in signal quenching. Methods: PRESAGE was manufactured in-house and cast in small volume cuvettes (1×1×4cm^3). Several compositions were evaluated to determine the influence of the radical initiator component. Mixtures contained one of two halocarbons, chloroform or bromoform, at concentrations of 5%/10%/15%(w/w). A large volume, cylindrical PRESAGE dosimeter made following the mixture described by Heuris Pharma, 4cm(D)×8.5cm(H), was irradiated with 200-MeV protons to study regions of low- and high-LET along a 10cm spread out Bragg peak isodose profile. Depths corresponding to regions of low quenching (<3%) and high quenching (>20%) were determined. These depths were used for cuvette placement in a solid water phantom. Samples of each formulation were placed at each depth and irradiated to doses between 0 and 10Gy. Results: The cuvettes indicated different levels of quenching for different radical initiator types, concentrations, and total doses. Chloroform formulations showed reduced quenching from 29%(5%-w/w) to 21%(15%-w/w) while bromoform reduced quenching from 27%(5%-w/w) to 17%(15%-w/w). The reduction in quenching was found to be non-linear with concentration of radical initiator. A quenching dose-dependency was also found that changed with formulation. In all cases, quenching was relatively consistent from 0–5Gy but increased at 10Gy. The quenching decreased as concentrations of radical initiator increased. Conclusion: The radical initiator component in PRESAGE is correlated with the signal quenching observed in proton irradiations and

  10. Positronium quenching in liquid and solid octanol and benzene

    DEFF Research Database (Denmark)

    Shantarovich, V.P.; Mogensen, O.E.; Goldanskii, V.I.

    1970-01-01

    The lifetimes of orthopositronium in several solutions in liquid and solid octanol and benzene have been measured. The Ps-quenching constant was found to be two to thirty times higher in the solid than in the liquid phase.......The lifetimes of orthopositronium in several solutions in liquid and solid octanol and benzene have been measured. The Ps-quenching constant was found to be two to thirty times higher in the solid than in the liquid phase....

  11. Fluctuation kinetics of fluorescence hopping quenching in the Nd3+:Y2O3 spherical nanoparticles

    International Nuclear Information System (INIS)

    Orlovskii, Yu.V.; Popov, A.V.; Platonov, V.V.; Fedorenko, S.G.; Sildos, I.; Osipov, V.V.

    2013-01-01

    We study the peculiarities of energy transfer kinetics from the 4 F 3/2 laser level in the Nd 3+ doped Y 2 O 3 spherical nanoparticles of monoclinic phase synthesized by laser ablation of solid targets with subsequent recondensation in flow of air at atmospheric pressure comparing to the similar bulk crystal. We show that the fluorescence quenching in the nanoparticles is determined by two processes depending on Nd 3+ concentration and the degree of dehydration. At concentrations less than 1% the fluorescence quenching is mainly determined by direct (static) quenching by vibrations of OH − molecular groups associated with oxygen vacancies. At concentrations greater than 1 at % quenching is due to energy migration over neodymium ions, followed by the Nd 3+ –OH − quenching. In the latter case, the first time in a solid-state impurity laser medium we observe non-stationary kinetics on the entire length of a time-dependent luminescence quenching, starting from static decay and ending with fluctuation kinetics of fluorescence hopping quenching. -- Highlights: ► We prepare monoclinic Nd 3+ :Y 2 O 3 spherical NPs of mean D=12 nm by laser ablation of solid targets. ► We detect the fluorescence quenching of Nd 3+ the 4 F 3/2 level by vibrations of OH – molecular groups. ► We find that at 0.1% of Nd 3+ the process of static quenching by vibrations of OH – dominates. ► We find that Nd 3+ –Nd 3+ energy migration accelerates the Nd 3+ –OH − quenching at 1% of Nd 3+ . ► We detect non-stationary quenching kinetics ending with fluctuation stage of hopping quenching

  12. Quench Detection and Protection of the MQT Type Magnet

    CERN Document Server

    Teng, M

    1998-01-01

    The LHC design as from version 5 is equipped with tuning, trim and skew quadrupoles with similar cross-section designs (MQT). To qualify the quench detection and magnet protection needs, several compu tational methods have been applied. They range from global calculation of a uniform adiabatic temperature rise to more refined simulations, including the Quaber simulation package which is also applie d for quench calculations on the main magnets. A very important parameter is the quench propagation velocity, on which the Quaber simulations rely. An attempt was made to simulate the physics of the p ropagation itself, taking into account the temperature dependence of the wire parameters with the Quenchprop algorithm described in this report. The calculated results were compared with those from ex periments on a single wire. Further results of measurements on prototype magnets will allow fine-tuning of the program parameters.

