WorldWideScience

Sample records for early proboscidean evolution

  1. Stable isotope evidence for an amphibious phase in early proboscidean evolution.

    Science.gov (United States)

    Liu, Alexander G S C; Seiffert, Erik R; Simons, Elwyn L

    2008-04-15

    The order Proboscidea includes extant elephants and their extinct relatives and is closely related to the aquatic sirenians (manatees and dugongs) and terrestrial hyracoids (hyraxes). Some analyses of embryological, morphological, and paleontological data suggest that proboscideans and sirenians shared an aquatic or semiaquatic common ancestor, but independent tests of this hypothesis have proven elusive. Here we test the hypothesis of an aquatic ancestry for advanced proboscideans by measuring delta(18)O in tooth enamel of two late Eocene proboscidean genera, Barytherium and Moeritherium, which are sister taxa of Oligocene-to-Recent proboscideans. The combination of low delta(18)O values and low delta(18)O standard deviations in Barytherium and Moeritherium matches the isotopic pattern seen in aquatic and semiaquatic mammals, and differs from that of terrestrial mammals. delta(13)C values of these early proboscideans suggest that both genera are likely to have consumed freshwater plants, although a component of C(3) terrestrial vegetation cannot be ruled out. The simplest explanation for the combined evidence from isotopes, dental functional morphology, and depositional environments is that Barytherium and Moeritherium were at least semiaquatic and lived in freshwater swamp or riverine environments, where they grazed on freshwater vegetation. These results lend new support to the hypothesis that Oligocene-to-Recent proboscideans are derived from amphibious ancestors.

  2. Proboscidean mitogenomics: chronology and mode of elephant evolution using mastodon as outgroup.

    Science.gov (United States)

    Rohland, Nadin; Malaspinas, Anna-Sapfo; Pollack, Joshua L; Slatkin, Montgomery; Matheus, Paul; Hofreiter, Michael

    2007-08-01

    We have sequenced the complete mitochondrial genome of the extinct American mastodon (Mammut americanum) from an Alaskan fossil that is between 50,000 and 130,000 y old, extending the age range of genomic analyses by almost a complete glacial cycle. The sequence we obtained is substantially different from previously reported partial mastodon mitochondrial DNA sequences. By comparing those partial sequences to other proboscidean sequences, we conclude that we have obtained the first sequence of mastodon DNA ever reported. Using the sequence of the mastodon, which diverged 24-28 million years ago (mya) from the Elephantidae lineage, as an outgroup, we infer that the ancestors of African elephants diverged from the lineage leading to mammoths and Asian elephants approximately 7.6 mya and that mammoths and Asian elephants diverged approximately 6.7 mya. We also conclude that the nuclear genomes of the African savannah and forest elephants diverged approximately 4.0 mya, supporting the view that these two groups represent different species. Finally, we found the mitochondrial mutation rate of proboscideans to be roughly half of the rate in primates during at least the last 24 million years.

  3. Proboscidean mitogenomics: chronology and mode of elephant evolution using mastodon as outgroup.

    Directory of Open Access Journals (Sweden)

    Nadin Rohland

    2007-08-01

    Full Text Available We have sequenced the complete mitochondrial genome of the extinct American mastodon (Mammut americanum from an Alaskan fossil that is between 50,000 and 130,000 y old, extending the age range of genomic analyses by almost a complete glacial cycle. The sequence we obtained is substantially different from previously reported partial mastodon mitochondrial DNA sequences. By comparing those partial sequences to other proboscidean sequences, we conclude that we have obtained the first sequence of mastodon DNA ever reported. Using the sequence of the mastodon, which diverged 24-28 million years ago (mya from the Elephantidae lineage, as an outgroup, we infer that the ancestors of African elephants diverged from the lineage leading to mammoths and Asian elephants approximately 7.6 mya and that mammoths and Asian elephants diverged approximately 6.7 mya. We also conclude that the nuclear genomes of the African savannah and forest elephants diverged approximately 4.0 mya, supporting the view that these two groups represent different species. Finally, we found the mitochondrial mutation rate of proboscideans to be roughly half of the rate in primates during at least the last 24 million years.

  4. The Dance of Tusks: Rediscovery of Lower Incisors in the Pan-American Proboscidean Cuvieronius hyodon Revises Incisor Evolution in Elephantimorpha.

    Science.gov (United States)

    Mothé, Dimila; Ferretti, Marco P; Avilla, Leonardo S

    2016-01-01

    The incisors of proboscideans (tusks and tushes) are one of the most important feature in conservation, ecology and evolutionary history of these mammals. Although the absence of upper incisors is rare in proboscideans (occurring only in deinotheres), the independent losses of lower incisors are recognized for most of its lineages (dibelodont condition). The presence of lower incisors in the Pan-American gomphothere Cuvieronius hyodon was reported a few times in literature, but it was neglected in systematic studies. We analyzed several specimens of Cuvieronius hyodon from the Americas and recognized that immature individuals had lower incisors during very early post-natal developmental stages. Subsequently, these are lost and lower incisors alveoli close during later developmental stages, before maturity. Moreover, for the first time in a formal cladistic analysis of non-amebelodontine trilophodont gomphotheres, Rhynchotherium and Cuvieronius were recovered as sister-taxa. Among several non-ambiguous synapomorphies, the presence of lower incisors diagnoses this clade. We recognize that the presence of lower incisors in Cuvieronius and Rhynchotherium is an unique case of taxic atavism among the Elephantimorpha, since these structures are lost at the origin of the ingroup. The rediscovery of the lower incisors in Cuvieronius hyodon, their ontogenetic interpretation and the inclusion of this feature in a revised phylogenetic analysis of trilophodont gomphotheres brought a better understanding for the evolutionary history of these proboscideans.

  5. The Dance of Tusks: Rediscovery of Lower Incisors in the Pan-American Proboscidean Cuvieronius hyodon Revises Incisor Evolution in Elephantimorpha.

    Directory of Open Access Journals (Sweden)

    Dimila Mothé

    Full Text Available The incisors of proboscideans (tusks and tushes are one of the most important feature in conservation, ecology and evolutionary history of these mammals. Although the absence of upper incisors is rare in proboscideans (occurring only in deinotheres, the independent losses of lower incisors are recognized for most of its lineages (dibelodont condition. The presence of lower incisors in the Pan-American gomphothere Cuvieronius hyodon was reported a few times in literature, but it was neglected in systematic studies. We analyzed several specimens of Cuvieronius hyodon from the Americas and recognized that immature individuals had lower incisors during very early post-natal developmental stages. Subsequently, these are lost and lower incisors alveoli close during later developmental stages, before maturity. Moreover, for the first time in a formal cladistic analysis of non-amebelodontine trilophodont gomphotheres, Rhynchotherium and Cuvieronius were recovered as sister-taxa. Among several non-ambiguous synapomorphies, the presence of lower incisors diagnoses this clade. We recognize that the presence of lower incisors in Cuvieronius and Rhynchotherium is an unique case of taxic atavism among the Elephantimorpha, since these structures are lost at the origin of the ingroup. The rediscovery of the lower incisors in Cuvieronius hyodon, their ontogenetic interpretation and the inclusion of this feature in a revised phylogenetic analysis of trilophodont gomphotheres brought a better understanding for the evolutionary history of these proboscideans.

  6. The Dance of Tusks: Rediscovery of Lower Incisors in the Pan-American Proboscidean Cuvieronius hyodon Revises Incisor Evolution in Elephantimorpha

    Science.gov (United States)

    2016-01-01

    The incisors of proboscideans (tusks and tushes) are one of the most important feature in conservation, ecology and evolutionary history of these mammals. Although the absence of upper incisors is rare in proboscideans (occurring only in deinotheres), the independent losses of lower incisors are recognized for most of its lineages (dibelodont condition). The presence of lower incisors in the Pan-American gomphothere Cuvieronius hyodon was reported a few times in literature, but it was neglected in systematic studies. We analyzed several specimens of Cuvieronius hyodon from the Americas and recognized that immature individuals had lower incisors during very early post-natal developmental stages. Subsequently, these are lost and lower incisors alveoli close during later developmental stages, before maturity. Moreover, for the first time in a formal cladistic analysis of non-amebelodontine trilophodont gomphotheres, Rhynchotherium and Cuvieronius were recovered as sister-taxa. Among several non-ambiguous synapomorphies, the presence of lower incisors diagnoses this clade. We recognize that the presence of lower incisors in Cuvieronius and Rhynchotherium is an unique case of taxic atavism among the Elephantimorpha, since these structures are lost at the origin of the ingroup. The rediscovery of the lower incisors in Cuvieronius hyodon, their ontogenetic interpretation and the inclusion of this feature in a revised phylogenetic analysis of trilophodont gomphotheres brought a better understanding for the evolutionary history of these proboscideans. PMID:26756209

  7. Diversity in the later Paleogene proboscidean radiation: a small barytheriid from the Oligocene of Dhofar Governorate, Sultanate of Oman

    Science.gov (United States)

    Seiffert, Erik R.; Nasir, Sobhi; Al-Harthy, Abdulrahman; Groenke, Joseph R.; Kraatz, Brian P.; Stevens, Nancy J.; Al-Sayigh, Abdul Razak

    2012-02-01

    Despite significant recent improvements to our understanding of the early evolution of the Order Proboscidea (elephants and their extinct relatives), geographic sampling of the group's Paleogene fossil record remains strongly biased, with the first ~30 million years of proboscidean evolution documented solely in near-coastal deposits of northern Africa. The considerable morphological disparity that is observable among the late Eocene and early Oligocene proboscideans of northern Africa suggests that other, as yet unsampled, parts of Afro-Arabia might have served as important centers for the early diversification of major proboscidean clades. Here we describe the oldest taxonomically diagnostic remains of a fossil proboscidean from the Arabian Peninsula, a partial mandible of Omanitherium dhofarensis (new genus and species), from near the base of the early Oligocene Shizar Member of the Ashawq Formation, in the Dhofar Governorate of the Sultanate of Oman. The molars and premolars of Omanitherium are morphologically intermediate between those of Arcanotherium and Barytherium from northern Africa, but its specialized lower incisors are unlike those of other known Paleogene proboscideans in being greatly enlarged, high-crowned, conical, and tusk-like. Omanitherium is consistently placed close to late Eocene Barytherium in our phylogenetic analyses, and we place the new genus in the Family Barytheriidae. Some features of Omanitherium, such as tusk-like lower second incisors, the possible loss of the lower central incisors, an enlarged anterior mental foramen, and inferred elongate mandibular symphysis and diminutive P2, suggest a possible phylogenetic link with Deinotheriidae, an extinct family of proboscideans whose origins have long been mysterious.

  8. Paradigms and proboscideans in the southern Great Lakes region, USA

    Science.gov (United States)

    Saunders, J.J.; Grimm, E.C.; Widga, C.C.; Campbell, G.D.; Curry, B. Brandon; Grimley, D.A.; Hanson, P.R.; McCullum, J.P.; Oliver, J.S.; Treworgy, J.D.

    2010-01-01

    Thirteen new chronometric dates for Illinois proboscideans are considered in relation to well-dated pollen records from northeastern and central Illinois. These dates span an interval from 21,228 to 12,944 cal BP. When compared to pollen spectra, it is evident that Mammut americanum inhabited spruce (Picea) and black ash (Fraxinus nigra) forest during the B??lling-Aller??d (14,700-12,900 cal BP) and early Younger Dryas (12,900-11,650 cal BP) chronozones. Both Mammuthus jeffersonii and Mammuthus primigenius inhabited spruce dominated open-woodland during the Oldest Dryas chronozone, while M.??primigenius persisted in a forest of predominantly black ash during the Aller??d chronozone. A newly discovered specimen from Lincoln, IL, clarifies the taxonomic distinction between M. primigenius and M.??jeffersonii. Hitherto, a paradigm of proboscidean succession during the full- to late-glacial periods was based on the vegetation succession of steppe tundra-like vegetation to spruce forest to spruce-deciduous forest. The presumed proboscidean succession was that of cold, dry steppe-adapted M. primigenius succeeded by more mesic-tolerant M. jeffersonii that in turn was succeeded by the wet forest-adapted M.??americanum. Reported data do not support this view and indicate a need for re-evaluation of assumptions of proboscidean ecology and history, e.g., the environmental tolerances and habits of M.??primigenius in regions south of 55??N, and its dynamic relationship with other proboscidean taxa. ?? 2009 Elsevier Ltd and INQUA.

  9. The ear region of earliest known elephant relatives: new light on the ancestral morphotype of proboscideans and afrotherians.

    Science.gov (United States)

    Schmitt, Arnaud; Gheerbrant, Emmanuel

    2016-01-01

    One of the last major clades of placental mammals recognized was the Afrotheria, which comprises all main endemic African mammals. This group includes the ungulate-like paenungulates, and among them the elephant order Proboscidea. Among afrotherians, the petrosal anatomy remains especially poorly known in Proboscidea. We provide here the first comparative CT scan study of the ear region of the two earliest known proboscideans (and paenungulates), Eritherium and Phosphatherium, from the mid Palaeocene and early Eocene of Morocco. It is helpful to characterize the ancestral morphotype of Proboscidea to understand petrosal evolution within proboscideans and afrotherians. The petrosal structure of these two taxa shows several differences. Eritherium is more primitive than Phosphatherium and closer to the basal paenungulate Ocepeia in several traits (inflated tegmen tympani, very deep fossa subarcuata and ossified canal for ramus superior of stapedial artery). Phosphatherium, however, retains plesiomorphies such as a true crus commune secundaria. A cladistic analysis of petrosal traits of Eritherium and Phosphatherium among Proboscidea results in a single tree with a low level of homoplasy in which Eritherium, Phosphatherium and Numidotherium are basal. This contrasts with previous phylogenetic studies showing homoplasy in petrosal evolution among Tethytheria. It suggests that evolutionary modalities of petrosal characters differ with the taxonomic level among Afrotheria: noticeable convergences occurred among the paenungulate orders, whereas little homoplasy seems to have occurred at intra-ordinal level in orders such as Proboscidea. Most petrosal features of both Eritherium and Phosphatherium are primitive. The ancestral petrosal morphotype of Proboscidea was not specialized but was close to the generalized condition of paenungulates, afrotherians, and even eutherians. This is consistent with cranial and dental characters of Eritherium, suggesting that the ancestral

  10. The Earth's early evolution.

    Science.gov (United States)

    Bowring, S A; Housh, T

    1995-09-15

    The Archean crust contains direct geochemical information of the Earth's early planetary differentiation. A major outstanding question in the Earth sciences is whether the volume of continental crust today represents nearly all that formed over Earth's history or whether its rates of creation and destruction have been approximately balanced since the Archean. Analysis of neodymium isotopic data from the oldest remnants of Archean crust suggests that crustal recycling is important and that preserved continental crust comprises fragments of crust that escaped recycling. Furthermore, the data suggest that the isotopic evolution of Earth's mantle reflects progressive eradication of primordial heterogeneities related to early differentiation.

  11. Early bioenergetic evolution

    Science.gov (United States)

    Sousa, Filipa L.; Thiergart, Thorsten; Landan, Giddy; Nelson-Sathi, Shijulal; Pereira, Inês A. C.; Allen, John F.; Lane, Nick; Martin, William F.

    2013-01-01

    Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood–Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent–ocean interface via the ATP synthase, (iii) harnessing of Na+ gradients generated by H+/Na+ antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type ‘reduced iron → reduced carbon’ at the beginning of bioenergetic evolution

  12. Valsequillo biostratigraphy. IV: Proboscidean ecospecies in Paleoindian sites.

    Science.gov (United States)

    Pichardo, M

    2001-03-01

    Five proboscidean species have been found in Paleoindian sites from North to South America: two open-country adaptations, Mammuthus columbi and Cuvieronius tarijensis, two woodland and riparian forms, Mammut americanum and Mammuthus jeffersonii, and one tropical savanna species, Haplomastodon chimborazi. Their value in biostratigraphy and as ecological index fossils is discussed with particular emphasis on the Central Mexican Paleoindian sites.

  13. Early cellular evolution.

    Science.gov (United States)

    Margulis, L.

    1972-01-01

    Study of the evolutionary developments that occurred subsequent to the origin of ancestral cells. Microbial physiology and ecology are potential sharp tools for shaping concepts of microbial evolution. Some popular unjustified assumptions are discussed. It is considered that certain principles derived mainly from the advances of molecular biology can be used to order the natural groups (genera) of extant prokaryotes and their patterns phylogenetically.

  14. Shoulder height, body mass and shape of proboscideans

    Directory of Open Access Journals (Sweden)

    Asier Larramendi

    2016-08-01

    Full Text Available In recent decades there has been a growing interest in proboscideans’ body size, given that mass is highly correlated with biological functions. Different allometric equations have been proposed in the recent decades to estimate their body masses, based on a large number of living examples. However, the results obtained by these formulae are not accurate because extinct animals often had different body proportions and some were outside the size range of extant samples. Here the body mass of a large number of extinct proboscideans has been calculated by the Graphic Double Integration volumetric method which is based on technical restorations from graphical reconstructions of fossils employing photos, measurements and comparative anatomy of extant forms. The method has been tested on extant elephants with highly accurate results. The reconstructions necessary to apply this method give important information such as body proportions. On the other hand, equations to calculate the skeletal shoulder height have been developed, with a large number of published shoulder heights being recalculated. From the shoulder heights, several equations were created to find out the body mass of a series of extant and extinct species. A few of the largest proboscideans, namely Mammut borsoni and Palaeoloxodon namadicus, were found out to have reached and surpassed the body size of the largest indricotheres. Bearing this in mind, the largest land mammal that ever existed seems to be within the order of Proboscidea, contrary to previous understanding.

  15. Geographic and temporal trends in proboscidean and human radiocarbon histories during the late Pleistocene

    Science.gov (United States)

    Ugan, Andrew; Byers, David

    2007-12-01

    The causes of large animal extinctions at the end of the Pleistocene remain a hotly debated topic focused primarily on the effects of human over hunting and climate change. Here we examine multiple, large radiocarbon data sets for humans and extinct proboscideans and explore how variation in their temporal and geographic distributions were related prior to proboscidean extinction. These data include 4532 archaeological determinations from Europe and Siberia and 1177 mammoth and mastodont determinations from Europe, Siberia, and North America. All span the period from 45,000 to 12,000 calendar years BP. We show that while the geographic ranges of dated human occupations and proboscidean remains overlap across the terminal Pleistocene of the Old World, the two groups remain largely segregated and increases in the frequency of human occupations do not coincide with declines in proboscidean remains. Prior to the Last Glacial Maximum (LGM; ca 21,000 years BP), archaeological 14C determinations increase slightly in frequency worldwide while the frequency of dated proboscidean remains varies depending on taxon and location. After the LGM, both sympatric and allopatric groups of humans and proboscideans increase sharply as climatic conditions ameliorate. Post-LGM radiocarbon frequencies among proboscideans peak at different times, also depending upon taxon and location. Woolly mammoths in Beringia reach a maximum and then decline beginning between 16,000 and 15,500 years BP, woolly mammoths in Europe and Siberia ca 14,500 and 13,500 BP, and Columbian mammoth and American mastodont only after 13,000 BP. Declines among woolly mammoths appear to coincide with the restructuring of biotic communities following the Pleistocene-Holocene transition.

  16. Early evolution stage of AGN

    Science.gov (United States)

    Kunert-Bajraszewska, M.; Labiano, A.; Siemiginowska, A.; Guainazzi, M.; Gawroński, M.

    2015-03-01

    Radio sources are divided into two distinct morphological groups of objects: Fanaroff-Riley type I and type II sources. There is a relatively sharp luminosity boundary between these at low frequency. The nature of the FR division is still an open issue, as are the details of the evolutionary process in which younger and smaller GHz-peaked spectrum (GPS) and compact steep spectrum (CSS) sources become large-scale radio structures. It is still unclear whether FRII objects evolve to become FRIs, or whether a division has already occurred amongst CSS sources and some of these then become FRIs and some FRIIs. We explored evolution scenarios of AGNs using new radio, optical and X-ray data of unstudied so far Low Luminosity Compact (LLC) sources. We suggest that the determining factors of the further evolution of compact radio objects could occur at subgalactic (or even nuclear) scales, or they could be related to the radio jet - interstellar medium (ISM) interactions and evolution. Our studies show that the evolutionary track could be related to the interaction, strength of the radio source and excitation levels of the ionized gas instead of the radio morphology of the young radio source.

  17. Early dust evolution in protostellar accretion disks

    OpenAIRE

    2000-01-01

    We investigate dust dynamics and evolution during the formation of a protostellar accretion disk around intermediate mass stars via 2D numerical simulations. Using three different detailed dust models, compact spherical particles, fractal BPCA grains, and BCCA grains, we find that even during the early collapse and the first 10,000 yr of dynamical disk evolution, the initial dust size distribution is strongly modified. Close to the disk's midplane coagulation produces dust particles of sizes ...

  18. Multiplicity in Early Stellar Evolution

    CERN Document Server

    Reipurth, Bo; Boss, Alan P; Goodwin, Simon P; Rodriguez, Luis Felipe; Stassun, Keivan G; Tokovinin, Andrei; Zinnecker, Hans

    2014-01-01

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of Class 0 protostars with mm interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of Class I protostars show a lower binary frequency relative to the Class 0 phase, a declining trend that continues through the Class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influenc...

  19. The Early Flowers and Angiosperm Evolution

    DEFF Research Database (Denmark)

    Friis, Else Marie; Crane, P.R.; Pedersen, Kaj Raunsgaard

    The recent discovery of diverse fossil flowers and floral organs in Cretaceous strata has revealed astonishing details about the structural and systematic diversity of early angiosperms. Exploring the rich fossil record that has accumulated over the last three decades, this is a unique study...... based on research into Early and Late Cretaceous fossil floras from Europe and North America, the authors draw on direct palaeontological evidence of the pattern of angiosperm evolution through time. Synthesising palaeobotanical data with information from living plants, this unique book explores...... the latest research in the field, highlighting connections with phylogenetic systematics, structure and the biology of extant angiosperms....

  20. Human evolution. Evolution of early Homo: an integrated biological perspective.

    Science.gov (United States)

    Antón, Susan C; Potts, Richard; Aiello, Leslie C

    2014-07-04

    Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments.

  1. Origin and early evolution of photosynthesis

    Science.gov (United States)

    Blankenship, R. E.

    1992-01-01

    Photosynthesis was well-established on the earth at least 3.5 thousand million years ago, and it is widely believed that these ancient organisms had similar metabolic capabilities to modern cyanobacteria. This requires that development of two photosystems and the oxygen evolution capability occurred very early in the earth's history, and that a presumed phase of evolution involving non-oxygen evolving photosynthetic organisms took place even earlier. The evolutionary relationships of the reaction center complexes found in all the classes of currently existing organisms have been analyzed using sequence analysis and biophysical measurements. The results indicate that all reaction centers fall into two basic groups, those with pheophytin and a pair of quinones as early acceptors, and those with iron sulfur clusters as early acceptors. No simple linear branching evolutionary scheme can account for the distribution patterns of reaction centers in existing photosynthetic organisms, and lateral transfer of genetic information is considered as a likely possibility. Possible scenarios for the development of primitive reaction centers into the heterodimeric protein structures found in existing reaction centers and for the development of organisms with two linked photosystems are presented.

  2. The Early Flowers and Angiosperm Evolution

    DEFF Research Database (Denmark)

    Friis, Else Marie; Crane, P.R.; Pedersen, Kaj Raunsgaard

    of the evolutionary history of flowering plants from their earliest phases in obscurity to their dominance in modern vegetation. The discussion provides comprehensive biological and geological background information, before moving on to summarise the fossil record in detail. Including previously unpublished results...... based on research into Early and Late Cretaceous fossil floras from Europe and North America, the authors draw on direct palaeontological evidence of the pattern of angiosperm evolution through time. Synthesising palaeobotanical data with information from living plants, this unique book explores...

  3. Climate and humans set the place and time of Proboscidean extinction in late Quaternary of South America

    DEFF Research Database (Denmark)

    Lima-Ribeiro, Matheus Souza; Nogues, David Bravo; Terribile, Levi Carina

    2013-01-01

    (ENMs) and modeled the timing for extinction under human hunting scenario, and both variables were used to explain the extinction dynamics of Proboscideans during a full interglacial/glacial cycle (from 126 ka to 6 ka) in South America. We found a large contraction in the geographic range size of two...... Proboscidean species studied (Cuvieronius hyodon and Notiomastodon platensis) across time. The largest contractions of their geographical ranges occurred in the northern part of South America, where we previously reported no evidence of coexistence among earliest humans and non-sloth megafauna, including...... on scattered patches of suitable habitats (i.e., refugia) around 11 ka, period in which the earliest humans potentially arrived in South America, increasing the population density thereafter. Under this overall unsuitable climatic condition at 11 ka, both Proboscideans would be extinct after around 550 years...

  4. Early dynamical evolution of young substructured clusters

    Science.gov (United States)

    Dorval, Julien; Boily, Christian

    2017-03-01

    Stellar clusters form with a high level of substructure, inherited from the molecular cloud and the star formation process. Evidence from observations and simulations also indicate the stars in such young clusters form a subvirial system. The subsequent dynamical evolution can cause important mass loss, ejecting a large part of the birth population in the field. It can also imprint the stellar population and still be inferred from observations of evolved clusters. Nbody simulations allow a better understanding of these early twists and turns, given realistic initial conditions. Nowadays, substructured, clumpy young clusters are usually obtained through pseudo-fractal growth and velocity inheritance. We introduce a new way to create clumpy initial conditions through a ''Hubble expansion'' which naturally produces self consistent clumps, velocity-wise. In depth analysis of the resulting clumps shows consistency with hydrodynamical simulations of young star clusters. We use these initial conditions to investigate the dynamical evolution of young subvirial clusters. We find the collapse to be soft, with hierarchical merging leading to a high level of mass segregation. The subsequent evolution is less pronounced than the equilibrium achieved from a cold collapse formation scenario.

  5. Fossil evidence for the early ant evolution

    Science.gov (United States)

    Perrichot, Vincent; Lacau, Sébastien; Néraudeau, Didier; Nel, André

    2008-02-01

    Ants are one of the most studied insects in the world; and the literature devoted to their origin and evolution, systematics, ecology, or interactions with plants, fungi and other organisms is prolific. However, no consensus yet exists on the age estimate of the first Formicidae or on the origin of their eusociality. We review the fossil and biogeographical record of all known Cretaceous ants. We discuss the possible origin of the Formicidae with emphasis on the most primitive subfamily Sphecomyrminae according to its distribution and the Early Cretaceous palaeogeography. And we review the evidence of true castes and eusociality of the early ants regarding their morphological features and their manner of preservation in amber. The mid-Cretaceous amber forest from south-western France where some of the oldest known ants lived, corresponded to a moist tropical forest close to the shore with a dominance of gymnosperm trees but where angiosperms (flowering plants) were already diversified. This palaeoenvironmental reconstruction supports an initial radiation of ants in forest ground litter coincident with the rise of angiosperms, as recently proposed as an ecological explanation for their origin and successful evolution.

  6. Environment and Climate of Early Human Evolution

    Science.gov (United States)

    Levin, Naomi E.

    2015-05-01

    Evaluating the relationships between climate, the environment, and human traits is a key part of human origins research because changes in Earth's atmosphere, oceans, landscapes, and ecosystems over the past 10 Myr shaped the selection pressures experienced by early humans. In Africa, these relationships have been influenced by a combination of high-latitude ice distributions, sea surface temperatures, and low-latitude orbital forcing that resulted in large oscillations in vegetation and moisture availability that were modulated by local basin dynamics. The importance of both climate and tectonics in shaping African landscapes means that integrated views of the ecological, environmental, and tectonic histories of a region are necessary in order to understand the relationships between climate and human evolution.

  7. The early evolution of massive black holes

    CERN Document Server

    Volonteri, Marta

    2009-01-01

    Massive black holes are nowadays believed to reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~0.1%), are linked to the evolution of galactic structure. When did it all start? In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for `seed' black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.

  8. Spinal cord evolution in early Homo.

    Science.gov (United States)

    Meyer, Marc R; Haeusler, Martin

    2015-11-01

    The discovery at Nariokotome of the Homo erectus skeleton KNM-WT 15000, with a narrow spinal canal, seemed to show that this relatively large-brained hominin retained the primitive spinal cord size of African apes and that brain size expansion preceded postcranial neurological evolution. Here we compare the size and shape of the KNM-WT 15000 spinal canal with modern and fossil taxa including H. erectus from Dmanisi, Homo antecessor, the European middle Pleistocene hominins from Sima de los Huesos, and Pan troglodytes. In terms of shape and absolute and relative size of the spinal canal, we find all of the Dmanisi and most of the vertebrae of KNM-WT 15000 are within the human range of variation except for the C7, T2, and T3 of KNM-WT 15000, which are constricted, suggesting spinal stenosis. While additional fossils might definitively indicate whether H. erectus had evolved a human-like enlarged spinal canal, the evidence from the Dmanisi spinal canal and the unaffected levels of KNM-WT 15000 show that unlike Australopithecus, H. erectus had a spinal canal size and shape equivalent to that of modern humans. Subadult status is unlikely to affect our results, as spinal canal growth is complete in both individuals. We contest the notion that vertebrae yield information about respiratory control or language evolution, but suggest that, like H. antecessor and European middle Pleistocene hominins from Sima de los Huesos, early Homo possessed a postcranial neurological endowment roughly commensurate to modern humans, with implications for neurological, structural, and vascular improvements over Pan and Australopithecus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. The Early Evolution of Mars' Crust

    Science.gov (United States)

    Samuel, H.; Baratoux, D.; Kurita, K.

    2014-12-01

    The Mars crustal density and thickness have been recently re-evaluated using petrological constraints from remote sensing, in-situ data, and SNC meteorites. This work indicates that the present-day Martian crust is denser and thicker than previously proposed if essentially basaltic in composition. As a consequence, the average crustal thickness would be commensurable with the depth of the basalt/eclogite transition, re-opening the question of crustal recycling on Early Mars and more generally throughout all its history. We have therefore investigated the conditions under which a thick ancient crust with an eclogitic root could survive through the history of Mars using numerical modelling. Delamination may occur if the combination of poorly constrained physical parameters induces the presence of gravitationally unstable layers and favors a rheological decoupling. To study the conditions and the time scales for the occurrence of crustal delamination on Mars, we investigated the influence of critical parameters for a plausible range of values corresponding to the Martian mantle. For each case we follow the dynamic evolution over geological times of a three-layer system (i.e., crust-mantle with a distinction between low pressure, buoyant basaltic crust and higher pressure, denser eclogitic material). We systematically varied four governing parameters within plausible ranges: (1) the basalt-eclogite transition depth, (2) the density difference between the mantle and the basaltic crust, (3) the density difference between the eclogitic crust and the lithosphere & mantle, (4) the viscous rheology. These experiments allow determining the average Martian crustal thickness at early and late evolutionary stages.

  10. On the Early Evolution of Young Starbursts

    CERN Document Server

    Rosa-Gonzalez, Daniel; Terlevich, Elena; Terlevich, Roberto

    2009-01-01

    We studied the radio properties of very young massive regions of star formation in HII galaxies, with the aim of detecting episodes of recent star formation in an early phase of evolution where the first supernovae start to appear. The observed radio spectral energy distribution (SED) covers a behaviour range; 1) there are galaxies where the SED is characterized by a synchrotron-type slope, 2) galaxies with a thermal slope, and 3) galaxies with possible free-free absorption at long wavelengths. The latter SED represents a signature of massive star clusters that are still well inside the progenitor molecular cloud. Based on the comparison of the star formation rates (SFR) determined from the recombination lines and those determined from the radio emission we find that SFR(Ha) is on average five times higher than SFR(1.4 GHz). These results suggest that the emission of these galaxies is dominated by a recent and massive star formation event in which the first supernovae (SN) just started to explode. We conclude...

  11. The early evolution of protostellar disks

    Science.gov (United States)

    Stahler, Steven W.; Korycansky, D. G.; Brothers, Maxwell J.; Touma, Jihad

    1994-01-01

    We consider the origin and intital growth of the disks that form around protostars during the collapse of rotating molecular cloud cores. These disks are assumed to be inviscid and pressure free, and to have masses small compared to those of their central stars. We find that there exist three distinct components-an outer disk, in which shocked gas moves with comparable azimuthal and radical velocities; and inner disk, where material follows nearly circular orbits, but spirals slowly toward the star because of the drag exerted by adjacent onfalling matter, and a turbulent ring adjoining the first two regions. Early in the evolution, i.e., soon after infalling matter begins to miss the star, only the outer disk is present, and the total mass acceration rate onto the protostar is undiminished. Once the outer disk boundary grows to more than 2.9 times the stellar radius, first the ring, and then the inner disk appear. Thereafter, the radii of all three components expand as t(exp 3). The mass of the ring increase with time and is always 13% of the total mass that has fallen from the cloud. Concurrently with the buildup of the inner disk and ring, the accretion rate onto the star falls off. However, the protostellar mass continue to rise, asymptotically as t(exp 1/4). We calculated the radiated flux from the inner and outer disk components due to the release of gravitational potential energy. The flux from the inner disk is dominant and rises steeply toward the stellar surface. We also determine the surface temperature of the inner disk as a function of radius. The total disk luminosity decreases slowly with time, while the contributions from the ring and inner disk both fall as t(exp -2).

  12. Proboscidean DNA from museum and fossil specimens: an assessment of ancient DNA extraction and amplification techniques.

    Science.gov (United States)

    Yang, H; Golenberg, E M; Shoshani, J

    1997-06-01

    Applications of reliable DNA extraction and amplification techniques to postmortem samples are critical to ancient DNA research. Commonly used methods for isolating DNA from ancient material were tested and compared using both soft tissue and bones from fossil and contemporary museum proboscideans. DNAs isolated using three principal methods served as templates in subsequent PCR amplifications, and the PCR products were directly sequenced. Authentication of the ancient origin of obtained nucleotide sequences was established by demonstrating reproducibility under a blind testing system and by phylogenetic analysis. Our results indicate that ancient samples may respond differently to extraction buffers or purification procedures, and no single method was universally successful. A CTAB buffer method, modified from plant DNA extraction protocols, was found to have the highest success rate. Nested PCR was shown to be a reliable approach to amplify ancient DNA templates that failed in primary amplification.

  13. Natural evidence for chemical and early biological evolution

    Science.gov (United States)

    Kvenvolden, K. A.

    1974-01-01

    Oparin (1924) and Haldane (1929) have independently hypothesized that life arose under reducing conditions through an evolutionary sequence of events involving increasingly complex organic substances. The natural evidence for this hypothesis of chemical evolution is considered, giving particular attention to tangible samples which have been chemically analyzed in earth-bound laboratories. It is found that meteorites provide naturally occurring evidence in support of chemical evolution, but not of biological evolution. Studies on the early Precambrian Swaziland Sequence and the Bulawayan System of southern Africa provide evidence for very early biological evolution.

  14. The early history of chance in evolution.

    Science.gov (United States)

    Pence, Charles H

    2015-04-01

    Work throughout the history and philosophy of biology frequently employs 'chance', 'unpredictability', 'probability', and many similar terms. One common way of understanding how these concepts were introduced in evolution focuses on two central issues: the first use of statistical methods in evolution (Galton), and the first use of the concept of "objective chance" in evolution (Wright). I argue that while this approach has merit, it fails to fully capture interesting philosophical reflections on the role of chance expounded by two of Galton's students, Karl Pearson and W.F.R. Weldon. Considering a question more familiar from contemporary philosophy of biology--the relationship between our statistical theories of evolution and the processes in the world those theories describe--is, I claim, a more fruitful way to approach both these two historical actors and the broader development of chance in evolution.

  15. Transformation and diversification in early mammal evolution.

    Science.gov (United States)

    Luo, Zhe-Xi

    2007-12-13

    Evolution of the earliest mammals shows successive episodes of diversification. Lineage-splitting in Mesozoic mammals is coupled with many independent evolutionary experiments and ecological specializations. Classic scenarios of mammalian morphological evolution tend to posit an orderly acquisition of key evolutionary innovations leading to adaptive diversification, but newly discovered fossils show that evolution of such key characters as the middle ear and the tribosphenic teeth is far more labile among Mesozoic mammals. Successive diversifications of Mesozoic mammal groups multiplied the opportunities for many dead-end lineages to iteratively evolve developmental homoplasies and convergent ecological specializations, parallel to those in modern mammal groups.

  16. Stochastic evolution of cosmological parameters in the early universe

    Indian Academy of Sciences (India)

    C Sivakumar; Moncy V John; K Babu Joseph

    2001-04-01

    We develop a stochastic formulation of cosmology in the early universe, after considering the scatter in the redshift-apparent magnitude diagram in the early epochs as an observational evidence for the non-deterministic evolution of early universe. We consider the stochastic evolution of density parameter in the early universe after the inflationary phase qualitatively, under the assumption of fluctuating factor in the equation of state, in the Fokker–Planck formalism. Since the scale factor for the universe depends on the energy density, from the coupled Friedmann equations we calculated the two variable probability distribution function assuming a flat space geometry

  17. Salient features in locomotor evolutionary adaptations of proboscideans revealed via the differential scaling of limb long bones

    OpenAIRE

    2009-01-01

    The standard differential scaling of proportions in limb long bones (length against circumference) is applied to a phylogenetically wide sample of the Proboscidea, Elephantidae and the Asian (Elephas maximus) and African elephant (Loxodonta africana). In order to investigate allometric patterns in proboscideans and terrestrial mammals with parasagittal limb kinematics, the computed slopes (slenderness exponents) are compared with published values for mammals and studied within a framework of ...

  18. How could sympatric megaherbivores coexist? Example of niche partitioning within a proboscidean community from the Miocene of Europe

    Science.gov (United States)

    Calandra, Ivan; Göhlich, Ursula B.; Merceron, Gildas

    2008-09-01

    Although low in diversity, megaherbivores (mammals weighting over 103 kg) and especially proboscideans have a powerful impact on the structure and dynamics of present-day ecosystems. During the Neogene (23 to 2.6 Ma) of Europe, the diversity and geographic distribution of these megaherbivores was much greater. Nonetheless, their role in past ecosystems is unclear. Nutrition is one of the main bonds between organisms and their environment. Therefore, the ecology of organisms can be inferred from their dietary habits. The present study is aimed at characterizing the feeding habits of diverse megaherbivores through dental microwear analyses. This method was applied on cheek teeth of three sympatric species of proboscideans from the middle/late Miocene of the Molasse Basin in Southern Germany: Gomphotherium subtapiroideum, Gomphotherium steinheimense, and Deinotherium giganteum. The microwear signatures are significantly different between these taxa, suggesting differences in feeding habits and ecological niches within a woodland environment. D. giganteum probably browsed on dicotyledonous foliages whereas the two species of gomphotheres were neither strict grazers nor strict browsers and instead probably fed on a large spectrum of vegetal resources. The differences of occlusal molar morphology between the two gomphotheres are supported by the dental microwear pattern. Indeed, G. subtapiroideum probably ingested more abrasive material than G. steinheimense. Thus, our results suggest that these proboscideans did not compete for food resources.

  19. Directly detecting the evolution of early-type galaxies

    NARCIS (Netherlands)

    Trager, Scott; Faber, SM; Dressler, A; Renzini, A; Bender, R

    2005-01-01

    We describe observations focused on understanding the epochs and timescales of the formation and evolution of early-type galaxies, particularly those in clusters. We show that while early-type cluster galaxies are on average older and closer to coeval than their counterparts in the field, significan

  20. Continuing Evolution: The Rhode Island Early Childhood Summer Institute

    Science.gov (United States)

    Horm, Diane M.; O'Keefe, Beverly; Diffendale, Charlotte; Cohen, Amy; Schennum, Ruth; Pucciarelli, Larry; Collins, Cheryl; Merrifield, Margaret; Nardone, Virginia; Martin, Marilyn; Bryan, Linda; DeRobbio, Gail

    2004-01-01

    This narrative chronicles the continued evolution and development of the Rhode Island Early Childhood Summer Institute, an intensive 5-day inservice professional development program designed for educational leaders from various sectors of the early care and education field. The goal is to review the continued use of successful practices…

  1. Early Phases of Protoplanetary Disk Evolution

    NARCIS (Netherlands)

    Kamp, Inga; Macchetto, FD

    2010-01-01

    It is widely accepted that planetary systems form from protoplanetary disks, and observations of the dust reveal significant grain growth over timescales of a few million years. However, we know little about the gas processing in the first 10-20 Myr of disk evolution. This is the phase where protopl

  2. The early evolution of cooperation in humans

    NARCIS (Netherlands)

    Czárán, T.; Aanen, Duur K.

    2016-01-01

    The evolution of cooperation is difficult to understand, because cheaters — individuals who profit without cooperating themselves — have a benefit in interaction with cooperators. Cooperation among humans is even more difficult to understand, because cooperation occurs in large groups, making cheati

  3. Early Cretaceous angiosperms and beetle evolution

    OpenAIRE

    Bo eWang; Haichun eZhang; Edmund eJarzembowski

    2013-01-01

    The Coleoptera (beetles) constitute almost one–fourth of all known life-forms on earth. They are also among the most important pollinators of flowering plants, especially basal angiosperms. Beetle fossils are abundant, almost spanning the entire Early Cretaceous, and thus provide important clues to explore the co-evolutionary processes between beetles and angiosperms. We review the fossil record of some Early Cretaceous polyphagan beetles including Tenebrionoidea, Scarabaeoidea, Curculionoide...

  4. A view of early cellular evolution.

    Science.gov (United States)

    Mikelsaar, R

    1987-01-01

    Some recent puzzling data on mitochondria put in question their place on the phylogenetic tree. A hypothesis, the archigenetic hypothesis, is presented, which generally agrees with Woese-Fox's concept of the common origin of eubacteria, archaebacteria, and eukaryotic hosts. However, for the first time, a case is made for the evolution of mitochondria from the ancient predecessors of pro- and eukaryotes (protobionts), not from eubacteria. Animal, fungal, and plant mitochondria are considered to be endosymbionts derived from independent free-living cells (mitobionts), which, having arisen at different developmental stages of protobionts, retained some of their ancient primitive features of the genetic code and the transcription-translation systems. The molecular-biological, bioenergetic, and paleontological aspects of this new concept of cellular evolution are discussed.

  5. Accretion and early evolution of Earth

    DEFF Research Database (Denmark)

    Saji, Nikitha Susan

    -stage impacts had to play in determining the bulk composition as well as pace of the chemical dierentiation and internal dynamics of terrestrial planets - is preserved in the form of isotopic signatures in some of the oldest terrestrial and extraterrestrial samples available to us. A potential means to unravel...... this is by the application of Nd-isotope systematics as the coupled 146;147Sm - 143;142Nd decay system enables the study of chronology of planetary silicate mantles while the stable Nd-isotopes help track the origin and early transport of material. Deciphering this information, however, requires the analytical capability...... in solar system materials is found to be related to selective thermal processing of dust in the early nebula given the correlation observed for these eects with Fe-peak neutron-rich isotope anomalies, whose origin is attributed to distinct nucleosnythetic sites other than classical s-, r- or p...

  6. Evolution of Life Cycles in Early Amphibians

    Science.gov (United States)

    Schoch, Rainer R.

    2009-05-01

    Many modern amphibians have biphasic life cycles with aquatic larvae and terrestrial adults. The central questions are how and when this complicated ontogeny was established, and what is known about the lives of amphibians in the Paleozoic. Fossil evidence has accumulated that sheds light on the life histories of early amphibians, the origin of metamorphosis, and the transition to a fully terrestrial existence. The majority of early amphibians were aquatic or amphibious and underwent only gradual ontogenetic changes. Developmental plasticity played a major role in some taxa but was restricted to minor modification of ontogeny. In the Permo-Carboniferous dissorophoids, a condensation of crucial ontogenetic steps into a short phase (metamorphosis) is observed. It is likely that the origin of both metamorphosis and neoteny falls within these taxa. Fossil evidence also reveals the sequence of evolutionary changes: apparently, the ontogenetic change in feeding, not the transition to a terrestrial existence per se, made a drastic metamorphosis necessary.

  7. The stepwise evolution of early life driven by energy conservation.

    Science.gov (United States)

    Ferry, James G; House, Christopher H

    2006-06-01

    Two main theories have emerged for the origin and early evolution of life based on heterotrophic versus chemoautotrophic metabolisms. With the exception of a role for CO, the theories have little common ground. Here we propose an alternative theory for the early evolution of the cell which combines principal features of the widely disparate theories. The theory is based on the extant pathway for conversion of CO to methane and acetate, largely deduced from the genomic analysis of the archaeon Methanosarcina acetivorans. In contrast to current paradigms, we propose that an energy-conservation pathway was the major force which powered and directed the early evolution of the cell. We envision the proposed primitive energy-conservation pathway to have developed sometime after a period of chemical evolution but prior to the establishment of diverse protein-based anaerobic metabolisms. We further propose that energy conservation played the predominant role in the later evolution of anaerobic metabolisms which explains the origin and evolution of extant methanogenic pathways.

  8. Simulating Stellar Cluster Formation and Early Evolution

    Science.gov (United States)

    Wall, Joshua; McMillan, Stephen L. W.; Mac Low, Mordecai-Mark; Ibañez-Mejia, Juan; Portegies Zwart, Simon; Pellegrino, Andrew

    2017-01-01

    We present our current development of a model of stellar cluster formation and evolution in the presence of stellar feedback. We have integrated the MHD code Flash into the Astrophysical Multi-Use Software Environment (AMUSE) and coupled the gas dynamics to an N-body code using a Fujii gravity bridge. Further we have integrated feedback from radiation using the FERVENT module for Flash, supernovae by thermal and kinetic energy injection, and winds by kinetic energy injection. Finally we have developed a method of implementing star formation using the Jeans criterion of the gas. We present initial results from our cluster formation model in a cloud using self-consistent boundary conditions drawn from a model of supernova-driven interstellar turbulence.

  9. Membrane heredity and early chloroplast evolution.

    Science.gov (United States)

    Cavalier-Smith, T

    2000-04-01

    Membrane heredity was central to the unique symbiogenetic origin from cyanobacteria of chloroplasts in the ancestor of Plantae (green plants, red algae, glaucophytes) and to subsequent lateral transfers of plastids to form even more complex photosynthetic chimeras. Each symbiogenesis integrated disparate genomes and several radically different genetic membranes into a more complex cell. The common ancestor of Plantae evolved transit machinery for plastid protein import. In later secondary symbiogeneses, signal sequences were added to target proteins across host perialgal membranes: independently into green algal plastids (euglenoids, chlorarachneans) and red algal plastids (alveolates, chromists). Conservatism and innovation during early plastid diversification are discussed.

  10. Evolution of an Early Titan Atmosphere: Comment

    CERN Document Server

    Johnson, Robert E; Volkov, Alexey N

    2015-01-01

    Escape of an early atmosphere from Titan, during which time NH3 could be converted by photolysis into the present N2 dominated atmosphere, is an important problem in planetary science. Recently Gilliam and Lerman (2014) estimated escape driven by the surface temperature and pressure, which we show gave loss rates that are orders of magnitude too large. Their model, related to Jeans escape from an isothermal atmosphere, was used to show that escape driven only by surface heating would deplete the atmospheric inventory of N for a suggested Titan accretion temperature of ~355 K. Therefore, they concluded that the accretion temperature must be lower in order to retain the present Titan atmosphere. Here we show that the near surface atmospheric temperature is essentially irrelevant for determining the atmospheric loss rate from Titan and that escape is predominantly driven by solar heating of the upper atmosphere. We also give a rough estimate of the escape rate in the early solar system (~10^4 kg/s) consistent wi...

  11. Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

    OpenAIRE

    Hu, Wenqian; Shin, Yung C.; King, Galen B.

    2012-01-01

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11. Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number den...

  12. The origin and early evolution of dinosaurs.

    Science.gov (United States)

    Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E

    2010-02-01

    The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and

  13. Early Stages of the Evolution of Life: a Cybernetic Approach

    Science.gov (United States)

    Melkikh, Alexey V.; Seleznev, Vladimir D.

    2008-08-01

    Early stages of the evolution of life are considered in terms of control theory. A model is proposed for the transport of substances in a protocell possessing the property of robustness with regard to changes in the environmental concentration of a substance.

  14. The early evolution of the Archegoniatae: a re-appraisal

    NARCIS (Netherlands)

    Meeuse, A.D.J.

    1966-01-01

    After a re-appraisal of the alternative hypotheses concerning the origin and the early evolution of the archegoniate land plants, the postulation of a thalassiophytic group of precursors with free isomorphic alternating generations by Church, Zimmermann, and several others is rejected. Several versi

  15. The early evolution of the Archegoniatae: a re-appraisal

    NARCIS (Netherlands)

    Meeuse, A.D.J.

    1966-01-01

    After a re-appraisal of the alternative hypotheses concerning the origin and the early evolution of the archegoniate land plants, the postulation of a thalassiophytic group of precursors with free isomorphic alternating generations by Church, Zimmermann, and several others is rejected. Several

  16. The early evolution of the atmospheres of terrestrial planets

    CERN Document Server

    Raulin, François; Muller, Christian; Nixon, Conor; Astrophysics and Space Science Proceedings : Volume 35

    2013-01-01

    “The Early Evolution of the Atmospheres of Terrestrial Planets” presents the main processes participating in the atmospheric evolution of terrestrial planets. A group of experts in the different fields provide an update of our current knowledge on this topic. Several papers in this book discuss the key role of nitrogen in the atmospheric evolution of terrestrial planets. The earliest setting and evolution of planetary atmospheres of terrestrial planets is directly associated with accretion, chemical differentiation, outgassing, stochastic impacts, and extremely high energy fluxes from their host stars. This book provides an overview of the present knowledge of the initial atmospheric composition of the terrestrial planets. Additionally it includes some papers about the current exoplanet discoveries and provides additional clues to our understanding of Earth’s transition from a hot accretionary phase into a habitable world. All papers included were reviewed by experts in their respective fields. We are ...

  17. Rates of morphological evolution are heterogeneous in Early Cretaceous birds.

    Science.gov (United States)

    Wang, Min; Lloyd, Graeme T

    2016-04-13

    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap between Archaeopteryx and crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds.

  18. Proboscideans and paleoenvironments of the Pleistocene Great Lakes: landscape, vegetation, and stable isotopes

    Science.gov (United States)

    Metcalfe, Jessica Z.; Longstaffe, Fred J.; Hodgins, Greg

    2013-09-01

    In this study, we review the history of proboscideans in the Great Lakes region (Ontario and western New York) in the context of local glacial and vegetational histories. Further, we investigate mammoth (Mammuthus) and mastodon (Mammut) environmental niche partitioning using stable isotope analysis of bone and dentin collagen (δ13Ccol, δ15Ncol) and structural carbonate in tooth enamel bioapatite (δ13Csc, δ18Osc), and demonstrate that stable isotopes can be used to identify non-locals among museum specimens with no contextual records. New radiocarbon dates suggest that Ontario mastodons lived in tundra-like environments as well as their more common spruce forest habitat. Local Ontario/New York mammoths and mastodons consumed 100% C3-plant diets and drank low-18O waters, consistent with colder-than-modern climates and proximity to glacial meltwater sources. Mammoths and mastodons occupied distinct environmental niches, characterized by different oxygen- and nitrogen-isotope compositions and geographical locations. This suggests that direct competition for resources was not a major factor in their local extinction. We suggest that both mammoths and mastodons obtained water from sources formed primarily from precipitation rather than glacial meltwater. We describe how high δ15N values in mammoths could have been caused by a combination of preferences for dry environments, consumption of low-nutrient forage (particularly stems and stalks), coprophagy, geophagy, and dung fertilization. We argue that low δ15N values in mastodons could have been caused by consumption of trees and shrubs (including nitrogen-fixing taxa) and a preference for recently deglaciated landscapes and/or spruce environments. Finally, we raise the possibility that mastodons contributed to the spruce-pine transition by browsing directly on spruce trees.

  19. Archean komatiite volcanism controlled by the evolution of early continents.

    Science.gov (United States)

    Mole, David R; Fiorentini, Marco L; Thebaud, Nicolas; Cassidy, Kevin F; McCuaig, T Campbell; Kirkland, Christopher L; Romano, Sandra S; Doublier, Michael P; Belousova, Elena A; Barnes, Stephen J; Miller, John

    2014-07-15

    The generation and evolution of Earth's continental crust has played a fundamental role in the development of the planet. Its formation modified the composition of the mantle, contributed to the establishment of the atmosphere, and led to the creation of ecological niches important for early life. Here we show that in the Archean, the formation and stabilization of continents also controlled the location, geochemistry, and volcanology of the hottest preserved lavas on Earth: komatiites. These magmas typically represent 50-30% partial melting of the mantle and subsequently record important information on the thermal and chemical evolution of the Archean-Proterozoic Earth. As a result, it is vital to constrain and understand the processes that govern their localization and emplacement. Here, we combined Lu-Hf isotopes and U-Pb geochronology to map the four-dimensional evolution of the Yilgarn Craton, Western Australia, and reveal the progressive development of an Archean microcontinent. Our results show that in the early Earth, relatively small crustal blocks, analogous to modern microplates, progressively amalgamated to form larger continental masses, and eventually the first cratons. This cratonization process drove the hottest and most voluminous komatiite eruptions to the edge of established continental blocks. The dynamic evolution of the early continents thus directly influenced the addition of deep mantle material to the Archean crust, oceans, and atmosphere, while also providing a fundamental control on the distribution of major magmatic ore deposits.

  20. New advances in understanding the heterohelicid planktic foraminifer early evolution

    Directory of Open Access Journals (Sweden)

    Marius Dan Georgescu

    2013-12-01

    Full Text Available Three Late Cretaceous lineages of heterohelicid planktic foraminifera, which evolved in the proximity of the Cenomanian/Turonian boundary, bring new data in understanding the group evolutionary history. Lunatriella Eicher and Worstell 1970a is a directional lineage of late Cenomanian-early Turonian age, which gradually develops peripheral backward extensions in the last-formed chambers. Steineckia Georgescu 2009a of the Turonian is the earliest heterohelicid lineage that evolved ornamentation consisting of pore mounds; a gap spanning the latest Turonian-early Santonian separates it from Laeviheterohelix Nederbragt 1991 of the late Santonian-Campanian, the second lineage that developed ornamentation consisting of pore mounds. Pseudoplanoglobulina Aliyulla 1977 evolved in the early Turonian and is the first heterohelicid lineage that developed multichamber growth in the adult stage; it became extinct in the Santonian. The three directional lineages show that the iterative and convergent evolution patterns occur extensively in the early heterohelicid history.

  1. Bryophyte diversity and evolution: windows into the early evolution of land plants.

    Science.gov (United States)

    Shaw, A Jonathan; Szövényi, Péter; Shaw, Blanka

    2011-03-01

    The "bryophytes" comprise three phyla of plants united by a similar haploid-dominant life cycle and unbranched sporophytes bearing one sporangium: the liverworts (Marchantiophyta), mosses (Bryophyta), and hornworts (Anthocerophyta). Combined, these groups include some 20000 species. As descendents of embryophytes that diverged before tracheophytes appeared, bryophytes offer unique windows into the early evolution of land plants. We review insights into the evolution of plant life cycles, in particular the elaboration of the sporophyte generation, the major lineages within bryophyte phyla, and reproductive processes that shape patterns of bryophyte evolution. Recent transcriptomic work suggests extensive overlap in gene expression in bryophyte sporophytes vs. gametophytes, but also novel patterns in the sporophyte, supporting Bower's antithetic hypothesis for origin of alternation of generations. Major lineages of liverworts, mosses, and hornworts have been resolved and general patterns of morphological evolution can now be inferred. The life cycles of bryophytes, arguably more similar to those of early embryophytes than are those in any other living plant group, provide unique insights into gametophyte mating patterns, sexual conflicts, and the efficacy and effects of spore dispersal during early land plant evolution.

  2. Molecular clocks and the early evolution of metazoan nervous systems.

    Science.gov (United States)

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. © 2015 The Author(s).

  3. A Hot Climate on Early Earth: Implications to Biospheric Evolution

    Science.gov (United States)

    Schwartzman, D. W.; Knauth, L. P.

    2009-12-01

    There is now robust evidence for a much warmer climate on the early Earth than now. Both oxygen and silicon isotopes in sedimentary chert and the compelling case for a near constant isotopic oxygen composition of seawater over geologic time support thermophilic surface temperatures until about 1.5-2 billion years ago, aside from a glacial episode in the early Proterozoic. This temperature scenario has important implications to biospheric evolution, including a temperature constraint that held back the emergence of major organismal groups, starting with phototrophs. A geophysiology of biospheric evolution raises the potential of similar coevolutionary relationships of life and its environment on Earth-like planets around Sun-like stars.

  4. Early steps in plastid evolution: current ideas and controversies.

    Science.gov (United States)

    Bodył, Andrzej; Mackiewicz, Paweł; Stiller, John W

    2009-11-01

    Some nuclear-encoded proteins are imported into higher plant plastids via the endomembrane (EM) system. Compared with multi-protein Toc and Tic translocons required for most plastid protein import, the relatively uncomplicated nature of EM trafficking led to suggestions that it was the original transport mechanism for nuclear-encoded endosymbiont proteins, and critical for the early stages of plastid evolution. Its apparent simplicity disappears, however, when EM transport is considered in light of selective constraints likely encountered during the conversion of stable endosymbionts into fully integrated organelles. From this perspective it is more parsimonious to presume the early evolution of post-translational protein import via simpler, ancestral forms of modern Toc and Tic plastid translocons, with EM trafficking arising later to accommodate glycosylation and/or protein targeting to multiple cellular locations. This hypothesis is supported by both empirical and comparative data, and is consistent with the relative paucity of EM-based transport to modern primary plastids.

  5. New Radiocarbon Dates on Upper Mid-West Proboscideans: Determining Date Robustness

    Science.gov (United States)

    Hodgins, G.; Widga, C.; Lengyel, S. N.; Saunders, J.; Walker, J. D.

    2013-12-01

    With the objective of refining the picture of Megafaunal extinction patterns in the upper Midwest in the terminal Pleistocene, we have assembled for radiocarbon dating specimens from more than 80 distinct Mammut and Mammuthus remains from potentially late sites. So far, we have measurements for 65 bones, tusks and teeth, nearly double the extant number of published dates . These new specimens were all from museums rather than excavation sites, and 60% were known to be coated with a consolidant. The predominant consolidant was Butvar B-76, however shellac, Elmer's Glue, Glyptol were also noted in the conservation records, or deduced from knowledge of a particular museum's practices. Given the objective of the project is to identify extinction patterns, coupled with the wide prevalence of consolidants amongst the specimen set, it was imperative that testing be carried out to confirm that radiocarbon laboratory protocols removed the consolidants, so that ultimately the dates can be considered robust. To this end, key specimens were dated three times using different sample preparation protocols. These were 1) a solvent extraction followed by a modified Longin-plus -Base continuous flow collagen extraction method used in the NSF-Arizona AMS facility, 2) the solvent/modified Longin method plus ultrafiltration, and 3) solvent/modified Longin method plus hydroxyproline single amino acid dating. Among the specimens subjected to triplicate testing were some of the youngest late Wisconsin proboscidean specimens from the Upper Midwest Region. The data reveal general agreement between the different protocols, and suggested either limited penetration of consolidants into the specimens, or that the standard laboratory cleaning protocols were sufficient to remove traces from deep within bone, tooth or tusk tissue. The preservation of each specimen, recorded in terms of collagen content, C/N ratio and stable isotope values, indicated that most were actually well preserved, implying

  6. Investigation of Early Plasma Evolution Induced by Ultrashort Laser Pulses

    Science.gov (United States)

    Hu, Wenqian; Shin, Yung C.; King, Galen B.

    2012-01-01

    Early plasma is generated owing to high intensity laser irradiation of target and the subsequent target material ionization. Its dynamics plays a significant role in laser-material interaction, especially in the air environment1-11. Early plasma evolution has been captured through pump-probe shadowgraphy1-3 and interferometry1,4-7. However, the studied time frames and applied laser parameter ranges are limited. For example, direct examinations of plasma front locations and electron number densities within a delay time of 100 picosecond (ps) with respect to the laser pulse peak are still very few, especially for the ultrashort pulse of a duration around 100 femtosecond (fs) and a low power density around 1014 W/cm2. Early plasma generated under these conditions has only been captured recently with high temporal and spatial resolutions12. The detailed setup strategy and procedures of this high precision measurement will be illustrated in this paper. The rationale of the measurement is optical pump-probe shadowgraphy: one ultrashort laser pulse is split to a pump pulse and a probe pulse, while the delay time between them can be adjusted by changing their beam path lengths. The pump pulse ablates the target and generates the early plasma, and the probe pulse propagates through the plasma region and detects the non-uniformity of electron number density. In addition, animations are generated using the calculated results from the simulation model of Ref. 12 to illustrate the plasma formation and evolution with a very high resolution (0.04 ~ 1 ps). Both the experimental method and the simulation method can be applied to a broad range of time frames and laser parameters. These methods can be used to examine the early plasma generated not only from metals, but also from semiconductors and insulators. PMID:22806170

  7. Hydrogenation of iron in the early stage of Earth's evolution

    Science.gov (United States)

    Iizuka-Oku, Riko; Yagi, Takehiko; Gotou, Hirotada; Okuchi, Takuo; Hattori, Takanori; Sano-Furukawa, Asami

    2017-01-01

    Density of the Earth's core is lower than that of pure iron and the light element(s) in the core is a long-standing problem. Hydrogen is the most abundant element in the solar system and thus one of the important candidates. However, the dissolution process of hydrogen into iron remained unclear. Here we carry out high-pressure and high-temperature in situ neutron diffraction experiments and clarify that when the mixture of iron and hydrous minerals are heated, iron is hydrogenized soon after the hydrous mineral is dehydrated. This implies that early in the Earth's evolution, as the accumulated primordial material became hotter, the dissolution of hydrogen into iron occurred before any other materials melted. This suggests that hydrogen is likely the first light element dissolved into iron during the Earth's evolution and it may affect the behaviour of the other light elements in the later processes.

  8. Hypermagnetic helicity evolution in early universe: leptogenesis and hypermagnetic diffusion

    OpenAIRE

    Semikoz, V. B.; Smirnov, A.Yu.(Max-Planck-Institute for Nuclear Physics, Saupfercheckweg 1, D-69117, Heidelberg, Germany); Sokoloff, D. D.

    2013-01-01

    We study hypermagnetic helicity and lepton asymmetry evolution in plasma of the early Universe before the electroweak phase transition (EWPT) accounting for chirality flip processes via inverse Higgs decays and sphaleron transitions which violate the left lepton number and wash out the baryon asymmetry of the Universe (BAU). In the scenario where the right electron asymmetry supports the BAU alone through the conservation law $B/3 - L_{eR}=const$ at temperatures $T>T_{RL}\\simeq 10 TeV$ the fo...

  9. Salient features in locomotor evolutionary adaptations of proboscideans revealed via the differential scaling of limb long bones

    CERN Document Server

    Kokshenev, Valery B

    2009-01-01

    The standard differential scaling of proportions in limb long bones (length against circumference) is applied to a phylogenetically wide sample of the Proboscidea, Elephantidae and the Asian (Elephas maximus) and African elephant (Loxodonta africana). In order to investigate allometric patterns in proboscideans and terrestrial mammals with parasagittal limb kinematics, the computed slopes (slenderness exponents) are compared with published values for mammals and studied within a framework of theoretical models of long bone scaling under gravity and muscle forces. Limb bone allometry in E. maximus and the Elephantidae are congruent with adaptation to bending and/or torsion induced by muscular forces during fast locomotion, as in other mammals, whereas limb bones in L. africana appear adapted for coping with the compressive forces of gravity. Consequently, hindlimb bones are expected to be more compliant than forelimb bones in accordance with in vivo studies on elephant locomotory kinetics and kinematics, and t...

  10. The origin and early evolution of life on earth

    Science.gov (United States)

    Oro, J.; Miller, Stanley L.; Lazcano, Antonio

    1990-01-01

    Results of the studies that have provided insights into the cosmic and primitive earth environments are reviewed with emphasis on those environments in which life is thought to have originated. The evidence bearing on the antiquity of life on the earth and the prebiotic significance of organic compounds found in interstellar clouds and in primitive solar-system bodies such as comets, dark asteroids, and carbonaceous chondrites are assessed. The environmental models of the Hadean and early Archean earth are discussed, as well as the prebiotic formation of organic monomers and polymers essential to life. The processes that may have led to the appearance in the Archean of the first cells are considered, and possible effects of these processes on the early steps of biological evolution are analyzed. The significance of these results to the study of the distribution of life in the universe is evaluated.

  11. Early evolution of sexual dimorphism and polygyny in Pinnipedia.

    Science.gov (United States)

    Cullen, Thomas M; Fraser, Danielle; Rybczynski, Natalia; Schröder-Adams, Claudia

    2014-05-01

    Sexual selection is one of the earliest areas of interest in evolutionary biology. And yet, the evolutionary history of sexually dimorphic traits remains poorly characterized for most vertebrate lineages. Here, we report on evidence for the early evolution of dimorphism within a model mammal group, the pinnipeds. Pinnipeds show a range of sexual dimorphism and mating systems that span the extremes of modern mammals, from monomorphic taxa with isolated and dispersed mating to extreme size dimorphism with highly ordered polygynous harem systems. In addition, the degree of dimorphism in pinnipeds is closely tied to mating system, with strongly dimorphic taxa always exhibiting a polygynous system, and more monomorphic taxa possessing weakly polygynous systems. We perform a comparative morphological description, and provide evidence of extreme sexual dimorphism (similar to sea lions), in the Miocene-aged basal pinniped taxon Enaliarctos emlongi. Using a geometric morphometric approach and combining both modern and fossil taxa we show a close correlation between mating system and sex-related cranial dimorphism, and also reconstruct the ancestral mating system of extant pinnipeds as highly polygynous. The results suggest that sexual dimorphism and extreme polygyny in pinnipeds arose by 27 Ma, in association with changing climatic conditions. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  12. Hypermagnetic helicity evolution in early universe: leptogenesis and hypermagnetic diffusion

    CERN Document Server

    Semikoz, V B; Sokoloff, D D

    2013-01-01

    We study hypermagnetic helicity and lepton asymmetry evolution in plasma of the early Universe before the electroweak phase transition (EWPT) accounting for chirality flip processes via inverse Higgs decays and sphaleron transitions which violate the left lepton number and wash out the baryon asymmetry of the Universe (BAU). In the scenario where the right electron asymmetry supports the BAU alone through the conservation law $B/3 - L_{eR}=const$ at temperatures $T>T_{RL}\\simeq 10 TeV$ the following universe cooling leads to the production of a non-zero left lepton (electrons and neutrinos) asymmetry. This is due to the Higgs decays becoming more faster when entering the equilibrium at $T=T_{RL}$ with the universe expansion, $\\Gamma_{RL}\\sim T> H\\sim T^2$, resulting in the parallel evolution of both the right and the left electron asymmetries at $Tevolution proceeds in a self...

  13. The Origin and Early Evolution of Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew; Schweighofer, Karl; Wilson, Michael A.

    2005-01-01

    Membrane proteins mediate functions that are essential to all cells. These functions include transport of ions, nutrients and waste products across cell walls, capture of energy and its transduction into the form usable in chemical reactions, transmission of environmental signals to the interior of the cell, cellular growth and cell volume regulation. In the absence of membrane proteins, ancestors of cell (protocells), would have had only very limited capabilities to communicate with their environment. Thus, it is not surprising that membrane proteins are quite common even in simplest prokaryotic cells. Considering that contemporary membrane channels are large and complex, both structurally and functionally, a question arises how their presumably much simpler ancestors could have emerged, perform functions and diversify in early protobiological evolution. Remarkably, despite their overall complexity, structural motifs in membrane proteins are quite simple, with a-helices being most common. This suggests that these proteins might have evolved from simple building blocks. To explain how these blocks could have organized into functional structures, we performed large-scale, accurate computer simulations of folding peptides at a water-membrane interface, their insertion into the membrane, self-assembly into higher-order structures and function. The results of these simulations, combined with analysis of structural and functional experimental data led to the first integrated view of the origin and early evolution of membrane proteins.

  14. On the origin and early evolution of biological catalysis and other studies on chemical evolution

    Science.gov (United States)

    Oro, J.; Lazcano, A.

    1991-01-01

    One of the lines of research in molecular evolution which we have developed for the past three years is related to the experimental and theoretical study of the origin and early evolution of biological catalysis. In an attempt to understand the nature of the first peptidic catalysts and coenzymes, we have achieved the non-enzymatic synthesis of the coenzymes ADPG, GDPG, and CDP-ethanolamine, under conditions considered to have been prevalent on the primitive Earth. We have also accomplished the prebiotic synthesis of histidine, as well as histidyl-histidine, and we have measured the enhancing effects of this catalytic dipeptide on the dephosphorylation of deoxyribonucleotide monophosphates, the hydrolysis of oligo A, and the oligomerization 2', 3' cAMP. We reviewed and further developed the hypothesis that RNA preceded double stranded DNA molecules as a reservoir of cellular genetic information. This led us to undertake the study of extant RNA polymerases in an attempt to discover vestigial sequences preserved from early Archean times. In addition, we continued our studies of on the chemical evolution of organic compounds in the solar system and beyond.

  15. Clades reach highest morphological disparity early in their evolution

    Science.gov (United States)

    Hughes, Martin; Gerber, Sylvain; Albion Wills, Matthew

    2013-08-01

    There are few putative macroevolutionary trends or rules that withstand scrutiny. Here, we test and verify the purported tendency for animal clades to reach their maximum morphological variety relatively early in their evolutionary histories (early high disparity). We present a meta-analysis of 98 metazoan clades radiating throughout the Phanerozoic. The disparity profiles of groups through time are summarized in terms of their center of gravity (CG), with values above and below 0.50 indicating top- and bottom-heaviness, respectively. Clades that terminate at one of the "big five" mass extinction events tend to have truncated trajectories, with a significantly top-heavy CG distribution overall. The remaining 63 clades show the opposite tendency, with a significantly bottom-heavy mean CG (relatively early high disparity). Resampling tests are used to identify groups with a CG significantly above or below 0.50; clades not terminating at a mass extinction are three times more likely to be significantly bottom-heavy than top-heavy. Overall, there is no clear temporal trend in disparity profile shapes from the Cambrian to the Recent, and early high disparity is the predominant pattern throughout the Phanerozoic. Our results do not allow us to distinguish between ecological and developmental explanations for this phenomenon. To the extent that ecology has a role, however, the paucity of bottom-heavy clades radiating in the immediate wake of mass extinctions suggests that early high disparity more probably results from the evolution of key apomorphies at the base of clades rather than from physical drivers or catastrophic ecospace clearing.

  16. The early evolution of Jean Piaget's clinical method.

    Science.gov (United States)

    Mayer, Susan Jean

    2005-11-01

    This article analyzes the early evolution of Jean Piaget's renowned "clinical method" in order to investigate the method's strikingly original and generative character. Throughout his 1st decade in the field, Piaget frequently discussed and justified the many different approaches to data collection he used. Analysis of his methodological progression during this period reveals that Piaget's determination to access the genuine convictions of children eventually led him to combine 3 distinct traditions in which he had been trained-naturalistic observation, psychometrics, and the psychiatric clinical examination. It was in this amalgam, first evident in his 4th text, that Piaget discovered the clinical dynamic that would drive the classic experiments for which he is most well known.

  17. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution.

    Science.gov (United States)

    Slack, Kerryn E; Jones, Craig M; Ando, Tatsuro; Harrison, G L Abby; Fordyce, R Ewan; Arnason, Ulfur; Penny, David

    2006-06-01

    Testing models of macroevolution, and especially the sufficiency of microevolutionary processes, requires good collaboration between molecular biologists and paleontologists. We report such a test for events around the Late Cretaceous by describing the earliest penguin fossils, analyzing complete mitochondrial genomes from an albatross, a petrel, and a loon, and describe the gradual decline of pterosaurs at the same time modern birds radiate. The penguin fossils comprise four naturally associated skeletons from the New Zealand Waipara Greensand, a Paleocene (early Tertiary) formation just above a well-known Cretaceous/Tertiary boundary site. The fossils, in a new genus (Waimanu), provide a lower estimate of 61-62 Ma for the divergence between penguins and other birds and thus establish a reliable calibration point for avian evolution. Combining fossil calibration points, DNA sequences, maximum likelihood, and Bayesian analysis, the penguin calibrations imply a radiation of modern (crown group) birds in the Late Cretaceous. This includes a conservative estimate that modern sea and shorebird lineages diverged at least by the Late Cretaceous about 74 +/- 3 Ma (Campanian). It is clear that modern birds from at least the latest Cretaceous lived at the same time as archaic birds including Hesperornis, Ichthyornis, and the diverse Enantiornithiformes. Pterosaurs, which also coexisted with early crown birds, show notable changes through the Late Cretaceous. There was a decrease in taxonomic diversity, and small- to medium-sized species disappeared well before the end of the Cretaceous. A simple reading of the fossil record might suggest competitive interactions with birds, but much more needs to be understood about pterosaur life histories. Additional fossils and molecular data are still required to help understand the role of biotic interactions in the evolution of Late Cretaceous birds and thus to test that the mechanisms of microevolution are sufficient to explain

  18. The emergence and early evolution of biological carbon-fixation.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available The fixation of CO₂ into living matter sustains all life on Earth, and embeds the biosphere within geochemistry. The six known chemical pathways used by extant organisms for this function are recognized to have overlaps, but their evolution is incompletely understood. Here we reconstruct the complete early evolutionary history of biological carbon-fixation, relating all modern pathways to a single ancestral form. We find that innovations in carbon-fixation were the foundation for most major early divergences in the tree of life. These findings are based on a novel method that fully integrates metabolic and phylogenetic constraints. Comparing gene-profiles across the metabolic cores of deep-branching organisms and requiring that they are capable of synthesizing all their biomass components leads to the surprising conclusion that the most common form for deep-branching autotrophic carbon-fixation combines two disconnected sub-networks, each supplying carbon to distinct biomass components. One of these is a linear folate-based pathway of CO₂ reduction previously only recognized as a fixation route in the complete Wood-Ljungdahl pathway, but which more generally may exclude the final step of synthesizing acetyl-CoA. Using metabolic constraints we then reconstruct a "phylometabolic" tree with a high degree of parsimony that traces the evolution of complete carbon-fixation pathways, and has a clear structure down to the root. This tree requires few instances of lateral gene transfer or convergence, and instead suggests a simple evolutionary dynamic in which all divergences have primary environmental causes. Energy optimization and oxygen toxicity are the two strongest forces of selection. The root of this tree combines the reductive citric acid cycle and the Wood-Ljungdahl pathway into a single connected network. This linked network lacks the selective optimization of modern fixation pathways but its redundancy leads to a more robust topology

  19. Probing early-type galaxy evolution with the Kormendy relation

    CERN Document Server

    Ziegler, B L; Bender, R; Belloni, P; Greggio, L; Seitz, S

    1999-01-01

    We investigate the evolution of early-type galaxies in four clusters at z=0.4 (Abell370, Cl0303+17, Cl0939+47 and Cl1447+26) and in one at z=0.55 (Cl0016+16). The galaxies are selected according to their spectrophotometrically determined spectral types and comprise the morphological classes E, S0 and Sa galaxies. Structural parameters are determined by a two-component fitting of the surface brightness profiles derived from HST images. Exploring a realistic range of K-corrections using Bruzual and Charlot models, we construct the rest-frame B-band Kormendy relations (mu_e-log(R_e)) for the different clusters. We do not detect a systematic change of the slope of the relation as a function of redshift. We discuss in detail how the luminosity evolution, derived by comparing the Kormendy relations of the distant clusters with the local one for Coma, depends on various assumptions and give a full description of random and systematic errors by exploring the influences of selection bias, different star formation hist...

  20. Origins and Early Evolution of the tRNA Molecule

    Directory of Open Access Journals (Sweden)

    Koji Tamura

    2015-12-01

    Full Text Available Modern transfer RNAs (tRNAs are composed of ~76 nucleotides and play an important role as “adaptor” molecules that mediate the translation of information from messenger RNAs (mRNAs. Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RNAs. A minihelix (a coaxial stack of the acceptor stem on the T-stem of tRNA can function both in aminoacylation by aminoacyl tRNA synthetases and in peptide bond formation on the ribosome, indicating that it may be a vestige of the ancestral tRNA. The universal CCA-3′ terminus of tRNA is also a typical characteristic of the molecule. “Why CCA?” is the fundamental unanswered question, but several findings give a comprehensive picture of its origin. Here, the origins and early evolution of tRNA are discussed in terms of various perspectives, including nucleotide ligation, chiral selectivity of amino acids, genetic code evolution, and the organization of the ribosomal peptidyl transferase center (PTC. The proto-tRNA molecules may have evolved not only as adaptors but also as contributors to the composition of the ribosome.

  1. Transposable elements and early evolution of sex chromosomes in fish.

    Science.gov (United States)

    Chalopin, Domitille; Volff, Jean-Nicolas; Galiana, Delphine; Anderson, Jennifer L; Schartl, Manfred

    2015-09-01

    In many organisms, the sex chromosome pair can be recognized due to heteromorphy; the Y and W chromosomes have often lost many genes due to the absence of recombination during meiosis and are frequently heterochromatic. Repetitive sequences are found at a high proportion on such heterochromatic sex chromosomes and the evolution and emergence of sex chromosomes has been connected to the dynamics of repeats and transposable elements. With an amazing plasticity of sex determination mechanisms and numerous instances of independent emergence of novel sex chromosomes, fish represent an excellent lineage to investigate the early stages of sex chromosome differentiation, where sex chromosomes often are homomorphic and not heterochromatic. We have analyzed the composition, distribution, and relative age of TEs from available sex chromosome sequences of seven teleost fish. We observed recent bursts of TEs and simple repeat accumulations around young sex determination loci. More strikingly, we detected transposable element (TE) amplifications not only on the sex determination regions of the Y and W sex chromosomes, but also on the corresponding regions of the X and Z chromosomes. In one species, we also clearly demonstrated that the observed TE-rich sex determination locus originated from a TE-poor genomic region, strengthening the link between TE accumulation and emergence of the sex determination locus. Altogether, our results highlight the role of TEs in the initial steps of differentiation and evolution of sex chromosomes.

  2. East African climate pulses and early human evolution

    Science.gov (United States)

    Maslin, Mark A.; Brierley, Chris M.; Milner, Alice M.; Shultz, Susanne; Trauth, Martin H.; Wilson, Katy E.

    2014-10-01

    Current evidence suggests that all of the major events in hominin evolution have occurred in East Africa. Over the last two decades, there has been intensive work undertaken to understand African palaeoclimate and tectonics in order to put together a coherent picture of how the environment of East Africa has varied in the past. The landscape of East Africa has altered dramatically over the last 10 million years. It has changed from a relatively flat, homogenous region covered with mixed tropical forest, to a varied and heterogeneous environment, with mountains over 4 km high and vegetation ranging from desert to cloud forest. The progressive rifting of East Africa has also generated numerous lake basins, which are highly sensitive to changes in the local precipitation-evaporation regime. There is now evidence that the presence of precession-driven, ephemeral deep-water lakes in East Africa were concurrent with major events in hominin evolution. It seems the unusual geology and climate of East Africa created periods of highly variable local climate, which, it has been suggested could have driven hominin speciation, encephalisation and dispersal out of Africa. One example is the significant hominin speciation and brain expansion event at ˜1.8 Ma that seems to have been coeval with the occurrence of highly variable, extensive, deep-water lakes. This complex, climatically very variable setting inspired first the variability selection hypothesis, which was then the basis for the pulsed climate variability hypothesis. The newer of the two suggests that the long-term drying trend in East Africa was punctuated by episodes of short, alternating periods of extreme humidity and aridity. Both hypotheses, together with other key theories of climate-evolution linkages, are discussed in this paper. Though useful the actual evolution mechanisms, which led to early hominins are still unclear and continue to be debated. However, it is clear that an understanding of East African

  3. Unexpected multiplicity of QRFP receptors in early vertebrate evolution.

    Science.gov (United States)

    Larhammar, Dan; Xu, Bo; Bergqvist, Christina A

    2014-01-01

    The neuropeptide QRFP, also called 26RFa, and its G protein-coupled receptor GPR103 have been identified in all vertebrates investigated. In mammals, this peptide-receptor pair has been found to have several effects including stimulation of appetite. Recently, we reported that a QRFP peptide is present in amphioxus, Branchiostoma floridae, and we also identified a QRFP receptor (QRFPR) that mediates a functional response to sub-nanomolar concentrations of the amphioxus peptide as well as short and long human QRFP (Xu et al., submitted). Because the ancestral vertebrate underwent two tetraploidizations, it might be expected that duplicates of the QRFP gene and its receptor gene may exist. Indeed, we report here the identification of multiple vertebrate QRFPR genes. Three QRFPR genes are present in the coelacanth Latimeria chalumnae, representing an early diverging sarcopterygian lineage. Three QRFPR genes are present in the basal actinopterygian fish, the spotted gar. Phylogenetic and chromosomal analyses show that only two of these receptor genes are orthologous between the two species, thus demonstrating a total of four distinct vertebrate genes. Three of the QRFPR genes resulted from the early vertebrate tetraploidizations and were copied along with syntenic neuropeptide Y receptor genes. The fourth QRFPR gene may be an even older and distinct lineage. Because mammals and birds have only a single QRFPR gene, this means that three genes have been lost in these lineages, and at least one of these was lost independently in mammals and birds because it is still present in a turtle. In conclusion, these results show that the QRFP system gained considerable complexity in the early stages of vertebrate evolution and still maintains much of this in some lineages, and that it has been secondarily reduced in mammals.

  4. Unexpected multiplicity of QRFP receptors in early vertebrate evolution

    Directory of Open Access Journals (Sweden)

    Dan eLarhammar

    2014-10-01

    Full Text Available The neuropeptide QRFP, also called 26RFa, and its G protein-coupled receptor GPR103 have been identified in all vertebrates investigated. In mammals, this peptide-receptor pair has been found to have several effects including stimulation of appetite. Recently, we reported that a QRFP peptide is present in amphioxus, Branchiostoma floridae, and we also identified a QRFP receptor (QRFPR that mediates a functional response to sub-nanomolar concentrations of the amphioxus peptide as well as short and long human QRFP (Xu et al., submitted. Because the ancestral vertebrate underwent two tetraploidizations, it might be expected that duplicates of the QRFP gene and its receptor gene may exist. Indeed, we report here the identification of multiple vertebrate QRFPR genes. Three QRFPR genes are present in the coelacanth Latimeria chalumnae, representing an early diverging sarcopterygian lineage. Three QRFP receptor genes are present in the basal actinopterygian fish, the spotted gar. Phylogenetic and chromosomal analyses show that only two of these receptor genes are orthologous between the two species, thus demonstrating a total of four distinct vertebrate genes. Three of the QRFPR genes resulted from the early vertebrate tetraploidizations and were copied along with syntenic neuropeptide Y receptor genes. The fourth QRFPR gene may be an even older and distinct lineage. Because mammals and birds have only a single QRFP receptor gene, this means that three genes have been lost in these lineages, and at least one of these was lost independently in mammals and birds because it is still present in a turtle. In conclusion, these results show that the QRFP system gained considerable complexity in the early stages of vertebrate evolution and still does so in some lineages, and that it has been secondarily reduced in mammals.

  5. Chloroplast genome evolution in early diverged leptosporangiate ferns.

    Science.gov (United States)

    Kim, Hyoung Tae; Chung, Myong Gi; Kim, Ki-Joong

    2014-05-01

    In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnVGCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

  6. Correlating early evolution of parasitic platyhelminths to Gondwana breakup.

    Science.gov (United States)

    Badets, Mathieu; Whittington, Ian; Lalubin, Fabrice; Allienne, Jean-Francois; Maspimby, Jean-Luc; Bentz, Sophie; Du Preez, Louis H; Barton, Diane; Hasegawa, Hideo; Tandon, Veena; Imkongwapang, Rangpenyuba; Imkongwapang, Rangpenyubai; Ohler, Annemarie; Combes, Claude; Verneau, Olivier

    2011-12-01

    Investigating patterns and processes of parasite diversification over ancient geological periods should involve comparisons of host and parasite phylogenies in a biogeographic context. It has been shown previously that the geographical distribution of host-specific parasites of sarcopterygians was guided, from Palaeozoic to Cainozoic times, mostly by evolution and diversification of their freshwater hosts. Here, we propose phylogenies of neobatrachian frogs and their specific parasites (Platyhelminthes, Monogenea) to investigate coevolutionary processes and historical biogeography of polystomes and further discuss all the possible assumptions that may account for the early evolution of these parasites. Phylogenetic analyses of concatenated rRNA nuclear genes (18S and partial 28S) supplemented by cophylogenetic and biogeographic vicariance analyses reveal four main parasite lineages that can be ascribed to centers of diversity, namely Australia, India, Africa, and South America. In addition, the relationships among these biogeographical monophyletic groups, substantiated by molecular dating, reflect sequential origins during the breakup of Gondwana. The Australian polystome lineage may have been isolated during the first stages of the breakup, whereas the Indian lineage would have arisen after the complete separation of western and eastern Gondwanan components. Next, polystomes would have codiverged with hyloid sensu stricto and ranoid frog lineages before the completion of South American and African plate separation. Ultimately, they would have undergone an extensive diversification in South America when their ancestral host families diversified. Therefore, the presence of polystome parasites in specific anuran host clades and in discrete geographic areas reveals the importance of biogeographic vicariance in diversification processes and supports the occurrence and radiation of amphibians over ancient and recent geological periods.

  7. Early resistance change and stress/electromigration evolution in near bamboo interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Dima, G.; Govoreanu, B.; Mitrea, O.; Profirescu, M.

    1997-01-01

    A complete description for early resistance change and mechanical stress evolution in near-bamboo interconnects, related to the electromigration, is given in this paper. The proposed model, for the first time, combines the stress/vacancy concentration evolution with the early resistance change of

  8. Teaching about the Early Earth: Evolution of Tectonics, Life, and the Early Atmosphere

    Science.gov (United States)

    Mogk, D. W.; Manduca, C. A.; Kirk, K.; Williams, M. L.

    2007-12-01

    The early history of the Earth is the subject of some of the most exciting and innovative research in the geosciences, drawing evidence from virtually all fields of geoscience and using a variety of approaches that include field, analytical, experimental, and modeling studies. At the same time, the early Earth presents unique opportunities and challenges in geoscience education: how can we best teach "uncertain science" where the evidence is either incomplete or ambiguous? Teaching about early Earth provides a great opportunity to help students understand the nature of scientific evidence, testing, and understanding. To explore the intersection of research and teaching about this enigmatic period of Earth history, a national workshop was convened for experts in early Earth research and undergraduate geoscience education. The workshop was held in April, 2007 at the University of Massachusetts at Amherst as part of the On the Cutting Edge faculty professional development program. The workshop was organized around three scientific themes: evolution of global tectonics, life, and the early atmosphere. The "big scientific questions" at the forefront of current research about the early Earth were explored by keynote speakers and follow-up discussion groups: How did plate tectonics as we know it today evolve? Were there plates in the Hadean Eon? Was the early Earth molten? How rapidly did it cool? When and how did the atmosphere and hydrosphere evolve? How did life originate and evolve? How did all these components interact at the beginning of Earth's history and evolve toward the Earth system we know today? Similar "big questions" in geoscience education were addressed: how to best teach about "deep time;" how to help students make appropriate inferences when geologic evidence is incomplete; how to engage systems thinking and integrate multiple lines of evidence, across many scales of observation (temporal and spatial), and among many disciplines. Workshop participants

  9. The Formation and Early Evolution of Young Massive Clusters

    CERN Document Server

    Longmore, Steven N; Bastian, Nate; Bally, John; Rathborne, Jill; Testi, Leonardo; Stolte, Andrea; Dale, James; Bressert, Eli; Alves, Joao

    2014-01-01

    We review the formation and early evolution of the most massive and dense young stellar clusters, focusing on the role they can play in our understanding of star and planet formation as a whole. Young massive cluster (YMC) progenitor clouds in the Galactic Center can accumulate to a high enough density without forming stars that the initial protostellar densities are close to the final stellar density. For this to hold in the disk, the time scale to accumulate the gas to such high densities must be much shorter than the star formation timescale. Otherwise the gas begins forming stars while it is being accumulated to high density. The distinction between the formation regimes in the two environments is consistent with the predictions of environmentally-dependent density thresholds for star formation. This implies that stars in YMCs of similar total mass and radius can have formed at widely different initial protostellar densities. The fact that no systematic variations in fundamental properties are observed be...

  10. Origins and early evolution of the translation machinery

    Science.gov (United States)

    Fox, George E.

    2010-09-01

    The modern ribosome is a complex biological machine that is responsible for chiral synthesis of cellular proteins according to the genetic code as specified by a mRNA. Major portions of the ribosomal machinery were likely in place before the last universal common ancestor (LUCA) of life. The early evolution of the ribosome has implications for the origin of the genetic code, the emergence of chirality in peptide synthesis, and the emergence of LUCA. Although codon assignments may remain a mystery, the history of the ribosome provides a context for dating the first usage of mRNA. In the case of chirality, the modern ribosome suggests that a small initial chiral preference for L-amino acids in the environment may have been greatly enhanced by a two step process in which the charging of a primitive tRNA and the subsequent synthesis of a peptide bond both had the same chiral preference. The resulting ability to make largely chiral peptides may have provided an advantage over other prebiotic mechanisms for making peptides. Finally, the late addition of factors such as EF-G may have greatly accelerated the emerging ribosome's ability to synthesize proteins, thereby allowing entities with this novel capability to emerge as the LUCA.

  11. Milgram's Obedience to Authority experiments: origins and early evolution.

    Science.gov (United States)

    Russell, Nestar John Charles

    2011-03-01

    Stanley Milgram's Obedience to Authority experiments remain one of the most inspired contributions in the field of social psychology. Although Milgram undertook more than 20 experimental variations, his most (in)famous result was the first official trial run - the remote condition and its 65% completion rate. Drawing on many unpublished documents from Milgram's personal archive at Yale University, this article traces the historical origins and early evolution of the obedience experiments. Part 1 presents the previous experiences that led to Milgram's conception of his rudimentary research idea and then details the role of his intuition in its refinement. Part 2 traces the conversion of Milgram's evolving idea into a reality, paying particular attention to his application of the exploratory method of discovery during several pilot studies. Both parts illuminate Milgram's ad hoc introduction of various manipulative techniques and subtle tension-resolving refinements. The procedural adjustments continued until Milgram was confident that the first official experiment would produce a high completion rate, a result contrary to expectations of people's behaviour. Showing how Milgram conceived of, then arrived at, this first official result is important because the insights gained may help others to determine theoretically why so many participants completed this experiment.

  12. Kinematic and chemical evolution of early-type galaxies

    CERN Document Server

    Ziegler, B L; Böhm, A; Bender, R; Fritz, A; Maraston, C

    2004-01-01

    We investigate in detail 13 early-type field galaxies with 0.2evolution in the B-band of 0.3-0.5mag for both samples. We compare measured Lick absorption line strengths (Hdelta, Hgamma, Hbeta, Mg_b, & Fe5335) with evolutionary stellar population models to derive light-averaged ages, metallicities and the element abundance ratios Mg/Fe. We find that all these three stellar parameters of the distant galaxies obey a scaling with velocity dispersion (mass) which is very well consistent with the one of local nearby galaxies. In particular, the distribution...

  13. The Early Evolution of Primordial Pair-Instability Supernovae

    CERN Document Server

    Joggerst, C C

    2010-01-01

    The observational signatures of the first cosmic explosions and their chemical imprint on second-generation stars both crucially depend on how heavy elements mix within the star at the earliest stages of the blast. We present numerical simulations of the early evolution of Population III pair-instability supernovae with the new adaptive mesh refinement code CASTRO. In stark contrast to 15 - 40 Msun core-collapse primordial supernovae, we find no mixing in most 150 - 250 Msun pair-instability supernovae out to times well after breakout from the surface of the star. This may be the key to determining the mass of the progenitor of a primeval supernova, because vigorous mixing will cause emission lines from heavy metals such as Fe and Ni to appear much sooner in the light curves of core-collapse supernovae than in those of pair-instability explosions. Our results also imply that unlike low-mass Pop III supernovae, whose collective metal yields can be directly compared to the chemical abundances of extremely metal...

  14. Merging of phonological and gestural circuits in early language evolution.

    Science.gov (United States)

    Aboitiz, Francisco; García, Ricardo

    2009-01-01

    In the monkey, cortical auditory projections subdivide into a dorsal stream mostly involved in spatiotemporal processing, that projects mainly to dorsal frontal areas; and a ventral stream involved in stimulus identification, connected to the ventrolateral prefrontal cortex (VLPFC). We propose that in the human lineage, part of the dorsal auditory pathway has specialized in vocalization processing, enhancing vocal repetition and short-term memory capacities that are crucial for linguistic development. In the human, the vocalization-related dorsal auditory component tends to converge in the VLPFC with the ventral auditory stream and with projections involved in gestural control; and consists of a direct connection between the auditory cortex and the VLPFC via the arcuate fasciculus, and an indirect pathway via the supramarginal gyrus. Additionally, intraparietal and inferior parietal afferents to the VLPFC are associated with communicative hand gestures, with manipulation skills and with early tool-making. Although in general terms compatible with the mirror-neuron gestural hypothesis for language origins, this proposal underlines the participation of the dorsal auditory pathway in voice processing as a key event that marked the beginning of human phonology and the subsequent evolution of language. Instead, the mirror neuron system for gestures and the primitive vocalization network (ventral pathway) contributed to provide a communicative scaffolding that facilitated the emergence of human-like phonology. Furthermore, we emphasize the phylogenetic continuity (homology) between non-human and human vocalization and their neural substrates, something that is not usually stressed in the mirror neuron perspective.

  15. Genesis and evolution of dust in the early Universe

    Science.gov (United States)

    Gall, Christa

    2010-10-01

    The most fascinating aspect of studying dust is the fact that small dust particles of a few micrometer which we cannot see with our naked eyes are a fundamentally important component in a Universe whose dimension we hardly can imagine. Dust grains impact the evolution of the Universe in many ways. For example they are known as the main formation site of molecular hydrogen which acts as important coolant by the formation of stars similar to our Sun. Dust is essential for the formation of planets and plays an important role in the end stages of life of most stars. Large amounts of dust have been discovered in quasars (QSOs) at high redshift where the epoch of cosmic evolution was ! 1 Gyr, but the origin and evolution of these remains elusive. Supernovae (SNe) and asymptotic giant branch (AGB) stars have been contemplated as prime dust sources due to their potential ability of generating sufficiently high amounts of dust. Though AGB stars are in fact known as the main dust source in the present Universe, their partially (too) long lifetimes questions their significance as dust contributers in the early Universe. SNe are sufficiently short-lived, but there exists a discrepancy between observationally and theoretically ascertained dust yields. The principal aim of this thesis is to elucidate the astrophysical conditions required for generating these large amounts of dust in massive starburst galaxies and QSOs at high redshift. We first intend to identify the mass ranges of the most efficient dust producing stars at high redshift. We ascertain the dust production efficiency of stars in the mass range 3-40 M⊙ using observed and theoretical dust yields of AGB stars and SNe. Based on these efficiencies we determine the total dust productivity for different stellar sources and investigate its dependency on the initial mass function (IMF). It is found that the dust production efficiency generally decreases with increasing progenitor mass. The total dust production strongly

  16. Ca isotope fingerprints of early crust-mantle evolution

    Science.gov (United States)

    Kreissig, K.; Elliott, T.

    2005-01-01

    The utility of 40Ca/ 44Ca as a tracer of pre-existing crustal contributions in early Archaean cratons has been explored to identify traces of Hadean crust and to assess the style of continental growth. The relatively short half-life of 40K (˜1.3 Gy) means that its decay to 40Ca occurs dominantly during early Earth History. If Archaean crust had a significant component derived from a more ancient protolith, as anticipated by "steady state" crustal evolution models, this should be clearly reflected in radiogenic 40Ca/ 44Ca ratios (or positive initial ɛ Ca) in different Archaean cratons. A high precision thermal ionisation technique has been used to analyse the 40Ca/ 44Ca ratios of plagioclase separates and associated whole rocks in ˜3.6 Ga (early Archaean) samples from Zimbabwe and West Greenland. Three out of four tonalite, trondhjemite, granodiorite (TTG) suite samples from Zimbabwe display initial 40Ca/ 44Ca ratios indistinguishable from our measured modern MORB value (i.e., ɛ Ca(3.6) ˜ 0). Greenland samples, however, are very diverse ranging from ɛ Ca(3.7) = 0.1 in mafic pillow lavas and felsic sheets from the Isua supracrustal belt, up to very radiogenic signatures (ɛ Ca(3.7) = 2.9) in both mafic rocks of the Akilia association and felsic TTG from the coastal Amîtsoq gneisses. At face value, these results imply the Zimbabwe crust is juvenile whereas most Greenland samples include an earlier crustal component. Yet the west Greenland craton, as with many Archaean localities, has experienced a complex geological history and the interpretation of age-corrected initial isotope values requires great care. Both felsic and mafic samples from Greenland display ɛ Ca(3.7) so radiogenic that they are not readily explained by crustal growth scenarios. The presence of such radiogenic 40Ca/ 44Ca found in low K/Ca plagioclases requires Ca isotope exchange between plagioclase and whole rock during later metamorphic event(s). In addition the unexpectedly radiogenic Ca

  17. Early evolution of the LIM homeobox gene family

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Mansi; Larroux, Claire; Lu, Daniel R; Mohanty, Kareshma; Chapman, Jarrod; Degnan, Bernard M; Rokhsar, Daniel S

    2010-01-01

    LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural

  18. Early evolution of the LIM homeobox gene family

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2010-01-01

    Full Text Available Abstract Background LIM homeobox (Lhx transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. Results We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. Conclusions The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In

  19. Early human communication helps in understanding language evolution.

    Science.gov (United States)

    Lenti Boero, Daniela

    2014-12-01

    Building a theory on extant species, as Ackermann et al. do, is a useful contribution to the field of language evolution. Here, I add another living model that might be of interest: human language ontogeny in the first year of life. A better knowledge of this phase might help in understanding two more topics among the "several building blocks of a comprehensive theory of the evolution of spoken language" indicated in their conclusion by Ackermann et al., that is, the foundation of the co-evolution of linguistic motor skills with the auditory skills underlying speech perception, and the possible phylogenetic interactions of protospeech production with referential capabilities.

  20. The Evolution of the National Early Childhood Technical Assistance Center

    Science.gov (United States)

    Gallagher, James J.; Danaher, Joan C.; Clifford, Richard M.

    2009-01-01

    This review traces the evolution from 1971 to the present of a national technical assistance (TA) program to support the creation, expansion, and improvement of services for infants, toddlers, and preschoolers with special needs. From its beginning as a TA resource for demonstration projects, to linking outreach projects' expertise with state…

  1. Early Cretaceous mammal from North America and the evolution of marsupial dental characters.

    OpenAIRE

    1993-01-01

    A mammal from the Early Cretaceous of the western United States, represented by a lower jaw exceptional in its completeness, presents unambiguous evidence of postcanine dental formula in an Early Cretaceous marsupial-like mammal, and prompts a reconsideration of the early evolution of marsupial dental characters. A marsupial postcanine dental formula (three premolars and four molars) and several marsupial-like features of the lower molars are present in the new taxon, but a hallmark specializ...

  2. The Hubble Deep Field and the Early Evolution of Galaxies

    CERN Document Server

    Madau, P

    1997-01-01

    I review some recent progress made in our understanding of galaxy evolution and the cosmic history of star formation. The Hubble Deep Field (HDF) imaging survey has achieved the sensitivity to capture the bulk of the extragalactic background light from discrete sources. No evidence is found in the optical number-magnitude relation down to AB=29 mag for a large amount of star formation at high redshifts. The emission history of the universe at ultraviolet, optical, and near-infrared wavelengths can be modeled from the present epoch to z~4 by tracing the evolution with cosmic time of the galaxy luminosity density, as determined from several deep spectroscopic samples and the HDF. The global spectrophotometric properties of field galaxies are well fitted by a simple stellar evolution model, defined by a time-dependent star formation rate (SFR) per unit comoving volume and a universal initial mass function which is relatively rich in massive stars. The SFR density is found to rise sharply, by about an order of ma...

  3. Early Ideas in Underground Coal Gasification and Their Evolution

    Directory of Open Access Journals (Sweden)

    Alexander Y. Klimenko

    2009-06-01

    Full Text Available This article follows the development of early UCG (underground coal gasification ideas. Historical facts are discussed mainly from the technological perspective and early experiments in UCG are analyzed. Our search for the first successful UCG experiment brings to light a new finding, which was commonly overlooked in previous reviews. We also outline the key role that engineer and inventor A. G. Betts played in introducing technologies utilizing unmined coal; his original ideas are visible in the first successful UCG experiments and in modern UCG technology.

  4. Convergence of ion channel genome content in early animal evolution

    Science.gov (United States)

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.

    2015-01-01

    Multicellularity has evolved multiple times, but animals are the only multicellular lineage with nervous systems. This fact implies that the origin of nervous systems was an unlikely event, yet recent comparisons among extant taxa suggest that animal nervous systems may have evolved multiple times independently. Here, we use ancestral gene content reconstruction to track the timing of gene family expansions for the major families of ion-channel proteins that drive nervous system function. We find that animals with nervous systems have broadly similar complements of ion-channel types but that these complements likely evolved independently. We also find that ion-channel gene family evolution has included large loss events, two of which were immediately followed by rounds of duplication. Ctenophores, cnidarians, and bilaterians underwent independent bouts of gene expansion in channel families involved in synaptic transmission and action potential shaping. We suggest that expansions of these family types may represent a genomic signature of expanding nervous system complexity. Ancestral nodes in which nervous systems are currently hypothesized to have originated did not experience large expansions, making it difficult to distinguish among competing hypotheses of nervous system origins and suggesting that the origin of nerves was not attended by an immediate burst of complexity. Rather, the evolution of nervous system complexity appears to resemble a slow fuse in stem animals followed by many independent bouts of gene gain and loss. PMID:25675537

  5. Enhanced transcription and translation in clay hydrogel and implications for early life evolution

    Science.gov (United States)

    Yang, Dayong; Peng, Songming; Hartman, Mark R.; Gupton-Campolongo, Tiffany; Rice, Edward J.; Chang, Anna Kathryn; Gu, Zi; Lu, G. Q. (Max); Luo, Dan

    2013-11-01

    In most contemporary life forms, the confinement of cell membranes provides localized concentration and protection for biomolecules, leading to efficient biochemical reactions. Similarly, confinement may have also played an important role for prebiotic compartmentalization in early life evolution when the cell membrane had not yet formed. It remains an open question how biochemical reactions developed without the confinement of cell membranes. Here we mimic the confinement function of cells by creating a hydrogel made from geological clay minerals, which provides an efficient confinement environment for biomolecules. We also show that nucleic acids were concentrated in the clay hydrogel and were protected against nuclease, and that transcription and translation reactions were consistently enhanced. Taken together, our results support the importance of localized concentration and protection of biomolecules in early life evolution, and also implicate a clay hydrogel environment for biochemical reactions during early life evolution.

  6. Halwaxiids and the early evolution of the lophotrochozoans.

    Science.gov (United States)

    Morris, Simon Conway; Caron, Jean-Bernard

    2007-03-02

    Halkieriids and wiwaxiids are cosmopolitan sclerite-bearing metazoans from the Lower and Middle Cambrian. Although they have similar scleritomes, their phylogenetic position is contested. A new scleritomous fossil from the Burgess Shale has the prominent anterior shell of the halkieriids but also bears wiwaxiid-like sclerites. This new fossil defines the monophyletic halwaxiids and indicates that they have a key place in early lophotrochozoan history.

  7. The Interwoven Evolution of the Early Keyboard and Baroque Culture

    Directory of Open Access Journals (Sweden)

    Rachel Stevenson

    2016-04-01

    Full Text Available The purpose of this paper is to analyze the impact that Baroque society had in the development of the early keyboard. While the main timeframe is Baroque, a few references are made to the late Medieval Period in determining the reason for the keyboard to more prominently emerge in the musical scene. As Baroque society develops and new genres are formed, different keyboard instruments serve vital roles unique to their construction. These new roles also affect the way music was written for the keyboard as well. Advantages and disadvantages of each instrument are discussed, providing an analysis of what would have been either accepted or rejected by Baroque culture. While music is the main focus, other fine arts are mentioned, including architecture, poetry, politics, and others. My research includes primary and secondary resources retrieved from databases provided by Cedarville University. By demonstrating the relationship between Baroque society and early keyboard development, roles and music, this will be a helpful source in furthering the pianist's understanding of the instrument he or she plays. It also serves pedagogical purposes in its analysis of context in helping a student interpret a piece written during this time period with these early keyboard instruments.

  8. Geodynamic evolution of early Mesozoic sedimentary basins in eastern Australia

    Science.gov (United States)

    Rosenbaum, G.; Babaahmadi, A.; Esterle, J.

    2014-12-01

    Eastern Australia is covered by a series of continental sedimentary basins deposited during the Triassic and Jurassic, but the geodynamic context of these basins is not fully understood. Using gridded aeromagnetic data, seismic reflection data, geological maps, digital elevation models, and field observations, we conducted a structural synthesis aimed at characterizing major structures and deformation style in the Triassic-Jurassic sedimentary basins of eastern Australia. Our results show evidence for four alternating episodes of rifting and contractional events during the Triassic. Two major episodes of rifting, characterized by syn-sedimentary steep normal faults and bimodal volcanism, resulted in the development of the Early-Middle Triassic Esk-Nymboida Rift System and the early Late Triassic Ipswich Basin. Faults in the Esk-Nymboida Rift System have been controlled by a pre-existing oroclinal structure. Each phase of rifting was followed by a contractional event, which produced folds, reverse faults and unconformities in the basins. Since the latest Late Triassic, thermal subsidence led to the deposition of continental sediments in the Clarence-Moreton Basin, which continued until the Early Cretaceous. We suggest that the geodynamic control on the alternating episodes of rifting and contraction during the Triassic in eastern Australia was ultimately related to plate boundary migration and switches between trench retreat and advance.

  9. Birth and early evolution of a planetary nebula

    CERN Document Server

    Bobrowsky, M; Parthasarathy, M; García-Lario, P

    1998-01-01

    The final expulsion of gas by a star as it forms a planetary nebula --- the ionized shell of gas often observed surrounding a young white dwarf --- is one of the most poorly understood stages of stellar evolution. Such nebulae form extremely rapidly (about 100 years for the ionization) and so the formation process is inherently difficult to observe. Particularly puzzling is how a spherical star can produce a highly asymmetric nebula with collimated outflows. Here we report optical observations of the Stingray Nebula which has become an ionized planetary nebula within the past few decades. We find that the collimated outflows are already evident, and we have identified the nebular structure that focuses the outflows. We have also found a companion star, reinforcing previous suspicions that binary companions play an important role in shaping planetary nebulae and changing the direction of successive outflows.

  10. Magnetic field and early evolution of circumstellar disks

    CERN Document Server

    Tsukamoto, Yusuke

    2016-01-01

    The magnetic field plays a central role in the formation and evolution of circumstellar disks. The magnetic field connects the rapidly rotating central region with the outer envelope and extracts angular momentum from the central region during gravitational collapse of the cloud core. This process is known as magnetic braking. Both analytical and multidimensional simulations have shown that disk formation is strongly suppressed by magnetic braking in moderately magnetized cloud cores in the ideal magnetohydrodynamic limit. On the other hand, recent observations have provided growing evidence of a relatively large disk several tens of astronomical units in size existing in some Class 0 young stellar objects. This introduces a serious discrepancy between the theoretical study and observations. Various physical mechanisms have been proposed to solve the problem of catastrophic magnetic braking, such as misalignment between the magnetic field and the rotation axis, turbulence, and non-ideal effect. In this paper,...

  11. Kinematical fingerprints of star cluster early dynamical evolution

    CERN Document Server

    Vesperini, Enrico; McMillan, Stephen L W; Zepf, Stephen E

    2014-01-01

    We study the effects of the external tidal field on the violent relaxation phase of star clusters dynamical evolution, with particular attention to the kinematical properties of the equilibrium configurations emerging at the end of this phase.We show that star clusters undergoing the process of violent relaxation in the tidal field of their host galaxy can acquire significant internal differential rotation and are characterized by a distinctive radial variation of the velocity anisotropy. These kinematical properties are the result of the symmetry breaking introduced by the external tidal field in the collapse phase and of the action of the Coriolis force on the orbit of the stars. The resulting equilibrium configurations are characterized by differential rotation, with a peak located between one and two half-mass radii. As for the anisotropy, similar to clusters evolving in isolation, the systems explored in this Letter are characterized by an inner isotropic core, followed by a region of increasing radial a...

  12. Effects of dust grains on early galaxy evolution

    CERN Document Server

    Hirashita, H

    2002-01-01

    Stars form out of molecular gas and supply dust grains during their last evolutionary stages; in turn hydrogen molecules (H2) are produced more efficiently on dust grains. Therefore, dust can drastically accelerate H2 formation, leading to an enhancement of star formation activity. In order to examine the first formation of stars and dust in galaxies, we model the evolution of galaxies in the redshift range of 55) galaxies in sub-millimetre and near-infrared bands. We find that: i) ALMA can detect dust emission from several thousands of galaxies per square degree, and ii) NGST can detect the stellar emission from 10^6 galaxies per square degree. Further observational checks of our predictions include the integrated flux of metal (oxygen and carbon) lines. We finally discuss possible color selection strategies for high-redshift galaxy searches.

  13. The Early-Time Evolution of the Cosmological Perturbations in f(R) Gravity

    CERN Document Server

    Gu, Je-An; Wu, Yen-Ting; Chen, Pisin; Hwang, W-Y Pauchy

    2011-01-01

    We investigate the evolution of the linear cosmological perturbations in f(R) gravity, an alternative to dark energy for explaining the late-time cosmic acceleration. We numerically calculate the early-time evolution with an approximation we contrive to solve a problem that commonly appears when one solves the full evolution equations. With the approximate evolution equations we can fairly assess the effect of the gravity modification on the early-time evolution, thereby examining the validity of the general-relativity (GR) approximation that is widely used for the early universe. In particular, we compare the CMB photon density perturbation and the matter density perturbation obtained respectively by our approximation and the conventional GR approximation. We find that the effect of the gravity modification at early times in f(R) gravity may not be negligible. We conclude that to be self-consistent, in the f(R) theory one should employ the approximation presented in this paper instead of that of GR in the tr...

  14. A Cretaceous eutriconodont and integument evolution in early mammals.

    Science.gov (United States)

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D

    2015-10-15

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  15. A Cretaceous eutriconodont and integument evolution in early mammals

    Science.gov (United States)

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D.

    2015-10-01

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  16. Early evolution of efficient enzymes and genome organization

    Directory of Open Access Journals (Sweden)

    Szilágyi András

    2012-10-01

    Full Text Available Abstract Background Cellular life with complex metabolism probably evolved during the reign of RNA, when it served as both information carrier and enzyme. Jensen proposed that enzymes of primordial cells possessed broad specificities: they were generalist. When and under what conditions could primordial metabolism run by generalist enzymes evolve to contemporary-type metabolism run by specific enzymes? Results Here we show by numerical simulation of an enzyme-catalyzed reaction chain that specialist enzymes spread after the invention of the chromosome because protocells harbouring unlinked genes maintain largely non-specific enzymes to reduce their assortment load. When genes are linked on chromosomes, high enzyme specificity evolves because it increases biomass production, also by reducing taxation by side reactions. Conclusion The constitution of the genetic system has a profound influence on the limits of metabolic efficiency. The major evolutionary transition to chromosomes is thus proven to be a prerequisite for a complex metabolism. Furthermore, the appearance of specific enzymes opens the door for the evolution of their regulation. Reviewers This article was reviewed by Sándor Pongor, Gáspár Jékely, and Rob Knight.

  17. Early evolution of efficient enzymes and genome organization

    Science.gov (United States)

    2012-01-01

    Background Cellular life with complex metabolism probably evolved during the reign of RNA, when it served as both information carrier and enzyme. Jensen proposed that enzymes of primordial cells possessed broad specificities: they were generalist. When and under what conditions could primordial metabolism run by generalist enzymes evolve to contemporary-type metabolism run by specific enzymes? Results Here we show by numerical simulation of an enzyme-catalyzed reaction chain that specialist enzymes spread after the invention of the chromosome because protocells harbouring unlinked genes maintain largely non-specific enzymes to reduce their assortment load. When genes are linked on chromosomes, high enzyme specificity evolves because it increases biomass production, also by reducing taxation by side reactions. Conclusion The constitution of the genetic system has a profound influence on the limits of metabolic efficiency. The major evolutionary transition to chromosomes is thus proven to be a prerequisite for a complex metabolism. Furthermore, the appearance of specific enzymes opens the door for the evolution of their regulation. Reviewers This article was reviewed by Sándor Pongor, Gáspár Jékely, and Rob Knight. PMID:23114029

  18. A Geological Model for the Evolution of Early Continents (Invited)

    Science.gov (United States)

    Rey, P. F.; Coltice, N.; Flament, N. E.; Thébaud, N.

    2013-12-01

    Geochemical probing of ancient sediments (REE in black shales, strontium composition of carbonates, oxygen isotopes in zircons...) suggests that continents were a late Archean addition at Earth's surface. Yet, geochemical probing of ancient basalts reveals that they were extracted from a mantle depleted of its crustal elements early in the Archean. Considerations on surface geology, the early Earth hypsometry and the rheology and density structure of Archean continents can help solve this paradox. Surface geology: The surface geology of Archean cratons is characterized by thick continental flood basalts (CFBs, including greenstones) emplaced on felsic crusts dominated by Trondhjemite-Tonalite-Granodiorite (TTG) granitoids. This simple geology is peculiar because i/ most CFBs were emplaced below sea level, ii/ after their emplacement, CFBs were deformed into relatively narrow, curviplanar belts (greenstone basins) wrapping around migmatitic TTG domes, and iii/ Archean greenstone belts are richly endowed with gold and other metals deposits. Flat Earth hypothesis: From considerations on early Earth continental geotherm and density structure, Rey and Coltice (2008) propose that, because of the increased ability of the lithosphere to flow laterally, orogenic processes in the Archean produced only subdued topography (atmosphere and mantle systems, and did not contribute significantly to the sedimentary records. 2/ These continents evolved under the possibly episodic drive of plate tectonic processes, and certainly also under the drive of the density inversion imposed by the greenstone/TTG stratigraphy. Thébaud and Rey (2013) emphasized that sagduction was able to drive crustal-scale deformation in the interior of continents, away from plate margins. Since this process occurred on flooded continents, an infinite fluid reservoir was available to feed crustal-scale hydrothermal circulations promoting the formation of craton-wide metal deposits in the interior of continents

  19. Phylogenetic origins of biological cognition: convergent patterns in the early evolution of learning.

    Science.gov (United States)

    van Duijn, Marc

    2017-06-06

    Various forms of elementary learning have recently been discovered in organisms lacking a nervous system, such as protists, fungi and plants. This finding has fundamental implications for how we view the role of convergent evolution in biological cognition. In this article, I first review the evidence for basic forms of learning in aneural organisms, focusing particularly on habituation and classical conditioning and considering the plausibility for convergent evolution of these capacities. Next, I examine the possible role of convergent evolution regarding these basic learning abilities during the early evolution of nervous systems. The evolution of nervous systems set the stage for at least two major events relevant to convergent evolution that are central to biological cognition: (i) nervous systems evolved, perhaps more than once, because of strong selection pressures for sustaining sensorimotor strategies in increasingly larger multicellular organisms and (ii) associative learning was a subsequent adaptation that evolved multiple times within the neuralia. Although convergent evolution of basic forms of learning among distantly related organisms such as protists, plants and neuralia is highly plausible, more research is needed to verify whether these forms of learning within the neuralia arose through convergent or parallel evolution.

  20. Early events in the evolution of spider silk genes.

    Directory of Open Access Journals (Sweden)

    James Starrett

    Full Text Available Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers, from the suborder Araneomorphae ('true spiders'. Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs, is known only from the orbicularian species, Lactrodectus hesperus (Western black widow. In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders, which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae. We use the spidroin gene tree to reconstruct the evolution of amino acid

  1. Early events in the evolution of spider silk genes.

    Science.gov (United States)

    Starrett, James; Garb, Jessica E; Kuelbs, Amanda; Azubuike, Ugochi O; Hayashi, Cheryl Y

    2012-01-01

    Silk spinning is essential to spider ecology and has had a key role in the expansive diversification of spiders. Silk is composed primarily of proteins called spidroins, which are encoded by a multi-gene family. Spidroins have been studied extensively in the derived clade, Orbiculariae (orb-weavers), from the suborder Araneomorphae ('true spiders'). Orbicularians produce a suite of different silks, and underlying this repertoire is a history of duplication and spidroin gene divergence. A second class of silk proteins, Egg Case Proteins (ECPs), is known only from the orbicularian species, Lactrodectus hesperus (Western black widow). In L. hesperus, ECPs bond with tubuliform spidroins to form egg case silk fibers. Because most of the phylogenetic diversity of spiders has not been sampled for their silk genes, there is limited understanding of spidroin gene family history and the prevalence of ECPs. Silk genes have not been reported from the suborder Mesothelae (segmented spiders), which diverged from all other spiders >380 million years ago, and sampling from Mygalomorphae (tarantulas, trapdoor spiders) and basal araneomorph lineages is sparse. In comparison to orbicularians, mesotheles and mygalomorphs have a simpler silk biology and thus are hypothesized to have less diversity of silk genes. Here, we present cDNAs synthesized from the silk glands of six mygalomorph species, a mesothele, and a non-orbicularian araneomorph, and uncover a surprisingly rich silk gene diversity. In particular, we find ECP homologs in the mesothele, suggesting that ECPs were present in the common ancestor of extant spiders, and originally were not specialized to complex with tubuliform spidroins. Furthermore, gene-tree/species-tree reconciliation analysis reveals that numerous spidroin gene duplications occurred after the split between Mesothelae and Opisthothelae (Mygalomorphae plus Araneomorphae). We use the spidroin gene tree to reconstruct the evolution of amino acid compositions of

  2. Evolution of attention mechanisms for early visual processing

    Science.gov (United States)

    Müller, Thomas; Knoll, Alois

    2011-03-01

    Early visual processing as a method to speed up computations on visual input data has long been discussed in the computer vision community. The general target of a such approaches is to filter nonrelevant information from the costly higher-level visual processing algorithms. By insertion of this additional filter layer the overall approach can be speeded up without actually changing the visual processing methodology. Being inspired by the layered architecture of the human visual processing apparatus, several approaches for early visual processing have been recently proposed. Most promising in this field is the extraction of a saliency map to determine regions of current attention in the visual field. Such saliency can be computed in a bottom-up manner, i.e. the theory claims that static regions of attention emerge from a certain color footprint, and dynamic regions of attention emerge from connected blobs of textures moving in a uniform way in the visual field. Top-down saliency effects are either unconscious through inherent mechanisms like inhibition-of-return, i.e. within a period of time the attention level paid to a certain region automatically decreases if the properties of that region do not change, or volitional through cognitive feedback, e.g. if an object moves consistently in the visual field. These bottom-up and top-down saliency effects have been implemented and evaluated in a previous computer vision system for the project JAST. In this paper an extension applying evolutionary processes is proposed. The prior vision system utilized multiple threads to analyze the regions of attention delivered from the early processing mechanism. Here, in addition, multiple saliency units are used to produce these regions of attention. All of these saliency units have different parameter-sets. The idea is to let the population of saliency units create regions of attention, then evaluate the results with cognitive feedback and finally apply the genetic mechanism

  3. Basin evolution and deposition during the Early Paleogene in Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Zaier, A.; Beji-Sassi, A.; Sassi, S. [Universite de Tunis II (Libyan Arab Jamahiriya). Laboratoire des Ressources Minerales; Moody, R.T.J. [Kingston University (United Kingdom). School of Geological Science

    1998-12-31

    The marine Paleocene and Ypresian deposits of Tunisia, within the El Haria Formation and the Metlaoui Group, have been intensively studied because of the commercial interest in phosphates and hydrocarbons. This paper presents the latest updates of isochron, lithofacies and palaeogeographical maps, and interprets the patterns identified in light of syn-sedimentary structures. This reveals a close association between structure, basin geometry and subsidence. Facies distribution during the Early Paleogene is thought to be structurally controlled along basement lineaments. These major fault systems were reactivated several times during Mesozoic and Tertiary, with the last movements occurring as Neogene and post-Villafranchian events. The structural control of facies is most evident during the Ypresian, particularly along the `North-South Axis` (Nosa) a sub-meridian orogenic segment of Central Tunisia. The general pattern across Tunisia throughout the period is of a number of small tectonically controlled basins. The distribution of phosphorites, organic-rich shales and evaporites can be particularly linked to the development of restricted basins during the period. (author)

  4. Formation and early evolution of massive black holes

    Science.gov (United States)

    Madau, Piero

    2007-04-01

    I review scenarios for the assembly of massive black holes (MBHs) at the center of galaxies that trace their hierarchical build-up far up in the dark halo merger tree. The first active galactic nuclei likely formed 150 Myr after the big bang in 1e6 Msun minihaloes. X-ray photons from such miniquasars may have permeated the universe more uniformly than EUV radiation, made the low-density diffuse intergalactic medium shine at 21-cm prior to the epoch of reionization, and changed the chemistry of primordial gas. I'll discuss the conditions under which massive black holes become incorporated through a series of mergers into larger and larger halos, sink to the center owing to dynamical friction, accrete a fraction of the gas in the merger remnant to become supermassive, form a binary system, and eventually coalesce. The spin distribution of MBHs is determined by gas accretion, and is predicted to be heavily skewed towards fast-rotating Kerr holes, already in place at early epochs, and not to change significantly below redshift 5. Decaying MBH binaries may shape the innermost central regions of galaxies and should be detected in significant numbers by LISA.

  5. Early evolution of the T-box transcription factor family

    Science.gov (United States)

    Sebé-Pedrós, Arnau; Ariza-Cosano, Ana; Weirauch, Matthew T.; Leininger, Sven; Yang, Ally; Torruella, Guifré; Adamski, Marcin; Adamska, Maja; Hughes, Timothy R.; Gómez-Skarmeta, José Luis; Ruiz-Trillo, Iñaki

    2013-01-01

    Developmental transcription factors are key players in animal multicellularity, being members of the T-box family that are among the most important. Until recently, T-box transcription factors were thought to be exclusively present in metazoans. Here, we report the presence of T-box genes in several nonmetazoan lineages, including ichthyosporeans, filastereans, and fungi. Our data confirm that Brachyury is the most ancient member of the T-box family and establish that the T-box family diversified at the onset of Metazoa. Moreover, we demonstrate functional conservation of a homolog of Brachyury of the protist Capsaspora owczarzaki in Xenopus laevis. By comparing the molecular phenotype of C. owczarzaki Brachyury with that of homologs of early branching metazoans, we define a clear difference between unicellular holozoan and metazoan Brachyury homologs, suggesting that the specificity of Brachyury emerged at the origin of Metazoa. Experimental determination of the binding preferences of the C. owczarzaki Brachyury results in a similar motif to that of metazoan Brachyury and other T-box classes. This finding suggests that functional specificity between different T-box classes is likely achieved by interaction with alternative cofactors, as opposed to differences in binding specificity. PMID:24043797

  6. Early evolution of disrupted asteroid P/2016 G1 (PANSTARRS)

    CERN Document Server

    Moreno, Fernando; Cabrera-Lavers, Antonio; Pozuelos, Francisco J

    2016-01-01

    We present deep imaging observations of activated asteroid P/2016 G1 (PANSTARRS) using the 10.4m Gran Telescopio Canarias (GTC) from late April to early June 2016. The images are best interpreted as the result of a relatively short-duration event with onset about $\\mathop{350}_{-30}^{+10}$ days before perihelion (i.e., around 10th February, 2016), starting sharply and decreasing with a $\\mathop{24}_{-7}^{+10}$ days (Half-width at half-maximum, HWHM). The results of the modeling imply the emission of $\\sim$1.7$\\times$10$^7$ kg of dust, if composed of particles of 1 micrometer to 1 cm in radius, distributed following a power-law of index --3, and having a geometric albedo of 0.15. A detailed fitting of a conspicuous westward feature in the head of the comet-like object indicates that a significant fraction of the dust was ejected along a privileged direction right at the beginning of the event, which suggests that the parent body has possibly suffered an impact followed by a partial or total disruption. From th...

  7. The evolution of insight, paranoia and depression during early schizophrenia.

    Science.gov (United States)

    Drake, R J; Pickles, A; Bentall, R P; Kinderman, P; Haddock, G; Tarrier, N; Lewis, S W

    2004-02-01

    How insight, paranoia and depression evolve in relation to each other during and after the first episode of schizophrenia is poorly understood but of clinical importance. Serial assessments over 18 months were made using multiple instruments in a consecutive sample of 257 patients with first episode DSM-IV non-affective psychosis. Repeated measures of paranoia, insight, depression and self-esteem were analysed using structural equation modelling, to examine the direction of relationships over time after controlling for confounds. Depression was predicted directly by greater insight, particularly at baseline, and by greater paranoia at every stage of follow-up. Neither relationship was mediated by self-esteem, although there was a weak association of lower self-esteem with greater depression and better insight. Paranoia was not strongly associated with insight. Duration of untreated psychosis and substance use at baseline predicted depression at 18 months. In first-episode psychosis, good insight predicts depression. Subsequently, paranoia is the strongest predictor. Neither effect is mediated by low self-esteem. Effective treatment of positive symptoms is important in preventing and treating low mood in early schizophrenia.

  8. Size Evolution of Early-Type Galaxies and Massive Compact Objects as the Dark Matter

    CERN Document Server

    Totani, Tomonori

    2009-01-01

    The dramatic size evolution of early-type galaxies from z ~ 2 to 0 poses a new challenge in the theory of galaxy formation, which may not be explained by the standard picture. It is shown here that the size evolution can be explained if the non-baryonic cold dark matter is composed of compact objects having a mass scale of ~10^5 M_sun. This form of dark matter is consistent with or only weakly constrained by the currently available observations. The kinetic energy of the dark compact objects is transferred to stars by dynamical friction, and stars around the effective radius are pushed out to larger radii, resulting in a pure size evolution. This scenario has several good properties to explain the observations, including the ubiquitous nature of size evolution and faster disappearance of higher density galaxies.

  9. Excursions into the Evolution of Early-Type Galaxies in Clusters

    CERN Document Server

    López-Cruz, O; Barrientos, L F; Gladders, M D; Yee, H K C; Kodama, T; Lopez-Cruz, Omar; Schade, David; Gladders, Michael D.

    2002-01-01

    Recent observations have revealed that early-type galaxies (ETG) in clusters comprise an old galaxy population that is evolving passively. We review some recent observations from the ground and from HST that show that ETG have undergone a significant amount of luminosity evolution. This evolution is traced by two projections of the fundamental plane (FP): the size-magnitude relation (SMR) and the color-magnitude relation (CMR). We will briefly discuss the relevance of all these results in the context of the universality of the IMF.

  10. Evolution of CO2 and H2O on Mars: A cold Early History?

    Science.gov (United States)

    Niles, P. B.; Michalski, J.

    2011-01-01

    The martian climate has long been thought to have evolved substantially through history from a warm and wet period to the current cold and dry conditions on the martian surface. This view has been challenged based primarily on evidence that the early Sun had a substantially reduced luminosity and that a greenhouse atmosphere would be difficult to sustain on Mars for long periods of time. In addition, the evidence for a warm, wet period of martian history is far from conclusive with many of the salient features capable of being explained by an early cold climate. An important test of the warm, wet early Mars hypothesis is the abundance of carbonates in the crust [1]. Recent high precision isotopic measurements of the martian atmosphere and discoveries of carbonates on the martian surface provide new constraints on the evolution of the martian atmosphere. This work seeks to apply these constraints to test the feasibility of the cold early scenario

  11. Early-late life trade-offs and the evolution of ageing in the wild.

    Science.gov (United States)

    Lemaître, Jean-François; Berger, Vérane; Bonenfant, Christophe; Douhard, Mathieu; Gamelon, Marlène; Plard, Floriane; Gaillard, Jean-Michel

    2015-05-07

    Empirical evidence for declines in fitness components (survival and reproductive performance) with age has recently accumulated in wild populations, highlighting that the process of senescence is nearly ubiquitous in the living world. Senescence patterns are highly variable among species and current evolutionary theories of ageing propose that such variation can be accounted for by differences in allocation to growth and reproduction during early life. Here, we compiled 26 studies of free-ranging vertebrate populations that explicitly tested for a trade-off between performance in early and late life. Our review brings overall support for the presence of early-late life trade-offs, suggesting that the limitation of available resources leads individuals to trade somatic maintenance later in life for high allocation to reproduction early in life. We discuss our results in the light of two closely related theories of ageing-the disposable soma and the antagonistic pleiotropy theories-and propose that the principle of energy allocation roots the ageing process in the evolution of life-history strategies. Finally, we outline research topics that should be investigated in future studies, including the importance of natal environmental conditions in the study of trade-offs between early- and late-life performance and the evolution of sex-differences in ageing patterns. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Phylogenetic ctDNA analysis depicts early stage lung cancer evolution

    OpenAIRE

    Wilson, Gareth A.; Constantin, Tudor; Quesne, John Le; Moore, David A.; Kirkizlar, Eser; Fraioli, Francesco; Bakir, Maise Al; Zambrana, Francisco; Endozo, Raymondo; Bi, Wenya Linda; Fennessy, Fiona M.; Forster, Martin D.; Hafez, Dina; Ganguly, Apratim; Kareht, Stephanie

    2017-01-01

    The early detection of relapse following primary surgery for non-small cell lung cancer and the characterization of emerging subclones seeding metastatic sites might offer new therapeutic approaches to limit tumor recurrence. The potential to non-invasively track tumor evolutionary dynamics in ctDNA of early-stage lung cancer is not established. Here we conduct a tumour-specific phylogenetic approach to ctDNA profiling in the first 100 TRACERx (TRAcking non-small cell lung Cancer Evolution th...

  13. A continued role for signaling functions in the early evolution of feathers.

    Science.gov (United States)

    Ruxton, Graeme D; Persons Iv, W Scott; Currie, Philip J

    2017-03-01

    Persons and Currie (2015) argued against either flight, thermoregulation, or signaling as a functional benefit driving the earliest evolution of feathers; rather, they favored simple feathers having an initial tactile sensory function, which changed to a thermoregulatory function as density increased. Here, we explore the relative merits of early simple feathers that may have originated as tactile sensors progressing instead toward a signaling, rather than (or in addition to) a thermoregulatory function. We suggest that signaling could act in concert with a sensory function more naturally than could thermoregulation. As such, the dismissal of a possible signaling function and the presumption that an initial sensory function led directly to a thermoregulatory function (implicit in the title "bristles before down") are premature. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  14. Phylogenetic position of sponges in early metazoan evolution and bionic applications of siliceous sponge spicules

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sponges are the oldest and the simplest but not primitive multicellular animals. They represent the earliest evolutionary metazoan phylum still extant. It was a long and painful scientific process to position the most enigmatic and mysterious metazoan, the Porifera, into their correct phylogenetic place among the eukaryotes in general and multicellular animals in particular. As living fossils, sponges provide the best evidence for the early evolution of Metazoa. More recently, interest has been focused on the bionic applications of sponges' siliceous spicules, after the discovery of their unique structure and high fiber performance. In this review, the emergence of sponges, evolutionary novelties found in sponges, and the phylogenetic position of sponges in early metazoan evolution are highlighted. In addition, the pre-sent state of knowledge on silicatein-mediated "biosilica" formation in marine sponges, including the involvement of other molecules in silica metabolism and their potential application in nanobiotechnol-ogy and medicine, is given.

  15. The Evolution of Field Early-Type Galaxies in the FDF and WHDF

    CERN Document Server

    Fritz, Alexander; Ziegler, Bodo L

    2009-01-01

    We explore the properties of 24 field early-type galaxies at 0.20=-0.74\\pm0.08. The M/L evolution of these field galaxies suggests a continuous mass assembly of field early-type galaxies during the last 5 Gyr, that gets support by recent studies of field galaxies up to z~1. Independent evidence for recent SF activity is provided by spectroscopic (OII em., Hdelta) and photometric (rest-frame colors) diagnostics. Based on the Hdelta absorption feature we detect a weak residual SF for galaxies that acco unts for 5%-10% in the total stellar mass of these galaxies. The co-evolution in the luminosity and mass of our galaxies favours a downsizing formation process. We find some evidence that our galaxies experienced a period of SF quenching, possible triggered by AGN activity that is in good agreement with recent results on both observational and theoretical side. (abridged)

  16. Early Thermal Evolution of Planetesimals and its Impact on Processing and Dating of Meteoritic Material

    CERN Document Server

    Gail, H -P; Breuer, D; Spohn, T

    2013-01-01

    Radioisotopic ages for meteorites and their components provide constraints on the evolution of small bodies: timescales of accretion, thermal and aqueous metamorphism, differentiation, cooling and impact metamorphism. Realising that the decay heat of short-lived nuclides (e.g. 26Al, 60Fe), was the main heat source driving differentiation and metamorphism, thermal modeling of small bodies is of utmost importance to set individual meteorite age data into the general context of the thermal evolution of their parent bodies, and to derive general conclusions about the nature of planetary building blocks in the early solar system. As a general result, modelling easily explains that iron meteorites are older than chondrites, as early formed planetesimals experienced a higher concentration of short-lived nuclides and more severe heating. However, core formation processes may also extend to 10 Ma after formation of Calcium-Aluminum-rich inclusions (CAIs). A general effect of the porous nature of the starting material ...

  17. The redshift evolution of early-type galaxies in COSMOS: Do massive early-type galaxies form by dry mergers?

    CERN Document Server

    Scarlata, C; Lilly, S J; Feldmann, R; Kampczyk, P; Renzini, A; Cimatti, A; Halliday, C; Daddi, E; Sargent, M T; Koekemoer, A; Scoville, N; Kneib, J P; Leauthaud, A; Massey, R; Rhodes, J; Tasca, L; McCracken, H J; Mobasher, B; Taniguchi, Y; Thompson, D; Ajiki, M; Aussel, H; Murayama, T; Sanders, D B; Sasaki, S; Shioya, Y; Takahashi, M

    2007-01-01

    ABRIDGED: We study the evolution since z~1 of the rest-frame B luminosity function of the early-type galaxies (ETGs) in ~0.7 deg^2 in the COSMOS field. In order to identify ALL progenitors of local ETGs we construct the sample of high-z galaxies using two complementary criteria: (i) A morphological selection based on the Zurich Estimator of Structural Types, and (ii) A photometric selection based on the galaxy properties in the (U-V)-M_V color-magnitude diagram. We furthermore constrain both samples so as to ensure that the selected progenitors of ETGs are compatible with evolving into systems which obey the mu_B-r_{hl} Kormendy relation. Assuming the luminosity evolution derived from studies of the fundamental plane for high-z ETGs, our analysis shows no evidence for a decrease in the number density of the most massive ETGs out to z~ 0.7: Both the morphologically- and the photometrically-selected sub-samples show no evolution in the number density of bright (~L>2.5L*) ETGs. Allowing for different star format...

  18. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda

    OpenAIRE

    Yang, Jie; Ortega-Hernández, Javier; Butterfield, Nicholas J.; Liu, Yu; Boyan, George S.; Hou, Jin-bo; Lan, Tian; Zhang, Xi-guang

    2016-01-01

    Understanding the evolution of the CNS is fundamental for resolving the phylogenetic relationships within Panarthropoda (Euarthropoda, Tardigrada, Onychophora). The ground pattern of the panarthropod CNS remains elusive, however, as there is uncertainty on which neurological characters can be regarded as ancestral among extant phyla. Here we describe the ventral nerve cord (VNC) in Chengjiangocaris kunmingensis, an early Cambrian euarthropod from South China. The VNC reveals extraordinary det...

  19. The early stage of bacterial genome-reductive evolution in the host.

    Directory of Open Access Journals (Sweden)

    Han Song

    2010-05-01

    Full Text Available The equine-associated obligate pathogen Burkholderia mallei was developed by reductive evolution involving a substantial portion of the genome from Burkholderia pseudomallei, a free-living opportunistic pathogen. With its short history of divergence (approximately 3.5 myr, B. mallei provides an excellent resource to study the early steps in bacterial genome reductive evolution in the host. By examining 20 genomes of B. mallei and B. pseudomallei, we found that stepwise massive expansion of IS (insertion sequence elements ISBma1, ISBma2, and IS407A occurred during the evolution of B. mallei. Each element proliferated through the sites where its target selection preference was met. Then, ISBma1 and ISBma2 contributed to the further spread of IS407A by providing secondary insertion sites. This spread increased genomic deletions and rearrangements, which were predominantly mediated by IS407A. There were also nucleotide-level disruptions in a large number of genes. However, no significant signs of erosion were yet noted in these genes. Intriguingly, all these genomic modifications did not seriously alter the gene expression patterns inherited from B. pseudomallei. This efficient and elaborate genomic transition was enabled largely through the formation of the highly flexible IS-blended genome and the guidance by selective forces in the host. The detailed IS intervention, unveiled for the first time in this study, may represent the key component of a general mechanism for early bacterial evolution in the host.

  20. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology

    Science.gov (United States)

    2011-01-01

    Background The major human intestinal pathogen Giardia lamblia is a very early branching eukaryote with a minimal genome of broad evolutionary and biological interest. Results To explore early kinase evolution and regulation of Giardia biology, we cataloged the kinomes of three sequenced strains. Comparison with published kinomes and those of the excavates Trichomonas vaginalis and Leishmania major shows that Giardia's 80 core kinases constitute the smallest known core kinome of any eukaryote that can be grown in pure culture, reflecting both its early origin and secondary gene loss. Kinase losses in DNA repair, mitochondrial function, transcription, splicing, and stress response reflect this reduced genome, while the presence of other kinases helps define the kinome of the last common eukaryotic ancestor. Immunofluorescence analysis shows abundant phospho-staining in trophozoites, with phosphotyrosine abundant in the nuclei and phosphothreonine and phosphoserine in distinct cytoskeletal organelles. The Nek kinase family has been massively expanded, accounting for 198 of the 278 protein kinases in Giardia. Most Neks are catalytically inactive, have very divergent sequences and undergo extensive duplication and loss between strains. Many Neks are highly induced during development. We localized four catalytically active Neks to distinct parts of the cytoskeleton and one inactive Nek to the cytoplasm. Conclusions The reduced kinome of Giardia sheds new light on early kinase evolution, and its highly divergent sequences add to the definition of individual kinase families as well as offering specific drug targets. Giardia's massive Nek expansion may reflect its distinctive lifestyle, biphasic life cycle and complex cytoskeleton. PMID:21787419

  1. POLARIZATION EVOLUTION OF EARLY OPTICAL AFTERGLOWS OF GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Mi-Xiang; Dai, Zi-Gao [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, Xue-Feng, E-mail: dzg@nju.edu.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2016-01-10

    The central engine and jet composition of gamma-ray bursts (GRBs) remain mysterious. Here we suggest that observations on the polarization evolution of early optical afterglows may shed light on these questions. We first study the dynamics of a reverse shock and a forward shock that are generated during the interaction of a relativistic jet and its ambient medium. The jet is likely magnetized with a globally large-scale magnetic field from the central engine. The existence of the reverse shock requires that the magnetization degree of the jet should not be high (σ ≤ 1), so that the jet is mainly composed of baryons and leptons. We then calculate the light curves and polarization evolution of early optical afterglows and find that when the polarization position angle changes by 90° during the early afterglow, the polarization degree is zero for a toroidal magnetic field but is very likely to be nonzero for an aligned magnetic field. This result would be expected to provide a probe for the central engine of GRBs because an aligned field configuration could originate from a magnetar central engine and a toroidal field configuration could be produced from a black hole via the Blandford–Znajek mechanism. Finally, for such two kinds of magnetic field configurations, we fit the observed data of the early optical afterglow of GRB 120308A equally well.

  2. Ceruloplasmin gene-deficient mice with experimental autoimmune encephalomyelitis show attenuated early disease evolution.

    Science.gov (United States)

    Gresle, Melissa M; Schulz, Katrin; Jonas, Anna; Perreau, Victoria M; Cipriani, Tania; Baxter, Alan G; Miranda-Hernandez, Socorro; Field, Judith; Jokubaitis, Vilija G; Cherny, Robert; Volitakis, Irene; David, Samuel; Kilpatrick, Trevor J; Butzkueven, Helmut

    2014-06-01

    We conducted a microarray study to identify genes that are differentially regulated in the spinal cords of mice with the inflammatory disease experimental autoimmune encephalomyelitis (EAE) relative to healthy mice. In total 181 genes with at least a two-fold increase in expression were identified, and most of these genes were associated with immune function. Unexpectedly, ceruloplasmin (Cp), a ferroxidase that converts toxic ferrous iron to its nontoxic ferric form and also promotes the efflux of iron from astrocytes in the CNS, was shown to be highly upregulated (13.2-fold increase) in EAE spinal cord. Expression of Cp protein is known to be increased in several neurological conditions, but the role of Cp regulation in CNS autoimmune disease is not known. To investigate this, we induced EAE in Cp gene knockout, heterozygous, and wild-type mice. Cp knockout mice were found to have slower disease evolution than wild-type mice (EAE days 13-17; P = 0.05). Interestingly, Cp knockout mice also exhibited a significant increase in the number of astrocytes with reactive morphology in early EAE compared with wild-type mice at the same stage of disease. CNS iron levels were not increased with EAE in these mice. Based on these observations, we propose that an increase in Cp expression could contribute to tissue damage in early EAE. In addition, endogenous CP either directly or indirectly inhibits astrocyte reactivity during early disease, which could also worsen early disease evolution.