  13. Quench propagation tests on the LHC superconducting magnet string

    CERN Document Server

    Coull, L; Krainz, G; Rodríguez-Mateos, F; Schmidt, R

    1996-01-01

    The installation and testing of a series connection of superconducting magnets (three 10 m long dipoles and one 3 m long quadrupole) has been a necessary step in the verification of the viability of the Large Hadron Collider at CERN. In the LHC machine, if one of the lattice dipoles or quadrupoles quenches, the current will be by-passed through cold diodes and the whole magnet chain will be de-excited by opening dump switches. In such a scenario it is very important to know whether the quench propagates from the initially quenching magnet to adjacent ones. A series of experiments have been performed with the LHC Test String powered at different current levels and at different de-excitation rates in order to understand possible mechanisms for such a propagation, and the time delays involved. Results of the tests and implications regarding the LHC machine operation are described in this paper.

  14. Quench cooling of superheated debris beds in containment during LWR core meltdown accidents

    International Nuclear Information System (INIS)

    Ginsberg, T.; Chen, J.C.

    1984-01-01

    Light water reactor core meltdown accident sequence studies suggest that superheated debris beds may settle on the concrete floor beneath the reactor vessel. A model for the heat transfer processes during quench of superheated debris beds cooled by an overlying pool of water has been presented in a prior paper. This paper discusses the coolability of decay-heated debris beds from the standpoint of their transient quench characteristics. It is shown that even though a debris bed configuration may be coolable from the point of view of steady-state decay heat removal, the quench behavior from an initially elevated temperature may lead to bed melting prior to quench of the debris

  15. Enhanced turbulence during the energy quench of disruptions

    International Nuclear Information System (INIS)

    Remkes, G.J.J.; Schueller, F.C.

    1991-01-01

    Enhanced electron density fluctuation levels with frequencies in the megahertz range have been observed during the energy quench phase of minor disruptions in the TORTUR Tokamak. The high frequencies of the phenomena indicate that the enhanced transport during the energy quench is caused by turbulence, and not by the coherent low mode number MHD modes themselves, which initiate the disruptions. Both the growth rate and wavelength of the fluctuations increase to such a level that a corresponding diffusivity would increase by two orders of magnitude. This is in good agreement with the observed temperature redistribution. (author)

  16. Negative thermal quenching of photoluminescence in ZnO

    International Nuclear Information System (INIS)

    Watanabe, M.; Sakai, M.; Shibata, H.; Satou, C.; Satou, S.; Shibayama, T.; Tampo, H.; Yamada, A.; Matsubara, K.; Sakurai, K.; Ishizuka, S.; Niki, S.; Maeda, K.; Niikura, I.

    2006-01-01

    We have studied photoluminescence (PL) spectra of ZnO single crystals at photon energies ranging between 2.1 and 3.4eV as a function of temperature to determine thermal quenching behavior in PL emission intensity. It appears that the deep level emissions, donor-acceptor pair emissions, and the bound excitonic emissions undergo negative thermal quenching (NTQ) at intermediate temperatures above ∼10K. By employing an NTQ formula expressed analytically as a function of temperature, we have obtained quantitative NTQ characteristics in terms of the activation energies associated with the intermediate states as well as nonradiative channels

  17. Energy and Heat Fluctuations in a Temperature Quench

    Energy Technology Data Exchange (ETDEWEB)

    Zannetti, M.; Corberi, F. [Dipartimento di Fisica “E. Caianiello”, and CNISM, Unità di Salerno, Università di Salerno, via Giovanni Paolo II 132, 84084 Fisciano (Italy); Gonnella, G. [Dipartimento di Fisica, Università di Bari and INFN, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Piscitelli, A., E-mail: mrc.zannetti@gmail.com, E-mail: corberi@sa.infn.it, E-mail: gonnella@ba.infn.it, E-mail: antps@hotmial.it [Division of Physical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 (Singapore)

    2014-10-15

    Fluctuations of energy and heat are investigated during the relaxation following the instantaneous temperature quench of an extended system. Results are obtained analytically for the Gaussian model and for the large N model quenched below the critical temperature T{sub c}. The main finding is that fluctuations exceeding a critical threshold do condense. Though driven by a mechanism similar to that of Bose—Einstein condensation, this phenomenon is an out-of-equilibrium feature produced by the breaking of energy equipartition occurring in the transient regime. The dynamical nature of the transition is illustrated by phase diagrams extending in the time direction. (general)

  18. Influence of Fluidized Bed Quenching on the Mechanical Properties and Quality Index of T6 Tempered B319.2-Type Aluminum Alloys

    Science.gov (United States)

    Ragab, Kh. A.; Samuel, A. M.; Al-Ahmari, A. M. A.; Samuel, F. H.; Doty, H. W.

    2013-11-01

    The current study aimed to investigate the effect of fluidized sand bed (FB) quenching on the mechanical performance of B319.2 aluminum cast alloys. Traditional water and conventional hot air (CF) quenching media were used to establish a relevant comparison with FB quenching. Quality charts were generated using two models of quality indices to support the selection of material conditions on the basis of the proposed quality indices. The use of an FB for the direct quenching-aging treatment of B319.2 casting alloys yields greater UTS and YS values compared to conventional furnace quenched alloys. The strength values of T6 tempered B319 alloys are greater when quenched in water compared with those quenched in an FB or CF. For the same aging conditions (170°C/4h), the fluidized bed quenched-aged 319 alloys show nearly the same or better strength values than those quenched in water and then aged in a CF or an FB. Based on the quality charts developed for alloys subjected to different quenching media, higher quality index values are obtained by conventional furnace quenched-aged T6-tempered B319 alloys. The modification factor has the most significant effect on the quality results of the alloys investigated, for all heat treatment cycles, as compared to other metallurgical parameters. The results of alloys subjected to multi-temperature aging cycles reveal that the optimum strength properties of B319.2 alloys, however, is obtained by applying multi-temperature aging cycles such as, for example, 240 °C/2 h followed by 170 °C/8 h, rather than T6 aging treatments. The regression models indicate that the mean quality values of B319 alloys are highly quench sensitive due to the formation of a larger percent of clusters in Al-Si-Cu-Mg alloys. These clusters act as heterogeneous nucleation sites for precipitation and enhance the aging process.

  19. Lessons learnt from FARO/TERMOS corium melt quenching experiments

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Huhtiniemi, I.; Hohmann, H. [Commission of the European Communities, Ispra (Italy). Joint Research Center

    1998-01-01

    The influence of melt quantity, melt composition, water depth and initial pressure on quenching is assessed on the basis of seven tests performed in various conditions in the TERMOS vessel of the FARO facility at JRC-Ispra. Tests involved UO{sub 2}-based melt quantities in the range 18-176 kg at a temperature of approximately 3000 K poured into saturated water. The results suggest that erosion of the melt jet column is an efficient contributor to the amount of break-up, and thus quenching, for large pours of corium melt. The presence of Zr metal in the melt induced a much more efficient quenching than in a similar test with no Zr metal, attributed to the oxidation of the Zr. Significant amounts of H{sub 2} were produced also in tests with pure oxidic melts (e.g. about 300 g for 157 kg melt). In the tests at 5.0 and 2.0 MPa good mixing with significant melt break-up and quenching was obtained during the penetration in the water. At 0.5 MPa, good penetration of the melt into the water could still be achieved, but a jump in the vessel pressurisation occurred when the melt contacted the bottom and part (5 kg) of the debris was re-ejected from the water. (author)

  20. Influence of grain structure on quench sensitivity relative to localized corrosion of high strength aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, ShengDan, E-mail: csuliusd@163.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha 410083 (China); Li, ChengBo [Light Alloy Research Institute, Central South University, Changsha 410083 (China); Deng, YunLai; Zhang, XinMing [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha 410083 (China)