  3. Evolution of an Early Illness Warning System to Monitor Frail Elders in Independent Living

    Directory of Open Access Journals (Sweden)

    Gregory L. Alexander

    2011-01-01

    Full Text Available This paper describes the evolution of an early illness warning system used by an interdisciplinary team composed of clinicians and engineers in an independent living facility. The early illness warning system consists of algorithms which analyze resident activity patterns obtained from sensors embedded in residents' apartments. The engineers designed an automated reasoning system to generate clinically relevant alerts which are sent to clinicians when significant changes occur in the sensor data, for example declining activity levels. During January 2010 through July 2010, clinicians and engineers conducted weekly iterative review cycles of the early illness warning system to discuss concerns about the functionality of the warning system, to recommend solutions for the concerns, and to evaluate the implementation of the solutions. A total of 45 concerns were reviewed during this period. Iterative reviews resulted in greater efficiencies and satisfaction for clinician users who were monitoring elder activity patterns.

  4. New hominin fossils from Kanapoi, Kenya, and the mosaic evolution of canine teeth in early hominins

    Directory of Open Access Journals (Sweden)

    J. Michael Plavcan

    2012-03-01

    Full Text Available Whilst reduced size, altered shape and diminished sexual dimorphism of the canine–premolar complex are diagnostic features of the hominin clade, little is known about the rate and timing of changes in canine size and shape in early hominins. The earliest Australopithecus, Australopithecus anamensis, had canine crowns similar in size to those of its descendant Australopithecus afarensis, but a single large root alveolus has suggested that this species may have had larger and more dimorphic canines than previously recognised. Here we present three new associated dentitions attributed to A. anamensis, recently recovered from the type site of Kanapoi, Kenya, that provide evidence of canine evolution in early Australopithecus. These fossils include the largest mandibular canine root in the hominin fossil record. We demonstrate that, although canine crown height did not differ between these species, A. anamensis had larger and more dimorphic roots, more like those of extant great apes and Ardipithecus ramidus, than those of A. afarensis. The canine and premolar occlusal shapes of A. anamensis also resemble those of Ar. ramidus, and are intermediary between extant great apes and A. afarensis. A. afarensis achieved Homo-like maxillary crown basal proportions without a reduction in crown height. Thus, canine crown size and dimorphism remained stable during the early evolution of Australopithecus, but mandibular root dimensions changed only later within the A. anamensis–afarensis lineage, coincident with morphological changes in the canine–premolar complex. These observations suggest that selection on canine tooth crown height, shape and root dimensions was not coupled in early hominin evolution, and was not part of an integrated adaptive package.

  5. A Burst of miRNA Innovation in the Early Evolution of Butterflies and Moths

    Science.gov (United States)

    Quah, Shan; Hui, Jerome H.L.; Holland, Peter W.H.

    2015-01-01

    MicroRNAs (miRNAs) are involved in posttranscriptional regulation of gene expression. Because several miRNAs are known to affect the stability or translation of developmental regulatory genes, the origin of novel miRNAs may have contributed to the evolution of developmental processes and morphology. Lepidoptera (butterflies and moths) is a species-rich clade with a well-established phylogeny and abundant genomic resources, thereby representing an ideal system in which to study miRNA evolution. We sequenced small RNA libraries from developmental stages of two divergent lepidopterans, Cameraria ohridella (Horse chestnut Leafminer) and Pararge aegeria (Speckled Wood butterfly), discovering 90 and 81 conserved miRNAs, respectively, and many species-specific miRNA sequences. Mapping miRNAs onto the lepidopteran phylogeny reveals rapid miRNA turnover and an episode of miRNA fixation early in lepidopteran evolution, implying that miRNA acquisition accompanied the early radiation of the Lepidoptera. One lepidopteran-specific miRNA gene, miR-2768, is located within an intron of the homeobox gene invected, involved in insect segmental and wing patterning. We identified cubitus interruptus (ci) as a likely direct target of miR-2768, and validated this suppression using a luciferase assay system. We propose a model by which miR-2768 modulates expression of ci in the segmentation pathway and in patterning of lepidopteran wing primordia. PMID:25576364

  6. Constrained pattern of viral evolution in acute and early HCV infection limits viral plasticity.

    Directory of Open Access Journals (Sweden)

    Katja Pfafferott

    Full Text Available Cellular immune responses during acute Hepatitis C virus (HCV and HIV infection are a known correlate of infection outcome. Viral adaptation to these responses via mutation(s within CD8+ T-cell epitopes allows these viruses to subvert host immune control. This study examined HCV evolution in 21 HCV genotype 1-infected subjects to characterise the level of viral adaptation during acute and early HCV infection. Of the total mutations observed 25% were within described CD8+ T-cell epitopes or at viral adaptation sites. Most mutations were maintained into the chronic phase of HCV infection (75%. The lack of reversion of adaptations and high proportion of silent substitutions suggests that HCV has structural and functional limitations that constrain evolution. These results were compared to the pattern of viral evolution observed in 98 subjects during a similar phase in HIV infection from a previous study. In contrast to HCV, evolution during acute HIV infection is marked by high levels of amino acid change relative to silent substitutions, including a higher proportion of adaptations, likely reflecting strong and continued CD8+ T-cell pressure combined with greater plasticity of the virus. Understanding viral escape dynamics for these two viruses is important for effective T cell vaccine design.

  7. Symbiosis in cell evolution: Life and its environment on the early earth

    Science.gov (United States)

    Margulis, L.

    1981-01-01

    The book treats cell evolution from the viewpoint of the serial endosymbiosis theory of the origin of organelles. Following a brief outline of the symbiotic theory, which holds that eukaryotes evolved by the association of free-living bacteria with a host prokaryote, the diversity of life is considered, and five kingdoms of organisms are distinguished: the prokaryotic Monera and the eukaryotic Protoctista, Animalia, Fungi and Plantae. Symbiotic and traditional direct filiation theories of cell evolution are compared. Recent observations of cell structure and biochemistry are reviewed in relation to early cell evolution, with attention given to the geological context for the origin of eukaryotic cells, the origin of major bacterial anaerobic pathways, the relationship between aerobic metabolism and atmospheric oxygen, criteria for distinguishing symbiotic organelles from those that originated by differentiation, and the major classes of eukaryotic organelles: mitochondria, cilia, microtubules, the mitotic and meiotic apparatuses, and pastids. Cell evolution during the Phanerozoic is also discussed with emphasis on the effects of life on the biosphere

  8. The TIM Barrel Architecture Facilitated the Early Evolution of Protein-Mediated Metabolism.

    Science.gov (United States)

    Goldman, Aaron David; Beatty, Joshua T; Landweber, Laura F

    2016-01-01

    The triosephosphate isomerase (TIM) barrel protein fold is a structurally repetitive architecture that is present in approximately 10% of all enzymes. It is generally assumed that this ubiquity in modern proteomes reflects an essential historical role in early protein-mediated metabolism. Here, we provide quantitative and comparative analyses to support several hypotheses about the early importance of the TIM barrel architecture. An information theoretical analysis of protein structures supports the hypothesis that the TIM barrel architecture could arise more easily by duplication and recombination compared to other mixed α/β structures. We show that TIM barrel enzymes corresponding to the most taxonomically broad superfamilies also have the broadest range of functions, often aided by metal and nucleotide-derived cofactors that are thought to reflect an earlier stage of metabolic evolution. By comparison to other putatively ancient protein architectures, we find that the functional diversity of TIM barrel proteins cannot be explained simply by their antiquity. Instead, the breadth of TIM barrel functions can be explained, in part, by the incorporation of a broad range of cofactors, a trend that does not appear to be shared by proteins in general. These results support the hypothesis that the simple and functionally general TIM barrel architecture may have arisen early in the evolution of protein biosynthesis and provided an ideal scaffold to facilitate the metabolic transition from ribozymes, peptides, and geochemical catalysts to modern protein enzymes.

  9. Recent Structural Evolution of Early-Type Galaxies: Size Growth from z=1 to z=0

    CERN Document Server

    van der Wel, Arjen; Zirm, Andrew W; Franx, Marijn; Rettura, Alessandro; Illingworth, Garth D; Ford, Holland C

    2008-01-01

    Strong size and internal density evolution of early-type galaxies between z~2 and the present has been reported by several authors. Here we analyze samples of nearby and distant (z~1) galaxies with dynamically measured masses in order to confirm the previous, model-dependent results and constrain the uncertainties that may play a role. Velocity dispersion measurements are taken from the literature for 50 morphologically selected 0.8early-type galaxies with typical masses 2e11 Msol. Sizes are determined with ACS imaging. We compare the distant sample with a large sample of nearby (0.04early-type galaxies extracted from the SDSSfor which we determine sizes, masses, and densities in a consistent manner, using simulations to quantify systematic differences between the size measurements of nearby and distant galaxies. We find a highly significant structural difference between the nearby and distant samples, regardless of sample selection effects. The implied evolution ...

  10. Hydrogen, metals, bifurcating electrons, and proton gradients: the early evolution of biological energy conservation.

    Science.gov (United States)

    Martin, William F

    2012-03-09

    Life is a persistent, self-specified set of far from equilibrium chemical reactions. In modern microbes, core carbon and energy metabolism are what keep cells alive. In very early chemical evolution, the forerunners of carbon and energy metabolism were the processes of generating reduced carbon compounds from CO(2) and the mechanisms of harnessing energy as compounds capable of doing some chemical work. The process of serpentinization at alkaline hydrothermal vents holds promise as a model for the origin of early reducing power, because Fe(2+) in the Earth's crust reduces water to H(2) and inorganic carbon to methane. The overall geochemical process of serpentinization is similar to the biochemical process of methanogenesis, and methanogenesis is similar to acetogenesis in that both physiologies allow energy conservation from the reduction of CO(2) with electrons from H(2). Electron bifurcation is a newly recognized cytosolic process that anaerobes use generate low potential electrons, it plays an important role in some forms of methanogenesis and, via speculation, possibly in acetogenesis. Electron bifurcation likely figures into the early evolution of biological energy conservation.

  11. Maximal sequence length of exact match between members from a gene family during early evolution

    Institute of Scientific and Technical Information of China (English)

    WEN Xiao; GUO Xing-yi; FAN Long-jiang

    2005-01-01

    Mutation (substitution, deletion, insertion, etc.) in nucleotide acid causes the maximal sequence lengths of exact match (MALE) between paralogous members from a duplicate event to become shorter during evolution. In this work, MALE changes between members of 26 gene families from four representative species (Arabidopsis thaliana, Oryza sativa, Mus musculus and Homo sapiens) were investigated. Comparative study ofparalogous' MALE and amino acid substitution rate (dA<0.5)indicated that a close relationship existed between them. The results suggested that MALE could be a sound evolutionary scale for the divergent time for paralogous genes during their early evolution. A reference table between MALE and divergent time for the four species was set up, which would be useful widely, for large-scale genome alignment and comparison. As an example, detection of large-scale duplication events of rice genome based on the table was illustrated.

  12. The role of impact and radiogenic heating in the early thermal evolution of Mars

    Indian Academy of Sciences (India)

    S Sahijpal; G K Bhatia

    2015-02-01

    The planetary differentiation models of Mars are proposed that take into account core–mantle and coremantle–crust differentiation. The numerical simulations are presented for the early thermal evolution of Mars spanning up to the initial 25 million years (Ma) of the early solar system, probably for the first time, by taking into account the radiogenic heating due to the short-lived nuclides, 26Al and 60Fe. The influence of impact heating during the accretion of Mars is also incorporated in the simulations. The early accretion of Mars would necessitate a substantial role played by the short-lived nuclides in its heating. 26Al along with impact heating could have provided sufficient thermal energy to the entire body to substantially melt and trigger planetary scale differentiation. This is contrary to the thermal models based exclusively on the impact heating that could not produce widespread melting and planetary differentiation. The early onset of the accretion of Mars perhaps within the initial ∼1.5 Ma in the early solar system could have resulted in substantial differentiation of Mars, provided, it accreted over the timescale of ∼1 Ma. This seems to be consistent with the chronological records of the Martian meteorites.

  13. Shape Evolution of Massive Early-Type Galaxies: Confirmation of Increased Disk Prevalence at z>1

    CERN Document Server

    Chang, Yu-Yen; Rix, Hans-Walter; Wuyts, Stijn; Zibetti, Stefano; Ramkumar, Balasubramanian; Holden, Bradford P

    2012-01-01

    We use high-resolution K-band VLT/HAWK-I imaging over 0.25 square degrees to study the structural evolution of massive early-type galaxies since z~1. Mass-selected samples, complete down to log(M/M_sun)~10.7 such that `typical' L* galaxies are included at all redshifts, are drawn from pre-existing photometric redshift surveys. We then separated the samples into different redshift slices and classify them as late- or early-type galaxies on the basis of their specific star-formation rate. Axis-ratio measurements for the ~400 early-type galaxies in the redshift range 0.61 are, on average, flatter than at z11.3) are the roundest, with a pronounced lack among them of galaxies that are flat in projection. Merging is a plausible mechanism that can explain both results: at all epochs merging is required for early-type galaxies to grow beyond log(M/M_sun)~11.3, and all early types over time gradually and partially loose their disk-like characteristics.

  14. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds.

    Science.gov (United States)

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-01-01

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic.

  15. Microstructural evolution of 7012 alloy during the early stages of artificial ageing

    Energy Technology Data Exchange (ETDEWEB)

    Ferragut, R.; Somoza, A.; Tolley, A.

    1999-11-26

    A study of the microstructural evolution of a commercial 7012 (Al-Zn-Mg-Cu) age-hardenable alloy following artificial ageing by high resolution and conventional transmission electron microscopy and positron annihilation lifetime spectroscopy is presented. At the early stages of decomposition, the microstructure included precipitation of either pre-precipitate solute clusters or Guinier-Preston zones and semi-coherent {eta}{prime} precipitates, with typical sizes between 1 and 10 nm. Quantitative information on the size, number density and morphology of the particles present in the microstructure was obtained. The results were correlated with those obtained using positron annihilation lifetime spectroscopy.

  16. A Model of Isotope Separation in Cells at the Early Stages of Evolution.

    Science.gov (United States)

    Melkikh, A V; Bokunyaeva, A O

    2016-03-01

    The separation of the isotopes of certain ions can serve as an important criterion for the presence of life in the early stages of its evolution. A model of the separation of isotopes during their transport through the cell membrane is constructed. The dependence of the selection coefficient on various parameters is found. In particular, it is shown that the maximum efficiency of the transport of ions corresponds to the minimum enrichment coefficient. At the maximum enrichment, the efficiency of the transport system approaches ½. Calculated enrichment coefficients are compared with experimentally obtained values for different types of cells, and the comparison shows a qualitative agreement between these quantities.

  17. Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view.

    Science.gov (United States)

    Cai, Xinjiang; Wang, Xiangbing; Patel, Sandip; Clapham, David E

    2015-03-01

    The basic principles of Ca(2+) regulation emerged early in prokaryotes. Ca(2+) signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca(2+) concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca(2+) signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca(2+) exchangers and four-domain voltage-gated Ca(2+) channels. Newly identified evolutionary evidence suggests that the distinct Ca(2+) signaling machineries in animals, plants and fungi likely originated from an ancient Ca(2+) signaling machinery prior to early eukaryotic radiation.

  18. The formation and early evolution of stars from dust to stars and planets

    CERN Document Server

    Schulz, Norbert S

    2012-01-01

    Starburst regions in nearby and distant galaxies have a profound impact on our understanding of the early universe. This new, substantially updated and extended edition of Norbert Schulz’s unique book "From Dust to Stars" describes complex physical processes involved in the creation and early evolution of stars. It illustrates how these processes reveal themselves from radio wavelengths to high energy X-rays and gamma–rays, with special reference towards high energy signatures. Several sections devoted to key analysis techniques demonstrate how modern research in this field is pursued and new chapters are introduced on massive star formation, proto-planetary disks and observations of young exoplanets. Recent advances and contemporary research on the theory of star formation are explained, as are new observations, specifically from the three great observatories of the Spitzer Space Telescope, the Hubble Space Telescope and the Chandra X-Ray Observatory which all now operate at the same time and make high r...

  19. Phylogenetic ctDNA analysis depicts early stage lung cancer evolution

    DEFF Research Database (Denmark)

    Abbosh, Christopher; Birkbak, Nicolai Juul; Wilson, Gareth A.

    2017-01-01

    of early-stage lung cancer is not established. Here we conduct a tumour-specific phylogenetic approach to ctDNA profiling in the first 100 TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy (Rx)) study participants, including one patient co-recruited to the PEACE (Posthumous Evaluation......The early detection of relapse following primary surgery for non-small cell lung cancer and the characterization of emerging subclones seeding metastatic sites might offer new therapeutic approaches to limit tumor recurrence. The potential to non-invasively track tumor evolutionary dynamics in ctDNA...... of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and perform tumor volume limit of detection analyses. Through blinded profiling of post-operative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients destined to experience...

  20. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica.

    Science.gov (United States)

    Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix

    2015-09-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.

  1. The role of impact and radiogenic heating in the early thermal evolution of Mars

    CERN Document Server

    Sahijpal, S

    2014-01-01

    The planetary differentiation models of Mars are proposed that take into account core-mantle and core-mantle-crust differentiation. The numerical simulations are presented for the early thermal evolution of Mars spanning up to the initial 25 million years (Ma) of the early solar system, probably for the first time, by taking into account the radiogenic heating due to the short-lived nuclides, 26Al and 60Fe. The influence of impact heating during the accretion of Mars is also incorporated in the simulations. The early accretion of Mars would necessitate a substantial role played by the short-lived nuclides in its heating. 26Al along with impact heating could have provided sufficient thermal energy to the entire body to substantially melt and trigger planetary scale differentiation. This is contrary to the thermal models based exclusively on the impact heating that could not produce widespread melting and planetary differentiation. The early onset of the accretion of Mars perhaps within the initial ~1.5 Ma in t...

  2. Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life

    Science.gov (United States)

    Fournier, Gregory P.; Andam, Cheryl P.; Alm, Eric J.; Gogarten, J. Peter

    2011-12-01

    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.

  3. The evolution of early cellular systems viewed through the lens of biological interactions.

    Science.gov (United States)

    Poole, Anthony M; Lundin, Daniel; Rytkönen, Kalle T

    2015-01-01

    The minimal cell concept represents a pragmatic approach to the question of how few genes are required to run a cell. This is a helpful way to build a parts-list, and has been more successful than attempts to deduce a minimal gene set for life by inferring the gene repertoire of the last universal common ancestor, as few genes trace back to this hypothetical ancestral state. However, the study of minimal cellular systems is the study of biological outliers where, by practical necessity, coevolutionary interactions are minimized or ignored. In this paper, we consider the biological context from which minimal genomes have been removed. For instance, some of the most reduced genomes are from endosymbionts and are the result of coevolutionary interactions with a host; few such organisms are "free-living." As few, if any, biological systems exist in complete isolation, we expect that, as with modern life, early biological systems were part of an ecosystem, replete with organismal interactions. We favor refocusing discussions of the evolution of cellular systems on processes rather than gene counts. We therefore draw a distinction between a pragmatic minimal cell (an interesting engineering problem), a distributed genome (a system resulting from an evolutionary transition involving more than one cell) and the looser coevolutionary interactions that are ubiquitous in ecosystems. Finally, we consider the distributed genome and coevolutionary interactions between genomic entities in the context of early evolution.

  4. A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy

    Directory of Open Access Journals (Sweden)

    Wörheide Gert

    2011-08-01

    Full Text Available Abstract Background The synchronous and widespread adoption of the ability to biomineralize was a defining event for metazoan evolution during the late Precambrian/early Cambrian 545 million years ago. However our understanding on the molecular level of how animals first evolved this capacity is poor. Because sponges are the earliest branching phylum of biomineralizing metazoans, we have been studying how biocalcification occurs in the coralline demosponge Astrosclera willeyana. Results We have isolated and characterized a novel protein directly from the calcified spherulites of A. willeyana. Using three independent lines of evidence (genomic architecture of the gene in A. willeyana, spatial expression of the gene product in A. willeyana and genomic architecture of the gene in the related demosponge Amphimedon queenslandica, we show that the gene that encodes this protein was horizontally acquired from a bacterium, and is now highly and exclusively expressed in spherulite forming cells. Conclusions Our findings highlight the ancient and close association that exists between sponges and bacteria, and provide support for the notion that horizontal gene transfer may have been an important mechanism that supported the evolution of this early metazoan biomineralisation strategy.

  5. Sm/Lsm genes provide a glimpse into the early evolution of the spliceosome.

    Directory of Open Access Journals (Sweden)

    Stella Veretnik

    2009-03-01

    Full Text Available The spliceosome, a sophisticated molecular machine involved in the removal of intervening sequences from the coding sections of eukaryotic genes, appeared and subsequently evolved rapidly during the early stages of eukaryotic evolution. The last eukaryotic common ancestor (LECA had both complex spliceosomal machinery and some spliceosomal introns, yet little is known about the early stages of evolution of the spliceosomal apparatus. The Sm/Lsm family of proteins has been suggested as one of the earliest components of the emerging spliceosome and hence provides a first in-depth glimpse into the evolving spliceosomal apparatus. An analysis of 335 Sm and Sm-like genes from 80 species across all three kingdoms of life reveals two significant observations. First, the eukaryotic Sm/Lsm family underwent two rapid waves of duplication with subsequent divergence resulting in 14 distinct genes. Each wave resulted in a more sophisticated spliceosome, reflecting a possible jump in the complexity of the evolving eukaryotic cell. Second, an unusually high degree of conservation in intron positions is observed within individual orthologous Sm/Lsm genes and between some of the Sm/Lsm paralogs. This suggests that functional spliceosomal introns existed before the emergence of the complete Sm/Lsm family of proteins; hence, spliceosomal machinery with considerably fewer components than today's spliceosome was already functional.

  6. Revalidation of the genus Chiloguembelitria Hofker: Implications for the evolution of early Danian planktonic foraminifera

    Science.gov (United States)

    Arenillas, Ignacio; Arz, José A.; Gilabert, Vicente

    2017-10-01

    Guembelitria is the only planktonic foraminiferal genus whose survival from the mass extinction event of the Cretaceous/Paleogene (K/Pg) boundary has been clearly proven. The evolution of Guembelitria after the K/Pg boundary led to the appearance of two guembelitriid lineages in the early Danian: one biserial, represented by Woodringina and culminating in Chiloguembelina, and the other trochospiral, represented by Trochoguembelitria and culminating in Globoconusa. We have re-examined the genus Chiloguembelitria, another guembelitriid descended from Guembelitria and whose taxonomic validity had been questioned, it being considered a junior synonym of the latter. Nevertheless, Chiloguembelitria differs from Guembelitria mainly in the wall texture (pustulate to rugose vs. pore-mounded) and the position of the aperture (umbilical-extraumbilical to extraumbilical vs. umbilical). Chiloguembelitria shares its wall texture with Trochoguembelitria and some of the earliest specimens of Woodringina, suggesting that it played an important role in the evolution of early Danian guembelitriids, as it seems to be the most immediate ancestor of both trochospiral and biserial lineages. Morphological and morphostatistical analyses of Chiloguembelitria discriminate at least five species: Chg. danica, Chg. irregularis, and three new species: Chg. hofkeri, Chg. trilobata and Chg. biseriata.

  7. Early evolution of electron cyclotron driven current during suppression of tearing modes in a circular tokamak

    CERN Document Server

    Pratt, J; Westerhof, E

    2016-01-01

    When electron cyclotron (EC) driven current is first applied to the inside of a magnetic island, the current spreads throughout the island and after a short period achieves a steady level. Using a two equation fluid model for the EC current that allows us to examine this early evolution in detail, we analyze high-resolution simulations of a 2/1 classical tearing mode in a low-beta large aspect-ratio circular tokamak. These simulations use a nonlinear 3D reduced-MHD fluid model and the JOREK code. During the initial period where the EC driven current grows and spreads throughout the magnetic island, it is not a function of the magnetic flux. However, once it has reached a steady-state, it should be a flux function. We demonstrate numerically that if sufficiently resolved toroidally, the steady-state EC driven current becomes approximately a flux function. We discuss the physics of this early period of EC evolution and its impact on the size of the magnetic island.

  8. Early Evolution of Vertebrate Mybs: An Integrative Perspective Combining Synteny, Phylogenetic, and Gene Expression Analyses.

    Science.gov (United States)

    Campanini, Emeline B; Vandewege, Michael W; Pillai, Nisha E; Tay, Boon-Hui; Jones, Justin L; Venkatesh, Byrappa; Hoffmann, Federico G

    2015-10-15

    The genes in the Myb superfamily encode for three related transcription factors in most vertebrates, A-, B-, and c-Myb, with functionally distinct roles, whereas most invertebrates have a single Myb. B-Myb plays an essential role in cell division and cell cycle progression, c-Myb is involved in hematopoiesis, and A-Myb is involved in spermatogenesis and regulating expression of pachytene PIWI interacting RNAs, a class of small RNAs involved in posttranscriptional gene regulation and the maintenance of reproductive tissues. Comparisons between teleost fish and tetrapods suggest that the emergence and functional divergence of the Myb genes were linked to the two rounds of whole-genome duplication early in vertebrate evolution. We combined phylogenetic, synteny, structural, and gene expression analyses of the Myb paralogs from elephant shark and lampreys with data from 12 bony vertebrates to reconstruct the early evolution of vertebrate Mybs. Phylogenetic and synteny analyses suggest that the elephant shark and Japanese lamprey have copies of the A-, B-, and c-Myb genes, implying their origin could be traced back to the common ancestor of lampreys and gnathostomes. However, structural and gene expression analyses suggest that their functional roles diverged between gnathostomes and cyclostomes. In particular, we did not detect A-Myb expression in testis suggesting that the involvement of A-Myb in the pachytene PIWI interacting RNA pathway is probably a gnathostome-specific innovation. We speculate that the secondary loss of a central domain in lamprey A-Myb underlies the functional differences between the cyclostome and gnathostome A-Myb proteins. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates.

    Science.gov (United States)

    King, Benedict; Qiao, Tuo; Lee, Michael S Y; Zhu, Min; Long, John A

    2017-07-01

    The phylogeny of early gnathostomes provides an important framework for understanding one of the most significant evolutionary events, the origin and diversification of jawed vertebrates. A series of recent cladistic analyses have suggested that the placoderms, an extinct group of armoured fish, form a paraphyletic group basal to all other jawed vertebrates. We revised and expanded this morphological data set, most notably by sampling autapomorphies in a similar way to parsimony-informative traits, thus ensuring this data (unlike most existing morphological data sets) satisfied an important assumption of Bayesian tip-dated morphological clock approaches. We also found problems with characters supporting placoderm paraphyly, including character correlation and incorrect codings. Analysis of this data set reveals that paraphyly and monophyly of core placoderms (excluding maxillate forms) are essentially equally parsimonious. The two alternative topologies have different root positions for the jawed vertebrates but are otherwise similar. However, analysis using tip-dated clock methods reveals strong support for placoderm monophyly, due to this analysis favoring trees with more balanced rates of evolution. Furthermore, enforcing placoderm paraphyly results in higher levels and unusual patterns of rate heterogeneity among branches, similar to that generated from simulated trees reconstructed with incorrect root positions. These simulations also show that Bayesian tip-dated clock methods outperform parsimony when the outgroup is largely uninformative (e.g., due to inapplicable characters), as might be the case here. The analysis also reveals that gnathostomes underwent a rapid burst of evolution during the Silurian period which declined during the Early Devonian. This rapid evolution during a period with few articulated fossils might partly explain the difficulty in ascertaining the root position of jawed vertebrates. © The Author(s) 2016. Published by Oxford University

  10. New insights on early evolution of spiny-rayed fishes (Teleostei: Acanthomorpha

    Directory of Open Access Journals (Sweden)

    Wei-Jen eChen

    2014-10-01

    Full Text Available The Acanthomorpha is the largest group of teleost fishes with about one third of extant vertebrate species. In the course of its evolution this lineage experienced several episodes of radiation, leading to a large number of descendant lineages differing profoundly in morphology, ecology, distribution and behavior. Although Acanthomorpha was recognized decades ago, we are only now beginning to decipher its large-scale, time-calibrated phylogeny, a prerequisite to test various evolutionary hypotheses explaining the tremendous diversity of this group. In this study, we provide new insights into the early evolution of the acanthomorphs and the euteleost allies based on the phylogenetic analysis of a newly developed dataset combining nine nuclear and mitochondrial gene markers. Our inferred tree is time-calibrated using 15 fossils, some of which have not been used before. While our phylogeny strongly supports a monophyletic Neoteleostei, Ctenosquamata (i.e., Acanthomorpha plus Myctophiformes, and Acanthopterygii, we find weak support (bootstrap value < 48% for the traditionally defined Acanthomorpha, as well as evidence of non-monophyly for the traditional Paracanthopterygii, Beryciformes, and Percomorpha. We corroborate the new Paracanthopterygii sensu Miya et al. (2005 including Polymixiiformes, Zeiformes, Gadiformes, Percopsiformes, and likely the enigmatic Stylephorus chordatus. Our timetree largely agrees with other recent studies based on nuclear loci in inferring an Early Cretaceous origin for the acanthomorphs followed by a Late Cretaceous/Early Paleogene radiation of major lineages. This is in contrast to mitogenomic studies mostly inferring Jurassic or even Triassic ages for the origin of the acanthomorphs. We compare our results to those of previous studies, and attempt to address some of the issues that may have led to incongruence between the fossil record and the molecular clock studies, as well as between the different molecular

  11. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation.

    Science.gov (United States)

    Simmons, Nancy B; Seymour, Kevin L; Habersetzer, Jörg; Gunnell, Gregg F

    2008-02-14

    Bats (Chiroptera) represent one of the largest and most diverse radiations of mammals, accounting for one-fifth of extant species. Although recent studies unambiguously support bat monophyly and consensus is rapidly emerging about evolutionary relationships among extant lineages, the fossil record of bats extends over 50 million years, and early evolution of the group remains poorly understood. Here we describe a new bat from the Early Eocene Green River Formation of Wyoming, USA, with features that are more primitive than seen in any previously known bat. The evolutionary pathways that led to flapping flight and echolocation in bats have been in dispute, and until now fossils have been of limited use in documenting transitions involved in this marked change in lifestyle. Phylogenetically informed comparisons of the new taxon with other bats and non-flying mammals reveal that critical morphological and functional changes evolved incrementally. Forelimb anatomy indicates that the new bat was capable of powered flight like other Eocene bats, but ear morphology suggests that it lacked their echolocation abilities, supporting a 'flight first' hypothesis for chiropteran evolution. The shape of the wings suggests that an undulating gliding-fluttering flight style may be primitive for bats, and the presence of a long calcar indicates that a broad tail membrane evolved early in Chiroptera, probably functioning as an additional airfoil rather than as a prey-capture device. Limb proportions and retention of claws on all digits indicate that the new bat may have been an agile climber that employed quadrupedal locomotion and under-branch hanging behaviour.

  12. Major transitions in the evolution of early land plants: a bryological perspective

    Science.gov (United States)

    Ligrone, Roberto; Duckett, Jeffrey G.; Renzaglia, Karen S.

    2012-01-01

    Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the ‘stomatophytes’. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular

  13. Major transitions in the evolution of early land plants: a bryological perspective.

    Science.gov (United States)

    Ligrone, Roberto; Duckett, Jeffrey G; Renzaglia, Karen S

    2012-04-01

    Background Molecular phylogeny has resolved the liverworts as the earliest-divergent clade of land plants and mosses as the sister group to hornworts plus tracheophytes, with alternative topologies resolving the hornworts as sister to mosses plus tracheophytes less well supported. The tracheophytes plus fossil plants putatively lacking lignified vascular tissue form the polysporangiophyte clade. Scope This paper reviews phylogenetic, developmental, anatomical, genetic and paleontological data with the aim of reconstructing the succession of events that shaped major land plant lineages. Conclusions Fundamental land plant characters primarily evolved in the bryophyte grade, and hence the key to a better understanding of the early evolution of land plants is in bryophytes. The last common ancestor of land plants was probably a leafless axial gametophyte bearing simple unisporangiate sporophytes. Water-conducting tissue, if present, was restricted to the gametophyte and presumably consisted of perforate cells similar to those in the early-divergent bryophytes Haplomitrium and Takakia. Stomata were a sporophyte innovation with the possible ancestral functions of producing a transpiration-driven flow of water and solutes from the parental gametophyte and facilitating spore separation before release. Stomata in mosses, hornworts and polysporangiophytes are viewed as homologous, and hence these three lineages are collectively referred to as the 'stomatophytes'. An indeterminate sporophyte body (the sporophyte shoot) developing from an apical meristem was the key innovation in polysporangiophytes. Poikilohydry is the ancestral condition in land plants; homoiohydry evolved in the sporophyte of polysporangiophytes. Fungal symbiotic associations ancestral to modern arbuscular mycorrhizas evolved in the gametophytic generation before the separation of major present-living lineages. Hydroids are imperforate water-conducting cells specific to advanced mosses. Xylem vascular cells

  14. A model for the evolution of the Earth's mantle structure since the Early Paleozoic

    Science.gov (United States)

    Zhang, Nan; Zhong, Shijie; Leng, Wei; Li, Zheng-Xiang

    2010-06-01

    Seismic tomography studies indicate that the Earth's mantle structure is characterized by African and Pacific seismically slow velocity anomalies (i.e., superplumes) and circum-Pacific seismically fast anomalies (i.e., a globally spherical harmonic degree 2 structure). However, the cause for and time evolution of the African and Pacific superplumes and the degree 2 mantle structure remain poorly understood with two competing proposals. First, the African and Pacific superplumes have remained largely unchanged for at least the last 300 Myr and possibly much longer. Second, the African superplume is formed sometime after the formation of Pangea (i.e., at 330 Ma) and the mantle in the African hemisphere is predominated by cold downwelling structures before and during the assembly of Pangea, while the Pacific superplume has been stable for the Pangea supercontinent cycle (i.e., globally a degree 1 structure before the Pangea formation). Here, we construct a proxy model of plate motions for the African hemisphere for the last 450 Myr since the Early Paleozoic using the paleogeographic reconstruction of continents constrained by paleomagnetic and geological observations. Coupled with assumed oceanic plate motions for the Pacific hemisphere, this proxy model for the plate motion history is used as time-dependent surface boundary condition in three-dimensional spherical models of thermochemical mantle convection to study the evolution of mantle structure, particularly the African mantle structure, since the Early Paleozoic. Our model calculations reproduce well the present-day mantle structure including the African and Pacific superplumes and generally support the second proposal with a dynamic cause for the superplume structure. Our results suggest that while the mantle in the African hemisphere before the assembly of Pangea is predominated by the cold downwelling structure resulting from plate convergence between Gondwana and Laurussia, it is unlikely that the bulk of

  15. The Atmospheres of the Terrestrial Planets:Clues to the Origins and Early Evolution of Venus, Earth, and Mars

    Science.gov (United States)

    Baines, Kevin H.; Atreya, Sushil K.; Bullock, Mark A.; Grinspoon, David H,; Mahaffy, Paul; Russell, Christopher T.; Schubert, Gerald; Zahnle, Kevin

    2015-01-01

    We review the current state of knowledge of the origin and early evolution of the three largest terrestrial planets - Venus, Earth, and Mars - setting the stage for the chapters on comparative climatological processes to follow. We summarize current models of planetary formation, as revealed by studies of solid materials from Earth and meteorites from Mars. For Venus, we emphasize the known differences and similarities in planetary bulk properties and composition with Earth and Mars, focusing on key properties indicative of planetary formation and early evolution, particularly of the atmospheres of all three planets. We review the need for future in situ measurements for improving our understanding of the origin and evolution of the atmospheres of our planetary neighbors and Earth, and suggest the accuracies required of such new in situ data. Finally, we discuss the role new measurements of Mars and Venus have in understanding the state and evolution of planets found in the habitable zones of other stars.

  16. Basin Evolution of the Cretaceous-Early Eocene Xigaze Forearc, Southern Tibet

    Science.gov (United States)

    Orme, D. A.; Carrapa, B.; Kapp, P. A.; Gehrels, G. E.; Reiners, P. W.

    2013-12-01

    An understanding of the processes which control the evolution of forearc basins is important for deciphering the tectonic development of a convergent margin prior to continent-continent suturing. This study presents sedimentologic, modal petrographic and geo-thermochronologic data from the Xigaze forearc basin, preserved along ~ 600 km of the Indus-Yarlung Suture Zone in southern Tibet. From late Cretaceous to early Cenozoic time, subduction of Neo-Tethyan oceanic crust beneath the southern margin of Asia accommodated the northward motion of the Indian craton and formed the Xigaze forearc basin. Following collision with India in the early Cenozoic, the basin transitioned from predominantly marine to non-marine sedimentation and was subsequently uplifted to a mean elevation of 5000 m. Thus, the sedimentary record in the Xigaze forearc preserves information regarding the tectonic evolution of the Indo-Asia continental margin prior to and following collision. We present new measured sections and geo-thermochronologic data from Early Cretaceous to Early Eocene clastic and carbonate sedimentary rocks, preserved in two previously unexplored regions of the forearc, (1) at its western most extent, northwest of Saga, and (2) north of Lhatse. In turn, we compare our results with previously published data in order to synthesize our current understanding of forearc evolution. Strata preserved in the Lhaste region record an initial shallow marine phase of forearc sedimentation (Aptian), but quickly transition to deep marine slope and distal fan turbidite facies (Albian-Campanian). In contrast, facies preserved in the Saga region record a younger shoaling upward marine sequence (Maastrichtian-Ypresian), with the uppermost ~ 400 m consisting of fluvial channel sandstones and red-green paleosols. Facies and depositional environments in the Saga region are highly variable along strike, with turbidites, shelf limestones, estuarine siliciclastics and thick paleosols sequences all

  17. Sedimentary Characteristics and Evolution of Asri Basin, Indonesia, in Early Tertiary

    Institute of Scientific and Technical Information of China (English)

    Zhong Dakang; Zhu Xiaomin; Zhang Qin

    2006-01-01

    The Asri basin is a typical half-graben basin. The east side of the basin is a steep slope controlled by syn-rifting and the west side is a widespread gentle slope. In the early Tertiary, it was filled with terrigenous clastic sediments composed of the Banuwati and Talang Akar formations from bottom to top. The latter is further divided into the Zelda member (lower part) and the Gita member (upper part). The previous studies suggested that the early tertiary sediments are alluvial, fluvial and swamp deposits. In this paper, based on the core lithology, well logs and seismic data, the sediments should be alluvial, fluvial and lacustrine systems. The lacustrine system includes subaqeous fan, fan delta and delta, shore-shallow lake, deep lake and turbidite fan deposition. Alluvial fan, subaqeous fan and fan delta sediments were deposited in the early stage and located on the steep slope adjacent. The deltaic sedimentary system was usually distributed on the gentle slope of the basin. In the early Tertiary, the basin evolution could be divided into four stages: initial subsidence (matching Banuwati formation), rapid subsidence (matching low Zelda member), steady subsidence or fluctuation (matching middle Zelda) and uplifting (matching upper Zelda). At the first stage, the alluvial fan, flood plain, braided stream sediments were deposited first with thick brown conglomerate and pebble sandstones, and then subaqeous fan sediments were interbedded with the thick lacustrine mudstones. At the second stage, shore-shallow lake and deep lake and turbidite fan sediments were deposited, with thin fine sandstones and siltstones interbedded with thick mudstones. At the third stage, thick fan delta and delta sandstones were deposited. At last came fluvial meandering, anastomosed and swamp sediments. Sediment supply was mainly from the west and the east, partly from the north.

  18. The Design of the Valsartan for Attenuating Disease Evolution in Early Sarcomeric Hypertrophic Cardiomyopathy (VANISH) Trial.

    Science.gov (United States)

    Ho, Carolyn Y; McMurray, John J V; Cirino, Allison L; Colan, Steven D; Day, Sharlene M; Desai, Akshay S; Lipshultz, Steven E; MacRae, Calum A; Shi, Ling; Solomon, Scott D; Orav, E John; Braunwald, Eugene

    2017-05-01

    Hypertrophic cardiomyopathy (HCM) is often caused by sarcomere gene mutations, resulting in left ventricular hypertrophy (LVH), myocardial fibrosis, and increased risk of sudden cardiac death and heart failure. Studies in mouse models of sarcomeric HCM demonstrated that early treatment with an angiotensin receptor blocker (ARB) reduced development of LVH and fibrosis. In contrast, prior human studies using ARBs for HCM have targeted heterogeneous adult cohorts with well-established disease. The VANISH trial is testing the safety and feasibility of disease-modifying therapy with an ARB in genotyped HCM patients with early disease. A randomized, placebo-controlled, double-blind clinical trial is being conducted in sarcomere mutation carriers, 8 to 45 years old, with HCM and no/minimal symptoms, or those with early phenotypic manifestations but no LVH. Participants are randomly assigned to receive valsartan 80 to 320 mg daily (depending on age and weight) or placebo. The primary endpoint is a composite of 9 z-scores in domains representing myocardial injury/hemodynamic stress, cardiac morphology, and function. Total z-scores reflecting change from baseline to final visits will be compared between treatment groups. Secondary endpoints will assess the impact of treatment on mutation carriers without LVH, and analyze the influence of age, sex, and genotype. The VANISH trial is testing a new strategy of disease modification for treating sarcomere mutation carriers with early HCM, and those at risk for its development. In addition, further insight into disease mechanisms, response to therapy, and phenotypic evolution will be gained. Copyright © 2017. Published by Elsevier Inc.

  19. The evolution of oceanic 87Sr/86Sr does not rule out early continental growth

    Science.gov (United States)

    Flament, N.; Coltice, N.; Rey, P. F.

    2010-12-01

    Many contrasted continental growth models have been proposed to date, in which the amount of continental material extracted from the mantle at 3.8 Ga ranges between 0% (e.g. Taylor and McLennan, 1985) and 100% (e.g. Armstrong, 1981). One of the arguments in favor of delayed continental growth models is the shift in the 87Sr/86Sr of marine carbonates from mantle composition at ~ 2.8 Ga (Shields and Veizer, 2002). When using oceanic 87Sr/86Sr as a proxy of continental growth, the flux of strontium from the continents to the oceans is assumed to depend only on continental area and both continental hypsometry and continental freeboard are assumed to be constant through time. However, Rey and Coltice (2008) suggested that Archean reliefs were lower than present-day ones and Flament et al. (2008) suggested that the emerged land area is not proportional to continental growth. Therefore, the suitability of 87Sr/86Sr as a proxy of continental growth must be re-assessed. In this contribution, we develop an integrated model, from the mantle to the surface, to investigate the effect of contrasted continental growth models on the evolution of sea level, of the area of emerged land, and of oceanic 87Sr/86Sr. We estimate the evolution of mantle temperature using the model of Labrosse and Jaupart (2007) that takes the effect of continental growth into account. The maximum continental elevation is calculated using the results of Rey and Coltice (2008), sea level and the area of emerged land are calculated as in Flament et al. (2008), and the oceanic 87Sr/86Sr is calculated in a geochemical box model. We calculate Archean sea levels ~ 800 m higher than present for delayed continental growth and ~ 1500 m higher for early continental growth. In contrast, we calculate similar Archean areas of emerged land, of less than 5% of the Earth’s surface, for both early and delayed continental growth models. Because the area of emerged land does not depend on continental growth models, the

  20. A Devonian predatory fish provides insights into the early evolution of modern sarcopterygians

    Science.gov (United States)

    Lu, Jing; Zhu, Min; Ahlberg, Per Erik; Qiao, Tuo; Zhu, You’an; Zhao, Wenjin; Jia, Liantao

    2016-01-01

    Crown or modern sarcopterygians (coelacanths, lungfishes, and tetrapods) differ substantially from stem sarcopterygians, such as Guiyu and Psarolepis, and a lack of transitional fossil taxa limits our understanding of the origin of the crown group. The Onychodontiformes, an enigmatic Devonian predatory fish group, seems to have characteristics of both stem and crown sarcopterygians but is difficult to place because of insufficient anatomical information. We describe the new skull material of Qingmenodus, a Pragian (~409-million-year-old) onychodont from China, using high-resolution computed tomography to image internal structures of the braincase. In addition to its remarkable similarities with stem sarcopterygians in the ethmosphenoid portion, Qingmenodus exhibits coelacanth-like neurocranial features in the otic region. A phylogenetic analysis based on a revised data set unambiguously assigns onychodonts to crown sarcopterygians as stem coelacanths. Qingmenodus thus bridges the morphological gap between stem sarcopterygians and coelacanths and helps to illuminate the early evolution and diversification of crown sarcopterygians. PMID:27386576

  1. Early descriptions of acromegaly and gigantism and their historical evolution as clinical entities.

    Science.gov (United States)

    Mammis, Antonios; Eloy, Jean Anderson; Liu, James K

    2010-10-01

    Giants have been a subject of fascination throughout history. Whereas descriptions of giants have existed in the lay literature for millennia, the first attempt at a medical description was published by Johannes Wier in 1567. However, it was Pierre Marie, in 1886, who established the term "acromegaly" for the first time and established a distinct clinical diagnosis with clear clinical descriptions in 2 patients with the characteristic presentation. Multiple autopsy findings revealed a consistent correlation between acromegaly and pituitary enlargement. In 1909, Harvey Cushing postulated a “hormone of growth" as the underlying pathophysiological trigger involved in pituitary hypersecretion in patients with acromegaly. This theory was supported by his observations of clinical remission in patients with acromegaly in whom he had performed hypophysectomy. In this paper, the authors present some of the early accounts of acromegaly and gigantism, and describe its historical evolution as a medical and surgical entity.

  2. Supernovae and their expanding blast waves during the early evolution of Galactic globular clusters

    CERN Document Server

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Cassisi, Santi

    2015-01-01

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae products were retained within globular clusters and only in the most massive cases ($M \\ge 10^6$ Msol), while less massive clusters were not contaminated at all by supernovae. Here we show that supernova blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well centered supernovae, that evolve into a high density medium available for a second stellar generation in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, leading in these cases eventually to an Fe contaminated second stellar generation.

  3. SUPERNOVAE AND THEIR EXPANDING BLAST WAVES DURING THE EARLY EVOLUTION OF GALACTIC GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio-Tagle, Guillermo; Silich, Sergiy [Instituto Nacional de Astrofísica Óptica y Electrónica, AP 51, 72000 Puebla, México (Mexico); Muñoz-Tuñón, Casiana [Instituto de Astrofísica de Canarias (Spain); Cassisi, Santi, E-mail: gtt@inaoep.mx, E-mail: cmt@iac.es, E-mail: cassisi@oa-teramo.inaf.it [INAF—Astronomical Observatory of Collurania, via M. Maggini, I-64100 Teramo (Italy)

    2015-11-20

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 10{sup 6} M{sub ⊙}), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centered SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.

  4. The Importance of Lake Overflow Floods for Early Martian Landscape Evolution: Insights From Licus Vallis

    Science.gov (United States)

    Goudge, T. A.; Fassett, C. I.

    2017-01-01

    Open-basin lake outlet valleys are incised when water breaches the basin-confining topography and overflows. Outlet valleys record this flooding event and provide insight into how the lake and surrounding terrain evolved over time. Here we present a study of the paleolake outlet Licus Vallis, a >350 km long, >2 km wide, >100 m deep valley that heads at the outlet breach of an approx.30 km diameter impact crater. Multiple geomorphic features of this valley system suggest it records a more complex evolution than formation from a single lake overflow flood. This provides unique insight into the paleohydrology of lakes on early Mars, as we can make inferences beyond the most recent phase of activity..

  5. Os isotopes in SNC meteorites and their implications to the early evolution of Mars and Earth

    Science.gov (United States)

    Jagoutz, E.; Luck, J. M.; Othman, D. Ben; Wanke, H.

    1993-01-01

    A new development on the measurement of the Os isotopic composition by mass spectrometry using negative ions opened a new field of applications. The Re-Os systematic provides time information on the differentiation of the nobel metals. The nobel metals are strongly partitioned into metal and sulphide phases, but also the generation of silicate melts might fractionate the Re-Os system. Compared to the other isotopic systems which are mainly dating the fractionation of the alkalis and alkali-earth elements, the Re-Os system is expected to disclose entirely new information about the geochemistry. Especially the differentiation and early evolution of the planets such as the formation of the core will be elucidated with this method.

  6. The Early Spectral Evolution of the Classical Nova ASASSN-15th in M33

    Science.gov (United States)

    Wagner, R. Mark; Neric, Marko; Darnley, Matt J.; Williams, Steven; Starrfield, Sumner; Woodward, Charles E.; Prieto, Jose Luis

    2016-06-01

    During the course of the All Sky Automated Survey for SuperNovae (ASAS-SN) a new transient source designated ASASSN-15th was identified on images of the nearby galaxy M33 obtained with the 14 cm Brutus telescope in Haleakala, Hawaii on 2015 Dec 1.4 UT at V ~ 16.5 mag. Given the location of the transient in M33 and its apparent V magnitude at discovery, the implied absolute visual magnitude was about -8.5 mag suggesting that the transient was a new classical nova outburst in M33. Optical spectroscopy obtained by us on 2015 Dec 2.3 showed broad emission lines of Balmer, Fe II, and Na I D with P Cygni-type line profiles superposed on a blue continuum. The spectrum was consistent with a Fe II-type classical nova in M33 discovered early in the outburst. Subsequent spectra obtained by us on 2015 Dec 10.9 UT showed significant evolution since our first spectrum in that the deep P Cygni-type line profiles seen earlier were now extremely shallow or had almost completely disappeared with the emission component growing in strength. Additional emission lines from O I, Si II, and possibly He I were also present. We obtained optical spectroscopy of ASASSN-15th on 17 epochs between 2015 Dec 1 and 2016 Feb 11 UT with the 2.4 m Hiltner telescope (+OSMOS) of the MDM Observatory, the 2 m fully robotic Liverpool Telescope (+SPRAT), and the 2 x 8.4 m Large Binocular Telescope (+MODS). We will present our spectroscopy and discuss the early evolution of ASASSN-15th in the context of Galactic Fe II-class novae.

  7. Dynamics and early post-tsunami evolution of floating marine debris near Fukushima Daiichi

    Science.gov (United States)

    Matthews, John Philip; Ostrovsky, Lev; Yoshikawa, Yutaka; Komori, Satoru; Tamura, Hitoshi

    2017-08-01

    The devastating tsunami triggered by the Tōhoku-Oki earthquake of 11 March 2011 caused a crisis at the Fukushima Daiichi nuclear power station where it overtopped the seawall defences. On retreating, the tsunami carried loose debris and wreckage seaward and marshalled buoyant material into extensive plumes. Widespread concern over the fate of these and numerous other Tōhoku tsunami depositions prompted attempts to simulate debris dispersion throughout the wider Pacific. However, the effects of locally perturbed wind and wave fields, active Langmuir circulation and current-induced attrition determine a complex and poorly understood morphology for large floating agglomerations. Here we show that the early post-tsunami evolution of marine-debris plumes near Fukushima Daiichi was also shaped by near-surface wind modifications that took place above relatively calm (lower surface roughness) waters covered by surface films derived from oil and other contaminants. High-spatial-resolution satellite tracking reveals faster-than-expected floating-debris motions and invigorated plume evolution within these regions, while numerical modelling of turbulent air flow over the low-drag, film-covered surface predicts typically metre-per-second wind strengthening at centimetric heights, sufficient to explain the observed debris-speed increases. Wind restructuring probably stimulates the dispersion of flotsam from both biological and anthropogenic sources throughout a global ocean of highly variable surface roughness.

  8. Evolution of central dark matter of early-type galaxies up to z ~ 0.8

    CERN Document Server

    Tortora, C; Saglia, R P; Romanowsky, A J; Covone, G; Capaccioli, M

    2014-01-01

    We investigate the evolution of dark and luminous matter in the central regions of early-type galaxies (ETGs) up to z ~ 0.8. We use a spectroscopically selected sample of 154 cluster and field galaxies from the EDisCS survey, covering a wide range in redshifts (z ~ 0.4-0.8), stellar masses ($\\log M_{\\star}/ M_{\\odot}$ ~ 10.5-11.5 dex) and velocity dispersions ($\\sigma_{\\star}$ ~ 100-300 \\, km/s). We obtain central dark matter (DM) fractions by determining the dynamical masses from Jeans modelling of galaxy aperture velocity dispersions and the $M_{\\star}$ from galaxy colours, and compare the results with local samples. We discuss how the correlations of central DM with galaxy size (i.e. the effective radius, $R_{\\rm e}$), $M_{\\star}$ and $\\sigma_{\\star}$ evolve as a function of redshift, finding clear indications that local galaxies are, on average, more DM dominated than their counterparts at larger redshift. This DM fraction evolution with $z$ can be only partially interpreted as a consequence of the size-r...

  9. The progenitor and early evolution of the Type IIb SN 2016gkg

    CERN Document Server

    Tartaglia, L; Sand, D J; Valenti, S; Smartt, S J; McCully, C; Anderson, J P; Arcavi, I; Elias-Rosa, N; Galbany, L; Gal-Yam, A; Haislip, J B; Hosseinzadeh, G; Howell, D A; Inserra, C; Jha, S W; Kankare, E; Lundqvist, P; Maguire, K; Mattila, S; Reichart, D; Smith, K W; Smith, M; Stritzinger, M; Sullivan, M; Taddia, F; Tomasella, L

    2016-01-01

    We report initial observations and analysis on the Type IIb SN 2016gkg in the nearby galaxy NGC 613. SN 2016gkg exhibited a clear double-peaked light curve during its early evolution, as evidenced by our intensive spectroscopic and photometric follow-up campaign. SN 2016gkg shows strong similarities with other Type IIb SNe, in particular with respect to the \\he emission features observed $\\sim\\,9\\,\\rm{days}$ after explosion in both the optical and near infrared. SN 2016gkg evolved faster than the prototypical Type IIb SN 1993J, with a decline similar to that of SN 2011dh after the first peak. Archival {\\it Hubble Space Telescope} images indicate a pre-explosion source at SN 2016gkg's position, suggesting a progenitor star with a $\\sim$mid F spectral type and initial mass $15-20$\\msun, depending on the distance modulus adopted for NGC 613. Modeling the temperature evolution within $5\\,\\rm{days}$ of explosion, we obtain a progenitor radius of $\\sim\\,60-120$\\rsun, consistent with the spectral type obtained from ...

  10. A New Basal Sauropod Dinosaur from the Middle Jurassic of Niger and the Early Evolution of Sauropoda

    Science.gov (United States)

    Remes, Kristian; Ortega, Francisco; Fierro, Ignacio; Joger, Ulrich; Kosma, Ralf; Marín Ferrer, José Manuel; Ide, Oumarou Amadou; Maga, Abdoulaye

    2009-01-01

    Background The early evolution of sauropod dinosaurs is poorly understood because of a highly incomplete fossil record. New discoveries of Early and Middle Jurassic sauropods have a great potential to lead to a better understanding of early sauropod evolution and to reevaluate the patterns of sauropod diversification. Principal Findings A new sauropod from the Middle Jurassic of Niger, Spinophorosaurus nigerensis n. gen. et sp., is the most complete basal sauropod currently known. The taxon shares many anatomical characters with Middle Jurassic East Asian sauropods, while it is strongly dissimilar to Lower and Middle Jurassic South American and Indian forms. A possible explanation for this pattern is a separation of Laurasian and South Gondwanan Middle Jurassic sauropod faunas by geographic barriers. Integration of phylogenetic analyses and paleogeographic data reveals congruence between early sauropod evolution and hypotheses about Jurassic paleoclimate and phytogeography. Conclusions Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line. The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time. Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification. PMID:19756139

  11. A new basal sauropod dinosaur from the middle Jurassic of Niger and the early evolution of sauropoda.

    Directory of Open Access Journals (Sweden)

    Kristian Remes

    Full Text Available BACKGROUND: The early evolution of sauropod dinosaurs is poorly understood because of a highly incomplete fossil record. New discoveries of Early and Middle Jurassic sauropods have a great potential to lead to a better understanding of early sauropod evolution and to reevaluate the patterns of sauropod diversification. PRINCIPAL FINDINGS: A new sauropod from the Middle Jurassic of Niger, Spinophorosaurus nigerensis n. gen. et sp., is the most complete basal sauropod currently known. The taxon shares many anatomical characters with Middle Jurassic East Asian sauropods, while it is strongly dissimilar to Lower and Middle Jurassic South American and Indian forms. A possible explanation for this pattern is a separation of Laurasian and South Gondwanan Middle Jurassic sauropod faunas by geographic barriers. Integration of phylogenetic analyses and paleogeographic data reveals congruence between early sauropod evolution and hypotheses about Jurassic paleoclimate and phytogeography. CONCLUSIONS: Spinophorosaurus demonstrates that many putatively derived characters of Middle Jurassic East Asian sauropods are plesiomorphic for eusauropods, while South Gondwanan eusauropods may represent a specialized line. The anatomy of Spinophorosaurus indicates that key innovations in Jurassic sauropod evolution might have taken place in North Africa, an area close to the equator with summer-wet climate at that time. Jurassic climatic zones and phytogeography possibly controlled early sauropod diversification.

  12. The Intricate Role of Cold Gas and Dust in Galaxy Evolution at Early Cosmic Epochs

    Science.gov (United States)

    Riechers, Dominik Alexander; Capak, Peter; Carilli, Christopher; Walter, Fabian

    2015-08-01

    Cold molecular and atomic gas plays a central role in our understanding of early galaxy formation and evolution. It represents the material that stars form out of, and its mass, distribution, excitation, and dynamics provide crucial insight into the physical processes that support the ongoing star formation and stellar mass buildup. We will discuss the most recent progress in studies of gas-rich galaxies out to the highest redshifts through detailed investigations with the most powerful facilities across the electromagnetic spectrum, with a particular focus on new observations obtained with the Karl G. Jansky Very Large Array (VLA) and the Atacama Large (sub-) Millimeter Array (ALMA). These studies cover a broad range in galaxy properties, and provide a detailed comparison of the physical conditions in massive, dust-obscured starburst galaxies and star-forming active galactic nuclei hosts within the first billion years of cosmic time. Facilitating the impressive sensitivity of ALMA, this investigation also includes the first direct, systematic study of the star-forming interstellar medium, gas dynamics, and dust obscuration in (much less luminous and massive) "typical" galaxies at such early epochs. These new results show that "typical" z>5 galaxies are significantly metal-enriched, but not heavily dust-obscured, consistent with a decreasing contribution of dust-obscured star formation to the star formation history of the universe towards the earliest cosmic epochs.

  13. Tertiary evolution of the Shimanto belt (Japan): A large-scale collision in Early Miocene

    Science.gov (United States)

    Raimbourg, Hugues; Famin, Vincent; Palazzin, Giulia; Yamaguchi, Asuka; Augier, Romain

    2017-07-01

    To decipher the Miocene evolution of the Shimanto belt of southwestern Japan, structural and paleothermal studies were carried out in the western area of Shikoku Island. All units constituting the belt, both in its Cretaceous and Tertiary domains, are in average strongly dipping to the NW or SE, while shortening directions deduced from fault kinematics are consistently orientated NNW-SSE. Peak paleotemperatures estimated with Raman spectra of organic matter increase strongly across the southern, Tertiary portion of the belt, in tandem with the development of a steeply dipping metamorphic cleavage. Near the southern tip of Ashizuri Peninsula, the unconformity between accreted strata and fore-arc basin, present along the whole belt, corresponds to a large paleotemperature gap, supporting the occurrence of a major collision in Early Miocene. This tectonic event occurred before the magmatic event that affected the whole belt at 15 Ma. The associated shortening was accommodated in two opposite modes, either localized on regional-scale faults such as the Nobeoka Tectonic Line in Kyushu or distributed through the whole belt as in Shikoku. The reappraisal of this collision leads to reinterpret large-scale seismic refraction profiles of the margins, where the unit underlying the modern accretionary prism is now attributed to an older package of deformed and accreted sedimentary units belonging to the Shimanto belt. When integrated into reconstructions of Philippine Sea Plate motion, the collision corresponds to the oblique collision of a paleo Izu-Bonin-Mariana Arc with Japan in Early Miocene.

  14. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda.

    Science.gov (United States)

    Yang, Jie; Ortega-Hernández, Javier; Butterfield, Nicholas J; Liu, Yu; Boyan, George S; Hou, Jin-Bo; Lan, Tian; Zhang, Xi-Guang

    2016-03-15

    Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China). The VNC of C. kunmingensis comprises a homonymous series of condensed ganglia that extend throughout the body, each associated with a pair of biramous limbs. Submillimetric preservation reveals numerous segmental and intersegmental nerve roots emerging from both sides of the VNC, which correspond topologically to the peripheral nerves of extant Priapulida and Onychophora. The fuxianhuiid VNC indicates that ancestral neurological features of Ecdysozoa persisted into derived members of stem-group Euarthropoda but were later lost in crown-group representatives. These findings illuminate the VNC ground pattern in Panarthropoda and suggest the independent secondary loss of cycloneuralian-like neurological characters in Tardigrada and Euarthropoda.

  15. Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems.

    Science.gov (United States)

    Strausfeld, Nicholas J; Ma, Xiaoya; Edgecombe, Gregory D; Fortey, Richard A; Land, Michael F; Liu, Yu; Cong, Peiyun; Hou, Xianguang

    2016-03-01

    Four types of eyes serve the visual neuropils of extant arthropods: compound retinas composed of adjacent facets; a visual surface populated by spaced eyelets; a smooth transparent cuticle providing inwardly directed lens cylinders; and single-lens eyes. The first type is a characteristic of pancrustaceans, the eyes of which comprise lenses arranged as hexagonal or rectilinear arrays, each lens crowning 8-9 photoreceptor neurons. Except for Scutigeromorpha, the second type typifies Myriapoda whose relatively large eyelets surmount numerous photoreceptive rhabdoms stacked together as tiers. Scutigeromorph eyes are facetted, each lens crowning some dozen photoreceptor neurons of a modified apposition-type eye. Extant chelicerate eyes are single-lensed except in xiphosurans, whose lateral eyes comprise a cuticle with a smooth outer surface and an inner one providing regular arrays of lens cylinders. This account discusses whether these disparate eye types speak for or against divergence from one ancestral eye type. Previous considerations of eye evolution, focusing on the eyes of trilobites and on facet proliferation in xiphosurans and myriapods, have proposed that the mode of development of eyes in those taxa is distinct from that of pancrustaceans and is the plesiomorphic condition from which facetted eyes have evolved. But the recent discovery of enormous regularly facetted compound eyes belonging to early Cambrian radiodontans suggests that high-resolution facetted eyes with superior optics may be the ground pattern organization for arthropods, predating the evolution of arthrodization and jointed post-protocerebral appendages. Here we provide evidence that compound eye organization in stem-group euarthropods of the Cambrian can be understood in terms of eye morphologies diverging from this ancestral radiodontan-type ground pattern. We show that in certain Cambrian groups apposition eyes relate to fixed or mobile eyestalks, whereas other groups reveal concomitant

  16. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions

    Directory of Open Access Journals (Sweden)

    Brenner Sydney

    2008-06-01

    Full Text Available Abstract Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events. RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate

  17. Multiple kisspeptin receptors in early osteichthyans provide new insights into the evolution of this receptor family.

    Directory of Open Access Journals (Sweden)

    Jérémy Pasquier

    Full Text Available Deorphanization of GPR54 receptor a decade ago led to the characterization of the kisspeptin receptor (Kissr in mammals and the discovery of its major role in the brain control of reproduction. While a single gene encodes for Kissr in eutherian mammals including human, other vertebrates present a variable number of Kissr genes, from none in birds, one or two in teleosts, to three in an amphibian, xenopus. In order to get more insight into the evolution of Kissr gene family, we investigated the presence of Kissr in osteichthyans of key-phylogenetical positions: the coelacanth, a representative of early sarcopterygians, the spotted gar, a non-teleost actinopterygian, and the European eel, a member of an early group of teleosts (elopomorphs. We report the occurrence of three Kissr for the first time in a teleost, the eel. As measured by quantitative RT-PCR, the three eel Kissr were differentially expressed in the brain-pituitary-gonadal axis, and differentially regulated in experimentally matured eels, as compared to prepubertal controls. Subfunctionalisation, as shown by these differences in tissue distribution and regulation, may have represented significant evolutionary constraints for the conservation of multiple Kissr paralogs in this species. Furthermore, we identified four Kissr in both coelacanth and spotted gar genomes, providing the first evidence for the presence of four Kissr in vertebrates. Phylogenetic and syntenic analyses supported the existence of four Kissr paralogs in osteichthyans and allowed to propose a clarified nomenclature of Kissr (Kissr-1 to -4 based on these paralogs. Syntenic analysis suggested that the four Kissr paralogs arose through the two rounds of whole genome duplication (1R and 2R in early vertebrates, followed by multiple gene loss events in the actinopterygian and sarcopterygian lineages. Due to gene loss there was no impact of the teleost-specific whole genome duplication (3R on the number of Kissr paralogs

  18. Dental histology of Coelophysis bauri and the evolution of tooth attachment tissues in early dinosaurs.

    Science.gov (United States)

    Fong, Raymond K M; LeBlanc, Aaron R H; Berman, David S; Reisz, Robert R

    2016-07-01

    Studies of dinosaur teeth have focused primarily on external crown morphology and thus, use shed or in situ tooth crowns, and are limited to the enamel and dentine dental tissues. As a result, the full suites of periodontal tissues that attach teeth to the jaws remain poorly documented, particularly in early dinosaurs. These tissues are an integral part of the tooth and thus essential to a more complete understanding of dental anatomy, development, and evolution in dinosaurs. To identify the tooth attachment tissues in early dinosaurs, histological thin sections were prepared from the maxilla and dentary of a partial skull of the early theropod Coelophysis bauri from the Upper Triassic (Rhaetian- 209-201 Ma) Whitaker Quarry, New Mexico, USA. As one of the phylogenetically and geologically oldest dinosaurs, it is an ideal candidate for examining dental tissues near the base of the dinosaurian clade. The teeth of C. bauri exhibited a fibrous tooth attachment in which the teeth possessed five tissues: enamel, dentine, cementum, periodontal ligament (PDL), and alveolar bone. Our findings, coupled with those of more recent studies of ornithischian teeth, indicate that a tripartite periodontium, similar to that of crocodilians and mammals, is the plesiomorphic condition for dinosaurs. The occurrence of a tripartite periodontium in dinosaurs adds to the growing consensus that the presence of these tissues is the plesiomorphic condition for the major amniote clades. Furthermore, this study establishes the relative timing of tissue development and growth directions of periodontal tissues and provides the first comparative framework for future studies of dinosaur periodontal development, tooth replacement, and histology. J. Morphol. 277:916-924, 2016. © 2016 Wiley Periodicals, Inc.

  19. The dominant role of mergers in the size evolution of massive early-type galaxies since z similar to 1

    NARCIS (Netherlands)

    López-Sanjuan, C.; Le Fèvre, O.; Ilbert, O.; Tasca, L. A. M.; Bridge, C.; Cucciati, O.; Kampczyk, P.; Pozzetti, L.; Xu, C.K.; Carollo, C. M.; Contini, T.; Kneib, J. -P; Lilly, S. J.; Mainieri, V.; Renzini, A.; Sanders, D.; Scodeggio, M.; Scoville, N. Z.; Taniguchi, Y.; Zamorani, G.; Aussel, H.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Knobel, C.; Kovač, K.; Lamareille, F.; Le Borgne, J. -F; Le Brun, V.; Le Floc'h, E.; Maier, C.; McCracken, H. J.; Mignoli, M.; Pelló, R.; Peng, Y.; Pérez-Montero, E.; Presotto, V.; Ricciardelli, E.; Salvato, M.; Silverman, J. D.; Tanaka, M.; Tresse, L.; Vergani, D.; Zucca, E.; Barnes, L.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Coppa, G.; Koekemoer, A.; Liu, C.T.; Moresco, M.; Nair, P.; Oesch, P.; Schawinski, K.; Welikala, N.

    2012-01-01

    Aims. The role of galaxy mergers in massive galaxy evolution, and in particular to mass assembly and size growth, remains an open question. In this paper we measure the merger fraction and rate, both minor and major, of massive early-type galaxies (M-star >= 10(11) M-circle dot) in the COSMOS field,

  20. Expansion of signaling genes for adaptive immune system evolution in early vertebrates

    Directory of Open Access Journals (Sweden)

    Okada Kinya

    2008-05-01

    Full Text Available Abstract Background The adaptive immune system (AIS of jawed vertebrates is a sophisticated system mediated by numerous genes in specialized cells. Phylogenetic analysis indicates that emergence of the AIS followed the occurrence of two rounds of whole-genome duplication (2R-WGD in early vertebrates, but little direct evidence linking these two events is available. Results We examined the relationship between 2R-WGD and the gain of AIS-related functions by numerous genes. To analyze the evolution of the many genes related to signal transduction in the AIS (defined as AIS genes, we identified groups of genes (defined as AIS subfamilies that included at least one human AIS gene, its paralogs (if any, and its Drosophila ortholog(s. Genomic mapping revealed that numerous pairs of AIS genes and their paralogs were part of paralogons – series of paralogous regions that derive from a common ancestor – throughout the human genome, indicating that the genes were retained as duplicates after 2R-WGD. Outgroup comparison analysis revealed that subfamilies in which human and fly genes shared a nervous system-related function were significantly enriched among AIS subfamilies, as compared with the overall incidence of shared nervous system-related functions among all subfamilies in bilaterians. This finding statistically supports the hypothesis that AIS-related signaling genes were ancestrally involved in the nervous system of urbilaterians. Conclusion The current results suggest that 2R-WGD played a major role in the duplication of many signaling genes, ancestrally used in nervous system development and function, that were later co-opted for new functions during evolution of the AIS.

  1. Coupling protoplanetary disk formation with early protostellar evolution: influence on planet traps

    Science.gov (United States)

    Baillie, Kevin; Piau, Laurent

    2016-10-01

    Protoplanetary disk structures are known to be shaped by various thermal and compositional effects such as (though not limited to) shadowed regions, sublimation lines, density bumps... The resulting irregularities in the surface mass density and temperature profiles are key elements to determine the location where planetary embryos can be trapped. These traps provide hints of which planets are most likely to survive, at what distance from the star, and potentially with what composition (Baillié, Charnoz, Pantin, 2015, A&A 577, A65; Baillié, Charnoz, Pantin, 2016, A&A 590, A60). These structures are determined by the viscous spreading of the disk, that is initially formed by the collapse of the molecular cloud.Starting from the numerical hydrodynamical model detailed in Baillié & Charnoz., 2014, ApJ 786, 35 which couples the disk thermodynamics, its photosphere geometry, its dynamics and its dust composition in order to follow its long-term evolution, we now consider the early stages of the central star. We model the joint formation of the disk and the star: their mass are directly derived from the collapse of the molecular cloud while the star temperature, radius and brightness are interpolated over pre-calculated stellar evolutions. Therefore, our simulations no longer depend on the initial profile of the "Minimum Mass Solar Nebula", and allow us to model the influence of the forming star on the protoplanetary disk. In particular, we will present the resulting distribution of the sublimation lines of the main dust species, as well as the locations of the planet traps at various disk ages. In the longer term, we intend to investigate the influence of the star properties on the selection of the surviving planets.