    2015-11-01

    The influence of grain structure on quench sensitivity relative to localized corrosion of high strength aluminum alloy 7055 was investigated by electrochemical test, accelerated exfoliation corrosion test, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The decrease of quench rate led to lower corrosion resistance of both the homogenized and solution heat treated (HS) alloy with equiaxed grains and the hot-rolled and solution heat treated (HRS) alloy with elongated grains, but there was a higher increment in corrosion depth and corrosion current density and a higher decrement in corrosion potential for the latter alloy, which therefore exhibited higher quench sensitivity. It is because in this alloy the larger amount of (sub) grain boundaries led to a higher increment in the amount of quench-induced η phase and precipitates free zone at (sub) grain boundaries with the decrease of quench rate, and there was a larger increment in the content of Zn, Mg and Cu in the η phase at grain boundaries due to slow quenching. The presence of subgrain boundaries in the HRS alloy tended to increase corrosion resistance at high quench rates higher than about 630 °C/min but decrease it at lower quench rates. - Highlights: • (Sub)Grain boundaries increase quench sensitivity relative to localized corrosion. • Subgrain boundaries decrease corrosion resistance below quench rate of 630 °C/min. • More (sub) grain boundaries leads to more GBPs and PFZ with decreasing quench rate.

  1. Thermal activation and radiation quenching effects in pre-dose dating of porcelain

    International Nuclear Information System (INIS)

    Wang Weida; Xia Junding

    2005-01-01

    The pre-dose technique is very useful for thermoluminescence dating of porcelain. It incorporates two characteristics in the porcelain dating, i.e. thermal activation and radiation quenching. Two methods, activation method and quenching method, for evaluation of paleodose were introduced. The results show that activation method and quenching method one suitable for dating of lower limit age (less than 100 years B.P.) and upper limit age (greater than 1000 years B.P.), respectively. When both methods are co-used, the dating will be more accurate. (authors)

  2. Self-quenching streamers

    International Nuclear Information System (INIS)

    Atac, M.; Tollestrup, A.V.; Potter, D.

    1982-01-01

    Self quenching streamers in drift tubes have been observed both optically and electronically. The streamers of 150-200 μm width extend out from the anode wire to 1.5 to 3 mm at atmospheric pressures. Electronic measurements at a two atomsphere pressure show pulses into a 50 Ω load with a rise time of 5 ns, a decay time of 40 ns, and an amplitude of 30 mV. Details of the experiments are discussed. There was no detectable residue on an anode wire after exposing it to 2x10 9 streamers for a 1 mm section. (orig.)

  3. Fluorescence quenching of newly synthesized biologically active coumarin derivative by aniline in binary solvent mixtures

    International Nuclear Information System (INIS)

    Evale, Basavaraj G.; Hanagodimath, S.M.

    2009-01-01

    The fluorescence quenching of newly synthesized coumarin (chromen-2-one) derivative, 4-(5-methyl-3-furan-2-yl-benzofuran-2-yl)-7-methyl-chromen-2-one (MFBMC) by aniline in different solvent mixtures of benzene and acetonitrile was determined at room temperature (296 K) by steady-state fluorescence measurements. The quenching is found to be appreciable and positive deviation from linearity was observed in the Stern-Volmer (S-V) plots in all the solvent mixtures. This could be explained by static and dynamic quenching models. The positive deviation in the S-V plot is interpreted in terms of ground-state complex formation model and sphere of action static quenching model. Various rate parameters for the fluorescence quenching process have been determined by using the modified Stern-Volmer equation. The sphere of action static quenching model agrees very well with experimental results. The dependence of Stern-Volmer constant K SV , on dielectric constant ε of the solvent mixture suggests that the fluorescence quenching is diffusion-limited. Further with the use of finite sink approximation model, it is concluded that these bimolecular quenching reactions are diffusion-limited. Using lifetime (τ o ) data, the distance parameter R' and mutual diffusion coefficient D are estimated independently.

  4. Rapid hydrogen hydrate growth from non-stoichiometric tuning mixtures during liquid nitrogen quenching.

    Science.gov (United States)

    Grim, R Gary; Kerkar, Prasad B; Sloan, E Dendy; Koh, Carolyn A; Sum, Amadeu K

    2012-06-21

    In this study the rapid growth of sII H(2) hydrate within 20 min of post formation quenching towards liquid nitrogen (LN(2)) temperature is presented. Initially at 72 MPa and 258 K, hydrate samples would cool to the conditions of ~60 MPa and ~90 K after quenching. Although within the stability region for H(2) hydrate, new hydrate growth only occurred under LN(2) quenching of the samples when preformed hydrate "seeds" of THF + H(2) were in the presence of unconverted ice. The characterization of hydrate seeds and the post-quenched samples was performed with confocal Raman spectroscopy. These results suggest that quenching to LN(2) temperature, a common preservation technique for ex situ hydrate analysis, can lead to rapid unintended hydrate growth. Specifically, guest such as H(2) that may otherwise need sufficiently long induction periods to nucleate, may still experience rapid growth through an increased kinetic effect from a preformed hydrate template.

  5. Quench Protection System Optimization for the High Luminosity LHC Nb $_3$Sn Quadrupoles

    CERN Document Server

    Ravaioli, E; Auchmann, B; Ferracin, P; Maciejewski, M; Rodriguez-Mateos, F; Sabbi, GL; Todesco, E; Verweij, A P

    2017-01-01

    The upgrade of the large hadron collider to achieve higher luminosity requires the installation of twenty-four 150 mm aperture, 12 T, $Nb_3Sn$ quadrupole magnets close to the two interaction regions at ATLAS and CMS. The protection of these high-field magnets after a quench is particularly challenging due to the high stored energy density, which calls for a fast, effective, and reliable protection system. Three design options for the quench protection system of the inner triplet circuit are analyzed, including quench heaters attached to the coil's outer and inner layer, Coupling-Loss Induced Quench (CLIQ), and combinations of those. The discharge of the magnet circuit and the electromagnetic and thermal transients occurring in the coils are simulated by means of the TALES and LEDET programs. The sensitivity to strand parameters and the effects of several failure cases on the coil's hot-spot temperature and peak voltages to ground are assessed. A protection system based only on quench heaters attached to the o...

  6. Coupled continuous time-random walks in quenched random environment

    Science.gov (United States)

    Magdziarz, M.; Szczotka, W.

    2018-02-01

    We introduce a coupled continuous-time random walk with coupling which is characteristic for Lévy walks. Additionally we assume that the walker moves in a quenched random environment, i.e. the site disorder at each lattice point is fixed in time. We analyze the scaling limit of such a random walk. We show that for large times the behaviour of the analyzed process is exactly the same as in the case of uncoupled quenched trap model for Lévy flights.

  7. Rapidly quenched amorphous and microcrystalline solders for atomic power industry

    International Nuclear Information System (INIS)

    Kalin, V.A.; Fedotov, V.T.; Sevryukov, O.N.; Grigor'ev, A.E.; Skuratov, L.A.; Sulaberidze, V.Sh.; Yurchenko, A.D.; Sokolov, V.F.; Rodionov, V.A.

    1996-01-01

    The possibility of using strip amorphous brazing alloys STEMET on Ni, Cu, Ti or Al base to braze various materials (stainless steels - zirconium, ceramics - metal, copper alloys, titanium alloys, cermets, molybdenum, beryllium) is under study. Experimental bench is designed and brazing regimes are developed for various dissimilar materials. Mechanical and corrosion tests of brazed joints show that rapidly quenching STEMET type brazing alloys are promising materials for manufacturing components of irradiating devices [ru

  8. Quenching of bacteriochlorophyll fluorescence in chlorosomes from Chloroflexus aurantiacus by exogenous quinones

    DEFF Research Database (Denmark)

    Tokita, S; Frigaard, N-U; Hirota, M

    2000-01-01

    The quenching of bacteriochlorophyll (BChl) c fluorescence in chlorosomes isolated from Chloroflexus aurantiacus was examined by the addition of various benzoquinones, naphthoquinones (NQ), and anthraquinones (AQ). Many quinones showed strong quenching in the micromolar or submicromolar range. Th...

  9. Avoidance of VDEs during plasma current quench in JT-60U

    International Nuclear Information System (INIS)

    Yoshino, R.; Nakamura, Y.; Neyatani, Y.