  2. Lake evolution during the Early Danian Dan-C2 hyperthermal, Boltysh impact crater, Ukraine

    Science.gov (United States)

    Ebinghaus, Alena; Jolley, David W.

    2016-04-01

    Lacustrine facies record complex relationships between lake evolution and environmental conditions and provide proxies for climate changes. However, lacustrine successions formed during past hyperthermals as recorded from negative carbon isotope excursions (CIEs) are of limited availability and thus less well understood. Here, we present a complete lacustrine record of the Early Danian Dan-C2 hyperthermal at c. 65.2 Ma from a core drilled in the K-Pg Boltysh impact crater, Ukraine. This borehole allows a detailed facies analysis and reconstruction of lake evolution and associated plant ecosystem in correspondence with rapid climate change. The Boltysh borehole reveals a c. 400 m thick siliciclastic and organic-rich succession overlying impact melt-breccia dated at 65.17 ± 0.64 Ma. Based on detailed core logging, 8 distinctive facies associations are identified, including 1) littoral mudstones, 2) siliciclastic shoreline deposits, 3) siliciclastic littoral to sublittoral deposits, 4) mudstone laminites, 5) organic-rich mudstones, and deposits of 6) coarse-grained, 7) fine-grained density currents, and 8) debris flows. Based on the occurrence of these facies associations 3 major phases of lake evolution are distinguished: 1) an initial pre-CIE rising clastic-dominated lake phase characterised by the presence of coarse-grained density and debris flow deposits, 2) an organic-rich fluctuating shallow lake phase during the main phase of the CIE, characterised by alternating packages of the mudstone laminites and organic-rich mudstones; and 3) a rising clastic-dominated lake during and post-CIE recovery phase, which shows a high presence of siliciclastic shoreline and littoral to sublittoral deposits. This study provides a full record of lacustrine response to climate change during the Dan-C2 hyperthermal, and subsequently allows us to infer lake formation and environmental conditions at different stages during climate warming. The high resolution sedimentary record

  3. Early evolution and dynamics of Earth from a molten initial stage

    Science.gov (United States)

    Louro Lourenço, Diogo; Tackley, Paul J.

    2016-04-01

    It is now well established that most of the terrestrial planets underwent a magma ocean stage during their accretion. On Earth, it is probable that at the end of accretion, giant impacts like the hypothesised Moon-forming impact, together with other sources of heat, melted a substantial part of the mantle. The thermal and chemical evolution of the resulting magma ocean most certainly had dramatic consequences on the history of the planet. Considerable research has been done on magma oceans using simple 1-D models (e.g.: Abe, PEPI 1997; Solomatov, Treat. Geophys. 2007; Elkins-Tanton EPSL 2008). However, some aspects of the dynamics may not be adequately addressed in 1-D and require the use of 2-D or 3-D models. Moreover, new developments in mineral physics that indicate that melt can be denser than solid at high pressures (e.g.: de Koker et al., EPSL 2013) can have very important impacts on the classical views of the solidification of magma oceans (Labrosse et al., Nature 2007). The goal of our study is to understand and characterize the influence of melting on the long-term thermo-chemical evolution of rocky planet interiors, starting from an initial molten state (magma ocean). Our approach is to model viscous creep of the solid mantle, while parameterizing processes that involve melt as previously done in 1-D models, including melt-solid separation at all melt fractions, the use of an effective diffusivity to parameterize turbulent mixing, coupling to a parameterized core heat balance and a radiative surface boundary condition. These enhancements have been made to the numerical code StagYY (Tackley, PEPI 2008). We present results for the evolution of an Earth-like planet from a molten initial state to present day, while testing the effect of uncertainties in parameters such as melt-solid density differences, surface heat loss and efficiency of turbulent mixing. Our results show rapid cooling and crystallization until the rheological transition then much slower

  4. The Sedimentary System and Evolution of the Early Tertiary in the Sunda Basin, Indonesia

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Sunda basin is located at the north of the Sunda Strait situated between Sumatra and Java islands, Indonesia. It is an early Tertiary typical half-graben basin, in which developed a series of terrigenous clastic sedimentation. Previous work suggested that the early Tertiary sediments were alluvial, fluvial, lacustrine and swamp deposits, of which the Banuwati formation was alluvial and lacustrine deposits, the Zelda member fluvial deposits, and Gita member fluvial and swamp deposits. In this paper, based on the integrated research on core lithology (including lithology succession and structure), well log shape, and seismic reflection characteristics, a more detailed sedimentation system was set up as follows: 1) In addition to the alluvial, lacustrine, fluvial and the swamp deposits presented in previous work, subaqeous fan, shore-shallow lacustrine, deep lacustrine and turbidite fan, fan delta and delta deposits also developed in this basin. 2) Alluvial fan, subaqeous fan and fan delta deposits occurred on the steep slope adjacent to the synrift boundary fault; while the deltaic depositional system usually distributed on the gentle slope of the basins. 3) The Zelda member that was interpreted as a fluvial deposit in previous work is now interpreted as a subaqueous fan, fan delta, delta and lacustrine deposit system. 4) From the point of view of sedimentology, the evolution of basin could be divided into four stages: the initial subsidence (matching the Banuwati formation), the rapid subsidence (matching the low Zelda member of Talang Akar formation), the steady subsidence or fluctuation (matching the middle Zelda member of Talang Akar formation), and the uplifting (matching the upper Zelda member and the Gita member of Talang Akar formation). At the initial subsidence stage, the alluvial fan, flood plain, braided stream deposits developed, and then subaqeous fan sedimentation; at the rapid subsidence stage, shore-shallow lacustrine and deep lacustrine deposits

  5. Early post-metamorphic, Carboniferous blastoid reveals the evolution and development of the digestive system in echinoderms.

    Science.gov (United States)

    Rahman, Imran A; Waters, Johnny A; Sumrall, Colin D; Astolfo, Alberto

    2015-10-01

    Inferring the development of the earliest echinoderms is critical to uncovering the evolutionary assembly of the phylum-level body plan but has long proven problematic because early ontogenetic stages are rarely preserved as fossils. Here, we use synchrotron tomography to describe a new early post-metamorphic blastoid echinoderm from the Carboniferous (approx. 323 Ma) of China. The resulting three-dimensional reconstruction reveals a U-shaped tubular structure in the fossil interior, which is interpreted as the digestive tract. Comparisons with the developing gut of modern crinoids demonstrate that crinoids are an imperfect analogue for many extinct groups. Furthermore, consideration of our findings in a phylogenetic context allows us to reconstruct the evolution and development of the digestive system in echinoderms more broadly; there was a transition from a straight to a simple curved gut early in the phylum's evolution, but additional loops and coils of the digestive tract (as seen in crinoids) were not acquired until much later.

  6. Early evolution of the human synapse: Identification of conserved elements of the protosynapse in prokaryotes.

    Directory of Open Access Journals (Sweden)

    Richard David Emes

    2011-03-01

    Full Text Available The animal nervous system processes information from the environment and mediates learning and memory using molecular signaling pathways in the postsynaptic terminal of synapses. Postsynaptic neurotransmitter receptors assemble to form multiprotein complexes that drive signal transduction pathways to downstream cell biological processes. Studies of mouse and Drosophila postsynaptic proteins have identified key roles in synaptic physiology and behaviour for a wide range of proteins including receptors, scaffolds, enzymes, structural, translational and transcriptional regulators. Comparative proteomic and genomic studies identified components of the postsynaptic proteome conserved in eukaryotes and early metazoans. We extend these studies, and examine the conservation of genes and domains found in the human postsynaptic density with those across the three superkingdoms, archaeal, bacteria and eukaryota. A conserved set of proteins essential for basic cellular functions were conserved across the three superkingdoms, whereas synaptic structural and many signaling molecules were specific to the eukaryote lineage. Genes involved with metabolism and environmental signaling in E. coli including the chemotactic and ArcAB Two-Component signal transduction systems shared homologous genes in the mammalian post-synaptic proteome. These data suggest conservation between prokaryotes and mammalian synapses of signaling mechanisms from receptors to transcriptional responses, a process essential to learning and memory in vertebrates. A number of human postsynaptic proteins with homologues in prokaryotes are mutated in human genetic diseases with nervous system pathology. These data also indicate that structural and signaling proteins characteristic of postsynaptic complexes arose in the eukaryotic lineage and rapidly expanded following the emergence of the metazoa, and provide an insight into the early evolution of synaptic mechanisms and conserved mechanisms of

  7. Insights from ANA-grade angiosperms into the early evolution of CUP-SHAPED COTYLEDON genes.

    Science.gov (United States)

    Vialette-Guiraud, Aurélie C M; Adam, Hélène; Finet, Cédric; Jasinski, Sophie; Jouannic, Stefan; Scutt, Charles P

    2011-06-01

    The closely related NAC family genes NO APICAL MERISTEM (NAM) and CUP-SHAPED COTYLEDON3 (CUC3) regulate the formation of boundaries within and between plant organs. NAM is post-transcriptionally regulated by miR164, whereas CUC3 is not. To gain insight into the evolution of NAM and CUC3 in the angiosperms, we analysed orthologous genes in early-diverging ANA-grade angiosperms and gymnosperms. We obtained NAM- and CUC3-like sequences from diverse angiosperms and gymnosperms by a combination of reverse transcriptase PCR, cDNA library screening and database searching, and then investigated their phylogenetic relationships by performing maximum-likelihood reconstructions. We also studied the spatial expression patterns of NAM, CUC3 and MIR164 orthologues in female reproductive tissues of Amborella trichopoda, the probable sister to all other flowering plants. Separate NAM and CUC3 orthologues were found in early-diverging angiosperms, but not in gymnosperms, which contained putative orthologues of the entire NAM + CUC3 clade that possessed sites of regulation by miR164. Multiple paralogues of NAM or CUC3 genes were noted in certain taxa, including Brassicaceae. Expression of NAM, CUC3 and MIR164 orthologues from Am. trichopoda was found to co-localize in ovules at the developmental boundary between the chalaza and nucellus. The NAM and CUC3 lineages were generated by duplication, and CUC3 was subsequently lost regulation by miR164, prior to the last common ancestor of the extant angiosperms. However, the paralogous NAM clade genes CUC1 and CUC2 were generated by a more recent duplication, near the base of Brassicaceae. The function of NAM and CUC3 in defining a developmental boundary in the ovule appears to have been conserved since the last common ancestor of the flowering plants, as does the post-transcriptional regulation in ovule tissues of NAM by miR164.

  8. How do Early Impacts Modulate the Tectonic, Magnetic and Climatic Evolutions of Terrestrial Planets?

    Science.gov (United States)

    Jellinek, M.; Jackson, M. G.; Lenardic, A.; Weller, M. B.

    2015-12-01

    The landmark discovery showing that the 142Nd/144Nd ratio of the accessible modern terrestrial mantle is greater than ordinary-chondrites has remarkable implications for the formation, as well as the geodynamic, magnetic and climatic histories of Earth. If Earth is derived from ordinary chondrite precursors, mass balance requires that a missing reservoir with 142Nd/144Nd lower than ordinary chondrites was isolated from the accessible mantle within 20-30 Myr following accretion. Critically for Earth evolution, this reservoir hosts the equivalent of the modern continents' budget of radioactive heat-producing elements (U, Th and K). If this reservoir was lost to space through mechanical erosion by early impactors, the planet's radiogenic heat generation is 18-45% lower than chondrite-based compositional estimates. Recent geodynamic calculations suggest that this reduced heat production will favor the emergence of Earth-like plate tectonics. However, parameterized thermal history calculations favor a relatively recent transition from mostly Atlantic-sized plates to the current plate tectonic mode characterized predominantly by the subduction of Pacific-sized plates. Such a transition in the style of Earth's plate tectonics is also consistent with a delayed dynamo and an evolving rate of volcanic outgassing that ultimately favors Earth's long-term clement climate. By contrast, relatively enhanced radiogenic heat production related to a less early impact erosion reduces the likelihood of present day plate tectonics: A chondritic Earth has a stronger likelihood to evolve as a Venus-like planet characterized by potentially wild swings in tectonic and climatic regime. Indeed, differences in internal heat production related to varying extents of impact erosion may exert strong control over Earth's climate and explain aspects of the differences among the current climatic regimes of Earth, Venus and Mars.

  9. Norvaline and Norleucine May Have Been More Abundant Protein Components during Early Stages of Cell Evolution

    Science.gov (United States)

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2013-10-01

    The absence of the hydrophobic norvaline and norleucine in the inventory of protein amino acids is readdressed. The well-documented intracellular accumulation of these two amino acids results from the low-substrate specificity of the branched-chain amino acid biosynthetic enzymes that act over a number of related α-ketoacids. The lack of absolute substrate specificity of leucyl-tRNA synthase leads to a mischarged norvalyl-tRNALeu that evades the translational proofreading activites and produces norvaline-containing proteins, (cf. Apostol et al. J Biol Chem 272:28980-28988, 1997). A similar situation explains the presence of minute but detectable amounts of norleucine in place of methionine. Since with few exceptions both leucine and methionine are rarely found in the catalytic sites of most enzymes, their substitution by norvaline and norleucine, respectively, would have not been strongly hindered in small structurally simple catalytic polypeptides during the early stages of biological evolution. The report that down-shifts of free oxygen lead to high levels of intracellular accumulation of pyruvate and the subsequent biosynthesis of norvaline (Soini et al. Microb Cell Factories 7:30, 2008) demonstrates the biochemical and metabolic consequences of the development of a highly oxidizing environment. The results discussed here also suggest that a broader definition of biomarkers in the search for extraterrestrial life may be required.

  10. Functional Characterization of Cnidarian HCN Channels Points to an Early Evolution of Ih.

    Directory of Open Access Journals (Sweden)

    Emma C Baker

    Full Text Available HCN channels play a unique role in bilaterian physiology as the only hyperpolarization-gated cation channels. Their voltage-gating is regulated by cyclic nucleotides and phosphatidylinositol 4,5-bisphosphate (PIP2. Activation of HCN channels provides the depolarizing current in response to hyperpolarization that is critical for intrinsic rhythmicity in neurons and the sinoatrial node. Additionally, HCN channels regulate dendritic excitability in a wide variety of neurons. Little is known about the early functional evolution of HCN channels, but the presence of HCN sequences in basal metazoan phyla and choanoflagellates, a protozoan sister group to the metazoans, indicate that the gene family predates metazoan emergence. We functionally characterized two HCN channel orthologs from Nematostella vectensis (Cnidaria, Anthozoa to determine which properties of HCN channels were established prior to the emergence of bilaterians. We find Nematostella HCN channels share all the major functional features of bilaterian HCNs, including reversed voltage-dependence, activation by cAMP and PIP2, and block by extracellular Cs+. Thus bilaterian-like HCN channels were already present in the common parahoxozoan ancestor of bilaterians and cnidarians, at a time when the functional diversity of voltage-gated K+ channels was rapidly expanding. NvHCN1 and NvHCN2 are expressed broadly in planulae and in both the endoderm and ectoderm of juvenile polyps.

  11. Analysis of the Early Stages and Evolution of Dental Enamel Erosion.

    Science.gov (United States)

    Derceli, Juliana Dos Reis; Faraoni, Juliana Jendiroba; Pereira-da-Silva, Marcelo Assumpção; Palma-Dibb, Regina Guenka

    2016-01-01

    The aim of this study was to evaluate by atomic force microscopy (AFM) the early phases and evolution of dental enamel erosion caused by hydrochloric acid exposure, simulating gastroesophageal reflux episodes. Polished bovine enamel slabs (4x4x2 mm) were selected and exposed to 0.1 mL of 0.01 M hydrochloric acid (pH=2) at 37 ?#61472;?#61616;C using five different exposure intervals (n=1): no acid exposure (control), 10 s, 20 s, 30 s and 40 s. The exposed area was analyzed by AFM in 3 regions to measure the roughness, surface area and morphological surface. The data were analyzed qualitatively. Roughness started as low as that of the control sample, Rrms=3.5 nm, and gradually increased at a rate of 0.3 nm/s, until reaching Rrms=12.5 nm at 30 s. After 40 s, the roughness presented increment of 0.40 nm only. Surface area (SA) increased until 20 s, and for longer exposures, the surface area was constant (at 30 s, SA=4.40 μm2 and at 40 s, SA=4.43 μm2). As regards surface morphology, the control sample presented smaller hydroxyapatite crystals (22 nm) and after 40 s the crystal size was approximately 60 nm. Short periods of exposure were sufficient to produce enamel demineralization in different patterns and the morphological structure was less affected by exposure to hydrochloric acid over 30 s.

  12. The light up and early evolution of high redshift Supermassive Black Holes

    Science.gov (United States)

    Comastri, Andrea; Brusa, Marcella; Aird, James; Lanzuisi, Giorgio

    2016-07-01

    The known AGN population at z > 6 is made by luminous optical QSO hosting Supermassive Black Holes (M > 10 ^{9}solar masses), likely to represent the tip of the iceberg of the luminosity and mass function. According to theoretical models for structure formation, Massive Black Holes (M _{BH} 10^{4-7} solar masses) are predicted to be abundant in the early Universe (z > 6). The majority of these lower luminosity objects are expected to be obscured and severely underepresented in current optical near-infrared surveys. The detection of such a population would provide unique constraints on the Massive Black Holes formation mechanism and subsequent growth and is within the capabilities of deep and large area ATHENA surveys. After a summary of the state of the art of present deep XMM and Chandra surveys, at z >3-6 also mentioning the expectations for the forthcoming eROSITA all sky survey; I will present the observational strategy of future multi-cone ATHENA Wide Field Imager (WFI) surveys and the expected breakthroughs in the determination of the luminosity function and its evolution at high (> 4) and very high (>6) redshifts.

  13. Influence of vortex dynamics and atmospheric turbulence on the early evolution of a contrail

    Directory of Open Access Journals (Sweden)

    R. Paugam

    2010-04-01

    Full Text Available This study describes three-dimensional numerical simulations of the evolution of an aircraft contrail during the first 30 min following the emission of exhausts. The wake is modeled as a vortex pair descending in a stratified atmosphere where turbulent fluctuations are sustained in the late dissipation regime. The focus of the study is laid on the interactions between vortex dynamics, atmospheric turbulence and contrail microphysics, and their role in determining the growth and the distribution of ice crystals. The atmospheric turbulence is synthesized using a methodology developed to force anisotropic turbulent fluctuations. The results show the feasibility of three-dimensional simulations of the early development of a contrail in supersaturated conditions before its transition into a contrail-cirrus. %(when radiative heating and sedimentation are no more negligible. It is shown that in case of strongly supersaturated and shear-free atmosphere the optical depth is maintained as the contrail spreads by turbulent diffusion in the late dissipation regime.

  14. A hot big bang theory: magnetic fields and the early evolution of the protolunar disk

    CERN Document Server

    Gammie, Charles F; Ricker, Paul M

    2016-01-01

    The leading theory for the formation of the Earth's moon invokes a collision between a Mars-sized body and the proto-Earth to produce a disk of orbiting material that later condenses to form the Moon. Here we study the early evolution of the protolunar disk. First, we show that the disk opacity is large and cooling is therefore inefficient (t_{cool} \\Omega >> 1). In this regime angular momentum transport in the disk leads to steady heating unless \\alpha < (t_{cool} \\Omega)^{-1} << 1. Following earlier work by Charnoz and Michaut, and Carballido et al., we show that once the disk is completely vaporized it is well coupled to the magnetic field. We consider a scenario in which turbulence driven by magnetic fields leads to a brief, hot phase where the disk is geometrically thick, wit h strong turbulent mixing. The disk cools by spreading until it decouples from the field. We point out that approximately half the accretion energy is dissipated in the boundary layer where the disk meets the Earth's surfac...

  15. Cosmic Evolution of Size and Velocity Dispersion for Early Type Galaxies

    CERN Document Server

    Fan, L; Bressan, A; Bernardi, M; De Zotti, G; Danese, L

    2010-01-01

    [abridged] Massive, passively evolving galaxies at redshifts z>1 exhibit on the average physical sizes smaller by factors ~3 than local early type galaxies (ETGs) endowed with the same stellar mass. Small sizes are in fact expected on theoretical grounds, if dissipative collapse occurs. Recent results show that the size evolution at z1, where both compact and already extended galaxies are observed and the scatter in size is remarkably larger than locally. The presence at high z of a significant number of ETGs with the same size as their local counterparts as well as of ETGs with quite small size, points to a timescale to reach the new, expanded equilibrium configuration of less than the Hubble time. We demonstrate that the projected mass of compact, high-z galaxies and that of local ETGs within the *same physical radius*, the nominal half-luminosity radius of high-z ETGs, differ substantially, in that the high-z ETGs are on the average significantly denser. We propose that quasar activity, which peaks at z~2,...

  16. When should we expect early bursts of trait evolution in comparative data? Predictions from an evolutionary food web model.

    Science.gov (United States)

    Ingram, T; Harmon, L J; Shurin, J B

    2012-09-01

    Conceptual models of adaptive radiation predict that competitive interactions among species will result in an early burst of speciation and trait evolution followed by a slowdown in diversification rates. Empirical studies often show early accumulation of lineages in phylogenetic trees, but usually fail to detect early bursts of phenotypic evolution. We use an evolutionary simulation model to assemble food webs through adaptive radiation, and examine patterns in the resulting phylogenetic trees and species' traits (body size and trophic position). We find that when foraging trade-offs result in food webs where all species occupy integer trophic levels, lineage diversity and trait disparity are concentrated early in the tree, consistent with the early burst model. In contrast, in food webs in which many omnivorous species feed at multiple trophic levels, high levels of turnover of species' identities and traits tend to eliminate the early burst signal. These results suggest testable predictions about how the niche structure of ecological communities may be reflected by macroevolutionary patterns.

  17. The first molecular phylogeny of Strepsiptera (Insecta reveals an early burst of molecular evolution correlated with the transition to endoparasitism.

    Directory of Open Access Journals (Sweden)

    Dino P McMahon

    Full Text Available A comprehensive model of evolution requires an understanding of the relationship between selection at the molecular and phenotypic level. We investigate this in Strepsiptera, an order of endoparasitic insects whose evolutionary biology is poorly studied. We present the first molecular phylogeny of Strepsiptera, and use this as a framework to investigate the association between parasitism and molecular evolution. We find evidence of a significant burst in the rate of molecular evolution in the early history of Strepsiptera. The evolution of morphological traits linked to parasitism is significantly correlated with the pattern in molecular rate. The correlated burst in genotypic-phenotypic evolution precedes the main phase of strepsipteran diversification, which is characterised by the return to a low and even molecular rate, and a period of relative morphological stability. These findings suggest that the transition to endoparasitism led to relaxation of selective constraint in the strepsipteran genome. Our results indicate that a parasitic lifestyle can affect the rate of molecular evolution, although other causal life-history traits correlated with parasitism may also play an important role.

  18. Molecular evolution of Cide family proteins: Novel domain formation in early vertebrates and the subsequent divergence

    Directory of Open Access Journals (Sweden)

    Sun Zhirong

    2008-05-01

    Full Text Available Abstract Background Cide family proteins including Cidea, Cideb and Cidec/Fsp27, contain an N-terminal CIDE-N domain that shares sequence similarity to the N-terminal CAD domain (NCD of DNA fragmentation factors Dffa/Dff45/ICAD and Dffb/Dff40/CAD, and a unique C-terminal CIDE-C domain. We have previously shown that Cide proteins are newly emerged regulators closely associated with the development of metabolic diseases such as obesity, diabetes and liver steatosis. They modulate many metabolic processes such as lipolysis, thermogenesis and TAG storage in brown adipose tissue (BAT and white adipose tissue (WAT, as well as fatty acid oxidation and lipogenesis in the liver. Results To understand the evolutionary process of Cide proteins and provide insight into the role of Cide proteins as potential metabolic regulators in various species, we searched various databases and performed comparative genomic analysis to study the sequence conservation, genomic structure, and phylogenetic tree of the CIDE-N and CIDE-C domains of Cide proteins. As a result, we identified signature sequences for the N-terminal region of Dffa, Dffb and Cide proteins and CIDE-C domain of Cide proteins, and observed that sequences homologous to CIDE-N domain displays a wide phylogenetic distribution in species ranging from lower organisms such as hydra (Hydra vulgaris and sea anemone (Nematostella vectensis to mammals, whereas the CIDE-C domain exists only in vertebrates. Further analysis of their genomic structures showed that although evolution of the ancestral CIDE-N domain had undergone different intron insertions to various positions in the domain among invertebrates, the genomic structure of Cide family in vertebrates is stable with conserved intron phase. Conclusion Based on our analysis, we speculate that in early vertebrates CIDE-N domain was evolved from the duplication of NCD of Dffa. The CIDE-N domain somehow acquired the CIDE-C domain that was formed around the

  19. The Formation and Early Evolution of a CME and the Associated Shock on 2014 January 8

    Science.gov (United States)

    Wan, Linfeng; Cheng, Xin; Shi, Tong; Su, Wei; Ding, Mingde

    2017-08-01

    We study the formation and early evolution of a limb coronal mass ejection (CME) and its associated shock wave that occurred on 2014 January 8. The extreme ultraviolet (EUV) images provided by AIA on board \\textit{Solar Dynamics Observatory} disclose that the CME first appears as a bubble-like structure. Subsequently, its expansion forms the CME and causes a quasi-circular EUV wave. Both the CME and the wave front are clearly visible at all of the AIA EUV passbands. Through a detailed kinematical analysis, it is found that the expansion of the CME undergoes two phases: a first phase with a strong but transient lateral over-expansion followed by a second phase with a self-similar expansion. The temporal evolution of the expansion velocity coincides very well with the variation of the 25--50 keV hard X-ray (HXR) flux of the associated flare, which indicates that magnetic reconnection most likely plays an important role in driving the expansion. Moreover, we find that, when the velocity of the CME reaches $\\sim$600 km s$^{-1}$, the EUV wave starts to evolve into a shock wave, which is evidenced by the appearance of a type II radio burst. Interestingly, we also notice an unusual solar radio signal at $\\sim$4 GHz that is similar to the pattern of a type II radio burst but drifts to higher frequencies at a rate of $\\sim$0.3 MHz per second during about 7 minutes. Its derived density is $\\sim$5$\\times$10$^{10}$ cm$^{-3}$ and increases slowly with time. Joint imaging observations of HXR and EUV help to locate the loop-top region and calculate its thermal proprieties, including slowly increasing densities ($\\sim$5$\\times$10$^{10}$ cm$^{-3}$) and temperatures ($\\sim$14 MK). The similar results obtained from two different ways above imply the possibility of this scenario: plasma blobs that are ejected along the current sheet via magnetic reconnection collide with underlying flare loops that are undergoing chromospheric evaporation. Finally, we also study the thermal

  20. CHAIRMAN'S PREFACE: Nobel Symposium 79: The Birth and Early Evolution of Our Universe

    Science.gov (United States)

    Gustafsson, Bengt; Nilsson, Jan S.; Skagerstam, Bo-Sture

    1991-01-01

    It was in 1986 that we submitted a proposal to organize a Nobel Symposium on the topic "The Birth and Early Evolution of Our Universe", a subject not previously discussed at such a meeting. Our feeling at the time was that it would be appropriate to gather together international expertise on the deep and exciting connections between elementary physics and astrophysics/cosmology. In both these scientific disciplines there are wellknown "standard models"—the Glashow-Weinberg-Salam model of electroweak interactions and the Big-Bang cosmological model. The former model has now been tested to a very high accuracy. Progress in observational cosmology and astrophysics has on the other hand given strong support to the standard Big-Bang model as a realistic framework of cosmological evolution. The interesting fact, of course, is that the two standard models are not independent, and their predictions become interlinked when one considers the early, hot universe. It is now a wonderfully accepted piece of history that the constraint on the number of light neutrinos as obtained from the Big-Bang primordial nucleosynthesis agree very well with recent high-energy laboratory experiments. When our proposal was approved in 1989 we were very happy and honoured to invite a large number of internationally outstanding contributors to take part in the Symposium, almost all of whom were able to participate. It was, however, with deep regret and shock that their sudden deaths prevented us from inviting A Sakharov and Y Zeldovich. Their presence and wisdom was sadly missed. By choosing the beautiful village of Gräftåvallen, outside the town of Östesund, as the location of the Symposium, we hoped to provide a relaxing and stimulating atmosphere and also, possibly, almost twenty hours of sunlight a day for a week. The hosts of Gräftåvallen, Annika and Tommy Hagström, have to be thanked for making our stay both extremely successful and to a memorable experience. Our thanks also go to

  1. Biologist Edwin Grant Conklin and the idea of the religious direction of human evolution in the early 1920s.

    Science.gov (United States)

    Pavuk, Alexander

    2017-01-01

    Edwin Grant Conklin, renowned US embryologist and evolutionary popularizer, publicly advocated a social vision of evolution that intertwined science and modernist Protestant theology in the early 1920s. The moral prestige of professional science in American culture - along with Conklin's own elite scientific status - diverted attention from the frequency with which his work crossed boundaries between natural science, religion and philosophy. Writing for broad audiences, Conklin was one of the most significant of the religious and modernist biological scientists whose rhetoric went well beyond simply claiming that certain kinds of religion were amenable to evolutionary science; he instead incorporated religion itself into evolution's broadest workings. A sampling of Conklin's widely-resonant discourse suggests that there was substantially more to the religion-evolution story in the 1920s US than many creationist-centred narratives of the era imply.

  2. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution

    KAUST Repository

    Yasumura, Yuki

    2012-10-18

    Colonization of the land by multicellular green plants was a fundamental step in the evolution of life on earth. Land plants evolved from fresh-water aquatic algae, and the transition to a terrestrial environment required the acquisition of developmental plasticity appropriate to the conditions of water availability, ranging from drought to flood. Here we show that extant bryophytes exhibit submergence-induced developmental plasticity, suggesting that submergence responses evolved relatively early in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a plant environmental response mechanism with major ecological and agricultural importance probably had its origins in the very earliest stages of the colonization of the land. © 2012 Blackwell Publishing Ltd.

  3. THE VLA VIEW OF THE HL TAU DISK: DISK MASS, GRAIN EVOLUTION, AND EARLY PLANET FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-González, Carlos; Rodríguez, Luis F.; Galván-Madrid, Roberto [Instituto de Radioastronomía y Astrofísica UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (Mexico); Henning, Thomas; Linz, Hendrik; Birnstiel, Til; Boekel, Roy van; Klahr, Hubert [Max-Planck-Institut für Astronomie Heidelberg, Königstuhl 17, D-69117 Heidelberg (Germany); Chandler, Claire J.; Pérez, Laura [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801-0387 (United States); Anglada, Guillem; Macias, Enrique; Osorio, Mayra [Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, E-18080 Granada (Spain); Flock, Mario [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Menten, Karl [Jansky Fellow of the National Radio Astronomy Observatory (United States); Testi, Leonardo [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Zhu, Zhaohuan, E-mail: c.carrasco@crya.unam.mx, E-mail: l.rodriguez@crya.unam.mx, E-mail: r.galvan@crya.unam.mx, E-mail: henning@mpia.de, E-mail: linz@mpia.de [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2016-04-10

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau, these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk–planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain-size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength, the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain a total disk dust mass of (1–3) × 10{sup −3} M {sub ⊙}, depending on the assumed opacity and disk temperature. Our optically thin data also indicate fast grain growth, fragmentation, and formation of dense clumps in the inner densest parts of the disk. Our results suggest that the HL Tau disk may be actually in a very early stage of planetary formation, with planets not already formed in the gaps but in the process of future formation in the bright rings.

  4. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse.

    Science.gov (United States)

    Orlando, Ludovic; Ginolhac, Aurélien; Zhang, Guojie; Froese, Duane; Albrechtsen, Anders; Stiller, Mathias; Schubert, Mikkel; Cappellini, Enrico; Petersen, Bent; Moltke, Ida; Johnson, Philip L F; Fumagalli, Matteo; Vilstrup, Julia T; Raghavan, Maanasa; Korneliussen, Thorfinn; Malaspinas, Anna-Sapfo; Vogt, Josef; Szklarczyk, Damian; Kelstrup, Christian D; Vinther, Jakob; Dolocan, Andrei; Stenderup, Jesper; Velazquez, Amhed M V; Cahill, James; Rasmussen, Morten; Wang, Xiaoli; Min, Jiumeng; Zazula, Grant D; Seguin-Orlando, Andaine; Mortensen, Cecilie; Magnussen, Kim; Thompson, John F; Weinstock, Jacobo; Gregersen, Kristian; Røed, Knut H; Eisenmann, Véra; Rubin, Carl J; Miller, Donald C; Antczak, Douglas F; Bertelsen, Mads F; Brunak, Søren; Al-Rasheid, Khaled A S; Ryder, Oliver; Andersson, Leif; Mundy, John; Krogh, Anders; Gilbert, M Thomas P; Kjær, Kurt; Sicheritz-Ponten, Thomas; Jensen, Lars Juhl; Olsen, Jesper V; Hofreiter, Michael; Nielsen, Rasmus; Shapiro, Beth; Wang, Jun; Willerslev, Eske

    2013-07-04

    The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560-780 thousand years before present (kyr BP). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr BP), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski's horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0-4.5 million years before present (Myr BP), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski's and domestic horse populations diverged 38-72 kyr BP, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski's horse investigated. This supports the contention that Przewalski's horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski's and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski's horse. Such regions could correspond to loci selected early during domestication.

  5. Crustal types, distribution of salt and the early evolution of the Gulf of Mexico basin

    Energy Technology Data Exchange (ETDEWEB)

    Buffler, R.T. (Univ. of Texas, Austin (USA))

    1990-05-01

    A new contour map on the top of basement shows the overall configuration of the entire Gulf of Mexico basin. Basement, as used here, is all rocks lying below (older than) the extensive Middle Jurassic (Callovian ) premarine evaporites (Louann Salt, etc.) plus the Late Jurassic oceanic crust in the deep part of the basin. The contour map combined with all other available geophysical data has been used to subdivide the gulf basin into four crustal types: continental, thick transitional, thin transitional, and oceanic crust. The broad region of transitional crust and the basic architecture of the basin shown by the map is believed to have formed mainly during a separate Middle Jurassic period of widespread attenuation of the entire gulf region. The area of thick transitional crust around the periphery of the northern gulf is characterized by broad basement highs and lows with wave lengths of 200-300 km. These features controlled the general distribution and thickness of salt and the overlying Jurassic through Lower Cretaceous rocks. In the area of thin transitional crust Mesozoic basins tend to be assymetrical and generally trend more parallel to the overall basin. The boundary between thin transitional crust and oceanic crust is characterized by various salt-related features. For example, the northwest and north-central boundaries are defined by two northeast trending salt-cored foldbelts, the Perdido and Mississippi fan foldbelts, respectively. The offset between the two foldbelts may represent a major transform boundary related to the northwest opening of the gulf basin. All these data put important constraints on models for early gulf evolution.

  6. Alternative haplotypes of antigen processing genes in zebrafish diverged early in vertebrate evolution

    Science.gov (United States)

    McConnell, Sean C.; Hernandez, Kyle M.; Wcisel, Dustin J.; Kettleborough, Ross N.; Stemple, Derek L.; Andrade, Jorge; de Jong, Jill L. O.

    2016-01-01

    Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e. We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates. PMID:27493218

  7. THE EARLY STATE AND THEORIZATION ON THE EVOLUTION AND CHARACTER OF THE STATE IN ASIA: SOME PRELIMINARY OBSERVATIONS

    OpenAIRE

    2009-01-01

    Abstract The Early State (TES), published in 1978, represented an ambitious initiative that sought to develop a theoretical understanding of the evolution of the state on the basis of case studies by a multi-disciplinary team of scholars studying varied geographical, and cultural zones. Studies on Angkor, China, Kachari, Maurya and the Mongol state formations were analyses of type of Asian states. A noteworthy aspect of the volume is the impact of the theory of the Asiatic Mode of Production ...

  8. Raman spectroscopic detection of early stages in DMBA-induced tumor evolution in hamster buccal pouch model: an exploratory study

    Science.gov (United States)

    Ghanate, Avinash D.; Kumar, G.; Talathi, Sneha; Maru, G. B.; Krishna, C. Murali

    2011-08-01

    Oral cancers are the serious health problem in developing as well as developed world, and more so in India and other south Asian countries. Survival rate of these cancers, despite advances in treatment modalities are one of the poorest which is attributed to lack of reliable screening and early detection methods. The hamster buccal pouch (HBP)carcinogenesis model closely mimics human oral cancers. Optical spectroscopy methods are sensitive enough to detect subtle biochemical changes and thus hold great potential in early detection of cancers. However, efficacy of these techniques in classifying of sequential evolution of tumors has never been tested. Therefore, in this study, we have explored the feasibility of Raman spectroscopic classification of different stages of cancers in hamster model. Strong vibrational modes of lipids (1440, 1654, and 1746 cm-1) are seen in control tissue spectra, whereas strong protein bands are seen in spectra of DMBA treated tissues. These differences were exploited to classify control and treated tissues using Linear Discriminant Analysis (LDA), Principle Component Analysis (PCA)-Limit test, Factorial Discriminant Analysis (FDA), Quadratic Discriminant Analysis (QDA), PLS-DA and non- linear decision tree methods. All these techniques have shown good classification between spectra of different stages of tumor evolution and results were further successfully verified by leave-one-out and single blinded methods. Thus findings of this study, first of its kind,demonstrate the feasibility of Raman spectroscopic detection of early changes in tumor evolution.

  9. Carbonate Geochemistry and Organic Biomarkers Evolutions During the Early Toarcian in the Paris Basin

    Science.gov (United States)

    Hermoso, M.; Le Callonnec, L.; Hautevelle, Y.; Minoletti, F.; Renard, M.

    2006-12-01

    Within the Early Toarcian Oceanic Anoxic event, isotopic perturbations (C, O, Sr, Os, Mo and S) are now well described. Their worldwide occurrences and synchronicity are still under debate and oppose locally controlled mechanisms to global events such as methane hydrates release. We present an integrated study for understanding palaeoceanographical records in the Paris Basin. In order to test the influence of the redox status of the environment, the sedimentological, mineralogical and geochemical (carbonate and organic biomarkers) evolutions of two Early Toarcian sites are studied: Bascharage (Luxemburg) and Sancerre (center of France. A sedimentary particles isolation technique was performed to quantify the contribution of primary calcite (calcareous nannoflora) and diagenetic calcareous particles. The respective isotopic signatures of these particles enable to validate the bulk record and discuss the link between photic-zone and interstitial fluids (water-mass stratification, intensity of DIC remineralization, interstitial fluid migrations). It is demonstrated that both biogenic calcareous particles and early diagenetic macrocrystals record the C-isotope negative shift with similar magnitudes. Molecular biomarkers of the organic matter studied by GC-MS enable to characterize the paleoredox conditions in the photic-zone and the bottom water. The Bascharage section is characterized by permanant anoxic conditions in the photic zone (as shown by the presence of gammacerane, 2,3,6- trimethylalkylbenzenes and isorenieratane typical of Chlorobiaceae and reducing conditions in the sediment: Pr/PhC 34hopanes. The Earliest Toarcian Sancerre deposits are dysoxic and transient euxinic conditions are observed from the second step of the C-isotope decrease in carbonates. This level is also highlighted by generalized reducing conditions (Mn- rich carbonate) due to oxides phase destabilization, beginning of Black Shales deposits and disappearance of benthic life. The biomarker

  10. Microbes, Mineral Evolution, and the Rise of Microcontinents-Origin and Coevolution of Life with Early Earth.

    Science.gov (United States)

    Grosch, Eugene G; Hazen, Robert M

    2015-10-01

    Earth is the most mineralogically diverse planet in our solar system, the direct consequence of a coevolving geosphere and biosphere. We consider the possibility that a microbial biosphere originated and thrived in the early Hadean-Archean Earth subseafloor environment, with fundamental consequences for the complex evolution and habitability of our planet. In this hypothesis paper, we explore possible venues for the origin of life and the direct consequences of microbially mediated, low-temperature hydrothermal alteration of the early oceanic lithosphere. We hypothesize that subsurface fluid-rock-microbe interactions resulted in more efficient hydration of the early oceanic crust, which in turn promoted bulk melting to produce the first evolved fragments of felsic crust. These evolved magmas most likely included sialic or tonalitic sheets, felsic volcaniclastics, and minor rhyolitic intrusions emplaced in an Iceland-type extensional setting as the earliest microcontinents. With the further development of proto-tectonic processes, these buoyant felsic crustal fragments formed the nucleus of intra-oceanic tonalite-trondhjemite-granitoid (TTG) island arcs. Thus microbes, by facilitating extensive hydrothermal alteration of the earliest oceanic crust through bioalteration, promoted mineral diversification and may have been early architects of surface environments and microcontinents on young Earth. We explore how the possible onset of subseafloor fluid-rock-microbe interactions on early Earth accelerated metavolcanic clay mineral formation, crustal melting, and subsequent metamorphic mineral evolution. We also consider environmental factors supporting this earliest step in geosphere-biosphere coevolution and the implications for habitability and mineral evolution on other rocky planets, such as Mars.

  11. A revision of Sanpasaurus yaoi Young, 1944 from the Early Jurassic of China, and its relevance to the early evolution of Sauropoda (Dinosauria

    Directory of Open Access Journals (Sweden)

    Blair W. McPhee

    2016-10-01

    Full Text Available The Early Jurassic of China has long been recognized for its diverse array of sauropodomorph dinosaurs. However, the contribution of this record to our understanding of early sauropod evolution is complicated by a dearth of information on important transitional taxa. We present a revision of the poorly known taxon Sanpasaurus yaoi Young, 1944 from the late Early Jurassic Ziliujing Formation of Sichuan Province, southwest China. Initially described as the remains of an ornithopod ornithischian, we demonstrate that the material catalogued as IVPP V156 is unambiguously referable to Sauropoda. Although represented by multiple individuals of equivocal association, Sanpasaurus is nonetheless diagnosable with respect to an autapomorphic feature of the holotypic dorsal vertebral series. Additional material thought to be collected from the type locality is tentatively referred to Sanpasaurus. If correctly attributed, a second autapomorphy is present in a referred humerus. The presence of a dorsoventrally compressed pedal ungual in Sanpasaurus is of particular interest, with taxa possessing this typically ‘vulcanodontid’ character exhibiting a much broader geographic distribution than previously thought. Furthermore, the association of this trait with other features of Sanpasaurus that are broadly characteristic of basal eusauropods underscores the mosaic nature of the early sauropod–eusauropod transition. Our revision of Sanpasaurus has palaeobiogeographic implications for Early Jurassic sauropods, with evidence that the group maintained a cosmopolitan Pangaean distribution.

  12. TP53 copy number expansion is associated with the evolution of increased body size and an enhanced DNA damage response in elephants.

    Science.gov (United States)

    Sulak, Michael; Fong, Lindsey; Mika, Katelyn; Chigurupati, Sravanthi; Yon, Lisa; Mongan, Nigel P; Emes, Richard D; Lynch, Vincent J

    2016-09-19

    A major constraint on the evolution of large body sizes in animals is an increased risk of developing cancer. There is no correlation, however, between body size and cancer risk. This lack of correlation is often referred to as 'Peto's Paradox'. Here, we show that the elephant genome encodes 20 copies of the tumor suppressor gene TP53 and that the increase in TP53 copy number occurred coincident with the evolution of large body sizes, the evolution of extreme sensitivity to genotoxic stress, and a hyperactive TP53 signaling pathway in the elephant (Proboscidean) lineage. Furthermore, we show that several of the TP53 retrogenes (TP53RTGs) are transcribed and likely translated. While TP53RTGs do not appear to directly function as transcription factors, they do contribute to the enhanced sensitivity of elephant cells to DNA damage and the induction of apoptosis by regulating activity of the TP53 signaling pathway. These results suggest that an increase in the copy number of TP53 may have played a direct role in the evolution of very large body sizes and the resolution of Peto's paradox in Proboscideans.

  13. Reciprocal Vegetation-Flow Feedbacks Driving Early-Stage Landscape Evolution in a Restored Wet Meadow

    Science.gov (United States)

    Larsen, L.; Merritts, D. J.; Walter, R. C.; Watts, D.

    2013-12-01

    Just as taxonomic classification has improved understanding in biology, ecogeomorphologists would benefit from a functional classification of biota based on the biophysical feedbacks that they engage in. Early stages of landscape development following disturbance provide a unique opportunity to delineate and understand these feedback processes, as the diversity in functional morphotypes (a.k.a. 'ecomorphs,' to expand on a concept from terrestrial ecology) is high and the potential for self-organization of landscape pattern strong. We used the opportunity of a stream restoration that reset its floodplain to 'initial conditions' to perform a suite of biophysical measurements designed to delineate the classes of feedback that influence landscape evolution in distinct ways. The Big Spring Run restoration (Lancaster, PA), completed in November 2011, involved removal of 15,000 t of legacy sediment from the valley bottom to expose a Holocene hydric layer and reestablish wet meadow hydrology and biota. By performing repeat biogeomorphic surveys within a study grid, we tested the hypothesis that distinct ecomorphs determine the persistence and location of channel and microtopographic features. The qualitatively distinct patch types surveyed included carpet-forming mat vegetation, tussock-forming vegetation, sparsely vegetated mudflats, benthic algal mats, mixed herbaceous communities, grasses, and clonal emergent vegetation. Within each sampling location, changes in vegetation community architecture, grain size distribution, critical shear stress for sediment entrainment, and topography were monitored over time, and flow resistance was measured. An overbank flow event that completely filled the floodplain provided an additional opportunity to measure vegetation-flow-sediment interactions. Once emergent vegetation was bent over by flow, vegetation had a negligible influence on flow velocity--in contrast to most other wetlands--but continued to shelter the bed from sediment

  14. The Moon as a recorder of organic evolution in the early solar system: a lunar regolith analog study.

    Science.gov (United States)

    Matthewman, Richard; Court, Richard W; Crawford, Ian A; Jones, Adrian P; Joy, Katherine H; Sephton, Mark A

    2015-02-01

    The organic record of Earth older than ∼3.8 Ga has been effectively erased. Some insight is provided to us by meteorites as well as remote and direct observations of asteroids and comets left over from the formation of the Solar System. These primitive objects provide a record of early chemical evolution and a sample of material that has been delivered to Earth's surface throughout the past 4.5 billion years. Yet an effective chronicle of organic evolution on all Solar System objects, including that on planetary surfaces, is more difficult to find. Fortunately, early Earth would not have been the only recipient of organic matter-containing objects in the early Solar System. For example, a recently proposed model suggests the possibility that volatiles, including organic material, remain archived in buried paleoregolith deposits intercalated with lava flows on the Moon. Where asteroids and comets allow the study of processes before planet formation, the lunar record could extend that chronicle to early biological evolution on the planets. In this study, we use selected free and polymeric organic materials to assess the hypothesis that organic matter can survive the effects of heating in the lunar regolith by overlying lava flows. Results indicate that the presence of lunar regolith simulant appears to promote polymerization and, therefore, preservation of organic matter. Once polymerized, the mineral-hosted newly formed organic network is relatively protected from further thermal degradation. Our findings reveal the thermal conditions under which preservation of organic matter on the Moon is viable.

  15. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    Science.gov (United States)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2017-02-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in situ and that of accreted stellar populations. Using as an observable the effective IMF αIMF, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry-merger evolution model, based on cosmological N-body simulations, together with empirically motivated prescriptions for the IMF to make predictions on how the effective IMF of massive early-type galaxies changes from z = 2 to z = 0. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, αIMF is predicted to be constant with redshift. Current dynamical constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties, including the effect of radial gradients in the IMF, prevent a conclusive statement. The correlation of αIMF with stellar mass becomes shallower with time, while the correlation between αIMF and velocity dispersion is mostly preserved by dry mergers. We also find that dry mergers can mix the dependence of the IMF on stellar mass and velocity dispersion, making it challenging to infer, from z = 0 observations of global galactic properties, what is the quantity that is originally coupled with the IMF.

  16. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    CERN Document Server

    Sonnenfeld, Alessandro; Treu, Tommaso

    2016-01-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in-situ and that of accreted stellar populations. Using as an observable the effective IMF $\\alpha_{IMF}$, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry merger evolution model, based on cosmological $N$-body simulations, together with empirically motivated prescriptions for the IMF to make predictions for how the effective IMF of massive early-type galaxies changes from $z=2$ to $z=0$. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, $\\alpha_{IMF}$ is predicted to be constant with redshift. Current constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties prevent a conclusive statement. The co...

  17. HAZMAT. I. The evolution of far-UV and near-UV emission from early M stars

    Energy Technology Data Exchange (ETDEWEB)

    Shkolnik, Evgenya L. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Barman, Travis S., E-mail: shkolnik@lowell.edu, E-mail: barman@lpl.arizona.edu [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2014-10-01

    The spectral energy distribution, variability, and evolution of the high-energy radiation from an M dwarf planet host is crucial in understanding the planet's atmospheric evolution and habitability and in interpreting the planet's spectrum. The star's extreme-UV (EUV), far-UV (FUV), and near-UV (NUV) emission can chemically modify, ionize, and erode the atmosphere over time. This makes determining the lifetime exposure of such planets to stellar UV radiation critical for both the evolution of a planet's atmosphere and our potential to characterize it. Using the early M star members of nearby young moving groups, which sample critical ages in planet formation and evolution, we measure the evolution of the GALEX NUV and FUV flux as a function of age. The median UV flux remains at a 'saturated' level for a few hundred million years, analogous to that observed for X-ray emission. By the age of the Hyades Cluster (650 Myr), we measure a drop in UV flux by a factor of 2-3 followed by a steep drop from old (several Gyrs) field stars. This decline in activity beyond 300 Myr follows roughly t {sup –1}. Despite this clear evolution, there remains a wide range, of 1-2 orders of magnitude, in observed emission levels at every age. These UV data supply the much-needed constraints to M dwarf upper-atmosphere models, which will provide empirically motivated EUV predictions and more accurate age-dependent UV spectra as inputs to planetary photochemical models.

  18. TP53 mutations are early events in chronic lymphocytic leukemia disease progression and precede evolution to complex karyotypes.

    Science.gov (United States)

    Lazarian, Gregory; Tausch, Eugen; Eclache, Virginie; Sebaa, Amel; Bianchi, Vincent; Letestu, Remi; Collon, Jean-Francois; Lefebvre, Valerie; Gardano, Laura; Varin-Blank, Nadine; Soussi, Thierry; Stilgenbauer, Stephen; Cymbalista, Florence; Baran-Marszak, Fanny

    2016-10-15

    TP53 abnormalities lead to resistance to purine analogues and are found in over 40% of patients with refractory chronic lymphocytic leukemia (CLL). At diagnosis, no more than 5% of patients carry the 17p deletion, most cases harbour mutations within the other TP53 allele. The incidence of a TP53 mutation as the only alteration is approximately 5%, but this depends on the sensitivity of the technique. Recently, having a complex karyotype has been considered a strong adverse prognostic factor. However, there are no longitudinal studies simultaneously examining the presence of the 17p deletion, TP53 mutations and karyotype abnormalities. We conducted a retrospective longitudinal study of 31 relapsed/refractory CLL patients. Two to six blood samples per patient were analyzed, with a median follow-up of 8 years. In this report, we assessed the sequence of events of TP53 clonal evolution and correlated the presence of TP53 abnormalities to genetic instability during progression and treatment. Next-generation sequencing allowed the early detection of TP53 mutated clones and was able to be performed on a routine basis, demonstrating an excellent correlation between the Illumina and Ion Torrent technologies. We concluded that TP53 mutations are early events and precede clonal evolution to complex karyotypes. We strongly recommend the early and iterated detection of TP53 mutations in progressive cases.

  19. Tidal dissipation in the lunar magma ocean and its effect on the early evolution of the Earth-Moon system

    Science.gov (United States)

    Chen, Erinna M. A.; Nimmo, Francis

    2016-09-01

    The present-day inclination of the Moon reflects the entire history of its thermal and orbital evolution. The Moon likely possessed a global magma ocean following the Moon-forming impact. In this work, we develop a coupled thermal-orbital evolution model that takes into account obliquity tidal heating in the lunar magma ocean. Dissipation in the magma ocean is so effective that it results in rapid inclination damping at semi-major axes beyond about 20 Earth radii (RE), because of the increase in lunar obliquity as the so-called Cassini state transition at ≈30 RE is approached. There is thus a "speed limit" on how fast the Moon can evolve outwards while maintaining its inclination: if it reaches 20 RE before the magma ocean solidifies, any early lunar inclination cannot be maintained. We find that for magma ocean lifetimes of 10 Myr or more, the Earth's tidal quality factor Q must have been >300 to maintain primordial inclination, implying an early Earth 1-2 orders of magnitude less dissipative than at present. On the other hand, if tidal dissipation on the early Earth was stronger, our model implies rapid damping of the lunar inclination and requires subsequent late excitation of the lunar orbit after the crystallization of the lunar magma ocean.

  20. The Late Oligocene to Early Miocene early evolution of rifting in the southwestern part of the Roer Valley Graben

    Science.gov (United States)

    Deckers, Jef

    2016-06-01

    The Roer Valley Graben is a Mesozoic continental rift basin that was reactivated during the Late Oligocene. The study area is located in the graben area of the southwestern part of the Roer Valley Graben. Rifting initiated in the study area with the development of a large number of faults in the prerift strata. Some of these faults were rooted in preexisting zones of weakness in the Mesozoic strata. Early in the Late Oligocene, several faults died out in the study area as strain became focused upon others, some of which were able to link into several-kilometer-long systems. Within the Late Oligocene to Early Miocene northwestward prograding shallow marine syn-rift deposits, the number of active faults further decreased with time. A relatively strong decrease was observed around the Oligocene/Miocene boundary and represents a further focus of strain onto the long fault systems. Miocene extensional strain was not accommodated by further growth, but predominantly by displacements along the long fault systems. Since the Oligocene/Miocene boundary coincides with a radical change in the European intraplate stress field, the latter might have contributed significantly to the simultaneous change of fault kinematics in the study area.

  1. Early 20th-century research at the interfaces of genetics, development, and evolution: reflections on progress and dead ends.

    Science.gov (United States)

    Deichmann, Ute

    2011-09-01

    Three early 20th-century attempts at unifying separate areas of biology, in particular development, genetics, physiology, and evolution, are compared in regard to their success and fruitfulness for further research: Jacques Loeb's reductionist project of unifying approaches by physico-chemical explanations; Richard Goldschmidt's anti-reductionist attempts to unify by integration; and Sewall Wright's combination of reductionist research and vision of hierarchical genetic systems. Loeb's program, demanding that all aspects of biology, including evolution, be studied by the methods of the experimental sciences, proved highly successful and indispensible for higher level investigations, even though evolutionary change and properties of biological systems up to now cannot be fully explained on the molecular level alone. Goldschmidt has been appraised as pioneer of physiological and developmental genetics and of a new evolutionary synthesis which transcended neo-Darwinism. However, this study concludes that his anti-reductionist attempts to integrate genetics, development and evolution have to be regarded as failures or dead ends. His grand speculations were based on the one hand on concepts and experimental systems that were too vague in order to stimulate further research, and on the other on experiments which in their core parts turned out not to be reproducible. In contrast, Sewall Wright, apart from being one of the architects of the neo-Darwinian synthesis of the 1930s, opened up new paths of testable quantitative developmental genetic investigations. He placed his research within a framework of logical reasoning, which resulted in the farsighted speculation that examinations of biological systems should be related to the regulation of hierarchical genetic subsystems, possibly providing a mechanism for development and evolution. I argue that his suggestion of basing the study of systems on clearly defined properties of the components has proved superior to

  2. Rates and modes of body size evolution in early carnivores and herbivores: a case study from Captorhinidae

    Directory of Open Access Journals (Sweden)

    Neil Brocklehurst

    2016-01-01

    Full Text Available Body size is an extremely important characteristic, impacting on a variety of ecological and life-history traits. It is therefore important to understand the factors which may affect its evolution, and diet has attracted much interest in this context. A recent study which examined the evolution of the earliest terrestrial herbivores in the Late Carboniferous and Early Permian concluded that in the four herbivorous clades examined there was a trend towards increased body size, and that this increase was more substantial than that observed in closely related carnivorous clades. However, this hypothesis was not based on quantitative examination, and phylogenetic comparative methods provide a more robust means of testing such hypotheses. Here, the evolution of body size within different dietary regimes is examined in Captorhinidae, the most diverse and longest lived of these earliest high fibre herbivores. Evolutionary models were fit to their phylogeny to test for variation in rate and mode of evolution between the carnivorous and herbivorous members of this clade, and an analysis of rate variation throughout the tree was carried out. Estimates of ancestral body sizes were calculated in order to compare the rates and direction of evolution of lineages with different dietary regimes. Support for the idea that the high fibre herbivores within captorhinids are being drawn to a higher adaptive peak in body size than the carnivorous members of this clade is weak. A shift in rates of body size evolution is identified, but this does not coincide with the evolution of high-fibre herbivory, instead occurring earlier in time and at a more basal node. Herbivorous lineages which show an increase in size are not found to evolve at a faster rate than those which show a decrease; in fact, it is those which experience a size decrease which evolve at higher rates. It is possible the shift in rates of evolution is related to the improved food processing ability of

  3. Early evolution of the continental crust, the oxygenated atmosphere and oceans, and the heterogeneous mantle

    Science.gov (United States)

    Ohmoto, H.

    2011-12-01

    The current paradigm for the evolution of early Earth is that, only since ~2.5 Ga ago, the Earth began to: (a) form a large granitic continental crust; (b) form an oxygenated atmosphere; (c) operate oxidative weathering of rocks on land; (d) form Fe-poor, but S-, U- and Mo-rich, oceans; (e) operate large-scale transfers of elements between oceans and oceanic crust at MORs; (f) subduct the altered oceanic crust; (g) create the mantle heterogeneity, especially in the concentrations and isotopic compositions of Fe(III), Fe(II), U, Pb, alkali elements, C, S, REEs, and many other elements; (h) create chemical and isotopic variations among OIB-, OPB-, and MORB magmas, and between I- and S-type granitoid magmas; and (i) create variations in the chemical and isotopic compositions of volcanic gas. Submarine hydrothermal fluids have typically developed from seawater-rock interactions during deep (>2 km) circulation of seawater through underlying hot volcanic rocks. When the heated hydrothermal fluids ascend toward the seafloor, they mix with local bottom seawater to precipitate a variety of minerals on and beneath the seafloor. Thus, the mineralogy and geochemistry of submarine hydrothermal deposits and associated volcanic rocks can be used to decipher the chemistry of the contemporaneous seawater, which in turn indicate the chemistry of the atmosphere and the compositions and size of the continental crust. The results of mineralogical and geochemical investigations by our and other research groups on submarine hydrothermal deposits (VMS and BIF) and hydrothermally-altered submarine volcanic rocks in Australia, South Africa, and Canada, ~3.5-2.5 Ga in ages, suggest that the above processes (a)-(i) had began by ~3.5 Ga ago. Supportive evidence includes, but not restricted to, the similarities between Archean submarine rocks and modern ones in: (1) the abundance of ferric oxides; (2) the Fe(III)/Fe(I) ratios; (3) the abundance of barite; (4) the increased Li contents; (5) the

  4. Molecular evolution of glutamine synthetase II: Phylogenetic evidence of a non-endosymbiotic gene transfer event early in plant evolution

    Directory of Open Access Journals (Sweden)

    Tartar Aurélien

    2010-06-01

    Full Text Available Abstract Background Glutamine synthetase (GS is essential for ammonium assimilation and the biosynthesis of glutamine. The three GS gene families (GSI, GSII, and GSIII are represented in both prokaryotic and eukaryotic organisms. In this study, we examined the evolutionary relationship of GSII from eubacterial and eukaryotic lineages and present robust phylogenetic evidence that GSII was transferred from γ-Proteobacteria (Eubacteria to the Chloroplastida. Results GSII sequences were isolated from four species of green algae (Trebouxiophyceae, and additional green algal (Chlorophyceae and Prasinophytae and streptophyte (Charales, Desmidiales, Bryophyta, Marchantiophyta, Lycopodiophyta and Tracheophyta sequences were obtained from public databases. In Bayesian and maximum likelihood analyses, eubacterial (GSIIB and eukaryotic (GSIIE GSII sequences formed distinct clades. Both GSIIB and GSIIE were found in chlorophytes and early-diverging streptophytes. The GSIIB enzymes from these groups formed a well-supported sister clade with the γ-Proteobacteria, providing evidence that GSIIB in the Chloroplastida arose by horizontal gene transfer (HGT. Bayesian relaxed molecular clock analyses suggest that GSIIB and GSIIE coexisted for an extended period of time but it is unclear whether the proposed HGT happened prior to or after the divergence of the primary endosymbiotic lineages (the Archaeplastida. However, GSIIB genes have not been identified in glaucophytes or red algae, favoring the hypothesis that GSIIB was gained after the divergence of the primary endosymbiotic lineages. Duplicate copies of the GSIIB gene were present in Chlamydomonas reinhardtii, Volvox carteri f. nagariensis, and Physcomitrella patens. Both GSIIB proteins in C. reinhardtii and V. carteri f. nagariensis had N-terminal transit sequences, indicating they are targeted to the chloroplast or mitochondrion. In contrast, GSIIB proteins of P. patens lacked transit sequences, suggesting

  5. Sedimentary and tectonic evolution of the arc zone of Southwestern Ecuador during Late Cretaceous and early Tertiary times

    Science.gov (United States)

    Jaillard, Etienne; Ordoñez, Martha; Berrones, Gerardo; Bengtson, Peter; Bonhomme, Michel; Jimenez, Nelson; Zambrano, Italo

    1996-03-01

    The eastern part of the "Celica basin" of southwesternmost Ecuador exhibits Late Cretaceous to Tertiary sediments which belong to the magmatic arc paleogeographic zone. Important N-S to NE-trending faults separate a western, mainly Late Cretaceous series (Río Playas) from an eastern succession (Catamayo-Gonzanamá) of (?) Late Cretaceous to early Tertiary age. The analysis of these sediments indicates a complex geologic history, which recorded the main stages of the early tectonic evolution of the Andes. In the Río Playas area, a submarine andesitic volcanic pile (Celica Fm) represents the products of a volcanic arc of probably Albian age. It is apparently overlain by a thick, early Late Cretaceous series of volcanic flows and coarse-grained volcaniclastic high-density turbiditic beds (Alamor Fm), the deposition of which might result from the Mochica phase (late Albian-early Cenomanian) Deformation, uplift and erosion (early Peruvian phase) are followed by the sedimentation of unconformable marls and greywackes of marine open shelf to deltaic environment. These comprise Santonian and/or Campanian fine- to mediumgrained deposits (Naranjo Fm), abruptly overlain (late Peruvian phase ?) by fan-delta coarse-grained marine deposits of latest Cretaceous age (Casanga Fm) They are locally capped by undated, partly volcaniclastic red beds, indicating an important regression/uplift of latest Cretaceous-early Tertiary age. In the Catamayo-Gonzanamá area, thick subaerial andesitic volcanic rocks (Sacapalca Fm) are intruded by Paleocene to early Eocene plutons and are overlain by undated fluvial red beds. They express uplift movements of latest Cretaceous-early Tertiary age. To the South, these are capped by slumped lacustrine black shales and greywackes of possible Maastrichtian-Paleocene age (Gonzanamá Fm) Farther north, the Sacapalca volcanics and red beds are overlain by variegated shales, sandstones and conglomerates, dated as latest Oligocene-early Miocene (Catamayo Fm

  6. Tracing the evolution of nearby early-type galaxies in low density environments. The Ultraviolet view from GALEX

    CERN Document Server

    Rampazzo, R; Marino, A; Bianchi, L; Bressan, A; Buson, L M; Clemens, M; Panuzzo, P; Zeilinger, W W; 10.1007/s10509-010-0586-5

    2011-01-01

    We detected recent star formation in nearby early-type galaxies located in low density environments, with GALEX Ultraviolet (UV) imaging. Signatures of star formation may be present in the nucleus and in outer rings/arm like structures. Our study suggests that such star formation may be induced by different triggering mechanisms, such as the inner secular evolution driven by bars, and minor accretion phenomena. We investigate the nature of the (FUV-NUV) color vs. Mg2 correlation, and suggest that it relates to "downsizing" in galaxy formation.

  7. Evolution of the placenta during the early radiation of placental mammals

    DEFF Research Database (Denmark)

    Mess, Andrea; Carter, Anthony M

    2007-01-01

    . This interhaemal barrier occurs in three principal variants. The focus of this review is on determining how the barrier evolved in placental mammals. The analysis was based on current knowledge of placental structure, as far as possible using ultrastructural data, and on current views about the evolution...... of placental mammals, derived from molecular phylogenetics. We show that epitheliochorial placentation, the least invasive type, is a derived state and discuss factors that may have determined its evolution with reference to conflict theory, as applied to the allocation of resources between mother and fetus...

  8. THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R. E. Jr. [Physics Department, University of California, Davis, CA 95616 (United States); McCarthy, P. J. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 91101 (United States); Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Yan, H. [Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Hathi, N. P. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Koekemoer, A. M.; Bond, H. E.; Bushouse, H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); O' Connell, R. W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Crockett, R. M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Disney, M. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, M. A. [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia); Frogel, J. A. [Galaxies Unlimited, Lutherville, MD 21093 (United States); Hall, D. N. B. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Holtzman, J. A., E-mail: rryan@physics.ucdavis.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); and others

    2012-04-10

    We present the size evolution of passively evolving galaxies at z {approx} 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z {approx}> 1.5. We identify 30 galaxies in {approx}40 arcmin{sup 2} to H < 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 {mu}m {approx}< {lambda}{sub obs} {approx}< 1.6 {mu}m with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of {approx}0.033(1 + z). We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M{sub *} {approx} 10{sup 11} M{sub Sun }) undergo the strongest evolution from z {approx} 2 to the present. Parameterizing the size evolution as (1 + z){sup -{alpha}}, we find a tentative scaling of {alpha} Almost-Equal-To (- 0.6 {+-} 0.7) + (0.9 {+-} 0.4)log (M{sub *}/10{sup 9} M{sub Sun }), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M{sub *}-R{sub e} relation for red galaxies.

  9. Hybrid Differential Evolution Optimisation for Earth Observation Satellite Scheduling with Time-Dependent Earliness-Tardiness Penalties

    Directory of Open Access Journals (Sweden)

    Guoliang Li

    2017-01-01

    Full Text Available We study the order acceptance and scheduling (OAS problem with time-dependent earliness-tardiness penalties in a single agile earth observation satellite environment where orders are defined by their release dates, available processing time windows ranging from earliest start date to deadline, processing times, due dates, sequence-dependent setup times, and revenues. The objective is to maximise total revenue, where the revenue from an order is a piecewise linear function of its earliness and tardiness with reference to its due date. We formulate this problem as a mixed integer linear programming model and develop a novel hybrid differential evolution (DE algorithm under self-adaptation framework to solve this problem. Compared with classical DE, hybrid DE employs two mutation operations, scaling factor adaptation and crossover probability adaptation. Computational tests indicate that the proposed algorithm outperforms classical DE in addition to two other variants of DE.

  10. The deformation and tectonic evolution of the Huahui Basin, northeast China, during the Cretaceous-Early Cenozoic

    Science.gov (United States)

    Huang, Shiqi; Dong, Shuwen; Zhang, Yueqiao; Zhang, Fuqin; Huang, Dezhi; Wei, Shi; Li, Zhenhong; Miao, Laicheng; Zhu, Mingshuai

    2015-12-01

    The Cretaceous Huahui basin lies along the Dunhua-Mishan fault (Dun-Mi fault), which is one of the northern branches of Tan-Lu fault in northeastern China. The study of the formation and the tectonic movements that took place in the basin can provide very important information for deciphering the tectonic evolution of northeastern China during Cretaceous-Early Cenozoic. The field analysis of fault-slip data collected from different units in the basin, demonstrates changes in the paleo-stress state that reveals a three-stage tectonic movement during the Cretaceous-Early Cenozoic. The earliest tectonic movement was NW-SE extension, which was responsible for the formation of the basin and sedimentary infilling during the Early Cretaceous. Dating of the andesite in the fill indicates it began during about 119.17 ± 0.80 Ma. The extensional structures formed in the Latest Early Cretaceous imply that this tectonic movement lasted until the beginning of the Late Cretaceous. The second stage began during the Late Cretaceous when the tectonic stress state changed and was dominated by NW-SE compression and NE-SW extension, which caused the inversion of the extensional basin. This compression folded the Early Cretaceous deposits and reactivated pre-existing faults and uplifted pre-existing granite in the basin. The strata and the unconformity in the basin shows that this compressive phase probably took place during the Late Cretaceous and ended in the Early Paleogene by a compressional regime with NE-SW compression and NW-SE extension that constitutes the third stage. The tectonic stress fields documented in the Huahui basin provide insight into the influences of plate tectonics on the crustal evolution of northeastern China during the Cretaceous to Early Cenozoic. These results show that the development of Huahui basin was controlled by the northwestward subduction of the paleo-Pacific plate during the Cretaceous, and later by the far-field effects of India-Asia collision in

  11. Phylogenetic Origins of Biological Cognition : Convergent Patterns in the Early Evolution of Learning

    NARCIS (Netherlands)

    van Duijn, Marc

    2017-01-01

    Various forms of elementary learning have recently been discovered in organisms lacking a nervous system, such as protists, fungi and plants. This finding has fundamental implications for how we view the role of convergent evolution in biological cognition. In this article, I first review the

  12. Early Precambrian Carbonate and Evapolite Sediments: Constraints on Environmental and Biological Evolution

    Science.gov (United States)

    Grotzinger, John P.

    2002-01-01

    The work accomplished under NASA Grant NAG5-6722 was very successful. Our lab was able to document the occurrence and distribution of evaporite-to-carbonate transitions in several basins during Precambrian time, to help constrain the long-term chemical evolution of seawater.

  13. Accretion in the Early Kuiper Belt; 1, Coagulation and Velocity Evolution

    CERN Document Server

    Kenyon, S J; Kenyon, Scott J.; Luu, Jane X.