    1996-01-01

    Vertical displacement events (VDEs) during plasma current quench (I p quench) are one of the serious problems encountered in designing tokamak fusion reactors, owing to the generation of enormously high electromagnetic forces on the vacuum vessel and in-vessel components, but they have been passively and actively avoided in JT-60U. In JT-60U 'slow I p quench' is ended with very fast plasma current termination (final I p termination), and the halo current is frequently measured at this final I p termination. VDEs make the final I p termination severe by increasing the halo current and the electromagnetic force. A strong dependence of VDE growth rate on the initial vertical position of the plasma current centre (Z J ) has been clarified experimentally, and a neutral point of Z J for VDE has been found at ∼ 15 cm above the midplane of the vacuum vessel. According to these measurements, VDE has been avoided by the selection of Z J at the start of I p quench (passive control) and by the control of Z J during I p quench (active control) eventually obtained owing to the small deviation of Z J in real time calculations from its actual value. Furthermore, passive avoidance of VDEs by the injection of a neon ice pellet has been demonstrated. (author). 29 refs, 14 figs

  10. Defect production due to quenching through a multicritical point

    International Nuclear Information System (INIS)

    Divakaran, Uma; Mukherjee, Victor; Dutta, Amit; Sen, Diptiman

    2009-01-01

    We study the generation of defects when a quantum spin system is quenched through a multicritical point by changing a parameter of the Hamiltonian as t/τ, where τ is the characteristic timescale of quenching. We argue that when a quantum system is quenched across a multicritical point, the density of defects (n) in the final state is not necessarily given by the Kibble–Zurek scaling form n∼1/τ dν/(zν+1) , where d is the spatial dimension, and ν and z are respectively the correlation length and dynamical exponent associated with the quantum critical point. We propose a generalized scaling form of the defect density given by n∼1/τ d/(2z 2 ) , where the exponent z 2 determines the behavior of the off-diagonal term of the 2 × 2 Landau–Zener matrix at the multicritical point. This scaling is valid not only at a multicritical point but also at an ordinary critical point

  11. Quenching methods for background reduction in luminescence-based probe-target binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Hong [Los Alamos, NM; Goodwin, Peter M [Los Alamos, NM; Keller, Richard A [Los Alamos, NM; Nolan, Rhiannon L [Santa Fe, NM

    2007-04-10

    Background luminescence is reduced from a solution containing unbound luminescent probes, each having a first molecule that attaches to a target molecule and having an attached luminescent moiety, and luminescent probe/target adducts. Quenching capture reagent molecules are formed that are capable of forming an adduct with the unbound luminescent probes and having an attached quencher material effective to quench luminescence of the luminescent moiety. The quencher material of the capture reagent molecules is added to a solution of the luminescent probe/target adducts and binds in a proximity to the luminescent moiety of the unbound luminescent probes to quench luminescence from the luminescent moiety when the luminescent moiety is exposed to exciting illumination. The quencher capture reagent does not bind to probe molecules that are bound to target molecules and the probe/target adduct emission is not quenched.

  12. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    Science.gov (United States)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  13. The quench action approach to out-of-equilibrium quantum integrable models

    NARCIS (Netherlands)

    Wouters, B.M.

    2015-01-01

    In this PhD thesis quantum quenches to 1D quantum integrable models are studied by means of the quench action approach. Using the large-system-size scaling of overlaps between the initial state and Bethe states as basic input, this method gives an exact description in the thermodynamic limit of the

  14. SU-F-T-164: Investigation of PRESAGE Formulation On Signal Quenching in a Proton Beam

    International Nuclear Information System (INIS)

    Carroll, M; Alqathami, M; Ibbott, G

    2016-01-01

    Purpose: The radiochromic polyurethane PRESAGE by Heuris Pharma has had limited applications with protons because of a dose response dependence on LET resulting in signal quenching in the Bragg peak. This is due to the radical initiator, a halocarbon, radically recombining in high-LET irradiations. This study investigated the use of alternative halocarbons at various chemical concentrations to determine their significance in signal quenching. Methods: PRESAGE was manufactured in-house and cast in small volume cuvettes (1×1×4cm^3). Several compositions were evaluated to determine the influence of the radical initiator component. Mixtures contained one of two halocarbons, chloroform or bromoform, at concentrations of 5%/10%/15%(w/w). A large volume, cylindrical PRESAGE dosimeter made following the mixture described by Heuris Pharma, 4cm(D)×8.5cm(H), was irradiated with 200-MeV protons to study regions of low- and high-LET along a 10cm spread out Bragg peak isodose profile. Depths corresponding to regions of low quenching ( 20%) were determined. These depths were used for cuvette placement in a solid water phantom. Samples of each formulation were placed at each depth and irradiated to doses between 0 and 10Gy. Results: The cuvettes indicated different levels of quenching for different radical initiator types, concentrations, and total doses. Chloroform formulations showed reduced quenching from 29%(5%-w/w) to 21%(15%-w/w) while bromoform reduced quenching from 27%(5%-w/w) to 17%(15%-w/w). The reduction in quenching was found to be non-linear with concentration of radical initiator. A quenching dose-dependency was also found that changed with formulation. In all cases, quenching was relatively consistent from 0–5Gy but increased at 10Gy. The quenching decreased as concentrations of radical initiator increased. Conclusion: The radical initiator component in PRESAGE is correlated with the signal quenching observed in proton irradiations and formulation adjustments