    1998-01-01

    We describe planetesimal accretion calculations in the Kuiper Belt. Our evolution code simulates planetesimal growth in a single annulus and includes velocity evolution but not fragmentation. Test results match analytic solutions and duplicate previous simulations at 1 AU. In the Kuiper Belt, simulations without velocity evolution produce a single runaway body with a radius of 1000 km on a time scale inversely proportional to the initial mass in the annulus. Runaway growth occurs in 100 Myr for 10 earth masses and an initial eccentricity of 0.001 in a 6 AU annulus centered at 35 AU. This mass is close to the amount of dusty material expected in a minimum mass solar nebula extrapolated into the Kuiper Belt. Simulations with velocity evolution produce runaway growth on a wide range of time scales. Dynamical friction and viscous stirring increase particle velocities in models with large (8 km radius) initial bodies. This velocity increase delays runaway growth by a factor of two compared to models without veloci...

  14. MARSSIM Landform Evolution Model: Hydrologic Constraints on the Noachian Early Dry Period

    Science.gov (United States)

    Boatwright, B. D.; Head, J. W.

    2017-10-01

    We propose to test several hydrologic parameters to constrain the nature of highland degradation on Noachian Mars. This early dry period is less well characterized than the terminal epoch of valley network formation.

  15. Long-term preservation of early formed mantle heterogeneity by mobile lid convection: Importance of grainsize evolution

    Science.gov (United States)

    Foley, Bradford J.; Rizo, Hanika

    2017-10-01

    The style of tectonics on the Hadean and Archean Earth, particularly whether plate tectonics was in operation or not, is debated. One important, albeit indirect, constraint on early Earth tectonics comes from observations of early-formed geochemical heterogeneities: 142Nd and 182W anomalies recorded in Hadean to Phanerozoic rocks from different localities indicate that chemically heterogeneous reservoirs, formed during the first ∼500 Myrs of Earth's history, survived their remixing into the mantle for over 1 Gyrs. Such a long mixing time is difficult to explain because hotter mantle temperatures, expected for the early Earth, act to lower mantle viscosity and increase convective vigor. Previous studies found that mobile lid convection typically erases heterogeneity within ∼100 Myrs under such conditions, leading to the hypothesis that stagnant lid convection on the early Earth was responsible for the observed long mixing times. However, using two-dimensional Cartesian convection models that include grainsize evolution, we find that mobile lid convection can preserve heterogeneity at high mantle temperature conditions for much longer than previously thought, because higher mantle temperatures lead to larger grainsizes in the lithosphere. These larger grainsizes result in stronger plate boundaries that act to slow down surface and interior convective motions, in competition with the direct effect temperature has on mantle viscosity. Our models indicate that mobile lid convection can preserve heterogeneity for ≈0.4-1 Gyrs at early Earth mantle temperatures when the initial heterogeneity has the same viscosity as the background mantle, and ≈1-4 Gyrs when the heterogeneity is ten times more viscous than the background mantle. Thus, stagnant lid convection is not required to explain long-term survival of early formed geochemical heterogeneities, though these heterogeneities having an elevated viscosity compared to the surrounding mantle may be essential for their

  16. A first-principles model of early evolution: emergence of gene families, species, and preferred protein folds.

    Directory of Open Access Journals (Sweden)

    Konstantin B Zeldovich

    2007-07-01

    Full Text Available In this work we develop a microscopic physical model of early evolution where phenotype--organism life expectancy--is directly related to genotype--the stability of its proteins in their native conformations-which can be determined exactly in the model. Simulating the model on a computer, we consistently observe the "Big Bang" scenario whereby exponential population growth ensues as soon as favorable sequence-structure combinations (precursors of stable proteins are discovered. Upon that, random diversity of the structural space abruptly collapses into a small set of preferred proteins. We observe that protein folds remain stable and abundant in the population at timescales much greater than mutation or organism lifetime, and the distribution of the lifetimes of dominant folds in a population approximately follows a power law. The separation of evolutionary timescales between discovery of new folds and generation of new sequences gives rise to emergence of protein families and superfamilies whose sizes are power-law distributed, closely matching the same distributions for real proteins. On the population level we observe emergence of species--subpopulations that carry similar genomes. Further, we present a simple theory that relates stability of evolving proteins to the sizes of emerging genomes. Together, these results provide a microscopic first-principles picture of how first-gene families developed in the course of early evolution.

  17. A first-principles model of early evolution: emergence of gene families, species, and preferred protein folds.

    Science.gov (United States)

    Zeldovich, Konstantin B; Chen, Peiqiu; Shakhnovich, Boris E; Shakhnovich, Eugene I

    2007-07-01

    In this work we develop a microscopic physical model of early evolution where phenotype--organism life expectancy--is directly related to genotype--the stability of its proteins in their native conformations-which can be determined exactly in the model. Simulating the model on a computer, we consistently observe the "Big Bang" scenario whereby exponential population growth ensues as soon as favorable sequence-structure combinations (precursors of stable proteins) are discovered. Upon that, random diversity of the structural space abruptly collapses into a small set of preferred proteins. We observe that protein folds remain stable and abundant in the population at timescales much greater than mutation or organism lifetime, and the distribution of the lifetimes of dominant folds in a population approximately follows a power law. The separation of evolutionary timescales between discovery of new folds and generation of new sequences gives rise to emergence of protein families and superfamilies whose sizes are power-law distributed, closely matching the same distributions for real proteins. On the population level we observe emergence of species--subpopulations that carry similar genomes. Further, we present a simple theory that relates stability of evolving proteins to the sizes of emerging genomes. Together, these results provide a microscopic first-principles picture of how first-gene families developed in the course of early evolution.

  18. The Evolution of Early-type Field Galaxies Selected from a NICMOS Map of the Hubble Deep Field North

    Energy Technology Data Exchange (ETDEWEB)

    Somerville, R; Stanford, S A; Budavari, T; Conselice, C J

    2004-03-03

    The redshift distribution of well-defined samples of distant early-type galaxies offers a means to test the predictions of monolithic and hierarchical galaxy formation scenarios. NICMOS maps of the entire Hubble Deep Field North in the F110W and F160W filters, when combined with the available WFPC2 data, allow us to calculate photometric redshifts and determine the morphological appearance of galaxies at rest-frame optical wavelengths out to z {approx} 2.5. Here we report results for two subsamples of early-type galaxies, defined primarily by their morphologies in the F160W band, which were selected from the NICMOS data down to H{sub 160AB} < 24.0. A primary subsample is defined as the 34 galaxies with early-type galaxy morphologies and early-type galaxy spectral energy distributions. The secondary subsample is defined as those 42 objects which have early-type galaxy morphologies with non-early type galaxy spectral energy distributions. The observed redshift distributions of our two early-type samples do not match that predicted by a monolithic collapse model, which shows an overabundance at z > 1.5. A (V/V{sub max}) test confirms this result. When the effects of passive luminosity evolution are included in the calculation, the mean value of Vmax for the primary sample is 0.22 {+-} 0.05, and 0.31 {+-} 0.04 for all the early-types. A hierarchical formation model better matches the redshift distribution of the HDF-N early-types at z > 1.5, but still does not adequately describe the observed early-types. The hierarchical model predicts significantly bluer colors on average than the observed early-type colors, and underpredicts the observed number of early-types at z {approx} 2. Though the observed redshift distribution of the early-type galaxies in our HDF-NICMOS sample is better matched by a hierarchical galaxy formation model, the reliability of this conclusion is tempered by the restricted sampling area and relatively small number of early-type galaxies selected by

  19. A new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds

    Directory of Open Access Journals (Sweden)

    Jiandong Huang

    2016-03-01

    Full Text Available Despite the increasing number of exceptional feathered fossils discovered in the Late Jurassic and Cretaceous of northeastern China, representatives of Ornithurae, a clade that includes comparatively-close relatives of crown clade Aves (extant birds and that clade, are still comparatively rare. Here, we report a new ornithurine species Changzuiornis ahgmi from the Early Cretaceous Jiufotang Formation. The new species shows an extremely elongate rostrum so far unknown in basal ornithurines and changes our understanding of the evolution of aspects of extant avian ecology and cranial evolution. Most of this elongate rostrum in Changzuiornis ahgmi is made up of maxilla, a characteristic not present in the avian crown clade in which most of the rostrum and nearly the entire facial margin is made up by premaxilla. The only other avialans known to exhibit an elongate rostrum with the facial margin comprised primarily of maxilla are derived ornithurines previously placed phylogenetically as among the closest outgroups to the avian crown clade as well as one derived enantiornithine clade. We find that, consistent with a proposed developmental shift in cranial ontogeny late in avialan evolution, this elongate rostrum is achieved through elongation of the maxilla while the premaxilla remains only a small part of rostral length. Thus, only in Late Cretaceous ornithurine taxa does the premaxilla begin to play a larger role. The rostral and postcranial proportions of Changzuiornis suggest an ecology not previously reported in Ornithurae; the only other species with an elongate rostrum are two marine Late Cretacous taxa interpreted as showing a derived picivorous diet.

  20. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora.

    Science.gov (United States)

    Senatore, Adriano; Raiss, Hamad; Le, Phuong

    2016-01-01

    Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca(2+) signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca(2+)-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it.

  1. Physiology and evolution of voltage-gated calcium channels in early diverging animal phyla: Cnidaria, Placozoa, Porifera and Ctenophora

    Directory of Open Access Journals (Sweden)

    Adriano Senatore

    2016-11-01

    Full Text Available Voltage-gated calcium (Cav channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling, gene expression (excitation-transcription coupling, pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling, regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when many of these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it.

  2. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora

    Science.gov (United States)

    Senatore, Adriano; Raiss, Hamad; Le, Phuong

    2016-01-01

    Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it. PMID:27867359

  3. The origin and early evolution of whales: macroevolution documented on the Indian Subcontinent

    Indian Academy of Sciences (India)

    S Bajpai; J G M Thewissen; A Sahni

    2009-11-01

    The origin of whales (order Cetacea) from a four-footed land animal is one of the best understood examples of macroevolutionary change. This evolutionary transition has been substantially elucidated by fossil finds from the Indian subcontinent in the past decade and a half. Here, we review the first steps of whale evolution, i.e. the transition from a land mammal to obligate marine predators, documented by the Eocene cetacean families of the Indian subcontinent: Pakicetidae, Ambulocetidae, Remingtonocetidae, Protocetidae, and Basilosauridae, as well as their artiodactyl sister group, the Raoellidae. We also discuss the influence that the excellent fossil record has on the study of the evolution of organ systems, in particular the locomotor and hearing systems.

  4. Early Star Formation and Chemical Evolution in Proto-Galactic Clouds

    CERN Document Server

    Saleh, L; Mathews, G J; Saleh, Lamya; Beers, Timothy C.; Mathews, Grant J.

    2004-01-01

    We present numerical simulations to describe the evolution of pre-Galactic clouds in a model which is motivated by cold dark matter simulations of hierarchical galaxy formation. We adopt a SN-induced star-formation mechanism within a model that follows the evolution of chemical enrichment and energy input to the clouds by Type II and Type Ia supernovae. We utilize metallicity-dependent yields for all elements at all times, and include effects of finite stellar lifetimes. We derive the metallicity distribution functions for stars in the clouds, their age-metallicity relation, and relative elemental abundances for a number of alpha- and Fe-group elements. The stability of these clouds against destruction is discussed, and results are compared for different initial mass functions. We find that the dispersion of the metallicity distribution function observed in the outer halo is naturally reproduced by contributions from many clouds with different initial conditions. The predicted relative abundances of some alph...

  5. The origin and early evolution of whales: macroevolution documented on the Indian subcontinent.

    Science.gov (United States)

    Bajpai, S; Thewissen, J G M; Sahni, A

    2009-11-01

    The origin of whales (order Cetacea) from a four-footed land animal is one of the best understood examples of macroevolutionary change. This evolutionary transition has been substantially elucidated by fossil finds from the Indian subcontinent in the past decade and a half. Here, we review the first steps of whale evolution, i.e. the transition from a land mammal to obligate marine predators, documented by the Eocene cetacean families of the Indian subcontinent: Pakicetidae, Ambulocetidae, Remingtonocetidae, Protocetidae, and Basilosauridae, as well as their artiodactyl sister group, the Raoellidae. We also discuss the influence that the excellent fossil record has on the study of the evolution of organ systems, in particular the locomotor and hearing systems.

  6. A bizarre theropod from the Early Cretaceous of Japan highlighting mosaic evolution among coelurosaurians.

    Science.gov (United States)

    Azuma, Yoichi; Xu, Xing; Shibata, Masateru; Kawabe, Soichiro; Miyata, Kazunori; Imai, Takuya

    2016-02-23

    Our understanding of coelurosaurian evolution, particularly of bird origins, has been greatly improved, mainly due to numerous recently discovered fossils worldwide. Nearly all these discoveries are referable to the previously known coelurosaurian subgroups. Here, we report a new theropod, Fukuivenator paradoxus, gen. et sp. nov., based on a nearly complete specimen from the Lower Cretaceous Kitadani Formation of the Tetori Group, Fukui, Japan. While Fukuivenator possesses a large number of morphological features unknown in any other theropod, it has a combination of primitive and derived features seen in different theropod subgroups, notably dromaeosaurid dinosaurs. Computed-tomography data indicate that Fukuivenator possesses inner ears whose morphology is intermediate between those of birds and non-avian dinosaurs. Our phylogenetic analysis recovers Fukuivenator as a basally branching maniraptoran theropod, yet is unable to refer it to any known coelurosaurian subgroups. The discovery of Fukuivenator considerably increases the morphological disparity of coelurosaurian dinosaurs and highlights the high levels of homoplasy in coelurosaurian evolution.

  7. The Place of RNA in the Origin and Early Evolution of the Genetic Machinery

    OpenAIRE

    Günter Wächtershäuser

    2014-01-01

    The extant genetic machinery revolves around three interrelated polymers: RNA, DNA and proteins. Two evolutionary views approach this vital connection from opposite perspectives. The RNA World theory posits that life began in a cold prebiotic broth of monomers with the de novo emergence of replicating RNA as functionally self-contained polymer and that subsequent evolution is characterized by RNA → DNA memory takeover and ribozyme → enzyme catalyst takeover. The FeS World theory posits that l...

  8. Modeling the early evolution of massive OB stars with an experimental wind routine

    CERN Document Server

    Keszthelyi, Zsolt; Wade, Gregg

    2016-01-01

    Stellar evolution models of massive stars are very sensitive to the adopted mass-loss scheme. The magnitude and evolution of mass-loss rates significantly affect the main sequence evolution, and the properties of post-main sequence objects, including their rotational velocities. Driven by potential discrepancies between theoretically predicted and observationally derived mass-loss rates in the OB star range, we particularly aim to investigate the response to mass-loss rates that are lower than currently adopted, in parallel with the mass-loss behavior at the "first" bi-stability jump. We perform 1D hydrodynamical model calculations of single $20 - 60 \\, M_{\\odot}$ Galactic ($Z = 0.014$) stars where the effects of stellar winds are already significant during the main sequence phase. We develop an experimental wind routine to examine the behavior and response of the models under the influence of different mass-loss rates. This observationally guided, simple and flexible wind routine is not a new mass-loss descr...

  9. Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution.

    Science.gov (United States)

    Steiper, Michael E; Seiffert, Erik R

    2012-04-17

    A long-standing problem in primate evolution is the discord between paleontological and molecular clock estimates for the time of crown primate origins: the earliest crown primate fossils are ~56 million y (Ma) old, whereas molecular estimates for the haplorhine-strepsirrhine split are often deep in the Late Cretaceous. One explanation for this phenomenon is that crown primates existed in the Cretaceous but that their fossil remains have not yet been found. Here we provide strong evidence that this discordance is better-explained by a convergent molecular rate slowdown in early primate evolution. We show that molecular rates in primates are strongly and inversely related to three life-history correlates: body size (BS), absolute endocranial volume (EV), and relative endocranial volume (REV). Critically, these traits can be reconstructed from fossils, allowing molecular rates to be predicted for extinct primates. To this end, we modeled the evolutionary history of BS, EV, and REV using data from both extinct and extant primates. We show that the primate last common ancestor had a very small BS, EV, and REV. There has been a subsequent convergent increase in BS, EV, and REV, indicating that there has also been a convergent molecular rate slowdown over primate evolution. We generated a unique timescale for primates by predicting molecular rates from the reconstructed phenotypic values for a large phylogeny of living and extinct primates. This analysis suggests that crown primates originated close to the K-Pg boundary and possibly in the Paleocene, largely reconciling the molecular and fossil timescales of primate evolution.

  10. Evolution of central dark matter of early-type galaxies up to z ˜ 0.8

    Science.gov (United States)

    Tortora, C.; Napolitano, N. R.; Saglia, R. P.; Romanowsky, A. J.; Covone, G.; Capaccioli, M.

    2014-11-01

    We investigate the evolution of dark and luminous matter in the central regions of early-type galaxies up to z ˜ 0.8. We use a spectroscopically selected sample of 154 cluster and field galaxies from the ESO Distant Clusters Survey (EDisCS), covering a wide range in redshifts (z ˜ 0.4-0.8), stellar masses (log M⋆/M⊙ ˜ 10.5-11.5 dex) and velocity dispersions (σ⋆ ˜ 100-300 km s-1). We obtain central dark matter (DM) fractions by determining the dynamical masses from Jeans modelling of galaxy aperture velocity dispersions and the M⋆ from galaxy colours, and compare the results with local samples. We discuss how the correlations of central DM with galaxy size (i.e. the effective radius, Re), M⋆ and σ⋆ evolve as a function of redshift, finding clear indications that local galaxies are, on average, more DM dominated than their counterparts at larger redshift. This DM fraction evolution with z can be only partially interpreted as a consequence of the size-redshift evolution. We discuss our results within galaxy formation scenarios, and conclude that the growth in size and DM content which we measure within the last 7 Gyr is incompatible with passive evolution, while it is well reproduced in the multiple minor merger scenario. We also discuss the impact of the initial mass function (IMF) on our DM inferences and argue that this can be non-universal with the look-back time. In particular, we find that the Salpeter IMF can be better accommodated by low-redshift systems, while producing stellar masses at high z which are unphysically larger than the estimated dynamical masses (particularly for lower σ⋆ systems).

  11. Education for sustainable development in early chilhood education in Spain : evolution, trends and proposals

    OpenAIRE

    Martínez Agut, María del Pilar; Ull Solís, María Ángeles; Aznar Minguet, Pilar

    2013-01-01

    This article analyze how the sustainability culture has evolved in the early childhood education setting within the Spanish education system with official documents and the sustainability training received by teachers who intervene in this stage of education since these teachers¿ degrees have been adapted to the European Higher Education Area. Early childhood education in Spain is an individual stage to educate children aged up to 6 years (two main cycles: 0-3 and 3-6 years). It¿s important t...

  12. Early

    Directory of Open Access Journals (Sweden)

    Kamel Abd Elaziz Mohamed

    2014-04-01

    Conclusion: Early PDT is recommended for patients who require prolonged tracheal intubation in the ICU as outcomes like the duration of mechanical ventilation length of ICU stay and hospital stay were significantly shorter in early tracheostomy.

  13. Structural Evolution of Early-type Galaxies to z=2.5 in CANDELS

    CERN Document Server

    Chang, Yu-Yen; Rix, Hans-Walter; Holden, Bradford; Bell, Eric F; McGrath, Elizabeth J; Wuyts, Stijn; Häußler, Boris; Barden, Marco; Faber, S M; Mozena, Mark; Ferguson, Henry C; Guo, Yicheng; Galametz, Audrey; Grogin, Norman A; Kocevski, Dale D; Koekemoer, Anton M; Dekel, Avishai; Huang, Kuang-Han; Hathi, Nimish P; Donley, Jennifer

    2013-01-01

    Projected axis ratio measurements of 880 early-type galaxies at redshifts 11 early-type galaxies show a variety of intrinsic shapes; even at a fixed mass, the projected axis ratio distributions cannot be explained by random projection of a set of galaxies with very similar intrinsic shapes. However, a two-population model for the intrinsic shapes, consisting of a triaxial, fairly round population, combined with a flat (c/a~0.3) oblate population, adequately describes the projected axis ratio distributions of both present-day and z>1 early-type galaxies. We find that the proportion of oblate vs. triaxial galaxies depends both on the galaxies stellar mass, and - at a given mass - on redshift. For present-day and z1 this trend is much weaker over the mass range explored here (10^101, compared to 0.20+-0.02 at z~0.1. In contrast, the oblate fraction among low-mass early-type galaxies (log(M*/M_sun)1 to 0.72+-0.06 at z=0. [Abridged

  14. Reconstructing the early evolution of Fungi using a six-gene phylogeny

    NARCIS (Netherlands)

    James, Timothy Y; Kauff, Frank; Schoch, Conrad L; Matheny, P Brandon; Hofstetter, Valérie; Cox, Cymon J; Celio, Gail; Gueidan, Cécile; Fraker, Emily; Miadlikowska, Jolanta; Lumbsch, H Thorsten; Rauhut, Alexandra; Reeb, Valérie; Arnold, A Elizabeth; Amtoft, Anja; Stajich, Jason E; Hosaka, Kentaro; Sung, Gi-Ho; Johnson, Desiree; O'Rourke, Ben; Crockett, Michael; Binder, Manfred; Curtis, Judd M; Slot, Jason C; Wang, Zheng; Wilson, Andrew W; Schüssler, Arthur; Longcore, Joyce E; O'Donnell, Kerry; Mozley-Standridge, Sharon; Porter, David; Letcher, Peter M; Powell, Martha J; Taylor, John W; White, Merlin M; Griffith, Gareth W; Davies, David R; Humber, Richard A; Morton, Joseph B; Sugiyama, Junta; Rossman, Amy Y; Rogers, Jack D; Pfister, Don H; Hewitt, David; Hansen, Karen; Hambleton, Sarah; Shoemaker, Robert A; Kohlmeyer, Jan; Volkmann-Kohlmeyer, Brigitte; Spotts, Robert A; Serdani, Maryna; Crous, Pedro W; Hughes, Karen W; Matsuura, Kenji; Langer, Ewald; Langer, Gitta; Untereiner, Wendy A; Lücking, Robert; Büdel, Burkhard; Geiser, David M; Aptroot, André; Diederich, Paul; Schmitt, Imke; Schultz, Matthias; Yahr, Rebecca; Hibbett, David S; Lutzoni, François; McLaughlin, David J; Spatafora, Joseph W; Vilgalys, Rytas

    2006-01-01

    The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore

  15. Reconstructing the early evolution of Fungi using a six-gene phylogeny

    NARCIS (Netherlands)

    James, Timothy Y; Kauff, Frank; Schoch, Conrad L; Matheny, P Brandon; Hofstetter, Valérie; Cox, Cymon J; Celio, Gail; Gueidan, Cécile; Fraker, Emily; Miadlikowska, Jolanta; Lumbsch, H Thorsten; Rauhut, Alexandra; Reeb, Valérie; Arnold, A Elizabeth; Amtoft, Anja; Stajich, Jason E; Hosaka, Kentaro; Sung, Gi-Ho; Johnson, Desiree; O'Rourke, Ben; Crockett, Michael; Binder, Manfred; Curtis, Judd M; Slot, Jason C; Wang, Zheng; Wilson, Andrew W; Schüssler, Arthur; Longcore, Joyce E; O'Donnell, Kerry; Mozley-Standridge, Sharon; Porter, David; Letcher, Peter M; Powell, Martha J; Taylor, John W; White, Merlin M; Griffith, Gareth W; Davies, David R; Humber, Richard A; Morton, Joseph B; Sugiyama, Junta; Rossman, Amy Y; Rogers, Jack D; Pfister, Don H; Hewitt, David; Hansen, Karen; Hambleton, Sarah; Shoemaker, Robert A; Kohlmeyer, Jan; Volkmann-Kohlmeyer, Brigitte; Spotts, Robert A; Serdani, Maryna; Crous, Pedro W; Hughes, Karen W; Matsuura, Kenji; Langer, Ewald; Langer, Gitta; Untereiner, Wendy A; Lücking, Robert; Büdel, Burkhard; Geiser, David M; Aptroot, André; Diederich, Paul; Schmitt, Imke; Schultz, Matthias; Yahr, Rebecca; Hibbett, David S; Lutzoni, François; McLaughlin, David J; Spatafora, Joseph W; Vilgalys, Rytas

    2006-01-01

    The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore flagell

  16. Reconstructing the early evolution of the fungi using a six gene phylogeny

    NARCIS (Netherlands)

    James, T.Y.; Kauff, F.; Schoch, C.L.; Matheny, P.B.; Hofstetter, V.; Cox, C.J.; Celio, G.; Gueidan, C.; Fraker, E.; Miadlikowska, J.; Lumbsch, H.T.; Rauhut, A.; Reeb, V.; Arnold, A.E.; Amtoft, A.; Stajich, J.E.; Hosaka, K.; Sung, G.H.; Johnson, D.; O'Rourke, B.; Binder, M.; Curtis, J.M.; Slot, J.C.; Wang, Z.; Wilson, A.W.; Schüßler, A.; Longcore, J.E.; O'Donnell, K.; Mozley-Standridge, S.; Porter, D.; Letcher, P.M.; Powell, M.J.; Taylor, J.W.; White, M.M.; Griffith, G.W.; Davies, D.R.; Sugiyama, J.; Rossman, A.Y.; Rogers, J.D.; Pfister, D.H.; Hewitt, D.; Hansen, K.; Hambleton, S.; Shoemaker, R.A.; Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; Spotts, R.A.; Serdani, M.; Crous, P.W.; Hughes, K.W.; Matsuura, K.; Langer, E.; Langer, G.; Untereiner, W.A.; Lücking, R.; Büdel, B.; Geiser, D.M.; Aptroot, A.; Diederich, P.; Schmitt, I.; Schultz, M.; Yahr, R.; Hibbett, D.S.; Lutzoni, F.; McLaughlin, D.J.; Spatafora, J.W.; Vilgalys, R.

    2006-01-01

    The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore flagell

  17. A Convenient Model for the Evolution of Early Psychology as a Scientific Discipline.

    Science.gov (United States)

    Epstein, Robert

    1981-01-01

    To help college students understand psychology, the article suggests that instructors develop curriculum based on the relationship between scientific and technological advances and the development of early psychology. Views of many nineteenth century psychologists are summarized, including Johann Friedrich Herbart, Hermann Lotze, and Georg…

  18. Formation and evolution of dwarf early-type galaxies in the Virgo cluster I. Internal kinematics

    NARCIS (Netherlands)

    Toloba, E.; Boselli, A.; Cenarro, A. J.; Peletier, R. F.; Gorgas, J.; Gil de Paz, A.; Munoz-Mateos, J. C.

    We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy

  19. Reconstructing the early evolution of the fungi using a six gene phylogeny

    NARCIS (Netherlands)

    James, T.Y.; Kauff, F.; Schoch, C.L.; Matheny, P.B.; Hofstetter, V.; Cox, C.J.; Celio, G.; Gueidan, C.; Fraker, E.; Miadlikowska, J.; Lumbsch, H.T.; Rauhut, A.; Reeb, V.; Arnold, A.E.; Amtoft, A.; Stajich, J.E.; Hosaka, K.; Sung, G.H.; Johnson, D.; O'Rourke, B.; Binder, M.; Curtis, J.M.; Slot, J.C.; Wang, Z.; Wilson, A.W.; Schüßler, A.; Longcore, J.E.; O'Donnell, K.; Mozley-Standridge, S.; Porter, D.; Letcher, P.M.; Powell, M.J.; Taylor, J.W.; White, M.M.; Griffith, G.W.; Davies, D.R.; Sugiyama, J.; Rossman, A.Y.; Rogers, J.D.; Pfister, D.H.; Hewitt, D.; Hansen, K.; Hambleton, S.; Shoemaker, R.A.; Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; Spotts, R.A.; Serdani, M.; Crous, P.W.; Hughes, K.W.; Matsuura, K.; Langer, E.; Langer, G.; Untereiner, W.A.; Lücking, R.; Büdel, B.; Geiser, D.M.; Aptroot, A.; Diederich, P.; Schmitt, I.; Schultz, M.; Yahr, R.; Hibbett, D.S.; Lutzoni, F.; McLaughlin, D.J.; Spatafora, J.W.; Vilgalys, R.

    2006-01-01

    The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore flagell

  20. Reconstructing the early evolution of Fungi using a six-gene phylogeny

    NARCIS (Netherlands)

    James, Timothy Y; Kauff, Frank; Schoch, Conrad L; Matheny, P Brandon; Hofstetter, Valérie; Cox, Cymon J; Celio, Gail; Gueidan, Cécile; Fraker, Emily; Miadlikowska, Jolanta; Lumbsch, H Thorsten; Rauhut, Alexandra; Reeb, Valérie; Arnold, A Elizabeth; Amtoft, Anja; Stajich, Jason E; Hosaka, Kentaro; Sung, Gi-Ho; Johnson, Desiree; O'Rourke, Ben; Crockett, Michael; Binder, Manfred; Curtis, Judd M; Slot, Jason C; Wang, Zheng; Wilson, Andrew W; Schüssler, Arthur; Longcore, Joyce E; O'Donnell, Kerry; Mozley-Standridge, Sharon; Porter, David; Letcher, Peter M; Powell, Martha J; Taylor, John W; White, Merlin M; Griffith, Gareth W; Davies, David R; Humber, Richard A; Morton, Joseph B; Sugiyama, Junta; Rossman, Amy Y; Rogers, Jack D; Pfister, Don H; Hewitt, David; Hansen, Karen; Hambleton, Sarah; Shoemaker, Robert A; Kohlmeyer, Jan; Volkmann-Kohlmeyer, Brigitte; Spotts, Robert A; Serdani, Maryna; Crous, Pedro W; Hughes, Karen W; Matsuura, Kenji; Langer, Ewald; Langer, Gitta; Untereiner, Wendy A; Lücking, Robert; Büdel, Burkhard; Geiser, David M; Aptroot, André; Diederich, Paul; Schmitt, Imke; Schultz, Matthias; Yahr, Rebecca; Hibbett, David S; Lutzoni, François; McLaughlin, David J; Spatafora, Joseph W; Vilgalys, Rytas

    2006-01-01

    The ancestors of fungi are believed to be simple aquatic forms with flagellated spores, similar to members of the extant phylum Chytridiomycota (chytrids). Current classifications assume that chytrids form an early-diverging clade within the kingdom Fungi and imply a single loss of the spore flagell

  1. Education for Sustainable Development in Early Childhood Education in Spain. Evolution, Trends and Proposals

    Science.gov (United States)

    Agut, M. Pilar Martínez; Ull, M. Angeles; Minguet, Pilar Aznar

    2014-01-01

    This article analyses how the sustainability culture has evolved in the early childhood education setting within the Spanish education system with official documents and the sustainability training received by teachers who intervene in this stage of education since these teachers' degrees have been adapted to the European Higher Education Area.…

  2. Formation and evolution of dwarf early-type galaxies in the Virgo cluster I. Internal kinematics

    NARCIS (Netherlands)

    Toloba, E.; Boselli, A.; Cenarro, A. J.; Peletier, R. F.; Gorgas, J.; Gil de Paz, A.; Munoz-Mateos, J. C.

    2011-01-01

    We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy

  3. A primitive ornithischian dinosaur from the Late Triassic of South Africa, and the early evolution and diversification of Ornithischia.

    Science.gov (United States)

    Butler, Richard J; Smith, Roger M H; Norman, David B

    2007-08-22

    Although the group played an important role in the evolution of Late Mesozoic terrestrial ecosystems, the early evolutionary history of the ornithischian dinosaurs remains poorly understood. Here, we report on a new primitive ornithischian, Eocursor parvus gen. et sp. nov. from the Late Triassic (?Norian) Lower Elliot Formation of South Africa. Eocursor is known from a single specimen comprising substantial cranial and postcranial material and represents the most complete Triassic member of Ornithischia, providing the earliest evidence for the acquisition of many key ornithischian postcranial characters, including an opisthopubic pelvis. A new phylogenetic analysis positions this taxon near the base of Ornithischia, as the sister taxon to the important and diverse clade Genasauria. The problematic clade Heterodontosauridae is also positioned basal to Genasauria, suggesting that an enlarged grasping manus may represent a plesiomorphic ornithischian condition. This analysis provides additional phylogenetic support for limited ornithischian diversity during the Late Triassic, and suggests that several major ornithischian clades may have originated later than generally believed. There are few morphological differences between Late Triassic and Early Jurassic ornithischians, supporting previous suggestions that the Early Jurassic ornithischian radiation may simply represent the filling of vacant ecological space following Late Triassic terrestrial extinctions.

  4. The Evolution and Structure of Early-type Field Galaxies: A Combined Statistical Analysis of Gravitational Lenses

    CERN Document Server

    Rusin, D

    2004-01-01

    We introduce a framework for simultaneously investigating the structure and luminosity evolution of early-type gravitational lens galaxies. The method is based on the fundamental plane, which we interpret using the aperture mass-radius relations derived from lensed image geometries. We apply this method to our previous sample of 22 lens galaxies with measured redshifts and excellent photometry. Modeling the population with a single mass profile and evolutionary history, we find that early-type galaxies are nearly isothermal (logarithmic density slope n = 2.06 +/- 0.17, 68% C.L.), and that their stars evolve at a rate of dlog(M/L)_B/dz = -0.50 +/- 0.19 (68% C.L.) in the rest frame B band. For a Salpeter IMF and a concordance cosmology, this implies a mean star formation redshift of > 1.5 at 95% confidence. While this model can neatly describe the mean properties of early-type galaxies, it is clear that the scatter of the lens sample is too large to be explained by observational uncertainties alone. We therefo...

  5. Multiple kisspeptin receptors in early Osteichthyans provide new insights into the evolution of this receptor family

    DEFF Research Database (Denmark)

    Pasquier, J.; Lafont, A._G.; Jeng, S.-R.

    2012-01-01

    Deorphanization of GPR54 receptor a decade ago led to the characterization of the kisspeptin receptor (Kissr) in mammals and the discovery of its major role in the brain control of reproduction. While a single gene encodes for Kissr in eutherian mammals including human, other vertebrates present...... a variable number of Kissr genes, from none in birds, one or two in teleosts, to three in an amphibian, xenopus. In order to get more insight into the evolution of Kissr gene family, we investigated the presence of Kissr in osteichthyans of key-phylogenetical positions: the coelacanth, a representative...

  6. Early Mars serpentinization-derived CH4 reservoirs, H2-induced warming and paleopressure evolution

    Science.gov (United States)

    Chassefière, E.; Lasue, J.; Langlais, B.; Quesnel, Y.

    2016-11-01

    CH4 has been observed on Mars both by remote sensing and in situ during the past 15 yr. It could have been produced by early Mars serpentinization processes that could also explain the observed Martian remanent magnetic field. Assuming a cold early Mars, a cryosphere could trap such CH4 as clathrates in stable form at depth. The maximum storage capacity of such a clathrate cryosphere has been recently estimated to be 2 × 1019 to 2 × 1020 moles of methane. We estimate how large amounts of serpentinization-derived CH4 stored in the cryosphere have been released into the atmosphere during the Noachian and the early Hesperian. Due to rapid clathrate dissociation and photochemical conversion of CH4 to H2, these episodes of massive CH4 release may have resulted in transient H2-rich atmospheres, at typical levels of 10-20% in a background 1-2 bar CO2 atmosphere. The collision-induced heating effect of H2 present in such an atmosphere has been shown to raise the surface temperature above the water freezing point. We show how local and rapid destabilization of the cryosphere can be induced by large events (such as the Hellas Basin or Tharsis bulge formation) and lead to such releases. Our results show that the early Mars cryosphere had a sufficient CH4 storage capacity to have maintained H2-rich transient atmospheres during a total time period up to several million years or tens of million years, having potentially contributed to the formation of valley networks during the Noachian/early Hesperian.

  7. Trojan Tour and Rendezvous (TTR): A New Frontiers Mission to Explore the Origin and Evolution of the Early Solar System

    Science.gov (United States)

    Bell, J. F., III; Olkin, C.; Castillo, J. C.

    2015-12-01

    The orbital properties, compositions, and physical properties of the diverse populations of small outer solar system bodies provide a forensic map of how our solar system formed and evolved. Perhaps the most potentially diagnostic, but least explored, of those populations are the Jupiter Trojan asteroids, which orbit at ~5 AU in the L4 and L5 Lagrange points of Jupiter. More than 6200 Jupiter Trojans are presently known, but these are predicted to be only a small fraction of the 500,000 to 1 million Trojans >1 km in size. The Trojans are hypothesized to be either former Kuiper Belt Objects (KBOs) that were scattered into the inner solar system by early giant planet migration and then trapped in the 1:1 Jupiter mean motion resonance, or bodies formed near 5 AU in a much more quiescent early solar system, and then trapped at L4 and L5. The 2011 Planetary Science Decadal Survey identified important questions about the origin and evolution of the solar system that can be addressed by studying of the Trojan asteroids, including: (a) How did the giant planets and their satellite systems accrete, and is there evidence that they migrated to new orbital positions? (b) What is the relationship between large and small KBOs? Is the small population derived by impact disruption of the large one? (c) What kinds of surface evolution, radiation chemistry, and surface-atmosphere interactions occur on distant icy primitive bodies? And (d) What are the sources of asteroid groups (Trojans and Centaurs) that remain to be explored by spacecraft? The Trojan Tour and Rendezvous (TTR) is a New Frontiers-class mission designed to answer these questions, and to test hypotheses for early giant planet migration and solar system evolution. Via close flybys of a large number of these objects,, and orbital characterization of at least one large Trojan, TTR will enable the first-time exploration of this population. Our primary mission goals are to characterize the overall surface geology

  8. REE Geochemical Evolution and Its Significance of Early Precambrian Metamorphic Terrain,Wuyang,Henan

    Institute of Scientific and Technical Information of China (English)

    陈衍景; 富士谷; 等

    1992-01-01

    The supracrustal rocks of the Wuyang metamorphic terrain are divided into the Zhao anzhuang,Tieshanmiao and Yangshuwan Formations.These three Formations were dated at 3000-2550Ma,2550-2300Ma and 2300-2200Ma,respectively.∑REE and La/Yb)n of the Zhao anzhuang Formation volcanic rocks are obviously higher than those of the Tiesanmiao Formation equivalents,suggesting a sedimentary gap(2550 Ma boundary)between these two formations,The Zhao'anzhuang Formation is older than the Tieshanmiao Formation.The sediments of these two Formations show no obvious differences in REE and are generally characterized by low ∑REE and positive Eu anomalies.On the contrary,the sediments of the Yangshuwan Formation are characterized by high ∑REE and negative Eu anomalies.Detailed discussions demonstrate that the Yangshuwan Formation was deposited in an oxidizing environment whereas the other two formations were formed in a reducing environment.At the end of the evolution of the Tieshanmiao Formation about 2300 Ma ago,the sedimentary environment was transformed from reducing to oxidizing .On the basis of the SHAB (soft/hard acid and base)theory,an oxidation-reduction model for sedimentary REE evolution has been established .It is proposed that the mantle tends to become gradually depleted in REE.especially in LREE,and the indices ∑REE and La/Yb) n of mantle-dervived volcanic rocks also tend to become lower and lower.

  9. Evolution of the placenta during the early radiation of placental mammals.

    Science.gov (United States)

    Mess, Andrea; Carter, Anthony M

    2007-12-01

    The chorioallantoic placenta is an organ of gaseous exchange that exhibits a high degree of structural diversity. One factor determining oxygen transfer across the placenta, the diffusion distance, is in part dependent on the number of cell layers separating maternal from fetal blood. This interhaemal barrier occurs in three principal variants. The focus of this review is on determining how the barrier evolved in placental mammals. The analysis was based on current knowledge of placental structure, as far as possible using ultrastructural data, and on current views about the evolution of placental mammals, derived from molecular phylogenetics. We show that epitheliochorial placentation, the least invasive type, is a derived state and discuss factors that may have determined its evolution with reference to conflict theory, as applied to the allocation of resources between mother and fetus. It is not yet possible to determine which of the two more invasive types of placentation occurred in the last common ancestor of crown placentals. Depending on tree topology and taxon sampling, the result achieved is either endotheliochorial, haemochorial or unresolved. Finally we discuss other factors important to placental gas exchange and point to physiological variables that might become amenable to phylogenetic analysis.

  10. Early evolution of limb regeneration in tetrapods: evidence from a 300-million-year-old amphibian.

    Science.gov (United States)

    Fröbisch, Nadia B; Bickelmann, Constanze; Witzmann, Florian

    2014-11-07

    Salamanders are the only tetrapods capable of fully regenerating their limbs throughout their entire lives. Much data on the underlying molecular mechanisms of limb regeneration have been gathered in recent years allowing for new comparative studies between salamanders and other tetrapods that lack this unique regenerative potential. By contrast, the evolution of animal regeneration just recently shifted back into focus, despite being highly relevant for research designs aiming to unravel the factors allowing for limb regeneration. We show that the 300-million-year-old temnospondyl amphibian Micromelerpeton, a distant relative of modern amphibians, was already capable of regenerating its limbs. A number of exceptionally well-preserved specimens from fossil deposits show a unique pattern and combination of abnormalities in their limbs that is distinctive of irregular regenerative activity in modern salamanders and does not occur as variants of normal limb development. This demonstrates that the capacity to regenerate limbs is not a derived feature of modern salamanders, but may be an ancient feature of non-amniote tetrapods and possibly even shared by all bony fish. The finding provides a new framework for understanding the evolution of regenerative capacity of paired appendages in vertebrates in the search for conserved versus derived molecular mechanisms of limb regeneration.

  11. Chemical evolution in the early phases of massive star formation II: Deuteration

    CERN Document Server

    Gerner, Th; Beuther, H; Semenov, D; Linz, H; Abertsson, T; Henning, Th

    2015-01-01

    The chemical evolution in high-mass star-forming regions is still poorly constrained. Studying the evolution of deuterated molecules allows to differentiate between subsequent stages of high-mass star formation regions due to the strong temperature dependence of deuterium isotopic fractionation. We observed a sample of 59 sources including 19 infrared dark clouds, 20 high-mass protostellar objects, 11 hot molecular cores and 9 ultra-compact HII regions in the (3-2) transitions of the four deuterated molecules, DCN, DNC, DCO+ and N2D+ as well as their non-deuterated counterpart. The overall detection fraction of DCN, DNC and DCO+ is high and exceeds 50% for most of the stages. N2D+ was only detected in a few infrared dark clouds and high-mass protostellar objects. It can be related to problems in the bandpass at the frequency of the transition and to low abundances in the more evolved, warmer stages. We find median D/H ratios of ~0.02 for DCN, ~0.005 for DNC, ~0.0025 for DCO+ and ~0.02 for N2D+. While the D/H ...

  12. Functional transition of Pak proto-oncogene during early evolution of metazoans.

    Science.gov (United States)

    Watari, A; Iwabe, N; Masuda, H; Okada, M

    2010-07-01

    Proto-oncogenes encode signaling molecular switches regulating cellular homeostasis in metazoans, and can be converted to oncogenes by gain-of-function mutations. To address the molecular basis for development of the regulatory system of proto-oncogenes during evolution, we screened for ancestral proto-oncogenes from the unicellular choanoflagellate Monosiga ovata by monitoring their transforming activities, and isolated a Pak gene ortholog encoding a serine/threonine kinase as a 'primitive oncogene'. We also cloned Pak orthologs from fungi and the multicellular sponge Ephydatia fluviatilis, and compared their regulatory features with that of M. ovata Pak (MoPak). MoPak is constitutively active and induces cell transformation in mammalian fibroblasts, although the Pak orthologs from multicellular animals are strictly regulated. Analyses of Pak mutants revealed that structural alteration of the auto-inhibitory domain (AID) of MoPak confers higher constitutive kinase activity, as well as greater binding ability to Rho family GTPases than the multicellular Paks, and this structural alteration is responsible for cell transformation and disruption of multicellular tissue organization. These results show that maturation of AID function was required for the development of the strict regulatory system of the Pak proto-oncogene, and suggest a potential link between the establishment of the regulatory system of proto-oncogenes and metazoan evolution.

  13. Did trees grow up to the light, up to the wind, or down to the water? How modern high productivity colors perception of early plant evolution.

    Science.gov (United States)

    Boyce, C Kevin; Fan, Ying; Zwieniecki, Maciej A

    2017-07-01

    Contents I. II. III. IV. V. Acknowledgements References SUMMARY: Flowering plants can be far more productive than other living land plants. Evidence is reviewed that productivity would have been uniformly lower and less CO2 -responsive before angiosperm evolution, particularly during the early evolution of vascular plants and forests in the Devonian and Carboniferous. This introduces important challenges because paleoecological interpretations have been rooted in understanding of modern angiosperm-dominated ecosystems. One key example is tree evolution: although often thought to reflect competition for light, light limitation is unlikely for plants with such low photosynthetic potential. Instead, during this early evolution, the capacities of trees for enhanced propagule dispersal, greater leaf area, and deep-rooting access to nutrients and the water table are all deemed more fundamental potential drivers than light. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Analysis of the evolution to defined connective tissue diseases of patients with “early unidifferentiated connective tissue diseases (UCTD”

    Directory of Open Access Journals (Sweden)

    R. Talarico

    2011-09-01

    Full Text Available The term undifferentiated connective tissue diseases (UCTD is used to identify systemic autoimmune diseases not fulfilling classificative criteria for defined connective tissue diseases (CTD. Aim of the present study was to evaluate the evolution to defined CTD of an historical cohort of 91 UCTD patients followed at our Unit and to describe clinical and serological characteristics of stable UCTD patients with a disease duration of more than 5 years. Patients, previously described, were selected for having an undifferentiated profile after 1 year of follow up. These patients have been regularly followed at our Unit and their diagnosis has been reassessed annually based on the existing classificative criteria. Seven UCTD patients with a follow up of less than 5 years have been excluded from the study, therefore 84 patients (F: 81, M: 3 have been analysed. During the follow up 28 patients (33% developed a defined CTD. In particular 22 patients developed systemic lupus erythematosus (SLE, while the remaining 6 patients developed other CTDs (2 primary Sjögren’s syndrome, 2 overlap syndromes, 1 Systemic Sclerosis, 1 rheumatoid arthritis. The evolution to a defined CTD occurred after a mean disease duration of 80.6± 66.8 months (min 14, max 336, median 72; the evolution to SLE occurred after a mean disease duration of 66.8±43.3 months (min 17, max 216, median 57. Anti-cardiolipin antibodies were the only variable correlated with the evolution to SLE (p<0.05. Stable UCTD were characterized by a simplified clinical picture with no major organ involvement and by a simplified autoantibody profile (anti-Ro/SSA antibodies and anti-RNP antibodies were the single antibody specificities observed in 22% and 13% of patients respectively. These results confirm previous data showing that about 30% of UCTD patients will develop a defined CTD, the predictive role of anti-cardiolipin antibodies for the evolution to SLE, and the existence of stable UCTD, distinct

  15. Recent Alkaline Lakes: Clues to Understanding the Evolution of Early Planetary Alkaline Oceans and Biogenesis

    Science.gov (United States)

    Kempe, S.; Hartmann, J.; Kazmierczak, J.

    2008-09-01

    Abstract New models suggest that terrestrial weathering consumes 0.26GtC/a (72% silicate-, 28% carbonateweathering), equivalent to a loss of one atmospheric C content every 3700a. Rapid weathering leads in volcanic areas to alkaline conditions, illustrated by the crater lake of Niuafo`ou/Tonga and Lake Van/Turkey, the largest soda lake on Earth. Alkaline conditions cause high CaCO3 supersaturation, permineralization of algal mats and growth of stromatolites. Alkaline conditions can nearly depress free [Ca2+] to levels necessary for proteins to function. Therefore early oceans on Earth (and possibly on Mars) should have been alkaline (i.e. "Soda Oceans"). Recent findings of MgSO4 in top soils on Mars may be misleading about the early history of martian oceans.

  16. Early Tertiary marine fossils from northern Alaska: implications for Arctic Ocean paleogeography and faunal evolution.

    Science.gov (United States)

    Marincovich, L.; Brouwers, E.M.; Carter, L.D.

    1985-01-01

    Marine mollusks and ostracodes indicate a post-Danian Paleocene to early Eocene (Thanetian to Ypresian) age for a fauna from the Prince Creek Formation at Ocean Point, northern Alaska, that also contains genera characteristic of the Cretaceous and Neogene-Quaternary. The life-assocation of heterochronous taxa at Ocean Point resulted from an unusual paleogeographic setting, the nearly complete isolation of the Arctic Ocean from about the end of the Cretaceous until sometime in the Eocene, in which relict Cretaceous taxa survived into Tertiary time while endemic taxa evolved in situ; these later migrated to the northern mid- latitudes. Paleobiogeographic affinities of the Ocean Point assocation with mild temperate faunas of the London Basin (England), Denmark, and northern Germany indicate that a shallow, intermittent Paleocene seaway extended through the Norwegian-Greenland Sea to the North Sea Basin. Early Tertiary Arctic Ocean paleogeography deduced from faunal evidence agrees with that inferred from plate-tectonic reconstructions.-Authors

  17. Lithic technology and behavioral variability during the Middle Stone Age of southern Africa: Implications for the evolution and dispersal of early modern humans

    OpenAIRE

    Will, Manuel

    2016-01-01

    The Middle Stone Age (MSA) of Africa encompasses the archaeological background for the origin, early evolution and global dispersal of Homo sapiens. This dissertation project used behavioral information attained from the analysis of MSA stone artifacts, in concert with additional archaeological data and new theoretical concepts, to assess research questions pertaining to key issues in current MSA archaeology and human evolution: What is the nature of coastal adaptations during the MSA and how...

  18. EVOLUTION. A four-legged snake from the Early Cretaceous of Gondwana.

    Science.gov (United States)

    Martill, David M; Tischlinger, Helmut; Longrich, Nicholas R

    2015-07-24

    Snakes are a remarkably diverse and successful group today, but their evolutionary origins are obscure. The discovery of snakes with two legs has shed light on the transition from lizards to snakes, but no snake has been described with four limbs, and the ecology of early snakes is poorly known. We describe a four-limbed snake from the Early Cretaceous (Aptian) Crato Formation of Brazil. The snake has a serpentiform body plan with an elongate trunk, short tail, and large ventral scales suggesting characteristic serpentine locomotion, yet retains small prehensile limbs. Skull and body proportions as well as reduced neural spines indicate fossorial adaptation, suggesting that snakes evolved from burrowing rather than marine ancestors. Hooked teeth, an intramandibular joint, a flexible spine capable of constricting prey, and the presence of vertebrate remains in the guts indicate that this species preyed on vertebrates and that snakes made the transition to carnivory early in their history. The structure of the limbs suggests that they were adapted for grasping, either to seize prey or as claspers during mating. Together with a diverse fauna of basal snakes from the Cretaceous of South America, Africa, and India, this snake suggests that crown Serpentes originated in Gondwana.

  19. Early Evolution of Hepatitis B Virus Quasispecies During IFN-αTreatment

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Objective To investigate the dynamic change of hepatitis B virus quasispecies within complete genome during the early stage of IFN-αtreatment and its impact on virological response. Methods Sixteen patients with chronic hepatitis B receiving IFN-αtreatment were investigated. HBV DNA was extracted from serum sample at baseline and week 12. The complete genome of HBV was amplified, then cloned and sequenced. The quasispecies heterogeneity of HBV complete genome was depicted at baseline and week 12. Results The quasispecies heterogeneity of the genome except for C-ORF were comparable in three groups at baseline and week 12. The quasispecies diversity at amino acid levels of responders within C-ORF were higher than that of non-responders at baseline. The quasispecies diversity within the C-ORF of partial responders was reduced in the early stage of IFN-αtreatment. Furthermore, the mean genetic distance at amino acid levels of partial responders was significantly higher than that of the non-responders at week 12. The evolutionary rate was not different between non-responders and partial responders. Conclusions In the immune clearance phase, the patients who had greater viral quasispecies diversity within C-ORF at amino acid level had more chance to obtain the early virological response during IFN-αtreatment.

  20. Leaf wax biomarker reconstruction of Early Pleistocene hydrological variation during hominin evolution in West Turkana, Kenya

    Science.gov (United States)

    Lupien, R.; Russell, J. M.; Cohen, A. S.; Feibel, C. S.; Beck, C.; Castañeda, I. S.

    2016-12-01

    Climate change is thought to play a critical role in human evolution; however, this hypothesis is difficult to test due to a lack of long, high-quality paleoclimate records from key hominin fossil locales. To address this issue, we examine Plio-Pleistocene lake sediment drill cores from East Africa that were recovered by the Hominin Sites and Paleolakes Drilling Project, an international effort to study the environment in which our hominin ancestors evolved and dispersed. With new data we test various evolutionary hypotheses, such as the "variability selection" hypothesis, which posits that high-frequency environmental variations selected for generalist traits that allowed hominins to expand into variable environments. We analyzed organic geochemical signals of climate in lake cores from West Turkana, Kenya, which span 1.87-1.38 Ma and contain the first fossils from Homo erectus. In particular, we present a compound-specific hydrogen isotopic analysis of terrestrial plant waxes (δDwax) that records regional hydrology. The amount effect dominates water isotope fractionation in the tropics; therefore, these data are interpreted to reflect mean annual rainfall, which affects vegetation structure and thus, hominin habitats. The canonical view of East Africa is that climate became drier and increasingly felt high-latitude glacial-interglacial cycles during the Plio-Pleistocene. However, the drying trend seen in some records is not evident in Turkana δDwax, signifying instead a climate with a steady mean state. Spectral and moving variance analyses indicate paleohydrological variations related to both high-latitude glaciation (41 ky cycle) and local insolation-forced monsoons (21 ky cycle). An interval of particularly high-amplitude rainfall variation occurs at 1.7 Ma, which coincides with the intensification of the Walker Circulation. These results identify high- and low-latitude controls on East African paleohydrology during Homo erectus evolution. In particular, the

  1. HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of apobec

    Energy Technology Data Exchange (ETDEWEB)

    Korber, Bette [Los Alamos National Laboratory; Bhattacharya, Tanmoy [Los Alamos National Laboratory; Giorgi, Elena [Los Alamos National Laboratory; Gaschen, B [Los Alamos National Laboratory; Daniels, M [Los Alamos National Laboratory

    2009-01-01

    The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, represent adaptation for rapid growth in a newly infected host, or reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV -I env coding sequences in 81 very early B SUbtype infections previously shown to have resulted from transmission or expansion of single viruses (n=78) or two closely related viruses (n=3). In these cases the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 envand identified a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either (i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or (ii) in a nucleotide context indicative of APOBEC mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was both embedded in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp4l. We also examined the distribution, extent, and sequence context of insertions and deletions and provide evidence that the length

  2. The evolution of Phanerozoic seawater - Isotope paleothermometry finds consensus on Early Paleozoic warmth and constant seawater δ18O

    Science.gov (United States)

    Grossman, E. L.; Henkes, G. A.; Passey, B. H.; Shenton, B.; Yancey, T. E.; Perez-Huerta, A.

    2015-12-01

    Evolution of metazoan life is closely linked to the Phanerozoic evolution of ocean temperatures and chemistry. Oxygen isotopic evidence for early Phanerozoic paleotemperatures has been equivocal, with decreasing δ18O values with age being interpreted as warmer early oceans, decreasing seawater δ18O with age, or increasing diagenetic alteration in older samples. Here we compare an updated compilation of oxygen isotope data for carbonate and phosphate fossils and microfossils (Grossman, 2012, Geol. Time Scale, Elsevier, 195-220) with a compilation of new and existing clumped isotope data. Importantly, these data are curated based on sample preservation with special consideration given to screening techniques, and tectonic and burial history. Burial history is critical in the preservation of carbonate clumped isotope temperatures in particular, which can undergo reordering in the solid state. We use a model derived for reordering kinetics (Henkes et al., 2014, Geochim. Cosmochim. Acta 139:362-382) to screen clumped isotope data for the effects of solid-state burial alteration. With minor but significant exceptions (Late Cretaceous, Early Triassic), average δ18O values (4 m.y. window, 2 m.y. steps) for post-Devonian brachiopods, belemnites, and foraminifera, representing tropical-subtropical surface ocean conditions, yield average isotopic temperatures below 30°C (assuming a seawater δ18O value [ -1‰ VSMOW] of an "ice-free" world). In contrast, Ordovician to Devonian data show sustained temperatures of 35-40°C. Likewise, isotopic paleotemperatures from conodont apatite, known to be resistant to isotopic exchange, follow the same pattern. Clumped isotope data derived from Paleozoic brachiopod shells that experienced minimal burial (< 100 °C) and <1% reordering according to the taxon-specific clumped isotope reordering model yield typical temperatures of 25-30°C for the Carboniferous, and 35-40°C for the Ordovician-Silurian. Inserting clumped temperatures and

  3. Ultramassive dense early-type galaxies: velocity dispersions and number density evolution since z=1.6

    CERN Document Server

    Gargiulo, A; Tamburri, S; Lonoce, I; Ciocca, F

    2016-01-01

    In this paper we investigate the mass assembly history of ultramassive (Mstar > 10^11Msun) dense (Sigma = Mstar/(2*pi*Re^2) > 2500 Msun/pc^2) early-type galaxies (ETGs) over the last 9 Gyr. We have traced the evolution of the number density rho of ultramassive dense ETGs and have compared their structural (effective radius Re and stellar mass Mstar) and dynamical (velocity dispersion sigma_e) parameters over the redshift range 0 = 1.4, or that, if a significant fraction of them evolves in size, new ultramassive dense ETGs must form at z < 1.5 to maintain their number density almost constant. The difficulty into identify good progenitors for these new dense ETGs at z < 1.5, and the stellar populations properties of local ultramassive dense ETGs point toward the first hypothesis.

  4. Biogeography in deep time - What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution?

    Science.gov (United States)

    Kay, Richard F

    2015-01-01

    Molecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror molecular phylogenies and how best to deal with discrepancies between the molecular and morphological data as we seek to extend our phylogenies to the placement of fossil taxa. Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree structure is constrained with a "molecular scaffold" of extant species as implemented in maximum parsimony using PAUP with the molecular-based 'backbone' approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene (∼26 Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids. Among the more interesting patterns to emerge are: (1) known early platyrrhines from the Late Oligocene through Early Miocene (26-16.5Ma) represent only stem platyrrhine taxa; (2) representatives of the three living platyrrhine families first occur between 15.7 Ma and 13.5 Ma; and (3) recently extinct primates from the Greater Antilles (Cuba, Jamaica, Hispaniola) are sister to the clade of extant platyrrhines and may have diverged in the Early Miocene. It is probable that the crown platyrrhine clade did not originate before about 20-24 Ma, a conclusion consistent with the phylogenetic analysis of fossil taxa presented here and with recent molecular clock estimates. The following biogeographic scenario is consistent with the phylogenetic findings and climatic and geologic evidence: Tropical South

  5. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome.

    Science.gov (United States)

    Chalhoub, Boulos; Denoeud, France; Liu, Shengyi; Parkin, Isobel A P; Tang, Haibao; Wang, Xiyin; Chiquet, Julien; Belcram, Harry; Tong, Chaobo; Samans, Birgit; Corréa, Margot; Da Silva, Corinne; Just, Jérémy; Falentin, Cyril; Koh, Chu Shin; Le Clainche, Isabelle; Bernard, Maria; Bento, Pascal; Noel, Benjamin; Labadie, Karine; Alberti, Adriana; Charles, Mathieu; Arnaud, Dominique; Guo, Hui; Daviaud, Christian; Alamery, Salman; Jabbari, Kamel; Zhao, Meixia; Edger, Patrick P; Chelaifa, Houda; Tack, David; Lassalle, Gilles; Mestiri, Imen; Schnel, Nicolas; Le Paslier, Marie-Christine; Fan, Guangyi; Renault, Victor; Bayer, Philippe E; Golicz, Agnieszka A; Manoli, Sahana; Lee, Tae-Ho; Thi, Vinh Ha Dinh; Chalabi, Smahane; Hu, Qiong; Fan, Chuchuan; Tollenaere, Reece; Lu, Yunhai; Battail, Christophe; Shen, Jinxiong; Sidebottom, Christine H D; Wang, Xinfa; Canaguier, Aurélie; Chauveau, Aurélie; Bérard, Aurélie; Deniot, Gwenaëlle; Guan, Mei; Liu, Zhongsong; Sun, Fengming; Lim, Yong Pyo; Lyons, Eric; Town, Christopher D; Bancroft, Ian; Wang, Xiaowu; Meng, Jinling; Ma, Jianxin; Pires, J Chris; King, Graham J; Brunel, Dominique; Delourme, Régine; Renard, Michel; Aury, Jean-Marc; Adams, Keith L; Batley, Jacqueline; Snowdon, Rod J; Tost, Jorg; Edwards, David; Zhou, Yongming; Hua, Wei; Sharpe, Andrew G; Paterson, Andrew H; Guan, Chunyun; Wincker, Patrick

    2014-08-22

    Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement. Copyright © 2014, American Association for the Advancement of Science.

  6. AMAZE and LSD: Metallicity and Dynamical Evolution of Galaxies in the Early Universe

    Science.gov (United States)

    Maiolino, R.; Mannucci, F.; Cresci, G.; Gnerucci, A.; Troncoso, P.; Marconi, A.; Calura, F.; Cimatti, A.; Cocchia, F.; Fontana, A.; Granato, G.; Grazian, A.; Matteucci, F.; Nagao, T.; Pentericci, L.; Pipino, A.; Pozzetti, L.; Risaliti, G.; Silva, L.

    2010-12-01

    The metal content in galaxies provides important information on the physical processes responsible for galaxy formation, but little was known for galaxies at z > 3, when the Universe was less than 15% of its current age. We report on our metallicity survey of galaxies at z > 3 using SINFONI at the VLT. We find that at z > 3, low-mass galaxies obey the same fundamental relation between metallicity, mass and star formation rate as at 0 3 massive galaxies deviate from this relation, being more metal-poor. In some of these massive galaxies we can even map the gas metallicity. We find that galaxies at z > 3.3 have regular rotation, though highly turbulent, and inverted abundance gradients relative to local galaxies, with lower abundances near the centre, close to the most active regions of star formation. Overall the results suggest that prominent inflow of pristine gas is responsible for the strong chemical evolution observed in galaxies at z > 3.

  7. The early heat loss evolution of Mars and their implications for internal and environmental history.

    Science.gov (United States)

    Ruiz, Javier

    2014-03-11

    The time around 3.7 Ga ago was an epoch when substantial changes in Mars occurred: a substantial decline in aqueous erosion/degradation of landscape features; a change from abundant phyllosilicate formation to abundant acidic and evaporitic mineralogy; a change from olivine-rich volcanism to olivine-pyroxene volcanism; and maybe the cessation of the martian dynamo. Here I show that Mars also experienced profound changes in its internal dynamics in the same approximate time, including a reduction of heat flow and a drastic increasing of lithosphere strength. The reduction of heat flow indicates a limited cooling (or even a heating-up) of the deep interior for post-3.7 Ga times. The drastic increasing of lithosphere strength indicates a cold lithosphere above the inefficiently cooled (or even heated) interior. All those changes experienced by Mars were most probably linked and suggest the existence of profound interrelations between interior dynamics and environmental evolution of this planet.

  8. Computer simulation of interface evolution for an Al-Li alloy during early aging stage

    Institute of Scientific and Technical Information of China (English)

    TANG Liying; WANG Yongxin; CHEN Zheng; LU Yanli; ZHANG Jianjun

    2004-01-01

    The nucleation of ordered phase was simulated based on microscopic diffusion equation and the assumptions of the classical nucleation theory were examined. The quantitative calculations of interface thickness evolution were accomplished for the first time. It was found that the interfaces between ordered phase and disordered matrix were diffuse. The interface thickness decreased with time, from the initial 1.2 nm to an equilibrium value 0.6 nm. The ratios of the radius of ordered particles and the interface thickness monotonously increased, but they were of the same order of magnitude all the time. The sharp interface assumption should not be adopted in this stage. For the Al-10%Li (atom fraction) alloy aged at 192℃, the assumptions of the classical nucleation theory disagreed with the facts. The phase transformation followed the non-classical nucleation mechanism and the applicable scope of the classical nucleation should be confined.

  9. A synthesis of the theories and concepts of early human evolution.

    Science.gov (United States)

    Maslin, Mark A; Shultz, Susanne; Trauth, Martin H

    2015-03-05

    Current evidence suggests that many of the major events in hominin evolution occurred in East Africa. Hence, over the past two decades, there has been intensive work undertaken to understand African palaeoclimate and tectonics in order to put together a coherent picture of how the environment of Africa has varied over the past 10 Myr. A new consensus is emerging that suggests the unusual geology and climate of East Africa created a complex, environmentally very variable setting. This new understanding of East African climate has led to the pulsed climate variability hypothesis that suggests the long-term drying trend in East Africa was punctuated by episodes of short alternating periods of extreme humidity and aridity which may have driven hominin speciation, encephalization and dispersals out of Africa. This hypothesis is unique as it provides a conceptual framework within which other evolutionary theories can be examined: first, at macro-scale comparing phylogenetic gradualism and punctuated equilibrium; second, at a more focused level of human evolution comparing allopatric speciation, aridity hypothesis, turnover pulse hypothesis, variability selection hypothesis, Red Queen hypothesis and sympatric speciation based on sexual selection. It is proposed that each one of these mechanisms may have been acting on hominins during these short periods of climate variability, which then produce a range of different traits that led to the emergence of new species. In the case of Homo erectus (sensu lato), it is not just brain size that changes but life history (shortened inter-birth intervals, delayed development), body size and dimorphism, shoulder morphology to allow thrown projectiles, adaptation to long-distance running, ecological flexibility and social behaviour. The future of evolutionary research should be to create evidence-based meta-narratives, which encompass multiple mechanisms that select for different traits leading ultimately to speciation.

  10. Evolution of Early Paleoproterozoic Ocean Chemistry as Recorded by Black Shales

    Science.gov (United States)

    Scott, C.; Bekker, A.; Lyons, T. W.; Planavsky, N. J.; Wing, B. A.

    2010-12-01

    In recent years, Precambrian biogeochemists have focused largely on the abundance, speciation and isotopic composition of major and trace elements preserved in organic carbon-rich black shales in order to track the co-evolution of ocean chemistry and life on Earth. Despite the fact that the period from 2.5 to 2.0 Ga hosted major events in Earth’s history, such as the Great Oxidation Event (GOE), an era of global glaciations, a massive and long-lived carbon isotope excursion and the end to banded iron formation (BIF) deposition, each with the potential to directly alter global biogeochemical cycles, it is perhaps best known for its unknowns. In order to help close this gap in our understanding of the evolution of Precambrian ocean chemistry we present a detailed biogeochemical study of Paleoproterozoic black shales deposited between 2.5 and 2.0 Ga. Our study integrates Fe speciation, trace metal chemistry and C, S and N isotope analyses to provide a thorough characterization of marine biogeochemical cycles as they responded to the GOE and set the stage for the demise of BIFs at ca. 1.8 Ga. Our data reveal an ocean that was both surprising similar to, and demonstrably different from, Archean and later Proterozoic oceans. Of particular interest, we find that ferruginous and euxinic conditions co-existed during this period and that sea water trace metal inventories fluctuated dramatically in conjunction with major carbon isotope excursions. By comparing our Paleoproterozoic contribution with recent biogeochemical studies of other Precambrian black shales we can begin to track first order changes in ocean chemistry without the major time gaps that have plagued previous attempts.

  11. Is permanent parasitism reversible?--critical evidence from early evolution of house dust mites.

    Science.gov (United States)

    Klimov, Pavel B; OConnor, Barry

    2013-05-01

    Long-term specialization may limit the ability of a species to respond to new environmental conditions and lead to a higher likelihood of extinction. For permanent parasites and other symbionts, the most intriguing question is whether these organisms can return to a free-living lifestyle and, thus, escape an evolutionary "dead end." This question is directly related to Dollo's law, which stipulates that a complex trait (such as being free living vs. parasitic) cannot re-evolve again in the same form. Here, we present conclusive evidence that house dust mites, a group of medically important free-living organisms, evolved from permanent parasites of warm-blooded vertebrates. A robust, multigene topology (315 taxa, 8942 nt), ancestral character state reconstruction, and a test for irreversible evolution (Dollo's law) demonstrate that house dust mites have abandoned a parasitic lifestyle, secondarily becoming free living, and then speciated in several habitats. Hence, as exemplified by this model system, highly specialized permanent parasites may drastically de-specialize to the extent of becoming free living and, thus escape from dead-end evolution. Our phylogenetic and historical ecological framework explains the limited cross-reactivity between allergens from the house dust mites and "storage" mites and the ability of the dust mites to inhibit host immune responses. It also provides insights into how ancestral features related to parasitism (frequent ancestral shifts to unrelated hosts, tolerance to lower humidity, and pre-existing enzymes targeting skin and keratinous materials) played a major role in reversal to the free-living state. We propose that parasitic ancestors of pyroglyphids shifted to nests of vertebrates. Later the nest-inhabiting pyroglyphids expanded into human dwellings to become a major source of allergens.

  12. Evolution of Electron Transport Chains During the Anaerobic to Aerobic Transition on Early Earth

    Science.gov (United States)

    Sepúlveda, R.; Ortiz, R.; Holmes, D. S.

    2015-12-01

    Sepulveda, R., Ortiz R. and Holmes DS. Center for Bioinformatics and Genome Biology, Fundacion Ciencia y Vida, and Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile.According to several models, life emerged on earth in an anoxic environment where oxygen was not available as a terminal electron acceptor for energy generating reactions. After the Great Oxidation Event (GOE) about 2.4 billion years ago, or perhaps even before the GOE, oxygen became the most widespread and efficient terminal electron acceptor and was accompanied by the evolution of a number of redox proteins that could deliver electrons to reduce oxygen to water. Where did these proteins come from? One hypothesis is that they evolved by the neofunctionalization of previously existing redox proteins that had been used in anaerobic conditions as terminal electron donors to reduce compounds such as perchlorate, nitric oxide or iron. We have used a number of bioinformatic tools to explore a large number of genomes looking for discernable signals of such redeployment of function. A Perl pipeline was designed to detect sequence similarity, conserved gene context, remote homology detection, identification of domains and functional evolution of electron carrier proteins from extreme acidophiles, including the small blue copper protein rusticyanin (involved in FeII oxidation), cytochrome oxidase subunit II and quinol-dependent nitric oxide reductase (qNOR). The protein folds and copper binding sites of rusticyanin are conserved in cytochrome oxidase aa3 subunit II, a protein complex that is responsible for the final passage of electrons to reduce oxygen. Therefore, we hypothesize that rusticyanin, cytochrome oxidase II and qNOR are evolutionarily related. Acknowledgments: Fondecyt 1130683.

  13. The oldest known priapulid-like scalidophoran animal and its implications for the early evolution of cycloneuralians and ecdysozoans.

    Science.gov (United States)

    Liu, Yunhuan; Xiao, Shuhai; Shao, Tiequan; Broce, Jesse; Zhang, Huaqiao

    2014-05-01

    Morphological phylogenetic analyses suggest that scalidophorans (priapulids, loriciferans, and kinorhynchs) and nematoids (nematodes and nematomorphs) form the ecdysozoan clade Cycloneuralia, which is a sister group to panarthropods. It has been proposed that extant priapulids and Cambrian priapulid-like scalidophorans, because of their conserved evolution, have the potential to illuminate the ancestral morphology, ecology, and developmental biology of highly derived ecdysozoans such as nematods and arthropods. As such, Cambrian fossils, particularly Markuelia and possibly olivooids, can inform the early evolution of scalidophorans, cycloneuralians, and ecdysozoans. However, the scalidophoran Markuelia is known exclusively as embryo fossils, and the olivooids have been alternatively interpreted as cnidarians or cycloneuralians. Here, we describe a post-embryonic scalidophoran fossil Eopriapulites sphinx new genus and species, which represents the oldest known scalidophoran, from the early Cambrian Period (∼535 Ma) in South China. E. sphinx is similar to modern scalidophorans in having an introvert armed with hollow scalids, a collar with coronal scalids, and a pharynx with pharyngeal teeth, but its scalids and pharyngeal teeth are arranged in a hexaradial pattern. Phylogenetically resolved as a stem-group scalidophoran, E. sphinx shares a hexaradial pattern with the hexaradial arrangement of certain anatomical structures in kinorhynchs, loriciferans, nematoids, and Cambrian fossils such as Eolympia pediculata, which could also be a scalidophoran. Thus, the bodyplan of ancestral cycloneuralians may have had a component of hexaradial symmetry (i.e., some but not necessarily all anatomical parts are hexaradially arranged). If panarthropods are nested within paraphyletic cycloneuralians, as several molecular phylogenetic analyses suggest, the ancestral ecdysozoans may have been a legless worm possibly with a component of hexaradial symmetry.

  14. The Formation and Early Evolution of a Coronal Mass Ejection and its Associated Shock Wave on 2014 January 8

    CERN Document Server

    Wan, Linfeng; Shi, Tong; Su, Wei; Ding, M D

    2016-01-01

    In this paper, we study the formation and early evolution of a limb coronal mass ejection (CME) and its associated shock wave that occurred on 2014 January 8. The extreme ultraviolet (EUV) images provided by the Atmospheric Imaging Assembly (AIA) on board \\textit{Solar Dynamics Observatory} disclose that the CME first appears as a bubble-like structure. Subsequently, its expansion forms the CME and causes a quasi-circular EUV wave. Interestingly, both the CME and the wave front are clearly visible at all of the AIA EUV passbands. Through a detailed kinematical analysis, it is found that the expansion of the CME undergoes two phases: a first phase with a strong but transient lateral over-expansion followed by a second phase with a self-similar expansion. The temporal evolution of the expansion velocity coincides very well with the variation of the 25--50 keV hard X-ray flux of the associated flare, which indicates that magnetic reconnection most likely plays an important role in driving the expansion. Moreover...

  15. The structure and early evolution of massive star forming regions - Substructure in the infrared dark cloud SDC13

    CERN Document Server

    McGuire, Catherine; Peretto, Nicolas; Zhang, Qizhou; Traficante, Alessio; Avison, Adam; Jimenez-Serra, Izaskun

    2016-01-01

    Investigations into the substructure of massive star forming regions are essential for understanding the observed relationships between core mass distributions and mass distributions in stellar clusters, differentiating between proposed mechanisms of massive star formation. We study the substructure in the two largest fragments (i.e. cores) MM1 and MM2, in the infrared dark cloud complex SDC13. As MM1 appears to be in a later stage of evolution than MM2, comparing their substructure provides an insight in to the early evolution of massive clumps. We report the results of high resolution SMA dust continuum observations towards MM1 and MM2. Combining these data with Herschel observations, we carry out RADMC-3D radiative transfer modelling to characterise the observed substructure. SMA continuum data indicates 4 sub-fragments in the SDC13 region. The nature of the second brightest sub-fragment (B) is uncertain as it does not appear as prominent at the lower MAMBO resolution or at radio wavelengths. Statistical a...

  16. Magnetic fields during the early stages of massive star formation I: Accretion and disk evolution

    CERN Document Server

    Seifried, D; Klessen, R S; Duffin, D; Pudritz, R E

    2011-01-01

    We present simulations of collapsing 100 M_\\sun mass cores in the context of massive star formation. The effect of variable initial rotational and magnetic energies on the formation of massive stars is studied in detail. We focus on accretion rates and on the question under which conditions massive Keplerian disks can form in the very early evolutionary stage of massive protostars. For this purpose, we perform 12 simulations with different initial conditions extending over a wide range in parameter space. The equations of magnetohydrodynamics (MHD) are solved under the assumption of ideal MHD. We find that the formation of Keplerian disks in the very early stages is suppressed for a mass-to-flux ratio normalised to the critical value \\mu below 10, in agreement with a series of low-mass star formation simulations. This is caused by very efficient magnetic braking resulting in a nearly instantaneous removal of angular momentum from the disk. For weak magnetic fields, corresponding to \\mu > 10, large-scale, cent...

  17. Effect of the Lee-Wick partners in the evolution of the early universe

    CERN Document Server

    Bhattacharya, Kaushik

    2012-01-01

    Recently some work has been done on Lee-Wick standard model where the authors tried to tackle the hierarchy problem by using higher derivative field theory. All those theories require unusual Lee-Wick partners to the Standard model particles where these unusual fields appear with negative signs in the Lagrangian. The thermodynamics of such unusual Lee-Wick particles has also been studied. In the present article the thermodynamic results of the Lee-Wick partner infested universe have been applied in a model where there is one Lee-Wick partner to each of the standard model particle. In this model one can analytically calculate the time-temperature relation in the very early radiation dominated universe which shows interesting new physics. The article also tries to point out how a Lee-Wick particle dominated early cosmology transforms into the standard cosmological model. Based on the results of the previous analysis a brief discussion on the more realistic model, which can accommodate two Lee-Wick parters for e...

  18. Evolution of the Early-Type Galaxy Fraction in Clusters since z = 0.8

    CERN Document Server

    Simard, Luc; Desai, Vandana; Dalcanton, Julianne J; von der Linden, Anja; Poggianti, Bianca M; White, Simon D M; Aragon-Salamanca, Alfonso; De Lucia, Gabriella; Halliday, Claire; Jablonka, Pascale; Milvang-Jensen, Bo; Saglia, Roberto P; Pello, Roser; Rudnick, Gregory H; Zaritsky, Dennis

    2009-01-01

    We study the morphological content of a large sample of high-redshift clusters to determine its dependence on cluster mass and redshift. Quantitative morphologies are based on bulge+disk decompositions of cluster and field galaxies on deep VLT/FORS2 images of 18 optically-selected clusters at 0.45 < z < 0.80 from the ESO Distant Cluster Survey (EDisCS). Morphological content is given by the early-type galaxy fraction f_et, and early-type galaxies are selected based on their bulge fraction and image smoothness. A set of 158 SDSS clusters is analyzed exactly as the EDisCS sample to provide a robust local comparison. Our main results are: (1) f_et values for the SDSS and EDisCS clusters exhibit no clear trend as a function of sigma. (2) Mid-z EDisCS clusters around sigma = 500 km/s have f_et ~= 0.5 whereas high-z EDisCS clusters have f_et ~= 0.4 (~25% increase over 2 Gyrs). (3) There is a marked difference in the morphological content of EDisCS and SDSS clusters. None of the EDisCS clusters have f_et great...

  19. Constraints of (U-Th)/He ages on early Paleozoic tectonothermal evolution of the Tarim Basin, China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The thermal evolution of source rocks in the Paleozoic stratigraphic sequences has been an outstanding problem for petroleum exploration in the Tarim Basin, as the thermal history of the Paleozoic could not be reconstructed objectively due to the lack of effective thermal indicators in the early Paleozoic carbonate successions. The (U-Th)/He thermochronometry of apatite and zircon has recently been used as an effective tool to study the structural uplift and thermal history of sedimentary basins. The Paleozoic tectonothermal histories of two typical wells in the Tarim Basin were modeled using the thermal indicators of (U-Th)/He, apatite fission track (AFT), and vitrinite reflectance (Ro) data in this paper. The Paleozoic strata in the two wells were shallow due to persistent uplift and significant erosion during the Hercynian tectonic events (from Devonian to Triassic). Therefore, the paleothermal indicators in the Paleozoic strata may retain the original thermal evolution and can be used to re- construct the Paleozoic thermal history of the Tarim Basin. The apatite and zircon helium ages from core and cuttings samples were analyzed and the Paleozoic thermal histories of wells KQ1 and T1 were modeled by combining helium ages, AFT, and equivalence vitrinite reflectance (VRo) data. The modeling results show that the geothermal gradient evolution is different in the Kongquehe Slop and Bachu Uplift of Tarim Basin during the Paleozoic. The thermal gradient in Well T1 on the Bachu Up- lift was only 28–30°C/km in Cambrian, and it increased to 30–33°C/km in Ordovician and 31–34°C/km during the Silurian and Devonian. The thermal gradient of Ordovician in Well KQ1 on the Kongquehe Slope was 35°C/km and decreased to 32–35°C/km during the Silurian and Devonian. Therefore, the combined use of (U-Th)/He ages and other thermal indicators appears to be useful in reconstructing the basin thermal history and provides new insight into the understanding of the early

  20. The Co-Evolution of Total Density Profiles and Central Dark Matter Fractions in Simulated Early-Type Galaxies

    CERN Document Server

    Remus, Rhea-Silvia; Naab, Thorsten; Burkert, Andreas; Hirschmann, Michaela; Hoffmann, Tadziu L; Johansson, Peter H

    2016-01-01

    We present evidence from cosmological hydrodynamical simulations for a co-evolution of the slope of the total (dark and stellar) mass density profiles, gamma_tot, and the dark matter fractions within the half-mass radius, f_DM, in early-type galaxies. The relation can be described as gamma_tot = A f_DM + B and holds for all systems at all redshifts. We test different feedback models and find that the general trend is independent of the assumed feedback processes and is set by the decreasing importance of dissipative processes towards lower redshifts and for more massive systems. Early-type galaxies are smaller, more concentrated, have lower dark matter fractions and steeper total density slopes at high redshifts and at lower masses for a given redshift. The values for A and B change distinctively with the assumed feedback model, and thus this relation can be used as a test for feedback models. A similar correlation exists between gamma_tot and the stellar mass surface density Sigma_*. The model with weak stel...

  1. The role of G protein-coupled receptors in the early evolution of neurotransmission and the nervous system.

    Science.gov (United States)

    Krishnan, Arunkumar; Schiöth, Helgi B

    2015-02-15

    The origin and evolution of the nervous system is one of the most intriguing and enigmatic events in biology. The recent sequencing of complete genomes from early metazoan organisms provides a new platform to study the origins of neuronal gene families. This review explores the early metazoan expansion of the largest integral transmembrane protein family, the G protein-coupled receptors (GPCRs), which serve as molecular targets for a large subset of neurotransmitters and neuropeptides in higher animals. GPCR repertories from four pre-bilaterian metazoan genomes were compared. This includes the cnidarian Nematostella vectensis and the ctenophore Mnemiopsis leidyi, which have primitive nervous systems (nerve nets), the demosponge Amphimedon queenslandica and the placozoan Trichoplax adhaerens, which lack nerve and muscle cells. Comparative genomics demonstrate that the rhodopsin and glutamate receptor families, known to be involved in neurotransmission in higher animals are also widely found in pre-bilaterian metazoans and possess substantial expansions of rhodopsin-family-like GPCRs. Furthermore, the emerging knowledge on the functions of adhesion GPCRs in the vertebrate nervous system provides a platform to examine possible analogous roles of their closest homologues in pre-bilaterians. Intriguingly, the presence of molecular components required for GPCR-mediated neurotransmission in pre-bilaterians reveals that they exist in both primitive nervous systems and nerve-cell-free environments, providing essential comparative models to better understand the origins of the nervous system and neurotransmission. © 2015. Published by The Company of Biologists Ltd.

  2. The early and late-time spectral and temporal evolution of GRB 050716

    CERN Document Server

    Rol, E; Page, K L; McGowan, K E; Beardmore, A P; O'Brien, P T; Levan, A J; Bersier, D; Guidorzi, C; Marshall, F; Fruchter, A S; Tanvir, N R; Monfardini, A; Gomboc, A; Barthelmy, S; Bannister, N P

    2006-01-01

    We report on a comprehensive set of observations of Gamma Ray Burst 050716, detected by the Swift satellite and subsequently followed-up rapidly in X-ray, optical and near infra-red wavebands. The prompt emission is typical of long-duration bursts, with two peaks in a time interval of T90 = 68 seconds (15 - 350 keV). The prompt emission continues at lower flux levels in the X-ray band, where several smaller flares can be seen, on top of a decaying light curve that exhibits an apparent break around 220 seconds post trigger. This temporal break is roughly coincident with a spectral break. The latter can be related to the extrapolated evolution of the break energy in the prompt gamma-ray emission, and is possibly the manifestation of the peak flux break frequency of the internal shock passing through the observing band. A possible 3 sigma change in the X-ray absorption column is also seen during this time. The late-time afterglow behaviour is relatively standard, with an electron distribution power-law index of ...

  3. Early Star Formation, Nucleosynthesis, and Chemical Evolution in Proto-Galactic Clouds

    CERN Document Server

    Saleh, L; Mathews, G J

    2006-01-01

    We present numerical simulations to describe the nucleosynthesis and evolution of pre-Galactic clouds in a model which is motivated by cold dark matter simulations of hierarchical galaxy formation. We adopt a SN-induced star-formation mechanism and follow the chemical enrichment and energy input by Type II and Type Ia SNe. We utilize metallicity-dependent yields and include finite stellar lifetimes. We derive the metallicity distribution functions, the age-metallicity relation, and relative elemental abundances for a number of alpha- and Fe-group elements. We find that the dispersion of the metallicity distribution function of the outer halo is reproduced by contributions from clouds with different initial conditions. Clouds with initial masses greater than that of present globular clusters are found to survive the first 0.1 Gyr, suggesting that such systems may have contributed to the formation of the first stars, and could have been self-enriched. More massive clouds are only stable when one assumes an init...

  4. The VLA view of the HL Tau Disk - Disk Mass, Grain Evolution, and Early Planet Formation

    CERN Document Server

    Carrasco-Gonzalez, Carlos; Chandler, Claire J; Linz, Hendrik; Perez, Laura; Rodriguez, Luis F; Galvan-Madrid, Roberto; Anglada, Guillem; Birnstiel, Til; van Boekel, Roy; Flock, Mario; Klahr, Hubert; Macias, Enrique; Menten, Karl; Osorio, Mayra; Testi, Leonardo; Torrelles, Jose M; Zhu, Zhaohuan

    2016-01-01

    The first long-baseline ALMA campaign resolved the disk around the young star HL Tau into a number of axisymmetric bright and dark rings. Despite the very young age of HL Tau these structures have been interpreted as signatures for the presence of (proto)planets. The ALMA images triggered numerous theoretical studies based on disk-planet interactions, magnetically driven disk structures, and grain evolution. Of special interest are the inner parts of disks, where terrestrial planets are expected to form. However, the emission from these regions in HL Tau turned out to be optically thick at all ALMA wavelengths, preventing the derivation of surface density profiles and grain size distributions. Here, we present the most sensitive images of HL Tau obtained to date with the Karl G. Jansky Very Large Array at 7.0 mm wavelength with a spatial resolution comparable to the ALMA images. At this long wavelength the dust emission from HL Tau is optically thin, allowing a comprehensive study of the inner disk. We obtain...

  5. The Place of RNA in the Origin and Early Evolution of the Genetic Machinery

    Directory of Open Access Journals (Sweden)

    Günter Wächtershäuser

    2014-12-01

    Full Text Available The extant genetic machinery revolves around three interrelated polymers: RNA, DNA and proteins. Two evolutionary views approach this vital connection from opposite perspectives. The RNA World theory posits that life began in a cold prebiotic broth of monomers with the de novo emergence of replicating RNA as functionally self-contained polymer and that subsequent evolution is characterized by RNA → DNA memory takeover and ribozyme → enzyme catalyst takeover. The FeS World theory posits that life began as an autotrophic metabolism in hot volcanic-hydrothermal fluids and evolved with organic products turning into ligands for transition metal catalysts thereby eliciting feedback and feed-forward effects. In this latter context it is posited that the three polymers of the genetic machinery essentially coevolved from monomers through oligomers to polymers, operating functionally first as ligands for ligand-accelerated transition metal catalysis with later addition of base stacking and base pairing, whereby the functional dichotomy between hereditary DNA with stability on geologic time scales and transient, catalytic RNA with stability on metabolic time scales existed since the dawn of the genetic machinery. Both approaches are assessed comparatively for chemical soundness.

  6. Early-Age Evolution of the Milky Way Related by Extremely Metal-Poor Stars

    CERN Document Server

    Komiya, Yutaka; Fujimoto, Masayuki Y

    2009-01-01

    We exploit the recent observations of extremely metal-poor (EMP) stars in the Galactic halo and investigate the constraints on the IMF of the stellar population that left these low-mass survivors of [Fe/H]<-2.5 and the chemical evolution that they took part in. A high-mass IMF with the typical mass~10Msun and the overwhelming contribution of low-mass members of binaries to the EMP survivors are derived from the statistics of carbon-enriched EMP stars with and without the enhancement of s-process elements (Komiya et al. 2007). We first examine the analysis to confirm their results for various assumptions on the mass-ratio distribution function. As compared with the uniform distribution, the increase or decrease function of the mass ratio gives a higher- or lower-mass IMF, and a lower-mass IMF results for the independent distribution with the both members in the same IMF, but the derived ranges of typical mass differ less than by a factor of two and overlap for the extreme cases. Furthermore, we prove that t...

  7. Reconstructing the redshift evolution of escaped ionizing flux from early galaxies with Planck and HST observations

    CERN Document Server

    Price, Layne C; Cen, Renyue

    2016-01-01

    While galaxies at $6 \\lesssim z \\lesssim 10$ are believed to dominate the epoch of cosmic reionization, the escape fraction of ionizing flux $f_\\mathrm{esc}$ and the photon production rate $\\dot n_\\gamma$ from these galaxies must vary with redshift to simultaneously match CMB and low-redshift observations. We constrain $f_\\mathrm{esc}(z)$ and $\\dot n_\\gamma(z)$ with Planck 2015 measurements of the Thomson optical depth $\\tau$, recent low multipole E-mode polarization measurements from Planck 2016, SDSS BAO data, and $3 \\lesssim z \\lesssim 10$ galaxy observations. We compare different galaxy luminosity functions that are calibrated to HST observations, using both parametric and non-parametric statistical methods that marginalize over the effective clumping factor $C_\\mathrm{HII}$, the LyC production efficiency $\\xi_\\mathrm{ion}$, and the time-evolution of the UV limiting magnitude $dM_\\mathrm{SF}/dz$. Using a power-law model, we find $f_\\mathrm{esc} \\lesssim 0.5$ at $z=8$ with slope $\\beta \\gtrsim 2.0$ at $68\\...

  8. Histology and affinity of anaspids, and the early evolution of the vertebrate dermal skeleton.

    Science.gov (United States)

    Keating, Joseph N; Donoghue, Philip C J

    2016-03-16

    The assembly of the gnathostome bodyplan constitutes a formative episode in vertebrate evolutionary history, an interval in which the mineralized skeleton and its canonical suite of cell and tissue types originated. Fossil jawless fishes, assigned to the gnathostome stem-lineage, provide an unparalleled insight into the origin and evolution of the skeleton, hindered only by uncertainty over the phylogenetic position and evolutionary significance of key clades. Chief among these are the jawless anaspids, whose skeletal composition, a rich source of phylogenetic information, is poorly characterized. Here we survey the histology of representatives spanning anaspid diversity and infer their generalized skeletal architecture. The anaspid dermal skeleton is composed of odontodes comprising spheritic dentine and enameloid, overlying a basal layer of acellular parallel fibre bone containing an extensive shallow canal network. A recoded and revised phylogenetic analysis using equal and implied weights parsimony resolves anaspids as monophyletic, nested among stem-gnathostomes. Our results suggest the anaspid dermal skeleton is a degenerate derivative of a histologically more complex ancestral vertebrate skeleton, rather than reflecting primitive simplicity. Hypotheses that anaspids are ancestral skeletonizing lampreys, or a derived lineage of jawless vertebrates with paired fins, are rejected. © 2016 The Authors.

  9. Composition of early planetary atmospheres - II. Coupled Dust and chemical evolution in protoplanetary discs

    Science.gov (United States)

    Cridland, A. J.; Pudritz, Ralph E.; Birnstiel, Tilman; Cleeves, L. Ilsedore; Bergin, Edwin A.

    2017-08-01

    We present the next step in a series of papers devoted to connecting the composition of the atmospheres of forming planets with the chemistry of their natal evolving protoplanetary discs. The model presented here computes the coupled chemical and dust evolution of the disc and the formation of three planets per disc model. Our three canonical planet traps produce a Jupiter near 1 AU, a Hot Jupiter and a Super-Earth. We study the dependence of the final orbital radius, mass, and atmospheric chemistry of planets forming in disc models with initial disc masses that vary by 0.02 M⊙ above and below our fiducial model (M_{disc,0} = 0.1 M_{⊙}). We compute C/O and C/N for the atmospheres formed in our three models and find that C/Oplanet ˜ C/O_{disc}, which does not vary strongly between different planets formed in our model. The nitrogen content of atmospheres can vary in planets that grow in different disc models. These differences are related to the formation history of the planet, the time and location that the planet accretes its atmosphere, and are encoded in the bulk abundance of NH3. These results suggest that future observations of atmospheric NH3 and an estimation of the planetary C/O and C/N can inform the formation history of particular planetary systems.

  10. Concatenated analysis sheds light on early metazoan evolution and fuels a modern "urmetazoon" hypothesis.

    Directory of Open Access Journals (Sweden)

    Bernd Schierwater

    2009-01-01

    Full Text Available For more than a century, the origin of metazoan animals has been debated. One aspect of this debate has been centered on what the hypothetical "urmetazoon" bauplan might have been. The morphologically most simply organized metazoan animal, the placozoan Trichoplax adhaerens, resembles an intriguing model for one of several "urmetazoon" hypotheses: the placula hypothesis. Clear support for a basal position of Placozoa would aid in resolving several key issues of metazoan-specific inventions (including, for example, head-foot axis, symmetry, and coelom and would determine a root for unraveling their evolution. Unfortunately, the phylogenetic relationships at the base of Metazoa have been controversial because of conflicting phylogenetic scenarios generated while addressing the question. Here, we analyze the sum of morphological evidence, the secondary structure of mitochondrial ribosomal genes, and molecular sequence data from mitochondrial and nuclear genes that amass over 9,400 phylogenetically informative characters from 24 to 73 taxa. Together with mitochondrial DNA genome structure and sequence analyses and Hox-like gene expression patterns, these data (1 provide evidence that Placozoa are basal relative to all other diploblast phyla and (2 spark a modernized "urmetazoon" hypothesis.

  11. The place of RNA in the origin and early evolution of the genetic machinery.

    Science.gov (United States)

    Wächtershäuser, Günter

    2014-12-19

    The extant genetic machinery revolves around three interrelated polymers: RNA, DNA and proteins. Two evolutionary views approach this vital connection from opposite perspectives. The RNA World theory posits that life began in a cold prebiotic broth of monomers with the de novo emergence of replicating RNA as functionally self-contained polymer and that subsequent evolution is characterized by RNA → DNA memory takeover and ribozyme → enzyme catalyst takeover. The FeS World theory posits that life began as an autotrophic metabolism in hot volcanic-hydrothermal fluids and evolved with organic products turning into ligands for transition metal catalysts thereby eliciting feedback and feed-forward effects. In this latter context it is posited that the three polymers of the genetic machinery essentially coevolved from monomers through oligomers to polymers, operating functionally first as ligands for ligand-accelerated transition metal catalysis with later addition of base stacking and base pairing, whereby the functional dichotomy between hereditary DNA with stability on geologic time scales and transient, catalytic RNA with stability on metabolic time scales existed since the dawn of the genetic machinery. Both approaches are assessed comparatively for chemical soundness.

  12. Early hominid evolution and ecological change through the African Plio-Pleistocene.

    Science.gov (United States)

    Reed, K E

    1997-01-01

    The habitats in which extinct hominids existed has been a key issue in addressing the origin and extinction of early hominids, as well as in understanding various morphological and behavioral adaptations. Many researchers postulated that early hominids lived in an open savanna (Dart, 1925; Robinson, 1963; Howell, 1978). However, Vrba (1985, 1988) has noted that a major global climatic and environmental shift from mesic, closed to xeric, open habitats occurred in the late African Pliocene (approximately 2.5 m.y.a.), thus implying that the earliest hominids existed in these mesic, wooded environs. This climatic shift is also suggested to have contributed to a pulse in speciation events with turnovers of many bovid and possibly hominid species. Previous environmental reconstructions of hominid localities have concentrated on taxonomic identities and taxonomic uniformitarianism to provide habitat reconstructions (e.g., Vrba, 1975; Shipman & Harris, 1988). In addition, relative abundances of species are often used to reconstruct a particular environment, when in fact taphonomic factors could be affecting the proportions of taxa. This study uses the morphological adaptations of mammalian assemblages found with early hominids to reconstruct the habitat based on each species' ecological adaptations, thus minimizing problems introduced by taxonomy and taphonomy. Research presented here compares east and south African Plio-Pleistocene mammalian fossil assemblages with 31 extant mammalian communities from eight different habitat types. All communities are analyzed through ecological diversity methods, that is, each species trophic and locomotor adaptations are used to reconstruct an ecological community and derive its vegetative habitat. Reconstructed habitats show that Australopithecus species existed in fairly wooded, well-watered regions. Paranthropus species lived in similar environs and also in more open regions, but always in habitats that include wetlands. Homo is the

  13. Carbon Isotope Evolution of Early Proterozoic Dolomites of Wutai Mountain Area,North China

    Institute of Scientific and Technical Information of China (English)

    钟华; 马永生; 霍卫国; 姚御元

    1994-01-01

    Carbon isotope of the early Proterozoic carbonates from the Hutuo Group of the type sec-tion in Wutai Mountain area,Shanxi Province,North China,is reported.Isotopic analyses have been madefor 484 samples of dolomites.The carbon isotope results show:(i)δ13C values distinctly change with the ge-ological time,but are relatively stable in certain horizon;(ii)like that at the Cretaceous/Tertiary and Permi-an/Triassic boundaries,δ13C values also show abrupt variation across the boundaries between the JianancunFormation and the Daguandong Formation and between the Daguandong Formation and the Huaiyincun For-mation.

  14. Melanoidin and aldocyanoin microspheres: implications for chemical evolution and early precambrian micropaleontology.

    Science.gov (United States)

    Kenyon, D H; Nissenbaum, A

    1976-04-01

    Two new classes of organic microspheres are described. One of them (melanoidin) is synthesized from amino acids and sugars in heated aqueous solutions. The other (aldocyanoin) is formed in aqueous solutions of ammonium cyanide and formaldehyde at room temperature. The general properties of these microspheres, including conditions of synthesis, size and shape, mechanical and pH stability, and solubility, are compared with corresponding properties of other "protocell" model systems. It is concluded that melanoidin and aldocyanoin microsphreres are plausible candidates for precellular units in the primitive hydrosphere. Since the bulk of the organic carbon in early Precambrian sediments is insoluble kerogen-melanoidin, it is suggested that some Precambrian "microfossils" may be abiotic melanoidin microspheres of the type described herein.

  15. Melanoidin and aldocyanoin microspheres - Implications for chemical evolution and early Precambrian micropaleontology

    Science.gov (United States)

    Kenyon, D. H.; Nissenbaum, A.

    1976-01-01

    Two new classes of organic microspheres are described. One of them (melanoidin) is synthesized from amino acids and sugars in heated aqueous solutions. The other (aldocyanoin) is formed in aqueous solutions of ammonium cyanide and formaldehyde at room temperature. The general properties of these microspheres, including conditions of synthesis, size and shape, mechanical and pH stability, and solubility, are compared with corresponding properties of other protocell model systems. It is concluded that melanoidin and aldocyanoin microspheres are plausible candidates for precellular units in the primitive hydrosphere. Since the bulk of the organic carbon in early Precambrian sediments is insoluble kerogen-melanoidin, it is suggested that some Precambrian microfossils may be abiotic melanoidin microspheres.

  16. Thomas Huxley and the rat placenta in the early debates on evolution.

    Science.gov (United States)

    Pijnenborg, R; Vercruysse, L

    2004-01-01

    The 19th century debates on mammalian classification in the light of the new evolutionary thinking led to controversies between Thomas Huxley and Richard Owen concerning the value of the placenta as a representative key organ. As a main point in his argument, Huxley provided a detailed description of a sectioned rat placenta, highlighting the importance of decidualization of the uterus as an argument supporting an evolutionary relationship between rodents, insectivores and primates, an idea hotly contested by Owen. In addition, he illustrated and correctly interpreted the maternal blood supply from uterus to placenta in striking detail. During the succeeding decades the key role of trophoblast in placenta formation was discovered, and the decidua became neglected in later comparative studies. Nevertheless, at the present time trophoblast-decidual interaction is regarded as an extremely important feature of placental development in both primates and rodents, and Huxley can therefore rightfully be considered as an early pioneer in placental research.

  17. Was skin cancer a selective force for black pigmentation in early hominin evolution?

    Science.gov (United States)

    Greaves, Mel

    2014-01-01

    Melanin provides a crucial filter for solar UV radiation and its genetically determined variation influences both skin pigmentation and risk of cancer. Genetic evidence suggests that the acquisition of a highly stable melanocortin 1 receptor allele promoting black pigmentation arose around the time of savannah colonization by hominins at some 1–2 Ma. The adaptive significance of dark skin is generally believed to be protection from UV damage but the pathologies that might have had a deleterious impact on survival and/or reproductive fitness, though much debated, are uncertain. Here, I suggest that data on age-associated cancer incidence and lethality in albinos living at low latitudes in both Africa and Central America support the contention that skin cancer could have provided a potent selective force for the emergence of black skin in early hominins. PMID:24573849

  18. EVOLUTION OF THE MEDITERRANEAN BASIN DURING THE LATE LANGHIAN - EARLY SERRAVALLIAN: AN INTEGRATED PALEOCEANOGRAPHIC APPROACH

    Directory of Open Access Journals (Sweden)

    ADRIANA BELLANCA

    2002-07-01

    Full Text Available An integrated (multidimensional faunal and geochemical dataset has been generated by the study of a Middle Miocene sedimentary section (Ras il Pellegrin outcropping in the Malta Island (central Mediterranean and referred to the Late Langhian-Early Serravallian interval. Benthic foraminifers and ostracods suggest a paleobathymetry of about 500 m and  slightly under-oxygenated bottom conditions for the deposition of the sediments. Some bio-events, characterized by oligotypical assemblages (B. elongata group high percentage values indicating stressed bottom conditions and very low oxygen content, seem related to suboxic episodes. Periods of enhanced surface productivity, indicated by increasing Ba concentrations and by d13C values measured in planktonic foraminifer, are recorded at the base and in the upper part of the succession and suggest the combination of upwelling events and enhanced continental runoff. In particular, the lower interval has been correlated with the C-isotope Monterey event. The upper interval, characterized by negative excursions in the benthic carbon isotope curve combined with the appearance of benthic species indicative of increasing preservation of organic carbon at the bottom of the basin, suggests a general reduced Mediterranean thermoaline circulation system during the Upper Langhian-Early Serravallian. These events are calibrated to the astrochronologic scale proposed for the same section by cyclostratigraphic analysis. Benthic assemblages and isotope evidence, combined with information from other coeval Mediterranean sediments (DSDP Site 375, Site 372; new data on Tremiti Islands, allow to interpret the large-scale thermoaline circulation in the Mediterranean basin during middle Miocene. Three discrete water masses have been identified: 1 surface Atlantic water inflowing into the Mediterranean; 2 intermediate outflowing Mediterranean water originated in the surficial eastern end; 3 atlantic (psychrospheric bottom

  19. The origin and early evolution of metatherian mammals: the Cretaceous record

    Directory of Open Access Journals (Sweden)

    Thomas E. Williamson

    2014-12-01

    Full Text Available Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  20. Early evolution of the lungfish pectoral fin endoskeleton: evidence from the Middle Devonian (Givetian Pentlandia macroptera

    Directory of Open Access Journals (Sweden)

    Emma eJude

    2014-08-01

    Full Text Available As the closest living relatives of tetrapods, lungfishes are frequently used as extant models for exploring the fin-to-limb transition. These studies have generally given little consideration to fossil taxa. This is because although lungfish fins are relatively common in the fossil record, the internal structure of these fins is virtually unknown. Information on pectoral-fin endoskeletons in fossil representatives of Dipnomorpha (the lungfish total group is limited to poorly preserved remains in the lungfish Dipterus and Conchopoma and more complete material in the porolepiform Glyptolepis. Here we describe a well-preserved pectoral-fin endoskeleton in the Middle Devonian (Givetian lungfish Pentlandia macroptera from the John O’Groats fish bed, Caithness, northeastern Scotland. The skeleton is in association with a cleithrum and clavicle, and consists of a series of at least eight mesomeres. Extensive series of preaxial and postaxial radials are present. Some of the radials are jointed, but none branch. No mesomere articulates with multiple radials on either its pre- or post-axial face. The first two mesomeres, corresponding to the humerus and ulna, bear well-developed axial processes. Uniquely among dipnomorphs, a distinct ossification centre corresponding to the radius is present in Pentlandia. A review of anatomy and development of the pectoral-fin endoskeleton in the living Neoceratodus is presented based on cleared and stained material representing different size stages. These developmental data, in conjunction with new details of primitive lungfish conditions based on Pentlandia, highlight many of the derived features of the pectoral-fin skeleton of Neoceratodus, and clarify patterns of appendage evolution within the dipnomorphs more generally.

  1. A Gradualist Scenario for Language Evolution: Precise Linguistic Reconstruction of Early Human (and Neandertal) Grammars.

    Science.gov (United States)

    Progovac, Ljiljana

    2016-01-01

    In making an argument for the antiquity of language, based on comparative evidence, Dediu and Levinson (2013) express hope that some combinations of structural features will prove so conservative that they will allow deep linguistic reconstruction. I propose that the earliest stages of syntax/grammar as reconstructed in Progovac (2015a), based on a theoretical and data-driven linguistic analysis, provide just such a conservative platform, which would have been commanded also by Neandertals and the common ancestor. I provide a fragment of this proto-grammar, which includes flat verb-noun compounds used for naming and insult (e.g., rattle-snake, cry-baby, scatter-brain), and paratactic (loose) combinations of such flat structures (e.g., Come one, come all; You seek, you find). This flat, binary, paratactic platform is found in all languages, and can be shown to serve as foundation for any further structure building. However, given the degree and nature of variation across languages in elaborating syntax beyond this proto-stage, I propose that hierarchical syntax did not emerge once and uniformly in all its complexity, but rather multiple times, either within Africa, or after dispersion from Africa. If so, then, under the uniregional hypothesis, our common ancestor with Neandertals, H. heidelbergensis, could not have commanded hierarchical syntax, but "only" the proto-grammar. Linguistic reconstructions of this kind are necessary for formulating precise and testable hypotheses regarding language evolution. In addition to the hominin timeline, this reconstruction can also engage, and negotiate between, the fields of neuroscience and genetics, as I illustrate with one specific scenario involving FOXP2 gene.

  2. The early evolution of southwestern Pennsylvania's regional math/science collaborative from the leadership perspective

    Science.gov (United States)

    Bunt, Nancy R.

    Designed as a regional approach to the coordination of efforts and focusing of resources in fragmented southwestern Pennsylvania, the Collaborative's story is narrated by its founding director. Drawing from office archives, including letters of invitation, meeting notes, and participant evaluations of each event, the study describes the genesis of the Collaborative. It begins with identification of the problem and the resulting charge by a founding congress. It details the building of an organizational framework, the creation of a shared vision, the development of a blueprint for action, and the decision-making involved in determining how to strengthen mathematics and science education in the region. The study notes several influences on the Collaborative's leadership. Considering the role of other collaboratives, the study notes that knowledge of the Los Angeles Educational Partnership's LA SMART jump-started the Collaborative's initial planning process. Knowledge of San Francisco's SEABA influenced the size and naming of the Collaborative's Journal. Fred Newmann's definition of authentic instruction, learning and assessment are reflected in the shared vision and belief statements of the Collaborative. The five disciplines of Peter Senge influenced the nature of the organizational framework as well as the day-to-day operations of the Collaborative. The study also notes that the five organizational tensions identified in Ann Lieberman's work on "intentional learning communities" were present in every aspect of the evolution of the Collaborative. The study suggests that leaders of evolving collaboratives: (1) engage all relevant stakeholders in assessing the current situation and defining a desired future state, (2) take advantage of the lessons learned by others and the resources available at the state and national levels to design strategies and build action plans, (3) model the practices to be inspired in the learning community, (4) constantly gather feedback on

  3. Discovery, Progenitor & Early Evolution of a Stripped Envelope Supernova iPTF13bvn

    CERN Document Server

    Cao, Yi; Arcavi, Iair; Horesh, Assaf; Hancock, Paul; Valenti, Stefano; Cenko, S Bradley; Kulkarni, S R; Gal-Yam, Avishay; Gorbikov, Evgeny; Ofek, Eran O; Sand, David; Yaron, Ofer; Graham, Melissa; Silverman, Jeffrey M; Wheeler, J Craig; Marion, G H; Walker, Emma; Mazzali, Paolo; Howell, D Andrew; Bloom, Josh; Nugent, Peter E; Surace, Jason; Masci, Frank; Carpenter, John; Degenaar, Nathalie; Gelino, Christopher

    2013-01-01

    The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC5806 (22.5Mpc). Our spectral sequence in the optical and infrared suggests a likely Type Ib classification. We identify a single, blue progenitor candidate in deep pre-explosion imaging within a 2sigma error circle of 80 mas (8.7 pc). The candidate has a MB luminosity of -5.2+/-0.4 mag and a B-I color of 0.1+/-0.3 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 1.1 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in cm and mm-wavelengths. Fitting a synchrotron self-absorption model to our radio data, we ?nd a mass loading parameter of 1.3*10^12 g/cm. Assuming a wind velocity o...

  4. Nd isotope as the tracer of seawater evolution of early Miocene in the eastern Pacific Ocean

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Fifty-six samples of nannofossil ooze were collected from Core PC5794 in the northern equatorial Pacific at 5 cm intervals. With the methods of mass spectrometer (VG354) and ICP, the Nd isotopic compositions εNd(t ), Mn contents and Mg/Sr ratios of carbonate phase have been analyzed. CaCO3 contents of bulk sediments were obtained by dissolution of 0.5 mol/L HCl. Based on these data, the high-resolution εNd(t) profile of seawater in early Miocene with core depth(or time) have been established. The values of εNd(t) range from -6.2 to -2.97 and 4 fluctuation cycles existed during 24.06-22.02 Ma. 4 low εNd(t) values (about -6.4) correspond to high CaCO3 contents, which implicates that there were 4 cold epochs or 4 times of Antarctic Bottom Water activity. They occurred at the time of 24.06 Ma, 23.85 Ma, 22.88 Ma and 22.26 Ma, respectively. High εNd(t ) values correspond to the high Mn contents and high values of Mg/Sr ratio, which indicates the existence of 4 intense hydrothermal activity periods during 24.06-22 Ma, the durations of them are 4.05-23.98 Ma, 23.69-23.15 Ma, 22.74-22.37 Ma and 22.06-22.02 Ma, respectively.

  5. Nd isotope as the tracer of seawater evolution of early Miocene in the eastern Pacific Ocean

    Institute of Scientific and Technical Information of China (English)

    LIUJihua; CHENLirong; WANGYingxi; HANJianxiu

    2003-01-01

    Fifty-six samples of nannofossil ooze were collected from Core PC5794 in the northern equatorial Pacific at 5 cm intervals. With the methods of mass spectrometer (VG354) and ICP, the Nd isotopic compositions (εNd(t)), Mn contents and Mg/Sr ratios of carbonate phase have been analyzed. CaCO3 contents of bulk sediments were obtained by dissolution of 0.5 mol/L HCl. Based on these data, the high-resolution εNd(t) profile of seawater in early Miocene with core depth(or time) have been established. The values of εNd(t) range from -6.2 to -2.97 and 4 fluctuation cycles existed during 24.06-22.02 Ma. 4 low εNd(t) values (about -6.4) correspond to high CaCO3 contents, which implicates that there were 4 cold epochs or 4 times of Antarctic Bottom Water activity. They occurred at the time of 24.06 Ma, 23.85 Ma,22.88 Ma and 22.26 Ma, respectively. High εNd(t) values correspond to the high Mn contents and high values of Mg/Sr ratio, which indicates the existence of 4 intense hydrothermal activity periods during 24.06-22 Ma, the durations of them are 4.05-23.98 Ma, 23.69-23.15 Ma, 22.74-22.37 Ma and 22.06-22.02 Ma, respectively.

  6. Evolution and acceptability of medical applications of RFID implants among early users of technology.

    Science.gov (United States)

    Smith, Alan D

    2007-01-01

    RFID as a wireless identification technology that may be combined with microchip implants have tremendous potential in today's market. Although these implants have their advantages and disadvantages, recent improvements how allowed for implants designed for humans. Focus was given to the use of RFID tags and its effects on technology and CRM through a case study on VeriChip, the only corporation to hold the rights and the patent to the implantable chip for humans, and an empirically based study on working professionals to measure perceptions by early adopters of such technology. Through hypotheses-testing procedures, it was found that although some resistance to accept microchip implants was found in several applications, especially among gender, it was totally expected that healthcare and medical record keeping activities would be universally treated in a positive light and the use of authorities (namely governmental agencies) would be equally treated in a negative light by both sexes. Future trends and recommendations are presented along with statistical results collected through personal interviews.

  7. The evolution of molar occlusion in the Cercopithecidae and early Catarrhines.

    Science.gov (United States)

    Kay, R F

    1977-03-01

    Those Eocene prosimians which are possible catarrhine ancestors have four blade-like crests on each lower molar. Each crest shears in sequence across two upper molar crests. Occluding crests are concavely curved to hold the foods being sheared. Each of two medial lower molar crests bordering the principal crushing surface shear past single upper molar crests at about the same time the lateral lower molar crests contact the second rank of upper molar crests. Grinding and crushing areas are restricted to hypoconid, trigonid, and protocone surfaces. Oligocene catarrhine molars have increased crushing-grinding capacities and maintained but modify their shearing. As the crushing surface of the protocone expands and a crushing hypocone is added, the "second rank" upper molar shearing crests are functionally reduced. At the same time medial crests are increasingly emphasized so that the total shearing capacity remains virtually unchanged. Marginal shearing blades are straight edged; leading edges of occluding blades are set at different angles to the occlusal plane so that blades contact at only one point at any given time. Early Primates have separate crushing basins surrounded by shearing blades. Catarrhines tend to link explanding crushing surfaces anteroposteriorly into a continuous surface between all molars. A cladistic analysis based on both new and previously recognized characters indicates that: 1. Apidium may be more closely related to Aegyptopithecus than to Parapithecus; 2. cercopithecids are derived from a Parapithecus-related stock; 3. Oreopithecus could equally well have come from an Apidium or Aegyptopithecus stock.

  8. Evolution of pancreas in aging: degenerative variation or early changes of disease?

    Science.gov (United States)

    Chantarojanasiri, Tanyaporn; Hirooka, Yoshiki; Ratanachu-Ek, Thawee; Kawashima, Hiroki; Ohno, Eizaburo; Goto, Hidemi

    2015-04-01

    Pancreatic changes in aging have been described for many decades. They involve not only pancreatic parenchyma but also pancreatic ductal, microscopic, and exocrine functional changes. There have been many studies of these changes based on pathology and various imaging modalities, as well as functional studies. The pancreatic volume was found to decrease with advancing age, with a higher incidence of pancreatic steatosis, as demonstrated in autopsy and imaging studies. The pancreatic ductal structure has been described with wide ranges of normal variation, but many studies have shown a tendency toward enlargement with advancing age. By endoscopic ultrasound imaging, the aging pancreas may exhibit abnormal findings similar to chronic pancreatitis. Microscopically, there has been evidence of patchy lobular fibrosis and papillary hyperplasia and demonstrable k-ras mutation in both normal and dysplastic ductal mucosa. The evidence of pancreatic exocrine insufficiency has yielded conflicting results, but most studies have shown a tendency toward decreased pancreatic exocrine function in the elderly. Differentiating pancreatic change in the elderly from early chronic pancreatitis may be difficult as there are limited studies to compare these two conditions in terms of structural and functional changes.

  9. Formation and evolution of dwarf early-type galaxies in the Virgo cluster I. Internal kinematics

    CERN Document Server

    Toloba, E; Cenarro, A J; Peletier, R F; Gorgas, J; de Paz, A Gil; Munoz-Mateos, J C

    2010-01-01

    We present new medium resolution kinematic data for a sample of 21 dwarf early-type galaxies (dEs) mainly in the Virgo cluster, obtained with the WHT and INT telescopes at the Roque de los Muchachos Observatory (La Palma, Spain). These data are used to study the origin of the dwarf elliptical galaxy population inhabiting clusters. We confirm that dEs are not dark matter dominated galaxies, at least up to the half-light radius. We also find that the observed galaxies in the outer parts of the cluster are mostly rotationally supported systems with disky morphological shapes. Rotationally supported dEs have rotation curves similar to those of star forming galaxies of similar luminosity and follow the Tully-Fisher relation. This is expected if dE galaxies are the descendant of low luminosity star forming systems which recently entered the cluster environment and lost their gas due to a ram pressure stripping event, quenching their star formation activity and transforming into quiescent systems, but conserving the...

  10. 400 million years on six legs: on the origin and early evolution of Hexapoda.

    Science.gov (United States)

    Grimaldi, David A

    2010-01-01

    Identifying the unambiguous sister group to the hexapods has been elusive. Traditional concepts include the Myriapoda (the Tracheata/Atelocerata hypothesis), but recent molecular studies consistently indicate it is the Crustacea, either in part or entirety (the Pancrustacea/Tetraconata hypothesis). The morphological evidence in support of Tracheata is reviewed, and most features are found to be ambiguous (i.e., losses, poorly known and surveyed structures, and probable convergences), though some appear to be synapomorphic, such as tentorial structure and the presence of styli and eversible vesicles. Other morphological features, particularly the structure of the eyes and nervous system, support Pancrustacea, as does consistent molecular evidence (which is reviewed and critiqued). Suggestions are made regarding hexapod-crustacean limb homologies. Relationships among basal (apterygote) hexapods are reviewed, and critical Paleozoic fossils are discussed. Despite the scarceness of Devonian hexapods, major lineages like Collembola and even dicondylic Insecta appeared in the Early Devonian; stem-group and putative Archaeognatha are known from the Carboniferous through Permian and the Late Devonian, respectively. Thus, the earliest divergences of hexapods were perhaps Late Silurian, which is considerably younger than several estimates made using molecular data.

  11. Magmatic evolution of the Early Pliocene Etrüsk stratovolcano, Eastern Anatolian Collision Zone, Turkey

    Science.gov (United States)

    Oyan, Vural; Keskin, Mehmet; Lebedev, Vladimir A.; Chugaev, Andrey V.; Sharkov, Evgenii V.

    2016-07-01

    basalt lavas underlying the volcano, via the AFC process, and experienced at least two major magma replenishment episodes at 4.1 Ma and 3.8 Ma during the magma chamber evolution.

  12. Oxygen as a driver of early arthropod micro-benthos evolution.

    Directory of Open Access Journals (Sweden)

    Mark Williams

    Full Text Available BACKGROUND: We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos. METHODOLOGY/PRINCIPAL FINDINGS: The PO(2 of modern normoxic seawater is 21 kPa (air-equilibrated water, a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO(2 of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O(2. Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O(2 levels. The PO(2 of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O(2. Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian oxygen-levels that increased the PO(2 gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O(2. Ostracods became the numerically

  13. The Neoproterozoic-Paleozoic Arctic Margins: early stages of geodynamic evolution and plate reconstructions

    Science.gov (United States)

    Vernikovsky, V. A.; Metelkin, D. V.; Vernikovskaya, A. E.; Matushkin, N. Yu.; Lobkovsky, L. I.; Shipilov, E. V.

    2012-04-01

    Available data on the existence of Precambrian metamorphic complexes among the main structures of the Arctic led to the suggestion that a large continental mass existed between Laurentia, Baltica and Siberia - an Arctic continent, more often called Arctida (Zonenshain, Natapov, 1987). It is inferred that as an independent continental mass Arctida was formed after the breakup of Rodinia, and in general it can have a pre-Grenvillian (including Grenvillian) basement age. The breakup of this mass and the collision of its fragments with adjacent cratons led to the formation of heterochronous collisional systems. Arctida probably included the Kara, Novosibirsk, Alaska-Chukotka blocks, the blocks of northern Alaska and the submerged Lomonosov Ridge, small fragments of the Inuit fold belt in the north of Greenland and the Canadian archipelago, the structures of the Svalbard and maybe the Timan-Pechora plates. However the inner structure of this paleocontinent, the mutual configuration of the blocks and its evolution in the Neoproterozoic-Paleozoic is still a matter of discussion. The most accurate way of solving these issues is by using paleomagnetic data, but those are nonexistent for most of the defined blocks. Reliable paleomagnetic determinations for the Neoproterozoic-Paleozoic time interval we are concerned with are available only for fragments of an island arc from Central Taimyr, which are 960 m.y. old (Vernikovsky et al., 2011) and for which the paleomagnetic pole is very close to the pole of Siberia from (Pavlov et al., 2002), and of the Kara microcontinent. This includes three paleomagnetic poles for 500, 450 and 420 Ma (Metelkin et al., 2000; Metelkin et al., 2005). It is those data that made up the basis of the presented paleotectonic reconstructions along with an extensive paleomagnetic database for the cratons of Laurentia, Baltica, Siberia and Gondwana. The paleogeographic position of the cratons is corrected (within the confidence levels for the

  14. Evaluating Different Scenarios for the Formation and Early Evolution of the Asteroid Belt

    Science.gov (United States)

    O'Brien, David P.; Walsh, Kevin J.

    2014-11-01

    The asteroid belt is dynamically excited, depleted in mass relative to the surface mass density of the rest of the Solar System, and contains numerous diverse taxonomic classes of asteroids that are partly, but not completely, radially mixed. In the 'classical' scenario of Solar System formation, the excitation, depletion and radial mixing of the asteroid belt is best explained by the effect of planetary embryos that are initially present in the primordial asteroid belt region [1-3]. In the more recent 'Grand Tack' scenario proposed by Walsh et al. [4], the early inward-then-outward migration of Jupiter in the gas disk initially depletes, then repopulates the asteroid belt with material scattered from both interior and exterior to Jupiter. Here we will examine in detail the model asteroid distributions resulting from these two scenarios for a range of parameters, and compare them to observational constraints on the current distribution of asteroids in the Solar System. We will also address the possible effects that late-stage planetesimal-driven migration and resonance-crossing of Jupiter and Saturn in the Nice Model [eg. 5,6] may have on the final asteroid distribution.[1] G.W. Wetherill, Icarus 100, 307-325 (1992)[2] J.-M. Petit et al., Icarus 153, 338-347 (2001)[3] D.P. O'Brien t al., Icarus 191, 434-452 (2007)[4] K.J. Walsh et al., Nature 475, 206-209 (2011)[5] K. Tsiganis et al., Nature 435, 459-461 (2005)[6] A. Morbidelli et al., AJ 140, 1391-1401 (2010)

  15. DISCOVERY, PROGENITOR AND EARLY EVOLUTION OF A STRIPPED ENVELOPE SUPERNOVA iPTF13bvn

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yi; Horesh, Assaf; Kulkarni, S. R. [Astronomy Department, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Kasliwal, Mansi M. [The Observatories, Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Arcavi, Iair; Gal-Yam, Avishay; Gorbikov, Evgeny; Ofek, Eran O.; Yaron, Ofer [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Hancock, Paul [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Valenti, Stefano; Graham, Melissa; Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Sand, David [Department of Physics, Texas Tech University, Lubbock, TX 79409 (United States); Silverman, Jeffrey M.; Wheeler, J. Craig; Marion, G. H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Walker, Emma S. [Department of Physics, Yale University, New Haven, CT 06511-8499 (United States); Mazzali, Paolo, E-mail: ycao@astro.caltech.edu [INAF-Padova Astronomical Observatory, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); and others

    2013-09-20

    The intermediate Palomar Transient Factory reports our discovery of a young supernova, iPTF13bvn, in the nearby galaxy, NGC 5806 (22.5 Mpc). Our spectral sequence in the optical and infrared suggests a Type Ib classification. We identify a blue progenitor candidate in deep pre-explosion imaging within a 2σ error circle of 80 mas (8.7 pc). The candidate has an M{sub B} luminosity of –5.52 ± 0.39 mag and a B – I color of 0.25 ± 0.25 mag. If confirmed by future observations, this would be the first direct detection for a progenitor of a Type Ib. Fitting a power law to the early light curve, we find an extrapolated explosion date around 0.6 days before our first detection. We see no evidence of shock cooling. The pre-explosion detection limits constrain the radius of the progenitor to be smaller than a few solar radii. iPTF13bvn is also detected in centimeter and millimeter wavelengths. Fitting a synchrotron self-absorption model to our radio data, we find a mass-loading parameter of 1.3×10{sup 12} g cm{sup –1}. Assuming a wind velocity of 10{sup 3} km s{sup –1}, we derive a progenitor mass-loss rate of 3 × 10{sup –5} M {sub ☉} yr{sup –1}. Our observations, taken as a whole, are consistent with a Wolf-Rayet progenitor of the supernova iPTF13bvn.

  16. The completeness of the fossil record of mesozoic birds: implications for early avian evolution.

    Directory of Open Access Journals (Sweden)

    Neil Brocklehurst

    Full Text Available Many palaeobiological analyses have concluded that modern birds (Neornithes radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian-Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a 'sampling corrected' residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this

  17. Mineralogic and Petrofabric Clues to Evolution of the Early Tertiary Amaga Basin, Colombian Andes

    Science.gov (United States)

    Sierra, G. M.; MacDonald, W. D.

    2002-05-01

    The Amaga Basin is a coal-bearing early to mid Tertiary Basin located in the Cauca Valley between the Cordillera Oriental and Cordillera Central of Colombia. The main sedimentary filling, the Late Oligocene to Late Miocene Amaga Formation, has been divided into two Members (Lower and Upper). This division was made possible 1) by identifying stratigraphic base level fluctuations through petrographic characteristics of the associated sandstones and 2) by the distinctive regional variations in magnetic anisotropic susceptibility (AMS). The latter is particularly effective in indicating areas in which tectonic effects overprint sedimentary fabric. Three tectonic stages have affected the Amaga Coal basin: 1. An extensional event during dry seasons that accompanied strike-slip movements along the Cauca-Pat¡a and Romeral faults systems, associated with the eastward approach of the Nazca plate toward the South America plate at 25 m.a.; this extension event was accompanied by highly aggraded braided river deposits whose stacking patterns show a low accumulation/supply (A/S) ratio 2. A rapid subsidence event (prior to 10 m.a.) accompanied by a strong climatic influence (humid, with rainy seasons), representing extensional movements across the Cauca depression and related to the initial eastward migration of a magmatic arc from the Western Cordillera; this allowed the formation of swamps representing epochs of high A/S ratio. 3. A thrusting and folding episode along the Cauca depression coeval with an incipient phase of Combia Formation volcanism (10-7m.a.), during periods of both dry and wet seasons, related to the eastward migration of the magmatic arc into the Central Cordillera; this permitted the development of highly aggraded braided rivers whose stacking patterns represent the lowest A/S ratio of the Amaga Formation. Mineralogic variations and ratios reflect source area contributions and are useful in diagnosing relative uplift and subsidence of the continental shield

  18. Early Mantle Evolution and the Late Veneer - New Perspectives from Highly Siderophile Elements

    Science.gov (United States)

    Coggon, J. A.; Luguet, A.; Lorand, J. P.; Fonseca, R.; Appel, P.; Mondal, S. K.; Peters, S.; Nowell, G. M.; Hoffmann, J. E.

    2015-12-01

    Numerous studies show that core - mantle differentiation should have fractionated the highly siderophile elements (HSE) into Earth's core during its formation, leaving them almost entirely depleted in the mantle. It is widely held that later addition of chondritic material (a.k.a. the "late veneer") can account for the disparity between modelled and observed HSE concentrations in the upper mantle. Recent experimental data (Médard et al., 2015) indicate that addition of ~0.6 % of the mass of the Earth could re-enrich the mantle HSE budget sufficiently to satisfy these observations. However, debate remains strong regarding the absolute timing, duration and nature of the re-enrichment. Chondrite-normalised HSE patterns (Coggon et al., 2015) of massive chromitites from the >3.811 Ga Ujaragssuit nunât layered ultramafic body, Greenland, are strikingly similar in both shape and abundance to the patterns of Phanerozoic chromitites from ultramafic layered intrusions. These data suggest that late veneer re-enrichment had already occurred prior to 3.811 Ga (Bennett et al., 2002; Coggon et al., 2013). Furthermore, Pt-Os model ages for these samples indicate that a late veneer component may have been present in Earth's mantle as early as 4.1 - 4.3 Ga (Coggon et al., 2013). HSE inter-element ratios demonstrate distinct differences between this chromitite sample suite and younger chromitites from analogous tectonic settings. It remains unclear whether late veneer addition was already complete at 3.82 Ga and how long it took for this material to be accreted and homogenised within the upper mantle. We will address these issues using HSE and Os isotope data from Ujaragssuit nunât, Greenland, and the Singhbum Craton, India.

  19. Rectilinear evolution in arvicoline rodents and numerical dating of Iberian Early Pleistocene sites

    Science.gov (United States)

    Palmqvist, Paul; González-Donoso, José María; De Renzi, Miquel

    2014-08-01

    Lozano-Fernández et al. (2013a) have recently published a method intended for numerical dating of Early Pleistocene sites, which is based on the assumption of uniform, constant rate increase through time of mean lower molar tooth length of water voles (Mimomys savini) in a number of levels sampled in the stratigraphic sequence of Atapuerca TD site. They suggest that the regression equation obtained in this local section for site chronology on tooth size could be useful for estimating the numerical age of other localities from southwestern Europe. However, in our opinion this biostratigraphic approach has severe conceptual and methodological problems, which discourage its use as a chronometric tool. These problems include that: (1) the logic behind their approach represents a ‘fallacy of hasty generalization', because the results obtained for a local section are generalized to all possible stratigraphic sequences; (2) the study is based on tooth measurements from a limited set of samples taken in a single locality, which are represented by small numbers of specimens, cover a short time span and have a high level of age uncertainty; (3) the samples analyzed show small, statistically non-significant differences between their mean tooth length values; (4) the approach assumes a linear-straight, orthoevolutionary model of change at constant, monotonic rate for the apparent trend to increasing tooth size in the M. savini lineage; (5) these changes are better described in the Atapuerca TD section by a random walk, or even by a series of independent events, than by a model of rectilinear change; and (6) the application of this methodology to other localities such as the Orce sites, which preserve the oldest evidence of human presence in Europe, would mean that an equation adjusted within a restricted chronological range (1.01-0.8 Ma) is used for extrapolating the ages of sites that are clearly older (˜1.4 Ma).

  20. On the vagal cardiac nerves, with special reference to the early evolution of the head-trunk interface.

    Science.gov (United States)

    Higashiyama, Hiroki; Hirasawa, Tatsuya; Oisi, Yasuhiro; Sugahara, Fumiaki; Hyodo, Susumu; Kanai, Yoshiakira; Kuratani, Shigeru

    2016-09-01

    The vagus nerve, or the tenth cranial nerve, innervates the heart in addition to other visceral organs, including the posterior visceral arches. In amniotes, the anterior and posterior cardiac branches arise from the branchial and intestinal portions of the vagus nerve to innervate the arterial and venous poles of the heart, respectively. The evolution of this innervation pattern has yet to be elucidated, due mainly to the lack of morphological data on the vagus in basal vertebrates. To investigate this topic, we observed the vagus nerves of the lamprey (Lethenteron japonicum), elephant shark (Callorhinchus milii), and mouse (Mus musculus), focusing on the embryonic patterns of the vagal branches in the venous pole. In the lamprey, no vagus branch was found in the venous pole throughout development, whereas the arterial pole was innervated by a branch from the branchial portion. In contrast, the vagus innervated the arterial and venous poles in the mouse and elephant shark. Based on the morphological patterns of these branches, the venous vagal branches of the mouse and elephant shark appear to belong to the intestinal part of the vagus, implying that the cardiac nerve pattern is conserved among crown gnathostomes. Furthermore, we found a topographical shift of the structures adjacent to the venous pole (i.e., the hypoglossal nerve and pronephros) between the extant gnathostomes and lamprey. Phylogenetically, the lamprey morphology is likely to be the ancestral condition for vertebrates, suggesting that the evolution of the venous branch occurred early in the gnathostome lineage, in parallel with the remodeling of the head-trunk interfacial domain during the acquisition of the neck. J. Morphol. 277:1146-1158, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. The mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma represents a model for early evolution of sex chromosomes.

    Directory of Open Access Journals (Sweden)

    Audrius Menkis

    2008-03-01

    Full Text Available We combined gene divergence data, classical genetics, and phylogenetics to study the evolution of the mating-type chromosome in the filamentous ascomycete Neurospora tetrasperma. In this species, a large non-recombining region of the mating-type chromosome is associated with a unique fungal life cycle where self-fertility is enforced by maintenance of a constant state of heterokaryosis. Sequence divergence between alleles of 35 genes from the two single mating-type component strains (i.e. the homokaryotic mat A or mat a-strains, derived from one N. tetrasperma heterokaryon (mat A+mat a, was analyzed. By this approach we were able to identify the boundaries and size of the non-recombining region, and reveal insight into the history of recombination cessation. The non-recombining region covers almost 7 Mbp, over 75% of the chromosome, and we hypothesize that the evolution of the mating-type chromosome in this lineage involved two successive events. The first event was contemporaneous with the split of N. tetrasperma from a common ancestor with its outcrossing relative N. crassa and suppressed recombination over at least 6.6 Mbp, and the second was confined to a smaller region in which recombination ceased more recently. In spite of the early origin of the first "evolutionary stratum", genealogies of five genes from strains belonging to an additional N. tetrasperma lineage indicate independent initiations of suppressed recombination in different phylogenetic lineages. This study highlights the shared features between the sex chromosomes found in the animal and plant kingdoms and the fungal mating-type chromosome, despite fungi having no separate sexes. As is often found in sex chromosomes of plants and animals, recombination suppression of the mating-type chromosome of N. tetrasperma involved more than one evolutionary event, covers the majority of the mating-type chromosome and is flanked by distal regions with obligate crossovers.

  2. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others)(a).

    Science.gov (United States)

    Bernhardt, Harold S

    2012-07-13

    The problems associated with the RNA world hypothesis are well known. In the following I discuss some of these difficulties, some of the alternative hypotheses that have been proposed, and some of the problems with these alternative models. From a biosynthetic - as well as, arguably, evolutionary - perspective, DNA is a modified RNA, and so the chicken-and-egg dilemma of "which came first?" boils down to a choice between RNA and protein. This is not just a question of cause and effect, but also one of statistical likelihood, as the chance of two such different types of macromolecule arising simultaneously would appear unlikely. The RNA world hypothesis is an example of a 'top down' (or should it be 'present back'?) approach to early evolution: how can we simplify modern biological systems to give a plausible evolutionary pathway that preserves continuity of function? The discovery that RNA possesses catalytic ability provides a potential solution: a single macromolecule could have originally carried out both replication and catalysis. RNA - which constitutes the genome of RNA viruses, and catalyzes peptide synthesis on the ribosome - could have been both the chicken and the egg! However, the following objections have been raised to the RNA world hypothesis: (i) RNA is too complex a molecule to have arisen prebiotically; (ii) RNA is inherently unstable; (iii) catalysis is a relatively rare property of long RNA sequences only; and (iv) the catalytic repertoire of RNA is too limited. I will offer some possible responses to these objections in the light of work by our and other labs. Finally, I will critically discuss an alternative theory to the RNA world hypothesis known as 'proteins first', which holds that proteins either preceded RNA in evolution, or - at the very least - that proteins and RNA coevolved. I will argue that, while theoretically possible, such a hypothesis is probably unprovable, and that the RNA world hypothesis, although far from perfect or

  3. Early geomorphological evolution of the North Polar Layered Deposits, Mars, from SHARAD radar-facies mapping

    Science.gov (United States)

    Nerozzi, Stefano; Holt, John W.

    2014-05-01

    The north polar layered deposits (NPLD) are the largest accumulation of water ice in the northern hemisphere of Mars. Since their discovery, they are thought to hold a valuable record of recent climate change within their stratigraphy (Murray et al., Icarus, 1972; Cutts, JGR, 1973b), yet little is known about their age and accumulation history. Due to exposures in trough walls, detailed stratigraphy of the uppermost layers and their evolution have been studied extensively since the first Mariner 9 images of the NPLD (e.g. Soderblom et al., JGR, 1973). However, large portions of the polar cap are still unmapped and no detailed studies of the lowermost layered deposits have been performed to date, primarily due to a general lack of visible exposures. Correlation of reflectors within radargrams acquired by the Shallow Radar (SHARAD) (Seu et al., Planet. Space Sci., 2004) onboard Mars Reconnaissance Orbiter makes a detailed stratigraphic reconstruction of the NPLD possible. An extensive set of radargrams is available over Planum Boreum and individual reflectors can be traced over hundreds of kilometers (Seu et al., JGR, 2007a; Putzig et al., Icarus, 2009; Holt et al., Nature, 2010) with a theoretical vertical resolution of ~9 m in water ice (Seu et al., JGR, 2007a). In this study, we present a highly-detailed stratigraphic reconstruction of the first ~500 m of the NPLD at a scale down to the single reflector. A set of 8 horizons was tracked across 700+ radargrams, and thicknesses were calculated for each stratigraphic interval assuming a bulk composition of water ice. Along with the quantitative analysis of derived isopach maps, this study is based on the qualitative comparison of "radar facies" in different locations of Planum Boreum with techniques borrowed from traditional sequence stratigraphy. In general, the NPLD is characterized by uniform layering. However, important layer extent and thickness variations are observed within the lowermost sequence. Limited

  4. Evolution of GHF5 endoglucanase gene structure in plant-parasitic nematodes: no evidence for an early domain shuffling event

    Directory of Open Access Journals (Sweden)

    Gheysen Godelieve

    2008-11-01

    Full Text Available Abstract Background Endo-1,4-beta-glucanases or cellulases from the glycosyl hydrolase family 5 (GHF5 have been found in numerous bacteria and fungi, and recently also in higher eukaryotes, particularly in plant-parasitic nematodes (PPN. The origin of these genes has been attributed to horizontal gene transfer from bacteria, although there still is a lot of uncertainty about the origin and structure of the ancestral GHF5 PPN endoglucanase. It is not clear whether this ancestral endoglucanase consisted of the whole gene cassette, containing a catalytic domain and a carbohydrate-binding module (CBM, type 2 in PPN and bacteria or only of the catalytic domain while the CBM2 was retrieved by domain shuffling later in evolution. Previous studies on the evolution of these genes have focused primarily on data of sedentary nematodes, while in this study, extra data from migratory nematodes were included. Results Two new endoglucanases from the migratory nematodes Pratylenchus coffeae and Ditylenchus africanus were included in this study. The latter one is the first gene isolated from a PPN of a different superfamily (Sphaerularioidea; all previously known nematode endoglucanases belong to the superfamily Tylenchoidea (order Rhabditida. Phylogenetic analyses were conducted with the PPN GHF5 endoglucanases and homologous endoglucanases from bacterial and other eukaryotic lineages such as beetles, fungi and plants. No statistical incongruence between the phylogenetic trees deduced from the catalytic domain and the CBM2 was found, which could suggest that both domains have evolved together. Furthermore, based on gene structure data, we inferred a model for the evolution of the GHF5 endoglucanase gene structure in plant-parasitic nematodes. Our data confirm a close relationship between Pratylenchus spp. and the root knot nematodes, while some Radopholus similis endoglucanases are more similar to cyst nematode genes. Conclusion We conclude that the ancestral

  5. Late Cretaceous-early Eocene counterclockwise rotation of the Fueguian Andes and evolution of the Patagonia-Antarctic Peninsula system

    Science.gov (United States)

    Poblete, F.; Roperch, P.; Arriagada, C.; Ruffet, G.; Ramírez de Arellano, C.; Hervé, F.; Poujol, M.

    2016-02-01

    The southernmost Andes of Patagonia and Tierra del Fuego present a prominent arc-shaped structure: the Patagonian Bend. Whether the bending is a primary curvature or an orocline is still matter of controversy. New paleomagnetic data have been obtained south of the Beagle Channel in 39 out of 61 sites. They have been drilled in Late Jurassic and Early Cretaceous sediments and interbedded volcanics and in mid-Cretaceous to Eocene intrusives of the Fuegian Batholith. The anisotropy of magnetic susceptibility was measured at each site and the influence of magnetic fabric on the characteristic remanent magnetizations (ChRM) in plutonic rocks was corrected using inverse tensors of anisotropy of remanent magnetizations. Normal polarity secondary magnetizations with west-directed declination were obtained in the sediments and they did not pass the fold test. These characteristic directions are similar to those recorded by mid Cretaceous intrusives suggesting a remagnetization event during the normal Cretaceous superchron and describe a large (> 90°) counterclockwise rotation. Late Cretaceous to Eocene rocks of the Fueguian Batholith, record decreasing counterclockwise rotations of 45° to 30°. These paleomagnetic results are interpreted as evidence of a large counterclockwise rotation of the Fueguian Andes related to the closure of the Rocas Verdes Basin and the formation of the Darwin Cordillera during the Late Cretaceous and Paleocene. The tectonic evolution of the Patagonian Bend can thus be described as the formation of a progressive arc from an oroclinal stage during the closure of the Rocas Verdes basin to a mainly primary arc during the final stages of deformation of the Magallanes fold and thrust belt. Plate reconstructions show that the Antarctic Peninsula would have formed a continuous margin with Patagonia between the Early Cretaceous and the Eocene, and acted as a non-rotational rigid block facilitating the development of the Patagonian Bend.

  6. The co-evolution of total density profiles and central dark matter fractions in simulated early-type galaxies

    Science.gov (United States)

    Remus, Rhea-Silvia; Dolag, Klaus; Naab, Thorsten; Burkert, Andreas; Hirschmann, Michaela; Hoffmann, Tadziu L.; Johansson, Peter H.