  15. Quench and recovery characteristics of Au/YBCO thin film type SFCL

    International Nuclear Information System (INIS)

    Yim, S.-W.; Kim, H.-R.; Hyun, O.-B.; Sim, J.

    2007-01-01

    Although, a superconducting fault current limiter (SFCL) guarantees the fast limiting operation, it usually needs a considerably long time to recover to superconducting state after the quench. Considering the reclosing time in the protection coordination of power systems, the time required for the recovery should be investigated clearly. In this study, the quench and recovery characteristics of Au/YBCO thin films designed as an SFCL element with a bi-spiral pattern were investigated. The quench development of the SFCL was measured by two kinds of methods. Firstly, after applying the fault current of 5.5 cycles, we measured the resistance of the YBCO by a small current flowing through the pattern of Au/YBCO thin film. The temperature variation above the critical temperature, 85 K, was investigated indirectly from the resistance variation. Secondly, in order to measure the temperature from 85 K to 77 K, a meander line shape of Au thin film was evaporated on the back side and used as a temperature detecting sensor. The temperature variations detected by both methods were compared and analyzed. For the investigation of the recovery characteristics, the required time for the recovery of the superconductivity was measured for various magnitude and duration of the applied voltages. In addition, for the purpose of examining the dependence of the line impedance on the recovery time, resistors of various resistances were inserted in the fault current testing circuit and the recovery time was measured and analyzed

  16. Properties of self-quenching streamer (SQS) tubes

    International Nuclear Information System (INIS)

    Koori, N.; Nohtomi, A.; Hashimoto, M.; Yoshioka, K.; Kumabe, I.

    1989-01-01

    The self-quenching streamer (SQS) mode of gas counters have been widely used for measuring high energy particles. The authors have very recently found that all the rare gas (He, Ne, Ar and Xe) mixtures with quenching gas of CH 4 , C 2 H 6 , C 3 H 8 , iso-C 4 H 10 or CO 2 can be used as gas mixtures for the SQS mode except Ne- and He-mixtures with CH 4 or CO 2 . Further studies on the properties of this mode are needed for its application to monitoring devices. Properties of a self-quenching tube are discussed here from this point of view. Gas multiplication properties, pulse shape of current signals, and dead zone are measured under several gas pressures equal to or less than one atomospheric pressure. Either the SQS or GM mode can be obtained by changing the gas pressure with a cylindrical gas counter. The operation mode of the counter may be correctly determined from the dead zone measurement. The measurements show that the SQS and GM modes are exclusive, even though SQS's can be simultaneously formed with a GM discharge. The counting rate capability of the SQS mode is higher than that of the GM mode by about one order of magnitude. Thus, SQS tubes are suitable for use in high flux radiation fields. (N.K.)

  17. SDSS-IV MaNGA: the different quenching histories of fast and slow rotators

    Science.gov (United States)

    Smethurst, R. J.; Masters, K. L.; Lintott, C. J.; Weijmans, A.; Merrifield, M.; Penny, S. J.; Aragón-Salamanca, A.; Brownstein, J.; Bundy, K.; Drory, N.; Law, D. R.; Nichol, R. C.