    2017-01-01

    We present evidence from cosmological hydrodynamical simulations for a co-evolution of the slope of the total (dark and stellar) mass density profile, γtot, and the dark matter fraction within the half-mass radius, fDM, in early-type galaxies. The relation can be described as γtot = A fDM + B for all systems at all redshifts. The trend is set by the decreasing importance of gas dissipation towards lower redshifts and for more massive systems. Early-type galaxies are smaller, more concentrated, have lower fDM and steeper γtot at high redshifts and at lower masses for a given redshift; fDM and γtot are good indicators for growth by `dry' merging. The values for A and B change distinctively for different feedback models, and this relation can be used as a test for such models. A similar correlation exists between γtot and the stellar mass surface density Σ*. A model with weak stellar feedback and feedback from black holes is in best agreement with observations. All simulations, independent of the assumed feedback model, predict steeper γtot and lower fDM at higher redshifts. While the latter is in agreement with the observed trends, the former is in conflict with lensing observations, which indicate constant or decreasing γtot. This discrepancy is shown to be artificial: the observed trends can be reproduced from the simulations using observational methodology to calculate the total density slopes.

  7. A new transitional sauropodomorph dinosaur from the Early Jurassic of South Africa and the evolution of sauropod feeding and quadrupedalism.

    Science.gov (United States)

    Yates, Adam M; Bonnan, Matthew F; Neveling, Johann; Chinsamy, Anusuya; Blackbeard, Marc G

    2010-03-01

    Aardonyx celestae gen. et sp. nov. is described from the upper Elliot Formation (Early Jurassic) of South Africa. It can be diagnosed by autapomorphies of the skull, particularly the jaws, cervical column, forearm and pes. It is found to be the sister group of a clade of obligatory quadrupedal sauropodomorphs (Melanorosaurus + Sauropoda) and thus lies at the heart of the basal sauropodomorph-sauropod transition. The narrow jaws of A. celestae retain a pointed symphysis but appear to have lacked fleshy cheeks. Broad, U-shaped jaws were previously thought to have evolved prior to the loss of gape-restricting cheeks. However, the narrow jaws of A. celestae retain a pointed symphysis but appear to have lacked fleshy cheeks, demonstrating unappreciated homoplasy in the evolution of the sauropod bulk-browsing apparatus. The limbs of A. celestae indicate that it retained a habitual bipedal gait although incipient characters associated with the pronation of the manus and the adoption of a quadrupedal gait are evident through geometric morphometric analysis (using thin-plate splines) of the ulna and femur. Cursorial ability appears to have been reduced and the weight bearing axis of the pes shifted to a medial, entaxonic position, falsifying the hypothesis that entaxony evolved in sauropods only after an obligate quadrupedal gait had been adopted.

  8. Early floral development of Heliconia latispatha (Heliconiaceae), a key taxon for understanding the evolution of flower development in the Zingiberales.

    Science.gov (United States)

    Kirchoff, Bruce K; Lagomarsino, Laura P; Newman, Winnell H; Bartlett, Madelaine E; Specht, Chelsea D

    2009-03-01

    We present new comparative data on early floral development of Heliconia latispatha, an ecologically and horticulturally important tropical plant within the order Zingiberales. Modification of the six members of two androecial whorls is characteristic of Zingiberales, with a reduction in number of fertile stamen from five or six in the banana families (Musaceae, Strelitziaceae, Lowiaceae, and Heliconiaceae) to one in Costaceae and Zingiberaceae and one-half in Marantaceae and Cannaceae. The remaining five infertile stamens in these later four families (the ginger families) are petaloid, and in Costaceae and Zingiberaceae fuse together to form a novel structure, the labellum. Within this developmental sequence, Heliconiaceae share with the ginger families the possession of an antisepalous staminode, a synapomorphy that has been used to place Heliconiaceae as sister to the ginger family clade. Here, we use epi-illumination light microscopy and reconstruction of serial sections to investigate the ontogeny of the Heliconia flower with emphasis on the ontogeny of the staminode. We compare floral development in Heliconia with that previously described for other species of Zingiberales. A comparison of floral structure and development across Zingiberales is presented to better understand the evolution of the flower in this charismatic group of tropical plants.

  9. Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies).

    Science.gov (United States)

    Pellicer, J; Kelly, L J; Magdalena, C; Leitch, I J

    2013-08-01

    Nymphaeales are the most species-rich lineage of the earliest diverging angiosperms known as the ANA grade (Amborellales, Nymphaeales, Austrobaileyales), and they have received considerable attention from morphological, physiological, and ecological perspectives. Although phylogenetic relationships between these three lineages of angiosperms are mainly well resolved, insights at the whole genome level are still limited because of a dearth of information. To address this, genome sizes and chromosome numbers in 34 taxa, comprising 28 species were estimated and analysed together with previously published data to provide an overview of genome size and chromosome diversity in Nymphaeales. Overall, genome sizes were shown to vary 10-fold and chromosome numbers and ploidy levels ranged from 2n = 2x = 18 to 2n = 16x = ∼224. Distinct patterns of genome diversity were apparent, reflecting the differential incidence of polyploidy, changes in repetitive DNA content, and chromosome rearrangements within and between genera. Using model-based approaches, ancestral genome size and basic chromosome numbers were reconstructed to provide insights into the dynamics of genome size and chromosome number evolution. Finally, by combining additional data from Amborellales and Austrobaileyales, a comprehensive overview of genome sizes and chromosome numbers in these early diverging angiosperms is presented.

  10. Inferences from protein and nucleic acid sequences - Early molecular evolution, divergence of kingdoms and rates of change

    Science.gov (United States)

    Dayhoff, M. O.; Barker, W. C.; Mclaughlin, P. J.

    1974-01-01

    Description of new sensitive, objective methods for establishing the probable common ancestry of very distantly related sequences and the quantitative evolutionary change which has taken place. These methods are applied to four families of proteins and nucleic acids and evolutionary trees will be derived where possible. Of the three families containing duplications of genetic material, two are nucleic acids: transfer RNA and 5S ribosomal RNA. Both of these structures are functional in the synthesis of coded proteins, and prototypes must have been present in the cell at the inception of the fundamental coding process that all living things share. There are many types of tRNA which recognize the various nucleotide triplets and the 20 amino acids. These types are thought to have arisen as a result of many gene duplications. Relationships among these types are discussed. The 5S ribosomal RNA, presently functional in both eukaryotes and prokaryotes, is very likely descended from an early form incorporating almost a complete duplication of genetic material. The amount of evolution in the various lines can again be compared. The other two families containing duplications are proteins; ferredoxin and cytochrome c.

  11. A gene family derived from transposable elements during early angiosperm evolution has reproductive fitness benefits in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Zoé Joly-Lopez

    2012-09-01

    Full Text Available The benefits of ever-growing numbers of sequenced eukaryotic genomes will not be fully realized until we learn to decipher vast stretches of noncoding DNA, largely composed of transposable elements. Transposable elements persist through self-replication, but some genes once encoded by transposable elements have, through a process called molecular domestication, evolved new functions that increase fitness. Although they have conferred numerous adaptations, the number of such domesticated transposable element genes remains unknown, so their evolutionary and functional impact cannot be fully assessed. Systematic searches that exploit genomic signatures of natural selection have been employed to identify potential domesticated genes, but their predictions have yet to be experimentally verified. To this end, we investigated a family of domesticated genes called MUSTANG (MUG, identified in a previous bioinformatic search of plant genomes. We show that MUG genes are functional. Mutants of Arabidopsis thaliana MUG genes yield phenotypes with severely reduced plant fitness through decreased plant size, delayed flowering, abnormal development of floral organs, and markedly reduced fertility. MUG genes are present in all flowering plants, but not in any non-flowering plant lineages, such as gymnosperms, suggesting that the molecular domestication of MUG may have been an integral part of early angiosperm evolution. This study shows that systematic searches can be successful at identifying functional genetic elements in noncoding regions and demonstrates how to combine systematic searches with reverse genetics in a fruitful way to decipher eukaryotic genomes.

  12. Inferences from protein and nucleic acid sequences - Early molecular evolution, divergence of kingdoms and rates of change

    Science.gov (United States)

    Dayhoff, M. O.; Barker, W. C.; Mclaughlin, P. J.

    1974-01-01

    Description of new sensitive, objective methods for establishing the probable common ancestry of very distantly related sequences and the quantitative evolutionary change which has taken place. These methods are applied to four families of proteins and nucleic acids and evolutionary trees will be derived where possible. Of the three families containing duplications of genetic material, two are nucleic acids: transfer RNA and 5S ribosomal RNA. Both of these structures are functional in the synthesis of coded proteins, and prototypes must have been present in the cell at the inception of the fundamental coding process that all living things share. There are many types of tRNA which recognize the various nucleotide triplets and the 20 amino acids. These types are thought to have arisen as a result of many gene duplications. Relationships among these types are discussed. The 5S ribosomal RNA, presently functional in both eukaryotes and prokaryotes, is very likely descended from an early form incorporating almost a complete duplication of genetic material. The amount of evolution in the various lines can again be compared. The other two families containing duplications are proteins; ferredoxin and cytochrome c.

  13. Chemical Evolution in Hierarchical Models Of Cosmic Structure I: Constraints on the Early Stellar Initial Mass Function

    CERN Document Server

    Tumlinson, J

    2006-01-01

    I present a new Galactic chemical evolution model motivated by and grounded in the hierarchical theory of galaxy formation, as expressed by a halo merger history of the Galaxy. This model accurately reproduces the "metallicity distribution function" (MDF) for Population II stars residing today in the Galactic halo. The observed MDF and the apparent absence of true Population III stars from the halo strongly imply that there is some critical metallicity, Z_crit = 8 - 42 Msun. This mass range is similar to the masses predicted by models of primordial star formation that account for formation feedback. The model also implies that metal-poor halo stars below [Fe/H] <~ -3 had only 1 - 10 metal-free stars as their supernova precursors, such that the relative abundances in these halo stars exhibit IMF-weighted averages over the intrinsic yields of the first supernovae. This paper is the first part of a long term project to connect the high-redshift in situ indicators of early star formation with the low-z, old r...

  14. Global modelling of the early Martian climate under a denser CO2 atmosphere: Water cycle and ice evolution

    CERN Document Server

    Wordsworth, R; Millour, E; Head, J; Madeleine, J -B; Charnay, B

    2012-01-01

    We discuss 3D global simulations of the early Martian climate that we have performed assuming a faint young Sun and denser CO2 atmosphere. We include a self-consistent representation of the water cycle, with atmosphere-surface interactions, atmospheric transport, and the radiative effects of CO2 and H2O gas and clouds taken into account. We find that for atmospheric pressures greater than a fraction of a bar, the adiabatic cooling effect causes temperatures in the southern highland valley network regions to fall significantly below the global average. Long-term climate evolution simulations indicate that in these circumstances, water ice is transported to the highlands from low-lying regions for a wide range of orbital obliquities, regardless of the extent of the Tharsis bulge. In addition, an extended water ice cap forms on the southern pole, approximately corresponding to the location of the Noachian/Hesperian era Dorsa Argentea Formation. Even for a multiple-bar CO2 atmosphere, conditions are too cold to a...

  15. Structural and Sequence Similarities of Hydra Xeroderma Pigmentosum A Protein to Human Homolog Suggest Early Evolution and Conservation

    Directory of Open Access Journals (Sweden)

    Apurva Barve

    2013-01-01

    Full Text Available Xeroderma pigmentosum group A (XPA is a protein that binds to damaged DNA, verifies presence of a lesion, and recruits other proteins of the nucleotide excision repair (NER pathway to the site. Though its homologs from yeast, Drosophila, humans, and so forth are well studied, XPA has not so far been reported from protozoa and lower animal phyla. Hydra is a fresh-water cnidarian with a remarkable capacity for regeneration and apparent lack of organismal ageing. Cnidarians are among the first metazoa with a defined body axis, tissue grade organisation, and nervous system. We report here for the first time presence of XPA gene in hydra. Putative protein sequence of hydra XPA contains nuclear localization signal and bears the zinc-finger motif. It contains two conserved Pfam domains and various characterized features of XPA proteins like regions for binding to excision repair cross-complementing protein-1 (ERCC1 and replication protein A 70 kDa subunit (RPA70 proteins. Hydra XPA shows a high degree of similarity with vertebrate homologs and clusters with deuterostomes in phylogenetic analysis. Homology modelling corroborates the very close similarity between hydra and human XPA. The protein thus most likely functions in hydra in the same manner as in other animals, indicating that it arose early in evolution and has been conserved across animal phyla.

  16. Temporal evolution of multidetector CT findings after endoscopic submucosal dissection in patients with early gastric cancer: Correlation with endoscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Dong Myung, E-mail: duehdaud@gmail.com [Department of Radiology, Yeouido St. Mary' s Hospital, The Catholic University of Korea (Korea, Republic of); Chung, Dong Jin, E-mail: bookdoo7@catholic.ac.kr [Department of Radiology, Yeouido St. Mary' s Hospital, The Catholic University of Korea (Korea, Republic of); Cheung, Dae Young, E-mail: adagio@catholic.ac.kr [Department of Internal Medicine, Yeouido St. Mary' s Hospital, The Catholic University of Korea (Korea, Republic of); Lee, Jae Mun, E-mail: jaemun@catholic.ac.kr [Department of Radiology, Yeouido St. Mary' s Hospital, The Catholic University of Korea (Korea, Republic of)

    2014-06-15

    Objective: To assess changes over time in imaging findings retrospectively by multidetector CT (MDCT) with two-dimensional (2D) multiplanar reconstruction and three-dimensional (3D) CT gastrography (CTG), after endoscopic submucosal dissection (ESD) in patients with early gastric cancer (EGC), and to correlate 3D CT images with endoscopic appearance. Materials and methods: In this retrospective study, a total of 84 patients underwent ESD and were followed up with MDCT. Fifteen patients underwent CT twice, and 3 patients underwent CT 3 times. A total of 105 CTs were included in this study and 43 CTs contained 3D CTGs. Two radiologists in consensus interpreted CT images for lesion detectability, presence and characteristics of ulcer, focal wall thickening, perigastric fat infiltration, and overlying enhancing layer in 2D images. The presence of ulcer or subtle mucosal nodularity, ulcer mound, and fold convergence were analysed in 3D CT images. We also assessed the time interval between ESD and CT and analysed the temporal evolution of CT findings. The sensitivity, specificity, and overall accuracy of 3D CTG were assessed regarding endoscopic features as the gold standard. Results: The mean interval between ESD and follow up CT was 76.9 days (median, 62; range, 2–223). No tumour recurrence in any lesion was found on follow-up endoscopic biopsy and also lymph node or distant metastasis was not observed on CT exams in the follow-up period. The lesion detectability in a total of 105 post-ESD 2D CT images was 42.0% (44/105), and 93.2% (41/44) of the detected lesions were visualizable 2 months after ESD. Focal wall thickening was observed during the entire follow-up period in all patients. Perigastric fat infiltration was observed in 4 lesions within 1 week of ESD. Overlying enhancing layer appeared in 27 lesions without temporal evolution. On a total of 43 post-ESD 3D CTG, lesion detectability was 76.7% (33/43), and lesions could be visualized for a longer period than

  17. Towards a palaeoecological model of the Mesoproterozoic Taoudeni Basin, Mauritania, Northwestern Africa: implications for early eukaryote evolution

    Science.gov (United States)

    Beghin, Jérémie; Guilbaud, Romain; Poulton, Simon W.; Gueneli, Nur; Brocks, Jochen J.; Storme, Jean-Yves; Blanpied, Christian; Javaux, Emmanuelle J.

    2016-04-01

    The mid-Proterozoic rock record preserves a relatively moderate diversity of early eukaryotes, despite the early evolution of fundamental features of the eukaryotic cell. Common hypotheses involve the redox state of stratified oceans with oxic shallow waters, euxinic mid-depth waters, and anoxic and ferruginous deep waters during this time period. Mid-Proterozoic eukaryotes would have found suitable ecological niches in estuarine, fluvio-deltaic and coastal shallow marine environments near nutrient sources, while N2-fixing photoautotrophs bacteria would have been better competitors than eukaryotic algae in nutrient-poor niches. Here, we present the first palaeoecological model of the late Mesoproterozoic Taoudeni Basin, Mauritania, Northwestern Africa. Previous palaeontological studies in the basin reported stromatolites, a low diversity of microfossils - including one species of presumed eukaryotes: verrucae-bearing acritarch - and biomarkers of anoxygenic phototrophic purple and green sulfur bacteria, cyanobacteria and microaerophilic methanotrophs. However, no biomarkers diagnostic for crown group eukaryotes were reported so far. In addition to exceptionally well preserved microbial mats showing chain-like aggregates of pyrite grains, we observed a total of sixty-two morphotaxa including nine presumed prokaryotes, thirty-five possible prokaryotes or eukaryotes, fifteen unambiguous species of eukaryotes - ornamented and process-bearing acritarchs, multicellular morphotaxon, putative VSMs, large budding vesicles, and vesicles with a sophisticated excystment structure: the pylome - and three remains of structured kerogen. Here, we combined the geological context (sedimentological features and lithofacies), iron speciation (n = 156) - with the aim of reconstructing palaeoredox environmental conditions -, and microfossils quantitative analysis (n = 61). Sediments were deposited under shallow waters in pericratonic (western basin) and epicratonic (eastern basin

  18. Potomacapnos apeleutheron gen. et sp. nov., a new Early Cretaceous angiosperm from the Potomac Group and its implications for the evolution of eudicot leaf architecture.

    Science.gov (United States)

    Jud, Nathan A; Hickey, Leo J

    2013-12-01

    Eudicots diverged early in the evolution of flowering plants and now comprise more than 70% of angiosperm species. In spite of the importance of eudicots, our understanding of the early evolution of this clade is limited by a poor fossil record and uncertainty about the order of early phylogenetic branching. The study of Lower Cretaceous fossils can reveal much about the evolution, morphology, and ecology of the eudicots. Fossils described here were collected from Aptian sediments of the Potomac Group exposed at the Dutch Gap locality in Virginia, USA. Specimens were prepared by degaging, then described and compared with leaves of relevant extant and fossil plants. We conducted a phylogenetic analysis of morphological characters using parsimony while constraining the tree search with the topology found through molecular phylogenetic analyses. The new species is closely related to ranunculalean eudicots and has leaf architecture remarkably similar to some living Fumarioideae (Papaveraceae). These are the oldest eudicot megafossils from North America, and they show complex leaf architecture reflecting developmental pathways unique to extant eudicots. The morphology and small size of the fossils suggest that they were herbaceous plants, as is seen in other putative early eudicots. The absence of co-occurring tricolpate pollen at Dutch Gap either (1) reflects low preservation probability for pollen of entomophilous herbs or (2) indicates that some leaf features of extant eudicots appeared before the origin of tricolpate pollen.

  19. From flat foot to fat foot: structure, ontogeny, function, and evolution of elephant "sixth toes".

    Science.gov (United States)

    Hutchinson, John R; Delmer, Cyrille; Miller, Charlotte E; Hildebrandt, Thomas; Pitsillides, Andrew A; Boyde, Alan

    2011-12-23

    Several groups of tetrapods have expanded sesamoid (small, tendon-anchoring) bones into digit-like structures ("predigits"), such as pandas' "thumbs." Elephants similarly have expanded structures in the fat pads of their fore- and hindfeet, but for three centuries these have been overlooked as mere cartilaginous curiosities. We show that these are indeed massive sesamoids that employ a patchy mode of ossification of a massive cartilaginous precursor and that the predigits act functionally like digits. Further, we reveal clear osteological correlates of predigit joint articulation with the carpals/tarsals that are visible in fossils. Our survey shows that basal proboscideans were relatively "flat-footed" (plantigrade), whereas early elephantiforms evolved the more derived "tip-toed" (subunguligrade) morphology, including the predigits and fat pad, of extant elephants. Thus, elephants co-opted sesamoid bones into a role as false digits and used them for support as they changed their foot posture.

  20. Independent specialisation of myosin II paralogues in muscle vs. non-muscle functions during early animal evolution: a ctenophore perspective

    Directory of Open Access Journals (Sweden)

    Dayraud Cyrielle

    2012-07-01

    Full Text Available Abstract Background Myosin II (or Myosin Heavy Chain II, MHCII is a family of molecular motors involved in the contractile activity of animal muscle cells but also in various other cellular processes in non-muscle cells. Previous phylogenetic analyses of bilaterian MHCII genes identified two main clades associated respectively with smooth/non-muscle cells (MHCIIa and striated muscle cells (MHCIIb. Muscle cells are generally thought to have originated only once in ancient animal history, and decisive insights about their early evolution are expected to come from expression studies of Myosin II genes in the two non-bilaterian phyla that possess muscles, the Cnidaria and Ctenophora. Results We have uncovered three MHCII paralogues in the ctenophore species Pleurobrachia pileus. Phylogenetic analyses indicate that the MHCIIa / MHCIIb duplication is more ancient than the divergence between extant metazoan lineages. The ctenophore MHCIIa gene (PpiMHCIIa has an expression pattern akin to that of "stem cell markers" (Piwi, Vasa… and is expressed in proliferating cells. We identified two MHCIIb genes that originated from a ctenophore-specific duplication. PpiMHCIIb1 represents the exclusively muscular form of myosin II in ctenophore, while PpiMHCIIb2 is expressed in non-muscle cells of various types. In parallel, our phalloidin staining and TEM observations highlight the structural complexity of ctenophore musculature and emphasize the experimental interest of the ctenophore tentacle root, in which myogenesis is spatially ordered and strikingly similar to striated muscle formation in vertebrates. Conclusion MHCIIa expression in putative stem cells/proliferating cells probably represents an ancestral trait, while specific involvement of some MHCIIa genes in smooth muscle fibres is a uniquely derived feature of the vertebrates. That one ctenophore MHCIIb paralogue (PpiMHCIIb2 has retained MHCIIa-like expression features furthermore suggests that muscular

  1. Spray cryotherapy (SCT): institutional evolution of techniques and clinical practice from early experience in the treatment of malignant airway disease

    Science.gov (United States)

    Turner, J. Francis; Parrish, Scott

    2015-01-01

    Background Spray cryotherapy (SCT) was initially developed for gastroenterology (GI) endoscopic use in the esophagus. In some institutions where a device has been utilized by GI, transition to use in the airways by pulmonologists and thoracic surgeons occurred. Significant differences exist, however, in the techniques for safely using SCT in the airways. Methods We describe the early experience at Walter Reed National Military Medical Center from 2011 to 2013 using SCT in patients with malignant airway disease and the evolution of our current techniques and clinical practice patterns for SCT use in patients. In November 2013 enrollment began in a multi-institutional prospective SCT registry in which we are still enrolling and will be reported on separately. Results Twenty-seven patients that underwent 80 procedures (2.96 procedures/patient). The average age was 63 years with a range of 20 to 87 years old. The average Eastern Cooperative Oncology Group (ECOG) status was 1.26. All malignancies were advanced stage disease. All procedures were performed in the central airways. Other modalities were used in combination with SCT in 31 (39%) of procedures. Additionally 45 of the 80 (56%) procedures were performed in proximity to a silicone, hybrid, or metal stent. Three complications occurred out of the 80 procedures. All three were transient hypoxia that limited continued SCT treatments. These patients were all discharged from the bronchoscopy recovery room to their pre-surgical state. Conclusions SCT can be safely used for treatment of malignant airway tumor (MAT) in the airways. Understanding passive venting of the nitrogen gas produced as the liquid nitrogen changes to gas is important for safe use of the device. Complications can be minimized by adopting strict protocols to maximize passive venting and to allow for adequate oxygenation in between sprays. PMID:26807288

  2. Leaf evolution in early-diverging ferns: insights from a new fern-like plant from the Late Devonian of China.

    Science.gov (United States)

    Wang, De-Ming; Xu, Hong-He; Xue, Jin-Zhuang; Wang, Qi; Liu, Le

    2015-06-01

    With the exception of angiosperms, the main euphyllophyte lineages (i.e. ferns sensu lato, progymnosperms and gymnosperms) had evolved laminate leaves by the Late Devonian. The evolution of laminate leaves, however, remains unclear for early-diverging ferns, largely represented by fern-like plants. This study presents a novel fern-like taxon with pinnules, which provides new insights into the early evolution of laminate leaves in early-diverging ferns. Macrofossil specimens were collected from the Upper Devonian (Famennian) Wutong Formation of Anhui and Jiangsu Provinces, South China. A standard degagement technique was employed to uncover compressed plant portions within the rock matrix. A new fern-like taxon, SHOUGANGIA BELLA GEN ET SP NOV: , is described and represents an early-diverging fern with highly derived features. It has a partially creeping stem with adventitious roots only on one side, upright primary and secondary branches arranged in helices, tertiary branches borne alternately or (sub)oppositely, laminate and usually lobed leaves with divergent veins, and complex fertile organs terminating tertiary branches and possessing multiple divisions and numerous terminal sporangia. Shougangia bella provides unequivocal fossil evidence for laminate leaves in early-diverging ferns. It suggests that fern-like plants, along with other euphyllophyte lineages, had independently evolved megaphylls by the Late Devonian, possibly in response to a significant decline in atmospheric CO2 concentration. Among fern-like plants, planate ultimate appendages are homologous with laminate pinnules, and in the evolution of megaphylls, fertile organs tend to become complex. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The Size Evolution of Passive Galaxies: Observations from the Wide Field Camera 3 Early Release Science Program

    CERN Document Server

    Ryan, R E; Cohen, S H; Yan, H; Hathi, N P; Koekemoer, A M; Rutkowski, M J; Mechtley, M R; Windhorst, R A; O'Connell, R W; Balick, B; Bond, H E; Bushouse, H; Calzetti, D; Crockett, R M; Disney, M; Dopita, M A; Frogel, J A; Hall, D N B; Holtzman, J A; Kaviraj, S; Kimble, R A; MacKenty, J; Mutchler, M; Paresce, F; Saha, A; Silk, J I; Trauger, J; Walker, A R; Whitmore, B C; Young, E

    2010-01-01

    We present results on the size evolution of passively evolving galaxies at 11.5. We identify 30 galaxies in ~40 square arcmin to H<25 mag. We supplement spectroscopic redshifts from the literature with photometric redshifts determined from the 15-band photometry from 0.22-8 micron. We determine effective radii from Sersic profile fits to the H-band image using an empirical PSF. We find that size evolution is a strong function of stellar mass, with the most massive (M* ~ 10^11 Msol) galaxies undergoing the most rapid evolution from z~2 to the present. Parameterizing the size evolution as (1+z)^{-alpha}, we find a tentative scaling between alpha and stellar mass of alpha ~ -1.8+1.4 log(M*/10^9 Msol). We briefly discuss the implications of this result for our understanding of the dynamical evolution of the red galaxies.

  4. The DEEP3 Galaxy Redshift Survey: The Impact of Environment on the Size Evolution of Massive Early-type Galaxies at Intermediate Redshift

    CERN Document Server

    Cooper, Michael C; Newman, Jeffrey A; Coil, Alison L; Davis, Marc; Dutton, Aaron A; Faber, S M; Guhathakurta, Puragra; Koo, David C; Lotz, Jennifer M; Weiner, Benjamin J; Willmer, Christopher N A; Yan, Renbin

    2011-01-01

    Using data drawn from the DEEP2 and DEEP3 Galaxy Redshift Surveys, we investigate the relationship between the environment and the structure of galaxies residing on the red sequence at intermediate redshift. Within the massive (10 < log(M*/Msun) < 11) early-type population at 0.4 < z <1.2, we find a significant correlation between local galaxy overdensity (or environment) and galaxy size, such that early-type systems in higher-density regions tend to have larger effective radii (by ~0.5 kpc or 25% larger) than their counterparts of equal stellar mass and Sersic index in lower-density environments. This observed size-density relation is consistent with a model of galaxy formation in which the evolution of early-type systems at z < 2 is accelerated in high-density environments such as groups and clusters and in which dry, minor mergers (versus mechanisms such as quasar feedback) play a central role in the structural evolution of the massive, early-type galaxy population.

  5. Evolution in the structural properties of early-type Brightest Cluster Galaxies at small lookback time and dependence on the environment

    CERN Document Server

    Bernardi, M

    2009-01-01

    At the present time, SDSS early-type BCGs have larger Re than early-type galaxies of similar L, whether these other objects are in the field, or are satellites in clusters (Re ~ L for BCGs). At fixed M* and formation time, BCGs at lower z are larger and have smaller velocity dispersions, i.e. Re increases and sigma decreases with age. As a result, at z~0.25, corresponding to a lookback time of order 3 Gyrs, BCGs are smaller than their lower z counterparts by as much as 70% for the brightest BCGs: Re evolves as (1+z)^{0.85(Mr+21)}. Qualitatively similar but weaker evolution in the sizes is also seen in the bulk of the early-type population: at Mr-22 the evolution is approximately (1+z)^{-0.7}, independent of Mr. The sigma-L correlation also evolves: (1+z)^{-0.2(Mr+21)} at Mr < -22 (as for the BCGs) and (1+z)^{0.2} for fainter galaxies. The Re- and sigma-M* correlations yield consistent results. These trends are most easily understood if early-type BCGs grew from many dry minor mergers rather than a few majo...

  6. Ultramassive dense early-type galaxies: Velocity dispersions and number density evolution since z = 1.6

    Science.gov (United States)

    Gargiulo, A.; Saracco, P.; Tamburri, S.; Lonoce, I.; Ciocca, F.

    2016-08-01

    Aims: We investigate the stellar mass assembly history of ultramassive (M⋆ ≳ 1011M⊙) dense (Σ = M⋆/2πRe2> 2500M⊙ pc-2) early-type galaxies (ETGs, elliptical and spheroidal galaxies) selected on basis of visual classification over the last 9 Gyr. Methods: We traced the evolution of the comoving number density ρ of ultramassive dense ETGs and compared their structural (effective radius Re and stellar mass M⋆) and dynamical (velocity dispersion σe) parameters over the redshift range 0 advantage of the COSMOS spectroscopic survey to probe the intermediate redshift range [0.2-1.0]. We derived the number density of ultramassive dense local ETGs from the SDSS sample taking all of the selection bias affecting the spectroscopic sample into account. To compare the dynamical and structural parameters, we collected a sample of 11 ultramassive dense ETGs at 1.2 measurements are available. For four of these ETGs (plus one at z = 1.91), we present previously unpublished estimates of velocity dispersion, based on optical VLT-FORS2 spectra. We probe the intermediate redshift range (0.2 ≲ z ≲ 0.9) and the local Universe with different ETGs samples. Results: We find that the comoving number density of ultramassive dense ETGs evolves with z as ρ(z) ∝ (1 + z)0.3 ± 0.8 implying a decrease of ~25% of the population of ultramassive dense ETGs since z = 1.6. By comparing the structural and dynamical properties of high-z ultramassive dense ETGs over the range 0 ≲ z < 1.6 in the [Re, M⋆, σe] plane, we find that all of the ETGs of the high-z sample have counterparts with similar properties in the local Universe. This implies either that the majority (~70%) of ultramassive dense ETGs already completed the assembly and shaping at ⟨ z ⟩ = 1.4, or that, if a significant portion of dense ETGs evolves in size, new ultramassive dense ETGs must form at z < 1.5 to maintain their number density at almost constant. The difficulty in identify good progenitors for these

  7. Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif, northeast China: Petrogenesis and implications for the tectonic evolution of the Mongol-Okhotsk suture belt

    Science.gov (United States)

    Wang, Wei; Tang, Jie; Xu, Wen-Liang; Wang, Feng

    2015-03-01

    The Mongol-Okhotsk suture belt played an important role in the tectonic evolution of northeast Asia during the Mesozoic. However, few studies have examined the influence of this tectonic belt on the geological evolution of northeast China. In this paper, we present zircon U-Pb geochronology, major and trace element geochemistry, and zircon Hf-O isotopic data for Early Jurassic volcanic rocks in the Erguna Massif of northeast China, with the aim of constraining the evolution of the Mongol-Okhotsk suture belt and its influence on the tectonic history of China during the Early Jurassic. Zircon U-Pb dating indicates that the trachybasalt and basaltic andesite in the study area were erupted between 193 ± 5 Ma and 181 ± 9 Ma (i.e., in the Early Jurassic). These Early Jurassic volcanic rocks belong to the high-K calc-alkaline series and are enriched in large ion lithophile elements and light rare earth elements, as well as being depleted in heavy rare earth elements and high field strength elements such as Nb and Ta. The rocks show a small negative Eu anomaly. The zircon εHf (182 Ma) values of the volcanic rocks range from - 1.9 to + 5.1, corresponding to TDM1 values of 640-901 Ma and TDM2 values of 901-1345 Ma. Zircons from two volcanic rocks yield δ18O values of 7.2‰ ± 1.5‰ (n = 19) and 6.6‰ ± 0.7‰ (n = 35). Geochemically, these Early Jurassic volcanic rocks are similar to those from active continental margin settings, and their primary magmas could have been derived from the partial melting of a lithospheric mantle wedge modified by fluid from a subducted slab. The discovery of Early Jurassic calc-alkaline volcanic rocks in the Erguna Massif, together with the coeval porphyry Cu-Mo deposits, indicates that an active continental margin existed in the Erguna area during the Early Jurassic. Taken together, we conclude that southward subduction of the Mongol-Okhotsk oceanic plate took place beneath the Erguna Massif during the Early Jurassic.

  8. Late Carboniferous to early Permian sedimentary–tectonic evolution of the north of Alxa, Inner Mongolia, China: Evidence from the Amushan Formation

    Directory of Open Access Journals (Sweden)

    Haiquan Yin

    2016-09-01

    Full Text Available The late Paleozoic evolution of the Wulijishanhen (WSH-Shangdan (SD area near to the Chaganchulu Ophiolite belt is reinterpreted. Analysis of the upper Carboniferous to lower Permian sedimentary sequence, biological associations, detrital materials, sandstone geochemistry and volcanic rocks indicates that the SD area was an epicontinental sea and rift during the late Paleozoic rather than a large-scale ocean undergoing spreading and closure. This study reveals that the actual evolution of the study area is from the late Carboniferous to the early Permian. The fusulinids Triticites sp. and Pseudoschwagerina sp. in the limestones demonstrate that the Amushan Formation develops during the late Carboniferous to the early Permian. The limestones at the base of the SD section indicate that it is a stable carbonate platform environment, the volcanic rocks in the middle of the sequence support a rift tectonic background, and the overlying conglomerates and sandstones are characteristic of an epicontinental sea or marine molasse setting. The rift volcanism made the differences in the fossil content of the SD and WSH sections and led to two sections expose different levels within the Amushan Formation and different process of tectonic evolution. Moreover, the geochemical characteristics and detrital materials of the sandstones show that the provenance and formation of the sandstones were related to the setting of active continental margin. The quartz-feldspar-lithic fragments distribution diagram indicates that the material source for the sandstones was a recycled orogenic belt. Thus, the source area of the sandstones may have been an active continental margin before the late Carboniferous–early Permian. The characteristics of the regional tectonic evolution of the area indicate that the region may form a small part of the Gobi–Tianshan rift of southern Mongolia.

  9. Baseline prevalence and longitudinal evolution of non-motor symptoms in early Parkinson's disease: the PPMI cohort.

    Science.gov (United States)

    Simuni, Tanya; Caspell-Garcia, Chelsea; Coffey, Christopher S; Weintraub, Daniel; Mollenhauer, Brit; Lasch, Shirley; Tanner, Caroline M; Jennings, Danna; Kieburtz, Karl; Chahine, Lana M; Marek, Kenneth

    2017-10-06

    To examine the baseline prevalence and longitudinal evolution in non-motor symptoms (NMS) in a prospective cohort of, at baseline, patients with de novo Parkinson's disease (PD) compared with healthy controls (HC). Parkinson's Progression Markers Initiative (PPMI) is a longitudinal, ongoing, controlled study of de novo PD participants and HC. NMS were rated using the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part I score and other validated NMS scales at baseline and after 2 years. Biological variables included cerebrospinal fluid (CSF) markers and dopamine transporter imaging. 423 PD subjects and 196 HC were enrolled and followed for 2 years. MDS-UPDRS Part I total mean (SD) scores increased from baseline 5.6 (4.1) to 7.7 (5.0) at year 2 in PD subjects (p<0.001) versus from 2.9 (3.0) to 3.2 (3.0) in HC (p=0.38), with a significant difference between the groups (p<0.001). In the multivariate analysis, higher baseline NMS score was associated with female sex (p=0.008), higher baseline MDS-UPDRS Part II scores (p<0.001) and more severe motor phenotype (p=0.007). Longitudinal increase in NMS severity was associated with the older age (0.008) and lower CSF Aβ1-42 (0.005) at baseline. There was no association with the dose or class of dopaminergic therapy. This study of NMS in early PD identified clinical and biological variables associated with both baseline burden and predictors of progression. The association of a greater longitudinal increase in NMS with lower baseline Aβ1-42 level is an important finding that will have to be replicated in other cohorts. ClinicalTrials.gov identifier: NCT01141023. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Listriodon guptai Pilgrim, 1926 (Mammalia, Suidae) from the early Miocene of the Bugti Hills, Balochistan, Pakistan: new insights into early Listriodontinae evolution and biogeography

    Science.gov (United States)

    Orliac, Maeva Judith; Antoine, Pierre-Olivier; Métais, Grégoire; Marivaux, Laurent; Crochet, Jean-Yves; Welcomme, Jean-Loup; Baqri, Syed Rafiqul Hassan; Roohi, Ghazala

    2009-08-01

    New dental remains of listriodont suids are described from the lower member of the early to middle Miocene Vihowa Formation of the Bugti Hills, Pakistan. The material is homogeneous in terms of morphology and dimensions and referred as a whole to Listriodon guptai Pilgrim, 1926. This species is also mentioned in coeval deposits of the Zinda Pir Dome, Pakistan, dating back to ca. 19 Ma. The early occurrence of an advanced listriodont in Pakistan constrains the age of acquisition of several characters correlated to lophodonty within Listriodontini, and raises major questions about the early history of the Old World Listriodontinae. Strong morphological similarity between Listriodon guptai and the African species Listriodon akatikubas found in the late early Miocene of Maboko (Kenya, ca. 16.5 Ma) suggests that this latter is most probably a migrant originating from Asia.

  11. Scales and dermal skeletal histology of an early bony fish Psarolepis romeri and their bearing on the evolution of rhombic scales and hard tissues.

    Directory of Open Access Journals (Sweden)

    Qingming Qu

    Full Text Available Recent discoveries of early bony fishes from the Silurian and earliest Devonian of South China (e.g. Psarolepis, Achoania, Meemannia, Styloichthys and Guiyu have been crucial in understanding the origin and early diversification of the osteichthyans (bony fishes and tetrapods. All these early fishes, except Guiyu, have their dermal skeletal surface punctured by relatively large pore openings. However, among these early fishes little is known about scale morphology and dermal skeletal histology. Here we report new data about the scales and dermal skeletal histology of Psarolepis romeri, a taxon with important implications for studying the phylogeny of early gnathostomes and early osteichthyans. Seven subtypes of rhombic scales with similar histological composition and surface sculpture are referred to Psarolepis romeri. They are generally thick and show a faint antero-dorsal process and a broad peg-and-socket structure. In contrast to previously reported rhombic scales of osteichthyans, these scales bear a neck between crown and base as in acanthodian scales. Histologically, the crown is composed of several generations of odontodes and an irregular canal system connecting cylindrical pore cavities. Younger odontodes are deposited on older ones both superpositionally and areally. The bony tissues forming the keel of the scale are shown to be lamellar bone with plywood-like structure, whereas the other parts of the base are composed of pseudo-lamellar bone with parallel collagen fibers. The unique tissue combination in the keel (i.e., extrinsic Sharpey's fibers orthogonal to the intrinsic orthogonal sets of collagen fibers has rarely been reported in the keel of other rhombic scales. The new data provide insights into the early evolution of rhombic (ganoid and cosmoid scales in osteichthyans, and add to our knowledge of hard tissues of early vertebrates.

  12. Scales and dermal skeletal histology of an early bony fish Psarolepis romeri and their bearing on the evolution of rhombic scales and hard tissues.

    Science.gov (United States)

    Qu, Qingming; Zhu, Min; Wang, Wei

    2013-01-01

    Recent discoveries of early bony fishes from the Silurian and earliest Devonian of South China (e.g. Psarolepis, Achoania, Meemannia, Styloichthys and Guiyu) have been crucial in understanding the origin and early diversification of the osteichthyans (bony fishes and tetrapods). All these early fishes, except Guiyu, have their dermal skeletal surface punctured by relatively large pore openings. However, among these early fishes little is known about scale morphology and dermal skeletal histology. Here we report new data about the scales and dermal skeletal histology of Psarolepis romeri, a taxon with important implications for studying the phylogeny of early gnathostomes and early osteichthyans. Seven subtypes of rhombic scales with similar histological composition and surface sculpture are referred to Psarolepis romeri. They are generally thick and show a faint antero-dorsal process and a broad peg-and-socket structure. In contrast to previously reported rhombic scales of osteichthyans, these scales bear a neck between crown and base as in acanthodian scales. Histologically, the crown is composed of several generations of odontodes and an irregular canal system connecting cylindrical pore cavities. Younger odontodes are deposited on older ones both superpositionally and areally. The bony tissues forming the keel of the scale are shown to be lamellar bone with plywood-like structure, whereas the other parts of the base are composed of pseudo-lamellar bone with parallel collagen fibers. The unique tissue combination in the keel (i.e., extrinsic Sharpey's fibers orthogonal to the intrinsic orthogonal sets of collagen fibers) has rarely been reported in the keel of other rhombic scales. The new data provide insights into the early evolution of rhombic (ganoid and cosmoid) scales in osteichthyans, and add to our knowledge of hard tissues of early vertebrates.

  13. Transmission of clonal hepatitis C virus genomes reveals the dominant but transitory role of CD8¿ T cells in early viral evolution

    DEFF Research Database (Denmark)

    Callendret, Benoît; Bukh, Jens; Eccleston, Heather B;

    2011-01-01

    The RNA genome of the hepatitis C virus (HCV) diversifies rapidly during the acute phase of infection, but the selective forces that drive this process remain poorly defined. Here we examined whether Darwinian selection pressure imposed by CD8(+) T cells is a dominant force driving early amino acid...... occurred slowly over several years of chronic infection. Together these observations indicate that during acute hepatitis C, virus evolution was driven primarily by positive selection pressure exerted by CD8(+) T cells. This influence of immune pressure on viral evolution appears to subside as chronic...... replacement in HCV viral populations. This question was addressed in two chimpanzees followed for 8 to 10 years after infection with a well-defined inoculum composed of a clonal genotype 1a (isolate H77C) HCV genome. Detailed characterization of CD8(+) T cell responses combined with sequencing of recovered...

  14. Late Carboniferous to early Permian sedimentaryetectonic evolution of the north of Alxa, Inner Mongolia, China:Evidence from the Amushan Formation

    Institute of Scientific and Technical Information of China (English)

    Haiquan Yin; Hongrui Zhou; Weijie Zhang; Xiaoming Zheng; Shengyu Wang

    2016-01-01

    The late Paleozoic evolution of the Wulijishanhen (WSH)-Shangdan (SD) area near to the Chaganchulu Ophiolite belt is reinterpreted. Analysis of the upper Carboniferous to lower Permian sedimentary sequence, biological associations, detrital materials, sandstone geochemistry and volcanic rocks indicates that the SD area was an epicontinental sea and rift during the late Paleozoic rather than a large-scale ocean undergoing spreading and closure. This study reveals that the actual evolution of the study area is from the late Carboniferous to the early Permian. The fusulinids Triticites sp. and Pseudoschwagerina sp. in the limestones demonstrate that the Amushan Formation develops during the late Carboniferous to the early Permian. The limestones at the base of the SD section indicate that it is a stable carbonate platform environment, the volcanic rocks in the middle of the sequence support a rift tectonic back-ground, and the overlying conglomerates and sandstones are characteristic of an epicontinental sea or marine molasse setting. The rift volcanism made the differences in the fossil content of the SD and WSH sections and led to two sections expose different levels within the Amushan Formation and different process of tectonic evolution. Moreover, the geochemical characteristics and detrital materials of the sandstones show that the provenance and formation of the sandstones were related to the setting of active continental margin. The quartz-feldspar-lithic fragments distribution diagram indicates that the material source for the sandstones was a recycled orogenic belt. Thus, the source area of the sandstones may have been an active continental margin before the late Carboniferouseearly Permian. The charac-teristics of the regional tectonic evolution of the area indicate that the region may form a small part of the GobieTianshan rift of southern Mongolia.

  15. The teaching of evolution in Portugal in the early 20th century through the programs and textbooks of Zoology

    Directory of Open Access Journals (Sweden)

    Bento CAVADAS

    2011-11-01

    Full Text Available The teaching of evolution in the Portuguese secondary schools is not yet fully understood. This research aimed to contribute to this clarification, in the framework of the history of the curriculum and the biology subject, by showing the expressions of the evolutionism teaching in the first three decades of the twentieth century. To this end we analyzed the programs of Zoology of 1905 and 1919, as well as two textbooks, entitled «Lições de Zoologia» and written by Bernardo Aires in accordance with these programs. This analysis showed that the study of evolution, eliminated from the program in 1905, was again recognized in the program in 1919. In textbooks, the exposure of evolution focused on the subject of evolution, in the grounds of competition and natural selection, adaptation, the biogenetic law and the essential differences between Lamarckism and Darwinism. The comparative study of these textbooks showed that the text which addresses the evolution is essentially Darwinian. However, neoLamarckians sections have been identified that show the influence of the «eclipse of Darwinism» on the teaching of evolutionism.

  16. Molecular evolution of rDNA in early diverging Metazoa: First comparative analysis and phylogenetic application of complete SSU rRNA secondary structures in Porifera

    Science.gov (United States)

    2008-01-01

    Background The cytoplasmic ribosomal small subunit (SSU, 18S) ribosomal RNA (rRNA) is the most frequently-used gene for molecular phylogenetic studies. However, information regarding its secondary structure is neglected in most phylogenetic analyses. Incorporation of this information is essential in order to apply specific rRNA evolutionary models to overcome the problem of co-evolution of paired sites, which violates the basic assumption of the independent evolution of sites made by most phylogenetic methods. Information about secondary structure also supports the process of aligning rRNA sequences across taxa. Both aspects have been shown to increase the accuracy of phylogenetic reconstructions within various taxa. Here, we explore SSU rRNA secondary structures from the three extant classes of Phylum Porifera (Grant, 1836), a pivotal, but largely unresolved taxon of early branching Metazoa. This is the first phylogenetic study of poriferan SSU rRNA data to date that includes detailed comparative secondary structure information for all three sponge classes. Results We found base compositional and structural differences in SSU rRNA among Demospongiae, Hexactinellida (glass sponges) and Calcarea (calcareous sponges). We showed that analyses of primary rRNA sequences, including secondary structure-specific evolutionary models, in combination with reconstruction of the evolution of unusual structural features, reveal a substantial amount of additional information. Of special note was the finding that the gene tree topologies of marine haplosclerid demosponges, which are inconsistent with the current morphology-based classification, are supported by our reconstructed evolution of secondary structure features. Therefore, these features can provide alternative support for sequence-based topologies and give insights into the evolution of the molecule itself. To encourage and facilitate the application of rRNA models in phylogenetics of early metazoans, we present 52 SSU r

  17. Molecular evolution of rDNA in early diverging Metazoa: First comparative analysis and phylogenetic application of complete SSU rRNA secondary structures in Porifera

    Directory of Open Access Journals (Sweden)

    Wörheide Gert

    2008-02-01

    Full Text Available Abstract Background The cytoplasmic ribosomal small subunit (SSU, 18S ribosomal RNA (rRNA is the most frequently-used gene for molecular phylogenetic studies. However, information regarding its secondary structure is neglected in most phylogenetic analyses. Incorporation of this information is essential in order to apply specific rRNA evolutionary models to overcome the problem of co-evolution of paired sites, which violates the basic assumption of the independent evolution of sites made by most phylogenetic methods. Information about secondary structure also supports the process of aligning rRNA sequences across taxa. Both aspects have been shown to increase the accuracy of phylogenetic reconstructions within various taxa. Here, we explore SSU rRNA secondary structures from the three extant classes of Phylum Porifera (Grant, 1836, a pivotal, but largely unresolved taxon of early branching Metazoa. This is the first phylogenetic study of poriferan SSU rRNA data to date that includes detailed comparative secondary structure information for all three sponge classes. Results We found base compositional and structural differences in SSU rRNA among Demospongiae, Hexactinellida (glass sponges and Calcarea (calcareous sponges. We showed that analyses of primary rRNA sequences, including secondary structure-specific evolutionary models, in combination with reconstruction of the evolution of unusual structural features, reveal a substantial amount of additional information. Of special note was the finding that the gene tree topologies of marine haplosclerid demosponges, which are inconsistent with the current morphology-based classification, are supported by our reconstructed evolution of secondary structure features. Therefore, these features can provide alternative support for sequence-based topologies and give insights into the evolution of the molecule itself. To encourage and facilitate the application of rRNA models in phylogenetics of early

  18. Molecular evolution of rDNA in early diverging Metazoa: first comparative analysis and phylogenetic application of complete SSU rRNA secondary structures in Porifera.

    Science.gov (United States)

    Voigt, Oliver; Erpenbeck, Dirk; Wörheide, Gert

    2008-02-27

    The cytoplasmic ribosomal small subunit (SSU, 18S) ribosomal RNA (rRNA) is the most frequently-used gene for molecular phylogenetic studies. However, information regarding its secondary structure is neglected in most phylogenetic analyses. Incorporation of this information is essential in order to apply specific rRNA evolutionary models to overcome the problem of co-evolution of paired sites, which violates the basic assumption of the independent evolution of sites made by most phylogenetic methods. Information about secondary structure also supports the process of aligning rRNA sequences across taxa. Both aspects have been shown to increase the accuracy of phylogenetic reconstructions within various taxa.Here, we explore SSU rRNA secondary structures from the three extant classes of Phylum Porifera (Grant, 1836), a pivotal, but largely unresolved taxon of early branching Metazoa. This is the first phylogenetic study of poriferan SSU rRNA data to date that includes detailed comparative secondary structure information for all three sponge classes. We found base compositional and structural differences in SSU rRNA among Demospongiae, Hexactinellida (glass sponges) and Calcarea (calcareous sponges). We showed that analyses of primary rRNA sequences, including secondary structure-specific evolutionary models, in combination with reconstruction of the evolution of unusual structural features, reveal a substantial amount of additional information. Of special note was the finding that the gene tree topologies of marine haplosclerid demosponges, which are inconsistent with the current morphology-based classification, are supported by our reconstructed evolution of secondary structure features. Therefore, these features can provide alternative support for sequence-based topologies and give insights into the evolution of the molecule itself. To encourage and facilitate the application of rRNA models in phylogenetics of early metazoans, we present 52 SSU rRNA secondary

  19. Parapatric Speciation in the Evolution of Early Intervention for Infants and Toddlers with Disabilities and Their Families

    Science.gov (United States)

    Dunst, Carl J.

    2012-01-01

    The term parapatric speciation, borrowed from biogeography, is used as a metaphor for describing and illustrating a little acknowledged change in the field of early intervention that occurred at the time of the passage of the Education of the Handicapped Act Part H early intervention legislation. The term refers to the formation of a new species…

  20. Plate-tectonic evolution of the deep ocean basins adjoining the western continental margin of India - A proposed model for the early opening scenario

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.; Yatheesh, V.

    -ADOB region. It may be mentioned here that some of these aspects have not been holistically considered in any such model for the region so far. 2 Relevant tectonic elements and geological events Since the evolution of the WCMI-ADOB region began... along the Aravalli trend and was aborted in Late Cretaceous. The Cambay rift basin opened in the Early Cretaceous along the Dharwar trend and was aborted in Late Cretaceous. The Narmada rift basin opened in the Late Cretaceous time along the Satpura...

  1. Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution.

    Science.gov (United States)

    Sun, Yanxia; Moore, Michael J; Zhang, Shoujun; Soltis, Pamela S; Soltis, Douglas E; Zhao, Tingting; Meng, Aiping; Li, Xiaodong; Li, Jianqiang; Wang, Hengchang

    2016-03-01

    The grade of early-diverging eudicots includes five major lineages: Ranunculales, Trochodendrales, Buxales, Proteales and Sabiaceae. To examine the evolution of plastome structure in early-diverging eudicots, we determined the complete plastome sequences of eight previously unsequenced early-diverging eudicot taxa, Pachysandra terminalis (Buxaceae), Meliosma aff. cuneifolia (Sabiaceae), Sabia yunnanensis (Sabiaceae), Epimedium sagittatum (Berberidaceae), Euptelea pleiosperma (Eupteleaceae), Akebia trifoliata (Lardizabalaceae), Stephania japonica (Menispermaceae) and Papaver somniferum (Papaveraceae), and compared them to previously published plastomes of the early-diverging eudicots Buxus, Tetracentron, Trochodendron, Nelumbo, Platanus, Nandina, Megaleranthis, Ranunculus, Mahonia and Macadamia. All of the newly sequenced plastomes share the same 79 protein-coding genes, 4 rRNA genes, and 30 tRNA genes, except for that of Epimedium, in which infA is pseudogenized and clpP is highly divergent and possibly a pseudogene. The boundaries of the plastid Inverted Repeat (IR) were found to vary significantly across early-diverging eudicots; IRs ranged from 24.3 to 36.4kb in length and contained from 18 to 33 genes. Based on gene content, the IR was classified into six types, with shifts among types characterized by high levels of homoplasy. Reconstruction of ancestral IR gene content suggested that 18 genes were likely present in the IR region of the ancestor of eudicots. Maximum likelihood phylogenetic analysis of a 79-gene, 97-taxon data set that included all available early-diverging eudicots and representative sampling of remaining angiosperm diversity largely agreed with previous estimates of early-diverging eudicot relationships, but resolved Trochodendrales rather than Buxales as sister to Gunneridae, albeit with relatively weak bootstrap support, conflicting with what has been found for these three clades in most previous analyses. In addition, Proteales was

  2. Cannabis: evolution and ethnobotany

    National Research Council Canada - National Science Library

    Clarke, Robert Connell; Merlin, Mark David

    2013-01-01

    "Cannabis: Evolution and Ethnobotany is a comprehensive, interdisciplinary exploration of the natural origins and early evolution of this famous plant, highlighting its historic role in the development of human societies...

  3. Evolution of Early Cretaceous paleotemperatures: A balance between global carbon burial rates and large igneous provinces activity

    Science.gov (United States)

    Bodin, Stephane; Meissner, Philipp; Janssen, Nico; Steuber, Thomas; Mutterlose, Jörg

    2015-04-01

    The lack of a high-resolution, long-term Early Cretaceous paleotemperature record hampers a full-scale comprehension, as well as a more holistic approach, to Early Cretaceous climate changes. Here we present an extended compilation of belemnite-based oxygen, carbon and strontium isotope records covering the late Berriasian - middle Albian from the Vocontian Basin (SE France). Integrated with paleontological and sedimentological evidences, this dataset clearly demonstrates that three intervals of cold climatic conditions have taken place during the Early Cretaceous greenhouse world. More specifically, these have taken place during (1) the late Valanginian-earliest Hauterivian, (2) the late early Aptian and (3) the latest Aptian - earliest Albian. Each of these intervals is associated with high amplitude sea-level fluctuations, pointing at transient installations of polar ice caps. As evidenced by carbon isotope positive excursions, each cold episode is associated with enhanced burial of organic matter on a global scale. Moreover, there is a very good match between the timing and size of large igneous provinces eruptions and the amplitude of Early Cretaceous warming episodes. Altogether, these observations confirm the instrumental role of atmospheric CO2 variations in the making of Mesozoic climate change. On a long-term perspective, during the Early Cretaceous, the coupling of global paleotemperature and seawater strontium isotopic ratio is best explained by temperature-controlled changes of continental crust weathering rates.

  4. On the Chemical Evolution of Upper Mantle of the Early Earth—An Experimental Study on Melting of the Silicate Phase in Jilin Chondrite at High Pressures

    Institute of Scientific and Technical Information of China (English)

    谢鸿森; 方虹; 等

    1989-01-01

    Relatively old ages of chondrites(normally around 4.5Ga)suggest that their parent bodies did not experience any mely-fractionation under high temperature and high pressure conditions pertaining to the interior of terrestrial plaets.Therefore,it is reasonable to take chondrites as starting materials in the study of the chemical evolution of the early earth.The sillicate phase in the Jilin chondrite (H5)was chosen for this purpose because it possesses a chemical composition similar to that of the primitive mantle.The melting experiment was carried out at 20-30 k bar and has rsulted in a product which contains1-5% melts in addition to solid cryustal phase.The chemical composition of the melt phases and the partitioning of various elements between the coexisting silicate melts are geochemically similar to those of anatectic rocks on the earth.This can thus serve as the basis for discussing the chemical evolution of the early upper mantle.

  5. Early evolution of large micro-organisms with cytological complexity revealed by microanalyses of 3.4 Ga organic-walled microfossils.

    Science.gov (United States)

    Sugitani, K; Mimura, K; Takeuchi, M; Lepot, K; Ito, S; Javaux, E J

    2015-11-01

    The Strelley Pool Formation (SPF) is widely distributed in the East Pilbara Terrane (EPT) of the Pilbara Craton, Western Australia, and represents a Paleoarchean shallow-water to subaerial environment. It was deposited ~3.4 billion years ago and displays well-documented carbonate stromatolites. Diverse putative microfossils (SPF microfossils) were recently reported from several localities in the East Strelley, Panorama, Warralong, and Goldsworthy greenstone belts. Thus, the SPF provides unparalleled opportunities to gain insights into a shallow-water to subaerial ecosystem on the early Earth. Our new micro- to nanoscale ultrastructural and microchemical studies of the SPF microfossils show that large (20-70 μm) lenticular organic-walled flanged microfossils retain their structural integrity, morphology, and chain-like arrangements after acid (HF-HCl) extraction (palynology). Scanning and transmitted electron microscopy of extracted microfossils revealed that the central lenticular body is either alveolar or hollow, and the wall is continuous with the surrounding smooth to reticulated discoidal flange. These features demonstrate the evolution of large micro-organisms able to form an acid-resistant recalcitrant envelope or cell wall with complex morphology and to form colonial chains in the Paleoarchean era. This study provides evidence of the evolution of very early and remarkable biological innovations, well before the presumed late emergence of complex cells.

  6. Formation and Evolution of Early-Type Galaxies. III Star formation history as a function of mass and over-density

    CERN Document Server

    Merlin, Emiliano; Piovan, Lorenzo; Grassi, Tommaso; Buonomo, Umberto; La Barbera, Francesco

    2012-01-01

    We investigate the influence of the initial proto-galaxies over-densities and masses on their evolution, to understand whether the internal properties of the proto-galactic haloes are sufficient to account for the varied properties of the galactic populations. By means of fully hydrodynamical N-body simulations performed with the code EvoL we produce twelve self-similar models of early-type galaxies of different initial masses and over-densities, following their evolution from z \\geq 20 down to z \\leq 1. The simulations include radiative cooling, star formation, stellar energy feedback, a reionizing photoheating background, and chemical enrichment of the ISM. We find a strong correlation between the initial properties of the proto-haloes and their star formation histories. Massive (10^13M\\odot) haloes experience a single, intense burst of star formation (with rates \\geq 10^3M\\odot/yr) at early epochs, consistently with observations, with a less pronounced dependence on the initial over-density; intermediate m...

  7. Tracking the Emergence of Host-Specific Simian Immunodeficiency Virus env and nef Populations Reveals nef Early Adaptation and Convergent Evolution in Brain of Naturally Progressing Rhesus Macaques.

    Science.gov (United States)

    Lamers, Susanna L; Nolan, David J; Rife, Brittany D; Fogel, Gary B; McGrath, Michael S; Burdo, Tricia H; Autissier, Patrick; Williams, Kenneth C; Goodenow, Maureen M; Salemi, Marco

    2015-08-01

    While a clear understanding of the events leading to successful establishment of host-specific viral populations and productive infection in the central nervous system (CNS) has not yet been reached, the simian immunodeficiency virus (SIV)-infected rhesus macaque provides a powerful model for the study of human immunodeficiency virus (HIV) intrahost evolution and neuropathogenesis. The evolution of the gp120 and nef genes, which encode two key proteins required for the establishment and maintenance of infection, was assessed in macaques that were intravenously inoculated with the same viral swarm and allowed to naturally progress to simian AIDS and potential SIV-associated encephalitis (SIVE). Longitudinal plasma samples and immune markers were monitored until terminal illness. Single-genome sequencing was employed to amplify full-length env through nef transcripts from plasma over time and from brain tissues at necropsy. nef sequences diverged from the founder virus faster than gp120 diverged. Host-specific sequence populations were detected in nef (~92 days) before they were detected in gp120 (~182 days). At necropsy, similar brain nef sequences were found in different macaques, indicating convergent evolution, while gp120 brain sequences remained largely host specific. Molecular clock and selection analyses showed weaker clock-like behavior and stronger selection pressure in nef than in gp120, with the strongest nef selection in the macaque with SIVE. Rapid nef diversification, occurring prior to gp120 diversification, indicates that early adaptation of nef in the new host is essential for successful infection. Moreover, the convergent evolution of nef sequences in the CNS suggests a significant role for nef in establishing neurotropic strains. The SIV-infected rhesus macaque model closely resembles HIV-1 immunopathogenesis, neuropathogenesis, and disease progression in humans. Macaques were intravenously infected with identical viral swarms to investigate

  8. The Evolution of Star Formation in Early-type Galaxies%早型星系的恒星形成活动演化研究

    Institute of Scientific and Technical Information of China (English)

    王放; 郑宪忠

    2011-01-01

    从观测上测定早型星系中恒星形成活动随红移的演化有助于理解这类星系的形成演化.结合GEMS(Galaxy Evolution from Morphology and SEDs)巡天的HST/ACS(Hubble Space Telescope/Advanced Camera for Surveys)高分辨图像和CDFS(Chandra Deep Field South)天区Spitzer、GALEX(Galaxy Evolution Explorer)等多波段数据,基于形态、颜色和恒星质量选出一个0.2≤ z ≤ 1.0红移范围的包含456个早型星系的完备样本.利用stacking技术测量了样本星系紫外与红外平均光度,估计早型星系的恒星形成率.结果显示,早型星系中的恒星形成率较低(<3 M⊙·yr-1),随红移递减而降低.在红移z=1以来的恒星形成贡献的质量小于15%.星族分析亦肯定大质量早型星系的主体星族形成于宇宙早期(z>2).%How the star formation activity in early-type galaxies (ETGs) evolves over cosmic time provides observational constraints on the picture of the formation and evolution of ETGs. Using HST/ACS (Hubble Space Telescope/Advanced Camera for Surveys)imaging data from the GEMS (Galaxy Evolution from Morphology and SEDs) survey and multi-band data in the CDFS (Chandra Deep Field South), a complete sample of 456 ETGs within 0.2 < z < 1 is selected based on morphology, color and stellar mass. With stacking technique, the UV and IR average luminosities are derived from GALEX (Galaxy Evolution Explorer) and Spitzer observations and the average star formation rates are estimated. Our results show that the star formation intensities of ETGs are low (SFR < 3 M☉ · yr-1) and decline with decreasing redshift. The total stellar mass contributed by star formation since z = 1 is less than 15%. Stellar population modeling confirms that the bulk of stars in ETGs were formed at early time (z > 2).

  9. Phase evolution during early stages of mechanical alloying of Cu–13 wt.% Al powder mixtures in a high-energy ball mill

    Energy Technology Data Exchange (ETDEWEB)

    Dudina, Dina V.; Lomovsky, Oleg I. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str. 18, Novosibirsk 630128 (Russian Federation); Valeev, Konstantin R.; Tikhov, Serguey F.; Boldyreva, Natalya N. [Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Salanov, Aleksey N.; Cherepanova, Svetlana V.; Zaikovskii, Vladimir I. [Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Novosibirsk State University (NSU), Pirogova str. 2, Novosibirsk 630090 (Russian Federation); Andreev, Andrey S. [Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Novosibirsk State University (NSU), Pirogova str. 2, Novosibirsk 630090 (Russian Federation); Soft Matter Sciences and Engineering Laboratory, UMR 7615 CNRS UPMC, ESPCI ParisTech, 10 rue Vauquelin, Paris 75005 (France); Lapina, Olga B.; Sadykov, Vladislav A. [Boreskov Institute of Catalysis SB RAS, pr. Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Novosibirsk State University (NSU), Pirogova str. 2, Novosibirsk 630090 (Russian Federation)

    2015-04-25

    Highlights: • Phase formation during early stages of Cu–Al mechanical alloying was studied. • The products of mechanical alloying are of highly non-equilibrium character. • X-ray amorphous phases are present in the products of mechanical alloying. • An Al-rich X-ray amorphous phase is distributed between the crystallites. - Abstract: We report the phase and microstructure evolution of the Cu–13 wt.% Al mixture during treatment in a high-energy planetary ball mill with a particular focus on the early stages of mechanical alloying. Several characterization techniques, including X-ray diffraction phase analysis, nuclear magnetic resonance spectroscopy, differential dissolution, thermal analysis, and electron microscopy/elemental analysis, have been combined to study the evolution of the phase composition of the mechanically alloyed powders and describe the microstructure of the multi-phase products of mechanical alloying at different length scales. The following reaction sequence has been confirmed: Cu + Al → CuAl{sub 2}(+Cu) → Cu{sub 9}Al{sub 4} + (Cu) → Cu(Al). The phase evolution was accompanied by the microstructure changes, the layered structure of the powder agglomerates disappearing with milling time. This scheme is further complicated by the processes of copper oxidation, reduction of copper oxides by metallic aluminum, and by variation of the stoichiometry of Cu(Al) solid solutions with milling time. Substantial amounts of X-ray amorphous phases were detected as well. Differential dissolution technique has revealed that a high content of aluminum in the Cu(Al) solid solution-based powders is due to the presence of Al-rich phases distributed between the Cu(Al) crystallites.

  10. The early Paleozoic sedimentary-tectonic evolution of the circum-Mangar areas, Tarim block, NW China: Constraints from integrated detrital records

    Science.gov (United States)

    Dong, Shunli; Li, Zhong; Jiang, Lei

    2016-07-01

    The Mangar depression, located in the eastern part of the Tarim basin, had deposited extremely-thick lower Paleozoic sediments, which yields great scientific value and hydrocarbon resource potential. Due to the lack of enough outcrop and core studies, many issues, e.g., early Paleozoic geographical evolution, basin nature and tectonic affinity, are still poorly understood. In this study, we selected circum-Mangar areas (i.e., the South Quruqtagh, Tabei and Tazhong areas), and carried out comprehensive detrital provenance analysis including detrital modal analysis, heavy mineral and trace element analysis, and detrital zircon U-Pb dating on the Middle-Upper Ordovician and Silurian sandstones. The results show that Upper Ordovician-Lower Silurian detrital provenances of the South Quruqtagh and Tabei areas were primarily derived from the intracontinental uplifts in Tarim. Meanwhile, Upper Silurian detrital provenances of the above two areas were mainly derived from the mix of intracontinental uplifts and continental-margin arcs. Dramatic Late Silurian provenance-change suggests the evident tectonic transition of the northern Tarim margin, which is the opening of the South Tianshan back-arc oceanic basin. Combining the previous studies, an integral redefinition model for the Mangar depression has been made. The evolution process of the Mangar depression could be divided into four stages: graben stage (late Neoproterozoic), transitional stage (Cambrian to Middle Ordovician), downwarp stage (Late Ordovician to Early Silurian) and extinction stage (Late Silurian). Hence, the Mangar depression evolved as an aulacogen. Significantly, the evolutional scenario of the Mangar aulacogen was consistent with that of the North Altyn Tagh and the North Qilian, suggesting that the Mangar aulacogen was involved mainly in the Proto-Tethys tectonic realm south to the Tarim block. However, the Late Silurian tectonic activity in the northern Tarim margin did produce massive detrital

  11. Universal sequence replication, reversible polymerization and early functional biopolymers: a model for the initiation of prebiotic sequence evolution.

    Directory of Open Access Journals (Sweden)

    Sara Imari Walker

    Full Text Available Many models for the origin of life have focused on understanding how evolution can drive the refinement of a preexisting enzyme, such as the evolution of efficient replicase activity. Here we present a model for what was, arguably, an even earlier stage of chemical evolution, when polymer sequence diversity was generated and sustained before, and during, the onset of functional selection. The model includes regular environmental cycles (e.g. hydration-dehydration cycles that drive polymers between times of replication and functional activity, which coincide with times of different monomer and polymer diffusivity. Template-directed replication of informational polymers, which takes place during the dehydration stage of each cycle, is considered to be sequence-independent. New sequences are generated by spontaneous polymer formation, and all sequences compete for a finite monomer resource that is recycled via reversible polymerization. Kinetic Monte Carlo simulations demonstrate that this proposed prebiotic scenario provides a robust mechanism for the exploration of sequence space. Introduction of a polymer sequence with monomer synthetase activity illustrates that functional sequences can become established in a preexisting pool of otherwise non-functional sequences. Functional selection does not dominate system dynamics and sequence diversity remains high, permitting the emergence and spread of more than one functional sequence. It is also observed that polymers spontaneously form clusters in simulations where polymers diffuse more slowly than monomers, a feature that is reminiscent of a previous proposal that the earliest stages of life could have been defined by the collective evolution of a system-wide cooperation of polymer aggregates. Overall, the results presented demonstrate the merits of considering plausible prebiotic polymer chemistries and environments that would have allowed for the rapid turnover of monomer resources and for

  12. Universal Sequence Replication, Reversible Polymerization and Early Functional Biopolymers: A Model for the Initiation of Prebiotic Sequence Evolution

    Science.gov (United States)

    Walker, Sara Imari; Grover, Martha A.; Hud, Nicholas V.

    2012-01-01

    Many models for the origin of life have focused on understanding how evolution can drive the refinement of a preexisting enzyme, such as the evolution of efficient replicase activity. Here we present a model for what was, arguably, an even earlier stage of chemical evolution, when polymer sequence diversity was generated and sustained before, and during, the onset of functional selection. The model includes regular environmental cycles (e.g. hydration-dehydration cycles) that drive polymers between times of replication and functional activity, which coincide with times of different monomer and polymer diffusivity. Template-directed replication of informational polymers, which takes place during the dehydration stage of each cycle, is considered to be sequence-independent. New sequences are generated by spontaneous polymer formation, and all sequences compete for a finite monomer resource that is recycled via reversible polymerization. Kinetic Monte Carlo simulations demonstrate that this proposed prebiotic scenario provides a robust mechanism for the exploration of sequence space. Introduction of a polymer sequence with monomer synthetase activity illustrates that functional sequences can become established in a preexisting pool of otherwise non-functional sequences. Functional selection does not dominate system dynamics and sequence diversity remains high, permitting the emergence and spread of more than one functional sequence. It is also observed that polymers spontaneously form clusters in simulations where polymers diffuse more slowly than monomers, a feature that is reminiscent of a previous proposal that the earliest stages of life could have been defined by the collective evolution of a system-wide cooperation of polymer aggregates. Overall, the results presented demonstrate the merits of considering plausible prebiotic polymer chemistries and environments that would have allowed for the rapid turnover of monomer resources and for regularly varying monomer

  13. Osteology of Carnufex carolinensis (Archosauria: Psuedosuchia from the Pekin Formation of North Carolina and Its Implications for Early Crocodylomorph Evolution.

    Directory of Open Access Journals (Sweden)

    Susan M Drymala

    Full Text Available Crocodylomorphs originated in the Late Triassic and were the only crocodile-line archosaurs to survive the end-Triassic extinction. Recent phylogenetic analyses suggest that the closest relatives of these generally gracile, small-bodied taxa were a group of robust, large-bodied predators known as rauisuchids implying a problematic morphological gap between early crocodylomorphs and their closest relatives. Here we provide a detailed osteological description of the recently named early diverging crocodylomorph Carnufex carolinensis from the Upper Triassic Pekin Formation of North Carolina and assess its phylogenetic position within the Paracrocodylomorpha. Carnufex displays a mosaic of crocodylomorph, rauisuchid, and dinosaurian characters, as well as highly laminar cranial elements and vertebrae, ornamented dermal skull bones, a large, subtriangular antorbital fenestra, and a reduced forelimb. A phylogenetic analysis utilizing a comprehensive dataset of early paracrocodylomorphs and including seven new characters and numerous modifications to characters culled from the literature recovers Carnufex carolinensis as one of the most basal members of Crocodylomorpha, in a polytomy with two other large bodied taxa (CM 73372 and Redondavenator. The analysis also resulted in increased resolution within Crocodylomorpha and a monophyletic clade containing the holotype and two referred specimens of Hesperosuchus as well as Dromicosuchus. Carnufex occupies a key transition at the origin of Crocodylomorpha, indicating that the morphology typifying early crocodylomorphs appeared before the shift to small body size.

  14. Osteology of Carnufex carolinensis (Archosauria: Psuedosuchia) from the Pekin Formation of North Carolina and Its Implications for Early Crocodylomorph Evolution.

    Science.gov (United States)

    Drymala, Susan M; Zanno, Lindsay E

    2016-01-01

    Crocodylomorphs originated in the Late Triassic and were the only crocodile-line archosaurs to survive the end-Triassic extinction. Recent phylogenetic analyses suggest that the closest relatives of these generally gracile, small-bodied taxa were a group of robust, large-bodied predators known as rauisuchids implying a problematic morphological gap between early crocodylomorphs and their closest relatives. Here we provide a detailed osteological description of the recently named early diverging crocodylomorph Carnufex carolinensis from the Upper Triassic Pekin Formation of North Carolina and assess its phylogenetic position within the Paracrocodylomorpha. Carnufex displays a mosaic of crocodylomorph, rauisuchid, and dinosaurian characters, as well as highly laminar cranial elements and vertebrae, ornamented dermal skull bones, a large, subtriangular antorbital fenestra, and a reduced forelimb. A phylogenetic analysis utilizing a comprehensive dataset of early paracrocodylomorphs and including seven new characters and numerous modifications to characters culled from the literature recovers Carnufex carolinensis as one of the most basal members of Crocodylomorpha, in a polytomy with two other large bodied taxa (CM 73372 and Redondavenator). The analysis also resulted in increased resolution within Crocodylomorpha and a monophyletic clade containing the holotype and two referred specimens of Hesperosuchus as well as Dromicosuchus. Carnufex occupies a key transition at the origin of Crocodylomorpha, indicating that the morphology typifying early crocodylomorphs appeared before the shift to small body size.

  15. The SAURON project - XV. Modes of star formation in early-type galaxies and the evolution of the red sequence

    NARCIS (Netherlands)

    Shapiro, Kristen L.; Falcón-Barroso, Jesús; van de Ven, Glenn; de Zeeuw, P. Tim; Sarzi, Marc; Bacon, Roland; Bolatto, Alberto; Cappellari, Michele; Croton, Darren; Davies, Roger L.; Emsellem, Eric; Fakhouri, Onsi; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Peletier, Reynier F.; van den Bosch, Remco C. E.; van der Wolk, Guido

    2010-01-01

    We combine SAURON integral field data of a representative sample of local early-type, red sequence galaxies with Spitzer/Infrared Array Camera imaging in order to investigate the presence of trace star formation in these systems. With the Spitzer data, we identify galaxies hosting low-level star for

  16. The SAURON project : XV. Modes of star formation in early-type galaxies and the evolution of the red sequence

    NARCIS (Netherlands)

    Shapiro, Kristen L.; Falcon-Barroso, Jesus; van de Ven, Glenn; de Zeeuw, P. Tim; Sarzi, Marc; Bacon, Roland; Bolatto, Alberto; Cappellari, Michele; Croton, Darren; Davies, Roger L.; Emsellem, Eric; Fakhouri, Onsi; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M.; Peletier, Reynier F.; van den Bosch, Remco C. E.; van der Wolk, Guido

    2010-01-01

    We combine SAURON integral field data of a representative sample of local early-type, red sequence galaxies with Spitzer/Infrared Array Camera imaging in order to investigate the presence of trace star formation in these systems. With the Spitzer data, we identify galaxies hosting low-level star for

  17. Evolution of the Early Childhood Curriculum in China: The Impact of Social and Cultural Factors on Revolution and Innovation

    Science.gov (United States)

    Li, Hui; Chen, Jennifer J.

    2017-01-01

    During the last century, early childhood curriculum (ECC) in China has undergone a series of monumental transformations, shaped by the interaction between local cultural and global forces. In this case study, we critically analyse three major waves of ECC reform in China, with a particular emphasis on the social and cultural forces that have…

  18. The early evolution of land plants, from fossils to genomics: a commentary on Lang (1937) 'On the plant-remains from the Downtonian of England and Wales'.

    Science.gov (United States)

    Edwards, Dianne; Kenrick, Paul

    2015-04-19

    During the 1920s, the botanist W. H. Lang set out to collect and investigate some very unpromising fossils of uncertain affinity, which predated the known geological record of life on land. His discoveries led to a landmark publication in 1937, 'On the plant-remains from the Downtonian of England and Wales', in which he revealed a diversity of small fossil organisms of great simplicity that shed light on the nature of the earliest known land plants. These and subsequent discoveries have taken on new relevance as botanists seek to understand the plant genome and the early evolution of fundamental organ systems. Also, our developing knowledge of the composition of early land-based ecosystems and the interactions among their various components is contributing to our understanding of how life on land affects key Earth Systems (e.g. carbon cycle). The emerging paradigm is one of early life on land dominated by microbes, small bryophyte-like organisms and lichens. Collectively called cryptogamic covers, these are comparable with those that dominate certain ecosystems today. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  19. Evolution of solitary density waves in stellar winds of early-type stars: A simple explanation of discrete absorption component behavior

    Science.gov (United States)

    Waldron, Wayne L.; Klein, Larry; Altner, Bruce

    1994-01-01

    We model the evolution of a density shell propagating through the stellar wind of an early-type star, in order to investigate the effects of such shells on UV P Cygni line profiles. Unlike previous treatments, we solve the mass, momentum, and energy conservation equations, using an explicit time-differencing scheme, and present a parametric study of the density, velocity, and temperature response. Under the assumed conditions, relatively large spatial scale, large-amplitude density shells propagate as stable waves through the supersonic portion of the wind. Their dynamical behavior appears to mimic propagating 'solitary waves,' and they are found to accelerate at the same rate as the underlying steady state stellar wind (i.e., the shell rides the wind). These hydrodynamically stable structures quantitatively reproduce the anomalous 'discrete absorption component' (DAC) behavior observed in the winds of luminous early-type stars, as illustrated by comparisons of model predictions to an extensive International Ultraviolet Explorer (IUE) time series of spectra of zeta Puppis (O4f). From these comparisons, we find no conclusive evidence indicative of DACs accelerating at a significantly slower rate than the underlying stellar wind, contrary to earlier reports. In addition, these density shells are found to be consistent within the constraints set by the IR observations. We conclude that the concept of propagating density shells should be seriously reconsidered as a possible explanation of the DAC phenomenon in early-type stars.

  20. Impact of initial models and variable accretion rates on the pre-main-sequence evolution of massive and intermediate-mass stars and the early evolution of H II regions

    Science.gov (United States)

    Haemmerlé, Lionel; Peters, Thomas

    2016-05-01

    Massive star formation requires the accretion of gas at high rate while the star is already bright. Its actual luminosity depends sensitively on the stellar structure. We compute pre-main-sequence tracks for massive and intermediate-mass stars with variable accretion rates and study the evolution of stellar radius, effective temperature and ionizing luminosity, starting at 2 M⊙ with convective or radiative structures. The radiative case shows a much stronger swelling of the protostar for high accretion rates than the convective case. For radiative structures, the star is very sensitive to the accretion rate and reacts quickly to accretion bursts, leading to considerable changes in photospheric properties on time-scales as short as 100-1000 yr. The evolution for convective structures is much less influenced by the instantaneous accretion rate, and produces a monotonically increasing ionizing flux that can be many orders of magnitude smaller than in the radiative case. For massive stars, it results in a delay of the H II region expansion by up to 10 000 yr. In the radiative case, the H II region can potentially be engulfed by the star during the swelling, which never happens in the convective case. We conclude that the early stellar structure has a large impact on the radiative feedback during the pre-main-sequence evolution of massive protostars and introduces an important uncertainty that should be taken into account. Because of their lower effective temperatures, our convective models may hint at a solution to an observed discrepancy between the luminosity distribution functions of massive young stellar objects and compact H II regions.

  1. The pre-Mendelian, pre-Darwinian world: Shifting relations between genetic and epigenetic mechanisms in early multicellular evolution

    Indian Academy of Sciences (India)

    Stuart A Newman

    2005-02-01

    The reliable dependence of many features of contemporary organisms on changes in gene content and activity is tied to the processes of Mendelian inheritance and Darwinian evolution. With regard to morphological characters, however, Mendelian inheritance is the exception rather than the rule, and neo-Darwinian mechanisms in any case do not account for the origination (as opposed to the inherited variation) of such characters. It is proposed, therefore, that multicellular organisms passed through a pre-Mendelian, pre-Darwinian phase, whereby cells, genes and gene products constituted complex systems with context-dependent, self-organizing morphogenetic capabilities. An example is provided of a plausible ‘core’ mechanism for the development of the vertebrate limb that is both inherently pattern forming and morphogenetically plastic. It is suggested that most complex multicellular structures originated from such systems. The notion that genes are privileged determinants of biological characters can only be sustained by neglecting questions of evolutionary origination and the evolution of developmental mechanisms.

  2. The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals

    CERN Document Server

    Lichtenberg, Tim; Gerya, Taras V; Meyer, Michael R

    2016-01-01

    The thermal history and internal structure of chondritic planetesimals, assembled before the giant impact phase of chaotic growth, potentially yield important implications for the final composition and evolution of terrestrial planets. These parameters critically depend on the internal balance of heating versus cooling, which is mostly determined by the presence of short-lived radionuclides (SLRs), such as aluminum-26 and iron-60, as well as the heat conductivity of the material. The heating by SLRs depends on their initial abundances, the formation time of the planetesimal and its size. It has been argued that the cooling history is determined by the porosity of the granular material, which undergoes dramatic changes via compaction processes and tends to decrease with time. In this study we assess the influence of these parameters on the thermo-mechanical evolution of young planetesimals with both 2D and 3D simulations. Using the code family I2ELVIS/I3ELVIS we have run numerous 2D and 3D numerical finite-dif...

  3. Iron Tolerant Cyanobacteria as an Effective Tool to Study Early Evolution of Life and the Development of Biosignatures

    Science.gov (United States)

    Brown, Igor; Mummey, Daniel; Sarkisova, Svetlana; Allen, Carlton; McKay, David S.

    2006-01-01

    We are currently conducting preliminary studies on the diversity of iron-tolerant cyanobacteria (CB) isolated from iron-depositing hot springs in and around Yellowstone National Park (WY, USA). In conclusion, there is no consensus on the divergence of cyanobacteria from a common ancestor for either anoxygenic or oxygenic phototrophs. Anoxygenic photosynthesis may have provided energy for the common ancestor, but it is unclear what environmental pressure induced the evolving of oxygenic phototrophs. It is supposed, however, that predecessors of contemporary CB were capable of oxidizing various substrates other than water , and it is likely that Fe2+ could be one of those substrates . If that were the case, the work of entire photosystems in Precambrian cyanobacteria and/or in their predecessors could follow three scenarios (at least): 1) ferrous iron may have been oxidized in PS II but without significant effects on oxygen evolution, and environmental iron could have been oxidized either enzymatically or chemically; 2) ferrous iron may have been oxidized only enzymatically by PS II, accompanied by the repression of O2 evolution; or 3) ferrous iron may have been oxidized by PS I upon the prevalence of anoxygenic photosynthesis or without any effect on PS II. All of these scenarios will be the subject of our future studies with the aim to understand which line-ages of CB could be typical for Precambrian time.

  4. Evolution in fertility-preserving options for early-stage cervical cancer: radical trachelectomy, simple trachelectomy, neoadjuvant chemotherapy.

    Science.gov (United States)

    Plante, Marie

    2013-07-01

    Fertility preservation is of paramount importance for young women diagnosed with early-stage cervical cancer. The radical trachelectomy procedure was developed to preserve uterine/reproductive function. The procedure has evolved significantly over the last 25 years. This review focuses on the various surgical techniques (vaginal, abdominal, laparoscopic, and robotic), highlighting advantages and disadvantages of each in relation to their respective obstetrical and oncologic outcomes. A trend toward even more conservative surgery (simple trachelectomy/large cone) has recently been advocated for patients with low-risk early lesions. Conversely, the option of neoadjuvant chemotherapy followed by fertility-preserving surgery for patients with larger-size lesions has also been proposed. Emerging data are presented.

  5. Tracking the Distribution of 26Al and 60Fe during the Early Phases of Star and Disk Evolution

    DEFF Research Database (Denmark)

    Küffmeier, Michael; Mogensen, Troels Frostholm; Haugbølle, Troels;

    2016-01-01

    that the 26Al/27Al and 60Fe/56Fe ratios of accreting gas within a vicinity of 1000 au of the stars follow the predicted decay curves of the initial abundances at the time of star formation without evidence of spatial or temporal heterogeneities for the first 100 kyr of star formation. Therefore, the observed...... the admixing of the 26Al nuclides during the early formative phase of the Sun. We use giant molecular cloud scale adaptive mesh-refinement numerical simulations to trace the abundance of 26Al and 60Fe in star-forming gas during the early stages of accretion of individual low-mass protostars. We find...... system formation....

  6. Hox, Wnt, and the evolution of the primary body axis: insights from the early-divergent phyla

    Directory of Open Access Journals (Sweden)

    Baxevanis Andreas D

    2007-12-01

    Full Text Available Abstract The subkingdom Bilateria encompasses the overwhelming majority of animals, including all but four early-branching phyla: Porifera, Ctenophora, Placozoa, and Cnidaria. On average, these early-branching phyla have fewer cell types, tissues, and organs, and are considered to be significantly less specialized along their primary body axis. As such, they present an attractive outgroup from which to investigate how evolutionary changes in the genetic toolkit may have contributed to the emergence of the complex animal body plans of the Bilateria. This review offers an up-to-date glimpse of genome-scale comparisons between bilaterians and these early-diverging taxa. Specifically, we examine these data in the context of how they may explain the evolutionary development of primary body axes and axial symmetry across the Metazoa. Next, we re-evaluate the validity and evolutionary genomic relevance of the zootype hypothesis, which defines an animal by a specific spatial pattern of gene expression. Finally, we extend the hypothesis that Wnt genes may be the earliest primary body axis patterning mechanism by suggesting that Hox genes were co-opted into this patterning network prior to the last common ancestor of cnidarians and bilaterians. Open peer review Reviewed by Pierre Pontarotti, Gáspár Jékely, and L Aravind. For the full reviews, please go to the Reviewers' comments section.

  7. Formation and evolution of dwarf early-type galaxies in the Virgo cluster II. Kinematic Scaling Relations

    CERN Document Server

    Toloba, E; Peletier, R; Falcon-Barroso, J; van de Ven, G; Gorgas, J

    2012-01-01

    We place our sample of 18 Virgo dwarf early-type galaxies (dEs) on the V-K - velocity dispersion, Faber-Jackson, and Fundamental Plane (FP) scaling relations for massive early-type galaxies (Es). We use a generalized velocity dispersion, which includes rotation, to be able to compare the location of both rotationally and pressure supported dEs with those of early and late-type galaxies. We find that dEs seem to bend the Faber-Jackson relation of Es to lower velocity dispersions, being the link between Es and dwarf spheroidal galaxies (dSphs). Regarding the FP relation, we find that dEs are significantly offset with respect to massive hot stellar systems, and re-casting the FP into the so-called kappa-space suggests that this offset is related to dEs having a total mass-to-light ratio higher than Es but still significantly lower than dSph galaxies. Given a stellar mass-to-light ratio based on the measured line indices of dEs, the FP offset allows us to infer that the dark matter fraction within the half light ...

  8. Sedimentologic and paleoclimatic reconstructions of carbonate factory evolution in the Alborz Basin (northern Iran) indicate a global response to Early Carboniferous (Tournaisian) glaciations

    Science.gov (United States)

    Sardar Abadi, Mehrdad; Kulagina, Elena I.; Voeten, Dennis F. A. E.; Boulvain, Frédéric; Da Silva, Anne-Christine

    2017-03-01

    The Lower Carboniferous Mobarak Formation records the development of a storm-sensitive pervasive carbonate factory on the southern Paleo-Tethyan passive margin following the opening of the Paleo-Tethys Ocean into the Alborz Basin along the northern margin of Gondwana. Its depositional facies encompass inner ramp peritidal environments, peloidal to crinoidal shoals, storm to fair-weather influenced mid-ramps, proximal to distal shell beds and low energy outer ramps. Sedimentological analyses and foraminiferal biostratigraphy reveal four events affecting carbonate platform evolution in the Alborz Basin during the Lower Carboniferous: (1) A transgression following global temperature rise in the Early Tournaisian (middle Hastarian) caused the formation of thick-bedded argillaceous limestones. This interval correlates with Early Tournaisian nodular to argillaceous limestones in the Moravia Basin (Lisen Formation, Czech Republic), the Dinant Basin (Pont d'Arcole Formation, Belgium), and at the Rhenish Slate Mountains (Lower Alum shale, Germany). (2) Late Hastarian-early Ivorian glaciations previously identified in Southern Gondwana but had not yet recognized in Northern Gondwana were recorded through a sequence boundary. (3) During the Late Tournaisian-Early Visean?, a differential block faulting regime along the basin's margin caused uplift of the westernmost parts of the Alborz Basin and resulted in subsidence in the eastern part of the central basin. This tectonically controlled shift in depositional regime caused vast sub-aerial exposure and brecciation preserved in the top of the Mobarak Formation in the western portion of the Central Alborz Basin. (4) Tectonic activity coinciding with a progressive, multiphase sea level drop caused indirectly by the Viséan and Serpukhovian glaciations phases ultimately led to the stagnation of the carbonate factory. Paleothermometry proxies, the presence of foraminiferal taxa with a northern Paleo-Tethyan affinity and evidence for

  9. Community replacement instead of drowning: Evolution of proto-North Atlantic carbonate-platform production in the run-up to of the Early Aptian OAE1a

    Science.gov (United States)

    Huck, Stefan; Stein, Melody; Adatte, Thierry; Föllmi, Karl B.; Immenhauser, Adrian; Heimhofer, Ulrich

    2014-05-01

    In the proto-North Atlantic realm (Lusitanian Basin, Portugal), carbonate platform production witnessed a major biotic turnover during the Early Aptian. Here, Urgonian-type rudist-nerinid dominated limestones were replaced by an orbitolinid-rich, oyster and serpulid-bearing marly facies. Integrated biostratigraphic-chemostratigraphic studies (Burla et al., 2008; Huck et al., 2012) provided evidence that this change coincides with the Early Aptian carbonate platform drowning episode in the run-up of oceanic anoxic event (OAE) 1a (transition D. forbesi to D. deshayesi ammonite zones), which has been recorded, from many localities in the Tethyan Ocean (Godet, 2013). Unlike Helvetic and Arabian carbonate platforms, which are characterised by a punctuated mass occurrence of orbitolinids marking the onset of the Aptian (Rawil and Hawar members, respectively), orbitolinids are an abundant constituent of the proto-North Atlantic carbonate platform community from the Late Barremian onwards. Orbitolinid-rich packstones and marls showing mass-occurrences of orbitolinids indicate repeated short-term installation of specific environmental conditions (eutrophication and/or deepening). In order to critically assess the influence of regional palaeoenvironmental against global palaeoclimatic and palaeoceanographic changes on the Proto-North Atlantic carbonate platform evolution, several outcrop successions in the Lusitanian Basin covering the critical interval have been investigated in detail with regard to facies and petrographic characteristics and geochemical (C-/O-isotopes, P content, bulk-rock and clay mineralogy,) inventory. The aims of the present study are three-fold: (1) to characterise proto-North Atlantic Lower Aptian shallow-water carbonates with respect to diagenetic history, microfacies, and distribution of fossils useful for the analysis of palaeoenvironments (corals, rudists and orbitolinids); (2) to evaluate the influence of sea-level and humidity changes

  10. Strength evolution and deformation behaviour of cemented paste backfill at early ages:Effect of curing stress, filling strategy and drainage

    Institute of Scientific and Technical Information of China (English)

    Ghirian Alireza; Fall Mamadou⇑

    2016-01-01

    In this study, a pressure cell apparatus is developed to investigate the early age evolution of the strength and deformation behaviour of cemented paste backfill (CPB) when subjected to various loading condi-tions under different curing scenarios. The different curing scenarios that are simulated include: (1) drained and undrained conditions, (2) different filling rates, (3) different filling sequences, and (4) differ-ent curing stresses. The findings show that drainage, curing stress, curing time and filling rate influence the mechanical and deformation behaviours of CPB materials. The coupled effects of consolidation, drai-nage and suction contribute to the strength development of drained CPB subjected to curing stress. On the other hand, particle rearrangement caused by the applied pressure and suction development due to self-desiccation plays a significant role in the strength gain of undrained CPB cured under stress. Furthermore, curing stress induces slightly faster rate of cement hydration, which can contribute to strength acquisition.

  11. Neonatal mucolipidosis 2. The spontaneous evolution of early bone lesions and the effect of vitamin D treatment. Report of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Pazzaglia, U.E.; Zatti, G. (Pavia Univ. (Italy). Clinica Ortopedica); Beluffi, G. (Policlinico San Matteo, Pavia (Italy). Servizio di Radiodiagnostica); Danesino, C. (Sassari Univ. (Italy). Cattedra di Genetica Umana); Frediani, P.V. (Ospedale dei Bambini Umberto I, Brescia (Italy)); Pagani, G. (Ospedale Santa Anna, Como (Italy). Div. di Patologia Neonatale)

    1989-11-01

    Evolution of the early bone lesions in two children with mucolipidosis 2 was followed from birth. The progression of the bone changes did not differ from healing of rickets. Low levels of 1,25-OH{sub 2}-D3 were found in one child and he was treated with vitamin D; resolution of the rachitic changes was more rapid than in the untreated child. It is suggested that in mucolipidosis 2 bone reacts to two independent factors, one controlling calcium metabolism, the other depending on the primary lysosomal enzyme defect. Since ricket-like features are not present in the other mucolipidoses or mucopolysaccharidoses, the defect of calcium metabolism seems to be related to the specific enzyme defect of mucolipidosis 2. (orig.).

  12. The evolution of early-type galaxies in clusters from z~ 0.8 to z~ 0: the ellipticity distribution and the morphological mix

    CERN Document Server

    Vulcani, Benedetta; Dressler, Alan; Fasano, Giovanni; Valentinuzzi, Tiziano; Couch, Warrick; Moretti, Alessia; Simard, Luc; Desai, Vandana; Bettoni, Daniela; D'Onofrio, Mauro; Cava, Antonio; Varela, Jesús

    2010-01-01

    We present the ellipticity distribution and its evolution for early-type galaxies in clusters from z~0.8 to z~0, based on the WIde-field Nearby Galaxy-cluster Survey (WINGS) (0.04M_B+1.208z>-21. Analyzing this sample, we do not recover exactly the same results of the mass-limited sample. Hence the selection criteria are crucial to characterize the galaxy properties: the choice of the magnitude-de limited sample implies the loss of many less massive galaxies and so it biases the final conclusions. Moreover, although we are adopting the same selection criteria, our results in the magnitude-delimited sample are also not in agreement with those of Holden et al.(2009). This is due to the fact that our and their low-z samples have a different magnitude distribution because the Holden et al.(2009) sample suffers from incompleteness at faint magnitudes.

  13. Discovery of deep-level foreland thrust-fold structures in Taihang Mt. and its implication for early tectonic evolution of North China

    Institute of Scientific and Technical Information of China (English)

    LI Jianghai; NIU Xianglong; CHEN Zheng; Timothy M KUSKY; Ali POLAT

    2005-01-01

    Delineation and correlation of Dragon Spring Shear Zone with its deep-level structures at foreland have been studied by field work. This paper reports our new findings of thrust-fold structures within Taihang Neoarchean basement, which include flat thrusts,large-scale recumbent folds, subhorizontal foliation patterns, etc. It reveals that early tectonic evolution of North China clearly involves the horizontal contraction on a large scale, comparable to those of foreland of classical collisional orogenic belts. The vertical variation of structural patterns with foreland fold-thrust belt from shallow to deep levels has been documented for Taihang Mt. by structural correlation,which is associated with tectonic transposition and imbrication of basement complex with supracrustal sequences in the Neoarchean.

  14. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    Science.gov (United States)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  15. A new sauropodomorph dinosaur from the Early Jurassic of Patagonia and the origin and evolution of the sauropod-type sacrum.

    Directory of Open Access Journals (Sweden)

    Diego Pol

    Full Text Available BACKGROUND: The origin of sauropod dinosaurs is one of the major landmarks of dinosaur evolution but is still poorly understood. This drastic transformation involved major skeletal modifications, including a shift from the small and gracile condition of primitive sauropodomorphs to the gigantic and quadrupedal condition of sauropods. Recent findings in the Late Triassic-Early Jurassic of Gondwana provide critical evidence to understand the origin and early evolution of sauropods. METHODOLOGY/PRINCIPAL FINDINGS: A new sauropodomorph dinosaur, Leonerasaurus taquetrensis gen. et sp. nov., is described from the Las Leoneras Formation of Central Patagonia (Argentina. The new taxon is diagnosed by the presence of anterior unserrated teeth with a low spoon-shaped crown, amphicoelous and acamerate vertebral centra, four sacral vertebrae, and humeral deltopectoral crest low and medially deflected along its distal half. The phylogenetic analysis depicts Leonerasaurus as one of the closest outgroups of Sauropoda, being the sister taxon of a clade of large bodied taxa composed of Melanorosaurus and Sauropoda. CONCLUSIONS/SIGNIFICANCE: The dental and postcranial anatomy of Leonerasaurus supports its close affinities with basal sauropods. Despite the small size and plesiomorphic skeletal anatomy of Leonerasaurus, the four vertebrae that compose its sacrum resemble that of the large-bodied primitive sauropods. This shows that the appearance of the sauropod-type of sacrum predated the marked increase in body size that characterizes the origins of sauropods, rejecting a causal explanation and evolutionary linkage between this sacral configuration and body size. Alternative phylogenetic placements of Leonerasaurus as a basal anchisaurian imply a convergent acquisition of the sauropod-type sacrum in the new small-bodied taxon, also rejecting an evolutionary dependence of sacral configuration and body size in sauropodomorphs. This and other recent discoveries are

  16. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model

    Science.gov (United States)

    Gebauer, S.; Grenfell, J. L.; Stock, J. W.; Lehmann, R.; Godolt, M.; von Paris, P.; Rauer, H.

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  17. Global analysis of human duplicated genes reveals the relative importance of whole-genome duplicates originated in the early vertebrate evolution.

    Science.gov (United States)

    Acharya, Debarun; Ghosh, Tapash C

    2016-01-22

    Gene duplication is a genetic mutation that creates functionally redundant gene copies that are initially relieved from selective pressures and may adapt themselves to new functions with time. The levels of gene duplication may vary from small-scale duplication (SSD) to whole genome duplication (WGD). Studies with yeast revealed ample differences between these duplicates: Yeast WGD pairs were functionally more similar, less divergent in subcellular localization and contained a lesser proportion of essential genes. In this study, we explored the differences in evolutionary genomic properties of human SSD and WGD genes, with the identifiable human duplicates coming from the two rounds of whole genome duplication occurred early in vertebrate evolution. We observed that these two groups of duplicates were also dissimilar in terms of their evolutionary and genomic properties. But interestingly, this is not like the same observed in yeast. The human WGDs were found to be functionally less similar, diverge more in subcellular level and contain a higher proportion of essential genes than the SSDs, all of which are opposite from yeast. Additionally, we explored that human WGDs were more divergent in their gene expression profile, have higher multifunctionality and are more often associated with disease, and are evolutionarily more conserved than human SSDs. Our study suggests that human WGD duplicates are more divergent and entails the adaptation of WGDs to novel and important functions that consequently lead to their evolutionary conservation in the course of evolution.

  18. Geochemistry and geochronology of the Rathjen Gneiss: implications for the early tectonic evolution of the Delamerian Orogen

    Energy Technology Data Exchange (ETDEWEB)

    Foden, J.; Sandiford, M.; Dougherty-Page, J. [University of Adelaide, SA (Australia). Department of Geology; Williams, I. [Australian National University, ACT (Australia). Research School of Earth Sciences

    1999-06-01

    The Rathjen Gneiss is the oldest and structurally most complex of the granitic intrusives in the southern Adelaide Fold-Thrust Belt and therefore provides an important constraint on the timing of the Delamerian Orogen. Zircons in the Rathjen Gneiss show a complex growth history, reflecting inheritance, magmatic crystallisation and metamorphism. Both single zircon evaporation (`Kober` technique) and SHRIMP analysis yield best estimates of igneous crystallisation of 514 {+-} 5 Ma, substantially older than other known felsic intrusive ages in the southern Adelaide Fold-Thrust Belt. This age places an older limit on the start of the Delamerian metamorphism and is compatible with known stratigraphic constraints suggesting the Early Cambrian Kanmantoo Group was deposited, buried and heated in less than 20 million years. High-U overgrowths on zircons were formed during subsequent metamorphism and yield a {sup 206}Pb/{sup 238}U age of 503 {+-} 7 Ma. The Delamerian Orogeny lasted no more than 35 million years. The emplacement of the Rathjen Gneiss as a pre- or early syntectonic granite is emphasised by its geochemical characteristics, which show affiliations with within-plate or anorogenic granites. In contrast, younger syntectonic granites in the southern Adelaide Fold-Thrust Belt have geochemical characteristics more typical of granites in convergent orogens. The Early Ordovician post-tectonic granites then mark a return to anorogenic compositions. The sensitivity of granite chemistry to changes in tectonic processes is remarkable and clearly reflects changes in the contribution of crust and mantle sources. Copyright (1999) Blackwell Science Pty Ltd 35 refs., 3 tabs., 11 figs.

  19. A positron study on the microstructural evolution of Al-Li based alloys in the early stages of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Diego, N. de; Rio, J. del [Univ. Complutense, Madrid (Spain). Dept. de Fisica de Materiales; Romero, R.; Somoza, A. [Univ. Nacional del Centro de la Provincia de Buenos Aires, Tandil (Argentina). Inst. de Fisica de Materiales]|[Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (Argentina)

    1997-11-01

    The formation of voids by coalescence of microvoids initiated at precipitates has been proposed to explain the fracture mechanisms in alloys containing a large number of second phase particles whereas in binary Al-Li alloys with shearable particles the brittleness could be linked with the grain boundary fracture. Most of the microstructure studies of Al-Li alloys have been performed by deforming to fracture; however, little is known about the processes and mechanisms involved in the early stages of plastic deformation. Butler et al. have studied a quaternary Al-Li alloy and have found that there is a critical effective strain to cause voiding, which is about 0.06 and 0.1% for the aged and for the solution treated material respectively. It is very well established that positrons are very sensitive to vacancy-like defects. With the aim of clarifying the behavior of Al-Li based alloys in the very early stages of deformation, and detecting the eventual formation of microvoids, the authors have studied the response of the positron lifetime parameters to the degrees of deformation in age-hardenable Al-Li based alloys plastically deformed under tensile stress.

  20. Tracking the distribution of $^{26}$Al and $^{60}$Fe during the early phases of star and disk evolution

    CERN Document Server

    Kuffmeier, Michael; Haugboelle, Troels; Bizzarro, Martin; Nordlund, Aake

    2016-01-01

    The short-lived $^{26}$Al and $^{60}$Fe radionuclides are synthesized and expelled in the interstellar medium by core-collapse supernova events. The solar system's first solids, calcium-aluminium refractory inclusions (CAIs), contain evidence for the former presence of the $^{26}$ Al nuclide defining the canonical $^{26}$Al/$^{27}$ Al ratio of $\\sim5 \\times10^{-5}$. A different class of objects temporally related to canonical CAIs are CAIs with fractionation and unidentified nuclear effects (FUN CAIs), which record a low initial $^{26}$Al/$^{27}$Al of $10^{-6}$. The contrasting level of $^{26}$Al between these objects is often interpreted as reflecting the admixing of the $^{26}$Al nuclide during the early formative phase of the Sun. We use giant molecular cloud (GMC) scale adaptive mesh-refinement numerical simulations to trace the abundance of $^{26}$Al and $^{60}$Fe in star-forming gas during the early stages of accretion of individual low mass protostars. We find that the $^{26}$Al/$^{27}$Al and $^{60}$Fe...

  1. The SAURON project - XV. Modes of star formation in early-type galaxies and the evolution of the red sequence

    CERN Document Server

    Shapiro, K L; van de Ven, G; de Zeeuw, P T; Sarzi, M; Bacon, R; Bolatto, A; Cappellari, M; Croton, D; Davies, R L; Emsellem, E; Fakhouri, O; Krajnovic, D; Kuntschner, H; McDermid, R M; Peletier, R F; Bosch, R C E van den; van der Wolk, G

    2009-01-01

    We combine SAURON integral field data of a representative sample of local early-type, red sequence galaxies with Spitzer/IRAC imaging in order to investigate the presence of trace star formation in these systems. With the Spitzer data, we identify galaxies hosting low-level star formation, as traced by PAH emission, with measured star formation rates that compare well to those estimated from other tracers. This star formation proceeds according to established scaling relations with molecular gas content, in surface density regimes characteristic of disk galaxies and circumnuclear starbursts. We find that star formation in early-type galaxies happens exclusively in fast-rotating systems and occurs in two distinct modes. In the first, star formation is a diffuse process, corresponding to widespread young stellar populations and high molecular gas content. The equal presence of co- and counter-rotating components in these systems strongly implies an external origin for the star-forming gas, and we argue that the...

  2. Thermal evolution of an early magma ocean in interaction with the atmosphere: conditions for the condensation of a water ocean

    Directory of Open Access Journals (Sweden)

    Lebrun T.

    2014-02-01

    Full Text Available The thermal evolution of magma oceans produced by collision with giant impactors late in accretion is xpected to depend on the composition and structure of the atmosphere through the greenhouse effect of CO2 and H2O released from the magma during its crystallization. We developed a 1D parameterized convection model of a magma ocean coupled with a 1D radiative convective model of the atmosphere. We conducted a parametric study and described the influences of some important parameters such as the Sun-planet distance. Our results suggest that a steam atmosphere delays the end of the magma ocean phase by typically 1 Myr. Water vapor condenses to an ocean after 0.1 Myr, 1.5 Myr and 10 Myr for, respectively, Mars, Earth and Venus. This time would be virtually infinite for an Earth-sized planet located at less than 0.66 AU from the Sun. So there are conditions such as no water ocean is formed on Venus. Moreover, for Mars and Earth, water ocean formation time scales are shorter than typical time gaps between major impacts. This implies that successive water oceans may have developed during accretion, making easier the loss of their atmospheres by impact erosion.

  3. What does the fine-scale petrography of IDPs reveal about grain formation and evolution in the early solar system?

    Science.gov (United States)

    Bradley, John

    1994-01-01

    The 'pyroxene' interplanetary dust particles (IDP's) may be the best samples for investigation of primordial grain-forming reactions because they appear to have experienced negligible post-accretional alteration. They are likely to continue to yield information about gas-to-solid condensation and other grain-forming reactions that may have occurred either in the solar nebular or presolar interstellar environments. An immediate challenge lies in understanding the nanometer-scale petrography of the ultrafine-grained aggregates in 'pyroxene' IDP's. Whether these aggregates contain components from diverse grain-forming environments may ultimately be answered by systematic petrographic studies using electron microscopes capable of high spatial resolution microanalysis. It may be more difficult to decipher evidence of grain formation and evolution in 'olivine' and 'layer silicate' IDP's because they appear to have experienced post-accretional alteration. Most of the studied 'olivine' IDPs have been subjected to heating and equilibration, perhaps during atmospheric entry, while the 'layer silicate' IDP's have experienced aqueous alteration.

  4. Coupled orbital-thermal evolution of the early Earth-Moon system with a fast-spinning Earth

    Science.gov (United States)

    Tian, ZhenLiang; Wisdom, Jack; Elkins-Tanton, Linda

    2017-01-01

    Several new scenarios of the Moon-forming giant impact have been proposed to reconcile the giant impact theory with the recent recognition of the volatile and refractory isotopic similarities between Moon and Earth. Two scenarios leave the post-impact Earth spinning much faster than what is inferred from the present Earth-Moon system's angular momentum. The evection resonance has been proposed to drain the excess angular momentum, but the lunar orbit stays at high orbital eccentricities for long periods in the resonance, which would cause large tidal heating in the Moon. A limit cycle related to the evection resonance has also been suggested as an alternative mechanism to reduce the angular momentum, which keeps the lunar orbit at much lower eccentricities, and operates in a wider range of parameters. In this study we use a coupled thermal-orbital model to determine the effect of the change of the Moon's thermal state on the Earth-Moon system's dynamical history. The evection resonance no longer drains angular momentum from the Earth-Moon system since the system rapidly exits the resonance. Whereas the limit cycle works robustly to drain as much angular momentum as in the non-thermally-coupled model, though the Moon's tidal properties change throughout the evolution.

  5. The Early Paleozoic Tectonic Evolution of the West Kunlun Mountains: New Constraint from the North Kiida Pluton

    Institute of Scientific and Technical Information of China (English)

    袁超; 周辉; 孙敏; 李继亮; 侯泉林

    2001-01-01

    Systematic geochemical studies have been conducted on the North Küda Pluton,Pluton is a potassium-rich (K2O>5.4wt%) I-type granitic pluton and does not contain any alkaline ferromagnesian mineral. Its relatively high REE, LILE (e. g. Rb, Cs, U and Th) and HFSE (e. g. Nb, Zr) contents make it very akin to the A-type granites. Its heterogeneous Sr (87Sr/86Sri= 0. 7049~0. 7098) and Nd (εNdT = - 1.05~ - 4.04) isotope compositions preclude the possibility of a pure sedimentary or igneous source. Instead, its geochemical compositions suggest that it may be derived from partial melting of a complex source, which consists of igneous and sedimentary rocks. Its intraplate characteristics, together with coeval mafic dykes,indicate an extensional environment at the end of Caledonian. The recognition of the extensional event does not support a continuous subduction-accretion model for the Paleozoic tectonic evolution of the West Kunlun Mountains. On the contrary, it provides new evidence for the twostage island-arc model.

  6. The Early Paleozoic Tectonic Evolution of the West Kunlun Mountains:New Constraint from the North Kueda Pluton

    Institute of Scientific and Technical Information of China (English)

    袁超; 周辉; 等

    2001-01-01

    Systematic geochemical studies have been conducted on the North Kueda Pluton,West Kunlun,in order to reveal its petrogenesis and tectonic implications.The North Kueda Pluton is a potassium-rich(K2O>5.4wt%)I-type granitic pluton and does not contain any alkaline ferromagnesian mineral.Its relatively high REE,LILE(e.g.Rb,Cs,U and Th)and HFSE(e.g.Nd,Zr)contents make it very akin to the A-type granites.Its heterogenenous Sr(87Sr/86Sri=0.7049-0.7098)and Nd(εNdT=-1.05--4.04)isotope compositions preclude the possibility of a pure sedimentary or igneous source.Instead,its geochemical compositions suggest that it may be derived from partial melting of a complex source,which onsists of igneous and sedimentary rocks.Its intraplate characteristics,together with coeval mafic dykes, indicate an extensional environment at the end of Caledonian.The recognition of the extensional event does not support a continuous subduction-accretion model for the Paleozoic tectonic evolution of the West Kunlun Mountains.On the Contrary,it provides new evidence for the twostage island-arc model.

  7. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa.

    Science.gov (United States)

    Cavalier-Smith, Thomas

    2013-05-01

    I discuss how different feeding modes and related cellular structures map onto the eukaryote evolutionary tree. Centrally important for understanding eukaryotic cell diversity are Loukozoa: ancestrally biciliate phagotrophic protozoa possessing a posterior cilium and ventral feeding groove into which ciliary currents direct prey. I revise their classification by including all anaerobic Metamonada as a subphylum and adding Tsukubamonas. Loukozoa, often with ciliary vanes, are probably ancestral to all protozoan phyla except Euglenozoa and Percolozoa and indirectly to kingdoms Animalia, Fungi, Plantae, and Chromista. I make a new protozoan phylum Sulcozoa comprising subphyla Apusozoa (Apusomonadida, Breviatea) and Varisulca (Diphyllatea; Planomonadida, Discocelida, Mantamonadida; Rigifilida). Understanding sulcozoan evolution clarifies the origins from them of opisthokonts (animals, fungi, Choanozoa) and Amoebozoa, and their evolutionary novelties; Sulcozoa and their descendants (collectively called podiates) arguably arose from Loukozoa by evolving posterior ciliary gliding and pseudopodia in their ventral groove. I explain subsequent independent cytoskeletal modifications, accompanying further shifts in feeding mode, that generated Amoebozoa, Choanozoa, and fungi. I revise classifications of Choanozoa, Conosa (Amoebozoa), and basal fungal phylum Archemycota. I use Choanozoa, Sulcozoa, Loukozoa, and Archemycota to emphasize the need for simply classifying ancestral (paraphyletic) groups and illustrate advantages of this for understanding step-wise phylogenetic advances.

  8. The impact of the early stages of radio source evolution on the ISM of the host galaxies

    CERN Document Server

    Morganti, R; Oosterloo, T A; Holt, J; Tzioumis, A K; Wills, K

    2002-01-01

    The study of both neutral and ionized gas in young radio sources is providing key information on the effect the radio plasma has on the ISM of these objects. We present results obtained for the compact radio sources PKS1549-79, 4C12.50 and PKS1814-63 and for the intermediate-size radio galaxy 3C459. At least in the first two, low ionisation optical emission lines and HI absorption appear to be associated with the extended, but relatively quiescent, dusty cocoon surrounding the nucleus. The [OIII] lines are, on the other hand, mostly associated with the region of interaction between the radio plasma and the ISM, indicating a fast outflow from the canter. A case of fast outflow (up to ~1000 km/s) is also observed in HI in the radio source 4C12.50. As the radio source evolves, any obscuring material along the radio axis is swept aside until, eventually, cavities (of the same kind as observed e.g. in Cygnus A) are hollowed out on either side of the nucleus. We may witness this phase in the evolution of a radio so...

  9. Early galaxy evolution from deep wide field star counts; 1, The spheroid density law and mass function

    CERN Document Server

    Robin, A C

    2000-01-01

    As part of a global analysis of deep star counts to constrain scenarii of galaxy formation and evolution, we investigate possible links between the galactic spheroid and the dark matter halo. A wide set of deep star counts at high and intermediate galactic latitudes is used to determine the large scale density law of the spheroid. Assuming a power density law, the exponent, flattening, local density and IMF slope of this population are estimated. The estimation is checked for robustness against contamination of star counts by the thick disc population. Contamination effects are derived from a model of population synthesis under a broad variety of thick disc parameters. The parameter fit is based on a maximum likelihood criterion. The best fit spheroid density law has a flattening of 0.76, a power index of 2.44. There is a significant degeneracy between these two parameters. The data are also compatible with a slightly less flattened spheroid (c/a = 0.85), in combination with a larger power index (2.75). A fla...

  10. Gneiss-Water Interaction and Water Evolution During the Early Stages of Dissolution Experiments at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    Zhu Yinian(朱义年); Ingrid Stober; Kurt Bucher

    2003-01-01

    Gneiss-distilled water interaction at room temperature was investigated with batch-reactors to study water-rock reaction and geochemical evolution of the aqueous phase with time.The ion concentrations in water were controlled not only by the dissolution of primary minerals,but also by the precipitation of secondary minerals. The decreasing fraction sizes of gneiss could favor dissolution and precipitation simultaneously. Ca2+ and K + were the major cations,and HCO3- was the major anion in water. All the ions except Ca2 + increased in concentration with time. The Ca2 + release from the rock to the aqueous phase was initially much faster than the release of K + ,Na + and Mg2 +. But after about 5 - 24 hours,the Ca2 + concentrations in water decreased very slowly with time and became relatively stable. During the experiment,the water varied from the Ca-( K)-HCO3-type water to the K-Ca-HCO3-type water,and then to the K( Ca,Na) -HCO3-type water. The water-gneiss interaction was dominated by the dissolution of Kfeldspar in the solution. The remaining secondary minerals were mainly kaolinite,illite and K (Mg) -mica.

  11. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    Science.gov (United States)

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complicated oxidation pathways play a key role in destroying O2, whereas in the upper atmosphere, most O2 is formed abiotically via CO2 photolysis. The O2 bistability found by Goldblatt et al. ( 2006 ) is not observed in our calculations likely due to our detailed CH4 oxidation scheme. We calculate increased CH4 with increasing O2 during the Great Oxidation Event. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity of the biosphere that produces O2 is unique. Mixing, CH4 fluxes, ocean solubility, and mantle/crust properties strongly affect net primary productivity and surface O2 fluxes. Regarding exoplanets, different "states" of O2 could exist for similar biomass output. Strong geological activity could lead to false negatives for life (since our analysis suggests that reducing gases remove O2 that

  12. Thermal Relics in Modified Cosmologies: Bounds on Evolution Histories of the Early Universe and Cosmological Boosts for PAMELA

    CERN Document Server

    Catena, R; Pato, M; Pieri, L; Masiero, A

    2010-01-01

    Alternative cosmologies, based on extensions of General Relativity, predict modified thermal histories in the Early Universe in the pre Big Bang Nucleosynthesis (BBN) era, epoch which is not directly constrained by cosmological observations. When the expansion rate is enhanced with respect to the standard case, thermal relics typically decouple with larger relic abundances. The correct value of the relic abundance is therefore obtained for larger annihilation cross sections, as compared to standard cosmology. A direct consequence is that indirect detection rates are enhanced. Extending previous analyses of ours, we derive updated astrophysical bounds on the dark matter annihilation cross sections and use them to constrain alternative cosmologies in the pre-BBN era. We also determine the characteristics of these alternative cosmologies in order to provide the correct value of relic abundance for a thermal relic for the (large) annihilation cross section required to explain the PAMELA results on the positron fr...

  13. Origin and Early Evolution of Comet Nuclei Workshop honouring Johannes Geiss on the occasion of his 80th birthday

    CERN Document Server

    Balsiger, H; Huebner, W; Owen, T; Schulz, R

    2008-01-01

    Comet nuclei are the most primitive bodies in the solar system. They have been created far away from the early Sun and it is supposed that their material has been altered the least since their formation. This volume presents the results of a scientific workshop on comet nuclei and is written by experts working on interstellar clouds, star-forming regions, the solar nebula, and comets. The articles formulate the current understanding and interconnectivity of the various source regions of comet nuclei and their associated compositions and orbital characteristics. This includes a discussion on the transport of materials into the Kuiper belt and Oort cloud regions of the solar system. The distinction between direct measurements of cometary material properties and properties derived from indirect means are emphasized with the aim to guide future investigations. This book serves as a guide for researchers and graduate students working in the field of planetology and solar system exploration. It should also help to ...

  14. Evolution of volcanically-induced palaeoenvironmental changes leading to the onset of OAE1a (early Aptian, Cretaceous)

    Science.gov (United States)

    Keller, Christina E.; Hochuli, Peter A.; Giorgioni, Martino; Garcia, Therese I.; Bernasconi, Stefano M.; Weissert, Helmut

    2010-05-01

    During the Cretaceous, several major volcanic events occurred that initiated climate warming, altered marine circulation and increased marine productivity, which in turn often resulted in the widespread black shale deposits of the Oceanic Anoxic Events (OAE). In the sediments underlying the early Aptian OAE1a black shales, a prominent negative carbon isotope excursion is recorded. Its origin had long been controversial (e.g. Arthur, 2000; Jahren et al., 2001) before recent studies attributed it to the Ontong Java volcanism (Méhay et al., 2009; Tejada et al., 2009). Therefore the negative C-isotope excursion covers the interval between the time, when volcanic activity became important enough to be recorded in the C-isotope composition of the oceans to the onset of widespread anoxic conditions (OAE1a). We chose this interval at the locality of Pusiano (N-Italy) to study the effect of a volcanically-induced increase in pCO2 on the marine palaeoenvironment and to observe the evolving palaeoenvironmental conditions that finally led to OAE1a. The Pusiano section (Maiolica Formation) was deposited at the southern continental margin of the alpine Tethys Ocean and has been bio- and magnetostratigraphically dated by Channell et al. (1995). We selected 18 samples from 12 black shale horizons for palynofacies analyses. Palynofacies assemblages consist of several types of particulate organic matter, providing information on the origin of the organic matter (terrestrial/marine) and conditions during deposition (oxic/anoxic). We then linked the palynofacies results to high-resolution inorganic and organic C-isotope values and total organic carbon content measurements. The pelagic Pusiano section consists of repeated limestone-black shale couplets, which are interpreted to be the result of changes in oxygenation of bottom waters. Towards the end of the negative C-isotope excursion we observe enhanced preservation of the fragile amorphous organic matter resulting in increased

  15. Architecture and evolution of an Early Permian carbonate complex on a tectonically active island in east-central California

    Science.gov (United States)

    Stevens, Calvin H.; Magginetti, Robert T.; Stone, Paul

    2015-01-01

    The newly named Upland Valley Limestone represents a carbonate complex that developed on and adjacent to a tectonically active island in east-central California during a brief interval of Early Permian (late Artinskian) time. This lithologically unique, relatively thin limestone unit lies within a thick sequence of predominantly siliciclastic rocks and is characterized by its high concentration of crinoidal debris, pronounced lateral changes in thickness and lithofacies, and a largely endemic fusulinid fauna. Most outcrops represent a carbonate platform and debris derived from it and shed downslope, but another group of outcrops represents one or possibly more isolated carbonate buildups that developed offshore from the platform. Tectonic activity in the area occurred before, probably during, and after deposition of this short-lived carbonate complex.

  16. Early Jurassic schizosphaerellid crisis in Cantabria, Spain: Implications for calcification rates and phytoplankton evolution across the Toarcian oceanic anoxic event

    Science.gov (United States)

    Tremolada, Fabrizio; van de Schootbrugge, Bas; Erba, Elisabetta

    2005-06-01

    The Toarcian oceanic anoxic event (˜183 Myr ago) represents a global perturbation marked by increasing organic carbon burial and a general decrease in calcium carbonate production likely triggered by elevated carbon dioxide levels in the atmosphere. Here we present quantitative analyses of calcareous nannofossil diversity and abundance from the Castillo de Pedroso section in Cantabria, northern Spain. We compare these data with geochemical data (C and O isotopes) obtained from biogenic and bulk carbonate records in order to highlight the response of calcareous phytoplankton to major climatic and paleoceanographic changes. The Pliensbachian/Toarcian boundary is characterized by an abrupt decrease in abundance of Schizosphaerella punctulata, the most important lithogenic contributor to (hemi) pelagic carbonates in the Early Jurassic. The early Toarcian nannofloral assemblages show an increase in abundance of Mitrolithus jansae and small-sized r-selected taxa and a progressive decrease in S. punctulata percentages. The deep dwellers M. jansae and S. punctulata experienced a major crisis slightly prior to the deposition of the Toarcian black shales that are characterized by high abundances of eutrophic taxa such as Lotharingius spp. and Biscutum spp. The return of S. punctulata associated with lower percentages of eutrophic taxa was observed just above the Toarcian black shales. The Toarcian episode reveals that high CO2 levels and increasing primary productivity probably triggered a shift in abundance from highly calcified nannoliths such as S. punctulata and M. jansae to small-sized r-selected coccoliths that overall record a biocalcification crisis at the onset and during the Toarcian episode.

  17. A basal sauropodomorph (Dinosauria: Saurischia from the Ischigualasto Formation (Triassic, Carnian and the early evolution of Sauropodomorpha.

    Directory of Open Access Journals (Sweden)

    Ricardo N Martinez

    Full Text Available BACKGROUND: The earliest dinosaurs are from the early Late Triassic (Carnian of South America. By the Carnian the main clades Saurischia and Ornithischia were already established, and the presence of the most primitive known sauropodomorph Saturnalia suggests also that Saurischia had already diverged into Theropoda and Sauropodomorpha. Knowledge of Carnian sauropodomorphs has been restricted to this single species. METHODOLOGY/PRINCIPAL FINDINGS: We describe a new small sauropodomorph dinosaur from the Ischigualsto Formation (Carnian in northwest Argentina, Panphagia protos gen. et sp. nov., on the basis of a partial skeleton. The genus and species are characterized by an anteroposteriorly elongated fossa on the base of the anteroventral process of the nasal; wide lateral flange on the quadrate with a large foramen; deep groove on the lateral surface of the lower jaw surrounded by prominent dorsal and ventral ridges; bifurcated posteroventral process of the dentary; long retroarticular process transversally wider than the articular area for the quadrate; oval scars on the lateral surface of the posterior border of the centra of cervical vertebrae; distinct prominences on the neural arc of the anterior cervical vertebra; distal end of the scapular blade nearly three times wider than the neck; scapular blade with an expanded posterodistal corner; and medial lamina of brevis fossa twice as wide as the iliac spine. CONCLUSIONS/SIGNIFICANCE: We regard Panphagia as the most basal sauropodomorph, which shares the following apomorphies with Saturnalia and more derived sauropodomorphs: basally constricted crowns; lanceolate crowns; teeth of the anterior quarter of the dentary higher than the others; and short posterolateral flange of distal tibia. The presence of Panphagia at the base of the early Carnian Ischigualasto Formation suggests an earlier origin of Sauropodomorpha during the Middle Triassic.

  18. Magnetostratigraphic Record of the Early Evolution of the Southwestern Tian Shan Foreland Basin (Ulugqat Area), Interactions with Pamir Indentation and India-Asia Collision

    Science.gov (United States)

    Yang, W.; Wang, S.

    2015-12-01

    The Tian Shan range is an inherited intracontinental structure reactivated by the far-field effects of India-Asia collision. A growing body of thermochronology and magnetostratigraphy datasets shows the range grew through several tectonic pulses since ~25 Ma, however the early Cenozoic history remains poorly constrained. Particularly enigmatic is the time-lag between the Eocene India-Asia collision and the Miocene onset of Tian Shan exhumation. This peculiar period is potentially recorded along the southwestern Tian Shan piedmont. There, recently dated late Eocene marine deposits of the proto-Paratethys epicontinental sea transition to continental foreland basin sediments of unknown age. We provide magnetostratigraphic dating of these continental sediments from the 1700-m-thick Mine section integrated with previously published detrital apatite fission track and U/Pb zircon ages. The most likely correlation to the geomagnetic polarity time scale indicates an age span from 20.8 to 13.3 Ma with a marked accumulation rate increase at 19-18 Ma. This implies the entire Oligocene period is missing between the last marine and first continental sediments, as suggested by previous southwestern Tian Shan results. This differs from the southwestern Tarim basin where Eocene marine deposits are continuously overlain by late Eocene-Oligocene continental sediments. This supports a simple evolution model of the western Tarim basin with Eocene-Oligocene foreland basin activation to the south related to northward thrusting of the Kunlun Shan, followed by early Miocene activation of northern foreland basin related to overthrusting of the south Tian Shan. Our data also support southward propagation of the Tian Shan piedmont from 20-18 Ma that may relate to motion on the Talas Fergana Fault. The coeval activation of a major right-lateral strike-slip system allowing indentation of the Pamir Salient into the Tarim basin, suggest far-field deformation from the India-Asia collision zone

  19. Reassessment of the evidence for postcranial skeletal pneumaticity in Triassic archosaurs, and the early evolution of the avian respiratory system.

    Directory of Open Access Journals (Sweden)

    Richard J Butler

    Full Text Available Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP. PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs. However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use µCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina is found only in bird-line (ornithodiran archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs. The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have

  20. Philippine Sea Plate inception, evolution, and consumption with special emphasis on the early stages of Izu-Bonin-Mariana subduction

    Science.gov (United States)

    Lallemand, Serge

    2016-12-01

    We compiled the most relevant data acquired throughout the Philippine Sea Plate (PSP) from the early expeditions to the most recent. We also analyzed the various explanatory models in light of this updated dataset. The following main conclusions are discussed in this study. (1) The Izanagi slab detachment beneath the East Asia margin around 60-55 Ma likely triggered the Oki-Daito plume occurrence, Mesozoic proto-PSP splitting, shortening and then failure across the paleo-transform boundary between the proto-PSP and the Pacific Plate, Izu-Bonin-Mariana subduction initiation and ultimately PSP inception. (2) The initial splitting phase of the composite proto-PSP under the plume influence at ˜54-48 Ma led to the formation of the long-lived West Philippine Basin and short-lived oceanic basins, part of whose crust has been ambiguously called "fore-arc basalts" (FABs). (3) Shortening across the paleo-transform boundary evolved into thrusting within the Pacific Plate at ˜52-50 Ma, allowing it to subduct beneath the newly formed PSP, which was composed of an alternance of thick Mesozoic terranes and thin oceanic lithosphere. (4) The first magmas rising from the shallow mantle corner, after being hydrated by the subducting Pacific crust beneath the young oceanic crust near the upper plate spreading centers at ˜49-48 Ma were boninites. Both the so-called FABs and the boninites formed at a significant distance from the incipient trench, not in a fore-arc position as previously claimed. The magmas erupted for 15 m.y. in some places, probably near the intersections between back-arc spreading centers and the arc. (5) As the Pacific crust reached greater depths and the oceanic basins cooled and thickened at ˜44-45 Ma, the composition of the lavas evolved into high-Mg andesites and then arc tholeiites and calc-alkaline andesites. (6) Tectonic erosion processes removed about 150-200 km of frontal margin during the Neogene, consuming most or all of the Pacific ophiolite

  1. Initiation and early evolution of the Coronal Mass Ejection on May 13, 2009 from EUV and white-light observations

    CERN Document Server

    Reva, Anton; Bogachev, Sergey; Kuzin, Sergey

    2015-01-01

    We present the results of the observations of a coronal mass ejection (CME), which occurred on May 13, 2009. The most important feature of these observations is that the CME was observed from the very early stage (the solar surface) up to a distance of 15 solar radii ($R_\\odot$). Below 2 $R_\\odot$, we used the data from the TESIS EUV telescopes obtained in the Fe 171 A and He 304 A lines, and above 2 $R_\\odot$, we used the observations of the LASCO C2 and C3 coronagraphs. The CME was formed at a distance of 0.2-0.5 $R_\\odot$from the Sun's surface as a U-shaped structure, which was observed both in the 171 A images and in white-light. Observations in the He 304 A line showed that the CME was associated with an erupting prominence, which was located not above-as predicts the standard model-but in the lowest part of the U-shaped structure close to the magnetic X-point. The prominence location can be explained with the CME breakout model. Estimates showed that CME mass increased with time. The CME trajectory was ...

  2. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae.

    Science.gov (United States)

    Xiao, Shuhai; Knoll, Andrew H; Yuan, Xunlai; Pueschel, Curt M

    2004-02-01

    Phosphatic sediments of the Late Neoproterozoic (ca. 600 million years old [Myr]) Doushantuo Formation at Weng'an, South China, contain fossils of multicellular algae preserved in anatomical detail. As revealed by light microscopy and scanning electron microscopy, these fossils include both simple pseudoparenchymatous thalli with apical growth but no cortex-medulla differentiation and more complex thalli characterized by cortex-medulla differentiation and structures interpretable as carposporophytes, suggesting a multiphasic life cycle. Simple pseudoparenchymatous thalli, represented by Wengania, Gremiphyca, and Thallophycoides, are interpreted as stem group florideophytes. In contrast, complex pseudoparenchymatous thalli, such as Thallophyca and Paramecia, compare more closely to fossil and living corallinaleans than to other florideophyte orders, although they also differ in some important aspects (e.g., lack of biocalcification). These more complex thalli are interpreted as early stem group corallinaleans that diverged before Paleozoic stem groups such as Arenigiphyllum, Petrophyton, Graticula, and Archaeolithophyllum. This phylogenetic interpretation implies that (1) the phylogenetic divergence between the Florideophyceae and its sister group, the Bangiales, must have taken place before Doushantuo time-an inference supported by the occurrence of bangialean fossils in Mesoproterozoic rocks; (2) the initial diversification of the florideophytes occurred no later than the Doushantuo time; and (3) the corallinalean clade had a "soft" (uncalcified) evolutionary history in the Neoproterozoic before evolving biocalcification in the Paleozoic and undergoing crown group diversification in the Mesozoic.

  3. Early development and orientation of the acoustic funnel provides insight into the evolution of sound reception pathways in cetaceans.

    Science.gov (United States)

    Yamato, Maya; Pyenson, Nicholas D

    2015-01-01

    Whales receive underwater sounds through a fundamentally different mechanism than their close terrestrial relatives. Instead of hearing through the ear canal, cetaceans hear through specialized fatty tissues leading to an evolutionarily novel feature: an acoustic funnel located anterior to the tympanic aperture. We traced the ontogenetic development of this feature in 56 fetal specimens from 10 different families of toothed (odontocete) and baleen (mysticete) whales, using X-ray computed tomography. We also charted ear ossification patterns through ontogeny to understand the impact of heterochronic developmental processes. We determined that the acoustic funnel arises from a prominent V-shaped structure established early in ontogeny, formed by the malleus and the goniale. In odontocetes, this V-formation develops into a cone-shaped funnel facing anteriorly, directly into intramandibular acoustic fats, which is likely functionally linked to the anterior orientation of sound reception in echolocation. In contrast, the acoustic funnel in balaenopterids rotates laterally, later in fetal development, consistent with a lateral sound reception pathway. Balaenids and several fossil mysticetes retain a somewhat anteriorly oriented acoustic funnel in the mature condition, indicating that a lateral sound reception pathway in balaenopterids may be a recent evolutionary innovation linked to specialized feeding modes, such as lunge-feeding.

  4. Early development and orientation of the acoustic funnel provides insight into the evolution of sound reception pathways in cetaceans.

    Directory of Open Access Journals (Sweden)

    Maya Yamato

    Full Text Available Whales receive underwater sounds through a fundamentally different mechanism than their close terrestrial relatives. Instead of hearing through the ear canal, cetaceans hear through specialized fatty tissues leading to an evolutionarily novel feature: an acoustic funnel located anterior to the tympanic aperture. We traced the ontogenetic development of this feature in 56 fetal specimens from 10 different families of toothed (odontocete and baleen (mysticete whales, using X-ray computed tomography. We also charted ear ossification patterns through ontogeny to understand the impact of heterochronic developmental processes. We determined that the acoustic funnel arises from a prominent V-shaped structure established early in ontogeny, formed by the malleus and the goniale. In odontocetes, this V-formation develops into a cone-shaped funnel facing anteriorly, directly into intramandibular acoustic fats, which is likely functionally linked to the anterior orientation of sound reception in echolocation. In contrast, the acoustic funnel in balaenopterids rotates laterally, later in fetal development, consistent with a lateral sound reception pathway. Balaenids and several fossil mysticetes retain a somewhat anteriorly oriented acoustic funnel in the mature condition, indicating that a lateral sound reception pathway in balaenopterids may be a recent evolutionary innovation linked to specialized feeding modes, such as lunge-feeding.

  5. Isotopic evolution of the terminal Neoproterozoic and early Cambrian carbon cycle on the northern Yangtze Platform, South China

    Institute of Scientific and Technical Information of China (English)

    GUO Qingjun; LIU Congqiang; Harald STRAUSS; Tatiana GOLDBERG

    2003-01-01

    Profound geotectonic, climatic and biological changes occur during the terminal Neoproterozoic and its transition into the early Cambrian. These are reflected in temporal variations of the chemical and isotopic composition of seawater. We are studying a sequence of sedimentary rocks at the Shatan section, northern Yangtze Platform, Sichuan Province of China. This succession comprises, in ascending stratigraphic order, predominantly calcareous sediments of the Sinian upper Dengying Formation and black shales of the lower Cambrian Guojiaba Formation (time equivalent of Niutitang Fm.). Paleoenvironmental setting represents shallow-water shelf deposits. The objective of our study is to provide temporal records for the isotopic compositions of organic and carbonate carbon throughout this time interval. Organic carbon isotope values display a range between -35.8‰ and -30.1‰ with clear stratigraphic variations. Carbonate carbon isotope data vary between -3.5‰ and +0.5‰. These secular variations are interpreted to reflect perturbations of the global carbon cycle, specifically changes in the fractional burial of organic carbon. However, local conditions have further affected the isotopic signals.

  6. The C/O ratio at low metallicity: constraints on early chemical evolution from observations of Galactic halo stars

    CERN Document Server

    Fabbian, D; Asplund, M; Pettini, M; Akerman, C

    2008-01-01

    We present new measurements of the abundances of carbon and oxygen derived from high-excitation C I and O I absorption lines in metal-poor halo stars, with the aim of clarifying the main sources of these two elements in the early stages of the chemical enrichment of the Galaxy. We target 15 new stars compared to our previous study, with an emphasis on additional C/O determinations in the crucial metallicity range -3<[Fe/H]<-2. Departures from local thermodynamic equilibrium were accounted for in the line formation for both carbon and oxygen. The non-LTE effects are very strong at the lowest metallicities but, contrary to what has sometimes been assumed in the past due to a simplified assessment, of different degrees for the two elements. In addition, for the 28 stars with [Fe/H]<-1 previously analysed, stellar parameters were re-derived and non-LTE corrections applied in the same fashion as for the rest of our sample, giving consistent abundances for 43 halo stars in total. The new observations and n...

  7. Early Callovian ingression in southwestern Gondwana. Palaeoenvironmental evolution of the carbonate ramp (Calabozo Formation) in southwestern Mendoza, Neuquen basin, Argentina

    Science.gov (United States)

    Armella, Claudia; Cabaleri, Nora G.; Cagnoni, Mariana C.; Panarello, Héctor O.

    2013-08-01

    The carbonatic sequence of the Calabozo Formation (Lower Callovian) developed in southwestern Gondwana, within the northern area of the Neuquén basin, and is widespread in thin isolated outcrops in southwestern Mendoza province, Argentina. This paper describes the facies, microfacies and geochemical-isotopic analysis carried out in five studied localities, which allowed to define the paleoenvironmental conditions of a homoclinal shallow ramp model, highly influenced by sea level fluctuations, where outer, mid and inner ramp subenvironments were identified. The outer ramp subenvironment was only recognized in the south of the depocenter and is characterized by proximal outer ramp facies with shale levels and interbedded mudstone and packstone layers. The mid ramp subenvironment is formed by low energy facies (wackestone) affected by storms (packstones, grainstones and floatstones). The inner ramp subenvironment is the most predominant and is characterized by tidal flat facies (wackestones, packstones and grainstones) over which a complex of shoals (grainstones and packstones) dissected by tidal channels (packstone, grainstones and floatstones) developed. In the north area, protected environment facies were recorded (bioturbated wackestones and packstones). The vertical distribution of facies indicates that the paleoenvironmental evolution of the Calabozo Formation results from a highstand stage in the depocenter, culminating in a supratidal environment, with stromatolitic levels interbedded with anhydrite originated under restricted water circulation conditions due to a progressive isolation of the basin. δ13C and δ18O values of the carbonates of the Calabozo Formation suggest an isotopic signature influenced by local palaeoenvironmental parameters and diagenetic overprints. The δ13C and δ18O oscillations between the carbonates of the different studied sections are related with lateral facies variations within the carbonate ramp accompanied with dissimilar

  8. Initiation and early evolution of a Coronal Mass Ejection on May 13, 2009 from EUV and white-light observations

    Science.gov (United States)

    Reva, Anton; Kuzin, Sergey; Bogachev, Sergey; Ulyanov, Artyom

    In this talk we present results of the observations of a CME, which occurred on May 13, 2009. The most important feature of these observations is that the CME was observed from the very beginning stage (the solar surface) up to the distance of 15 solar radii (R_⊙). Below 2 R_⊙ we used the data from the TESIS EUV telescopes obtained in the Fe 171 Å and He 304 Å lines, and above 2 R_⊙ we used the observations of the LASCO C2 and C3 coronagraphs. Using data of these three instruments, we have studied the evolution of the CME in details. The CME had a curved trajectory -- its helio-latitude decreased with time. The mass ejection originated at a latitudes of about 50(°) and reached the ecliptic plane at a distance of 2.5 R_⊙ from the Sun’s center. The CME velocity and acceleration increased as the CME went away from the Sun. At the distance of 15 R_⊙ from the Sun’s center the CME had a velocity of 250 km/s and an acceleration of 5 m/s(2) . The CME was not associated with a flare, and didn’t have an impulsive acceleration phase. The mass ejection had U-shaped structure which was observed both in the 171 Å images and in white-light. The CME was formed at a distance of about 0.2 -- 0.5 R_⊙ from the Sun’s surface. Observations in the line 304 Å showed that the CME was associated with the erupting prominence, which was located in the lowest part of the U-shaped structure close to the X-point of the magnetic reconnection. The prominence disappeared at the height of 0.4 R_⊙ above the solar limb. Some aspects of these observations can’t be explained in the standard CME model, which predicts that the prominence should be located inside the U-shaped structure, and the CME should be associated with a flare and have an impulsive acceleration phase.

  9. Evidence for gill slits and a pharynx in Cambrian vetulicolians: implications for the early evolution of deuterostomes

    Directory of Open Access Journals (Sweden)

    Ou Qiang

    2012-10-01

    members of the stem-group deuterostomes; a group best known as the chordates (amphioxus, tunicates, vertebrates, but also including the ambulacrarians (echinoderms, hemichordates, and xenoturbellids. If the latter, first they demonstrate that these members of the stem group show few similarities to the descendant crown group representatives. Second, of the key innovations that underpinned deuterostome success, the earliest and arguably most seminal was the evolution of openings that define the pharyngeal gill slits of hemichordates (and some extinct echinoderms and chordates.

  10. Edaphics, active tectonics and animal movements in the Kenyan Rift - implications for early human evolution and dispersal

    S