    2018-01-01

    Do the theorized different formation mechanisms of fast and slow rotators produce an observable difference in their star formation histories? To study this, we identify quenching slow rotators in the MaNGA sample by selecting those that lie below the star-forming sequence and identify a sample of quenching fast rotators that were matched in stellar mass. This results in a total sample of 194 kinematically classified galaxies, which is agnostic to visual morphology. We use u - r and NUV - u colours from the Sloan Digital Sky Survey and GALEX and an existing inference package, STARPY, to conduct a first look at the onset time and exponentially declining rate of quenching of these galaxies. An Anderson-Darling test on the distribution of the inferred quenching rates across the two kinematic populations reveals they are statistically distinguishable (3.2σ). We find that fast rotators quench at a much wider range of rates than slow rotators, consistent with a wide variety of physical processes such as secular evolution, minor mergers, gas accretion and environmentally driven mechanisms. Quenching is more likely to occur at rapid rates (τ ≲ 1 Gyr) for slow rotators, in agreement with theories suggesting slow rotators are formed in dynamically fast processes, such as major mergers. Interestingly, we also find that a subset of the fast rotators quench at these same rapid rates as the bulk of the slow rotator sample. We therefore discuss how the total gas mass of a merger, rather than the merger mass ratio, may decide a galaxy's ultimate kinematic fate.

  18. Reconstruction of thermally quenched glow curves in quartz

    International Nuclear Information System (INIS)

    Subedi, Bhagawan; Polymeris, George S.; Tsirliganis, Nestor C.; Pagonis, Vasilis; Kitis, George

    2012-01-01

    The experimentally measured thermoluminescence (TL) glow curves of quartz samples are influenced by the presence of the thermal quenching effect, which involves a variation of the luminescence efficiency as a function of temperature. The real shape of the thermally unquenched TL glow curves is completely unknown. In the present work an attempt is made to reconstruct these unquenched glow curves from the quenched experimental data, and for two different types of quartz samples. The reconstruction is based on the values of the thermal quenching parameter W (activation energy) and C (a dimensionless constant), which are known from recent experimental work on these two samples. A computerized glow-curve deconvolution (CGCD) analysis was performed twice for both the reconstructed and the experimental TL glow curves. Special attention was paid to check for consistency between the results of these two independent CGCD analyses. The investigation showed that the reconstruction attempt was successful, and it is concluded that the analysis of reconstructed TL glow curves can provide improved values of the kinetic parameters E, s for the glow peaks of quartz. This also leads to a better evaluation of the half-lives of electron trapping levels used for dosimetry and luminescence dating.

  19. Understanding CO2 decomposition by thermal plasma with supersonic expansion quench

    Science.gov (United States)

    Tao, YANG; Jun, SHEN; Tangchun, RAN; Jiao, LI; Pan, CHEN; Yongxiang, YIN

    2018-04-01

    CO2 pyrolysis by thermal plasma was investigated, and a high conversion rate of 33% and energy efficiency of 17% were obtained. The high performance benefited from a novel quenching method, which synergizes the converging nozzle and cooling tube. To understand the synergy effect, a computational fluid dynamics simulation was carried out. A quick quenching rate of 107 K s‑1 could be expected when the pyrolysis gas temperature decreased from more than 3000 to 1000 K. According to the simulation results, the quenching mechanism was discussed as follows: first, the compressible fluid was adiabatically expanded in the converging nozzle and accelerated to sonic speed, and parts of the heat energy converted to convective kinetic energy; second, the sonic fluid jet into the cooling tube formed a strong eddy, which greatly enhanced the heat transfer between the inverse-flowing fluid and cooling tube. These two mechanisms ensure a quick quenching to prevent the reverse reaction of CO2 pyrolysis gas when it flows out from the thermal plasma reactor.

  20. Fluorescence quenching of uric acid solubilized in bicontinuous microemulsion by nitrobenzene

    Directory of Open Access Journals (Sweden)

    Maurice O. Iwunze

    2013-02-01

    Full Text Available Abstract: Uric Acid is known to be practically insoluble in aqueous and alcoholic media. However, it exhibits a reasonable solubility in a Bicontinuous Microemulsion system – a 15-fold or more increase in solubility in this system compared to its solubility in water. The bicontinuous microemulsion is made up of three components –Dodecane-Surfactant-water. Uric acid solubilized in this system is quenched by nitrobenzene. The obtained fluorescence data do not obey the Stern-Volmer equation when plotted accordingly. Therefore, the modified Stern-Volmer equation was used to analyze the data. It was observed that only one third (1/3 of uric acid is accessible to quenching in this medium and the reaction is diffusion-limited. The Stern-Volmer quenching constant, KSV, was calculated to be 130 M-1 and the fluorescence lifetime, 0, the quantum yield,, and the bimolecular quenching rate constant, kq, were calculated as 10.6 nanoseconds, 0.06 and 1.231010 M-1s-1, respectively.